
Aalto University
School of Science
Master’s Programme in Computer, Communication and Information Sciences

Muhammad Faiz Wahjoe

Advancing Disambiguation of Actors Against
Multiple Linked Open Data Sources

Master’s Thesis
Espoo, September 10, 2023

Supervisor: Professor Eero Hyvönen
Advisors: Senka Drobac Ph.D.

Petri Leskinen M.Sc.



Aalto University
School of Science
Master’s Programme in Computer, Communication and
Information Sciences

ABSTRACT OF
MASTER’S THESIS

Author: Muhammad Faiz Wahjoe
Title:
Advancing Disambiguation of Actors Against Multiple Linked Open Data Sources

Date: September 10, 2023 Pages: 56
Major: Computer Science Code: SCI3042
Supervisor: Professor Eero Hyvönen
Advisors: Senka Drobac Ph.D.

Petri Leskinen M.Sc.
Disambiguation is an important step in the semantic data transformation pro-
cess. In this scope, the process sought to eliminate the ambiguity of which person
a record is describing. Constellation of Correspondence or CoCo is a data inte-
gration project focused on historical epistolary data. In its data transformation
flow, actor records from source data are linked to actor entities in an external
linked open data source to enrich the actors’ information with metadata found in
external databases.

This work presents an advanced disambiguation system for CoCo data transfor-
mation flow. The system has managed to deliver a reliable and flexible linking
system that provides advantages,hi such as the incorporation of an additional
external database, novel linking rule definition and implementation, and a more
transparent linking result provenance presentation and management. This work
also evaluates linking process performance in various linking cases by employing
the help of a human expert judge to evaluate whether the proposed valid link
made by the linking systems are indeed accurate or not. The system and the pro-
posed rule configuration delivers a satisfactory performance on the easier, more
common case but still struggles to deliver good precision on rarer edge cases.

There are insightful observations made regarding the data that was observed
during the development and evaluation of the system. Firstly is the importance of
naming similarity in determining a link between two actors and the imperfection
of name similarity in the majority of the valid linking case. This observation
justifies the need for dissimilarity tolerance in naming comparison despite the
importance of naming similarity. This imperfect state of the systems inspires the
several future works that this work proposes. The proposed future works are the
further fine-tuning of the linking rule and selection rule and the advancing the
evaluation by increasing the completeness of the evaluation and the research of a
more automated evaluation process.
Keywords: Semantic Disambiguation, Record Linking, Semantic Web
Language: English

2



Acknowledgements

I wish to thank my mother, father, family, teacher, partner, friends, and
colleagues who have supported me throughout my study. I also want to
express my gratitude towards the personnel of Semantic Computing research
group and the CoCo project for giving me the opportunity to learn, research,
and grow from contributing in this project. I also want to express special
gratitude for the help and supervision of my thesis for my supervisor, Prof.
Eero Hyvönen, and my advisors, Drobac Senka, Petri Leskinen, and Mikko
Koho.

I also want to thank the Indonesian community in Finland, all the student
cafeteria staff, and the Aalto community in general, especially at Täffä, A
Bloc, KOT.Otaniemi, Computer Science building, and TUAS for supporting
my daily life at the wonderful Otaniemi Campus.

Espoo, September 10, 2023

Muhammad Faiz Wahjoe

3



Abbreviations and Acronyms

SPARQL SPARQL Protocol and RDF Query Language
RDF Resource Description Framework
RL Record Linking
CoCo Constellations of Correspondence Project
Kanto Kansalliset Toimijatiedot Vocabulary
W3C World Wide Web Consortium
Regex Regular Expression
JSON JavaScript Object Notation
HTTP Hyper Text Transfer Protocol
API Application Programming Interface
NLP Natural Language Processing
SKOS Simple Knowledge Organization System
CSV Comma-Separated Values

4



Contents

Abbreviations and Acronyms 4

1 Introduction 7
1.1 Constellations of Correspondence (CoCo) . . . . . . . . . . . . 7
1.2 Areas of Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 12
2.1 Entity Linking and Record Linking . . . . . . . . . . . . . . . 12
2.2 Edit Distance & Jaro-Winkler String Comparison . . . . . . . 14
2.3 SPARQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Contextual Task Definition 16
3.1 CoCo Data Transformation Flow . . . . . . . . . . . . . . . . 16

3.1.1 The Available Comparison Information At Hand . . . . 17
3.1.2 The Goal . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Methods 19
4.1 SPARQL Query for Finto Incorporation . . . . . . . . . . . . 19
4.2 Pool: Justification and Analysis . . . . . . . . . . . . . . . . . 20
4.3 Comparison Rule Design . . . . . . . . . . . . . . . . . . . . . 21

4.3.1 String Matching Method . . . . . . . . . . . . . . . . . 22
4.3.2 Time Window Matching Method . . . . . . . . . . . . 25

4.4 Tools Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.1 Python 3 . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.2 Python Record Linkage Kit . . . . . . . . . . . . . . . 25

5 Implementation 27
5.1 Disambiguation Flow Broad View . . . . . . . . . . . . . . . . 27

5



5.2 Finto Incorporation through SPARQL . . . . . . . . . . . . . 28
5.3 Comparison rule: implementation . . . . . . . . . . . . . . . . 31

6 Result and Evaluation 33
6.1 Linking Result Presentation . . . . . . . . . . . . . . . . . . . 33
6.2 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Performance Discussion . . . . . . . . . . . . . . . . . . . . . . 35

7 Discussion 38
7.1 Linking Performance Discussion . . . . . . . . . . . . . . . . . 38
7.2 System’s Strength and Challenges . . . . . . . . . . . . . . . . 39
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8 Conclusions 42

A SPARQL Query for Finto 49

B Source Code for Linking Operation 52

C Source Code for Custom Comparison 54

6



Chapter 1

Introduction

Disambiguation is an important phase in semantic data transformation [26].
One of the actions to achieve disambiguation is through a task of automati-
cally disambiguating and linking the entity name mentions in a textual source
to entities in a knowledge base, an activity that could be categorized as en-
tity linking or record linking. One of the goals of this process is to enrich
the dataset by taking advantage of information present in external sources,
thereby obtaining more complete information about our dataset.

In this enrichment, it is necessary to align concepts and entities between
local data models and external data. These entities can describe various
concepts such as location and actor information. An actor is a person or
a group of individuals who play a role within a correspondence such as a
sender, receiver, or being mentioned in the correspondence. Actor informa-
tion alignment aims to find the matching entities of the actors present in the
local dataset with the entity in the external sources. This process is an im-
portant yet challenging step, and researchers have proposed various solutions
to this problem in different projects and datasets [17, 30, 36]. This thesis is
part of the Constellations of Correspondence project (CoCo). As such, this
work addresses problems focused on the dataset and cases that occur within
the CoCo project context.

1.1 Constellations of Correspondence (CoCo)

Constellations of Correspondence: Relational Study of Large and Small Net-
works of Epistolary Exchange in the Grand Duchy of Finland is a project
aimed to unite epistolary metadata of siloed collections of many cultural
heritage institutions in Finland and provide access to the harmonized linked
and enriched dataset [51]. The output of this project is a linked open data

7



CHAPTER 1. INTRODUCTION 8

publication of letters and a metadata catalog. Representing cultural data
in linked data format has been shown to offer potential benefits [20]; these
benefits could also be harvested from project CoCo. The project collects and
transforms the data from various sources into a harmonized and centralized
knowledge base. The transformation process is accompanied by the reconcil-
iation of the identities of pivotal entities, including people. The knowledge
bases created in previous relevant works hold significant potential for linking
as they contain much relevant yet unmentioned information about our enti-
ties [23, 31]. Hence, the recognized people are linked to established linked
open data registers to enrich their metadata information with information
not available from the source data. These open data registers include Wiki-
data [10], BiographySampo [23], and AcademySampo [31].

A simpler enrichment software that links actors entities to appropriate
entities in an external database and enriches the data in our knowledge base
has been previously developed for other projects [30]. However, some inac-
curate results are being yielded from the more difficult cases in the various
enrichment processes. This indicates that there is room for improvement
that could be filled.

1.2 Areas of Focus

The main objective of this thesis is to design and implement improvements
to the early-stage implementation of the CoCo disambiguation machine. The
improvements were needed to overcome difficult cases in the disambiguation
process and improve the quality of disambiguation and entity linking results.

In making the improvement, this thesis has chosen several areas of focus.
These areas of focus define the scope and limitations of the improvement that
was made in this thesis. They were formulated by discussing the current state
of the disambiguation process with the developers of the system. We clarify
the steps taken during the process of disambiguation and analyze its strengths
and weaknesses, and we come up with ideas for improvements. These ideas of
improvements were then narrowed down based on the feasibility and impact
on the system and formulated in several areas of focus.

The first area of focus is linking additional external databases as the
sources of our disambiguation process. Linking the actors to their represen-
tation in external databases is one of the established steps in the current
disambiguation process. We take advantage of additional information pro-
vided in external databases to enrich our actor’s information with data not
present in our source dataset. This research aims to further broaden the links
by proposing the incorporation of additional external database, namely the



CHAPTER 1. INTRODUCTION 9

vocabularies of Finto1. Finto is a Finnish ontology service maintained by the
National Library of Finland [48]. One of the ontologies that it held is the
Finnish actor ontology, Kanto. Kanto has been used in other projects that
are related to Finnish individuals [49]. As such, this ontology was chosen as
it contains information of actors of some historical significance with a Finnish
connection. This makes it an apt choice due to the similarity of focus of the
CoCo project which is also mostly focused on actors with Finnish relations.

The second area of focus is exploring how to further use potentially
helpful information to help the disambiguation process. The source dataset
holds various information about a single correspondence and its relevant ac-
tors. Our current implementation and other similar projects have shown and
proved the potential benefits of incorporating this information in the disam-
biguation process [7, 26, 30]. The earlier implementation uses the name of the
actors and florition date information to help disambiguate the actors. This
research will explore the methods of incorporation of other existing infor-
mation such as writing place and other locational information. In brief, this
research will incorporate locational information by comparing the actor’s and
correspondence’s information. These improvements aim to help the disam-
biguation system carry more accurate disambiguation and overcome difficult
cases that could not able to be handled before.

The third area of focus is improving the utilization of entity linking results
to help the disambiguation process. Entity linking is one of the steps of
the disambiguation process where one tries to find in external databases the
entity that represents an actor mentioned in the source dataset. These entity
candidates are then pooled and ranked, so we have the best entity candidate.
As of the earlier implementation, the pooling of results still uses a simple
methodology that cannot cover corner cases. An example of the case is the
name variation between “Hedvig Raa” and “Hedvig Forsman” which refer
to the same person with a family name very different from one another.
In this case, the earlier implementation would incorrectly assume that two
individuals who have these names are single individuals. This thesis explores
and proposes a novel method for pooling and refining these candidate lists,
so we can improve how the system finds the best linking candidate.

The fourth area of focus is overcoming irregularities in actors’ names. In
the entity linking process, we aim to find entities that describe the same
actor as our data source describes. The intuitive way to do this is to look
for actors’ entities with the same name, however, there are irregularities in
the actor’s name across the various datasets that we have. The current im-
plementation has not addressed all of those cases, this thesis aims to address

1http://finto.fi/en/



CHAPTER 1. INTRODUCTION 10

those yet unaddressed cases by implementing improvements described in the
previous three areas of focus. This area of focus could be seen as one of the
goals that measure the improvement that the thesis proposes to the current
disambiguation system.

1.3 Research Questions

There are challenges to design and implement these improvements. As such,
we formulate these research questions to address the challenges mentioned in
the previous section.

• RQ1: How to use the additional contextual information to improve the
disambiguation process?

• RQ2: Can candidate matches be combined from several sources to
improve disambiguation?

• RQ3: How to incorporate Finto as an additional external data source?

• RQ4: How to take advantage of the result of the disambiguation process
to overcome irregularities in the actor’s name?

1.4 Methodology

The scope and limitation of improvements are defined through areas of fo-
cus. Then, we implement the proposed improvement. The result of the
improvement is finally measured.

1.5 Structure of the Thesis

This section gave an introduction to the content and structure of the thesis.
The rest of this thesis is organized as follows. Section 2 gives the background
and explains the relevant concepts and the reasoning behind this research.
Section 3 elaborates on the environment in which the thesis research was
implemented, this includes the current implementation of the disambigua-
tion machine. Section 4 elaborates on the design and reasoning behind the
improvements proposed in this thesis. Section 5 elaborates on the imple-
mentation of this research namely the improvements that were done to the



CHAPTER 1. INTRODUCTION 11

disambiguation machine. Section 6 discusses the evaluation process method-
ology and evaluation result. Section 7 discusses the results and notable ob-
servations and insights obtained. This chapter also discusses future work
suggestions. Finally, Section 8 gives the conclusion of this thesis.



Chapter 2

Background

This section discusses the concepts and technologies that are relevant to
the thesis. First, the definition of Entity Linking and Disambiguation is
discussed. Secondly, the chapter discusses the data transformation and data
transformation flow in the CoCo project. Lastly, all the relevant concepts
and techniques that are implemented in this work are elaborated.

2.1 Entity Linking and Record Linking

The ever-consistent rise of available data has increased the need for efficient
and optimal data processing and analysis. In many large-scale data systems
and data analytics projects, there is a growing need to integrate data from
several sources. This data integration promises benefits that are not possible
in a single, isolated database approach. These benefits such as improving
data quality and data enrichment from various sources would enable a much
better analysis and yield more insights compared to an isolated approach.
This has been proved through several cases where data integration has offered
insight where an individual database can not, such are adverse drug reaction
identification and terrorism prevention [3, 6, 13, 21]. One of the important
parts of data integration is the task of identifying and matching individual
records from different databases that refer to the same real-world entities,
commonly known as data matching. There are various activities that share
the same goal as data matching yet have slight differences in their exact
description [7, 27]. Two examples of these tasks are entity linking and record
linking.

Entity linking and record linking have been applied and shown their ben-
efits in various cases such as census survey [44], health data management [15],
and crime detection and prevention [43]. These benefits have been harvested

12



CHAPTER 2. BACKGROUND 13

for a significant amount of time ever since the term record linkage was first
introduced in 1946 [9]. Since record linking first conception, there has been
continuous development, and new application cases are continually found.
Today, numerous data matching techniques have been introduced and there
are also commercial data matching tools available in the market that can be
used both freely or with monetary purchase [7].

Entity linking is the task of automatically disambiguating and linking the
mentions of entity names in a text to entities in a knowledge base [4, 5, 19, 26].
There are several topics that share similar definitions with entity linking,
such as Named Entity Linking, Named Entity Disambiguation, and Record
Linking [18, 26, 32, 38, 47]. The ambiguity of natural languages means that
a single named entity may have multiple names, and a single name could
be shared between several different named entities. This makes the intuitive
and simplest method of searching for a name match in the knowledge base
insufficient to achieve the accuracy that we seek.

Record linking is the task of matching records from several databases or
sources that refer to the same entities [47]. Similar definitions are also pre-
sented under different names such as data matching or data linkage, which is
defined as a task of identifying and matching individual structured records
from disparate databases that refer to the same real-world entity [7, 16, 24].
An example of a case is matching people from two different person regis-
ters, which both contain structured data about each person expressed with
different metadata schemas [26]. This problem differs from entity linking
because the entity that needs to be linked resides in a structured form com-
pared to entity linking where the data resides in a more unstructured format.
However, record linking techniques and approaches could be used in entity
linking problems if we arrange disorganized corresponding attribute values
from unstructured data and put it in a more structured form [47].

This task of matching records between different databases that describe
the same real-world entity is challenging for several reasons [7]. The first
is the lack of unique entity identifiers and the varying data quality between
the databases. We can define an identifier as a label that can be used to
identify a record. For example, the common identifier of a human is the
family name or given name. However, using the name as the main attribute
has numerous problems that have to be recognized and addressed before
being used [12, 41, 42]. In this case, as has been explained above, the quality
and completeness of the data could vary and not all databases contain the
full name of a person. This is corroborated by the fact that a person could
use different names. Secondly, the challenge comes from the computational
complexity. When we are trying to find a match, we potentially have to
compare each record from one database to another to determine if a pair of



CHAPTER 2. BACKGROUND 14

records corresponds to the same entity or not. The third challenge is the lack
of training data containing the true match status. In many cases, the true
status of two records that are matched is not known, this has resulted in the
absence of a gold standard. This makes the assessment of a linking process
accuracy challenging.

2.2 Edit Distance & Jaro-Winkler String Com-
parison

Information comparison plays an important role in data matching. When
matching data in an integration process, a comparison is done to match
common IDs or attributes between databases. However, the ideal condition
when an ID is present in a neat manner where an exact comparison could be
done is rarely the case [7]. The deficiency of data quality is widely recognized
as one of the challenges in data matching [1, 29, 45]. As such, the data
matching system needs to recognize and adapt its comparison method to
address this problem. In the string comparison case, this notion translates
to the importance of employing a comparison method that does not only
return a binary "same" or "different" comparison result but rather denotes
how similar the attributes being compared are to one another.

The approximate string comparison function is a function that is based
on the concept of edit distance that counts the smallest number of edit oper-
ations that are required to convert one string into another [39]. This function
is used when we are evaluating the similarity between two words or strings.
This is useful when comparing strings that are similar but not identical.
There are several edit distance string comparison functions that have been
introduced [39, 47].

In this work’s context, the variations of strings could come from a person’s
name variation, location name variation, or even an accidental mistake such
as a typo. Speaking in broader terms, data matching cases often involve
low-quality data including cases such as typos, typographical variations, and
changes over time such as marital name changes and spelling evolution [7].
In handling this case, the edit distance string comparison would be a better
fit compared to exact string matching.

The Jaro-Winkler string comparison is a string comparison technique
developed by Matthew Jaro and William Winkler for their work in the US
Census Bureau [25, 54]. This function measures the edit distance between
two strings. This function is a variant of the Jaro string distance metric. The
Jaro distance metric calculates string similarities by comparing the number



CHAPTER 2. BACKGROUND 15

of matching characters and transpositions between two strings. The Jaro-
Winkler modifies Jaro distance by giving importance to the similarity at the
beginning of the strings.

This function is specifically intended for the comparison of names, one of
the typical cases of data matching, especially in a census activity [7]. This
function also performs better than several other techniques on other relevant
and similar research cases [8]. Jaro-Winkler is widely used for comparing
strings in entity linking [14, 33] and record linking [2] activities due to its
good performance, especially in comparing short-length strings which are
common in name comparison [52].

2.3 SPARQL

SPARQL Protocol and RDF Query language (SPARQL) is a semantic query
language for databases to retrieve and manipulate data stored in RDF Format
[46]. SPARQL supports various capabilities similar to SQL and also allows for
a query to consist of triple patterns, conjunctions, disjunctions, and optional
patterns.



Chapter 3

Contextual Task Definition

This section elaborates on the goal of this work. Given source data informa-
tion, we want to retrieve the most appropriate linking match. In the previous
section, we gave readers the related concepts and notions. In this section,
we want to make the reader understand the activity that we are doing in
this project, namely given the source data and external databases we want
to find the correct link.

3.1 CoCo Data Transformation Flow

Data transformation in CoCo aims to transform data from various sources
and formats into harmonized RDF data that will be incorporated into the
CoCo knowledge base. Figure 3.1 shows the flow of the data transforma-
tion process in CoCo and also highlights the disambiguation system’s place
in the data transformation flow. The flow follows a typical pattern of a
custom pipeline of data transformation that converts source data into RDF
format and also handles accompanying issues such as semantic disambigua-

Figure 3.1: Disambiguation Flow

16



CHAPTER 3. CONTEXTUAL TASK DEFINITION 17

tion [22, 34, 35]. Several phases of data-related operation make up the CoCo’s
data transformation flow. These phases start with transforming the multi-
formed source data into an RDF file. The complexity of this step varies
by each database. The well-structured source data could be transformed
simply by extracting the information as it is while the less well-structured
dataset requires a more sophisticated transformation method. For example,
on harder source data, NLP techniques such as lemmatization are used to
extract and transform relevant information such as the number of letters
being exchanged in a correspondence. The next step is disambiguating and
enriching the data and integrating it into CoCo’s knowledge graph. The fo-
cus of this work is the data disambiguation and record linking phase. Data
semantic disambiguation refers to removing the uncertainty of meaning from
a possibly ambiguous text data [26]. This process tries to reconcile the iden-
tities of potential entities, including person entities. Reconciliation is done
by finding entities in an external database that describe the same real-life
entities, removing uncertainty. The process is referred to as entity linking or
record linking. After finding the suitable match, the newly-gained informa-
tion provided about that entity will complement the information provided by
the source data and will be used to enrich their metadata information and
subsequently improve CoCo’s knowledge base quality.

Prior to this work, entity linking operations have been implemented to
disambiguate actor data in the CoCo’s data transformation flow albeit in a
simpler form. The implementation works by making queries to an external
database and making a rule-based selection to select the most appropriate
entity link for an actor. The rules were based on name and floruit time or
active time of correspondence. There are several noticeable disadvantages
of this method. Firstly, significant resources and time are consumed when
making query requests to external databases during the data transformation
process. Secondly, the compatibility of rule definitions with each database.
For example, some databases do not support fuzzy string matching for names,
limiting our queries to exact string match cases. Thirdly, rule interoperability
challenge, as each database has its own data schema, the implementation of
one rule needs to be specified to cater to each database. While adjusting the
rule should be simple, this would mean we have to make specific adjustments
to each database matcher should we make adjustments to the rule.

3.1.1 The Available Comparison Information At Hand

Entity linking and record linking work by comparing metadata information
that describes an entity in two different sources [47]. This information was
retrieved from two kinds of sources. The first is from the source data and the



CHAPTER 3. CONTEXTUAL TASK DEFINITION 18

second is from external databases. The two pieces of information are then
used to compare, score, and select the possible link between actor entities
from these two sources.

The source data contains various information about actors that are rel-
evant to the correspondence that’s being described in the data. The actor
typically is the sender and receiver of a particular correspondence but some-
times also refers to people mentioned in the letters being sent in the corre-
spondence. This information was extracted from the source data through the
data transformation flow alongside the extraction of correspondence data. As
the source data mainly describes the correspondence, the metadata of the rel-
evant actors is often incomplete and may not be structured properly. Hence,
the metadata needs to be extracted and arranged in a structured manner
before an effective comparison process can be performed. These challenges
are solved in the steps preceding the data enrichment process and as such
are outside the main scope of this work.

The external database also contains various information about actors that
could be mentioned in the source data. The information could even be more
complete than the one we found in the source data as these databases could
complement information not present in the source data and some databases
may aggregate data from multiple sources [23, 48]. The data is stored and
retrieved in various manners according to each database’s specifications, and
it is the system’s responsibility to match and use this data.

3.1.2 The Goal

The goal of this work is to perform named entity linking between the actors
mentioned in the source data and actors in the external database. The linking
is done by finding the appropriate entity pair of the actors in source data
with actors described in the external database by comparing their metadata
information.

A much simpler implementation of the disambiguation system has been
used prior to this work [30]. However, there is a need to improve this system.
The need for improvement arises from its inability to handle the more difficult
cases such as failing to detect a link between two entities describing the same
actor but using different names. Aside from this, some aspects could also be
improved such as result presentation and management.



Chapter 4

Methods

This section will elaborate on the methods being used in tackling the problem.
First, the chapter will discuss the incorporation of Finto vocabularies into
the process. After that, the chapter discusses the justification and analysis
of actor information pooling. Thirdly, the chapter discusses the design of
the comparison process to find matching entities defined as comparison rules
before briefly touching on the tools used in this thesis.

4.1 SPARQL Query for Finto Incorporation

Finto is a centralized service for interoperable thesauri, ontologies, and clas-
sification schemes for various subject areas. Finto was developed collabo-
ratively by various institutions in Finland to provides a Finnish national-
level semantic web ontology infrastructure based on centralized ontology ser-
vices. It has been used by numerous users throughout Finland [28, 48]. The
Kanto ontology service contains numerous actors’ information that has a high
chance of being relevant to this thesis due to the shared focus on Finnish ori-
gin and country. This potential is the main reason for the incorporation of
Kanto in our enrichment process.

To retrieve the information, Finto as an ontology service provides a
SPARQL endpoint that could be publicly accessed through an open SPARQL
endpoint1. This service provides the users with support including the full
feature of data selection and retrieval provided by SPARQL similar to other
SPARQL services. However, there is a rate limiter that limits the number
of rows or actors retrieved in a single request. This limitation can be easily
managed by dividing the requests into smaller ones in larger numbers.

1"http://api.finto.fi/sparql

19



CHAPTER 4. METHODS 20

4.2 Pool: Justification and Analysis

Finding an entity link in external databases means we need to make an in-
formation request to the external database servers. This information request
could take a different form depending on how external databases provide
an interface for us to retrieve relevant information. Some databases provide
SPARQL query endpoints while some others only provide JSON HTTP API
endpoints where we have to follow their request format. Typically, rules
and conditions are specified in the information request, to receive only the
relevant entities’ information. These specifications could include name speci-
fications, date of birth information, or locational information. This approach
has been used and has yielded adequate results.

However, there are several disadvantages that could be noticed from this
approach. The first disadvantage is the significant amount of time spent due
to network and computing load. The typical implementation of this method
is to make a request to an external database for every actor that we try to
find. As the size of actors that we want to process continues to increase,
so does the computing time as we have to wait for the external database
to return our request. Moreover, we have to also deal with the limitations
defined by the database such as rate limit and service availability. There is
no practical way of solving this issue should we come across it as we have no
control over their service. It is also worth noting that if we want to make
adjustments (e.g. make adjustments to the query condition) then the whole
process needs to be re-run again and the chances of us running into problems
such as the limit increase.

Secondly, the rules definitions compatibility of each database is a chal-
lenge. The implementation comparison process is dependent on information
selection features offered by each external database. If it provides a SPARQL
endpoint, then we could utilize the capabilities of SPARQL for selecting and
querying relevant information. However, if only a less sophisticated endpoint
is available, say a JSON Web API that supports filtering by full name only,
then our rule’s implementation could be hindered. A sophisticated com-
parison is even rarer to be supported, for example, some database does not
provide support for fuzzy string matching for name and this makes our query
to that database to be limited to exact string match case.

Thirdly, rule interoperability challenge, as each database has its own data
schema, the implementation of one rule needs to be specified to cater to each
database. While adjusting the rule should be simple. This would mean
that we have to make specific adjustments to each database matcher if we
make adjustments to the rule. This is related to the previously described



CHAPTER 4. METHODS 21

disadvantages where the differing comparison feature that is provided by each
external database makes managing and adjusting them to be a challenge as
each database implementation needs to be specifically adjusted one by one.

Actor pooling is a way to answer and fix these disadvantages. An actor
pool is created by retrieving all relevant entities from each external database
that we incorporated and storing the information in a single file also referred
to as a pool. This approach eliminates the need for making an external re-
quest every time we want to execute the linking process, and removes the
need to tailor rule implementation to each database as the information com-
ing from different databases is consolidated and stored in a uniform structure
in a single file. This also significantly reduces the reliance of our linking pro-
cess on the availability of external database services. Practically, we only
need the connection to external databases when we are creating or periodi-
cally updating the pool, and we can even execute the linking process without
the need for an internet connection. Aside from the external database pool,
we also create a local actor pool. Similar to its external database version, this
version consolidates and stores actor information in a uniformly structured
pool file. The difference is that this pool is created with the actor informa-
tion obtained from our source data. As now the metadata information is
consolidated in two pools that we want to match, we can treat this problem
as a record-linking problem and use relevant record-linking techniques to find
the link between matching records [47]. The pool that consolidates external
databases’ actors will be referred to as External Pool or Pool-E and the pool
that consolidates sources data actors will be referred to as CoCo Pool or
Pool-C.

Despite its advantages, there is a notable disadvantage that has been
identified which is the need to periodically synchronize the external pool
with its external source. As we don’t make a real-time connection to external
databases when executing the linking process, it is possible that changes that
were made in external databases are not reflected in our external pool. As
such, we have to periodically update and synchronize the external pool.

4.3 Comparison Rule Design

The linking process scores every possible link between actors in the two pools.
This scoring was done by comparing metadata that describes an actor entity
from Pool-C to the possible link entity stored in our Pool-E. The idea is that
the more similar the metadata are the likelier that the link is valid. This
metadata comparison has also been implemented in similar record linkage
cases [7, 47]. In this case, the comparison processes are defined through



CHAPTER 4. METHODS 22

Table 4.1: CoCo Pool Information
No Field Description Example

1 Full Name The full name of an actor Jeanette Von
Schantz

2 Given Name The given name Jeanette
3 Family Name The family name Schantz
4 Particle The particle that attached to the name of actor Von
5 Gender The gender Female

6 Start year The start of active corresponding time also known
as the start floruit time 1808

7 End Year The end of active corresponding time also known
as the end of floruit time 1835

8 Places The places that’s related
to the actor Lappeenranta|Mainiemi|Turku

9 Type The type of actor. Could be Person, Group, or
Family E21_Person

10 Source The dataset where the actor information
came from http://ldf.fi/coco/source/nationalarchive

several rules. These rules will be used to measure how well each possible
link performs in each rule. In the end, the detailed score of each rule is then
stored and evaluated to determine whether a possible link is valid or not. In
general, the higher the total score of a possible link, the more likely it is to
be valid. Based on this fact, we can set up a threshold. If the sum of the
score of a link is above the threshold, we would determine that as a valid
link; otherwise we cannot say it’s a valid link. Aside from a threshold, a
more elaborate way of processing the rule result to determine the validity of
the link could also be explored.

The designing process of the comparison rules started by looking at what
available information can be compared. The list of metadata information
from CoCo and the external pool is presented in Table 4.1 and Table 4.2. This
information was then used in a comparison process. The comparisons can be
grouped into two categories: string matching comparison and time window
comparison. String matching comparisons are used to compare actors’ names
and places’ names while time window comparisons are used to compare the
active correspondence time (floruit time) with their time of living.

4.3.1 String Matching Method

For location and person name, a string comparison is done to judge the
similarity between the two names. There are several methods of comparing
the similarity between two strings [7] and in this case, we used the Jaro-
Winkler string comparison method [54]. This selection was based on its
relative performance for the specific case of record linking and its origin where
it was developed and first used in a record linking use case [8, 47, 54]. Despite
both being a string comparison activity, people name comparison is simpler



CHAPTER 4. METHODS 23

Table 4.2: External Pool Information

No Field Description Example
1 Full Name The full name of an actor Pehr Gerhard Dahlbeck
2 Given Name The given name Pehr Gerhard
3 Family Name The family name Dahlbeck
4 Gender The gender Male
5 Birth year The birth year 1791
6 Birthplace The birth place Tukholma
7 Death year The death year 1866
8 Death Place The death place Pori

9 Places The places that’s related
to the actor

Pori|Raahe|Ruotsi|
Turku|Turun akatemia

than location information comparison. This is because name comparison
cases are direct comparisons between two strings. However, this is not the
case for locational information.

Locational information is the names of the places that are somehow
related to a particular actor. This information is extracted from various
columns and properties from both source data and external databases. Due
to this broad scope, each actor record could contain multiple places that are
deemed relevant to the actor. In the external pool, location information is
structured in 3 different columns: death place, birthplace, and general places.
Locational death and birth are structured into their own column because they
typically are explicitly described as birth and death placed in the external
databases. All other places mentioned are being put into the general "places"
columns. It’s worth noting that the locations mentioned in these columns
are not mutually exclusive. In the CoCo pool, data is pooled into one general
"places" column. This was done because the locational information that we
obtain from source data rarely has a specific description of the relationship
between an actor to a place. Often, the locational information only indicates
where the correspondence is happening.

There are several challenges in comparing this location name information.
First, the comparison only compares the name of the location. Location
similarity is only determined by how close the location names are, this leaves
a possibility where if a location is referred to with a different name or with the
name of a relevant geographical place of the actual place the system would
have no knowledge of that similarity. For instance, if in the CoCo pool,
the location name is described as “Helsinki” while in the external pool, it’s
described as “Uusimaa” or “Finland" then the system would regard these two



CHAPTER 4. METHODS 24

places as clearly different places. Second, as in CoCo places, we don’t have
an exact description of what is a location’s role toward the author; we cannot
make a specific comparison for birthplace and death place. For example, if
an actor has a birthplace named “Helsinki” in the external pool and an actor
has a places value of “Helsinki|Turku” in the CoCo pool, we would have no
means of certainly knowing that the Helsinki in the CoCo pool refers to the
birthplace or not related to the birthplace of the particular actor. We just
know that the actors have some connection to Helsinki.

The third challenge is the data completeness difference. The completeness
of how a data source describes a particular person varies heavily. A case
could occur where an actor could be described in the CoCo pool by having
only one relevant location mentioned while in the external database, the
person is being described as having multiple relevant locations, including the
location mentioned in the CoCo pool. This condition makes comparing the
location a bit difficult. One intuitive approach would be to count how many
location names are mentioned both in the CoCo pool and the External pool
and compare it to the number of total mentioned locations in both pools.
This approach is based on Jaccard distance, a statistic for gauging similarity
between two sets by measuring the size of the intersection divided by the
size of the union of the sample sets. Jaccard distance is commonly used for
comparing and gauging similarity between two sets [40, 50, 53]. However,
while this approach sounds logical and appropriate for this case, it would
favor record pairs with more mentions of the location name, even if they
have proportionately more overlapping location names than pairs with fewer
mentions. Another approach would be to count how many location names
differ, i.e., the location mentioned only in one of the pools. An educated
guess could be made that the fewer the differing locations are, the likelier
that the two entities are describing the same person. However, similar to
the previous approach, the pair with completeness imbalance would unfairly
be judged as being less likely to be a valid link. To address this situation,
the chosen approach is a modified version of the Jaccard-inspired approach.
First, the number of location names mentioned in both sources is counted,
and then this number is divided by either the number of locations mentioned
in the CoCo pool pair or the number of locations mentioned in the external
pool pair depending on which has the lower number. The reasoning behind
this is if the number of mentioned places in either pool is X then there should
be at most X location pair that exists.



CHAPTER 4. METHODS 25

4.3.2 Time Window Matching Method

Time window comparison methods were used to compare the floruit time
of an actor. Floruit time is the time window where the particular actor is
actively engaged in correspondence. Typically, it starts from the start of the
earliest correspondence activity and lasts until the end of the actor’s latest
correspondence activity. The comparison was done by determining whether
the time window is sufficiently overlapping each other. The comparison takes
into account the start of the time window, the end of the time window, and
a specified amount of buffer time. This approach is similar to the way that
it was implemented in the previous simpler disambiguation program in the
CoCo project.

4.4 Tools Used

There are a myriad of software tools that could be used in building this
system. Selecting the right tool would significantly improve the develop-
ment and performance of this system. This thesis has curated tools that are
deemed to be most appropriate for this thesis’s tasks. The selection is based
on several factors such as functional capability and community support.

4.4.1 Python 3

Python 3 is a high-level programming language that offers support for mul-
titudes of libraries that support the development of the feature of this tool.
Key factors that support this selection are abundance of helpful and relevant
libraries, tools, and active community support. These factors make devel-
opment in Python 3 comfortable and suitable for our needs. This tool also
uses many SPARQL endpoints provided by various linked open data services
to look for and retrieve information from an actor to create and update the
external pool. Python also has good precedence as it has been used in other
similar projects [11, 18, 30].

4.4.2 Python Record Linkage Kit

Python Record Linkage Kit2 is a Python library developed by Jonathan
de Bruin that links records within or between data sources. The toolkit
provides most of the tools needed for record linkage and deduplication. The
package contains indexing methods, functions for comparing records, and

2https://recordlinkage.readthedocs.io/en/latest/about.html



CHAPTER 4. METHODS 26

classifiers. The package is developed for research and the linking of small or
medium-sized files. This library is chosen for this project as it offers many
helpful features for record linking, including off-the-shelf implementation of
string comparison methods, a customizable record comparison method, and
a transparent and robust linking result presentation that not only shows the
record linking result but also explains why a certain link is given a particular
score.

The typical linking flow consists of several phases. The first phase is in-
dexing also known as blocking, an operation where the library compares pairs
that share the same index. An example would be if the developer puts ’name’
information as an index then the operation would only compare records that
share the exact same name. This operation was done to improve and optimize
the computation needed to do the linking. The second phase is comparison.
In this phase, the library compares the relevant pairs by comparing individ-
ual columns with functions that can either be built-in functions provided or
custom implementations by the developer. The third phase is classification.
After the comparison is completed, the library would produce the compari-
son score and the developer needs to make the classification to decide which
link is valid. Approaches that could be taken include user-defined rule-based
classification or supervised machine-learning methods.



Chapter 5

Implementation

This chapter elaborates on the implementation of the system features. First,
we explain the disambiguation flow in the CoCo Data transformation. Then,
we move to the Finto incorporation which creates the pool script. Lastly, we
elaborate on the implementation of each comparison rule.

5.1 Disambiguation Flow Broad View

Disambiguation is a phase in the CoCo Data transformation flow. The dis-
ambiguation phase in CoCo consists of several parts. Image 5.1 shows the
broad view of the disambiguation flow. This phase starts by creating and
updating the pool of actors’ information, and then it continues to evalu-
ate selected links between the actors in two pools before finally storing the
linking result. The left side of the figure represents the start of the disam-
biguation process by consolidating actors’ information. Data from different
sources, external databases, and source datasets are consolidated into Exter-
nal Pool and CoCo Pool respectively. The two pools are then used by the
linking script to produce linking scoring results. The linking rule definition
and comparison methods functions are used by the linking script in creating
the linking scoring result. The linking scoring result is stored and used by
the linking selection script to select the valid link by using the linking selec-
tion rule definition. The linking selection script then produces and stores the
linking selection result as a file that contains all the valid links.

In the creation and update of the pool, this work added a new imple-
mentation for incorporating a new external database, namely Kanto. The
implementation of this feature is elaborated in subsection 5.2. Then the
following link evaluation and selection are described in subsection 5.3. Af-
terward, the linking result is stored, evaluated, and analyzed; the discussion

27



CHAPTER 5. IMPLEMENTATION 28

is presented in the section 6.

Figure 5.1: Disambiguation Flow

5.2 Finto Incorporation through SPARQL

Finto incorporation is a part of the pool creation script. This script incor-
porates external databases including Finto in the creation of external pool
files. The scope of the contribution is the initial creation of the query. which
is then incorporated into the script and run to retrieve the data.

The data retrieval is taking advantage of Finto’s SPARQL service which
could be accessed using a typical HTTP Request containing a SPARQL
query. The query used for this feature can be found in Appendix A. The
query’s purpose is to retrieve all actors that have plausible relevance and to
extract their relevant metadata. The query snippet presented in Listing 5.1
shows a part of the SPARQL query used to select relevant actors and extract
their relevant metadata. The relevance of an actor is measured by the time
of living that can be inferred by their date of birth and date of death infor-
mation. A rule is set to determine the boundary of this information is set
within the project’s time of focus.



CHAPTER 5. IMPLEMENTATION 29

After filtering the relevant actors, the metadata is extracted. The meta-
data extracted includes their full name, birthplace, death place, birth year,
and death year. External IDs that connect this particular instance to an-
other external database are also extracted. The extraction of birth and death
information is straightforward, using a select clause that defines relevant
properties to incorporate the information. Type casting is used in several
properties to ensure that the data type matches the information. The more
difficult extraction is the extraction of a name. The ontology does not provide
a property for a neat name extraction. As such, names must be extracted
from their skos:prefLabel property value. The property skos:prefLabel is de-
fined as the preferred lexical label for a resource in a given language. It
is a property that is a part of the Simple Knowledge Organization System
(SKOS), a common data model for sharing and linking knowledge organiza-
tion systems via the Web [37]. In our case, the property is used to describe
the name of an actor. The extractions were done by transforming the label
by using a regular expression to extract the name from the label. The query
presented in Listing 5.2 shows how the transformation is done using regular
expressions to extract the name.

Listing 5.1: Query Snippet for Record Filtering
SELECT DISTINCT (CONCAT(?gname , ’ ␣ ’ , ? fname ) AS ?

fu l lname ) (CONCAT(?gname , ’ | ’ , ? fname ) AS ?names )
( xsd : i n t e g e r (? btime ) AS ? birth_year ) ( xsd :

i n t e g e r (? dtime ) AS ?death_year )
(STR(? bplace ) AS ? bir th_place )
(STR(? dplace ) AS ?death_place )

. . .

WHERE {
? id rd f : type <http :// r d a r e g i s t r y . i n f o /Elements/c/

C10004> ;
rdaa : P50121 ?btime ;
rdaa : P50120 ?dtime .

FILTER( "1650"<STR(? dtime ) && STR(? btime )<"1915" &&
STR(? dtime )<"2010" )

A snippet of the query result is presented in Figure 5.2. The result of this
query is then processed and incorporated into the External pool CSV. This
result contains information that would be incorporated into the External
Pool and used in the comparison process. This information includes the full



CHAPTER 5. IMPLEMENTATION 30

Listing 5.2: Query Snippet for Name Extraction
SELECT DISTINCT (CONCAT(?gname , ’ ␣ ’ , ? fname ) AS ?

fu l lname ) (CONCAT(?gname , ’ | ’ , ? fname ) AS ?names )
. . .

{
# "Juvakoski , I lmari , 1906−2003"
? id r d f s : l a b e l | skos : p re fLabe l | skos : a l tLabe l ? l a b e l

.
BIND( ’ ^( [^ , ]+) , ␣ ([^ ,− ]+) , ␣ [0−9−]{4 ,}$ ’ AS ? rx )

FILTER(REGEX(? l abe l , ? rx ) )
BIND(REPLACE(STR(? l a b e l ) , ? rx , ’ $1 ’ ) AS ? fname )
BIND(REPLACE(STR(? l a b e l ) , ? rx , ’ $2 ’ ) AS ?gname)

}
UNION
{ # "Jalander , Aino Ackt é−, 1876−1944"

? id r d f s : l a b e l | skos : p re fLabe l | skos : a l tLabe l ? l a b e l
.

BIND( ’ ^( [^ , ]+) , ␣ ( [^ , ]+) ␣ ([^ ,− ]+) [ − ] , ␣ [0−9−]{4 ,}$ ’
AS ? rx )
FILTER(REGEX(? l abe l , ? rx ) )
BIND(REPLACE(STR(? l a b e l ) , ? rx , ’ $3−$1 ’ ) AS ?

fname )
BIND(REPLACE(STR(? l a b e l ) , ? rx , ’ $2 ’ ) AS ?gname)

}
UNION
{

# Acke , J . A. G. , 1859−1924
? id r d f s : l a b e l | skos : p re fLabe l | skos : a l tLabe l ? l a b e l

.
BIND( ’ ^( [^ , ]+) , ␣ ( [A−ZÖÄÅ ] [ . ␣A−Z]+) [ ,−]+␣ [0−9−]{4 ,}$

’ AS ? rx )
FILTER(REGEX(? l abe l , ? rx ) )

BIND(REPLACE(STR(? l a b e l ) , ? rx , ’ $1 ’ ) AS ? fname )
BIND(REPLACE(STR(? l a b e l ) , ? rx , ’ $2 ’ ) AS ?gname)

}
. . .



CHAPTER 5. IMPLEMENTATION 31

Figure 5.2: Finto Query Results

name, birth and death year, and also several external database IDs.

5.3 Comparison rule: implementation

The implementation implements the designed rule discussed in subsection
4.3. The implementation of the rules was created using the Python Record
Linkage Kit library. The rules compare various pairs of columns from the
CoCo Pool and External Pool. Each rule has its own method of comparison,
Table 5.1 describes the rule definitions.

Table 5.1: Linking Rule Definition

No Rule Description Coco Pool External Pool Methods
1 Given Name Comparison given name given name Jaro-Winkler
2 Family Name Comparison family name family name Jaro-Winkler

3 Birth Place Name Comparison places birth_place Custom - Place Name
Comparison

4 Death Place Name Comparison places death_place Custom - Place Name
Comparison

5 Mentioned Place Name
Comparison places places Custom - Scaled Place Name

Comparison

6 Floruit End - Death Year
Comparison end_year death_year Custom - Floruit Time

Comparison

7 Floruit Start - Start Year
Comparison start_year birth_year Custom - Floruit Time

Comparison

Before the rules are put together, it is required to implement all the
methods used in the rules. The implementation of the method could come
from an off-the-shelf implementation provided by the library or a custom



CHAPTER 5. IMPLEMENTATION 32

implementation of a rule could be created. The Jaro-Winkler method men-
tioned in Table 5.1 uses an implementation provided by the library and no
further code development was required. Methods that have Custom prefix
are custom-made and do not use off-the-shelf library function as it is. For
Custom - Place Name Comparison rule, a custom implementation based on
the Jaro-Winkler method is defined. The custom implementation is needed
as the CoCo pool’s column that’s being compared may have multiple places’
names. This custom implementation works by comparing every location
name pair between the two columns and using the highest score among these
pairs to score this rule. The Scaled Place Name Comparison implementation
is based on the design discussed and presented in subsection 4.3.1. The need
for a custom implementation is to accommodate the possibility that both
CoCo pool’s and External Pool’s columns have multiple place names. The
comparison between two strings still uses the Jaro-Winkler method, but the
result is scaled to the least number of locations as what has been described.
The floruit time comparison implementation uses a custom rule that I came
up with. The rule compares the start year with the birth year and death
year and end year respectively. Unlike the other rules that would return a
real number as the score, this rule returns a boolean value of either 0 or 1
to describe whether a link passes this rule. The rule for start year and birth
year comparison is birthTime < startYear < birthTime + offset while the
rule for end year and death year comparison is deathTime-offset < endYear
< deathTime. For this case, we determine offset as 105, this definition is
based on an educated guess that considers the longest actor’s life span and
several years of buffer to accommodate data inaccuracies.

The rule is implemented in accordance with the Python Record Linkage
Kit library’s rule. A compare object is instantiated in the script and then the
rules are defined. The required methods are then imported before the rule
is put together. After the rule is defined, the script begins the calculation of
the linking score for every possible link between entities/records in the CoCo
pool and external database pool. After the linking score result is produced
then a linking selection rule is applied, for this case purpose a selection rule
of "SUM > 5.7" is defined. This means the valid links are those with a
summation score greater than 5.7. This 5.7 threshold is arbitrarily chosen
using an educated guess based on observation made on the data. Some valid
actor pairs could have a very different value on one of their property, this
threshold would accommodate 1 fully different aspect and still have some
room left for minor differences. This is based on the observation that some
actors have different family names that, for example, changed after their
marriage. In the observation, the actor pair would obtain a zero on the
Family name but need to have a very good match on all the other rules.



Chapter 6

Result and Evaluation

This chapter will elaborate on the evaluation process of the system. We assess
the accuracy of the linking result and in this chapter, the methodology and
the assessment result are elaborated.

6.1 Linking Result Presentation

The linking result is the output of linking between actors’ entry in the CoCo
pool and external pool. The result is created after the system finishes eval-
uating possible links between the two and applies the link selection rule to
determine the valid links. While the initial linking scoring result contains the
scoring of every linking the linking selection result only contains links that
are deemed valid by the linking selection rule. Henceforth, the term ’linking
result’ mentioned refers to the linking selection result. The result is stored
in a single tabular CSV format. It contains the ID of the actor’s entity that
is being linked as well as their detailed linking score. Figure 6.2 shows a
snippet of how the linking result is stored.

In the table, we can see that there is information about the linking iden-
tification number in the "idx" column. Afterward to the right, there are

Figure 6.1: Linking Result Snippet

33



CHAPTER 6. RESULT AND EVALUATION 34

two columns indicating the ID of the actor entity in the CoCo pool and the
external pool. These IDs are referring to the IDs of actors that are being
linked together. To its right, the detailed scores of each rule are presented.
The design and implementation of the comparison rule presented here are
discussed in the previous sections. Finally, at the rightmost column, the
column "sum" stores the sum of all the comparison scores.

6.2 Evaluation Method

Previously, the linking result presentation has been discussed. This and the
following subsection discuss whether the linkings that have been found and
selected are indeed accurate. This performance evaluation is needed to judge
the performance and appropriateness of the current linking rule, and linking
selection rule and determine the need and the directions of improvement for
further research in the future.

For this evaluation, we employ the help of a human expert to act as a
judge to determine whether the two linked actors are the same or not. The
human judge is given a sample of the linking from the linking result file
alongside relevant information about the actors being compared to help him
make an accurate evaluation. The judge being employed is a fellow research
assistant at the CoCo project with a background in humanities research and
at the time of the evaluation is pursuing a master-level education.

Using a human evaluator was necessary because the other options were
not good enough. First, the option of using existing linking datasets was
considered, but this was soon discarded as there does not exist linking data for
the CoCo project’s data. Using an external dataset would be difficult as there
are comparison circumstances that are unique to CoCo’s case—an example
would be the different spelling related to Finnish-Swedish culture. Second,
the option of using the already existing linking that has been generated from
the previous system implantation was considered. However, the existing
linking has not been checked for its accuracy so comparing it to them would
offer no robust accuracy result. Hence, the option of manually evaluating
the result by sampling the result was chosen. The use of an educated human
judge has been used in a similar case [11] and requires no previous evaluation
data and is more feasible to implement than an automated approach.

The evaluation task is structured as a CSV file, with rows representing
the links that need to be evaluated and columns providing information that
assists the judge in making evaluations. These columns describe the entities
that are being linked with information such as the name of the actors, the
birth and death time, and the relevant locations. Afterward, some columns



CHAPTER 6. RESULT AND EVALUATION 35

Figure 6.2: Linking Result Evaluation Snippet

provide the external database link extracted from the external pool and then,
at the end, there is a column where the judge would leave a mark that
indicates whether the linking is accurate or not. Image 6.2 shows a snippet
of the evaluation file.

There are 200 selected linking results that are evaluated. These linkings
are sampled from the selected linking result. The link selection configuration
was defined as "sum>5.7" and resulted in 331,013 links that were consid-
ered valid. Afterward, 200 sampled link results were evaluated for which the
sampling process was not randomized. Five cases are defined to represent
various conditions of the linking process. From each case, there are 40 ran-
domly selected links, thus making the total number of evaluation to be 200
linkings. This approach was chosen to check the system performance under
various situations and observe the importance of the name, the common in-
formation for linking, in determining whether a link is valid or not. Another
consideration for this evaluation approach is the manual aspect, which limits
the number of linking evaluations that can be performed in the time frame of
this project hence making a random sampling with a reasonably good enough
amount of sample would yield too many linking that needs to be evaluated.

6.3 Performance Discussion

After the judge completed the evaluation, the results were processed. Table
6.1 shows the performance of the linking based on the sampling cases. As the
judge is evaluating whether the link is indeed correct or not this evaluation
to be precise is gauging the precision of the linking system. As shown, there
are 5 cases presented. Each case has its own selection rule that is used to
select links that made it to the particular category. The column "Selection



CHAPTER 6. RESULT AND EVALUATION 36

Table 6.1: Linking Accuracy

No Case Selection Rule Case Size Precision

1 Matching Both Name
1) sum >5.7
2) given_name >0.9
3) family_name >0.9

1,656 / 331,013 100%
(40/40)

2 Mediocre Both Name
1) sum >5.7
2) 0.75 <given_name <0.9
3) 0.75 <family_name <0.9

337 / 331,013 30%
(12/40)

3 Strong Family Name
Weak Given Name

1) sum >5.7
2) given_name <0.3
3) family_name >0.9

277 / 331,013 5%
(2/40)

4 Strong Given Name
Weak Family Name

1) sum >5.7
2) given_name <0.3
3) family_name >0.9

182 / 331,013 10%
(4/40)

5 Weak Both name
1) sum >5.7
2) given_name <0.4
3) family_name <0.4

1,187 / 331,013 0%
(0/40)

Rule" describes the exact rule implemented for each case. For a linkage
to be considered part of a case, it needs to satisfy all the defined selection
rules for the particular case. For example, the case "Matching Both Name"
covers a linkage case where the sum of the linking scores exceeds 5.7 and
both the given name and family name are significantly similar, defined by
having a similarity score of more than 0.9. Only linkage that satisfies all
these conditions are considered part of this case and as can be seen from
the "Case Size" column, only 1,656 linkage is considered to be part of the
"Matching Both Name" Case. This also applies to the other cases and each
case has its own unique selection rule definition to match its intended target,
However, every case has one common rule of a sum of more than 5.7 as this
is the general linking selection rule for this work.

As shown, the accuracy varies heavily between the cases, and it decreases
significantly as strict name similarity gets weaker. This indicates that name
similarity is a crucial factor in determining the validity of a link. One could
also argue that names play a more significant role than other information.
This could be seen in cases where the name is dissimilar, but the sum is
high enough thus indicating that the link scored considerably higher in other
information. Despite the high score in other information, the accuracy of
these cases is very low compared to cases where the name similarity is high.
However, each case shares a common rule, requiring a sum of more than 5.7,
as it is the general linking selection rule for this work.

Another noteworthy observation is that the cases presented are a very
small percentage of the overall linking size. If we consider that matching



CHAPTER 6. RESULT AND EVALUATION 37

name is the ’easy’ case and the weak name similarity is the ’difficult’ case then
this evaluation evaluates the system’s precision on the easiest and hardest
cases. Another insight presented is the "perfect" name match and the "worst"
name dissimilarity occurs very rarely relative to the overall linking. Based
on the case size we can infer that a substantial amount of the selected linking
does not have either a perfect name match or a weak name similarity.

Among the correct linking results, there are several notable cases that will
be discussed here. These notable links usually have a low name similarity
due to different spelling, significant name variation, or the actor having two
different names. One notable case is between CoCo Pool actor "Hedvig
Forsman" with external pool actor "Hedvig Raa". As can be seen, the actor
has a completely different family name but is deemed linked by the system
and also evaluated to be correct by the human judge. This particular link
has a sum score of 6.0 meaning it scored perfectly in every linking rule except
family name similarity, where it scored 0.0. Another notable case is Coco
Pool actor ”C. Holm“ with external pool actor ”Karl Magnus Holm“which is
in a similar situation where it scores perfectly in every rule except the given
name giving it a linking score of 6.0.



Chapter 7

Discussion

This chapter elaborates on the point of discussion around this work. First,
the notable strengths and challenges of this work are discussed, and then the
future work is elaborated.

7.1 Linking Performance Discussion

The previous section presented the performance of the linking result. Aside
from the performance of each case, there are several observations that are
notable. First, the rate of accuracy deterioration is rapid as the name sim-
ilarity decreases. A decrease of 0.2 in the Jaro-Winkler string similarity
score already led the accuracy to decrease to one-third of the higher score.
This rapid decrease indicates that name similarity plays a very important
role in determining the validity of the link. Second, from the performance
result, we could see that name similarity plays a vital role in determining
whether a link is valid or not, even though an exact match is a rare oc-
currence. Spelling variation occurs often and this makes an exact match
rare to find. Such examples are the valid links between "Jonas Petreius"
and "Jonas Petrejus" and "Chirsternus Henrici Stenman" and "Christenus
Henrici Steenman". This observation indicates that despite the importance
of name similarity, a certain tolerance for difference must be placed in order to
accommodate this common occurrence. Moreover, there are rare cases where
an actor has multiple different names as presented in the previous section.
One way of approaching this is by comparing the different name information
that is provided by external databases that are already consolidated in the
external pool. The implementation and evaluation of this approach is left
for future work.

The observations above seem to indicate that the simple selection rule of

38



CHAPTER 7. DISCUSSION 39

a sum is inadequate for achieving extraordinary performance. While good
precision could be obtained by implementing a stricter selection rule such as
presented in Case 1 in Table 6.1, the result suggests there are many valid links
that do not fit the strict rule. The outlier results also suggest that a more
complex rule should be considered as simple threshold selection rules struggle
to accommodate rare special cases. For example, valid links with different
names apply special rules for special cases such as abbreviated names. Lastly,
the amount of evaluated links is still insufficient. It accounts for a very small
fraction of the total of links and there are many cases that have not been
selected yet for evaluation in this work due to resource and time constraints.
More evaluations are needed in order to gain a better understanding of linking
performance and factors that are influencing it. There are various existing
measures that also should be explored for evaluating the quality of the linking
so a more holistic understanding of performance could be gained [47]. A
larger evaluation result would also enable us to explore a more sophisticated
approach for linking selection such as supervised machine learning [30].

7.2 System’s Strength and Challenges

This work has several noticeable strengths, especially if we compare it to
the previous iteration. Firstly, this work offers more explainability while
maintaining simplicity through complete and as-is provenance storage. This
is achieved by the nature of the shape of the linking result that preserves
the detailed score of each link. With this shape, we can track down why
any particular link is deemed a valid link or not, moreover, we also get to
see the detail of the explanation of why a particular link is scored the way
it is. The use of the Python Record Linkage Toolkit also has significantly
eased the development. Secondly, this work offers flexibility and, in theory,
limitless rule support. As the linking search process is now detached from
the external party’s searching mechanism this process is free from external
limitations, especially in regard to the methodology limitation, and we can
adjust, improve, and explore any new methods to get the best performance
that we desired. Thirdly, this work offers scalability of rules and ease of ad-
justment. The record linking tools offer many off-the-shelf implementations
of many comparison functions, and they are implemented so that customiza-
tion of rules is quite easy to do. As an example, if we want to use different
string comparison methods, we can do that by simply adjusting the parame-
ter of the function. The structure of the code also tries to neatly put the rule
definition in one function, making the code easier to maintain and adjust.

Despite the advantages, throughout the project, there were several no-



CHAPTER 7. DISCUSSION 40

table challenges that showed up. First, the sheer computation that needs to
be done. As this work did a full search, the amount of comparison scaled to
the product of the candidate in CoCo pool and external pool. For example,
the size of both pools of 3,000 actors would mean there would be 9 million
record comparisons and at this project scope, there are tens of millions of
comparisons being conducted. It is also worth noting that in each record
comparison, there are multiple rules that are being computed, so the total
granular comparison number is much higher than this number. These opera-
tions take significant computational time. One commonly proposed approach
to reduce the computational resource and time consumed is to use an index
[7]. However, the use of an index does not fit with our case as we are doing
a fuzzy search where there is no information that we can reliably hinge our
index on. As a result, the thesis does not implement indexing. One typical
information that’s being used as the index is the actor’s name [7] however
in our case this cannot be done as the name is not reliable information to
hinged our index as there are, for example, cases where a single person has
name variations or multiple people sharing the same name. This case makes
the use of an index, where comparison is done between records that share
the same index, an inappropriate approach. Despite this, if we are willing
to recognize and mitigate the risk of missed links, the index approach could
be implemented and there’s a potential that the advantages could overcome
the disadvantages. Potential advantages of this approach are performance
improvements and the elimination of links with different indexes (e.g., two
persons that live at the same time and at the same place and have the same
given name but different family name).

The second challenge is linking evaluation and results management. This
challenge mainly derives from the fact there is a lack of a gold standard and
the large size of potentially true linking that could be yielded. The lack of
a gold standard makes automatic evaluation very impractical, hence mak-
ing manual evaluation by a human judge to be the better option. However,
the large size of possibly valid links means a full manual evaluation would
be impossible due to the speed of the evaluation process. Hence, a compro-
mise, such as a sampled evaluation, becomes the imperfect yet most plausible
approach that could be taken.

Aside from the challenges mentioned, we also have the need to manually
update the external database pool. As this system is now detached from the
external database, a data synchronization operation should be done period-
ically. This needs to be done to "expect" the possible changes of entities in
the external database, such as the addition of new entities. It is also worth
noting that as the dynamism of a database could vary and some databases
are more static than others, the period of this data synchronization should



CHAPTER 7. DISCUSSION 41

vary to reflect those differences. While this is a simple operation to exe-
cute, we have to ensure that this operation is done periodically to update
the external pool and maintain its accuracy and relevance.

7.3 Future Work

In this work, we see some potentially beneficial works that should be explored
in the future. Firstly, an improved linking rule and selection rule should be
devised. The variety of conditions that could make a valid link seems to
indicate that not all rules play the same amount of influence in determining
whether a rule is valid or not. For example, it is indicated that name similar-
ity plays a more important role relative to other rules. The varying precision
between the cases also strengthens the need to explore a better linking rule.
Secondly, more elaborate research should be done on context-specific string
comparison cases. Such an example would be Finnish-Swedish name pairs
that are commonly found. We see that string matching would perform poorly
against these cases. Such an example would be the city name of "Turku"
and its Swedish name "Åbo" and also the Swedish name "Johan" and its
Finnish version "Juhani". Another case is regarding name abbreviation such
as the use of "J.L." for "Johan Ludvig". This case would perform badly
in plain string comparison and need special handling. Thirdly, we have to
recognize and handle comparisons between imbalanced data. This case quite
commonly happens as the source data often have more limited information
compared to the external knowledge base. Fourthly, a more complete eval-
uation is needed. This work only evaluates the precision of the linking that
was proposed as a valid link by the system. The recall of the system has
not been evaluated, that is whether the linkings that are not selected are
actually not valid. Fifthly, a scalable evaluation method is needed. As I have
discussed, the manual, expert evaluation has a lot of limitations in terms of
time and effort. Hence, a better, possibly more automated, way of evaluating
the result should be considered.



Chapter 8

Conclusions

This thesis has presented an advanced disambiguation system. The system
has managed to deliver a reliable and flexible linking system that provides
key advantages such as the incorporation of an additional external database,
novel linking rule definition and implementation, and a more transparent
linking result provenance presentation and management. The system thus
overcomes key challenges such as dependencies to 3rd party system availabil-
ity and the non-transparent linking of result presentation. This work also
evaluates linking process performance in various linking cases by employing
the help of a human expert judge to evaluate whether the proposed valid
link made by the linking system is indeed accurate or not. The system and
the proposed rule configuration offers varying result where it delivers a sat-
isfactory performance on the easier, more common case but still struggles to
deliver good precision on edge cases.

There are insightful observations made regarding the data that was ob-
served during the development and evaluation of the system. Some of the
notable ones are the importance of naming similarity in determining a link
between two actors and the imperfection of name similarity in the majority
of the valid linking case. This observation justifies the need for dissimilarity
tolerance in naming comparison despite the importance of naming similarity.
This imperfect state of the systems inspires the several future works that this
work proposes. The proposed future works are the further fine-tuning of the
linking rule and selection rule and the advancing the evaluation by increas-
ing the completeness of the evaluation and the research of a more automated
evaluation process.

42



Bibliography

[1] Batini, C., and Scannapieca, M. Introduction to data quality. Data
Quality: Concepts, Methodologies and Techniques (2006), 1–18.

[2] Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q.,
Whang, S. E., and Widom, J. Swoosh: a generic approach to entity
resolution. The VLDB Journal 18 (2009), 255–276.

[3] Brook, E. L., Rosman, D. L., and Holman, C. D. J. Public
good through data linkage: measuring research outputs from the western
australian data linkage system. Australian and New Zealand journal of
public health 32, 1 (2008), 19–23.

[4] Bunescu, R., and Pasca, M. Using encyclopedic knowledge for
named entity disambiguation.

[5] Ceccarelli, D., Lucchese, C., Orlando, S., Perego, R., and
Trani, S. Learning relatedness measures for entity linking. In Pro-
ceedings of the 22nd ACM international conference on Information &
Knowledge Management (2013), pp. 139–148.

[6] Christen, P. Privacy-preserving data linkage and geocoding: Current
approaches and research directions. In Sixth IEEE International Confer-
ence on Data Mining-Workshops (ICDMW’06) (2006), IEEE, pp. 497–
501.

[7] Christen, P., and Christen, P. The data matching process.
Springer, 2012.

[8] Cohen, W., Ravikumar, P., and Fienberg, S. A comparison of
string metrics for matching names and records. In Kdd workshop on
data cleaning and object consolidation (2003), vol. 3, pp. 73–78.

[9] Dunn, H. L. Record linkage. American Journal of Public Health and
the Nations Health 36, 12 (1946), 1412–1416.

43



BIBLIOGRAPHY 44

[10] Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., and
Vrandečić, D. Introducing wikidata to the linked data web. In The
Semantic Web–ISWC 2014: 13th International Semantic Web Confer-
ence, Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part I 13
(2014), Springer, pp. 50–65.

[11] Faiz, M., Wisesa, G. M., Krisnadhi, A. A., and Darari, F.
Od2wd: From open data to wikidata through patterns. In WOP@ ISWC
(2019), pp. 2–16.

[12] Fienberg, S. E. Privacy and confidentiality in an e-commerce world:
Data mining, data warehousing, matching and disclosure limitation.
143–154.

[13] Fienberg, S. E. Homeland insecurity: data mining, privacy, disclosure
limitation, and the hunt for terrorists. Terrorism informatics: Knowl-
edge management and data mining for homeland security (2008), 197–
218.

[14] Galárraga, L., Heitz, G., Murphy, K., and Suchanek, F. M.
Canonicalizing open knowledge bases. In Proceedings of the 23rd acm
international conference on conference on information and knowledge
management (2014), pp. 1679–1688.

[15] Gill, L. Methods for automatic record matching and linking and their
use in national statistics. national statistics methodology series 25; 2001.

[16] Gruber, T. R. A translation approach to portable ontology specifica-
tions. Knowledge acquisition 5, 2 (1993), 199–220.

[17] Gu, L., Baxter, R., Vickers, D., and Rainsford, C. Record
linkage: Current practice and future directions. CSIRO Mathematical
and Information Sciences Technical Report 3 (2003), 83.

[18] Hachey, B., Radford, W., Nothman, J., Honnibal, M., and
Curran, J. R. Evaluating entity linking with wikipedia. Artificial
intelligence 194 (2013), 130–150.

[19] Han, X., Sun, L., and Zhao, J. Collective entity linking in web
text: a graph-based method. In Proceedings of the 34th international
ACM SIGIR conference on Research and development in Information
Retrieval (2011), pp. 765–774.



BIBLIOGRAPHY 45

[20] Hyvönen, E. Publishing and using cultural heritage linked data on
the semantic web. Synthesis lectures on the semantic web: theory and
technology 2, 1 (2012), 1–159.

[21] Hyvönen, E. Digital humanities on the semantic web: Sampo model
and portal series. Semantic Web, Preprint (2022), 1–16.

[22] Hyvönen, E., Ikkala, E., Tuominen, J., Koho, M., Burrows,
T., Ransom, L., and Wijsman, H. A linked open data service and
portal for pre-modern manuscript research. Digital Humanities in Nordic
Countries (2019).

[23] Hyvönen, E., Leskinen, P., Tamper, M., Rantala, H., Ikkala,
E., Tuominen, J., and Keravuori, K. Biographysampo–publishing
and enriching biographies on the semantic web for digital humani-
ties research. In The Semantic Web: 16th International Conference,
ESWC 2019, Portorož, Slovenia, June 2–6, 2019, Proceedings 16 (2019),
Springer, pp. 574–589.

[24] Ioannou, E., Niederée, C., and Nejdl, W. Probabilistic entity
linkage for heterogeneous information spaces. In Advanced Informa-
tion Systems Engineering: 20th International Conference, CAiSE 2008
Montpellier, France, June 16-20, 2008 Proceedings 20 (2008), Springer,
pp. 556–570.

[25] Jaro, M. A. Advances in record-linkage methodology as applied to
matching the 1985 census of tampa, florida. Journal of the American
Statistical Association 84, 406 (1989), 414–420.

[26] Koho, M., et al. Representing, Using, and Maintaining Military
Historical Linked Data on the Semantic Web. Aalto University, 2020.

[27] Koho, M., Leskinen, P., and Hyvönen, E. Integrating historical
person registers as linked open data in the warsampo knowledge graph.
In SEMANTiCS (2020), pp. 118–126.

[28] Lappalainen, M., Frosterus, M., and Nykyri, S. Reuse of library
thesaurus data as ontologies for the public sector. IFLA WLIC 2014
(2014).

[29] Lee, Y. W., Pipino, L. L., Funk, J. D., and Wang, R. Y. Journey
to data quality. The MIT Press, 2006.



BIBLIOGRAPHY 46

[30] Leskinen, P., and Hyvönen, E. Reconciling and using historical per-
son registers as linked open data in the academysampo portal and data
service. In International Semantic Web Conference (2021), Springer,
pp. 714–730.

[31] Leskinen, P., Rantala, H., and Hyvönen, E. Analyzing the lives
of finnish academic people 1640–1899 in nordic and baltic countries:
Academysampo data service and portal. In Proceedings of the 6th Digi-
tal Humanities in the Nordic and Baltic Countries Conference (DHNB
2022) (2022), ceur-ws.org.

[32] Ling, X., Singh, S., and Weld, D. S. Design Challenges for Entity
Linking. Transactions of the Association for Computational Linguistics
3 (06 2015), 315–328.

[33] Liu, Y., Shen, W., and Yuan, X. Deola: a system for linking author
entities in web document with dblp. In Proceedings of the 25th ACM In-
ternational on Conference on Information and Knowledge Management
(2016), pp. 2449–2452.

[34] Maali, F., Cyganiak, R., and Peristeras, V. A publishing
pipeline for linked government data. In ESWC (2012), vol. 7295,
pp. 778–792.

[35] Mäkelä, E., Hyvönen, E., and Ruotsalo, T. How to deal with
massively heterogeneous cultural heritage data–lessons learned in cul-
turesampo. Semantic Web 3, 1 (2012), 85–109.

[36] Malmi, E., et al. Collective entity resolution methods for network
inference.

[37] Miles, A., and Bechhofer, S. Skos simple knowledge organization
system reference. W3C recommendation (2009).

[38] Moro, A., Raganato, A., and Navigli, R. Entity linking meets
word sense disambiguation: a unified approach. Transactions of the
Association for Computational Linguistics 2 (2014), 231–244.

[39] Navarro, G. A guided tour to approximate string matching. ACM
computing surveys (CSUR) 33, 1 (2001), 31–88.

[40] Niwattanakul, S., Singthongchai, J., Naenudorn, E., and
Wanapu, S. Using of jaccard coefficient for keywords similarity. In
Proceedings of the international multiconference of engineers and com-
puter scientists (2013), vol. 1, pp. 380–384.



BIBLIOGRAPHY 47

[41] Patman, F., and Thompson, P. Names: A new frontier in text
mining. In Intelligence and Security Informatics: First NSF/NIJ Sym-
posium, ISI 2003, Tucson, AZ, USA, June 2–3, 2003 Proceedings 1
(2003), Springer, pp. 27–38.

[42] Pfeifer, U., Poersch, T., and Fuhr, N. Retrieval effectiveness of
proper name search methods. Information Processing & Management
32, 6 (1996), 667–679.

[43] Phua, C., Smith-Miles, K., Lee, V., and Gayler, R. Resilient
identity crime detection. IEEE transactions on knowledge and data en-
gineering 24, 3 (2010), 533–546.

[44] Porter, E. H., and Winkler, W. E. Approximate string comparison
and its effects on an advanced record linkage system. Bureau of the
Census, 1997.

[45] Pyle, D. Data preparation for data mining. morgan kaufmann, 1999.

[46] Segaran, T., Evans, C., and Taylor, J. Programming the semantic
web: Build flexible applications with graph data. " O’Reilly Media, Inc.",
2009.

[47] Shen, W., Wang, J., and Han, J. Entity linking with a knowledge
base: Issues, techniques, and solutions. IEEE Transactions on Knowl-
edge and Data Engineering 27, 2 (2014), 443–460.

[48] Suominen, O., Pessala, S., Tuominen, J., Lappalainen, M.,
Nykyri, S., Ylikotila, H., Frosterus, M., and Hyvönen, E.
Deploying national ontology services: From onki to finto. In ISWC
(Industry Track) (2014), Citeseer.

[49] Tamper, M., Leal, R., Sinikallio, L., Leskinen, P., Tuominen,
J., and Hyvönen, E. Extracting knowledge from parliamentary de-
bates for studying political culture and language. In Proceedings of the
1st International Workshop on Knowledge Graph Generation From Text
and the 1st International Workshop on Modular Knowledge (TEXT2KG
2022 and MK2022) (2022), CEUR-WS. org.

[50] Temma, S., Sugii, M., and Matsuno, H. The document similarity
index based on the jaccard distance for mail filtering. In 2019 34th In-
ternational Technical Conference on Circuits/Systems, Computers and
Communications (ITC-CSCC) (2019), IEEE, pp. 1–4.



BIBLIOGRAPHY 48

[51] Tuominen, J., Koho, M., Pikkanen, I., Drobac, S., Enqvist,
J., Hyvönen, E., La Mela, M., Leskinen, P., Paloposki, H.-L.,
and Rantala, H. Constellations of correspondence: a linked data
service and portal for studying large and small networks of epistolary
exchange in the grand duchy of finland. In 6th Digital Humanities in
Nordic and Baltic Countries Conference, short paper. https://seco. cs.
aalto. fi/publications/2022/tuominen-et-al-coco-dhnb-2022. pdf Accepted
for presentation, paper under review (2022).

[52] Wang, Y., Qin, J., and Wang, W. Efficient approximate entity
matching using jaro-winkler distance. In Web Information Systems
Engineering–WISE 2017: 18th International Conference, Puschino,
Russia, October 7-11, 2017, Proceedings, Part I (2017), Springer,
pp. 231–239.

[53] Wang, Z., Cui, J., and Zhu, Y. Plant recognition based on jaccard
distance and bow. Multimedia Systems 26 (2020), 495–508.

[54] Winkler, W. E. String comparator metrics and enhanced decision
rules in the Fellegi-Sunter model of record linkage. ERIC, 1990.



Appendix A

SPARQL Query for Finto

This appendix contains the SPARQL query used to retrieve actors’ data from
Finto.

PREFIX rdau : <http :// r d a r e g i s t r y . i n f o /Elements/u/>
PREFIX rdaa : <http :// r d a r e g i s t r y . i n f o /Elements/a/>
PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX skos : <http ://www.w3 . org /2004/02/ skos / core#>
PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns

#>
PREFIX f i n a f : <http :// urn . f i /URN:NBN: f i : au : f i n a f :>
p r e f i x rdau : <http :// r d a r e g i s t r y . i n f o /Elements/u/>
PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>

SELECT DISTINCT (CONCAT(?gname , ’ ’ , ? fname ) AS ?
fu l lname ) (CONCAT(?gname , ’ | ’ , ? fname ) AS ?names )

( xsd : i n t e g e r (? btime ) AS ? birth_year ) ( xsd :
i n t e g e r (? dtime ) AS ?death_year )

(STR(? bplace ) AS ? bir th_place )
(STR(? dplace ) AS ?death_place )
(REPLACE(STR(? _isn i ) , "^.+/([^/]+) $ " , ’ $1 ’ ) AS

? i s n i )
(REPLACE(STR(COALESCE(? rea l , ? id ) ) ,

"^ .+ : ( [^ : / ]+) $ " , ’ $1 ’ ) AS ?kanto )
WHERE {

? id rd f : type <http :// r d a r e g i s t r y . i n f o /Elements/c/
C10004> ;

# rd f s : l a b e l | skos : p r e fLabe l | skos :
a l tLabe l ? l a b e l ;

rdaa : P50121 ?btime ;

49



APPENDIX A. SPARQL QUERY FOR FINTO 50

rdaa : P50120 ?dtime .

FILTER("1650"<STR(? dtime ) && STR(? btime ) <"1915" &&
STR(? dtime ) <"2010" )

{
# "Juvakoski , I lmar i , 1906−2003"
? id r d f s : l a b e l | skos : p re fLabe l | skos : a l tLabe l ? l a b e l

.
BIND( ’^( [^ , ]+) , ([^ ,− ]+) , [0−9−]{4 ,}$ ’ AS ? rx )

FILTER(REGEX(? l abe l , ? rx ) )
BIND(REPLACE(STR(? l a b e l ) , ? rx , ’ $1 ’ ) AS ? fname )
BIND(REPLACE(STR(? l a b e l ) , ? rx , ’ $2 ’ ) AS ?gname)

}
UNION
{ # "Jalander , Aino Ackt é−, 1876−1944"

? id r d f s : l a b e l | skos : p re fLabe l | skos : a l tLabe l ? l a b e l
.

BIND( ’^( [^ , ]+) , ( [^ , ]+) ([^ ,− ]+) [ − ] , [0−9−]{4 ,}$ ’
AS ? rx )
FILTER(REGEX(? l abe l , ? rx ) )
BIND(REPLACE(STR(? l a b e l ) , ? rx , ’ $3−$1 ’ ) AS ?

fname )
BIND(REPLACE(STR(? l a b e l ) , ? rx , ’ $2 ’ ) AS ?gname)

}
UNION
{

# Acke , J . A. G. , 1859−1924
? id r d f s : l a b e l | skos : p re fLabe l | skos : a l tLabe l ? l a b e l

.
BIND( ’^( [^ , ]+) , ( [A−ZÖÄÅ ] [ . A−Z]+) [ ,−]+ [0−9−]{4 ,}$

’ AS ? rx )
FILTER(REGEX(? l abe l , ? rx ) )

BIND(REPLACE(STR(? l a b e l ) , ? rx , ’ $1 ’ ) AS ? fname )
BIND(REPLACE(STR(? l a b e l ) , ? rx , ’ $2 ’ ) AS ?gname)

}

OPTIONAL { ? id rdaa : P50119/ skos : p r e fLabe l ? ? bplace .
FILTER(ISLITERAL(? bplace ) && LANG(? bplace )=’ f i ’ ) }

OPTIONAL { ? id rdaa : P50118/ skos : p r e fLabe l ? ? dplace .



APPENDIX A. SPARQL QUERY FOR FINTO 51

FILTER(ISLITERAL(? dplace ) && LANG(? dplace )=’ f i ’ ) }
OPTIONAL { ? id rdaa : P50094 ?_isn i . FILTER ( ISURI (?

_isn i ) ) }
OPTIONAL { ? id rdaa : P50429 ? r e a l }

} LIMIT 100



Appendix B

Source Code for Linking Operation

This section contains the source code for the linking operation. Here, the
linking rules are implemented and comparison scores are calculated.

1 def linking_coco_external(coco_df , external_df):
2

3 print("[LOG] Begin Indexing")
4 indexer = recordlinkage.Index ()
5 indexer.full()
6 pairs = indexer.index(coco_df , external_df)
7 print("[LOG] Finish Indexing")
8

9 #Custom Data Cleaning. Executes typical data cleaning
such as removing nan and string casing.

10 coco_pool_clean(coco_df , external_df)
11

12 #Define Comparison Rule
13 compare = recordlinkage.Compare ()
14 compare.string(’family_name ’, ’family_name ’, method=’

jarowinkler ’)
15 compare.string(’given_name ’, ’given_name ’, method=’

jarowinkler ’)
16

17 compare.add(ComparePlaceName("places", "birth_place"))
18 compare.add(ComparePlaceName("places", "death_place"))
19 compare.add(ComparePlaceNameScaledSum("places", "places")

)
20

21 compare.add(CompareFloruitEndYearAndDeathYear(’end_year ’,
’death_year ’))

22 compare.add(CompareFloruitStartYearAndBirthYear(’
start_year ’, ’birth_year ’))

23

24 #Compute
25 compare_vectors = compare.compute(pairs , coco_df ,

52



APPENDIX B. SOURCE CODE FOR LINKING OPERATION 53

external_df)
26 compare_vectors.labels = ["family_name", "given_name", "

birth_place", "death_place", "places", "death_year", "
birth_year"]

27 return compare_vectors



Appendix C

Source Code for Custom Compar-
ison

This section contains the source code for the implementation of the custom
comparisons rule. The rule being implemented here is only loosely based or
not based on any existing comparison technique such as the Jaro-Winkler
string comparison method.

1 from recordlinkage.base import BaseCompareFeature
2 from jarowinkler import *
3 from pandas import Series
4

5 class CompareFloruitStartYearAndDeathYear(BaseCompareFeature)
:

6

7 def _compute_vectorized(self , s1, s2):
8 """ Compare Start Year and Death Year. Yields boolean

value based on wether
9 the start year is older than death year.

10 """
11

12 sim = (s1 <= s2).astype(float)
13

14

15 return sim
16

17 class CompareFloruitStartYearAndBirthYear(BaseCompareFeature)
:

18

19 def _compute_vectorized(self , s1, s2):
20 """
21 check birthTime < startYear < birthTime + offset
22 """
23 offset = 105

54



APPENDIX C. SOURCE CODE FOR CUSTOM COMPARISON 55

24 sim = ((s2 <= s1) & (s1 <= s2+offset)).astype(float)
25 return sim
26

27 class CompareFloruitEndYearAndDeathYear(BaseCompareFeature):
28

29 def _compute_vectorized(self , s1, s2):
30 """
31 check dtime -offset < end__year < dtime
32 """
33 offset = 105
34 sim = ((s2-offset <= s1 ) & (s1 <= s2)).astype(float)
35 return sim
36

37 class ComparePlaceName(BaseCompareFeature):
38

39 def _compute_vectorized(self , s1, s2):
40 """
41 Compare place name , return highest of any possible

pair if multiple names is given
42 """
43 result = []
44 for index , value in s1.items ():
45 result.append(self.process_any_highest(value , s2[

index])) #at the same index
46

47 return Series(result)
48

49 def process_any_highest(self , original_record ,
pair_record):

50 #return the highest score of any possible pair
between coco and pool places

51 if type(original_record) == float or type(pair_record
) == float:

52 return 0
53 else:
54 pair_record_arr = [pair_record]
55 if "|" in pair_record:
56 pair_record_arr = pair_record.split("|")
57

58 original_record_arr = [original_record]
59 if "|" in original_record:
60 original_record_arr = original_record.split("

|")
61

62 highest = 0
63 for ori_r in original_record_arr:
64 for pr in pair_record_arr:
65 score = jarowinkler_similarity(ori_r , pr)
66 if score > highest:



APPENDIX C. SOURCE CODE FOR CUSTOM COMPARISON 56

67 highest = score
68 return highest
69

70 class ComparePlaceNameScaledSum(BaseCompareFeature):
71

72 def _compute_vectorized(self , s1, s2):
73 """
74 Compare place name , return the sum of similarity

score divided by the lower number of place between coco
and pool

75 """
76 result = []
77 for index , value in s1.items ():
78 result.append(self.process_full_result(value , s2[

index])) #at the same index
79

80 return Series(result)
81

82 def process_full_result(self , original_record ,
pair_record):

83 #return the highest score of any possible pair
between coco and pool places

84 threshold = 0.7
85 if type(original_record) == float or type(pair_record

) == float:
86 return 0
87 else:
88 pair_record_arr = [pair_record]
89 if "|" in pair_record:
90 pair_record_arr = pair_record.split("|")
91

92 original_record_arr = [original_record]
93 if "|" in original_record:
94 original_record_arr = original_record.split("

|")
95

96 result = []
97 for ori_r in original_record_arr:
98 for pr in pair_record_arr:
99 score = jarowinkler_similarity(ori_r , pr)

100 if score > threshold:
101 result.append(score)
102 result_score = sum(result)/min(len(

original_record_arr), len(pair_record_arr)) #Scaled to
maximum sensible match (the place count on the smaller
data)

103 result_score = min(result_score , 1) #Scaled to 1
104 return result_score
105


	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Constellations of Correspondence (CoCo)
	1.2 Areas of Focus
	1.3 Research Questions
	1.4 Methodology
	1.5 Structure of the Thesis

	2 Background
	2.1 Entity Linking and Record Linking
	2.2 Edit Distance & Jaro-Winkler String Comparison
	2.3 SPARQL

	3 Contextual Task Definition
	3.1 CoCo Data Transformation Flow
	3.1.1 The Available Comparison Information At Hand
	3.1.2 The Goal


	4 Methods
	4.1 SPARQL Query for Finto Incorporation
	4.2 Pool: Justification and Analysis
	4.3 Comparison Rule Design
	4.3.1 String Matching Method
	4.3.2 Time Window Matching Method

	4.4 Tools Used
	4.4.1 Python 3
	4.4.2 Python Record Linkage Kit


	5 Implementation
	5.1 Disambiguation Flow Broad View
	5.2 Finto Incorporation through SPARQL
	5.3 Comparison rule: implementation

	6 Result and Evaluation
	6.1 Linking Result Presentation
	6.2 Evaluation Method
	6.3 Performance Discussion

	7 Discussion
	7.1 Linking Performance Discussion
	7.2 System's Strength and Challenges
	7.3 Future Work

	8 Conclusions
	A SPARQL Query for Finto
	B Source Code for Linking Operation
	C Source Code for Custom Comparison

