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Abstract
Active noise control (ANC) is a technology reducing noise by incorporating secondary
sources, producing so called anti-noise. This anti-noise has the same amplitude but
inverted phase at all frequencies compared to the primary noise under subject of
attenuation, resulting in the two sound fields canceling each other out by the principle
of superposition.

The aim of this thesis is to evaluate the feasibility of using a mobile simple
single-channel ANC system to reduce broadband noise in a 3D-space. To achieve
this, different known ANC algorithms are simulated, and based on the simulations, a
physical prototype device is developed and tested. Based on literature review, the
only viable solution to the problem is to develop a local feedback ANC system. Local
ANC systems minimize sound pressure at a single point in space instead of the entire
room, and feedback ANC systems conduct the attenuation without prior knowledge
of the incoming noise. Thus, feedback ANC is a prediction problem at its core.

Three algorithms are simulated: leaky filtered-x least mean squares algorithm
(LFxLMS), functional link artificial neural network based LFxLMS (FLANN), and
wavelet packet transform based LFxLMS (Wavelet). Out of these three, LFxLMS and
Wavelet were then tested with the prototype system. Both algorithms achieved over
6 dB reduction on low-frequency fan noise, around 1–3 dB reduction on orchestral
music, around 1 dB reduction on traffic noise, but virtually no reduction on speech,
depending on measurement location.

The results show that such a feedback local ANC system is able to attenuate
noise with strong tonal components but cannot attenuate sound that varies quickly
in time. Additionally, it was confirmed that secondary path latency forms the biggest
limitation of a feedback ANC system and must be minimized for the system to work
well.
Keywords active noise control, acoustic signal processing, digital signal processing,
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Tiivistelmä
Aktiivinen melunhallinta (active noise control, ANC) on tekniikka, jolla voidaan
vähentää melua tuottamalla toisiokaiuttimella niin kutsuttua vastamelua. Tällä vasta-
melulla on sama amplitudi mutta käänteinen vaihe vaimennettavaan primäärimeluun
nähden, jolloin nämä kaksi äänikenttää kumoavat toisensa superpositioperiaatteen
mukaisesti.

Tämän diplomityön tavoitteena on arvioida yksinkertaisen yksikanavaisen ak-
tiiviseen melunhallintaan perustuvan laitteen käyttökelpoisuutta laajakaistaisen
melun vaimentamiseksi 3D-tilassa. Tavoitteen saavuttamiseksi työssä simuloidaan
tunnettuja aktiivisen melunhallinnan algoritmeja, ja simulointien pohjalta kehite-
tään prototyyppilaite. Kirjallisuuskatsauksen perusteella ainoa käytettävissä oleva
ratkaisu ongelmaan on kehittää paikallinen takaisinkytketty ANC-järjestelmä. Pai-
kalliset ANC-järjestelmät minimoivat äänenpainetta yhdessä pisteessä koko huoneen
sijaan, ja takaisinkytketyt ANC-järjestelmät tuottavat vastamelua ilman ennakko-
tietoa tulevasta primäärimelusta. Takaisinkytketty ANC on siten pohjimmiltaan
ennustamisongelma.

Työssä simuloidaan kolmea algoritmia: vuotava referenssisuodatettu pienimmän
neliösumman algoritmi (leaky filtered-x least mean squares, LFxLMS), funktio-
naaliseen linkkineuroverkkoon perustuva LFxLMS (functional link neural network,
FLANN) ja lyhyen aaltomuodon muunnokseen perustuva LFxLMS (wavelet packet
transform, Wavelet). Näistä kolmesta LFxLMS ja Wavelet testattiin myös prototyyp-
pijärjestelmällä. Molemmat algoritmit saavuttivat yli 6 dB vaimennuksen matalataa-
juuksiseen tuuletinmeluun, noin 1–3 dB vaimennuksen orkesterimusiikkiin, ja noin 1
dB vaimennuksen liikennemeluun, mittauspaikasta riippuen. Puheeseen kumpikaan
algoritmi ei juuri saavuttanut vaimennusta.

Tulokset osoittavat, että tämänkaltainen takaisinkytketty, paikallinen ANC-
järjestelmä pystyy vaimentamaan melua, jolla on vahvat, tasaiset tonaaliset kom-
ponentit, mutta ei kykene vaimentamaan nopeasti ajassa muuttuvaa ääntä. Lisäksi
tulokset vahvistavat, että toisiotien viive on suurin yksittäinen rajoittava tekijä
takaisinkytketyissä ANC-järjestelmissä.
Avainsanat aktiivinen melunhallinta, akustinen signaalinkäsittely, digitaalinen

signaalinkäsittely, takaisinkytketty säätö, adaptiivinen signaalinkäsittely
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Symbols and abbreviations

Signal conventions

d(n) primary noise signal

d̂(n) synthesized primary noise signal

D(z) z-transform of primary noise signal

e(n) error signal

e2(n) control microphone signal

E(z) z-transform of error signal

u(n) adaptive filter output

U(z) z-transform of adaptive filter output

x(n) reference signal

x̂(n) secondary path filtered reference signal

X(z) z-transform of reference signal

y(n) anti-noise signal

ŷ(n) estimated anti-noise signal

Y (z) z-transform of anti-noise signal

Ŷ (z) z-transform of estimated anti-noise signal
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Symbols

A high-pass filter

c speed of sound

D low-pass filter

E[.] expected value operator

f frequency

fs sampling frequency, sample rate

H system response

J cost function

K controller order

L filter length

Leq equivalent sound pressure level

LP low-pass filter

n discrete time index

p acoustic pressure

P primary path filter

S secondary path filter

Serr temporal error on secondary path estimation

Ŝ estimated secondary path filter
T transpose operator

t time

w adaptive filter weights

W adaptive filter

z z-transform variable
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α normalized step size

β small constant

γ leaky factor

∆S secondary path latency

λ wavelength; eigenvalue

µ learning rate, step size

ξ mean square error

ξ̂ estimated mean square error

σx power of signal x

ϕ angle; decomposed signal

Abbreviations

2D two-dimensional

3D three-dimensional

ANC active noise control

FIR finite impulse response

FLANN functional link artificial neural network

FxLMS filtered-x least mean squares

IIR infinite impulse response

IMC internal model control

LFxLMS leaky filtered-x least mean squares

LMS least mean squares

NFxLMS normalized filtered-x least mean squares

NLMS normalized least mean squares

SNR signal-to-noise ratio

SPL sound pressure level
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1 Introduction
Whereas producing sound to any point in a room is an extremely simple procedure
using loudspeakers and digital signal processors, producing silence is a much more
difficult task – one cannot simply open a bottle full of silence. Such a device would
be convenient, though, as excessive noise, that is, unwanted or disturbing sound,
negatively affects listeners. Even relatively small noise levels can lead to annoyance
and disturbance of sleep, decreased productivity, and decreased overall living comfort
[1]–[4]. Moreover, in its most severe form, excessive noise exposure can affect overall
health of the population in the form of leading to hearing impairments, decreasing
cognitive performances, or even leading to cardiovascular diseases [1]–[4]. Thus, there
exists a clear need to control noise.

Traditional passive noise control methods work by placing absorptive or reflective
matter between the noise source and listener, physically shielding the listener from
noise [5]. This is the case in constructing acoustic noise barriers beside highways,
placing absorbing matter inside walls, or wearing earplugs. Indeed, this kind of
noise control is effective at high frequencies; however, it has poor performance at
low frequencies where wavelengths are long, as the absorbing materials should be
impractically thick to attenuate those long wavelengths [5].

This weakness can be mitigated by using an active noise control (ANC) system,
often in conjunction with passive noise control methods. ANC systems incorporate a
secondary source, typically a loudspeaker, to create suitable anti-noise to counter
the unwanted primary noise. Ideally, this anti-noise and the unwanted primary noise
cancel each other out by the principle of superposition, which happens when the
two sound fields have the exact same amplitude but phase difference of 180 degrees.
ANC methods complement passive noise control methods well as they are most
effective at low frequencies at which passive noise control is ineffective [6]. Conversely,
performance of ANC systems tend to deteriorate on high frequencies at which passive
noise control is effective in turn.

Active noise control has already been researched and used in different applications
for decades. Some typical applications of ANC systems are to reduce road and engine
noise in high-end cars [7], to reduce propeller noise in passenger cabins in airplanes [6],
and to control fan noise in air ventilation ducts [8], [9]. Some more recent applications
include active windows [10] and active noise barriers [11]. Furthermore, a major
application is active noise control headphones, also called active noise canceling
headphones. Compared to passive hearing protection, such as typical earplugs, ANC
headphones perform better at lower frequencies. Furthermore, compared to listening
to music with normal headphones, ANC headphones are superior in suppressing
background noise, giving a more pleasant listening experience. As such, ANC
headphones are the subject of extensive research and rapid development [12]–[14].

Even though proven to work, ANC systems tend to be fixed in the single envi-
ronment for which they were designed and installed to, be it a car, an airplane, or
a ventilation duct. In contrast, ANC headphones can be used in any environment,
but using headphones is not always practical. Assuming easy usage and adequate
performance, there are little downsides in controlling noise without the user having
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to wear anything in their ears. Additionally, it has been proved that active noise
control in 3D-spaces, such as in office rooms, is indeed possible in theory [15], [16],
albeit with limitations.

However, when the system is not fixed to a single space, the existing solutions
incorporate large microphone and loudspeaker arrays, rendering them impractical
for consumer use. Even if a system with 12 carefully placed loudspeakers would offer
similar performance as ANC headphones, few would choose the said system over
headphones. Preliminary research did not find attempts to create viable alternatives to
ANC headphones, and as such, no attempts have been made to move the headphones
from the ears to the table.

Therefore, the aim of this thesis is to evaluate the feasibility of using a mobile,
easy-to-use ANC system to reduce broadband noise at a single point in a 3D-space.
The core idea behind the system is to produce the aforementioned “silence in a
bottle”, and using the device would ideally be as simple as placing it on a table and
switching it on, leading to perceived silence by the user. To achieve this goal, the
thesis will simulate several different known active noise control algorithms. A physical
prototype system will be developed based on the simulation results, after which the
performance of the system is evaluated. Although ANC systems can in principle
have as many sensors and secondary sources as the computational capacity allows,
this thesis is limited to use only single-channel ANC, that is, only one secondary
source, reference sensor, and error sensor.

The rest of this thesis is organized as follows. Chapter 2 reviews the relevant
acoustical background of ANC and introduces different basic ANC system archi-
tectures. Chapter 3 introduces the concept of adaptive filtering and presents some
known adaptive algorithms and techniques used in active noise control. Chapter 4
derives and justifies the structure and design choices of the resulting ANC system.
Chapters 5 and 6 introduce the simulation and prototype systems as well as present
results acquired from said systems, respectively, and discuss the results and the
feasibility of using such a system. Finally, Chapter 7 concludes this thesis.
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2 Principles of active noise control
The core technologies of active noise control have already been researched for decades.
The first mention of such an idea appeared already in 1930s, when Paul Lueg
patented his idea of silencing sound by destructive interference [17]; unfortunately,
this relatively simple idea was difficult to implement with the electronics available
back then [18]. Olson and May introduced their idea of electronic sound absorber
in 1953 [19], which was essentially an analog local feedback ANC system creating a
zone of quiet around an error microphone. However, the modern active noise control
research can be seen originating from 1970s, when the first adaptive ANC algorithm
[20], filtered-x least mean squares algorithm [21] and first digital signal processors
[18] were invented. Even though the research of ANC has taken significant steps in
the last fifty years [18], the principle of cancelling out a primary noise signal using a
secondary source has remained the same from Lueg’s original idea.

This chapter will discuss the basic terminology and fundamentals of active noise
control. First, terms and conventions used in this thesis are explained, after which the
fundamental acoustics regarding active noise control is presented. Rest of this chapter
introduces and explains different ANC system architectures. To these architectures
include the division between feed-forward and feedback ANC control systems, and
the different effective areas of ANC, called global, local, and spatial ANC.

2.1 Terms and conventions
Terms

In this thesis, the term noise is used to refer to any unwanted sound that is subjected
to attenuation using an ANC system. As such, noise can mean any kind of audible
sound, such as a sinusoidal tone, white or pink noise, environmental noise, speech, or
music.

Noise can broadly be divided into two categories, narrowband and broadband
noise. Narrowband noise has relatively sharp peaks in its spectrum, while the
spectrum of broadband noise is wider [22]. A pure sinusoidal tone is an extreme
example of narrowband noise, while white noise is an extreme example of broadband
noise.

The unwanted noise is also called primary noise, which is radiated from a primary
source. In practice, there can exist multiple primary sources, in which case primary
noise commonly notes the superposition, or sum, of the combined noise radiated
from all these primary sources at a single point in space.

Active noise control works by producing suitable anti-noise, also called secondary
noise, to cancel out the primary noise. This anti-noise is emitted by a secondary
source or anti-noise source, which is typically a loudspeaker. ANC systems are
commonly adaptive, in which case there are one or more error sensors, typically
microphones, evaluating the performance of the control. To be precise, the secondary
source does not have to be a loudspeaker nor the error sensor a microphone, and
other kinds of actuators can also be used instead. However, for consistency and
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clarity, the secondary source is in this thesis assumed to be a loudspeaker, and error
sensor is assumed to be a microphone.

Signal conventions

Following common practice, signals and impulse responses in time domain are denoted
by lower-case letters, while the same signals and impulse responses in Z-domain are
written with capital letters. Thus, x(n) denotes a time-domain signal, w(n) denotes
an impulse response, and X(z) denotes the Z-transform of signal x. The index n is
the discrete time index.

A short-hand notation of the signals without explicitly writing the dependency
of n or z can also be used when unambiguous. Thus, x ≡ x(n) and S ≡ S(z).

Scalars and vectors

In this thesis, scalars are written with non-bolded and vectors with bolded letters.
Therefore, d(n) is a scalar value of signal d at time n, while d(n) is a vector of scalar
values. Superscript T denotes transpose operation: xT is transposition of vector x.

2.2 Fundamental acoustics
Sound is pressure waves travelling in a medium. If there are two sound fields p1 and
p2 having varying pressure fluctuations in spatial coordinates x, y and z in function
of time t, the resulting total sound pressure in this position is simply the sum, or
superposition of these two fields [23]:

ptot(x, y, z, t) = p1(x, y, z, t) + p2(x, y, z, t). (1)

This superposition principle assumes linearity of sound, which is not strictly true.
However, the effects of non-linearities are negligent and can safely be discarded, if
the amplitudes of the acoustic disturbances are small enough [23]. These non-linear
distortions typically become significant first when the sound pressure level is over 120
dB [23]. As the usual range of sound pressure levels present in average person’s daily
life is around 0 dB – 110 dB [24], the assumption of linearity is usually justified.

The superposition principle shown in equation 1 can be generalized to any number
of sound fields and is the main idea behind active noise control. Given a primary
noise signal d, the aim of active noise control is to produce an anti-noise signal y
such that it has exactly the same amplitude as d but an inverted phase, that is, a
phase shift of π radians or 180°. This would lead to a perfect destructive interference,
canceling out both signals. In contrast, phase of the secondary signal aligning with
that of primary signal leads to additive interference, in which case the primary signal
is amplified by the secondary signal. Figure 1 shows examples of both additive and
destructive interferences.

The goal of active noise control is to produce a secondary signal which has the
same amplitude but opposing phase on every frequency compared to primary signal,
at the measurement location, canceling out both signals. This can be quite difficult
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(a) Additive interference (b) Destructive interference

Figure 1: Examples of additive and destructive interference.

in practice, though. Given a primary noise signal d, the anti-noise signal y must very
closely match the desired amplitude and phase – even small deteriorations in either of
those quickly reduce the achieved attenuation. As a rule of thumb, when considering
sinusoidal signals, maximum of about ∆ϕ = 20° phase error can be tolerated to
achieve sound attenuation of 10 dB, if the magnitude of the primary noise is matched
perfectly [23]. The breakout point between destructive and additive interference is
at ∆ϕ = 60° phase error – if the error is higher than this, the anti-noise amplifies
the primary sound instead of attenuating it. Figure 2 demonstrates how different
magnitudes of error between desired and realized phase and amplitude affect the
achieved noise attenuation.

Another important aspect to note is that active noise control is more difficult
at higher than it is at lower frequencies. As the wavelength is shorter at higher
frequencies – recall that wavelength is calculated as λ = c/f , where c is the speed
of sound and f is frequency – a phase shift of ∆ϕ degrees corresponds to a smaller
dislocation in time ∆t than at the lower frequencies. This means that the same
temporal error in the anti-noise signal leads to larger error in phase with higher
than with lower frequencies. Figure 3 shows the relation between temporal error in
milliseconds and phase error in degrees at different frequencies, and in conjunction
with Figure 2 shows how much the temporal error in anti-noise deteriorates the
performance of ANC at different frequencies.
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Figure 2: Effect of phase and magnitude errors to the resulting noise attenuation
when considering pure sinusoidal signals. Both variables are presented relative to
the ideal anti-noise signal. In addition, curves corresponding to 0 dB and 10 dB
attenuations are presented. (Based on [25].)

Figure 3: Relation between temporal (time) difference to the corresponding phase
difference of two sinusoidal signals, on different frequencies.
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2.3 Feed-forward ANC
The first major division between different control schemes is between feed-forward
and feedback ANC. Feed-forward control incorporates one or more reference sensors,
typically microphones, which are located close to the noise source. This way the
controller gets to know the incoming primary noise ahead of time and has enough
time to calculate and produce the needed anti-noise signal before primary noise
reaches the measurement location. This signal is known as reference signal and is
denoted by x. In addition to the reference sensor, the system includes a secondary
source responsible of producing the anti-noise signal, an error sensor measuring the
residual signal in the measurement location, and a controller controlling the different
devices and producing the anti-noise signal. An example of a feed-forward ANC
system in an air duct is shown in Figure 4.

Figure 4: An example of a feed-forward ANC system in a ventilation duct.

The idea behind digital feed-forward control goes as follows. First, a reference
sensor is placed close to the primary noise source to get a reference signal x(n). This
signal then travels through a primary path P (z), representing the acoustic path
from the reference sensor to the error sensor. The reference signal x filtered with
the primary path P is called primary noise, and is denoted by d(n). To produce
the anti-noise, the reference signal x is modified by the controller H(z), resulting in
filtered signal u(n). The signal u then goes through a secondary path S(z) resulting
in the anti-noise signal y(n). The secondary path S represents all stages between
the controller output and error microphone output: time delay needed to process
the signal, digital-to-analog conversion, loudspeaker response, acoustic path from
secondary source to error microphone, error microphone response, and analog-to-
digital conversion [5]. Finally, the error signal, often also called residual signal, e(n)
is the acoustic pressure captured by error microphone, which is equivalent to the
superposition of the primary noise and anti-noise signals: e(n) = d(n) + y(n). Based
on the resulting error signal, the controller modifies its response H(z) suitably with
some adaptive algorithm to minimize the error signal. A block diagram of the system
shown in Figure 4 can be seen in Figure 5.
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Figure 5: Block diagram of the feed-forward ANC system shown in Figure 4.

Assuming a linear time-invariant system, the relations between different signals
can be derived with the help of Figure 5. The primary noise is equal to the reference
signal filtered with the primary path impulse response:

D(z) = P (z)X(z). (2)

Anti-noise signal y(n), on the other hand, is equal to the reference signal x(n) filtered
by both the controller response H and secondary path response S:

Y (z) = H(z)S(z)X(z) (3)

The residual signal e(n) is the superposition of these two signals. In the desired
outcome, this residual is zero; thus,

E(z) = D(z) + Y (z)
= P (z)X(z) + H(z)S(z)X(z)
= 0

−→ H(z) = −P (z)
S(z) .

(4)

In other words, when X ̸= 0, the controller H tries at the same time to model both
the primary path response P (z) and the inverse of secondary path response S(z).
Therefore, feed-forward ANC is essentially a system identifying problem: the system
has to identify responses of P and S to be able to accurately modify x into d [5]. It’s
not practical to use a controller H with a fixed response even if the responses of P
and S would somehow be exactly known, as those responses are subjected to change
over time. This can happen due to e.g. speed of sound slightly changing due to
changes in temperature, or aging of components leading to microphone or loudspeaker
responses slowly to shift. As seen earlier, even small differences in the desired and
realized phase and amplitude of the anti-noise can severely affect the attenuation
capabilities of the system, and thus, the controller typically uses adaptive filters
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in their design. An adaptive filter’s weights W are iteratively updated according
to some algorithm to minimize some error quantity, such as the expected acoustic
pressure measured with the error microphone. Many adaptive techniques have been
developed for the purposes of active noise control, and these are the focus of Chapter
3. For the remainder of this chapter, it is sufficient to simply assume that there
exists some algorithm which suitably modifies the response H to minimize the error
signal e.

If certain conditions are met, a feed-forward ANC system is able to cancel out
both broadband and narrowband noise. There are some potential issues, though,
which must be taken into account when implementing the system. If the time delay
of P is smaller than time delay of S, the performance of the system severely degrades.
Intuitively, this situation would mean that the primary noise would reach the error
sensor before anti-noise does, making the ideal controller response H non-causal
[5]. If the causality condition is met – the controller has enough time to produce
the anti-noise signal – the system is able to cancel out broadband noise; if it is
not, the system is able to only cancel out narrowband noise [5]. Another potential
issue of feed-forward systems is that the anti-noise signal y typically also propagates
upstream towards reference sensor, corrupting the clean reference signal [5], though
there are ways to mitigate this effect [26].

A fundamental requirement of a feed-forward ANC system is the availability of
a coherent reference signal, which is correlated with the primary noise signal and
which simultaneously satisfies the causality constraint of the system, or multiple such
reference signals in the case of multi-channel feed-forward ANC. If such a signal is
not available, the feed-forward system effectively reduces into a feedback system,
being only able to cancel out narrowband noise. This can be the case in 2D- or
3D-cases where a sound is coming from opposite direction of the reference sensor
relative to the error sensor, or in general if the sound field is diffuse. Therefore,
careful planning must be made when creating a feed-forward ANC system into 2D-
or 3D-spaces. Typically, these systems are multi-channel ANC systems with multiple
in- and outputs.

Even with these limitations, feed-forward systems are used in multiple applications,
as they tend to be more robust than feedback systems [26]. Compared to feedback
control introduced later, feed-forward control has improved sound attenuation and
stability. Aside from the air ducts presented earlier, feed-forward systems are under
active research and are used in e.g. active noise cancelling headphones [14] as well as
inside aircraft [18] and car cabins [27].

2.4 Feedback ANC
In contrast to feed-forward systems, feedback ANC systems do not incorporate a
reference sensor, and in their simplest form only include an error microphone, a
secondary source, and a controller generating the anti-noise. An example of such a
system in a ventilation duct is shown in Figure 6, and its block diagram is shown in
Figure 7. This system is simple in physical architecture, but not having the reference
signal available limits the system performance. The most obvious limitation is that
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the controller does not have any information about the primary noise other than the
resulting residual signal, which directly implicates that a feedback ANC system is
only able to control sound that it is able to predict based on the previous samples of
the primary noise.

Figure 6: An example of a feedback ANC system in a ventilation duct; cf. Figure 4.

Figure 7: Block diagram of the feedback ANC system shown in Figure 6.

Whereas the feed-forward controller could be described as a system identification
problem – find P and S such that reference signal x can be transformed into
y(n) = −d(n) – feedback controller can be described as a prediction problem: based
on last N samples of d, predict next samples of d. This is possible with periodic
signals and to some extent on other narrowband signals as well, but impossible with
random signals, such as with white noise. It is also intuitive that it is more difficult
to predict samples longer into future than it is only for a couple of samples ahead.
Thus, the time delay imposed by S, ∆S, plays a crucial role in the performance of
a feedback ANC system. In addition to the causality problem, special care has to
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be taken to ensure that the system will be stable, as with all feedback systems. For
example, errors in the controller phase response can change the desired negative
feedback into a positive one, resulting in oscillations [26].

In short, feedback ANC systems can control predictable sound or predictable
components of the sound, which in essence means narrowband noise. Conversely,
they are not able to control unpredictable sound, such as broadband noise or sudden,
unexpected changes in the signal. Still, feedback ANC is the only viable solution in
cases where there are no clean reference signals available, which can be the case for
example in a room, where the sound field is diffuse or it is otherwise impractical or
impossible to determine the direction where the sound is coming from. In addition,
feedback control is used in environments where the latency induced by the secondary
path is very short, such as in active noise cancelling headphones, either by itself or
in conjunction with feed-forward control [28]. If the secondary path latency is very
short, the performance of feedback system can even exceed that of a feed-forward
one [29].

2.5 Global ANC
Global ANC means the approach that the noise of an entire large space, such as a
room or a car, is attenuated with active noise control, in which case the quantity to
be minimized is typically the acoustic potential energy in the controlled area [30].
Active control in a 3D-space is as its most effective close to the noise source. In
particular, if the secondary source(s) can be placed close to the noise source, relative
to the acoustic wavelength, active control can in fact decrease the total power output
of the combined primary noise and secondary noise sources [22], [23]. This can be
practical, for example, in a situation where a loud machine is fixed to a certain place
in an industrial plant. However, it is impractical in situations where the primary
noise source cannot directly be accessed or if its location varies.

One issue of global ANC is that measuring the acoustic potential energy in
the room requires large arrays of microphones whose spacing is dependent on the
wavelength of the sound [30]; thus, the complexity of the system is dependent on both
the enclosure size and the maximum primary noise frequency. An intuitive approach
to attenuate total acoustic energy in an enclosure would be to somehow replicate the
inverse of the complete sound field inside the said enclosure, thus negating the total
acoustic pressure by superposition principle. By Huygens’ principle, assuming that
all primary sound sources lie outside the enclosure, the resulting sound field can be
exactly replicated with a suitable arrangement of secondary sources in the enclosure
boundary [31]. This theoretical result has severe practical limitations, however, as
the number of needed reference sensors and secondary sources becomes unreasonably
large even for quite low frequencies [30]. Also, this kind of system would not be able
to attenuate noise whose origin is inside the enclosure due to the controller becoming
non-causal.

Another way of achieving global ANC is by attenuating some individual room
modes with a secondary source instead of trying to replicate the whole sound field
[32]. This method can achieve reduction of the total acoustic potential energy in
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the room [23], but is only useful for frequencies whose modal density is low, i.e. the
sound field is not diffuse. In principle, the number of secondary sources needed to
perfectly cancel sound in an enclosure is the same as the number of acoustic modes
being excited [26]; and as the modal density increases with frequency, global noise
control is particularly difficult at high frequencies. The transition from low to high
modal density range is usually defined with the Schroeder frequency, calculated
with fSch = 3.91/T60, where T60 is the reverberation time of the room [33]. As the
reverberation time typically increases with the room size, the upper frequency limit
of global ANC with room mode suppression decreases as the room size increases.
Additionally, these systems must be carefully designed to the space in question [32],
and expensive and time-consuming calibration must be made after relocating the
system [30].

2.6 Local ANC
Whereas global ANC systems try to minimize sound in a whole room, local ANC
systems only focus on a single point, or multiple discrete points in space. Local
ANC systems create a zone of quiet around the error microphone. The radius of
this spherical area varies as a function of wavelength: the higher the frequency, the
smaller the area. As a rule of thumb, 10 dB attenuation of the primary noise is
achievable in a spherical area with diameter of about 1/10th of the wavelength [23].
For 100 Hz tonal noise this diameter is equivalent to about 30 cm, whereas for 1 kHz
tonal noise the diameter is reduced to about 3 cm.

Local ANC attenuates the sound level at the error microphone, but placing a
physical device to the desired place is not always practical or possible; for example,
zones of quiet should be located near the user’s ears, but holding microphones very
near one’s head is practically as restrictive as wearing proper hearing protection
[34]. Thus, different virtual sensing techniques have been developed, where the
sound pressure level of a remote position is estimated using one or multiple physical
microphones located nearby. The simplest technique is to measure the transfer
function from the physical microphone(s) to the virtual microphones located at
the ears beforehand, but this method is sensitive to head movement, as the virtual
microphones are not moved along the head. A better way is to use a multiple-
microphone setup, where the virtual microphones are placed by tracking the head
placement with some external method and the sound level at that remote position is
extrapolated from the difference of two physical microphones [34].

As a local ANC system does not know nor care about the sound pressure in points
other than at the microphone locations, it is inevitable that the sound pressure level
is actually increased at some points, as the total sound power radiated into the room
is increased due to the secondary source. The goal of designing local ANC systems
is thus to maximize the size of the zone of quiet while simultaneously minimizing
the increased sound pressure level outside the zone of quiet.

While in principle global control is often more desirable – attenuate the whole
room instead of just a single point in it – local ANC has been researched more
extensively and has gained more popularity due to it being simpler to achieve. In
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addition, local active noise control systems can achieve larger attenuation, albeit
only in close proximity of the error sensor.

2.7 Spatial ANC
Spatial ANC can be seen as the intermediate step between global and local ANC.
If multiple microphones are arranged into a circular or spherical array, local ANC
can achieve major attenuation in the microphone locations, but the attenuation is
guaranteed only at those discrete points. The sound pressure is not guaranteed to
reduce between two microphones or at an arbitrary point inside the array, and at
some points the acoustic pressure will be even higher than what it would be without
using the ANC system.

The goal of spatial ANC systems is to control the whole sound field over some
spatial area, with the quantity to be minimized being, for example, total acoustic
potential energy inside a loudspeaker array. A fundamental problem is that the
acoustic pressure at other points than those at which the microphones are located
cannot be directly measured. Spatial ANC systems overcome this issue by representing
the whole sound field inside the array based on the finite number of measured
signals. For example, Zhang’s doctoral dissertation [35] researched wave-domain
signal processing, which essentially means decomposing the controlled sound field
into spherical harmonics and controlling the weights of these basis sound fields. As
wave-domain signal processing controls the whole propagating sound field rather
than a set of discrete points, it is more effective on controlling noise over large area
[35].

Despite their apparent potential, such spatial ANC systems have not yet been
realized as commercial products. One reason is their complexity: to achieve spatial
noise reduction, large arrays of microphones and loudspeakers have to be used.
For example, the research in [15] used a circular array of 11 microphones and
loudspeakers in 2D-simulations. They also tried the same simulations with 9, 7
or 5 loudspeakers, but the results were significantly poorer [15]. On the other
hand, [16] used a "2.5D" approach in a 3D-space with a single circular loudspeaker
array of 11 loudspeakers, which, while having significantly less components than a
complete spherical loudspeaker array would have, still has quite many components
for a commercial use, if the system is often required to be relocated to another place.

Figure 8 summarizes the difference between global, local and spatial ANC systems’
effective areas.
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(a) Global ANC (b) Spatial ANC (c) Local ANC

Figure 8: Three different design principles for ANC systems’ effective area: global,
spatial, and local control.
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3 Adaptive algorithms in active noise control
The different ANC system structures introduced in previous chapter included the
controller H(z) as a black box – it was simply assumed that there exists an algorithm
which suitably modifies the reference or error signal to accurately produce the needed
anti-noise. In practice, these algorithms usually incorporate one or multiple finite
impulse response (FIR) filters whose weights are updated according to some rule,
though this is not the only way to conduct ANC.

The main problem of the adaptive filtering can be formulated by iteratively
finding the optimal filter weights w(n) for the adaptive filter W (z) which mimimize
some cost function or an error quantity. There are multiple approaches to this, but
the most commonly used algorithms are based on the least mean squares (LMS)
algorithm due to its simplicity and effectiveness. As such, this thesis focuses on these
algorithms.

Rest of this chapter introduces different adaptive filtering structures and other
issues that must be taken into account in active noise control. First, the LMS
algorithm is explained, after which some well-known improvements and modifications
to the basic LMS algorithm are introduced. These algorithms form the backbone
of ANC systems. Finally, one non-linear and one discrete wavelet transform based
algorithms are introduced.

3.1 Least mean squares (LMS)
In its core, least mean squares algorithm (LMS, also known as stochastic gradient
algorithm [26]) has been available for over half a century [20], [21]. It is quite a simple
gradient descent algorithm based on minimizing the error signal’s mean squared
error, and forms the basis of many other adaptive algorithms. Figure 9 shows block
diagram of LMS applied to an ANC system.

Figure 9: Block diagram of the LMS algorithm.

Denote the expected mean square error of e by ξ:

ξ(n) := E[e2(n)], (5)
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where e is the error signal and E is the expected value operator [26]. This value ξ(n)
acts as the cost function J of the algorithm,

JLMS(n) := ξ(n). (6)

This means that the algorithm aims to minimize the expected value of squared
error signal. This is done by iteratively updating adaptive filter coefficients w(n) =
[w0(n), w1(n) . . . wL−1(n)]T , where L is the filter length and T denotes transpose
operation, into negative direction of the gradient of ξ w.r.t. filter weights w. By
doing this, the weights travel step by step towards the global minimum of this
gradient [26]; thus,

w(n + 1) = w(n) − µ∇ξ(n), (7)

where µ is a constant step size or learning factor of the algorithm. However, ξ(n)
cannot be directly computed without knowing more about the stochastic behaviour
of x. This issue is solved by estimating the gradient of ξ(n) with

∇ξ̂(n) = −2x(n)e(n), (8)

where x(n) = [x(n), x(n − 1), x(n − 2) . . . x(n − L + 1)]T is a vector containing the
last L samples of the reference signal. This finally results to the weight update rule
used in LMS:

w(n + 1) = w(n) + µe(n)x(n). (9)

Note that in some literature, such as in [22], the right hand side of the equation 9
uses 2µ in place of µ, mainly due to the factor of 2 conveniently carrying on from the
derivation of the equation. However, it makes no practical difference whether the
equation contains the factor 2 or not, as one could always choose double or half the
value for µ to end up to the same result; thus, the factor 2 is omitted in this thesis,
and all other equations are adjusted accordingly.

The convergence of basic LMS algorithm is dependent on the step size µ. However,
there is no universal single best value for it; rather, the suitable choice for µ depends
on the statistics of the reference signal x(n), or more specifically, how correlated it is.
LMS is proved to converge if and only if

0 < µ <
2

λmax

, (10)

where λmax is the largest eigenvalue of autocorrelation matrix of x [22], [26]; in fact,
it is shown that fastest convergence is achieved when µ = 1/λmax [26]. However,
calculating the autocorrelation matrix at each time step is a high computational
burden if L is large. Therefore, a suitable value for µ has to be estimated by some
suitable method.

The other parameter in LMS is the adaptive filter length L. Recall from Section
2.3 that the controller H, or in this case the adaptive filter W , tries to simultaneously
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model the primary path P and inverse of the secondary path S:

W (z) = −P (z)
S(z) . (11)

Thus, the number of filter coefficients must be chosen so that it can model the impulse
response accurately enough, when considering broadband signals [26]; and when
considering narrowband signals, the impulse response w(n) must include a sufficient
portion of the primary noise signal’s period [26]. On the other hand, choosing a too
long filter unnecessarily increases the computational cost.

LMS is mainly used due to its simplicity and model-independent performance, but
its performance is limited by relatively slow convergence [36]. While LMS is relatively
robust in system identification and signal estimation, it has several drawbacks when
used in active noise control, which are explained and solutions to them introduced in
the following sections.

3.2 Normalized LMS (NLMS)
The performance of LMS algorithm is only controlled by the chosen step size, but
is also dependent on the reference signal’s power (and with that, indirectly by the
filter length L) [26]; thus, with the same µ, signals with larger power converge more
quickly than those with smaller power, which is typically undesired behaviour. What
is even worse is that the convergence might be optimal for some signal levels but
unstable for higher. One technique of making the suitable choice of µ independent of
the reference signal’s power is to normalize the step size with the reference signal’s
power. This is known as the normalized least mean squares algorithm (NLMS). In
NLMS the weights are updated with [26]

w(n + 1) = w(n) + µ(n)e(n)x(n), (12)

where µ(n) is computed with

µ(n) = α

β + x(n)T x(n) , (13)

where α is a normalized step size satisfying 0 < α < 2, β is a small constant ensuring
that the denominator is not too small in case of reference signal having small power,
and x is a column vector containing last L samples of reference signal x.

3.3 Feed-forward filtered-x LMS (FxLMS)
Figure 9 showed the block diagram of the LMS algorithm applied to an ANC system.
In a practical, real-life environment, the secondary path S always induces a phase
shift to the adaptive filter output u, which leads to x(n) and e(n) being out of phase
relative to each other. In practice this means that the reference signal x and error
signal e do not correspond to each other in gradient estimate calculation in equation
8, and thus, the gradient estimate in by itself is not accurate. The LMS algorithm can
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tolerate this to some extent, but if the phase error increases too high, the algorithm
starts to diverge.

Filtered-reference LMS, commonly also known as filtered-x LMS (FxLMS) due to
reference signal often denoted by x, solves this issue by filtering the reference signal x
with an estimate of the secondary path Ŝ creating a secondary-path filtered reference
signal x̂, which is then fed to the LMS algorithm. Assuming perfect estimation
Ŝ = S, both the reference and error signals fed to LMS are now filtered with the
same filter, and are thus aligned in time. A block diagram of the FxLMS algorithm
is seen in Figure 10.

Figure 10: Block diagram of the FxLMS algorithm.

For the update rule, FxLMS simply replaces the reference signal x with its filtered
counterpart x̂. Therefore, the update rule for the basic FxLMS is [22], [26]

w(n + 1) = w(n) + µe(n)x̂(n), (14)

and for the normalized FxLMS (NFxLMS)

w(n + 1) = w(n) + µ(n)e(n)x̂(n)

= w(n) + αe(n)x̂(n)
β + x̂(n)T x̂(n) .

(15)

The maximum step size that can be used with FxLMS is approximately

µmax = 1
σx̂(L + ∆S) , (16)

where σx̂ is the power of the filtered reference signal and ∆S is the total time delay
in samples caused by the secondary path [26]. When applied to normalized FxLMS,
this corresponds to approximately

αmax = 1
L + ∆S

, (17)

provided that the constant β in equation 13 is small. Therefore, the length of the
secondary path severely limits the step size and therefore convergence of the FxLMS
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algorithm, even if the secondary path would be estimated perfectly; however, it
has been found that the time delay ∆S has only minor effect on the steady-state
performance of the system [26].

In any practical setting, Ŝ ≠ S. FxLMS is robust against this imperfection, and
phase errors up to 40° hardly affect the convergence speed [26]; however, the estimate
has to match the real response’s phase within 90° in all frequencies for it to remain
stable [22], [26]. Even if the phase error is under 90°, though, larger errors on the
estimation leads to slower convergence or worse steady state performance [22], [26],
and therefore, an estimate with high precision is desired.

The secondary path estimation can be acquired either by measuring the secondary
path response before operating the system, or during its operation. The former is
called offline estimation and is simpler, but as the response is measured just once,
the system won’t be able to track changes in the actual response, which could become
an issue if the response is time-varying [26]. The other approach is to estimate
the secondary path during the ANC operation, called online estimation, typically
performed by injecting white noise to the anti-noise signal [26], [37]. However, the
various secondary path estimation techniques are not in the focus of this thesis.

3.4 Leaky FxLMS (LFxLMS)
LMS only attempts to minimize the mean square value of the error signal [22], which
leaves the weights of the adaptive filter unconstrained. One modification to this is
to use the weighted sum of the mean square value of the error signal and the sum
of the filter weights as a cost function. Thus, the cost function under subject of
minimization would be

JLLMS = ξ(n) + γwT w, (18)

where γ is a leaky factor, γ > 0, and w is a column vector of adaptive filter weights
[22]. Using the same approximation for ∇ξ(n) as earlier, the update rule becomes

w(n + 1) = (1 − γµ)w(n) + µe(n)x(n). (19)

This algorithm is called leaky LMS due to the term (1 − γµ), which "leaks" w
away in case the error signal is zero [22]. The leaking term can be applied also to
FxLMS, in which case the update rule becomes

w(n + 1) = (1 − γµ)w(n) + µe(n)x̂(n), (20)

and to normalized FxLMS, in which case the update rule is

w(n + 1) = (1 − γµ)w(n) + µ(n)e(n)x̂(n)

= (1 − γµ)w(n) + αµe(n)x̂(n)
β + x̂(n)T x̂(n) .

(21)

Using leaky FxLMS over normal FxLMS makes the convergence more robust,
but introducing the leaking term inevitably degrades the attenuation of the system
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[22]. However, a small γ can in many applications significantly improve the stability
with only small degradation in the maximum attenuation [22].

3.5 Internal model control (IMC)
The algorithms presented thus far have all been designed for feed-forward control, as
they all need a reference signal x. However, the feedback system shown in Section
2.4 in Figure 7 can be transformed into an equivalent feed-forward one, after which
the previously shown algorithms can be applied. The block diagram of this internal
model control (IMC) system can be seen in Figure 11.

Figure 11: Block diagram of the FxLMS algorithm with internal model control.

Once again, the anti-noise signal y is produced by the adaptive filter output signal
u going through the secondary path, and the error signal e is the sum of primary
noise d and anti-noise y:

Y (z) = S(z)U(z)
E(z) = D(z) + Y (z)

= D(z) + S(z)U(z).
(22)

Using an estimate Ŝ of the secondary path S, the system then internally calculates
a model ŷ of the anti-noise signal y (hence the name):

Ŷ (z) = Ŝ(z)U(z). (23)

Finally, the system calculates a synthesized reference signal d̂ by subtracting the
anti-noise estimation from the error signal:

D̂(z) = E(z) − Ŷ (z)
= D(z) + S(z)U(z) − Ŝ(z)U(z)
= D(z) + U(z)

[︂
S(z) − Ŝ(z)

]︂
.

(24)
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If the model of the secondary path is perfect, Ŝ = S, then also D̂ = D by equation
24. It has been shown that in this case, the system is internally stable: any bounded
input yields a bounded output [22]. However, once again the model is never perfect.
Figure 12 shows the IMC system from Figure 11 rearranged. From that it can be
seen that the modeling error S − Ŝ creates a feedback loop in the system, whose
gain can be written as

H(z) =
[︂
S(z) − Ŝ(z)

]︂
W (z). (25)

If this loop has gain of less than unity on all frequencies, the modeling error has
little impact on the convergence of the adaptive filter [22]. However, even with a
very good but not perfect secondary path model, the gain could exceed unity on
some frequencies, if the gain of the adaptive filter W is very large [22]. Thus, special
care must be made to ensure that said gain does not become too large. One possible
solution to this potential issue is to introduce a leakage term to the controller, as in
leaky LMS.

Figure 12: Block diagram shown in Figure 11 restructured. (Based on [26].)

Even if this system resembles the previously introduced feed-forward ones, es-
pecially when rearranged into the form shown in Figure 12, the causality problem
explained previously in the context of feed-forward systems persists. Recall from
Section 2.3 that for a feed-forward ANC system to be causal, the time delay of
primary path P must be greater than the combined time of processing delay and the
time delay of S; however, it can be interpreted from Figure 12 that in this system
P (z) = 1, meaning that such condition can never be satisfied. This means that the
system cannot produce the anti-noise beforehand and must predict the upcoming
primary noise samples based on the past samples instead. In steady, periodic signals,
this is not an issue. However, as the latency ∆S of the secondary path increases, it
becomes increasingly difficult to track the changes on even lower frequencies.
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3.6 Feedback functional link artificial neural network based
ANC (FLANN)

The previous sections have introduced the LMS algorithm and its well-known deriva-
tives. The last two sections of this chapter will introduce two lesser researched
variants of the LMS and especially IMC algorithms, one non-linear and one discrete
wavelet transform based algorithm.

In practical applications, the primary path P , the secondary path S, or even the
primary noise d can be non-linear [38]. The linear ANC algorithms cannot in this
case fully replicate the non-linear nature of the needed anti-noise signal, and thus,
many non-linear ANC algorithms have been developed [38]. One of these, based on
the functional link artificial neural network (FLANN), is presented in this section.

A feedback ANC system based on IMC employing a FLANN expansion was
introduced in [39]. It was designed to be effective on chaotic noise, which in the
paper referred to non-linearly deterministic noise [39]. The block diagram of the
system introduced in [39] is shown in Figure 13. The Figure 13 shows only one LMS
controller to avoid clutter, but the system is realized with each adaptive filter W
having their own controller, potentially with varying parameters.

Figure 13: Block diagram of the FLANN-based feedback ANC algorithm of order K,
introduced in [39].

Compared to the system introduced in Section 3.5, a non-linear trigonometric
expansion of order K is conducted on the synthesized primary noise d̂, after which
both the original synthesized primary noise signal and the expanded components
have their own adaptive filters and LMS controllers. Finally, the output of all these
adaptive filters are combined, resulting in the control signal u.
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The synthesized reference signal d̂ is expanded into a sine and a cosine component
for each order in the controller in addition to the unmodified signal d̂; thus, the
system consists of 2K + 1 adaptive filters and LMS controllers, where K is the order
of the controller. Each order of trigonometrically expanded signals can be calculated
with

d̂sin,k(n) = sin
[︂
kπd̂(n)

]︂
,

d̂cos,k(n) = cos
[︂
kπd̂(n)

]︂
,

(26)

where k is the order of the said path.
The algorithm was reported to outperform the conventional FxLMS algorithm

[39], though the results showed in [39] only focused on chaotic noise.

3.7 Discrete wavelet packet transform based ANC
An feedback ANC algorithm based on wavelet packet transform was introduced in
[40]. A block diagram of the said system can be seen in Figure 14.

Wavelet packet transform is a multi-resolution signal analysis technique for time-
frequency domain analysis [40]. In essence, it decomposes the signal according to
small wavelets, short quickly decaying oscillating waves, in contrast to the infinite
sine waves used in Fourier transform. This is realized by filtering the signal with
two complementary filters, a high-pass filter A(z) and a low-pass filter D(z). This is
repeated for each signal component filtered such a way for each level, or order, of
the controller; thus, the signal is decomposed into 2K components, where K is the
controller order. The weights of A and D are dependent on the used wavelet.

The structure seen in Figure 14 can also be seen as a subband ANC, where
the signal is divided into frequency components and each component is controlled
separately. The wavelet packet transform based ANC was reported to outperform
traditional FxLMS on broadband noise cancellation in [40].



34

Figure 14: Block diagram of the wavelet packet decomposition based feedback ANC
algorithm of order k, introduced in [40].
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4 ANC system design
This chapter derives the main goals and design choices for the prototype ANC system
briefly introduced in Chapter 1. First, the goals of the ANC system are reviewed,
after which different architectural choices are presented and justified based on the
theory explained in Chapters 2 and 3. Based on the choices introduced here, a
simulation environment is built and introduced in the next chapter.

4.1 Goals of the prototype system
Keeping the thesis goals introduced in Chapter 1 in mind, the goals of the ANC
system were as follows:

1. The system must be usable in real 3D-spaces.

The goal is to create a real, physical device. While simulations and measurements in
an anechoic room are an essential part of the design process, the system must be
tested at other places as well. Furthermore, the system must work in real-time.

2. The system must be simple to use.

While it has been shown that having a more complex design often leads to better
noise attenuation, the idea behind the system is that it would be practically as easy
to use as active noise canceling headphones. The goal is thus to develop a system
which does not need to be configured and calibrated to each space separately; rather,
it should be usable with no or only minor setup. This also implies that the system
cannot include unpractical amounts of components.

3. The system must work on both narrowband and broadband signals.

The chosen algorithms must be able to control both narrowband and broadband
signals. The system is simulated and tested with both kinds of signals.

4. The system attenuates the sound pressure level as much as possible at
the error microphone.

Minimizing the sound pressure level at the error microphone is not the only way to
conduct active noise control, and it might sometimes be desired to shape or equalize
the error signal’s spectrum instead rather than to attenuate all frequencies equally
[41], [42]. However, minimizing measured SPL was chosen due to it being simple and
objective to measure, and often being a good starting point even if it would not be
the final goal. For simplicity, Z-weighted (unweighted) SPL is measured.

4.2 Control scheme
Despite the limitations of feedback control introduced in Section 2.4, the system
was still decided to incorporate feedback control. This is due to feed-forward
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control being difficult to implement in a 3D-space where the primary noise source
can be in any direction, as in that case the reference microphones should also be
placed to all directions from the secondary source for the controller to be causal, as
explained in Section 2.3. In practice, large microphone arrays should be used, which
directly contradicts the design goals, stating that the system should be easy to use
without the need of placing extensive amounts of microphones to the room before
using the system. If this constraint is not loosed, feedback control remains as the
only viable solution, albeit its limitations.

It should be noted, though, that the system could in principle incorporate only
one or a few of these reference microphones, which could then be placed to the most
noisy directions at will to enhance the attenuation from those directions. This would
in practice turn the control scheme into hybrid for those directions, and feedback for
the others; however, this idea was not explored further in this thesis.

4.3 Effective area
Local ANC was chosen as the effective area of the system. This is largely for the same
reasons that feedback control was chosen. Spatial ANC cannot be achieved with one
loudspeaker and microphone, or even with a few of them, once again contradicting
the need of the system to be quick and easy to deploy. Global ANC could in theory
be applied, if the goal would be to suppress room modes. However, that would need
the loudspeaker to be adjusted carefully to the right place in the room, reducing the
easiness of use; on the other hand, the usefulness of the device would be severely
decreasing as the room size increases, as explained in Section 2.5.

4.4 System structure
Based on the chosen control scheme and effective area, the system was chosen to
simply consist of one secondary source loudspeaker and one error microphone. In
practice, this means that if this system would be commercialized as it is, the user
would need to have a microphone near their head to get the zone of quiet near their
ears. As Section 2.6 briefly discussed, there are virtual sensing technologies which
could be used to avoid a wearable microphone. Further examination of the topic was
left out from this thesis, but virtual sensing techniques could possibly be used in a
future version of the system. Still, to emulate having the error microphone near but
not directly at the users’ ears, one other microphone was added to the system setup.

4.4.1 ANC algorithm

Chapter 3 introduced adaptive filtering as a concept as well as some algorithms
developed for adaptive filtering in ANC. As the best choice out of those is not
self-evident, multiple algorithms were chosen to be included in the measurements.
The set of algorithms-to-be-tested was chosen to include different types of algorithms.
LFxLMS introduced in 3.4 with the feedback structure introduced in Section 3.5 was
chosen due to its simplicity and for being well researched, FLANN-based algorithm
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("FLANN") introduced in 3.6 to include a non-linear algorithm, and wavelet packet
transform based algorithm ("Wavelet") introduced in 3.7 due to the apparently poten-
tial wavelet transform and subband approaches. Furthermore, as all the algorithms
had multiple tunable parameters, each of the chosen algorithms was tested with
different combinations of those parameters as well.

As feedback ANC is essentially a prediction problem, using some completely
different machine learning or artificial intelligence based methods, such as training
a neural network to predict the incoming primary noise, was briefly considered.
However, researching and implementing this was not possible in the time frame
allocated for this thesis project, and thus, those were not included into the final
simulations nor prototype system measurements.

4.4.2 Secondary path estimation

Section 3.3 briefly introduced techniques to estimate the secondary path, either
by online or offline methods. For simplicity, the secondary path was decided to
be determined offline before the measurements. For simulation, this means simply
using the same impulse response for secondary path S and its estimate Ŝ. For
the real-world measurements, impulse response from secondary source to the error
microphone is computed before measurements with a sine sweep.

Even though a potential commercial device should repeatedly be estimating the
secondary path response online during its operation due to potentially changing
conditions, there already exist well-researched methods of doing this in feedback
ANC systems [26], [37]. Therefore, measuring the response offline beforehand in the
prototype system is justified.

4.5 Evaluation criteria of the system
As the performance of an ANC system relies on many factors, it is not self-evident
to choose the metric on which to evaluate the system with. First, the performance of
the LMS algorithm is governed by the step size µ, which always introduces a trade-off
between convergence speed and the magnitude of the residual signal, but it depends
on the application which of these two is more important to be minimized. Second,
the system is bound to work better on some signals than others, and comparing
these results against each other is not straight-forward. Third, local ANC systems
attenuate the sound at the error microphone, but one might be more interested in
how the sound field behaves at other points in the room.

However, calculating a single quantity as the performance index is convenient for
comparing the different algorithms, even though it might not take all these factors
into account. Therefore, the main evaluation metric of the system performance was
decided to be the equivalent level difference between the primary noise and error
signals: how much the equivalent noise level decreased when the ANC system was
used, compared to when it was not. This value is calculated in decibels with

Leq = 10 log10

(︄
mean(d(n)2)
mean(e(n)2)

)︄
[dB], (27)
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where d is the complete primary noise signal and e is the complete error signal,
mean(x(n)) denotes the arithmetic mean of vector x(n), and x(n)2 denotes the vector
x squared element-wise:

x(n)2 = [x2
0, x2

1 . . . x2
L−1]. (28)

This calculation is done to each test signal separately. Thus, the algorithms are
compared to each other signal-wise, not as a whole. Furthermore, the same value is
calculated and presented for a location near but not at the error sensor.
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5 ANC system simulations
Before the actual ANC system was built and tested, the different algorithms were
first tested in simulations. The simulations were conducted in an environment
programmed in Python. Goal of the simulations was to find algorithms and their
parameters which could be suitable for the physical prototype system; thus, only
local feedback ANC algorithms presented in Chapter 3 were simulated.

This chapter first explains the simulation system and the design choices made
while programming it, after which the conducted simulations are introduced. Finally,
results of these simulations are presented and discussed.

5.1 Simulation system description
5.1.1 Sampling frequency

The simulation system worked on sample-by sample basis on a sampling frequency
of fs = 3000 Hz. This sampling frequency was chosen for two reasons. First, using
a high sample rate is a high computational burden to the ANC system. The used
sample rate limits the usable bandwidth of the system by the Nyquist theorem,
but as previously mentioned, local ANC systems are not expected to work at high
frequencies. Using this sampling frequency sets the Nyquist frequency to 1500 Hz,
which is higher than the upper limit where the system is expected to work in the first
place. Second, it is convenient that the sample rate conversion from the prototype
system’s audio interface to the ANC algorithm is done with an integer ratio. As the
chosen audio interface works with a sample rate of 48 kHz, the decimation from the
audio interface to the ANC system and later interpolation from the ANC system
back to the audio interface can both be done with conversion ratio of 16.

5.1.2 Secondary path impulse response

In contrast to a physical, real-world system, it is possible to simulate the exactly
same impulse response for both the secondary path response S and its estimate Ŝ; in
addition, any kind of impulse response can be applied instead of just realistic ones.
To test how the system behaves in both ideal and realistic settings, the simulations
were conducted with three different kinds of secondary path impulse responses:

• Unit impulse response,

• Anechoic impulse response (room impulse response in an anechoic room), and

• Room impulse response of an ordinary office room.

The simulations didn’t use real, measured impulse responses: the first is a simple
unit impulse, and the latter two impulse responses were synthesized with the help of
a Matlab program introduced in [43] instead. All three impulse responses are shown
in Figure 15.
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Figure 15: Secondary path impulse responses used in simulations.

5.1.3 Frequency weighting

As discussed earlier, active noise control is more effective at lower than it is at
higher frequencies; however, the LMS algorithm does not discriminate between
frequencies, and only aims to minimize the expected squared error signal E [e(n)2]
over the whole frequency range. As it is unlikely that the system would be able
to control high frequencies in the first place, the system was decided to include an
option to emphasize low frequencies over high frequencies by weighting the signals
appropriately. This weighting was applied by introducing a few identical low-pass
filters LP (z) to the system, as shown in Figure 16. The Figure 16 shows the filters
incorporated to the basic FxLMS IMC structure, but a similar structure was used to
add them to the other algorithms as well.

The point of the different filters are as follows. One of these filters (1) was
introduced in conjunction with the secondary path S so that the produced anti-noise
would not contain high frequencies, and another filter (2) was introduced before
the error signal was fed into the LMS algorithm so that the error signal seen by
the LMS algorithm would not contain high frequencies, either. These two extra
filters effectively transforms the secondary path seen by the LMS algorithm into
Seff (z) = LP (z)S(z)LP (z). Therefore, for the secondary path estimate to accurately
estimate this new secondary path, two of these low-pass filters were then cascaded
into the secondary path estimate Ŝ leading to the LMS algorithm as well (3). The
low-pass filters were implemented as 6th-order Butterworth infinite impulse response
(IIR) filters with the cut-off points at 700 Hz.
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Figure 16: IMC structure with added low-pass filters LP (z) for frequency weighting.
(1): Filter out high frequencies from the anti-noise. (2): Filter out high frequencies
from the error signal. (3): Align the phase responses of effective secondary path
Seff (z) = LP (z)S(z)LP (z) and the secondary path estimate Ŝ.

5.1.4 Algorithms

All the simulated algorithms contain one or more adaptive filters and correspond-
ing LMS controllers. These controllers were chosen to be leaky normalized LMS
controllers introduced in Section 3.4. These algorithms were also tested with the
leaky factor γ = 0, reducing the controllers to the normalized LMS introduced in
Section 3.2. All the tested algorithms apply the internal model control (IMC) FxLMS
architecture introduced in Section 3.5.

Some preliminary testing was done to find a range of parameters with which the
algorithms worked reasonably well on the different test signals. Based on these, a
few values were chosen for each of them for the final simulations. Each combination
of these parameters was then simulated on each test signal, to be explained in
Section 5.2, and additional environmental parameters, to be explained in Section
5.1.5. For simplicity, the parameters L, µ and γ were kept the same for all the
2K + 1 NLMS controllers in FLANN algorithm and the 2K NLMS controllers in
Wavelet algorithm. Furthermore, each algorithm was tested both with and without
the frequency-weighting filters introduced in Section 5.1.3. Table 1 summarizes
the different algorithms and shows the different algorithm parameter values to be
simulated.

There are multiple different wavelet functions that can be used with the wavelet
packet decomposition. In this thesis, the simplest one, Haar, was used. This wavelet
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Table 1: Algorithms and their parameters chosen for simulations.

Algorithm Introduced
in

Parameters Simulated values

LFxLMS 3.4, 3.5 Step size µ 0.005, 0.01, 0.03

Adaptive filter length L 256, 512, 768, 1024

Leaky factor γ 0, 0.001

Frequency weighting LP True, False

FLANN 3.6 Step size µ 0.005, 0.01, 0.03

Adaptive filter length L 256, 512, 768, 1024

Leaky factor γ 0, 0.001

Controller order K 1, 2, 3

Frequency weighting LP True, False

Wavelet 3.7 Step size µ 0.005, 0.01, 0.03

Adaptive filter length L 256, 512, 768, 1024

Leaky factor γ 0, 0.001

Controller order K 1, 2, 3

Frequency weighting LP True, False

function incorporates two-tap FIR filters for both the low-pass and high-pass filters
[44], making the wavelet simple both conceptually and computationally. Figure 17
shows the FIR filter coefficients for Haar wavelet.
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Figure 17: Haar wavelet filter coefficients.

5.1.5 Other controlled variables

In addition to the parameters governing the ANC operation, the simulation environ-
ment was built such that following environmental variables could also be controlled:

• Error microphone signal-to-noise ratio SNR, implemented with adding white
Gaussian noise to the measured error signal,

• Secondary path impulse response S, ranging from a single unit impulse to a
impulse response in an anechoic room to a real room impulse response (as
introduced in 5.1.2),

• Latency of the secondary path ∆S, adding zeroes to the beginning of the
secondary path impulse response to achieve the desired latency in milliseconds,

• Temporal estimation error of the secondary path estimation Serr, padding the
beginning of the estimated secondary path Ŝ with zeroes (but not the real
secondary path S).

As stated earlier, each combination of these values was then simulated with each
combination of the actual ANC algorithm parameters explained in the previous
section. Table 2 shows the different simulated values for each of these parameters.
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Table 2: Environmental variables and their values used in simulations.

Variable Simulated values

SNR Error microphone signal-to-noise ratio 100 dB, 3 dB

S Secondary path impulse response impulse, anechoic,
room

∆S Secondary path latency 0 ms, 4 ms, 8 ms

Serr Temporal error of secondary path estimation 0%, 1%

5.2 Test signals
The collection of test signals were chosen such that they would represent different
signal types and system use scenarios. The chosen signals were:

1. Low-frequency fan noise,

2. Classical music,

3. Traffic noise,

4. Speech.

The system was also tested with other signals to get basic understanding of the
behaviour and performance of the algorithms. These four signals were chosen for
this report due to them including both signals that the system performed well and
poorly on.

Table 3 summarizes and Figure 18 shows spectrograms of the test signals.

Table 3: Summary of the different test signals.

Signal Description Characteristics

Fan Low-frequency ventilation
noise

Strong tonal components at low fre-
quencies, noisy on higher frequencies

Music Symphony orchestral music Slowly time-varying, relatively strong
tonal components

Traffic Traffic noise recorded by a
busy urban road

Time-varying, most energy on low fre-
quencies, noisy

Speech Male person holding a speech Time-varying, parts of silence in be-
tween, no long frequency components
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Figure 18: Spectrograms of the used test signals. Each spectrogram is normalized
such that the highest value of the said spectrogram is at 0 dB.
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5.3 Results
5.3.1 Attenuation with moderate secondary path latency

As the physical prototype system was bound to have some significant latency in its
secondary path, the focus is here given to the simulations with 4 ms of secondary path
latency, with the aim of presenting somewhat realistic results instead of ideal ones.
Out of all simulations conducted, the best-performing set of ANC system parameters
was found for each combination of test signal, ANC algorithm and secondary path
response, with the limitation of secondary path latency being 4 ms. All the numerical
results were calculated as the equivalent level difference between primary noise and
error signals, given by equation 27. Refer to Section 5.1.4 on the different algorithms,
Section 5.2 on the test signal description, and Section 5.1.2 on the secondary path
responses.

The Table 4 shows the simulation results given separately for each test signal.
Table 4a shows the performance on fan noise, Table 4b on symphony orchestra music,
Table 4c on traffic noise, and Table 4d on male speech signal.
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Table 4: Simulated attenuation of different test signals with different ANC algorithms
and secondary path responses, given in decibels.

(a) Fan noise.

Algorithm Impulse Anechoic Room

LFxLMS 8.57 dB 8.51 dB 8.01 dB

FLANN 8.12 dB 8.31 dB 7.07 dB

Wavelet 8.60 dB 8.50 dB 8.11 dB
(b) Orchestral music.

Algorithm Impulse Anechoic Room

LFxLMS 4.22 dB 3.94 dB 3.64 dB

FLANN 2.02 dB 2.00 dB 1.72 dB

Wavelet 2.65 dB 2.37 dB 2.09 dB
(c) Traffic noise.

Algorithm Impulse Anechoic Room

LFxLMS 3.96 dB 3.23 dB 2.94 dB

FLANN 2.87 dB 2.86 dB 2.38 dB

Wavelet 3.91 dB 3.10 dB 2.93 dB
(d) Speech.

Algorithm Impulse Anechoic Room

LFxLMS 0.89 dB 0.55 dB 0.48 dB

FLANN -10.68 dB 0.15 dB -4.75 dB

Wavelet 0.80 dB 0.56 dB 0.49 dB

5.3.2 Effect of the secondary path latency

In addition to the parameters introduced in Table 1, additional simulations were
conducted to find the effect of secondary path latency to the performance of the
noise control. Figure 19 shows the simulated maximum attenuation on different
secondary path latencies. The simulation used the basic FxLMS algorithm with
a unit impulse as secondary path, and perfect secondary path estimation. Each
signal was simulated with many different parameters for L and µ in addition to the
secondary path latency, out of which the best performed combination was chosen for
the said signal and latency to be shown in Figure 19.
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Figure 19: Maximum achievable attenuation of the test signals on different secondary
path latencies based on simulations.

The Figure 19 shows that increasing latency on the secondary path negatively
affects the performance of ANC on all signals, as expected from the theory covered
in Sections 3.3 and 3.5. However, the effect is more severe on the quickly changing
signals, such as speech, than on the steady fan signal.

It should be noted that the simulation is idealized in multiple ways. First, the
secondary path response is idealized as a unit impulse, and its estimate is perfect.
Second, the FxLMS parameters for each latency and signal were simulated with many
combinations of adaptive filter length L and step size µ. Out of all these simulations,
the attenuation was calculated with equation 27, and the best of all these values was
chosen for the figure for each combination of test signal and secondary path latency.
A real system would not be able to choose such best combination by trial and error,
and would most probably be forced to settle for a worse combination.

5.4 Discussion and conclusion of simulation results
Generally, the unit impulse secondary path response achieved the best results, but
such a system is very idealized. Thus, those results can be used as a guide on the
theoretical upper limit of the performance, but they are not reproducible in real life.
The anechoic and especially room impulse responses are better estimates on how
the system would operate in a real setting, and should be interpreted as such. The
following discussion focuses on the results from room impulse response simulations.
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Out of all the test signals, all algorithms performed best on the fan noise and
worst on the speech. This aligns well with the expected results, as feedback ANC
systems tend to work better on predictable than on unpredictable signals. As the fan
noise has strong, steady tonal components, the feedback controller was able to track
those frequencies well. The traffic noise signal has its energy condensed on the lower
frequencies, but is still rather noisy; furthermore, even the components on lower
frequencies have some random behaviour. This results in a worse, but overall still
quite good performance, compared to the fan noise. The orchestral music has strong
tonal components, which can be tracked and predicted well, but it also contains
random components which the system could not predict. Depending on the used
algorithm, the resulting attenuation was generally of similar magnitude than with
the traffic noise. Finally, the speech signal varies quickly in time, leading to more
difficult tracking by the feedback controller, and thus worse results.

A key result from the simulations is that the secondary path latency has a much
more severe effect to the performance with the rapidly changing signals than with
the quasi-steady ones, as can be seen in Figure 19. This is due to the controller
being able to predict the upcoming fan noise reliably even 10 ms into the future, as
the signal is hardly changing in time. Conversely, the controller cannot predict the
speech signal with the same delay, as the signal does appear to behave randomly
when predicted that far into the future.

Out of the different algorithms, the basic LFxLMS performed best despite its sim-
ple architecture; the Wavelet algorithm did outperform LFxLMS on a few occasions,
but the difference was small even in those situations. This is a somewhat curious
result, as previous results have shown subband ANC significantly outperfoming the
systems with only one band, and previous researches in [39] and [40] have reported
the other two algorithms outperforming the basic FxLMS. There are a few possible
explanations to this, though. First, the results from LFxLMS algorithm generally
had one or a few combination of algorithm parameters with good performance with
the rest of the combinations having much weaker results, while the performance of
Wavelet algorithm was more stable across more combinations of parameters. This
suggests that while LFxLMS can work really well when given the right parameters for
the given primary signal and secondary path response, the performance drops rapidly
if given suboptimal parameters. Second, the simulations used the same parameters
for all 2K NLMS controllers in the Wavelet algorithm. Optimizing these parameters
separately could be used to achieve better results.

The FLANN algorithm was significantly underperforming in the simulations. It
performed nearly as well as the other two algorithms on most of the signals, but
even then was outperformed by the other two; moreover, it performed really poorly
with the speech signal. The FLANN algorithm was designed to perform well with
non-linear chaotic noise [39], however, the simulation system didn’t introduce any
nonlinearities to the signals. This means that the full potential of the FLANN
algorithm was possibly not unleashed in these simulations. Furthermore, as with the
Wavelet algorithm, better results could have been achieved were the different 2K + 1
NLMS controllers optimized separately from each others.
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The order of the Wavelet controller had little impact on the results, as the results
on each of the three tested orders were within about 0.2 dB on each test signal and
secondary path response type. This means that while the higher-order controller
performed better on average, it is not clear if this difference makes it worth the
increased computational cost. On the other hand, the FLANN controller had a better
result with the first-order controller than with second or third order controller with
all signals and secondary path responses, which further suggests the possibility of
performance enhancement by optimizing the NLMS controllers’ parameters separately,
as less weight could then be given to the higher-order controllers. The introduction
of the frequency weighting filters had varying effects on the different algorithms.
Generally, LFxLMS performed better without them, while Wavelet and FLANN
performed better with the filters. This effect of the filters was relatively small on the
Wavelet algorithm and larger with the FLANN algorithm performance.

The simulations also tested the effect of the other environmental variables to the
achievable attenuation. It was found that the simulated 1% temporal error on the
secondary path estimation had virtually no effect on the results. This is well aligned
with the rule of thumb that secondary path estimation phase errors up to 40° have
little to no effect on the FxLMS performance. The error microphone signal-to-noise
ratio had a small effect on the results depending on algorithm, signal, and secondary
path response. This effect varied between 0.1 dB – 1.0 dB, and all algorithms were
quite robust against the low SNR, though in some situations better results were
achieved by some other combination of ANC parameters due to the lower SNR.

The simulations aligned well with the available theory. To summarize the results,
the best algorithms performed very well on the steady fan noise, attenuating it by over
8 dB, and relatively well on the orchestral music and traffic noise, attenuating them
by around 3.6 dB and 2.9 dB, respectively. However, the rapidly changing speech
signal acquired just around 0.5 dB of attenuation at best. It was also confirmed that
the latency imposed by the secondary path is a major bottleneck in the performance
of an ANC system, and should be of big concern when designing one.

The simulations were idealized in many fronts compared to a real system, and thus
it is expected that these results set an upper limit on the best possible performance
on the real system. Based on the simulations, FxLMS and Wavelet algorithms were
chosen to be implemented for the prototype system. The FLANN algorithm worked
reasonably well on all signals except for the speech signal, but it was still the worst
algorithm of the three in all four test signals. Even though the higher-order Wavelet
algorithms generally outperformed the first-order controller, the effect of the controller
order was so small, that the prototype system was decided to only implement the
first-order Wavelet algorithm. Furthermore, as the frequency weighting had only
little impact on the result, it was decided to be left out from the prototype system
tests.
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6 Prototype system construction and tests
Based on the simulation results, the best-performing algorithms and their parameters
were tested with a prototype system, comprising of loudspeakers, microphones and a
controller. The previous chapter presented the simulation results and justified which
algorithms to be tested in this real system. This chapter first introduces the test
environment and setup, and then explains how the measurements were made and
their results. Finally, the results are discussed and reflected on the design choices
and thesis goals.

6.1 Prototype system description
6.1.1 Physical setup

Figure 20 shows the schematic diagram of the measurement setup. The test setup
includes two loudspeakers, one for the primary and one for the secondary noise. In
addition, two microphones are included, one of them being the error microphone
used to provide error signal for system control. LMS-based algorithms only try to
cancel the sound at the error microphone location, but nothing is guaranteed at other
locations. Thus, the other microphone acts as a control microphone, located at a
fixed distance from the error microphone, to get a realistic estimate on how much the
sound would be reduced at a location near but not at the error microphone. These
devices were interfaced to the controlling laptop with a RME Fireface UCX audio
interface.

Figure 20: Schematic diagram showing the measurement setup.
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6.1.2 Control program

The control software was programmed with C++ with the help of audio library Juce
[45]. Before each test the secondary path impulse response would be calculated with
an exponential sine sweep, after which the system could be run in two modes, either
with or without ANC. In both settings, the system would play out a chosen test
signal from the primary source loudspeaker and record the output of both of the
microphones. When ANC was off, the secondary loudspeaker would stay silent; when
it was on, the system would conduct the ANC with the given algorithm and play
out the anti-noise signal from the secondary source loudspeaker. The program also
included an interface to set the ANC system parameters adaptive filter length L,
step size µ and leaky factor γ.

The audio interface worked at a sampling rate of 48 kHz, which is too expensive
computationally for the ANC system to work in real time. Therefore, the input signal
with the sample rate of 48 kHz was decimated with a factor of 16, resulting with the
sample rate of 3000 Hz used by the ANC system, the same as in the simulations.
The resulting anti-noise signal was interpolated with a factor of 16 to again result in
a signal with sample rate of 48 kHz. Both the decimation and interpolation were
done with the help of C++ library zita-resampler [46].

Figure 21 shows the logic of the control program.

6.1.3 Measurement locations

The measurements were made in three locations. To get an optimal reference result,
the measurements were first made in the anechoic room Köykkä at Aalto University’s
acoustics lab. In addition, the system was tested in a small office room and in a
light-weight phone booth, both located at Otakaari 5, Espoo.

Figure 22a shows the test setup in the anechoic room, Figure 22b in the office
room, and Figure 22c in the phone booth. Figure 23 shows the secondary path
impulse responses Ŝ measured from the test sites.

6.1.4 Limitations compared to the simulations

The two major differences between simulations and real-world tests had to do with
secondary path estimation and the system latency. Whereas simulated system could
perfectly estimate the secondary path, that is impossible to achieve in a real system.
The secondary path impulse response was measured with an exponential sine sweep
before each test, and the said impulse response was used as the secondary path
estimation; thus, the estimation can be considered to be very accurate.

It has already been discussed multiple times on this thesis that the latency of the
secondary path is the main limiting factor of a feedback ANC system. Whereas the
latency imposed by the secondary path could be freely chosen in the simulations, the
prototype system doesn’t include the option to control it in any other way than by
moving the microphones relative to the secondary source. Therefore, the system was
not tested on different secondary path latencies. The audio interface used buffers of
48 samples, which equals to 1 ms of latency in both in- and outputs. Furthermore,
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Figure 21: Flow diagram showing the operation logic of the control program.

the resampler used buffers which equals to roughly 2.7 ms in both decimation and
interpolation. Thus, the total latency of the system is roughly 7.4 ms, not including
digital-to-analog and analog-to-digital conversions or the acoustic travel time of the
sound from the secondary source to the error microphone.

Section 5.3.2 and Figure 19 showed how the varying secondary path latency
affected the system performance in the simulations, and those results can be used
to estimate how the performance of the prototype system would improve were the
latency lowered.
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(a) Anechoic room.

(b) Office room.

(c) Phone booth.

Figure 22: Test setup in the different test locations.

Figure 23: Secondary path impulse responses of measurement locations measured
with an exponential sine sweep. Note the varying scale on the y-axes.



55

6.1.5 Measurement procedure

Each measurement set was done with the following procedure:

1. Measure the secondary path impulse response with an exponential sine sweep.

2. Choose a test signal and run the measurement without using the ANC (sec-
ondary source is silent), and save the output signal d and input signals eoff

and e2,off .

3. Choose the ANC algorithm and set ANC algorithm parameters L, µ and γ.

4. Run the measurement with ANC (secondary source emits the calculated anti-
noise), and save the output signals d and y and input signals eon and e2,on.

5. Repeat steps 3 and 4 for each subsequent set of ANC parameters to be tested.

6. Repeat steps 2-5 for each subsequent test signal.

The raw error signal levels can change drastically between different rooms and
furthermore are dependent on the test signal sound levels, and are thus not comparable
as such. Instead, the interesting phenomenon under examination is how the sound
level changes when switching ANC on, relative to the original sound level when
ANC was not used. The underlying assumption of the procedure above is that
the conditions of the room do not significantly change between conducting the test
without and with ANC. With this assumption, the error signals of the two tests –
without and with ANC – can together be used to determine how much the sound
level changed in the room between not using and using the ANC system.

In the Figures 20 and 21 the primary noise generated by the test program was
labeled as the primary noise d(n) and the anti-noise as y(n). This was done for
convenience but it is not strictly correct, as d and y actually depict how the primary
noise and anti-noise, respectively, behave at the measurement location, not what
is produced in the first place. This means that the error signal eoff(n) of the test
without ANC is the correct interpretation of the real primary noise d(n). This is
taken into account in the subsequent sections by re-labeling the error signal of the
test without ANC, eoff (n) as the primary noise d(n), and the error signal of the test
with ANC, eon(n) as the error signal e(n).

6.2 Results
The computational burden proved to be too much for the test program. This caused it
to drop some audio blocks, resulting in audible clicks from the secondary loudspeaker.
One consequence of this was that the program was not able to record the whole
error signal, and had some blocks left out. This means that the primary and error
noises cannot be compared directly, as they are no longer perfectly aligned in time.
However, as the formula 27, with which the results are calculated with, averages
the squared pressures before comparing the two signals to each other, this should
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not affect the results much, but should still be keeped in mind when reviewing the
results.

Similar to simulations, out of all measurements conducted, the best-performed
set of ANC system parameters were found for each combination of test signal, ANC
algorithm and measurement location. All the numerical results are calculated as the
equivalent level difference between primary noise and error signals, given by equation
27. Refer to Section 5.1.4 on the different algorithm parameters, Section 5.2 on the
test signal description, and Section 6.1.3 on the measurement locations.

The Table 5 shows the measurement results given separately for each test signal.
Table 5a shows the performance on fan noise, Table 5b on symphony orchestral
music, Table 5c on traffic noise, and Table 5d on male speech signal. Figure 24 shows
the power spectral density differences between primary noise and error signals in the
anechoic room measurement with the Wavelet algorithm.

Table 5: Measured attenuation of different test signals at the error microphone with
different ANC algorithms in different test sites, given in decibels.

(a) Fan noise.

Algorithm Anechoic room Office room Phone booth

LFxLMS 6.41 dB 4.32 dB 6.48 dB

Wavelet 6.60 dB 4.85 dB 6.78 dB
(b) Orchestral music.

Algorithm Anechoic room Office room Phone booth

LFxLMS 1.41 dB 0.76 dB 0.77 dB

Wavelet 1.97 dB 2.30 dB 2.99 dB
(c) Traffic noise.

Algorithm Anechoic room Office room Phone booth

LFxLMS 0.70 dB 1.17 dB 1.22 dB

Wavelet 0.89 dB 1.45 dB 1.20 dB
(d) Speech.

Algorithm Anechoic room Office room Phone booth

LFxLMS -0.13 dB 0.20 dB -0.89 dB

Wavelet 0.09 dB 0.64 dB -0.28 dB

The sound pressure was also measured with a control microphone, which was
located at 20 cm from the error microphone, as seen in Figures 22a, 22b and 22c.
Table 6 shows the results of the attenuation at this control microphone. Note that as
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Figure 24: Welch power spectral density estimate differences between primary noise
and error signals of different test signals. Signals are from the measurements conducted
in the anechoic room with the Wavelet algorithm. High peaks mean large attenuation,
while values less than zero mean that the primary noise was amplified by the secondary
noise.

all the different test sites had a different configuration and the positioning between
primary source, secondary source, error microphone and the control microphone was
not exactly the same, the results are not comparable between test sites. However,
they still give some insight on how the sound field behaves near the error microphone
in each measurement location.
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Table 6: Measured attenuation of different test signals at the control microphone
with different ANC algorithms in different test sites, given in decibels.

(a) Fan noise.

Algorithm Anechoic room Office room Phone booth

LFxLMS 1.20 dB 4.04 dB 2.61 dB

Wavelet 1.20 dB 4.44 dB 2.65 dB
(b) Orchestral music.

Algorithm Anechoic room Office room Phone booth

LFxLMS -0.39 dB 0.05 dB 0.21 dB

Wavelet 0.55 dB 1.11 dB 0.18 dB
(c) Traffic noise.

Algorithm Anechoic room Office room Phone booth

LFxLMS 0.03 dB 1.39 dB 0.92 dB

Wavelet 0.07 dB 1.62 dB 0.96 dB
(d) Speech.

Algorithm Anechoic room Office room Phone booth

LFxLMS -0.36 dB 0.25 dB -0.43 dB

Wavelet -0.30 dB 0.51 dB -0.16 dB

6.3 Discussion
The attenuation on different signals behaved as expected based on the simulations.
The attenuation is the greatest with the fan noise, with which the total attenuation
could be over 6 dB, depending on the test site. This kind of attenuation is relatively
good and certainly audible. Furthermore, the orchestral music achieved almost 3 dB
of attenuation, which also is audible. Conversely, the traffic noise was attenuated
by only around 1 dB, and the speech signal had virtually no change to the original.
One major cause for worse performance is the secondary path latency, which was
around 9 ms in all test sites. It was already discussed with the simulation results
that this kind of secondary path latency is a limiting factor, and thus, these results
could be expected.

The primary noise sound level difference between error and secondary microphones
were relatively large. On average, in the anechoic room, the primary noise level was
7 dB higher at the error microphone than at the control microphone; in the office
room, the primary noise level was about 3 dB higher at the error microphone than at
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the control microphone; and in the phone booth, the primary noise level was about 4
dB higher at the control microphone than at the error microphone. This is probably
partly due to the directivity of the loudspeakers and microphones: more sound power
radiated to the microphone directly in front of the loudspeaker than to the other one
being slightly to the side. This partly explains the somewhat inconsistent-looking
results shown in Table 6. As such, the results shown in Table 6 give some insight on
how the sound field can behave near the error microphone, but the results are not
comparable between each other.

Out of the two tested algorithms, the Wavelet performed better on almost all
signals and test sites and lost only with a really small margin when LFxLMS performed
better. Thus, Wavelet can be deemed better out of the two algorithms for this
application.

For future work, the first thing to be considered is to lower the secondary path
latency. As can be seen from Figure 19, the secondary path latency in the prototype
system was about 9 ms, acoustic propagation time included. Most of the latency
was caused by the sample rate conversion, and thus, a quicker method could be used.
However, the computational burden of the algorithms was already too high to the
test program. This issue could be improved by increasing the buffer size, which would
unfortunately lead to an even bigger latency. On the other hand, the program was
not optimized, and could potentially handle the active noise control if special care
was put into it. Another limiting factor of the prototype system was the static ANC
algorithm parameter values, whereas simulations could be run on a huge number of
different combinations and choose the best out of those. In theory, some machine
learning or artificial intelligent based approach could be used to control and optimize
these parameters while the system is running.

One final important aspect to note is that all the tested algorithms were LMS-
based and also previously researched. The fundamental problem of ANC is to produce
anti-noise which very accurately has the same amplitude and inverted phase than
the primary noise, at the measurement location. Feedback ANC systems have the
additional limitation of only working with the samples from the past, and not having
any other information of the upcoming samples than the statistics of the error signal.
LMS-based alorithms offer a convenient way of predicting the upcoming noise, but as
shown in the results, it has major limitations with broadband signals. If, somehow,
the upcoming samples could be more accurately predicted into the future, then the
problem of feedback ANC would essentially turn into a feed-forward one, simplifying
the system quite a bit. However, such a method has not yet been developed.

To summarize the results, the system worked as expected. The noise attenuation
was good, over 6 dB on the fan noise signal with strong tonal components, but much
lower on the other signals with more time-varying contents. If only the multi-tonal
fan noise was considered, the system could be argued to provide adequate attenuation,
thus meeting the goals set for the system. However, when considering broadband
noise, the results are reasonably good depending on the signal but nowhere near
the comfort, easiness of use and noise attenuation level that active noise cancelling
headphones provide. Thus, while the results did not outright deny the possibility of
using a similar feedback ANC solution in the future, they did not give enough evidence
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supporting the feasibility of using such a system, either. All things considered, this
kind of system can not compete with the active noise cancelling headphones – silence
in a bottle was not yet realized. Further study is thus required to truly move the
buds out of ears.
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7 Conclusion
The aim of this thesis was to evaluate the feasibility of using a mobile, easy-to-use
active noise control (ANC) system in real 3D-spaces. The core idea behind the system
was to provide the easiness of active noise canceling headphones without the user
having to wear anything in their ears, while still providing adequate noise reduction.
To achieve this goal, different ANC algorithms were simulated, after which two of
those algorithms were tested with a physical prototype system.

ANC systems can be divided into feed-forward or feedback systems based on if
they have a reference signal available or not, and into local, global or spatial systems
based on the effective control area of the system. Even though feedback systems have
major drawbacks compared to feed-forward ones, they remain as the only reasonable
approach, as feed-forward systems require one or multiple coherent reference signals,
which cannot be expected to be available in varying 3D-spaces. The effective area
of this feedback controller was then decided to be local control, meaning that one
discrete point in the room is being attenuated instead of the whole enclosure or
a subspace of it. This was decided due to the other two approaches, global and
spatial control, either requiring a large number of microphones and loudspeakers, or
forcing the user to recalibrate the system for each new space they take it to. These
requirements would lead the system too far away from the comfort of headphones.

Multiple least mean squares (LMS) based ANC algorithms were introduced. Out
of these, three ANC algorithms were simulated using a simulation environment
programmed in Python: leaky filtered-x least mean squares algorithm (LFxLMS),
functional link artificial neural network -based LFxLMS (FLANN), and wavelet packet
transform based LFxLMS (Wavelet). Out of these three, LFxLMS and Wavelet
were then tested with a prototype system. The prototype system consisted of one
secondary source and one error microphone in addition to a primary source playing
out the primary noise for the measurement and an additional control microphone
to measure how the sound field behaves near the error microphone, and they were
controlled with a test software programmed with Juce. The measurements were
conducted on three different test sites: in an anechoic room, in an office room,
and in a light-weight phone booth. The system minimized the expected squared
sound pressure at error microphone location, meaning that if such a system would be
commercialized as such, the user would have to wear a microphone near their ears,
limiting the practical use of the system. A few different virtual sensing techniques
were briefly introduced, but they were not implemented to the prototype system in
this thesis work.

The results showed that the system worked well on steady multi-tonal fan noise,
achieving a total attenuation of about Leq,Z = 6 dB. However, the system performed
poorly on signals varying quickly in time, such as with speech signal. Secondary path
latency was identified to be the main limiting factor of the system with the help of
simulations. As the prototype system did not perform well on broadband noise, all
the goals set for the system were not satisfied, and thus, the results did not support
the feasibility of using a mobile, easy-to-use ANC system to reduce broadband noise
at a single point in a 3D-space. In particular, the prediction capabilities of the



62

feedback controller was shown to be of a major consideration. However, the results
cannot be interpreted to outright deny the possibility of developing such a system,
either, as only a few relatively simple ANC algorithms were tested, all of them being
based on the LMS algorithm. In addition, the prototype system was identified to
include a major limitation in the form of a long secondary path latency.

Multiple possible improvements to the system were discussed. First, the secondary
path latency should be minimized at all reasonable cost. Second, a hybrid approach
could be used to obtain a reference signal from a dominant direction. Third, machine
learning or artificial intelligence could be applied to the system by either having them
tune the available parameters while the system is running, or to predict the incoming
noise more accurately and further into the future than the linear FIR filters can.
Finally, the scope of this thesis was limited to single-channel ANC, but incorporating
multiple error sensors and secondary loudspeakers could improve the performance
of the system. More research is thus needed to further understand the phenomena
behind feedback ANC and to create a more optimal system.
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