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on the concrete reinforced by short steel 
fibres, SFRC. The examinations performed 
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of fibre orientations from the hardened 
concrete matrix and modelling of composite 
properties considering the anisotropic 
behaviour occurring due to different 
alignments of short fibres. 
The outcomes of empirical investigations 
proved that the elaborated and implemented 
measuring techniques: DC-conductivity 
testing combined with photometry and X-
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possibilities to improve and develop the 
manufacturing process of SFRC products 
(look into the summary). The advantage of 
the material model postulated is that it uses 
the full orientation information of fibres and 
employs tensor quantities. The model can be 
implemented in numerical applications. 
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Kokkuvõte

Käesolev väitekiri käsitleb tsemendipõhist komposiitmaterjali, mis on moodus-

tatud betoonmassi (matriitsi) ja lühikeste teraskiudude kokku segamisega,

mille tulemuseks on teraskiudbetoon. See komposiitmaterjal on juba laial-

daselt kasutusel ehituskonstruktsioonides, näiteks tööstuspõrandates ning isegi

mõnedes kandekonstruktsioonides nagu näiteks vahelaeplaadid. Teraskiud-

betooni keerulisus seisneb tema anisotroopsetes omadustes, mis tulenevad lühi-

kiudude erineva orientatsiooni jaotusest matriitsis.

Teostatud uuringud hõlmavad kahte teadusharu: lühikeste teraskiudude

orientatsiooni jaotuse mõõtmise kivistunud betoonmatriitsis ning komposiidi

omaduste modelleerimist võttes arvesse kiudude orientatsiooni jaotust. Uurimis-

töö käigus on arendatud kahte meetodit lühikiudude orientatsiooni jaotuse

mõõtmiseks: viilutamine ja mikro-kompuutertomograafia. Katsekehadeks on

kasutatud konstruktsiooni osasid, mis olid eraldatud täismõõtmelistest vahe-

laeplaatidest. Viilutamise ja fotomeetria lähenemine on täiustatud alalisvoolu

juhtivuse mõõtmisega, mis omaette on kombineeritud fotoanalüüsiga. Mikro-

kompuutertomograafia on teostatud piisavalt suurtel katsekehadel ning lühi-

kiudude orientatsioon on määratud analüüsides 3D voksel pilte skanneeritud

kiududest. Saadud mõõtmistulemused on tõestanud, et mõlemad mõõtmis-

meetodid, st alalisvoolu juhtivuse mõõtmine kombineerituna fotoanalüüsiga

ning mikro-kompuutertomograafia, omavad kõrget täpsust mõõtmistel ja neid

saab usaldusväärselt kasutada terasest lühikiudude orientatsiooni jaotuse määra-

misel reaalsetes katsekehades.

Teadustöö käigus välja töötatud materjalimudel ühe teraskiudbetooni meso-

ruumelemendi jaoks baseerub ortotroopsel hüperelastsel materjalimudelil, kus

deformatsioonienergia funktsioonis kasutatakse teist järku liikmeid, mille tule-

museks on ortotroopne St. Venant-Kirchhoff’i mudel. Komposiidi ortotroopne

meso-sümmeetria on modelleeritud struktuursete tensorite abil, mis on moodus-

tatud teist järku joonduvustensori omavektoritest, sest joonduvustensor esitab



Kokkuvõte

lühikiudude domineerivate orientatasioonide suundi. Ortotroopset St. Venant-

Kirchhoff’i mudelit saab kasutada isotroopse juhtumi jaoks, kuna suunast

sõltuvad struktuursed tensorid taanduvad erisuuna puudumisel. Sellest tu-

lenevalt koosneb materjalimudel ühe teraskiudbetooni meso-ruumelemendi jaoks

isotroopsest osast, mis kirjeldab betoonmatriitsi ning ortotroopsest osast, mis

kirjeldab terasest lühikiudude mõju. Lühikiudude orientatsiooni jaotusfunktsi-

oon on rakendatud komposiidi ortotroopse meso-elastsuse hindamisel meso-

sümmeetria suunades. Formuleeritud materjalimudeli eeliseks on asjaolu, et

ta rakendab täieliku infot lühikiu orientatsiooni kohta (sfäärilised koordinaa-

did) ning kasutab tensorsuurusi, mis ei sõltu koordinatsüsteemi valikust.

Viimaks, formuleeritud mudeli rakendamine on esitatud näidetega, mis basee-

ruvad katsekehades mõõdetud lühikiudude orientatsiooni jaotusel.
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I am very thankful to Andrus Räämet, who introduced me to Professor

Jari Puttonen, as well as to Madis Listak, who organised a meeting with Dr.

Heiko Herrmann. Thereby, these contacts resulted in a joint research work,

which involved both Universities. I would like to thank Professor Andrus
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Notations and definitions

Vectors and tensors are either denoted by bold letters or using index-notation

for components with respect to an arbitrary fixed basis, for shortness the basis

vectors will be omitted from the equations. Explicit calculations are performed

in Cartesian coordinates. In index-notations, the Einstein summation conven-

tion is used.

A vector (bold small letters):

v = vigi ,

A 2nd order tensor (bold capital letters):

A = Aijgi ⊗ gj .

A 4th order tensor:

<4>D = Dijklgi ⊗ gj ⊗ gk ⊗ gl .

An l-order tensor:

<l>A = Aμ1...μl
gμ1 ⊗ · · · ⊗ gμl

.

The 2nd- and 4th order identity tensors, respectively:

I = gi ⊗ gi , <4>I = gi ⊗ gj ⊗ gk ⊗ gl .

An outer product of two vectors (forming a second order tensor):

v ⊗ n = vigi ⊗ njgj .

An l-order symmetric irreducible (traceless) part of an l-order symmetric ten-

sor formed by the l-order outer products of a vector n with itself:

n⊗ . . .⊗ n︸ ︷︷ ︸
l-times

, nμ1 ⊗ . . .⊗ nμl
.

xix



Notations and definitions

An inner product (also called scalar- or dot-product) of two second-order ten-

sors:

AB = A ·B = Aikgi ⊗ gk ·Bkjgk ⊗ gj ,

if B = A , then A2 = A ·A .

A double inner product of two second-order tensors:

A : B = Aikgi ⊗ gk : Bkigk ⊗ gi .

An outer product of two second-order tensors:

A⊗B = Aijgi ⊗ gj ⊗Bklgk ⊗ gl = Cijklgi ⊗ gj ⊗ gk ⊗ gl .

A modified outer product of two second-order tensors:

A ⊗̃B = Aijgi ⊗ gj ⊗̃Bklgk ⊗ gl = Cikljgi ⊗ gk ⊗ gl ⊗ gj ,

an example: A14g1 ⊗ g4 ⊗̃B23g2 ⊗ g3 = C1234g1 ⊗ g2 ⊗ g3 ⊗ g4 .

Kelvin-Mandel variant of the Voigt notation preserving the tensor properties,

especially regarding coordinate transformations [3]:

CK−M
αβ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133

√
2C1123

√
2C1131

√
2C1112

C1122 C2222 C2233

√
2C2223

√
2C2231

√
2C2212

C1133 C2233 C3333

√
2C3323

√
2C3331

√
2C3312√

2C1123

√
2C2223

√
2C3323 2C2323 2C2331 2C2312√

2C1131

√
2C2231

√
2C3331 2C2331 2C3131 2C3112√

2C1112

√
2C2212

√
2C3312 2C2312 2C3112 2C1212

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

α, β = 1, ..., 6 .

Some notations of continuum mechanics [4, 5]:

Lin – a set of all linear mappings of a three-dimensional vector space R
3

over real numbers into itself.

Orth = {Q ∈ Lin : Q = Q−T } – the symmetry group of orthogonal transfor-

mations, where Q is an orthogonal transformation matrix (rotations).

W = W (F) – strain-energy density function.

X, XK – coordinates associated with the undeformed state; defined as mate-

rial or Lagrangian coordinates. The undeformed state is chosen as a reference

configuration.

xx



Notations and definitions

x, xk – coordinates associated with the deformed state; defined as spatial

or Eulerian coordinates.

F = ∂x
∂X , FkK = ∂xk

∂XK
= xk,K – deformation gradient.

C = FT · F = CT , CKL =
∑

k
∂xk
∂XK

∂xk
∂XL

= xk,Kxk,L – Green deforma-

tion tensor.

E = 1
2(C − I) = ET = 1

2(∇XU + (∇XU)T + (∇XU)T · ∇XU) = 1
2(UK,L +

UL,K +UM,KUM,L) – Lagrangian strain tensor, where UK,L, UL,K , UM,K , UM,L

are displacement gradients. The term UM,KUM,L refers to geometrical non-

linearity. If UM,KUM,L � 1, then:

E ≈ ε = εT =
1

2
(∇xu+ (∇xu)

T ) ,

where ε is an infinitesimal strain tensor and x represents undeformed position.

A benefit of using Lagrangian strain tensor is that Lagrange strain, εL, can be

measured based on experimental data, i.e.

εL =
l2−l20
2l20

= 1
2(β

2 − 1),

where l0, l are sample lengths in the beginning and end of a test, respectively

and β = l
l0

is a stretch ratio.

An infinitesimal strain—engineering strain, εe—may be experimentally de-

fined as following:

εe =
l−l0
l0

= (β − 1).

S = 2∂W
∂C = ∂W

∂E – second Piola-Kirchhoff pseudo-stress tensor, expresses the

stress with respect to the original (undeformed) surface area. Second Piola-

Kirchhoff pseudo-stress tensor presents the stress at the material point X.

(c), (m), (f), (s) – refer to the composite, matrix, fibres, steel, respectively.

ij , i, j , i, j = 1, 2, 3 – upper indices refer to material symmetry axes.

(fms), (fstr) – refer to orientation-weighted fibres in material meso-symmetry

and structural coordinates, respectively.

S – refers to a symmetric part of a tensor (minor symmetry within last 2

indices).
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1. Introduction

In the last decades the development of composites is connected with the need

to improve the efficiency and economy of materials. A possibility to increase

the strength of the base material or matrix is the addition of short fibres.

Concrete-matrix composites are an example of short fibre-reinforced materials.

They usually consist of a cement-based matrix and different types of short

fibres: glass [6], polypropylene [7], carbon [8], and steel [9], Fig. 1.1. The

short steel fibres are made of cold-drawn steel, which has a high strength, but

insignificant deformation capacity compared to the ductility of common hot-

rolled construction steels. The shapes of steel fibres depend on manufacturers

as shown in Fig. 1.1(b).

(a) Upper: car-

bon nanofibres [8].

Lower: polypropy-

lene fibres.

(b) Steel fibres with varying ge-

ometry.

Figure 1.1. Short fibres used for the reinforcement of concrete matrix.

The motivation to study concrete composites comes from the demand for

using them in load-bearing structures to reduce the construction time and im-

prove quality of structures. The addition of fibres may help to decrease brittle

failure characteristics of concrete. The major role of fibres is to carry tensile

stresses, while the concrete matrix carries compression as well as distributes

and transfers the internal tensile forces to the fibres.
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The present research concentrates on the study of the properties and the use

of concrete reinforced by short hooked-end steel fibres (steel fibre reinforced

concrete, SFRC). In contrast to concrete reinforced with steel bars, short steel

fibres are added to the concrete mass at the mixing stage, Fig. 1.2.

Figure 1.2. Cross-section of a cast SFRC structure. Concrete reinforced by short hooked-

end steel fibres, SFRC.

Although the properties of SFRC have not been thoroughly explored, it

is widely used in the construction industry and even for providing the load-

bearing capacity of structures, Fig. 1.3. In recent years many scientists have

(a) Cast SFRC floor-slabs

in Rocca Tower, Tallinn,

Estonia.

(b) Cast SFRC floor-slabs in

the office building on Kotkapoja

street, Tallinn, Estonia.

Figure 1.3. Buildings where SFRC was used for load-bearing structures.

devoted their research to the study of steel fibre reinforced concrete. For ex-

ample, in the references [9, 10] the authors summarized both theoretical and

experimental knowledges developed during the last 20-30 years of research.

The studies such as [11, 12] were focused on constitutive mappings. In some

recent works [13, 14, 15, 16, 17, 18, 16, 19] the authors utilised several advanced

methods and approaches, such as computer-tomography, electrical and mag-

netic surveys, and image analysis, to investigate the mechanical properties of

SFRC. The bearing capacity of SFRC largely depends on the orientation dis-

tribution of fibres. Fig. 1.4 demonstrates a basic difference between concrete

beams reinforced with steel bars and short steel fibres. In a conventionally
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reinforced concrete beam, the predicted tension coincides with the actual re-

inforcement. From Fig. 1.4, it is possible to conclude that the determination

and further the quantification of fibre orientations play an important role in

the specification of the bearing capacity of SFRC.

reinforcement bars tension zone

tension zone

fibre

Figure 1.4. The comparison between a reinforced concrete and a SFRC beam. In the SFRC

beam the orientation distribution of fibres is not specified.

1.1 Unknowns and open questions with SFRC

The development of any composite system requires to study its deformation

and fracture mechanics. The adding of short steel fibres to the matrix leads to

an anisotropic behaviour, i.e. direction dependent properties. SFRC exhibits

anisotropic properties in accordance with the orientation distribution of fibres.

When the alignment of fibres coincides with a principal stress in a structure,

the contribution of fibres to the material strength is more pronounced than

otherwise. Many empirical measuring techniques enable us to determine the

orientation of short steel fibres [17, 20, 21]. Though, the main limitation of

these methods is that they may define only the tendencies such as a measured

average orientation of fibres and some degree of alignment [20, 21] instead of

the attempt to evaluate the orientation of each fibre. In the earlier studies the

casting of specimens is usually carried out under well defined and controlled

laboratory conditions. These conditions may clearly differ from those at a

construction site, where the casting depends on the technological process and

is typically site-specific.

The behaviour of any material is determined by its properties, which are con-

sidered by constitutive equation (material model). This equation establishes

the linkage between stresses and deformations. As the properties of the studied

composite depend on the orientation of short steel fibres, a reliable material

model for SFRC shall include the quantities, which give a representative de-

scription of fibre orientations.

The material models available for composites reinforced by short fibres usually

either consider the orientation of fibres utilizing only a single one-dimensional

3



Introduction

case with aligned fibres [22, 23] or assume a mean orientation with respect to

a predefined axis and use one orientation angle as a parameter [11, 12]. One

approach is the orientation number (ON), which is defined as an average pro-

jected length of fibres in a cross-section onto the normal of the cross-section

divided by the fibre length [12]. Another approach is the orientation profile

(OP) [11], which extends the concept of the orientation number counting the

amount of fibres (out of the total number of fibres given) within different in-

clination intervals assuming a pre-defined statistical distribution.

An alternative would be the use of full orientation information of fibres and

tensor quantities. In spherical coordinates the position of a point is specified

by three numbers: radial distance, inclination angle θ, azimuth (in-plane) an-

gle φ. For the description of the orientation of a fibre two angles are necessary

and the radius is not needed, Fig. 1.5.

Figure 1.5. Representation of a fibre in spherical coordinate system.

Recently, a plastic approach (based on the formation of plastic hinges) has

found a wide application in the design of load-bearing structures made of

SFRC [24, 25, 26, 27]. This approach assumes a plastic dependence between

the stress and strain and also redistribution of stresses in statically indetermi-

nate structures [28]. Thereby, in a bended conventionally reinforced concrete

member, the area of large local plastic deformations, called a plastic hinge, is

assumed to be developed. This area includes the compressed concrete zone

and tensioned steel bars. However, the behaviour of a bended SFRC member

can be taken rather brittle than ductile, since the cracks in a tension zone are

not gradually developing and, as a consequence, the failure may occur sud-

denly. In the case of SFRC, it is not possible to assume any yielding of short

steel fibres since they are made of cold-drawn high-strength steel and their

anchoring capacity is limited. These issues suggest to start the constitutive

mappings for SFRC from the linear-elastic state, meaning that the cracking

can be excluded from the material model.

The lack of an objective material model for SFRC, which includes the ori-

4



Introduction

entation distribution of fibres required for predicting the bearing capacity of

SFRC, suggests that a more fundamental, both theoretical and experimental,

research is needed. In addition, the intention to use SFRC as a load-bearing

component in concrete structures requires numerical simulations using the ma-

terial models, which are independent of any reference frame.

The shortcomings of present theories for fibre reinforced materials and their

limitations for the design of load-bearing structures made of SFRC are high-

lighted and presented in Publication I.

1.2 Research goals and implementations

The mechanical properties of SFRC are directly dependent on the orientation

distribution of short steel fibres. Only by knowing fibre orientations it is

possible to determine the bearing capacity of this composite. The ability to

measure the orientation of fibres may also provide a ground to monitor, track

and influence on the orientation during the production or cast process. Thus,

the main goals of this study can be classified as follows:

experimental: determination of fibre orientations in specimens

theoretical: development of an anisotropic linear-elastic material model, which

includes the orientation distribution of fibres

The outcomes of the study can be used for developing the production process

of SFRC structures, since the existing principles of casting concrete structures

are not originally designed for SFRC and new technological solutions optimis-

ing the fibre orientations in the composite are needed.

In developing the methodology for measuring fibre orientations in SFRC prod-

ucts two methods are under elaboration: slicing and X-ray micro-tomography.

For both methods the parts extracted from the real-size structures were em-

ployed as specimens. The target of the slicing method developed is the in-

tention to combine two approaches, i.e. the photometric image analysis and

DC-conductivity measurements by a special robot. As an output, it is ex-

pected to obtain the full orientation information of each measured fibre in

spherical coordinates. X-ray micro tomography (μCT) is an advanced method

for measuring the orientation distribution of fibres from hardened concrete

samples. With this method, it is planned to obtain a voxel image of fibres

directly in 3D and, later on, the orientation of each individual fibre can be

calculated based on a skeletonized (centre line) representation of 3D image

received.
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The possible applicability of the developed methods for measuring fibre ori-

entations, their precision, and feasibility are highlighted in Publication IV,

Publication V.

The presence of short fibres in SFRC and the relevance of their orientation

to the bearing capacity of the composite makes it necessary to consider these

factors in governing equations. Besides, the brittle behaviour of the concrete

matrix, the restricted anchoring of short steel fibres and small range of plastic

deformations of high strength steel used for fibres justify the assumption of

linear-elastic dependence between stress and deformation. Regarding to this,

the research includes the formulation of the orthotropic linear-elastic consti-

tutive relation for one representative volume element of steel fibre reinforced

concrete taking into account the orientation distribution of fibres.

The approach is based on the use of the orientation distribution function and

the alignment tensors [29, 30, 31]. These quantities have been successfully

employed in e.g. liquid crystals (LCs) [29, 30], short fibre polymer composites

[31], and penny shaped micro-cracks in brittle materials [32], where the ori-

entation distribution of rod-like particles is relevant. The approach rests on

the concepts of mesoscopic continuum theory, which is between a microscopic

description, which uses the statistical methods, and macroscopic description,

which usually does not take into account any micro-structure. Mesoscopic

continuum theory introduces new variables as, for example, the mesoscopic

distribution function, which in our case is a statistical orientation distribution

function. It was developed about 50 years ago for LCs (rod-like particles)

[33, 34, 35]. The orientation distribution function (ODF) defines a probabil-

ity of finding a rod-like particle between the given angles on a sphere. Each

point of this sphere is associated with the direction of a rod-like particle (LC

molecule, fibre) represented by a unit vector. Thereby, all possible direc-

tions of a unit vector form a unit sphere (radius r = 1) [30]. Here, it is

useful to introduce the l-order orientation tensor (OT), which is symmetric

and can be composed by dyadic products of a unit vector with itself, then

integrating the result with the ODF over the whole unit sphere [31]. The

irreducible—symmetric traceless—part of the l-order OT, called the l-order

alignment tensor (AT) [29, 30, 36], can recover the ODF. The orientation dis-

tribution function defined on a unit sphere can be expanded into the series of

main spherical harmonics forming a complete orthonormal basis. The l-order

symmetric tensorial product of a unit vector from which the trace is removed

gives an l-order symmetric irreducible tensor, which is a spherical harmonic

function [30]. The latter allows to decompose the ODF in a series by basis

6



Introduction

formed by symmetric irreducible tensors and the ATs are acting as the ex-

pansion coefficients. This implies that if the expansion coefficients–ATs–in a

complete orthonormal basis are known the original function–ODF–can also be

considered as known [37].

The clear advantage of using the tools of mesoscopic continuum theory in the

present research is achieved by the potential to describe the orientation state

of short fibres in space employing the tensorial quantities: orientation and

alignment tensors. The latter are able to include the complete data of fibre

orientations (two angles in spherical coordinates) needed for specifying the

position of a point in space. Moreover, the described mesoscopic orientation

characteristics can be used in the material model for SFRC.

The main tasks that will be solved during the research are presented in Fig. 1.6.

From the figure we may conclude that the concept of the whole work is the

consolidation of theoretical and experimental branches. This is needed for en-

hancing the design and manufacturing in order to obtain the most favourable

orientation of fibres in a structure.

The constitutive modelling of anisotropic material properties of SFRC employ-

ing the concepts of mesoscopic continuum theory is highlighted in Publication

VI.
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Figure 1.6. Graphical representation of the basic objectives during the research.
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2. Methodology for measuring fibre

orientations

The bearing capacity of SFRC has an anisotropic nature, and the level of

anisotropy originates primarily from the orientation state of fibres. Thus, an

experimental problem is the determination of the orientation distribution of

fibres. In this Chapter, an overview of methods for measuring fibre orientations

in SFRC precedes a detailed description of the methods elaborated and realized

in the research work.

The measuring techniques developed and implemented in the research are

highlighted in Publication IV and Publication V.

2.1 Overview of measuring techniques

In recent years, various techniques have been utilised to investigate the ori-

entation of short steel fibres in hardened concrete. These methods include

photometric analysis [11, 12, 14, 15, 38, 39], X-ray computed tomography

[16, 40, 41, 42] or they are based on different physical phenomena such as

electrical conductivity and magnetism [20, 21, 43, 44].

Slicing with photometric analysis

The idea to utilize the photos of cut specimens—slices—to specify fibre orien-

tations in fibre reinforced composites has already been widely used, e.g. by P.

Stroeven and J.Hu, L.Ferrara et al., P. Purnell et al. [14, 18, 45], by C.Redon

et al. [17], who used a Fourier transform and by C. Redon et al., P.Stroeven

[43, 46], who used image analysis on 2D X-ray transmission images. Fourier

image transform is an automatic method to assess fibre orientations. It in-

volves the application of the Fourier transform depending on the orientation

of a mask on a grey-level image and, further, the detection of the portions of

fibres oriented into the defined direction. 2D X-ray images may be employed

to trace manually the fibres on transparent films representing them by a num-
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ber of distinguishable lines. Therein the precision of outcomes depends on the

resolution of images, as the estimation of fibre orientations is based on the

geometry of cut fibres. The shape detection of cut fibres may be performed

using an image analysis software. Employing this method it is possible to

define the orientation of a fibre in spherical coordinates, by the inclination θ

and in-plane φ angles, Fig. 1.5. However, the in-plane angle can be measured

only within the interval from [0◦, 180◦] instead of the [0◦, 360◦] and this leads

to an ambiguity in the direction of a fibre, Fig. 2.1.

Z

0, deg180, deg
360, deg

+ 180 deg

fibre
slice surface

Figure 2.1. Ambiguity in the direction of a fibre in case of photometric analysis.

This is not a problem of the image analysis software employed, but funda-

mental to the analysis of 2D images, which can only contain limited informa-

tion.

X-ray computed tomography

X-ray computed tomography (CT) has emerged as a powerful technique for

non-destructive 3D visualization of the micro-structural features of objects

[13, 47, 48, 49]. The method has also been used to study fibre and steel fibre

reinforced concrete [16, 42, 50, 51]. The X-ray micro-tomography (μCT) basi-

cally works on the same principle as conventional CT, except that in μCT the

sample is rotated instead of the X-ray source and detector. The main benefit

of μCT method is that it allows to determine the orientation of individual

fibres in a sample based on their spatial (3D) representation. The major steps

of μCT are:

– scanning of composite sample;

– segmentation into constituent material phases and visualization as 3D im-

age;

– application of skeletonization (centre line) algorithms;

– analysis of skeletonized objects, e.g fibres;

– determination of the inclination θ and in-plane φ angles of each individual

fibre.
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Indirect methods for conductive steel fibre reinforced composites

Indirect methods mainly rely on the electro-magnetic properties of steel fibres.

Two recently used methods are a magnetic one, and another is based on the

alternating current impedance. An advantage of these methods is their non-

destructive nature. A drawback is the ability to asses only general tendencies,

such as the average orientation of fibres and some order of their alignment,

instead of the evaluation of the orientation of a single fibre.

A magnetic method

A magnetic method is one of those developed within last 3 years. It is a non-

destructive method, based on monitoring the specimen surface and detecting

or measuring the variation of the inductance of a probe [20]. The main idea of

the method is that the presence of steel fibres within a specimen can modify the

flux linked by the winding of a probe resulting in the variation of impedance.

A magnetic permeability of cement-based matrix is much lower than that of

fibres. Thereby, the macroscopic magnetic properties of the matrix material

and the effective magnetic permeability dyad of the composite can be defined.

The effective magnetic permeability depends on the volume fraction of fibres,

on their orientation and aspect ratio (ratio of length to diameter), but it does

not depend on their size. Therefore, the measuring of a parameter influenced

by the effective permeability of SFRC element may allow to asses both the

concentration and orientation of steel fibres.

Alternating Current Impedance Spectroscopy

Alternating Current Impedance Spectroscopy (AC-IS) is an electrical char-

acterization method, which allows to study the various features of micro-

structural materials [21]. AC-IS can also be utilised to obtain fibre dispersion

parameters of conductive fibre reinforced composites owing to its unique dual-

arc behaviour. The latter means that, due to the existence of a small portion

of conductive fibres in a composite of finite matrix conductivity, one matrix

impedance arc is divided into two separate low and high frequency arcs in the

complex impedance plane. This effect is more pronounced when the fibres

are highly conductive compared to the matrix material. The dual-arc mode

is caused by the frequency dependent behaviour of conductive fibres, which

are insulating under the low frequencies (Hz), but are conductive under the

high frequencies (MHz). Thus, the idea of applying the AC-IS method on

SFRC includes the impact of an alternating voltage on specimens (concrete

and SFRC) and the measurement of a current responses. For this purpose,
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the electrodes are positioned on the specimens and further the matrix and

composite resistances are measured. Later on, it is possible to calculate the

conductivities of the matrix and composite. The measurements result in nor-

malized conductivity profiles of specimens.

2.2 Selection of measuring methods

Within the research work, slicing and X-ray micro-tomography methods are

chosen as basic approaches for measuring fibre orientations in SFRC samples.

Such selection is made by the following criteria:

The slicing method does not require any special or expensive devices: which

makes it attractive for industrial applications too. X-ray micro-tomography

(μCT) is based on expensive devices operated by highly educated personal.

In spite of this, its accuracy and clarity are greater than other methods for

measuring of fibre orientations: thus, it sets a baseline for the calibration of the

methods. μCT method is also interesting as the integration of some, perhaps

not so sophisticated, CT systems into the manufacturing process of SFRC may

be feasible in the future.

2.3 Slicing method as a combination of DC-conductivity testing

with photometry

Compared to those earlier studies, the slicing method developed in this re-

search is based on the structural parts extracted from the full-size members

(floor-slabs) and the use of multiple slices close to each other, which are analy-

sed to improve the statistics, in contrast to the single-picture approach that

is found in the literature [15]. In addition, the experimental full-size members

are prepared not in controlled laboratory conditions, but following the site-

specific casting. The slices are analysed utilizing approaches that are joined

together: the coordinates received in the image analysis are employed as an

input for a special robot measuring DC (direct current) conductivity.

The first phase of the slicing method presented includes the extraction of

sample cuboids from the full-size floor-slabs, cutting them into the slices and

taking the photos of slice surfaces. In the photos the fibres cut are visible as

ellipses and circles. The image processing and analysis including the detection

of the shapes of cut fibres are performed using the public domain software

ImageJ [52]. Identification of the geometry of cut fibres makes it possible to

measure the inclination θ and in-plane φ angles. As it was mentioned above,
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the measurement of the in-plane angle φ by photometry is possible within the

range of [0◦, 180◦], which results in the ambiguity of the direction of a fibre.

The measured orientation distribution of fibres by photometry needs to be

adjusted/checked by some additional approaches in slicing. Therefore, the

slicing with photometry is improved by a prototype of a special robot measur-

ing DC-conductivity by scanning the slice surfaces and measuring the electrical

conductivity between the cut ends of steel fibres. If the cross-sections of a cut

fibre on the opposite slice surfaces belong to the same fibre, the current flows

and the robot detects the electrical conductivity and saves the coordinates.

The measurements by a robot are combined with photometric data and thus

this approach is considered as an extension of slicing with photometry. The

coordinates of cut fibres on both sides of a slice are known from the image

analysis and one can use these as the input for a robot. The outcome re-

ceived by combining two analysing approaches in slicing, i.e. photometry and

DC-conductivity, improves the results of photometry. The main advantage by

adding the DC-conductivity testing to the procedure is that it removes the

ambiguity related to the in-plane φ angle.

2.3.1 Experimental set up

A horizontal structure was chosen to study the orientation distribution of fibres

since the structure makes possible to observe both the compressive and tensile

stresses as well as the features of fibre behaviour in the vicinity of the formwork

and in the bulk. Thereby, six experimental full-size floor-slabs were cast in a

factory using a bucket according to the scheme presented in Fig. 2.2(a). The

concrete class was C30/37 and concrete was self-compacting, which means no

vibration was needed. The fibres used had hooked-ends, the length of a fibre lf

was 50 mm and the diameter df was 1 mm, Fig. 2.2(b). The material for fibres

was rod wire of types C4D or C7D steel according to standard EN 10016-2

and their amount per cubic meter of concrete was 80 kg, resulting in about

250 fibres per dm3.

12
3

formwork

1 2 3 --casting order of concrete

temporary wall

concrete mass 25
 c

m

500 cm
100 cm

(a) Casting order of a full-size floor-slab. (b) Hooked-end steel fibres with

the aspect ratio of lf/df = 50.

Figure 2.2. The casting order and the fibre types used.
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The extraction of sample cuboids from the full-size floor-slabs has started

on the 30th of September 2010 and was implemented in the Department of

Civil and Structural Engineering in Aalto University (Finland). Before the

extraction of cuboids, 28 days old slabs were tested using a three point bend-

ing test. During these tests three slabs have shown approximately the same

capacity (slabs 1, 2, 3) and the capacity of the remaining three ones (slabs 4,

5, 6) was lower, Fig. 2.3. This behaviour could be explained either by different

fibre orientations or by variations in matrix quality such as the existence of

air pores. The tested slabs with sample cuboids are presented in Fig. 2.4.

Figure 2.3. Load-deflection diagram of tested floor-slabs during the bending test.

Figure 2.4. Representation of a floor-slab and sample cuboids. Dimensions in (cm).

The sample cuboids (H ×W × L : 25 cm × 30 cm × 30 cm) were extracted

from the slabs using a diamond saw, Fig. 2.5(a). Each sample cuboid was

numbered according to the number of a slab from which it was cut, Fig. 2.4.

In addition, all cuboids were marked on a top by milled cross and on one edge

by blue water-resistant colour, Fig. 2.5(b). Altogether twelve cuboids were

taken. Six of them were sawn from the central part and the others were taken

from the side of the slabs, Fig. 2.4. This was done to detect the influence

of the formwork moulds on the arrangement of fibres in the matrix, i.e. the

tendency of fibres to align themselves in the vicinity of a formwork. Onwards,

the sample cuboids were cut into the slices. The cutting of slices has began on
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(a) The process of cutting the sample

cuboids using a diamond saw.

(b) The marking of cuboids by a milled cross

and water resistant blue colour.

Figure 2.5. The cutting and marking of sample cuboids.

the 8th of October 2010. The sample cuboids were transported to a company

specializing in the cutting of hard stones. As the sample cuboids had the

height of 25 cm, a special stationary diamond saw was needed, Fig. 2.6. Due

to the cutting method, the material was lost in the range of 5−10 mm in each

cut section.

(a) The disc of a saw with diamond in-

cisors.

(b) The measuring of a slice.

Figure 2.6. The diamond saw used.

It was planned to cut each sample cuboid into 15 slices with the thickness of

2 cm and, hence, to produce 180 slices. However, the cutting of the cuboids into

the slices by a diamond saw has caused a considerable loss of the material and

instead of the expected 15 slices there were only 11 or 12 slices. Consequently,

approximately 60mm of the material were lost during the cutting process if

the number of slices was 12 and in the case with 11 slices the material lost was

80 mm. The numbers of slices received from the sample cuboids were:

– Slab 1: Cuboid 1 – 12 slices, Cuboid 2 – 12 slices;

– Slab 2: Cuboid 1 – 11 slices, Cuboid 2 – 11 slices;

– Slab 3: Cuboid 1 – 11 slices, Cuboid 2 – 11 slices;

– Slab 4: Cuboid 1 – 11 slices, Cuboid 2 – 12 slices;

– Slab 5: Cuboid 1 – 11 slices, Cuboid 2 – 11 slices;

– Slab 6: Cuboid 1 – 11 slices, Cuboid 2 – 11 slices.
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2.3.2 Slicing with photometry

The process of photometry has began on the 25th of October 2010. When the

sample cuboids had been cut into the slices the photos were taken from each

slice surface. Fig. 2.7(a) represents a platform used for taking the pictures. A

tripod for the photo-camera was fixed on the platform, Fig. 2.7(b). In order

to place the slice surface to the centre of the platform, the central lines were

marked as shown in Fig. 2.7(a). The central lines of the platform coincided

(a) The platform for taking a picture of slice surface. (b) The tripod fixed on a plat-

form.

Figure 2.7. The tools used for photographing slice surfaces.

with the central lines of the camera lens. Middle points were marked on two

edges of each slice, which further have been merged with the central lines on

the platform. To avoid the loss of the correct position of a slice in a cuboid,

a corner of each slice was denoted by the red colour. The marked red corner

was on the left surface from the blue butt-end of a slice, Fig. 2.8(a). Taking

the photos of slice surfaces required a correct lighting. By wetting the slice

surface the concrete matrix was made non-reflective and the steel fibres started

to reflect the light like a mirror. However, if the slice surface became too wet,

the concrete matrix started to reflect the light as well, and it was necessary to

wait a moment till the concrete surface had dried a little and become opaque.

Taking the photos of slice surfaces in a cuboid were started from the last left

slice in a reference to the blue butt-end of a cuboid, Fig. 2.8(b). At first, the

photos of the left surface of a slice were taken and then the photos of the right

surface, Fig. 2.8(b). In photos, the indication of the left or right surface of a

slice was made by the colour of a ruler. The left slice surface was identified

by a yellow-red and the right one by a red ruler, Fig. 2.9. The graphical

representation of a sample cuboid with slices is shown in Fig. 2.10.
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(a) The marked red corners of

slices.

(b) The order of taking the photos of slice surfaces in a

cuboid.

Figure 2.8. The positioning and marking of slices.

(a) The left surface of a slice and a

yellow-red ruler.

(b) The right surface of a slice and a

red ruler.

Figure 2.9. The identification of the left or right surface of a slice by the colour of a ruler.

Figure 2.10. Representation of a sample cuboid with slices, see also Fig. 2.8(b).

The photos were saved in two formats at a time: RAW–nef and JPG–basic.

The image processing and analysis was done on the RAW images because of

their higher resolution and using the public domain software ImageJ [52]. A

photo of a slice after its filtering with pseudo-flat-field filter [53] and cleaning

in binary format is presented in Fig. 2.11. As the fibres are cylindrical, which

is a degenerated cone, the intersection of a cone with a plane gives an ellipse as

a closed curve. Hence, the bright inclusions in Fig. 2.11(a) are the cut cross-
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(a) Filtered image of a slice (b) Processed image of a slice in

binary format

Figure 2.11. Image of a slice.

sections of fibres. The data obtained after the analysis of slice surface include:

the coordinates Xi, Yi determining the position of the centre of fitted ellipses

from the origin, the major and minor axes of the ellipses and the in-plane φ

angle, Figs. 2.12(a), 2.12(b). The shape of an ellipse can give an assessment

of the inclination angle θ as the ratio of minor and major axis, Fig. 2.12(a),

θ = arccos

(
Ellipse Minor axis

Ellipse Major axis

)
. (2.1)

2a

df

Z

Lf

slice surface

(a) The inclination θ and in-plane φ angles.

yi

xi

ImageJ

(Xi, Yi)=(X0+Y0)+(xi, yi)  
Xi

X0

Y0
Yi

0 X

Y

x

y

0

(b) The in-plane angle φ.

Z

+180 deg

slice surface

0, deg180, deg

ImageJ [0 ,180 ]

2 
cm

360, deg

o o

(c) The ambiguity in the direction of fibres.

Figure 2.12. Definition of the orientation angles applying the image analysis.

If a fibre is aligned parallel with the normal Z of the slice surface, then the

cross section of a cut fibre is a circle with a diameter df and the ratio

1 = lim
θ→0

cos(θ) = lim
2a→df

df
2a

, (2.2)
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which implies, that the inclination angle θ is equal to 0◦. On the contrary, if

a fibre is perpendicular to the normal Z, then the ratio

0 = lim
θ→90◦

cos(θ) ≈ lim
2a→Lf

df
2a

, (2.3)

what means, that the inclination angle θ is 90◦. The in-plane angle φ is mea-

sured between the orientation of the major axis of an ellipse and the horizontal

coordinate axis, Fig. 2.12(b).

As Fig. 2.12(c) illustrates, the in-plane angle determines the direction of a

fibre. This direction can be counted from 0◦ up to 180◦ degrees, which leads

to an ambiguity in the direction of a fibre. In more detail this ambiguity can

be formulated as follows: if the direction of a fibre has the φ angle of 45◦, this

cannot be distinguished from the fibre at the φ angle of 45◦ + 180◦, since for

both cases the shape of cut fibre on slice surface will be the same, Fig. 2.12(c).

2.3.3 Slicing with DC-conductivity joined with photometry

As it was noted in Section 2.3.2, the measurement of the in-plane angle φ by

photometry is possible within the interval from [0◦, 180◦] only. Thus, the mea-

sured orientation distribution of fibres needs to be checked by some additional

approaches in slicing or by another measuring method. DC-conductivity test-

ing was concluded to be an appropriate extension of slicing with photometry,

as it can utilize the coordinates of cut fibres defined in the image analysis.

Since the fibres are of steel, they have a good electrical conductivity. The

robot scans the opposite surfaces of a slice and measures electrical conductiv-

ity between the endpoints of cut fibres. If the cut cross-sections of a fibre on

the opposite slice surfaces belong to the same fibre, the current flows and the

coordinates (in Cartesian system) are recorded to a ’.txt’ file. The next step

is to process the coordinates measured by the robot to get the directions of

cut fibres. This can be implemented by the subtraction of the coordinates on

one slice surface from those on the opposite surface:

d =

⎛
⎜⎜⎝

X

Y

0

⎞
⎟⎟⎠−
⎛
⎜⎜⎝

U

V

20

⎞
⎟⎟⎠ , (2.4)

where 20 is a slice thickness in mm. The limit inclination angle measured by

a robot depends on the thickness of a slice and the length of used fibres. For

example, the 20 mm thick slice and 50 mm long fibres give the limit inclination

angle of θc = arccos(20 mm
50 mm) = 1.159 = 66.4◦. The in-plane φ angle is measured

in the interval [0◦, 360◦], there is no ambiguity here.

The scanning robot was built in cooperation with the Centre of Biorobotics

at Tallinn University of Technology (TUT). This robot has four linear axis and
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two probes, Figs. 2.13, 2.14(b), 2.14(c). Each axis has a separate drive, so that

the probes can be moved independently on a 2D plane: one probe on one side

and the other on the opposite side of a slice, see Figs. 2.13, 2.14(a), 2.14(b).

Figure 2.13. The scanning robot (side and front view).

(a) Scanning of one side

of a slice.

(b) Scanning of the

opposite side of a

slice.

(c) A probe.

Figure 2.14. The scanning robot in use.

Each probe is made of a spring, tube and a steel ball, Fig. 2.14(c). The input

data were the coordinates of the cross-sections of cut fibres on the both sides

of a slice and the output data should be the coordinates of connected cross-

sections. The Emc2 (Enhanced Machine controller) software [54] was selected

to control the scanning robot. It is a free Linux program for computer control

of different machines. The program was configured to control 4 linear axes at

the speed of 10 mm per second. Two methods were considered for scanning

the slice surface. One was to scan the whole surface area (step 0.9 mm), which

would take about 5 years with the present prototype. The other method was

to check only the coordinates of the cross-sections of cut fibres defined in

image analysis. The second method was selected as it reduced the scanning

time remarkably. The algorithm for the movement of axis was made using
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the G-code (DIN 66025/ISO 6983), which is widely used in the automation

telling the computerized machines where, how fast, and which path to move.

The G-code algorithm included about 25000 different combinations consisting

about 180 000 lines. Therefore, another simple program was written in the

C-language. This program calculates the range, where the cross-section of a

cut fibre may locate on the opposite slice surface and accordingly generates

the G-code.

2.4 X-ray micro-tomography method (μCT)

The cylinder samples (sufficiently large in size) extracted from the same full-

size floor-slabs as the sliced cuboids were scanned using μCT equipment. With

this method, the fibres in a samples were represented directly in 3D and,

further, the application of 3D skeleton (centre line) processing algorithm made

possible to specify the orientation of each individual fibre.

2.4.1 Procedure set up

SFRC cylinders were extracted from the floor-slabs according to Fig. 2.15. Two

cylinder samples from each floor-slab: one from the central (”B”-samples) and

one from the side (”A”-samples) region. As with the slicing method, the sam-

ples were taken also near the mould to investigate its effect on the orientation of

fibres. Altogether twelve cylinder samples with a diameter of 10 cm each were

Figure 2.15. The position of an analysed cylinder in the floor-slab.

extracted. The cylinder samples were scanned in the Department of Physics

in Helsinki University (Finland) using the experience of micro-tomography

group, i.e. Jussi-Petteri Suuronen, Aki Kallonen and Prof. Ritva Serimaa.

The X-ray Micro-tomography Laboratory is built around a state-of-the-art

μCT scanner Nanotom 180 NF supplied by phoenix| xray Systems + Services

GmbH (Wunstorf, Germany), Fig. 2.16. The circumference of a cylinder sam-
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(a) A cylinder sample in the μCT scan-

ner.

(b) The room with the μCT

scanner.

Figure 2.16. The scanner nanotom supplied by Phoenix|x-ray Systems.

ple was scanned with an angular step of 1 deg leading to 360 projection images

made. The scanning of a sample took approximately three hours. Within the

first phase of scanning, the middle part of the cylinder samples was scanned,

Fig. 2.17(a). The height of the middle part was about 7 cm. The second phase

included the scanning of the top and bottom parts of four cylinder samples.

The choice of the scanning area was connected with the technical capabilities

'

'

'

'

(a) Definition of the orientation angles θ
′
and φ

′
mea-

sured from the μCT data. The position of the scanned

top, middle and bottom parts. The coordinate system

in Avizo Fire.

(b) The slicing coordinate system,

considered as structural coordinates.

Figure 2.17. The representation of μCT and slicing coordinate systems.

of the used scanning machine, i.e. the size of the detector (LCD screen) and

with the intention to investigate the differences of fibre orientations in the

bulk and close to formwork or free surface. Besides, the chosen scanning order

made it possible to analyse fibre orientation distributions in compressed and

tensioned cross-sectional areas.

To improve the quality of projection images, a median filter (implemented
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in ImageJ) was applied prior to reconstruction. The reconstruction from the

projection images was implemented using an FDK-algorithm-based [55] re-

construction software ’datos| x rec’ supplied by the manufacturer. Within the

reconstruction procedure ’highEdge’ filtering was used to intensify the contrast

between the fibres and concrete matrix. A 3D edge preserving smoothing al-

gorithm [56], followed by a dual threshold binarisation (function hysteresis in

Avizo Fire), was applied for enhancing the purity of images. A 3D volume im-

age obtained by μCT scanning provided a picture of actual fibre orientations

in the concrete matrix, Fig. 2.18.

Figure 2.18. Thresholded volume image of a middle part of a cylinder sample scanned by

μCT. Still showing an artefact in the middle (data courtesy of Aki Kallonen

[1]).

2.4.2 Fibre orientation analysis

Before analysing the orientation of fibres, a skeletonised representation (centre

lines) of the fibres was calculated using Avizo Fire 6.2 software (VSG, France).

The centre lines of the fibres were received as a thinning of binarised data using

the XSkeleton pack extension to Avizo. However, as many fibres in the data

were touching each other, the skeleton also contained the connections between

the fibres. To solve this problem, the skeleton processing algorithm was ap-

plied as a function in Matlab software (Mathworks Inc., USA), which can be

called directly from Avizo Fire. After the application of skeleton processing

algorithm, the 3D-orientation (the inclination θ
′
and in-plane φ

′
angles) of fi-

bres was calculated using Avizo. From Fig. 2.17 it is clear, that the coordinate

system in Avizo Fire does not coincide with the slicing system. In order to

match the coordinates from Avizo Fire with those of the slicing, it is neces-

sary to rotate the Y ′ and Z ′ about the X ′ axis by 90 degrees anticlockwise,

Fig. 2.17(a). Since the position of each skeleton-object—fibre—in Avizo Fire is

defined in spherical coordinates, it is transformed into Cartesian coordinates

and rotated by 90 degrees anticlockwise around the X ′-axis using the rota-

tion matrix. Afterwards, the rotated Cartesian coordinates should be again
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transformed to spherical ones. Finally, Avizo Fire coordinates considered as

laboratory ones are adjusted to the slicing coordinates which are regarded as

the structural ones.

2.5 Summary of developed and implemented measuring methods

During the research two methods for measuring fibre orientations have been

developed and implemented: coupled measuring approach in slicing—DC-

conductivity testing combined with image analysis— and μCT scanning.

The slicing method is obviously suitable for straight and hooked-end fibres.

In the case of corrugated fibres this method probably will not give good results,

since the reconstruction or tracking of the whole length of a fibre will be a tricky

task. When applying the slicing method, one should take into account the ratio

between the thickness of a slice and the length of a fibre. The shorter the fibres

are, the thinner the slices should be. But the minimum thickness of a slice will

still depend on a type of used equipment, i.e. cutting method (diamond saw,

water jet cutting, laser etc.). The maximum thickness of a slice depends on

a method for the reconstruction of fibre orientations. While using the slicing

with photometry, the maximum thickness of a slice is conditioned by the length

of an aligned fibre added by some increment to guarantee that the trace of a

fibre appears only on one slice surface. In the case of the ‘tracking the trace’

of a fibre, the slice should be as thin as allowed by machine tooling. In the

inclined state the fibre should leave two traces, i.e. one trace per slice surface,

Fig. 2.19(a). The precision of the results in photometric analysis depends

(a) The idea of tracking the

trace of a cut fibre.

(b) The maximum error in the measurement of

θ angle by DC-conductivity testing depending

on slice thickness.

Figure 2.19. The influence of slice thickness on results while tracking the trace of a cut

fibre.

a lot on the resolution of the image. The higher the resolution, the more

accurately the shape of a cut fibre can be detected. In addition, the accuracy

of photometric analysis can be increased by the polishing of slice surface [15].
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The biggest drawback of the slicing with photometry is the inability to measure

the in-plane angle φ in the range from [0◦, 360◦]. Thus, the application of this

method is not sufficient for the analysis of the spatial orientation of fibres. DC-

conductivity testing utilizing the coordinates received in the image analysis

acts as an extension of photometry and solves the ambiguity in the direction

of a fibre as it measures the in-plane angle within the interval from [0◦, 360◦].

The possible sources for the errors while utilizing DC-conductivity testing are:

– input coordinates from photometry: accuracy of fibre coordinates is about

1 px, drift after correction up to ±0.5 mm;

– probe not in the centre of the fibre trace: the maximum error in the mea-

surement of θ angle can be 2.9◦, Fig. 2.19(b);

– step size of a step motor. The full step size of a motor can be received as

the division of a circle, i.e. 360◦, by the amount of steps in a motor. The

latter data comes from the technical characteristics of a motor. An error

from one step size of a probe has a minor influence on the precision of

measurements while the influence of an error arising from the conversion

of coordinates, i.e. from pixels to millimetres has the main impact;

– touching fibres: if the fibres are touching, then it is possible to have the

conductivity, even if the traces on opposite surfaces belong to different fi-

bres. This seems to be a rare event, as the statistics from the photometry

and DC-conductivity testing have similar tendencies;

– hooked-ends of the fibres: if one cut appears to be within the hooked-end

of a fibre, this can lead to an error of max 10◦ (arctan hook-height
slice thickness) in

the orientation of this fibre, depending on the thickness of a slice and

angle of the fibre, Fig. 2.20(a);

– slightly curved middle part of a fibre, Fig. 2.20(b). This can lead to an

error below 2◦–3◦ in the fibre orientation (arctan a
min obj.length).

25% length (100voxels)

hook-height
(~3mm)

(a) Maximum error due to only part of fibre

being in scanned volume.

25% length (100voxels)

a

(b) Maximum error due to curvature of

fibre.

Figure 2.20. Errors connected with the geometry of a fibre.
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There is one more factor affecting the accuracy of DC-conductivity measure-

ments: the probability of measuring a fibre is θ-dependent and large inclination

angles are underestimated. The probability for one fibre to “leave a trace” on

the second surface, under the condition that it“left a trace”on the first surface,

is

p = max

{
cos θ − slice thickness

fibre length
, 0

}
. (2.5)

X-ray micro-tomography (μCT) method allows to look inside a robust material

such as concrete and obtain 3D data about the spatial orientation distribution

of fibres. With the equipment used in the research, the actual scanning time

was 2–2.5 hours, depending on the imaging parameters, and the reconstruction

of a series of the scans into 3D map of a sample took a few minutes. It should be

emphasized, that the used μCT equipment is primarily for scanning millimetre-

sized samples at sub-micrometer resolution, (i.e. three orders of magnitude

higher than the 128.3 μm per voxel) and lacks the beam power necessary

to image large samples of highly absorbing materials like concrete. The CT

systems which are more suitable for scanning SFRC have a lower precision

and higher beam power. The time required for the image processing and

statistical analysis is largely dependent on the available computer hardware.

The measuring results received by μCT scanning are incomparable in accuracy

to other methods. The main sources of error while applying μCT scanning to

SFRC are:

– only one of the hooked-ends is within the scanning area, max. error is

13◦, from Δα = arctan hook-height
min obj.length , Fig. 2.20(a). This error could be

reduced or eliminated by cutting the hooks away with the kink-detection

algorithm;

– resolution of the scan, error about 1 px (0.1283 mm), max error is Δα =

arctan 0.1283mm
12.83mm = 0.6◦ (1 px off the correct position and 100 px length

of object);

– the middle part of the fibres is not exactly straight, but slightly curved,

Fig. 2.20(b);

– manual setting of the thresholds;

– skeleton processing: touching fibres and corresponding automatic splitting

by the self-written program.
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Having reviewed the sources of errors in both measuring methods, it can be

stated, that the precision of DC-conductivity testing is close to the one of

μCT. The last two error points in DC-conductivity (hooked-ends of the fibres

and slightly curved middle part of a fibre) are of the same magnitude as in

μCT scanning.
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3. Fibre orientation distributions in

tested floor-slabs

Numerical estimates of the distribution parameters of fibre orientations in the

samples taken from the tested slabs were calculated using the R-programming

language [57] and several packages for statistical computing and graphics [2,

58, 59, 60, 61, 62, 63, 64, 65]. The statistical outcomes revealed the variations

of fibre orientation distributions along the all axes of the tested slabs: along

the X-axis between the side and centre samples, along the Y -axis between the

top, middle and bottom parts of the cylinder samples and along the Z-axis

between the cuboids and cylinder samples, Fig. 3.1.

Figure 3.1. The coordinate system in the tested slabs and the location of samples.

These features indicate that a theory capable to consider the spacial—three-

dimensional—nature of SFRC material properties is needed. The floor slabs

tested were cast applying a casting (site-specific) technology, which can be

used in actual construction works. The observed three-dimensional nature

of fibre orientations confirms the need to elaborate the manufacturing and

the casting processes for SFRC, which will allow to track and control the

orientation distribution of fibres.

3.1 Density distribution of the inclination angle θ

The problem with the photometry approach is the ambiguity in the direction

of a fibre as the measurement of the in-plane angle φ covers only the range
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from [0◦, 180◦]. Accordingly, DC-conductivity measurements acting as the im-

provement of the photometry were performed on the surfaces of the slice nr 11,

which belongs to the cuboid 1.1, Fig. 2.10. This choice was done in order to

examine the statistics of fibre orientations in the slab with the highest bending

capacity, Fig. 2.3.

Fig. 3.2 represents the statistics received by DC-conductivity measurements

from the slice 11 (cuboid 1.1). Fig. 3.2(d) actually demonstrates the optimal

orientation distribution of fibres since the alignment of fibres almost coincides

with the direction of the tensile stress in the slab, Fig. 3.1.
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(d) Scatter plot.

Figure 3.2. Statistics of fibre orientations measured by DC-conductivity testing on slice 11

belonging to the cuboid 1.1. Figs. (b), (c) represent the density distribution–

solid line–of the inclination angle θ and in-plane angle φ respectively. In Fig. (b)

the skewness is compared with the Normal distribution–dashed line. In (a) the

radius represents the inclination angle θ and in-plane angle φ is on circumfer-

ence.

The influence of DC-conductivity testing on the results of photometry is

presented in Fig. 3.3, where a quite similar behaviour in the density histograms

of the inclination angle θ can be noticed. Both analysing approaches gave a

positive skewness for the probability density distribution of the θ angle. The

density histogram of the in-plane angle φmeasured by DC-conductivity testing

covers the whole range from [0◦, 360◦], which makes DC-conductivity more

preferable to photometry.
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(b) In-plane angle φ ∈ (0◦, 360◦).

Figure 3.3. The effect of the measuring approaches on the probability density distribution

of the inclination angle θ and in-plane angle φ. A dashed line represents the

results received by photometry (cuboid 1.1) and a solid line the results of DC-

conductivity testing (slice 11 from cuboid 1.1).

The photos of slice surfaces were utilised to check the compliance of the

density distributions received for the inclination angle θ. Checking was made

by the two-sample bootstrap Kolmogorow-Smirnow-test (K-S test, function

ks.boot from [2]) with a significance level of α = 5% as threshold. The density

distributions for the inclination angle θ are obtained considering every fourth

slice surface in a cuboid to account each fibre only once within a given volume.

According to the results given in Table 3.1, only the distribution functions of

the central cuboids have received higher p-values. In the cuboid 1.2 the p-

value received for the inclination angle θ with the null hypothesis of Gumbel

distribution was 0.04, which is close but still below the acceptance threshold

of 5%.

Table 3.1. Results of the two-sample bootstrap Kolmogorov-Smirnov test (function

ks.boot from [2]) applied on the density distribution of the inclination angle

θ in the slab 1. Reduced cuboid refer to the cuboid, where only every fourth

slice surface is taken into account.

Cuboid 1.1 (side of a slab) Cuboid 1.2 (centre of a slab)

Inclination angle θ

whole cuboid reduced cuboid whole cuboid reduced cuboid

Distribution D p-value D p-value D p-value D p-value

Gaussian 0.114 e-16 0.125 e-16 0.076 e-16 0.078 e-09

Gamma 0.061 e-16 0.066 e-10 0.044 e-10 0.044 0.0033

Gumbel 0.069 e-16 0.065 e-09 0.035 1.7e-06 0.035 0.0374

Weibull 0.098 e-16 0.116 e-16 0.075 e-16 0.059 1.9e-05

Log-normal 0.049 e-16 0.058 1.7e-07 0.038 2.5e-07 0.040 0.0108

None of the distribution functions of the side cuboids have passed the testing

and hence all null hypotheses should be rejected [66].

The most important conclusion of the performed statistical tests is that the
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distribution of the inclination angle θ in the central cuboids (in a bulk) does not

obey the Gaussian (Normal) distribution, in contrast to the results received

earlier [11]. The results of the two-sample bootstrap Kolmogorow-Smirnow-

tests in other cuboids are presented in Appendix A.2.

3.2 Variations of fibre orientation distributions along the X- and

Y -axes of the slabs

The statistical analysis included the definition of fibre orientation distribu-

tions in the side and centre cylinder samples scanned by μCT. In addition,

fibre orientation distributions were specified in the top, middle and bottom

parts of the cylinder samples. The top and bottom sections were scanned in

four cylinders: 1A, 1B, 4A, 4B, but the middle sections were scanned in all

cylinder samples. Each section covers about 7 cm of the height of a cylinder,

Fig. 2.17(a). The inclination θ and in-plane φ angles for each fibre are defined

according to Fig. 2.17(b).

Fig. 3.4 demonstrates fibre orientation distributions in the side and centre

cylinders and along the height of the whole cylinder samples 1A and 1B. In

the bottom section of a cylinder 1A, Fig. 3.4(f), the orientation of fibres is the

most optimal since it has the best coincidence with the direction of principal

tensile stress of a floor-slab, Fig. 3.1. The fibre orientation distributions are

different between the side, Fig. 3.4 (b),(d),(f), and centre, Fig. 3.4 (c),(e),(g),

cylinders, and also along the height of the whole cylinder sample, Figs. 3.4(b),

3.4(d), 3.4(f). This indicates the locality of fibre orientation distributions

meaning that this phenomenon may exist through the volume of the whole

structure. Fig. 3.5 represents probability density histograms of the inclination

angle θ and in-plane angle φ in the cylinder sample 1A. The outcomes belong

to the top, middle and bottom parts of a cylinder. Fig. 3.5(g) demonstrates

concentration of fibre alignments on smaller inclination angles. This can be

explained by the influence of the formwork whereas the scatter of the inclina-

tion angles in Fig. 3.5(a) indicates a free surface.

The statistics of fibre orientation distributions for the other cylinder samples

scanned by μCT are presented in Appendix A.3.
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(a) Orientation in scatter plots.
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(b) Top part. Cylinder 1A.
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(c) Cylinder 1B.
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(d) Middle part. Cylinder 1A.
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(e) Cylinder 1B.
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(f) Bottom part. Cylinder 1A.
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(g) Cylinder 1B.

Figure 3.4. Scatter plots of fibre orientation variations measured by μCT between the side

(cylinder 1A) and centre (cylinder 1B), and along the height of the whole

cylinder samples. In (a) the radius represents the inclination angle θ and in-

plane angle φ is on circumference. Z-axis corresponds to the direction of the

tensile stress in a slab, Fig. 3.1.
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(i) Bivariate densities.

Figure 3.5. Fibre orientation variations measured by μCT along the height of the whole

cylinder sample 1A. Figs. (a),(b),(c) represent the statistics for the top;

(d),(e),(f) for the middle and (g),(h),(i) for the bottom parts of the cylinder.

Figs. (a),(b), (d),(e), (g),(h) represent the density distribution–solid line–of

the inclination angle θ and in-plane angle φ. In Figs. (a),(d),(g) the skewness

is compared with the Normal distribution–dashed blue line. Figs. (c),(f),(i)

represent the bivariate densities of the inclination angle θ and in-plane angle φ.

3.3 Variations of fibre orientation distributions along the Z-axis of

the slabs

Comparison of the outcomes of fibre orientation distributions in the samples

taken from the different places along the Z-axis of the slabs, Fig. 3.1 (cuboids

and cylinders), revealed the dissimilarity in the density distribution of the in-
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clination angle θ, Figs. 3.6, 3.7. In cuboids, measured by slicing with photom-

etry, the density distribution of the inclination angle θ had a positive skewness

while in the cylinders, measured by μCT, it was a negative one. Such loca-

tion dependent variations of fibre orientation distributions point out a strong

locality of fibre orientations in the studied structures.
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(b) Cuboid 1.2 and Cylinder 1B
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(c) Cuboid 2.1 and Cylinder 2A
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(d) Cuboid 2.2 and Cylinder 2B
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(e) Cuboid 3.1 and Cylinder 3A
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(f) Cuboid 3.2 and Cylinder 3B

Figure 3.6. Differences in the probability density histograms of the inclination angle θ

according to the location along the Z axis of the slabs, Fig. 3.1, in the middle

sections of the cuboids 1.1–3.2 and cylinder samples 1A–3B. A dashed line

represents the results of cuboids measured by photometry and a solid line the

results of cylinder samples measured by μCT.
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(a) Cuboid 4.1 and Cylinder 4A
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(b) Cuboid 4.2 and Cylinder 4B
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(c) Cuboid 5.1 and Cylinder 5A
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(d) Cuboid 5.2 and Cylinder 5B
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(e) Cuboid 6.1 and Cylinder 6A
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(f) Cuboid 6.2 and Cylinder 6B

Figure 3.7. Differences in the probability density histograms of the inclination angle θ

according to the location along the Z axis of the slabs, Fig. 3.1, in the middle

sections of the cuboids 4.1–6.2 and cylinder samples 4A–6B. A dashed line

represents the results of cuboids measured by photometry and a solid line the

results of cylinder samples measured by μCT.
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4.1 General terms and conditions for material models

The balance equations [67] are formed of basic and constitutive fields. The

basic fields such as the mass density, momentum density and energy density

are not linked to material properties. The constitutive fields depend on the

thermodynamic process and on the material [29]. The constitutive equation

establishes the linkage between the stress tensor S and deformation tensor E.

The constitutive equations must hold material objectivity conditions implying

two statements [29]:

All corresponding quantities of the domain and of the range of the consti-

tutive mappings are objective meaning that they shall transform under

changing of the reference frame by an Euclidean transformation rules

(e.g. orthogonal transformation).

The analytical form of a constitutive function must be the same in any frame

of reference meaning its invariance from the coordinate system.

The first statement specifies the type of the state space variables to be tensors.

The second statement defines the type of functions satisfying coordinate in-

variance. Such functions are isotropic tensor functions meaning that a tensor

function is isotropic if and only if the forms of its component functions are the

same for all orthogonal bases [68, 69, 70].

4.2 Behaviour of SFRC

The tensile strength of SFRC depends on the alignment of fibres in the con-

crete matrix. In a tensioned SFRC member, where all fibres are aligned with
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each other, as well as with the principal tensile stress, the fibres have the op-

timal orientation and thus contribute to structural tensile capacity with the

highest efficiency. In an actual situation, the fibres can be oriented not only

in one direction, but an amount of fibres may also be aligned along several

directions or almost randomly. The existence of this phenomenon has been

proven by the measuring of fibre orientations performed in this research, Pub-

lication IV. The measurement results demonstrate that a part of fibres tends

to align along some preferred direction, which may however be different in

the samples taken from the same structural members. In a typical concrete

member, which is reinforced by steel bars in the direction of expected tensile

stresses, the stress behaviour would have an orthotropic character. A similar

situation may be present in a SFRC member and the problem is to identify

and model the directions of fibre alignments. Thus, the constitutive relation

for SFRC is justified to be developed based on an orthotropic material model.

In addition, a linear dependence between stresses and deformations is assumed.

Let us examine a bended concrete member. In general, a compressed concrete

is an elasto-plastic material, where simultaneously both the elastic and plas-

tic deformations are developing. As a consequence, the relation between the

stress and deformation should be non-linear. In a bended concrete, until the

first cracks have appeared in the tension zone of a cross-section the relation

between the stress and deformation can be considered as linear, Fig. 4.1. As

Figure 4.1. A bended concrete member. The stage at the very beginning of the formation

of cracks in the tension zone. fct denotes the tension strength of concrete,

σc is the concrete stress in compression zone, εc1 is the concrete strain in

compression, and εctu is the concrete ultimate strain in tension.

soon as cracks are occurring in the tension zone, the deformations start to

grow rapidly and, as a result, the member breaks suddenly in a brittle man-

ner. Drawing a parallel with SFRC it can be stated, that the properties of

this material have a similar brittle character as it was pointed out by the be-

haviour of the full-size floor slabs tested. According to the diagrams of the

bending test, Section 2.3.1 Fig. 2.3, the modes of the load-deformation curves

were linear at the beginning and dropped sharply without any occurrence of

plateaus (plasticity) in three out of six slabs. Essentially, the brittle failure of

SFRC is a consequence from a relative low volume percentage (concentration)
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of fibres, which typically, for example, in an elevated floor-slab is 1%−2% per

cubic meter of concrete. Increasing the concentration of fibres is economically

not reasonable since the volume percentage of common reinforcement in the

elevated floor-slab is usually between 1.25% − 1.5%. Besides, the high con-

centration of fibres will induce the clumping (clustering) of fibres, which will

cause difficulties in the manufacturing of SFRC. The only difference between

the behaviour of a bended concrete and SFRC member can be the appearance

of the first cracks at a higher load in SFRC. In this regard, the preferred phys-

ically linear-elastic range is an appropriate way to approximate the behaviour

of SFRC as also in load-bearing structures based on SFRC the cracking caused

by loading should not be allowed.

4.3 Orthotropic elasticity of one meso-volume element of SFRC

The effective elasticity of one meso-volume element of SFRC, Fig. 4.2, can

involve two basic terms: concrete matrix and short steel fibres.

short steel 
fibres

meso-volume element

aggregate
cement binder

concrete

Figure 4.2. One meso-volume element of SFRC.

The fibres are assumed to contribute orthotropicly and the concrete matrix is

an isotropic part, such as:

<4>C(c) = . . . . . .
isotropic concrete matrix

+ . . . . . .
orthotropic influence of fibres

, (4.1)

where <4>C(c) is the orthotropic meso-elasticity of the composite. The choice

of a meso-scale for a characteristic volume (representative volume element,

RVE) of SFRC is related to measured fibre orientations in the tested floor

slabs, Section 3. The measurements revealed that the orientation of fibres has

a local character and can vary in three-dimensions.

In the following, the energy approach is used for the constitutive mappings.

The reasoning is based on assuming a hyperelastic material. The strain-energy

density function W of the hyperelastic material depends on a deformation gra-
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dient F and is a potential function for the stress tensor [68],

S(F) =
∂

∂F
W (F) , <4>C(F) =

∂S

∂F
=

∂2

∂F∂F
W (F) , (4.2)

where <4>C is the Lagrangian elastic modulus or 4th order elasticity tensor.

4.3.1 Modelling of isotropic concrete matrix and orthotropic

influence of short steel fibres

The independence of the material from the reference frame means that its

strain-energy density is invariant upon orthogonal transformations. This im-

plies that a strain-energy density function of a hyperelastic material can be

expressed as a function of the Lagrangian strain tensor E [68], such as

W (F) = WE(E) . (4.3)

The anisotropic properties of materials are characterised by their symmetry

group [69]. The anisotropic influence of short steel fibres may be described

by the orthotropic material model, which is symmetric with respect to three

mutually orthogonal planes meaning that the material properties remain un-

changed by the reflections from these planes. The normal of a plane is called

the principal material direction (material symmetry axis). Generally, an or-

thotropic material has three orthogonal planes and three principal material

directions, {mi}i=1,2,3, Fig. 4.3. Choosing a unit vector l1 directed in one of

m1 m3

m2

l1 l3

l2

Figure 4.3. Orthotropic material with three principal materal directions m1,m2,m3 called

as material symmetry axes. l1, l2, l3 are the unit vectors along the symmetry

axes.

the principal material directions, the following term can be defined [69]:

Ql1 = ±l1 , ∀Q ∈ Orth3 . (4.4)

Implementing an outer product of the unit vector l1 with itself, leads to a

structural tensor L1:

L1 = l1 ⊗ l1 , QL1QT = L1 , ∀Q ∈ Orth3 . (4.5)

The tensor L1 is called the structural tensor since it lays down the material

or structural symmetry [69]. Thereafter, the structural tensors L2 and L3
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directed in two other principal material directions l2 and l3 may be composed

in the same way as in Eq. (4.5). The structural tensors have the following

features [69]:

Li : Lj = (li ⊗ li) : (lj ⊗ lj) = 0 , i �= j , (4.6)

(Li)2 = Li ,
3∑
i

(Li) = I , tr(Li) = 1 .

The strain-energy density function for orthotropic material symmetry with

three principal material directions can be defined as:

WE,ortho(QEQT ,QLiQT ) = WE,ortho(E,Li) , ∀Q ∈ Orth3 , (4.7)

Li = li ⊗ li , i = 1, 2, 3 ,

where Orth3 is the symmetry group, which includes all orthogonal transforma-

tions in three-dimensional space. In the case of isotropic material the distinctly

directed structural tensors Li are simplified to arbitrarily chosen ones result-

ing in direction independent deformation and, consequently, the condition for

material symmetry of isotropic material takes the following form:

WE,iso(QEQT ) = WE,iso(E) , ∀Q ∈ Orth3 . (4.8)

From Eq. (4.7) follows that the isotropy is a special case of orthotropy. Hence,

the concrete matrix is considered to be isotropic.

The condition Eq. (4.7) is satisfied if the strain-energy density function is

represented as an isotropic tensor function. The isotropic tensor function

can be represented as a function of its principal traces {tr(En)}n=1,2,3, as

the latter ones are uniquely defined by the eigenvalues of the characteristic

polynomial [69]. Accordingly, the system of principal traces (or eigenvalues)

forms the irreducible basis, the elements of which are independent, i.e. they

cannot be expressed in a unique form in terms of the others. Taking into

account the properties of the structural tensors Eq. (4.6), the strain-energy

density function for orthotropic material symmetry can be represented by the

isotropic tensor function of the arguments among which are the structural

tensors:

WE,ortho(E,Li) = ŴE,ortho

(
tr(E), tr(E2), tr(E3)︸ ︷︷ ︸

for isotropy

, tr(Li), tr((Li)2), tr((Li)3)︸ ︷︷ ︸
tr(Li) = 1

,

tr(ELi), tr(E2Li)︸ ︷︷ ︸
tr(E), tr(E2) if isotropic

, tr(E(Li)2)︸ ︷︷ ︸
tr(ELi)

, tr(E2(Li)2)︸ ︷︷ ︸
tr(E2Li)

)

= ŴE,ortho

(
tr(ELi), tr(E2Li), tr(E3)

)
. (4.9)
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Ten irreducible invariants in Eq. (4.9) are explained by the symmetry of the

tensor-arguments, which reduces the number of permutations. The represen-

tation of an isotropic tensor function by the system of irreducible invariants,

which depend on the amount and properties of tensor-arguments can be found

in [71, 72]. Eq. (4.9) explicitly demonstrates that the traces tr(ELi), tr(E2Li)

can be utilised for the isotropic case since if Li are arbitrarily chosen, then

tr(ELi) = tr(E), tr(E2Li) = tr(E2). The 1st order term in Eq. (4.9) van-

ishes in order to satisfy the deformation and stress-free natural state. The

trace tr(E3) represents the non-linear isotropic matrix. Thereby, dropping the

1st order as well as 3rd order terms and considering that the 2nd order term

tr(E2Li) can be equivalently presented as [70]:

tr(E2Li) = tr(ELiELj), i > j , (4.10)

the strain-energy density function for the orthotropic elastic material with

three symmetry axes can be specified by the combination of mixed traces of

Eq. (4.9), such as:

Ŵ
(2)
E,ortho(E,Li) =

1

2

3∑
i,j=1

γij tr(ELi) tr(ELj) +

3∑
i,j �=i

Gij tr(ELiELj) . (4.11)

The latter model is known as the orthotropic St. Venant-Kirchhoff mate-

rial [70]. The constants γij , Gij in Eq. (4.11) are the Lamé constants, which

are given in terms of Young’s modulus Y and Poisson’s ratio ν, but here

they are direction dependent, i.e. they refer to the material symmetry axes

and planes, respectively. The values of γij , Gij define if the material is or-

thotropic or transversely isotropic. For isotropic case the elastic constants will

be equal for all directions, i.e. γij = γ, Gij = G. The differentiation of the

strain-energy function Eq. (4.11) with respect to E leads to the orthotropic

2nd Piola-Kirchhoff stress tensor SE,ortho [68]:

SE,ortho =
∂

∂E
Ŵ

(2)
E,ortho(E,Li) =

3∑
i,j=1

γij tr(ELj)Li + 2
3∑

i,j �=i

GijLiELj ,(4.12)

which is linear with respect to E. For isotropic material Eq. (4.12) is as follows:

SE,iso =
∂

∂E
Ŵ

(2)
E,iso(E) = γI tr(E) + 2GE , (4.13)

which is common form of Hooke’s law.

Hereinafter, in Eqs. (4.11-4.13) the linearised hyperelasticity E ≈ ε implying

the insignificant difference between the spatial and material coordinates of a

material point in space, is utilised. Thus, the 2nd Piola-Kirchhoff stress tensor

S, usually used for finite deformations, is employed for the case of linear elas-

ticity. The advantage of the 2nd Piola-Kirchhoff stress tensor is its symmetry
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and the differentiation gives the second elasticity tensor (4th order elasticity

tensor), which has minor and major symmetries. Essentially, by assuming

∂
∂x ≈ ∂

∂X the different stress measures shall give the same result.

The material symmetry axes of one meso-volume element of SFRC and, con-

sequently, the direction dependent elasticity constants γij , Gij are identified

utilising the orientation state of fibres, which is quantified by the orientation

tensors and the orientation distribution function [29, 31].

In theory, the orientation distribution function (ODF) f(n), where n(θ, φ)

is a unit vector associated with the orientation of a rod-like particle (fibre) in

space as e.g. in Fig. 4.4, is defined as the probability of finding a fibre between

the angles θ1 and θ1 + dθ and φ1 and φ1 + dφ, such as:

P (θ1 ≤ θ ≤ θ1 + dθ, φ1 ≤ φ ≤ φ1 + dφ) = f(θ1, φ1) sin θ1dθdφ . (4.14)

All possible directions of a fibre comply with a unit sphere S2 (radius r = 1).

Figure 4.4. The orientation of a fibre (rod-like particle) in space. θ is the inclination angle,

θ ∈ (0◦, 180◦), φ is the in-plane angle, φ ∈ (0◦, 360◦). In μCT scanning the

ranges of definitions θ ∈ (0◦, 90◦) and φ ∈ (0◦, 360◦) are used.

The l-order symmetric orientation tensor Oμ1...μl
can be composed by l-order

outer products of a unit vector n with itself and then integrating the result

with the ODF, f(n), over all possible directions:

Oμ1...μl
=

∮
S2

f(n)nμ1 ⊗ . . .⊗ nμl
d2n . (4.15)

The l-order orientation tensor contains the information about the lower order

tensors. For example, the 4th order orientation tensor includes the information

of the 2nd order orientation tensor. The symmetric traceless or irreducible

part of the l-order orientation tensor, in the mesoscopic continuum theory

called the l-order alignment tensor (AT) Aμ1...μl
[29], does not contain the

information about the lower order tensors. The ATs are able to account for

the anisotropy of the system, for example, the 2nd order alignment tensor

represents the deviation of the orientation tensor from isotropy. Hence, in
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the case of the isotropic distribution the ATs just vanish. In the mesoscopic

continuum theory the l-order AT is defined as follows:

Aμ1...μl
=

∮
S2

f(n) nμ1 ⊗ . . .⊗ nμl
d2n , (4.16)

where nμ1 ⊗ . . .⊗ nμl
is the l-order symmetric tensorial product of a vector

n (in Cartesian coordinates) from which the trace is removed and which gives

an l-order symmetric irreducible tensor. The symmetric irreducible tensors

are spherical harmonics [30], which belong to square-integrable functions L2

and form, in case of a unit sphere, a complete orthonormal basis on L2, Ap-

pendix A.1. Any square-integrable function on a unit sphere can be expanded

into the series of (2l+1) main spherical harmonics. The ODF f(n) is quadrat-

ically integrable function and it is defined on a unit sphere, and thus it may be

decomposed into the series of symmetric irreducible tensors nμ1 ⊗ . . .⊗ nμl

forming a complete orthonormal basis, and the ATs are acting as the expansion

coefficients:

f(n) =
1

4π
· f0

f̂(n)

+
1

4π

N∑
l=1

(2l + 1)!!

l!
Aμ1...μl

nμ1 ⊗ . . .⊗ nμl
, (4.17)

f0 =

∮
S2

f(n) d2n = 1 ,

where l! is the factorial l! = l · (l − 1) · · · 2 · 1 and (2l + 1)!! = (2l + 1) · (2l −
1) · · · 3·1 denotes the“factorial with double steps” [29, 30, 73]. The first term in

Eq. (4.17) represents the zero harmonic, which is a constant equal to the mean

integral value f̂(n) (can be interpreted as a mathematical expectation) of the

original function f(n) on a sphere. All other harmonics starting from l = 1

approximate the deviation (f(n)− f̂(n)) of the original function f(n) from its

mean value (can be interpreted as variance). If the expansion coefficients in a

complete orthonormal basis are known then the original function may also be

considered as known since the sum of the squares of all expansion coefficients

equals to the mean square of the function given on a sphere [37], Appendix A.1.

This can be used to approximate the ODF from the experimental data, e.g.

measuring of fibre orientations using X-ray micro-tomography scanning (μCT).

The ODF satisfies the following conditions:

ODF is even, i.e. f(n) = f(−n) ,

ODF is normalised, i.e.
∫ π
θ=0

∫ 2π
φ=0 f(θ, φ) sin θdθdφ =

∮
S2 f(n)d

2n = 1 .

Accordingly, as the ODF is even in n, the odd-order alignment tensors (as well

as the orientation tensors) in Eq. (4.17) vanish.
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The eigenvalues λi (|λ1| ≥ |λ2| ≥ |λ3|) of the 2nd order alignment tensor can

be used to introduce a scalar order-parameter S needed to evaluate how well

the rod-like particles are aligned with each other [74, 75]. The parameters can

be determined by firstly defining the order parameter tensor as P = 3
2A (the

reason for the 3
2 becomes clear later) with S being its according-to-amount

largest eigenvalue:

S = d1 · P︸︷︷︸
:= 3

2
A

·d1 , d1 · d1 = 1 . (4.18)

Inserting the definition of the alignment tensor Eq. (4.16) combined with the

exchange of scalar products and integration leads to

S =

∮
S2

(
1

2
(3(d1 · n)2 − 1)

)
f(n)d2n =

〈
1

2
(3(d1 · n)2 − 1)

〉
, (4.19)

which is the average of the second Legendre polynomial P2(d
1 ·n) and can be

further rewritten by introducing d1 · n =: x or α = �(n,d1) into

S =
〈
P2(d

1 · n)〉 (4.20)

= 〈P2(x)〉 (4.21)

= 〈P2(cosα)〉 , (4.22)

where the meaning of α = �(n,d1) or d1 ·n is presented in Fig. 4.5. The values

Figure 4.5. A macroscopic director d1, i.e. the direction of average orientation of particles,

corresponds to the eigenvector of the eigenvalue λ1

of the scalar order-parameter are assumed in the range S ∈ [−1
2 , 1], where the

following values correspond to special configurations: S = 1 corresponds to

the transversely isotropic material symmetry with well aligned fibres, S = 0

to the isotropy and S = −1
2 describes the plane transversely isotropic case.

Here one can see, that the choice of the factor 3
2 leads directly to the correct

coefficients in the Legendre polynomial and to have S = 0 for isotropy (no

order) [76].

In addition, a biaxiality parameter, which measures the non-symmetry of the

distribution with respect to d1, Fig. 4.6, can be introduced in the following

way (compare Eq. (4.18)):
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2

3
S = λ1 (4.23)

−1

3
S − bS = λ2 (4.24)

−1

3
S + bS = λ3 , (4.25)

where bS = 1
2(λ

3 − λ2) = sign(S)b and the biaxiality b ∈ [0, 13 |S|] [74, 75, 77].
The limits follow from the ordering of the eigenvalues, and bS = 0 means, that

the distribution is rotation symmetric around d1. As the tensor is traceless,

the sum of the eigenvalues λi vanishes, and so the sum of the left-hand sides

of Eqs. (4.23), (4.24), (4.25) needs to vanish.

b=0 
(symmetric distribution)

b 0 
(non-symmetric distribution)

Figure 4.6. Biaxiality. d1,d2,d3 are the eigenvectors of the 2nd order alignment tensor.

The 2nd order alignment tensor is used to define the material symmetry axes

of one meso-volume element of SFRC. The unit vectors li (Fig. 4.3, Eq. (4.7))

pointing to the principal material directions are chosen to be the normalised

eigenvectors d1,d2,d3 of the 2nd order alignment tensor. The orientation

distribution function f(n) is utilised to estimate the contributions of fibres in

the directions of the eigenvectors thus defining the direction dependent meso-

elasticity constants of the composite, i.e. γij , Gij .

4.3.2 State space for SFRC

As the constitutive equations are different for different materials, the intro-

duction of the concept of the state space is necessary. The variables to be

included to the state space depend on the physical problem and on the mate-

rial [29]. The mechanical properties of the studied composite depend on the

orientation of short steel fibres and thus the state space for SFRC shall include

the variables associated with the orientation distribution of fibres in a volume

element. As it was stated in the previous section, the normalized eigenvec-

tors di of the 2nd order alignment tensor A are utilised to assign the material

meso-symmetry. The orientation distribution function f(n) is weighting the

amount of fibres together with their elastic properties in the direction of the

considered material meso-symmetry axis.
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Hence, a possible state space for one meso-volume element of SFRC:

Z : =
(
Y (m), Y (f), ν(m), V (m), V (f), ε(c),di(A), f(n)

)
, (4.26)

with V (m) = 1− V (f) ,

where Y (m), Y (f) are the Young’s modulus of the concrete and steel fibres

respectively, ν(m) is the Poisson’s ratio of the concrete, V (m), V (f) are the

volume fractions of the concrete and fibres, ε(c) is the average infinitesimal

strain of the composite as long as the bond acts between the steel fibres and

the concrete. The average strain is an equivalent strain, which includes the

strains of both concrete and steel fibres since a complete bond is assumed

between concrete and steel. This is usually justified by some identical physical

and mechanical properties of concrete and steel, such as:

– while hardening the concrete adheres to the steel, and thus in a structure

the relative deformations of both materials are equal;

– thermal expansion coefficients of concrete and steel are approximately the

same, and thus the changes in the ambient temperature do not cause internal

stresses in SRFC structures.

4.3.3 Orientation-weighted meso-elasticity of fibres in material

meso-symmetry axes

Essentially, the system of eigenvectors, d1,d2,d3 forms the new orthonor-

mal coordinate system—material meso-symmetry coordinates, which define

the meso-scale of the composite, Fig. 4.7.

Z

Y

X

X,Y,Z - structural coordinates

d3d2d1, , - material meso-symmetry
 coordinates

x'1...x'l - local coordinates
 (micro-scale)

Figure 4.7. The position of the unit vectors—fibres—x′1 . . . x
′
l relative to structural X,Y, Z

and material meso-symmetry d1,d2,d3 coordinates.

In order to estimate the contribution of fibres to the directions of the meso-

symmetry axes, it is necessary to transform the fibres from their local or micro-

scale coordinates into the coordinates characterised by the structural reference

frame, Fig. 4.8. Since only the tensile strength of the composite is under con-

sideration, the stretching ability of an individual fibre can be characterised

solely by its Young’s modulus along its longitudinal axis. Elasticity of a fibre
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x'z'

y'
fibre in local coordinates
                   (micro-scale)

orthogonal 
transformation
matrix Q

Y

X

Z

fibre in structural frame 

Elastic properties of a fibre:

Yx'x'=0,(fid) Yy'y'    0 Yz'z'    0 ,
y'

z' cross-section of a fibre

(fid) (fid)~_ ~_

Figure 4.8. Transformation of a fibre from local to structural coordinates. Y
(fid)

x′x′ is the

Young’s modulus of a fibre along the longest axis in local coordinates. Y (m) is

the Young’s modulus of the matrix.

in its radial direction is assumed to be insignificant, Fig. 4.8. Applying the or-

thogonal transformation matricesQ(n), describing a rotation of the coordinate

system, to the fourth-order-elasticity-tensor of a single fibre with one non-zero

elasticity modulus <4>C(fid), and weighting with the given orientation distri-

bution function f(n), the orientation-weighted orthotropic meso-elasticity of

fibres in the structural reference frame is obtained. The following step is to

perform one more orthogonal transformation to get the orientation-weighted

orthotropic meso-elasticity of fibres in material meso-symmetry coordinates

determined by the eigenvectors of the 2nd order alignment tensor, Fig. 4.7. In

the mathematical formulation the described steps can be written as follows:

C
(fstr)
ijkl =

∮
S2

Qim(n)Qjn(n)Qko(n)Qlp(n)C
(fid)
mnopf(n)d

2n , (4.27)

where C
(fstr)
ijkl is the orientation-weighted orthotropic meso-elasticity tensor of

fibres in structural coordinates, Qim(n) is the transformation matrix per one

index of the 4th order elasticity tensor of an individual fibre C
(fid)
mnop, and f(n) is

the considered orientation distribution function. The transformation matrices

in Eq. (4.27) are identical and composed as a dot product (scalar multiplica-

tion) of two rotation matrices Rz(φ), Ry(θ), Fig. 4.9 and Eq. (4.28).

0

X

Y

Z
(   ,     )

Figure 4.9. Definition of the inclination angle θ and in-plane angle φ.
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Q(n) = Rz(φ) ·Ry(θ) , where θ ∈ [0, π], φ ∈ [0, 2π] (4.28)

Rz
ij(φ) =

⎛
⎜⎜⎜⎝
cosφ − sinφ 0

sinφ cosφ 0

0 0 1

⎞
⎟⎟⎟⎠ , Ry

ij(θ) =

⎛
⎜⎜⎜⎝
cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

⎞
⎟⎟⎟⎠

The further transformation of C
(fstr)
ijkl , which reads as:

C(fms)
mnop = Q̂miQ̂njQ̂okQ̂plC

(fstr)
ijkl , (4.29)

gives the orientation-weighted orthotropic meso-elasticity tensor of fibres in

material meso-symmetry coordinates. The transformations in Eq. (4.29) diag-

onalize the tensor C
(fstr)
ijkl since the transformation matrices are composed of

the eigenvectors of the 2nd order alignment tensor, such as:

Q̂mi =

⎛
⎜⎜⎜⎝
d11 d12 d13

d21 d22 d23

d31 d32 d33

⎞
⎟⎟⎟⎠ , where (4.30)

d1 = (d11, d21, d31) , d2 = (d12, d22, d32) , d3 = (d13, d23, d33) .

An important property of the orientation-weighted orthotropic meso-elasticity

of fibres is that it averages out the heterogeneities—orientations of individ-

ual fibres—between the three meso-symmetry axes. From Eq. (4.29) one may

specify the orientation-weighted orthotropic elasticity constants for fibres γij

(i, j = 1, 2, 3) and Gij (i, j = 1, 2, 3; i �= j) referring to the material meso-

symmetry directions and planes. The latter constants are utilised in the or-

thotropic material model for one meso-volume element of SFRC.

γ11 = C
(fms)
1111 , γ22 = C

(fms)
2222 , γ33 = C

(fms)
3333

γ23 = C
(fms)
2233 , γ13 = C

(fms)
1133 , γ12 = C

(fms)
1122

G23 = C
(fms)
2323 , G13 = C

(fms)
3131 , G12 = C

(fms)
1212

γ32 = γ23 , γ31 = γ13 , γ21 = γ12

(4.31)

4.4 Constitutive relation for one meso-volume element of SFRC

A complete bond between the concrete and steel fibres results in the Taylor as-

sumption [78], which assumes no fluctuations (equivalent deformations) within

the characteristic volume element of a composite. The chosen linear-elastic
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range and a small volume fraction (concentration) of fibres allow to employ

the mean-field homogenisation approach to formulate the constitutive relation

for SFRC [23, 79, 80]. Essentially, the concrete is a heterogeneous material

consisting of cement binder and aggregate of different fractions, Fig. 4.10(a).

Although, the elasticity parameters of the hardened concrete, found, for exam-

ple, in Eurocode 2 [81], are homogenised since they characterise the concrete

strength in general. Accordingly, the mean-field homogenisation, which uses

the meso-volume element to specify the meso-symmetry axes, Fig. 4.10(b),

can be utilised to approximate the structure and behaviour of SFRC on the

macro-scale.

aggregate
cement binder

concrete

(a) Homogenisation of pure

concrete.

short steel 
fibres

hardened
concrete

oriented meso-volume
element 

d3

d1

d2

- material meso-symmetry
  axes 

d1d2 d3, ,

(b) Homogenised meso-volume element of SFRC specify-

ing the meso-symmetry axes d1,d2,d3.

Figure 4.10. The mean-filed homogenisations.

Physically, non-linearity induced by the cracking of SFRC implies the loss

of bond between the concrete and steel fibres, which further activates the

anchoring of fibres. This also indicates the difference in stresses and strains of

the concrete matrix and steel fibres. Such fluctuations within the meso-volume

element shall be considered while modelling the fracture mechanism of SFRC.

The approaches, which could be helpful for considering these differences are

presented in [23, 79, 82, 83]. The proposed linear-elastic material model is

valid in the case of microcracks.

The orthotropic linear-elastic material model developed for the description of

anisotropic behaviour of one meso-volume element of SFRC is established em-

ploying the isotropic and orthotropic St. Venant-Kirchhoff models with three

symmetry directions. The strain-energy density function in material symme-

try axes for one representative volume element of SFRC can be composed

by the superposition of the isotropic concrete matrix and orthotropic influ-

ence of short steel fibres (Section 4.3.1) resulting in the homogenisation of the

composite on the meso-scale , Fig. 4.10(b), such as:

50



Constitutive mappings

W (ε(c)) = V (m)

(
1

2
γ(tr(ε(c)) tr(ε(c))) +G tr((ε(c))2)

)
︸ ︷︷ ︸

concrete, isotropic

+ (4.32)

+V (f)

⎛
⎝1

2

3∑
i,j=1

γij tr(ε(c)Li) tr(ε(c)Lj) +

3∑
i,j �=i

Gij tr(ε(c)Liε(c)Lj)

⎞
⎠

︸ ︷︷ ︸
fibres, orthotropic

.

The differentiation of W (ε(c)) leads to a constitutive relation, which has the

following form:

S(c) =
∂

∂ε(c)
W (ε(c)) (4.33)

= V (m)
(
γI tr(ε(c)) + 2Gε(c)

)
︸ ︷︷ ︸

concrete, isotropic

+V (f)

⎛
⎝ 3∑

i,j=1

γij tr(ε(c)Lj)Li + 2

3∑
i,j �=i

GijLiε(c)Lj

⎞
⎠

︸ ︷︷ ︸
fibres, orthotropic

.

(4.34)

The further differentiation of Eq. (4.34) gives the orientation-weighted or-

thotropic meso-elasticity of the composite, which reads as:

C
(c)
mnkl =

∂S
(c)
mn

∂ε
(c)
kl

=
∂2

∂ε
(c)
mn∂ε

(c)
kl

W (ε(c)op ) ; (4.35)

<4>C(c) = V (m)
(
γI⊗ I+ 2G <4>IS

)
︸ ︷︷ ︸

concrete, isotropic

+V (f)

⎛
⎝ 3∑

i,j

γijLi ⊗ Lj +

3∑
i,j �=i

2Gij(Li ⊗̃Lj)S

⎞
⎠

︸ ︷︷ ︸
fibres, orthotropic

.

(4.36)

The term of fibres in Eq. (4.36) can be written in explicit form as follows:

3∑
i,j

γijLi
mn ⊗ Lj

kl +

3∑
i,j �=i

2Gij(Li
mn ⊗̃Lj

kl)
S =

=

(
γ11L1

mnL
1
kl + γ22L2

mnL
2
kl + γ33L3

mnL
3
kl + γ23L2

mnL
3
kl + γ13L1

mnL
3
kl + γ12L1

mnL
2
kl +

+γ32L3
mnL

2
kl + γ31L3

mnL
1
kl + γ21L2

mnL
1
kl

)
+

+

(
G23 1

2
(L2

mlL
3
kn + L2

mkL
3
ln) +G13 1

2
(L1

mlL
3
kn + L1

mkL
3
ln) +G12 1

2
(L1

mlL
2
kn + L1

mkL
2
ln)

)

4.5 Example calculations of orientation-weighted 4th order

meso-elasticity tensors based on experimental data

In this research the ODF is approximated employing the experimental data

(Section 4.3.1). The sum expression of the alignment tensors based on the

fibre orientations measured by μCT reads as follows:

Ai1...il =
1

N

N∑
k=1

v
(k)
i1
⊗ . . .⊗ v

(k)
il

, (4.37)
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where v
(k)
i is the orientation of each fibre (in Cartesian coordinates) and N

is the amount of fibres measured by μCT. In Eq. (4.17) the infinite series for

the function f(n) is replaced by a partial sum of finite terms, whereas the

M -th partial sum of the series contains (M + 1)2 coefficients [37]. The sum

expression for the approximation of the ODF reads:

f(v) =
1

4π

(
1 +

M∑
l=1

(2l + 1)!!

l!

[
1

N

N∑
k=1

v
(k)
i1
⊗ . . .⊗ v

(k)
il

]
· vi1 ⊗ . . .⊗ vil

)
,

(4.38)

where M is the order of approximation, vi1 ⊗ . . .⊗ vil are the symmetric ir-

reducible tensors considering all possible directions of a fibre, i.e. θ ∈ [0◦, 180◦]

and φ ∈ [0◦, 360◦]. If M → ∞ the approximation turns to infinite series of

spherical harmonics, which converges absolutely and uniformly to the original

function f(n). The approximation implemented using the coefficients defined

considering a minimum squared error, Eq. (4.37), provides a good accuracy

within the sum of the first expansion terms [37], Appendix A.1.

In the following, the ODF is calculated using the 2nd order alignment ten-

sor, Aij , which defines the main material symmetry axes of one meso-volume

element of SFRC. The higher-order alignment tensors are correcting the main

symmetry axes received, however, the accuracy provided by the 2nd order ten-

sor is assumed to be acceptable for the present needs of building industry [31].

The calculation of the higher rank tensors and the respective approximation

of the ODF need more numerical calculations.

The ODF is defined as a probability and thus it should be normalized. The

normalization is implemented utilizing the Riemann sum, which is defined e.g.

for the three dimensional case as follows:

Fcart =
a∑

k=1

b∑
j=1

c∑
i=1

f

(
xi, yj , zk

)
ΔxiΔyjΔzk , (4.39)

where f

(
xi, yj , zk

)
is the value of approximated function at a given point and

ΔxiΔyjΔzk are the lengths of intervals (partitions). Since the ODF is defined

on a unit sphere, it is necessary to consider the difference between the volume

elements in rectangular and spherical coordinates, Fig. 4.11. The Jacobian

determinant of the transformation between the volume elements is defined as

follows:

∂(x, y, z)

∂(r, θ, φ)
=

∣∣∣∣∣∣∣∣
sin θ cosφ r cos θ cosφ −r sin θ sinφ

sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

∣∣∣∣∣∣∣∣ = r2 sin θ , (4.40)
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X

Y

spherical coord.rectangular coord.

a part of deployed 
unit sphere, radius r=1

180

sin

Z

Figure 4.11. The transformation between a rectangular and a spherical volume element.

where r2 sin θ is the actual function that converts a rectangular volume element

to spherical coordinates. In the case of a unit sphere (r2 = 1) only sin θ shall be

used. The transition of a rectangular volume element to spherical coordinates

and calculation of the Riemann sum for the unit sphere reads:

Fsph = sin θj ·
b∑

j=1

c∑
i=1

f(xi, yj)ΔxiΔyj . (4.41)

Eqs. (4.42-4.44), Table 4.1 and Figs. 4.12, A.5.4 present calculated fibre ori-

entation parameters of the middle parts (Fig. 2.17(a)) of two cylinder sam-

ples 2A and 2B scanned by μCT. The orientation characteristics include: 2nd

order alignment tensor, eigenvalues λ1, λ2, λ3, eigenvectors d1,d2,d3, scalar

order-parameter S, biaxiality bS , and the approximated orientation distribu-

tion functions.

Cylinder 2A

2nd order alignment tensor

Aij =

⎛
⎜⎜⎝

0.037 0.277 −0.010

0.277 0.038 −0.013

−0.010 −0.013 −0.001

⎞
⎟⎟⎠ ,

Sorted eigenvalues

λ1, λ2, λ3 = 0.28, −0.28, −0.002

Eigenvectors of the sorted eigenvalues

dij =

⎛
⎜⎜⎜⎜⎜⎝

d1 d2 d3

−0.656 0.753 0.042

−0.752 −0.658 0.042

0.059 −0.004 0.998

⎞
⎟⎟⎟⎟⎟⎠

Cylinder 2B

Aij =

⎛
⎜⎜⎝

0.304 0.007 −0.012

0.007 −0.244 −0.070

−0.012 −0.071 −0.060

⎞
⎟⎟⎠ (4.42)

λ1, λ2, λ3 = 0.31, −0.27, −0.04 (4.43)

dij =

⎛
⎜⎜⎜⎜⎜⎝

d1 d2 d3

0.999 −0.005 0.041

0.018 0.947 −0.320

−0.037 0.321 0.946

⎞
⎟⎟⎟⎟⎟⎠ (4.44)

The orientation-weighted orthotropic meso-elasticity of fibres in the mate-

rial meso-symmetry coordinates specified by the eigenvectors d1,d2,d3 are

presented by employing the Kelvin-Mandel variant of the Voigt notation in

Eq. (4.45).
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Cylinder 2A Cylinder 2B

C
(fms)
αβ = Y (f)· C

(fms)
αβ = Y (f) ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.44 0.07 0.11 0 0 0

0.07 −0.04 0.03 0 0 0

0.11 0.03 0.20 0 0 0

0 0 0 0.05 0 0

0 0 0 0 0.21 0

0 0 0 0 0 0.13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.46 0.07 0.1 0 0 0

0.07 −0.03 0.02 0 0 0

0.1 0.02 0.20 0 0 0

0 0 0 0.05 0 0

0 0 0 0 0.21 0

0 0 0 0 0 0.14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.45)

The values of the coefficients in Eq. 4.45 can be called as the probabilities of

orientation efficiency. The positive matrix terms describe the optimal fibre

orientation from the probabilistic point of view, whereas the negative entry

corresponds to a physical case, when the fibres have least effective orientation,

and, thus, it can be dealt with by setting it to zero. The situation with negative

or zero terms on a main diagonal causes the orientation-weighted orthotropic

meso-elasticity tensor of fibres to be indefinite. Nevertheless, the orthotropic

elasticity tensor of the composite is still positive definite, since the concrete

matrix, being considered as isotropic, compensates the negative–zero–terms

of the orthotropic elasticity of fibres, which, from the physical point of view,

means the strength of the pure concrete.

Fibre orientation distribution characteristics for the other cylinder samples

scanned by μCT are presented in Appendices A.4, A.5.
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(b) Cylinder 2A.
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(c) Cylinder 2B.

Figure 4.12. Scatter plots of fibre orientations with the triplets of the eigenvectors; d1-solid

red line, d2-dashed green line, d3-dot-dashed blue line. d1 is the director

corresponding to according-to-amount-largest eigenvalue. In (a) the radius

represents the inclination angle θ and in-plane angle φ is on circumference.

Z-axis corresponds to the direction of the tensile stress in a slab, Fig. 3.1.
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Table 4.1. The scalar-order parameter S and triplet of the eigenvectors from the 2nd order

alignment tensor in spherical coordinates. S = 1 corresponds to the transversely

isotropic material symmetry, S = 0 to isotropy and S = − 1
2
describes the plane

isotropic case. The biaxiality bS shows the non-symmetry of the distribution

with respect to d1.

Cylinder nr. S bS d1(θ, φ), deg d2(θ, φ), deg d3(θ, φ), deg

2A 0.42 0.14 87, 229 90, 139 3, 45

2B 0.46 0.12 88, 181 71, 90 19, 277
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(d) Cylinder 2B.

Figure 4.13. The isolines of the measured fibre orientation distributions and the ODFs of

fibres approximated using the 2nd order alignment tensor.

4.6 Application areas for the developed material model of SFRC

The application areas of the material model can be utilized by both the nu-

merical computations and the development of SFRC products. The material

model developed has a continuous formulation, which makes it attractive for

implementing to the finite element programs used in engineering calculations.

The results of computer simulations with different fibre orientation distribu-

tions may help the manufacturers to better understand the importance of
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fibre orientation on the mechanical properties of SFRC and, accordingly, will

motivate the development of new technological solutions.

4.6.1 Application in numerical calculations

The orientation tensors (or the alignment tensors) describe the orientation

state of fibres compactly not only in a sense of representation, but also in

a sense of the number of independent variables needed to characterize the

orientation of fibres in each spatial (meso-volume) finite element. For example,

the orientation state of fibres in a spatial element using the 2nd order alignment

tensor can be specified by 5 independent variables, those are 3 elements above

the main diagonal and two elements on the main diagonal. The eigenvectors

of the 2nd order alignment tensor show the preferred alignment of fibres in

each spatial finite element, Fig. 4.14. As a result one can get a vector field,

Figure 4.14. SFRC member with a preferred orientation of fibres represented by the triplets

of the eigenvectors in each spatial (meso-volume) finite element.

which further may be used to simulate the flow of fibres in a visco-elastic fluid

in order to predict fibre orientations.

4.6.2 Application in production technology

A challenge for SFRC manufacturers is to organise the production process

to produce a particular orientation of fibres. Ordinary methods for casting

concrete structures have not been developed for SFRC and new technological

solutions considering the importance of fibre orientations on the mechanical

properties of the composite are needed. For example, the optimal fibre ori-

entation can be achieved in a structural member, where only unidirectional

principal stress is expected. It may to be realised by utilising of the property

of fibres to align along moulds or by the application of some electromagnetic

devices. In the case of several principal stresses in a structural member the

achievement of the optimal fibre orientation is partially possible and can be

fulfilled by the systematic and automated product development as well as by

the training of specialised teams for cast-in-place methods. It is expected

that the material model encourages the manufacturers by simulating SFRC
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properties to develop and evaluate their production technologies.

In general, the material symmetry axes of the composite may not coincide

with the load-bearing directions of the structure and thus the information in-

cluding the symmetry characteristics of the material can be tabularised for

different ODFs. These tables may appear to be useful for both the manufac-

turers and designers as they could reduce the time needed for the analysis of

a given ODF. From the industrial point of view, these tables give a tool for

manufacturers to optimise production in the respect of composite properties.

A designer may select an ODF in accordance with the principal stresses in a

structure. To achieve the optimal load-bearing capacity, the selection of the

ODF should be based on the expected principal stresses in a structure, which

may restrict the approach to cases where load-combinations do not affect the

nature of principal stresses.

57



Constitutive mappings

58



5. Conclusions and future prospects

During the research two methods, a coupled approach based on sliced samples

and μCT scanning, have been developed and implemented for measuring the

orientations of short steel fibres from hardened concrete.

The benefit of implemented slicing method is that a coupled approach allows

to measure the orientation of individual fibres in the interval from [0◦, 360◦],

which in addition to eliminating the ambiguity of the in-plane angle present

in photometry, and also speeds up the scanning time as the coordinates re-

ceived in image analysis are used as the input for DC-conductivity testing. An

important characteristic while using the slicing method is the ratio between

the thickness of a slice and the length of used fibres, Section 2.5. The slicing

method is beneficial in the case of straight and hooked-end fibres. If fibres are

corrugated, the tracking or searching for the opposite end of a cut fibre may

cause difficulties. The success of DC-conductivity testing combined with pho-

tometry may depend on a price. In the present experiment the direct material

costs were below 500 euros. This price is low and not even comparable to the

price of μCT equipment. Even an improved robot version may cost only a few

thousands euros.

The main advantage of the X-ray micro-tomography (μCT) method is the

ability to analyse the orientation of individual fibres based on a 3D voxel rep-

resentation of a sample. Although the sample size is limited to the order of

several dm3 and the size of structural elements is in the order of m3, the pre-

cision of the measurements is superior to other methods. The most important

parameters of the μCT machine are the beam power, acceleration voltage, the

scanning resolution of X-ray equipment, and computer hardware resources for

the processing of scans.

The study confirmed that the concrete samples require a high beam power

and acceleration voltage due to the absorbing nature of concrete. CT systems

that are capable of delivering over 1500 W X-ray tube power and greater than
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400 kV acceleration voltage, [84, 85], while maintaining sufficient resolution,

are readily available as turn-key systems that require only limited knowledge

of X-ray methods to operate. The values of the equipment used in this study

were 11 W and 160 kV.

In conclusion, the main advantages of the measuring methods developed or

tested in the study are:

• Combined work of DC-conductivity with photometry:

– provides fast scanning time;

– prevents the ambiguity in the in-plane angle;

– does not require expensive technical solutions.

• μCT scanning:

– provides the precision of measurements superior to other methods;

– offers the availability of CT-systems, which require limited knowledge

of X-ray methods.

The outcomes from the measured fibre orientation distributions in the tested

floor-slabs revealed a strong spatial heterogeneity in the orientation of fibres,

meaning that the alignment of fibres varied along the length (Z-axis), width

(X-axis) and the height (Y -axis) of the slabs. Accordingly, the theory that is

capable to describe the properties of SFRC in three directions is necessary for

the further elaboration of both the production and design of SFRC products.

The result of the modelling part of the research is the formulation of the

orthotropic linear-elastic constitutive relation for one meso-volume element of

SFRC subjected to small deformations. The approach presented is a mean-field

homogenisation utilising a characteristic part of SFRC, i.e. the meso-volume

element, which specifies the material symmetry axes on a meso-scale. The

model utilises the full orientation information of fibres (two angles in spherical

coordinates) and complies with material objectivity conditions. For describing

the alignment of short steel fibres, the characteristics of the mesoscopic contin-

uum theory are used: the 2nd order alignment tensor to identify the material

meso-symmetry axes and the orientation distribution function to estimate the

contribution of fibres to the symmetry axes defined.

60



Conclusions and future prospects

The main advantages of the developed orthotropic linear-elastic constitutive

model for one meso-volume element of SFRC are:

– the model is invariant under any orthogonal transformations;

– the model is based on dominating directions of the orientation distribution

function;

– orthotropic meso-elasticity in the local symmetry axes of the composite

are calculated based on the orientation distribution function and the 2nd

order alignment tensor.

The future prospect of the material model developed is its implementation into

numerical methods, such as finite element or finite volume methods to sup-

port the structural design. The material model formulated may also help the

manufactures to learn and understand the properties of SFRC to select the

most appropriate orientation distribution function for fibres. The adoption

of new technologies to manufacturing process of SFRC is perhaps the only

way to make the production of this composite controllable. As an outlook

for the future research of SFRC, the necessity to study its failure mechanism

should be noted. The understanding of SFRC failure may lead to the postula-

tion of an orthotropic non-linear-plastic material model. Besides, the full-size

experiments for validation of numerical simulations employing the linear or

non-linear constitutive relations are endorsed.
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A. Appendicies

A.1 Orientation distribution function as a spherical harmonic

function

Let us consider Hl to be (2l+ 1) dimensional Hilbert subspace (vector space)

spanned by all spherical harmonics of rank l. Then for l ∈ N:

Hl = span

(μ1...μl)∈{1,2,3}l
h(l)μ1...μl

, (A.1.1)

where h
(l)
μ1...μl is a spherical harmonic function. The Hilbert space H of square-

integrable functions L2 can be represented as a direct sum of finite dimensional

subspaces Hl, such as:

H =
∞⊕
l=0

Hl , H ∈ L2. (A.1.2)

The orientation distribution function f(n), where n ∈ (θ, φ) is a unit vector,

belongs to L2.

Applying the Laplace operator on R
3, i.e. Δ =

(
∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3

)
, on sym-

metric irreducible (symmetric traceless) tensors, nμ1 · · ·nμl
, where a unit vec-

tor nμ (radius r = 1) can be presented in Cartesian coordinates as n(θ, φ) =

n̂(x = sin θ cosφ, y = sin θ sinφ, z = cos θ), the following can be received:

Δ n̂μ1 · · · n̂μl
= 0, (A.1.3)

which explains nμ1 · · ·nμl
to be a harmonic function [30]. Applying the

Laplace-Beltrami operator, which reads as:

ΔS =
1

sin θ
· ∂

∂θ

(
sin θ · ∂

∂θ

)
+

1

sin2 θ
· ∂2

∂φ2
, (A.1.4)

the following can be received:

ΔS nμ1 · · ·nμl
= −l(l + 1) nμ1 · · ·nμl

, (A.1.5)
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which shows that the coordinate functions nμ1 · · ·nμl
are the eigenfunctions

of the Laplace-Beltrami operator corresponding to eigenvalues λl = −l(l+ 1).

The eigenfunctions of Laplace-Beltrami operator are called spherical harmon-

ics, which represent the angular portion of a set of orthogonal solutions of the

Laplace equation written in spherical coordinates. The eigenfunction with the

corresponding eigenvalue λl ≥ 0 satisfies:

ΔS nμ1 · · ·nμl
+λl nμ1 · · ·nμl

= 0 . (A.1.6)

Accordingly, the symmetric irreducible tensors nμ1 · · ·nμl
are spherical har-

monic functions [30]:

h(l)μ1...μl
(n) := nμ1 · · ·nμl

. (A.1.7)

Any spherical harmonic function of rank l, Yl(θ, φ), can be represented as

a linear combination of (2l + 1), Eq. (A.1.5), main spherical functions each

depending on either sines or cosines of the angles θ and φ [37]. The main

spherical functions may have the following form:

P
(0)
l (cos θ), P

(1)
l (cos θ) · cosφ, P

(2)
l (cos θ) · cos 2φ, . . . , P

(l)
l (cos θ) · cos lφ,

P
(1)
l (cos θ) sinφ, P

(2)
l (cos θ) · sin 2φ, . . . , P

(l)
l (cos θ) · sin lφ ,

where P
(k)
l is an l-th rank polynomial of cos θ or an (l−1)-th rank polynomial

of cos θ times sin θ. Accordingly, any arbitrary l-th rank spherical harmonic

function can be represented as follows:

Yl(θ, φ) =

l∑
k=0

P
(k)
l (cos θ)[ckl · cos kφ+ skl · sin kφ] =

2l∑
m=0

aml Y m
l (θ, φ),(A.1.8)

where ckl , s
k
l are (2l+1) arbitrary constants, P

(k)
l (cos θ) are: if k = 0, the Leg-

endre polynomials and if k = 1, 2, . . . , l the associated Legendre polynomials.

The index l is the rank of the main spherical function Y m
l (θ, φ) and the index

m is an auxiliary and indicates the order [37]. The index m has the following

values:

if m ≤ l, Y m
l (θ, φ) = P

(k)
l (cos θ) · cos kφ, aml = ckl , k = m (A.1.9)

if m > l, Y m
l (θ, φ) = P

(k)
l (cos θ) · sin kφ, aml = skl , k = m− l .

The Legendre and the associated Legendre polynomials can be determined

using the following recursive formulas, respectively:

Pl(cos θ) =
2l − 1

l
· cos θ · Pl−1(cos θ)− l − 1

l
Pl−2(cos θ) , (A.1.10)

wherein Pl(0) =

⎧⎪⎨
⎪⎩
0 , if l is odd

l!(−1)l/2
( l
2
!)2·2l , if l is even

(A.1.11)
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P
(k)
l (cos θ) =

2l − 1

l − k
· cos θ · P (k)

l−1(cos θ)−
l + k − 1

l − k
· P (k)

l−2(cos θ) ,

0 ≤ k ≤ l − 2, l ≥ 2 . (A.1.12)

The Legendre and the associated Legendre polynomials form an orthogonal

system on the interval [−1, 1].
The spherical harmonics belong to square-integrable functions L2 and form

an orthogonal basis on L2. For the completeness of the basis it is necessary

and sufficient that the number of basis vectors coincide with the dimension of

the functional space. On a unit sphere S2 the Legendre and the associated

Legendre polynomials form a complete orthonormal basis. Consequently, the

same holds true for the tensor family { nμ1 · · ·nμl
}. On a unit sphere any

square-integrable function g ∈ L2 can be expanded as a series of main spherical

harmonics in complete orthonormal basis, such as:

g(θ, φ) =
∞∑
l=0

Yl(θ, φ) =
∞∑
l=0

2l∑
m=0

aml Y m
l (θ, φ) , (A.1.13)

where aml are acting as expansion coefficients [37], such as:

aml =
〈g, Y m

l 〉
||Y m

l ||2
= (A.1.14)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m ≤ l, k = m

ckl = (2l+1)
2π·δk ·

(l−k)!
(l+k)! ·
∫ 2π
0

∫ π
0 g(θ, φ) · P (k)

l (cos θ) cos kφ︸ ︷︷ ︸
Y m
l

· sin θ · dφdθ︸ ︷︷ ︸
dΩ

,

m > l, k = l −m

skl = (2l+1)
2π·δk ·

(l−k)!
(l+k)! ·
∫ 2π
0

∫ π
0 g(θ, φ) · P (k)

l (cos θ) sin kφ︸ ︷︷ ︸
Y m
l

· sin θ · dφdθ︸ ︷︷ ︸
dΩ

,

where δk = 1, if k > 0, if k = 0, δ0 = 2 ,

sin θ · dφdθ = dΩ .

〈g, Y m
l 〉 in Eq. (A.1.14) means a scalar multiplication defined for any two

arbitrary functions p and q on L2 as:

〈p, q〉 =
∫ b

a
p(x)q(x)dx , (A.1.15)

||Y m
l ||2 is a square norm of a function and dΩ comes from the integration

over a flat rectangular area [0, π; 0, 2π] instead of a surface integral
∮
S2 on a

unit sphere. If in some complete basis system the expansion coefficients aml

in Eq. (A.1.13) are known then the function g(θ, φ) can be also considered as

known and the following identity holds true:

∞∑
l=0

2l∑
m=0

(āml )2 =
1

4π

∫
Ω
g2(θ, φ)dΩ , (A.1.16)
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where āml is the normalized expansion coefficient:

āml =

√
δk

2 · (2l + 1)
· (l + k)!

(l − k)!
· aml (A.1.17)

=
1

4π

∫ 2π

0

∫ π

0
g(θ, φ) · Ȳ m

l · sin θ · dφdθ .

The normalization of Y m
l reads as:

Ȳ m
l (θ, φ) =

√
2 · (2l + 1)

δk
· (l − k)!

(l + k)!
· Y m

l (θ, φ) . (A.1.18)

The identity Eq. (A.1.16) is called the Parseval’s identity. In terms of com-

pletely normalized functions Eqs. (A.1.17), (A.1.18), the Eq. (A.1.13) has the

following form:

g(θ, φ) =
∞∑
l=0

Ȳl(θ, φ) =
∞∑
l=0

2l∑
m=0

āml Ȳ m
l (θ, φ) . (A.1.19)

The spherical harmonic function of rank l, Yl(θ, φ), in decomposition presented

in Eq. (A.1.13) represent the sum of (l+1) terms, which differ from each other

by the value of k. Each term having the form as:

P
(k)
l (cos θ)[ckl · cos kφ+ skl · sin kφ], k = 1, 2, 3, . . . , l (A.1.20)

can be considered, similar to the harmonic analysis of one argument function

employing the Fourier series, as the l-th harmonic of the original function. If

l = 0 , then:

Ȳ
(0)
0 (θ, φ) = Y

(0)
0 (θ, φ) ≡ 1 and (A.1.21)

ā00 = a00 = c00 =
1

4π

∫
Ω
g(θ, φ)dΩ = ĝ , (A.1.22)

meaning that the zero harmonic in Eq. (A.1.13) is a constant, which is equal

to the mean integral value ĝ of the original function g(θ, φ) on a sphere. All

other harmonics starting from l = 1 approximate the deviation (g − ĝ) of

the original function g(θ, φ) from its mean value. The series presented in

Eq. (A.1.13) are also called Laplace series for the function g(θ, φ) and the

expansion terms in Eqs. (A.1.13), (A.1.14) are Laplace spherical harmonics.

Hence, while decomposing the given function on a unit sphere, g(θ, φ), g ∈ S2,

by spherical harmonics, the series terms are always Laplace spherical functions.

The values of the coefficients in Eq. (A.1.14) are determined under the least

squares method assuming the condition of a minimum squared error σ2
n, such

as:

σ2
n =

∫
Ω
g2(θ, φ)dΩ−

n∑
l=0

2l∑
m=0

2π · δk(l + k)!

(2l + 1)(l − k)!
· (aml )2 . (A.1.23)
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The infinite Laplace series l → ∞ converges to the original function abso-

lutely and uniformly and thus the same holds for Eq. (A.1.23) meaning that if

n→∞ then σ2
n → 0 and Eq. (A.1.23) takes the form of the Parseval’s identity

Eq. (A.1.16). Accordingly, the sum of the squares of all the coefficients of

the expansion is closely related to the mean square of the given function on

a sphere. The approximation employing the coefficients defined considering a

minimum squared error provides a good accuracy within the sum of the first

terms of the Laplace series [37].

Spherical harmonics expansion is the modification of the Fourier series de-

composing any original function g by an orthogonal basis into the linear combi-

nation (sum) of harmonic oscillations with different frequencies. The classical

trigonometric Fourier series for the real valued function g(x) integrable on an

interval (x0, x0 + T ), x0, T ∈ R and periodic with a period T outside the

interval, for the integers N ≥ 0 and T = 2π reads as follows:

g(x) =
m0

2
+

N∑
k=1

(
mk cos

2πkx

T
+ bk sin

2πkx

T

)
, (A.1.24)

where m0,mk, bk, k = 1, 2 · · · are called the Fourier coefficients of the func-

tion g [86].

Let us consider now a function f(n), where n defines a unit vector on a

two-dimensional unit sphere S2, to be square-integrable, such as: f(n) ∈
L2(S2, R). According to Eqs. (A.1.3) and (A.1.5) the symmetric irreducible

tensors nμ1 · · ·nμl
are spherical harmonic functions and they form a complete

orthonormal basis, since based on Eqs. (A.1.10), (A.1.12) the main spherical

harmonics are either Legendre or associated Legendre polynomials. Following

Eq. (A.1.21), if l = 0 the zero harmonic Y
(0)
0 can be set to be equal to 1.

Consequently, the following representation of f(n) can be obtained:

f(n) = α0 · 1 +
∞∑
l=1

(2l − 1)!!αμ1...μl
nμ1 · · ·nμl

, (A.1.25)

where α0 and αμ1...μl
are expansion coefficients which read as,

see also Eqs. (A.1.19), (A.1.22):

α0 =
1

4π

∮
S2

f(n) · 1 · d2n , (A.1.26)

αμ1...μl
=

1

4π

(2l + 1)

l!

∮
S2

f(n) · nμ1 . . . nμl
d2n , (A.1.27)

where n ∈ (θ, φ), θ ∈ [0◦, 180◦];φ ∈ [0◦, 360◦] are the parameters of a current

point on a sphere. Thereby, Eq. (A.1.25) is the decomposition of a function
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f(n) by an orthonormal system formed by the symmetric irreducible ten-

sors nμ1 · · ·nμl
, and the expansion coefficients α0, αμ1...μl

in complete basis

of nμ1 · · ·nμl
, according to Eq. (A.1.16), can be used to uniquely reconstruct

the original function f(n).
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A.2 Density distribution of the inclination angle θ

The results of the bootstrap Kolmogorov-Smirnov tests applied on the density

distributions of the inclination angle θ received employing the photos of slice

surfaces are presented in Tables A.2.1, A.2.2, A.2.3, A.2.4, A.2.5.

Table A.2.1. Results of the two-sample bootstrap Kolmogorov-Smirnov test (function

ks.boot from [2]) applied on the density distribution of the inclination angle

θ in the slab 2. Reduced cuboid refer to the cuboid, where only every fourth

slice surface is taken into account.

Cuboid 2.1 (side of a slab) Cuboid 2.2 (centre of a slab)

Inclination angle θ

whole cuboid reduced cuboid whole cuboid reduced cuboid

Distribution D p-value D p-value D p-value D p-value

Gaussian 0.104 e-16 0.100 e-16 0.077 e-16 0.066 4.5e-07

Gamma 0.041 e-11 0.051 5.0e-06 0.058 e-16 0.055 5.7e-05

Gumbel 0.038 e-09 0.043 0.0002 0.041 e-09 0.042 0.0041

Weibull 0.088 e-16 0.081 e-14 0.067 e-16 0.060 6.6e-06

Log-normal 0.038 e-09 0.036 0.0031 0.058 e-16 0.055 5.5e-05

Table A.2.2. Results of the two-sample bootstrap Kolmogorov-Smirnov test (function

ks.boot from [2]) applied on the density distribution of the inclination angle

θ in the slab 3. Reduced cuboid refer to the cuboid, where only every fourth

slice surface is taken into account.

Cuboid 3.1 (side of a slab) Cuboid 3.2 (centre of a slab)

Inclination angle θ

whole cuboid reduced cuboid whole cuboid reduced cuboid

Distribution D p-value D p-value D p-value D p-value

Gaussian 0.099 e-16 0.108 e-16 0.067 e-16 0.072 e-08

Gamma 0.040 e-09 0.048 6.4e-05 0.057 e-16 0.049 0.0003

Gumbel 0.038 e-08 0.045 0.0002 0.042 e-09 0.042 0.0030

Weibull 0.087 e-16 0.079 e-12 0.061 e-16 0.069 e-08

Log-normal 0.035 2.6e-07 0.039 0.0025 0.053 e-14 0.056 2.4e-05

Table A.2.3. Results of the two-sample bootstrap Kolmogorov-Smirnov test (function

ks.boot from [2]) applied on the density distribution of the inclination angle

θ in the slab 4. Reduced cuboid refer to the cuboid, where only every fourth

slice surface is taken into account.

Cuboid 4.1 (side of a slab) Cuboid 4.2 (centre of a slab)

Inclination angle θ

whole cuboid reduced cuboid whole cuboid reduced cuboid

Distribution D p-value D p-value D p-value D p-value

Gaussian 0.085 e-16 0.087 e-13 0.068 e-16 0.082 e-10

Gamma 0.035 1.0e-06 0.032 0.0381 0.054 e-14 0.058 4.1e-05

Gumbel 0.031 2.4e-05 0.025 0.1713 0.044 e-09 0.045 0.003

Weibull 0.075 e-16 0.070 e-08 0.061 e-16 0.071 2.3e-07

Log-normal 0.025 0.001 0.031 0.05177 0.057 e-15 0.06 1.8e-05

77



Appendicies

Table A.2.4. Results of the two-sample bootstrap Kolmogorov-Smirnov test (function

ks.boot from [2]) applied on the density distribution of the inclination angle

θ in the slab 5. Reduced cuboid refer to the cuboid, where only every fourth

slice surface is taken into account.

Cuboid 5.1(side of a slab) Cuboid 5.2(centre of a slab)

Inclination angle θ

whole cuboid reduced cuboid whole cuboid reduced cuboid

Distribution D p-value D p-value D p-value D p-value

Gaussian 0.110 e-16 0.117 e-16 0.078 e-16 0.094 e-15

Gamma 0.052 e-15 0.058 e-06 0.046 e-11 0.044 0.0009

Gumbel 0.047 e-12 0.056 2.9e-06 0.031 1.6e-05 0.036 0.0103

Weibull 0.093 e-16 0.099 e-16 0.060 e-16 0.068 e-08

Log-normal 0.040 e-09 0.046 0.0002 0.046 e-11 0.048 0.0002

Table A.2.5. Results of the two-sample bootstrap Kolmogorov-Smirnov test (function

ks.boot from [2]) applied on the density distribution of the inclination angle

θ in the slab 6. Reduced cuboid refer to the cuboid, where only every fourth

slice surface is taken into account.

Cuboid 6.1(side of a slab) Cuboid 6.2(centre of a slab)

Inclination angle θ

whole cuboid reduced cuboid whole cuboid reduced cuboid

Distribution D p-value D p-value D p-value D p-value

Gaussian 0.096 e-16 0.095 e-15 0.082 e-16 0.081 4.3e-07

Gamma 0.037 2.8e-07 0.037 0.013 0.065 e-15 0.073 8.9e-06

Gumbel 0.036 4.7e-07 0.035 0.019 0.053 e-10 0.062 0.0003

Weibull 0.075 e-16 0.075 e-09 0.072 e-16 0.068 4.9e-05

Log-normal 0.031 2.7e-05 0.043 0.002 0.065 e-15 0.074 7.0e-06

A.3 Variations of fibre orientation distributions along the X- and

Y -axes of the slabs

Figs. A.3.1, A.3.2 present the variations of fibre orientation distributions along

the height of the whole (i.e. top, middle and bottom parts) cylinder samples

1B, 4A and 4B. The statistical data presented allow to observe the orientation

of fibres in the compression (top) and tension (bottom) zones of the tested

slabs.

Figs. A.3.3, A.3.4 demonstrate the variations of fibre orientation distributions

in the side and centre cylinders.
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(b) Cylinder 4A.
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(c) Cylinder 4B.
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(d) Cylinder 1B.
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(f) Cylinder 4B.
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(g) Cylinder 1B.
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(h) Cylinder 4A.
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(i) Cylinder 4B.

Figure A.3.1. Variations in bivariate densities of the inclination angle θ and in-plane an-

gle φmeasured by μCT between the side (”Cylinder *.A”) and centre (”Cylin-

der *.B”), and along the height of the whole cylinder samples.
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(b) Top part. Cylinder 4A.
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(c) Cylinder 4B.
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(d) Middle part. Cylinder 4A.
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(e) Cylinder 4B.
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(f) Bottom part. Cylinder 4A.
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(g) Cylinder 4B.

Figure A.3.2. Scatter plots of fibre orientation variations measured by μCT between the

side (”Cylinder *.A”) and centre (”Cylinder *.B”), and along the height of the

whole cylinder samples. In (a) the radius represents the inclination angle θ

and in-plane angle φ is on circumference. Z-axis corresponds to the direction

of the tensile stress in a slab, Fig. 2.4.
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(a) Cylinder 2A.

in−plane angle, deg.

in
cl

in
at

io
n 

an
gl

e,
 d

eg

 1e−05 

 2e−05 

 2e−05 

 2e−
05 

 3e−05 

 3e−05 

 3e−05 

 4e−05 

 4e−05 
 5e−05 

 5e−05 

 6e−05 

 7e−05 

 8e−05 

 9e−05 

0 100 200 300

20
40

60
80

(b) Cylinder 2B.
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(c) Cylinder 3A.
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(d) Cylinder 3B.
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(e) Cylinder 5A.
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(f) Cylinder 5B.
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(g) Cylinder 6A.
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(h) Cylinder 6B.

Figure A.3.3. Variations in bivariate densities of the inclination angle θ and in-plane an-

gle φmeasured by μCT between the side (”Cylinder *.A”) and centre (”Cylin-

der *.B”) cylinder samples.
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(a) Orientation.
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(b) Cylinder 2A.
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(c) Cylinder 2B.
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(d) Cylinder 3A.
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(e) Cylinder 3B.
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(f) Cylinder 5A.
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(g) Cylinder 5B.
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(h) Cylinder 6A.
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(i) Cylinder 6B.

Figure A.3.4. Scatter plots of fibre orientation variations measured by μCT between the

side (Cylinder *.A) and centre (”Cylinder *.B”) cylinder samples. In (a)

the radius represents the inclination angle θ and in-plane angle φ is on

circumference. Z-axis corresponds to the direction of the tensile stress in a

slab, Fig. 2.4.
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A.4 Measured fibre alignments characterized by the eigenvectors

of the 2nd order alignment tensor in the tested slabs

Tables A.4.1, A.4.2 and A.4.3 present fibre orientation distribution character-

istics for the top, middle and bottom parts of the cylinder samples scanned

by μCT, respectively. The orientation characteristics include the scalar-order

parameter S and triplet of the eigenvectors d1,d2,d3 from the 2nd order align-

ment tensor in the spherical coordinate system. S = 1 corresponds to the

transversely isotropic material symmetry, S = 0 to isotropy and S = −1
2 de-

scribes the plane isotropic case. The biaxiality bS shows the non-symmetry of

the distribution with respect to d1. Figs. A.4.1, A.4.2, A.4.3 demonstrate the

location of the eigenvectors d1,d2,d3 in all measured cylinder samples. The

location of the top, middle and bottom parts is given in Fig. 2.17(a).

Table A.4.1. Fibre orientation distribution characteristics for the top parts of the cylinder

samples.

Cylinder nr. S bS d1(θ, φ), deg d2(θ, φ), deg d3(θ, φ), deg

1A 0.49 0.13 53, 222 81, 126 38, 24

1B 0.33 0.009 82, 2 17, 119 75, 269

4A -0.43 -0.11 87, 122 53, 215 37, 28

4B 0.35 0.11 78, 160 63, 64 30, 272

Table A.4.2. Fibre orientation distribution characteristics for the middle parts of the cylin-

der samples.

Cylinder nr. S bS d1(θ, φ), deg d2(θ, φ), deg d3(θ, φ), deg

1A 0.52 0.11 28, 227 89, 136 62, 45

1B 0.53 0.09 74, 3 85, 271 17, 163

3A 0.52 0.12 76, 237 85, 145 15, 36

3B 0.59 0.05 79, 190 47, 89 45, 291

4A -0.44 -0.13 81, 322 51, 224 41, 63

4B 0.62 0.09 89, 169 66, 78 24, 262

5A -0.44 -0.05 80, 329 77, 61 17, 204

5B -0.39 -0.06 73, 87 87, 356 18, 256

6A 0.65 0.03 68, 223 64, 324 36, 98

6B 0.63 0.08 81, 356 83, 265 12, 139

Table A.4.3. Fibre orientation distribution characteristics for the bottom parts of the cylin-

ders.

Cylinder nr. S bS d1(θ, φ),deg d2(θ, φ),deg d3(θ, φ),deg

1A 0.70 0.07 14, 52 90, 321 76, 231

1B 0.65 0.09 87, 185 87, 275 4, 57

4A 0.59 0.09 45, 203 73, 311 50, 56

4B 0.72 0.05 86, 175 80, 84 11, 287
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(a) Orientation.
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(b) Top part. Cylinder 1A.
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(c) Cylinder 1B.
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(d) Middle part. Cylinder 1A.

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

● ●

●
●

●

●

●

● ●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

●

●
●

●● 0

20

40

60

80100

120

140

160

180

200

220

240

260 280

300

320

340

0 20 40 60 80 100

(e) Cylinder 1B.
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(f) Bottom part. Cylinder 1A.
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(g) Cylinder 1B.

Figure A.4.1. Fibre orientation distributions with the triplets of the eigenvectors d1,d2,d3

for the height of the whole cylinder samples 1A and 1B. d1-solid red line,

d2-dashed green line, d3-dot-dashed blue line. d1 is the director correspond-

ing to according-to-amount-largest eigenvalue. In (a) the radius represents

the inclination angle θ and in-plane angle φ is on circumference. Z-axis

corresponds to the direction of the tensile stress in a slab, Fig. 2.4.
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(a) Orientation.
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(b) Top part. Cylinder 4A.
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(c) Cylinder 4B.
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(d) Middle part. Cylinder 4A.
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(e) Cylinder 4B.
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(f) Bottom part. Cylinder 4A.
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(g) Cylinder 4B.

Figure A.4.2. Fibre orientation distributions with the triplets of the eigenvectors d1,d2,d3

for the height of the whole cylinder samples 4A and 4B. d1-solid red line,

d2-dashed green line, d3-dot-dashed blue line. d1 is the director correspond-

ing to according-to-amount-largest eigenvalue. In (a) the radius represents

the inclination angle θ and in-plane angle φ is on circumference. Z-axis

corresponds to the direction of the tensile stress in a slab, Fig. 2.4.
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(a) Orientation.
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(b) Cylinder 3A.
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(c) Cylinder 5A.
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(d) Cylinder 6A.
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(e) Cylinder 3B.
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(f) Cylinder 5B.
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(g) Cylinder 6B.

Figure A.4.3. Fibre orientation distributions with the triplets of the eigenvectors d1,d2,d3

for the middle parts of the cylinder samples. d1-solid red line, d2-dashed

green line, d3-dot-dashed blue line. d1 is the director corresponding to

according-to-amount-largest eigenvalue. In (a) the radius represents the

inclination angle θ and in-plane angle φ is on circumference. Z-axis corre-

sponds to the direction of the tensile stress in a slab, Fig. 2.4.

A.5 Measured fibre orientation distribution functions in the

tested slabs

Figs. A.5.1, A.5.2, A.5.3–A.5.5 present the approximated with the 2nd or-

der alignment tensor ODFs of fibres in the top, bottom and middle parts,

respectively. The density values of the approximated ODFs are normalized

according to the explanation given in Section 4.5. The orientation-weighted

orthotropic elasticity of fibres in material meso-symmetry axes are calculated

in the cylinder samples 3A, 3B, 5A, 5B, 6A, 6B and presented in Eqs. (A.5.1-

A.5.3) employing the Kelvin-Mandel variant of the Voigt notation.
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(f) Cylinder 4A.
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(h) Cylinder 4B.

Figure A.5.1. The top parts of the cylinder samples. The isolines of the measured fibre

orientation distributions and the ODFs of fibres approximated using the 2nd

order alignment tensor.
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(f) Cylinder 4A.
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(h) Cylinder 4B.

Figure A.5.2. The bottom parts of the cylinder samples. The isolines of the measured fibre

orientation distributions and the ODFs of fibres approximated using the 2nd

order alignment tensor.
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(d) Cylinder 1B.
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(f) Cylinder 3A.
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(h) Cylinder 3B.

Figure A.5.3. The middle parts of the cylinder samples 1A–3B. The isolines of the mea-

sured fibre orientation distributions and the ODFs of fibres approximated

using the 2nd order alignment tensor.
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(d) Cylinder 4B.
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(e) Cylinder 5A.
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(f) Cylinder 5A.
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(g) Cylinder 5B.
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(h) Cylinder 5B.

Figure A.5.4. The middle parts of the cylinder samples 4A–5B. The isolines of the mea-

sured fibre orientation distributions and the ODFs of fibres approximated

using the 2nd order alignment tensor.
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(a) Cylinder 6A.
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(b) Cylinder 6A.
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(c) Cylinder 6B.
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(d) Cylinder 6B.

Figure A.5.5. The middle parts of the cylinder samples 6A–6B. The isolines of the mea-

sured fibre orientation distributions and the ODFs of fibres approximated

using the 2nd order alignment tensor.

For the middle parts of the cylinder samples 3A and 3B the orientation-
weighted orthotropic meso-elasticity of fibres in material meso-symmetry axes
are:

C
(fms)
αβ = Y (f)· C

(fms)
αβ = Y (f) ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.5.1)

For the middle parts of the cylinder samples 5A and 5B they are, respectively:

C
(fms)
αβ = Y (f)· C

(fms)
αβ = Y (f) ·
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(A.5.2)
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and for the middle parts of the cylinder samples 6A and 6B they are:

C
(fms)
αβ = Y (f)· C
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αβ = Y (f) ·
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