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Abstract
The Theory of Matrix Avoidance explores the problem of determining the maximum
number of 1-entries in an 𝑛 × 𝑛 binary matrix that avoids a fixed pattern 𝑃. For
permutation matrices, the Furedi-Hajnal conjecture posits a linear relationship between
this number, known as extremal function of 𝑛, and the matrix size 𝑛. This conjecture
was initially proven by Marcus and Tardos, and subsequently, the linear constant was
further improved.

Another class of matrices, known as light matrices, exhibits a quasi-linear extremal
function. Although, the proof for this class relies on the connection between pattern
avoidance and the theory of Davenport-Schinzel sequences.

This thesis presents a proof for light matrices in terms of matrices without
applying known results from connected topics, followed by an alternative proof for the
Furedi-Hajnal conjecture. By addressing these topics, this research contributes to the
understanding of matrix avoidance and its implications for different matrix classes.

Keywords Permutation avoidance, Forbidden matrix , Stanley-Wilf limit,
Furedi-Hajnal limit, Light matrix
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1 Introduction
Permutation patterns have been studied in combinatorial theory due to their rich
mathematical structure and wide range of applications. One intriguing aspect of
permutation patterns is their avoidance. Understanding the properties and limitations of
permutation avoidance has led to the development of various combinatorial techniques
and has found applications in diverse areas such as linguistics ([15], [21]), genetics
([2]), and social networks. Moreover, forbidden matrices offer valuable insights into the
realm of data structures [20]. To embark on our exploration, we begin by introducing
the definitions and providing an insightful overview of the historical progression of
this topic.

1.1 Definitions
We call 𝑘-permutation a permutation of {1, 2, . . . , 𝑘}. For each 𝑘-permutation 𝜋 there
exist a corresponding permutation matrix 𝑃, such that 𝑝𝑖 𝑗 = 1 if and only if 𝜋(𝑖) = 𝑗 .
Such matrix contain a single element in each row and column. It follows from the
correspondence, that there is a bĳection between 𝑘-permutations and 𝑘× 𝑘 permutation
matrices. Such property allows us to work in terms of matrices or permutations when
it is more suitable.

A generalization of permutation matrices are binary matrices: these are matrices
with entries only from {0, 1}. A mass of a binary matrix is the number of 1 entries,
denoted as |𝑀 |. In this setting we will refer to one entry of a matrix as entry or
element. For simplicity, we will denote elements as dots and zeros as nothing. In the
future, we will skip the word "binary".

Next we introduce the concept of "avoidance" in several contexts.

Definition 1. An 𝑛 × 𝑚 matrix 𝑀 contains 𝑘 × 𝑙 matrix 𝐴, if there exist indices
1 ≤ 𝑎1 < . . . < 𝑎𝑘 ≤ 𝑛 and 1 ≤ 𝑏1 < . . . < 𝑏𝑙 ≤ 𝑚, such that for all 𝑖 ∈ [1, 𝑘],
𝑗 ∈ [1, 𝑘] if 𝐴𝑖, 𝑗 = 1, then 𝑀𝑎𝑖 ,𝑏 𝑗

= 1.

It is easy to see that the definition is equivalent to saying that matrix 𝑀 contains
𝐴 if 𝑀 can by obtained from 𝐴 by removing rows, columns or turning 1-entries into
0-entries.

Otherwise 𝑀 avoids 𝐴.
For example, let 𝐴 be a 2× 2 matrix. Notice, that the following matrix 𝑀1 contains

𝐴, but 𝑀2 does not contain 𝐴.

𝐴 =

(︃
• •
•

)︃

𝑀1 =

⎛⎜⎜⎜⎝
•

• •
•

• •

⎞⎟⎟⎟⎠ ; 𝑀2 =

⎛⎜⎜⎜⎝
•

•
•

• •

⎞⎟⎟⎟⎠
Definition 2. For a matrix 𝐴 with positive mass and 𝑛, 𝑚 ∈ N, ex(𝑛, 𝑚, 𝐴) denotes
the maximum mass of an 𝑛 × 𝑚 matrix avoiding 𝐴.



When working with square 𝑛 × 𝑛 matrices, the notation ex(𝑛, 𝑃) is used instead of
ex(𝑛, 𝑛, 𝑃).

The concept of avoiding a substructure is defined in terms of permutations the
following way.

Definition 3. A 𝑛-permutation 𝛼 contains 𝑘-permutation 𝜋 if there exist indices
1 ≤ 𝑎1 < . . . < 𝑎𝑘 ≤ 𝑛, such that

𝜋(𝑖) < 𝜋( 𝑗) ⇔ 𝛼(𝑎𝑖) < 𝛼(𝑎 𝑗 ).

Otherwise, 𝛼 avoids 𝜋. Let 𝑆𝑛 (𝜋) be a number of 𝑛-permutations avoiding 𝜋.
Notice that the definitions are related. If we restrict the Definition 1 on only

permutation matrices, the two are equivalent. Thus, 𝑆𝑛 (𝜋) also denotes the number
of permutation matrices avoiding permutation matrix of 𝜋. We will write 𝑆𝑛 (𝑃) for
the number of permutation matrices avoiding permutation matrix 𝑃. 𝑆𝑛 (𝑃) = 𝑆𝑛 (𝜋),
when 𝑃 is 𝜋 permutation matrix.

A lot of researches were interested in the behaviourof matrices avoiding permutation
matrix. For permutations of length 3 it was thoroughly studied [22]. For example,
it is known, that 3-avoiding permutations are counted by the Catalan numbers. On
the other hand, permutations of length 4 introduce a significantly heightened level of
complexity [3], [4].

Matrix avoidance has deep connections with various other combinatorial structures,
including the avoidance of subgraphs in graphs and the theory of Davenport-Schinzel
sequences. Understanding these connections provides valuable insights into the
underlying combinatorial principles.

Graphs can be represented as adjacency matrices, where the presence or absence
of edges is encoded by entries in the matrix. This area of research proved to be closely
related to matrix avoidance, as patterns in matrices can be translated into subgraphs in
graphs. By studying the avoidance of subgraphs, researchers sought to understand the
structure and properties of graphs [19].

Davenport-Schinzel sequences are sequences of symbols with certain restrictions
on the arrangement of repeated symbols. The avoidance of Davenport-Schinzel
sequences is intimately linked to both matrix and subgraph avoidance. Specifically,
the length of the longest Davenport-Schinzel sequence of a given order corresponds to
the maximum size of a matrix or subgraph that can be avoided.

The history of these connections dates back several decades. The connection
between forbidden matrices and graphs was first noted in a special case by Füredi
and Hajnal [11] and was developed later by Klazar [16]. Their contributions laid the
foundation for subsequent research in this area, and their insights into permutation
patterns paved the way for exploring connections with subgraph avoidance and
Davenport-Schinzel sequences.

Techniques from one area have been adapted and applied to the others, leading
to new breakthroughs and results. The interdisciplinary nature of these connections
continues to inspire researchers in various fields, including combinatorics, graph
theory, and algorithm design.
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For example, the results from theory of Davenport-Schinzel sequences can be used
as a tool in studying light matrices. Light matrix is a matrix with one element in each
column. Thus, permutation matrices are light. The extremal function quasi-linear
form. For example, for a light matrix of size 4,

ex
(︃
𝑛,

(︃
• •

• •

)︃)︃
= 𝑛𝛼(𝑛),

where 𝛼(𝑛) is inverse Ackermann function. In a general case, for any light matrix 𝐴,
there exist a constant 𝑐, such that

ex(𝑛, 𝐴) ≤ 𝑛 · 2𝛼(𝑛)
𝑐

.

The result uses reduction to Davenport-Schinzel sequences [14]. There are also
generalizations of the results in matrices of higher dimension [12].

1.2 Introducing the question
The intriguing question is to study the properties of avoidance. For example,

• How does ex(𝑛, 𝐴) and 𝑆𝑛 (𝑃) grow when 𝑛 goes to infinity?

• How are 𝑆𝑛 (𝑃) and ex(𝑛, 𝑃) related?

• How does ex(𝑛, 𝐴) differ for different classes of matrices, e.g. light matrices,
permutation matrices, all-ones matrices.

In the late 1980s Richard P. Stanley and Herbert Wilf independently formulated
the following conjecture:
Stanley–Wilf conjecture: For every permutation 𝑃 there exists a constant 𝑐 = 𝑐𝑝,
such that 𝑆𝑛 (𝜋) ≤ 𝑐𝑛.

Later it was proven to be equivalent to the existence of a specific limit, as
demonstrated by Arratia [1]. This limit is defined as follows:

𝐿 (𝑃) = lim
𝑛→∞

𝑛
√︁
𝑆𝑛 (𝑃).

In 1993, Zoltán Füredi and Péter Hajnal introduced the Füredi-Hajnal conjecture
[11], which seeks to investigate the linearity of complexity in all permutation configu-
rations. The conjecture poses the question:
Füredi–Hajnal conjecture: For every permutation 𝑃, ex(𝑛, 𝑃) = 𝑂 (𝑛).

𝑐(𝑃) = lim
𝑛→∞

ex(𝑛, 𝑃)
𝑛

.

Subsequently, Klazar demonstrated [17] that the Füredi-Hajnal conjecture implies
the Stanley-Wilf conjecture. The first partial results were proved in 1999, when Miklós
Bóna showed that Stanley-Wilf conjecture holds for all layered patterns [5]. A pattern
is layered if it consists of the disjoint union of substrings, so that the entries decrease
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within each layer, and increase between the layers. Then in 2004, Marcus and Tardos
provided a proof [18] of the Füredi-Hajnal conjecture, establishing double exponential
upper bounds for the Stanley-Wilf limit:

𝐿 (𝑃) ≤ 152𝑘4(𝑘2
𝑘 ) ,

where 𝑘 represents the size of the permutation matrix 𝑃. It was mentioned in their
paper that the constant factor is not optimized. Prior to this, Arratia had conjectured
[1] that for all 𝑘-permutations, it holds that 𝐿 (𝑃) = (𝑘 − 1)2.

Subsequently, in 2013, Jacob Fox [9] significantly improved the bound and provided
a tight lower bound, thereby refuting Arratia’s conjecture. He showed that for every
permutation matrix 𝐿 (𝑃) = 2𝑂 (𝑘) and, moreover, there are permutations, for which
𝐿 (𝑃) = 2Ω(𝑘1/4) . The estimate was improved further by Josef Cibulka and Jan Kyncl
[7] in 2019. In their work they showed that for every permutation 𝑃, 𝑐(𝑃) ≤ 2(4+𝑜(1))𝑘 .

The mentioned works employ a concept involving the division of matrices into
blocks and subsequent contraction. This operation allows to write recursive formula
for extremal function, solution to which gives an upper bound.

1.3 Structure
This thesis will present a comprehensive review of the existing literature on permutation
patterns. Building upon this foundation, we will propose a novel approach and explore
the potential for improving the upper bounds on 𝑐(𝑃).

This thesis is structured as follows. In Sections 2, 3 we cover all necessary
preliminaries. Section 3 also includes the Marcus and Tardos’ and Fox’s proofs of
Füredi-Hajnal conjecture. In Section 4 we present the upper bound for light matrices
proved in terms of matrices without referencing the results in theory of Davenport-
Schinzel sequences. The proof also uses more intuitive definition of the inverse
Ackermann function. The main result is presented in section 5. We give a double
exponential upper bound on Füredi-Hajnal limit.
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2 Basic facts about forbidden 0-1 matrices
In this section we will see basic properties of extremal function, examples and reduction
rules.

2.1 Properties
Proposition 2.1. If 𝑃 contains 𝑄, then ex(𝑛, 𝑚,𝑄) ≤ ex(𝑛, 𝑚, 𝑃).

Proof. If a matrix avoids 𝑄, then it must also avoid 𝑃, and the proposition follows. □

Lemma 2.2. Let 𝑃 be a binary matrix. Then

ex(𝑛, 𝑚, 𝑃) = ex(𝑚, 𝑛, 𝑃⊤),

where 𝑃⊤ denotes the transpose of 𝑃.

Proof. If a matrix 𝑀 avoids 𝑃, 𝑀⊤ avoids 𝑃⊤, thus ex(𝑚, 𝑛, 𝑃⊤) ≤ ex(𝑛, 𝑚, 𝑃).
Using the same reasoning for matrix 𝑃⊤ we get the ex(𝑚, 𝑛, 𝑃⊤) ≥ ex(𝑛, 𝑚, 𝑃). □

Corollary 2.2.1. Let 𝑃 a binary matrix. Then, ex(𝑛, 𝑃) = ex(𝑛, 𝑃⊤).

If we rotate of reflect a matrix 𝑃, the extremal function will not change, up to
change of places of variables 𝑛 and 𝑚 (in case of 90𝑜 rotating). For example, it is clear
that

ex
(︃
𝑛, 𝑚,

(︃
• •

• •

)︃)︃
= ex

⎛⎜⎜⎜⎝𝑚, 𝑛,

⎛⎜⎜⎜⎝
•
•

•
•

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

It follows from the definition, that ex(𝑛, 𝑚, 𝑃) ≤ 𝑛𝑚 for any 𝑃, since 𝑛𝑚 is the
maximum number of elements a matrix can have.

If matrix 𝑃 is a single any 1-entry, then ex(𝑛, 𝑚, 𝑃) = 0, because matrix avoiding
𝑃 is not allowed to have any elements. Furedi-Hajnal conjecture states that for
permutation matrix 𝑃 the extremal function is linear.

There are patterns for which extremal function has higher order. In Section 4
we show that light matrices have non-linear extremal functions. Also, the following
example has order 𝑂 (𝑛 log 𝑛). It was proved by Furedi in [10].

Theorem 2.3.
ex

(︃
𝑛,

(︃
• •

• •

)︃)︃
= Θ(𝑛 log 𝑛).

Proof. For simplicity, denote the matrix from the statement as 𝑃. To prove lower
bound, consider matrix 𝐴𝑛, such that (𝐴𝑛)𝑖 𝑗 = 1 if and only if 𝑗 − 𝑖 = 2𝑘 for 𝑘 ≥ 1.
Then,

𝐴𝑛 =

⌊log2 𝑛⌋∑︁
𝑘=1

(𝑛 − 2𝑘 ) ≥ 𝑛 log2 𝑛 − 𝑛.
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We prove the stronger statement: for every 𝑖 < 𝑖1 ≤ 𝑖2 and 𝑗 > 𝑗1 ≥ 𝑗2 we can not
have 𝐴𝑖, 𝑗 = 𝐴𝑖, 𝑗1 = 𝐴𝑖1, 𝑗 = 𝐴𝑖2, 𝑗2 . Adding constraints 𝑖1 = 𝑖2 and 𝑗1 > 𝑗2 guarantees
the case in the formulation of the theorem.

Suppose 𝐴𝑖, 𝑗 = 𝐴𝑖, 𝑗1 = 𝐴𝑖1, 𝑗 . Then 𝑗 − 𝑖 must be some power of 2, 𝑗 − 𝑖 = 2𝑘 , and
𝑗 − 𝑖1 ≤ 2𝑘−1 and 𝑗1 − 𝑖 ≤ 2𝑘−1.

𝑗2 − 𝑖2 ≤ 𝑗1 − 𝑖1 ≤ ( 𝑗1 − 𝑖) + ( 𝑗 − 𝑖1) − ( 𝑗 − 𝑖) ≤ 2𝑘−1 + 2𝑘−1 − 2𝑘 = 0.

Thus, 𝐴𝑖2, 𝑗2 can not be one.
Let 𝐴 be 𝑛 × 𝑛 matrix avoiding 𝑃, |𝐴| = ex(𝑛, 𝑃). For the row 𝑖 let 𝑓 (𝑖) = min{ 𝑗 :

𝐴𝑖 𝑗 = 1} denote the first entry. Consider an entry 𝐴𝑖 𝑗 , and let 𝑗 ′ be the column index of
its left neighbor (closest entry in the same row with smaller column index). Suppose
𝑗 ≠ 𝑓 (𝑖) and 𝑗 ′ ≠ 𝑓 (𝑖). Define 𝑝 = 𝑗 ′− 𝑓 (𝑖), 𝑞 = 𝑗 − 𝑗 ′. We call an entry far, if 𝑝 ≤ 𝑞

and close, otherwise. In the row each element, except for the first two, is either far or
close. Let 𝐹 and 𝐶 be matrices containing only far and close elements, respectively.

Consider 𝑖th row of 𝐹. Suppose it has 𝑘 1-entries with indices 𝑓 (𝑖) < 𝑗1 < 𝑗2 <

. . . < 𝑗𝑘 . Let 𝑗𝑙 be the column index of left neighbor of 𝐴𝑖 𝑗𝑙 , 1 < 𝑙 ≤ 𝑘 . Then,

𝑗𝑙−1 − 𝑓 (𝑖) ≤ 𝑗 ′𝑙 − 𝑓 (𝑖) ≤ 𝑗𝑙 − 𝑗 ′𝑙 ≤ 𝑗𝑙 − 𝑗𝑙−1.

Adding 𝑗𝑙−1 − 𝑓 (𝑖) to both sides of the resulting inequality,

2( 𝑗𝑙−1 − 𝑓 (𝑖)) ≤ 𝑗𝑙 − 𝑓 (𝑖).

That means that 𝑘 ≤ log2 𝑛 and |𝐹 | ≤ 𝑛 log2 𝑛.
Similar argument works for the close elements. Consider 𝑗 th column of 𝐶. Let

𝑖1 < 𝑖2 < . . . < 𝑖𝑘 denote row indices of 1-entries. Let 𝑗 ′
𝑙

be the column index of the
left neighbor of 𝐴𝑖 𝑗 𝑗 in 𝐴. Then,

𝑗 ′𝑙 ≤ 𝑓 (𝑖𝑙+1), 1 ≤ 𝑙 < 𝑘.

Otherwise, we can find representation of 𝑃 in 𝐴. Thus,

𝑗 − 𝑓 (𝑖𝑙+1) ≤ 𝑗 − 𝑗 ′𝑙 ≤ 𝑗 ′𝑙 − 𝑓 (𝑖𝑙), and
2( 𝑗 − 𝑓 (𝑙 + 1)) ≤ 𝑗 − 𝑗 ′𝑙 + 𝑗 ′𝑙 − 𝑓 (𝑖𝑙) = 𝑗 − 𝑓 (𝑖𝑙).

It follows that 𝑘 ≤ log2 𝑛 and |𝐶 | ≤ 𝑛 log2 𝑛.
In total,

|𝐴| ≤ |𝐹 | + |𝐶 | + 2𝑛 = 2𝑛 log2 𝑛 + 2𝑛.

□

2.2 Super additivity
The next result is proved in [19] and shows that extremal function is super additive.

Theorem 2.4. ex(𝑛1 + 𝑛2, 𝑚1 + 𝑚2, 𝑃) ≥ ex(𝑛1, 𝑚1, 𝑃) + ex(𝑛2, 𝑚2, 𝑃).
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Proof. Firstly, suppose 𝑃 that the first and the last rows of 𝑃 are not empty. Take
the first non-zero element of the first row 𝑝1𝑖 and the last nonzero element of the last
row 𝑝𝑘 𝑗 . Assume 𝑗 ≤ 𝑖 without loss of generality. Now let 𝐴 and 𝐵 be maximum
mass matrices avoiding 𝑃 of sizes 𝑛1 × 𝑚1 and 𝑛2 × 𝑚2, respectively. Construct
block diagonal matrix 𝐷 by putting 𝐴 and 𝐵 on the main diagonal. 𝐷 has size
(𝑛1 + 𝑛2) × (𝑚1 + 𝑚2). Suppose for a contradiction that 𝐷 contains 𝑃. Since 𝐴 and
𝐵 avoid 𝑃, 𝐷 must contain elements corresponding to 𝑝1𝑖 and 𝑝𝑘 𝑗 in the different
blocks. But in that case the second element would be placed to the right from the first
one. That gives a contradiction.

If 𝑗 > 𝑘 , construct 𝐷 by placing blocks 𝐴 and 𝐵 on the anti-diagonal. The same
reasoning holds. Thus,

ex(𝑛1 + 𝑛2, 𝑚1 + 𝑚2, 𝑃) ≥ ex(𝑛1, 𝑚1, 𝑃) + ex(𝑛2, 𝑚2, 𝑃).

Consider the case when the first row of 𝑃 does not contain 1-entry. Denote as 𝑃′ the
matrix obtained by deleting the first row of 𝑃. If some matrix 𝐴 avoids 𝑃, then 𝐴′,
which is matrix by deleting the first row of 𝐴, avoids 𝑃′. Thus,

ex(𝑛1 + 𝑛2, 𝑚1 + 𝑚2, 𝑃) = ex(𝑛1 + 𝑛2 − 1, 𝑚1 + 𝑚2, 𝑃
′) + 𝑚1 + 𝑚2 ≤

≤ ex(𝑛1 − 1, 𝑚1, 𝑃
′) + ex(𝑛2, 𝑚2, 𝑃

′) + 𝑚1 + 𝑚2 ≤ ex(𝑛1, 𝑚1, 𝑃) + ex(𝑛2, 𝑚2, 𝑃).
If several rows are zero, repeat this process until matrix has a nonzero element in the
first row. If the last row is zero, similar argument holds. □

Corollary 2.4.1. ex(𝑛 + 𝑚, 𝑃) ≥ ex(𝑛, 𝑃) + ex(𝑚, 𝑃).

The construction mentioned in the previous theorem motivates the following
definition.

Definition 4. Sum of matrices 𝐴 and 𝐵 of sizes 𝑛 × 𝑚, 𝑘 × 𝑙 respectively, is a block
diagonal 𝑛 + 𝑘 × 𝑚 + 𝑙 matrix 𝐴 ⊕ 𝐵, constructed bu putting 𝐴 and 𝐵 on the main
diagonal.
Skew sum 𝐴 ⊖ 𝐵 is a matrix constructed by putting 𝐴 and 𝐵 on anti-diagonal.

(𝐴 ⊕ 𝐵)𝑖 𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐴𝑖, 𝑗 , 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑚]
𝐵𝑖−𝑛, 𝑗−𝑚, 𝑖 ∈ [𝑛 + 1, 𝑛 + 𝑘], 𝑗 ∈ [𝑚 + 1, 𝑚 + 𝑙]
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(𝐴 ⊖ 𝐵)𝑖 𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐴𝑖, 𝑗−𝑙 , 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1 + 𝑙, 𝑚 + 𝑙]
𝐵𝑖−𝑛, 𝑗 , 𝑖 ∈ [𝑛 + 1, 𝑛 + 𝑘], 𝑗 ∈ [1, 𝑙]
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Observe that a permutation can not be a sum and a skew sum of two permutations at
the same time. It is also possible that a permutation is neither a sum or a skew sum.

10



For example, the following 4-permutation is neither.

⎛⎜⎜⎜⎝
•

•
•

•

⎞⎟⎟⎟⎠
A proposition proved in [1], shows that the limit 𝐿 (𝑃) exists and is finite if Stanley-Wilf
conjecture holds.

Proposition 2.5.

(1) 𝑆𝑛+𝑚 (𝑃) ≥ 𝑆𝑛 (𝑃) · 𝑆𝑚 (𝑃),
(2) 𝑐𝑃 = lim

𝑛−→∞
𝑆𝑛 (𝑃)1/𝑛 exists.

Proof. The first statements follows from the same construction as in lemma 2.4.
Fekete’s lemma [8] states that if 𝑎1, 𝑎2, . . . ∈ R and 𝑎𝑚 + 𝑎𝑚 ≤ 𝑎𝑛+𝑚, then there exists
lim𝑛→∞ 𝑎𝑛/𝑛 ∈ [−∞,∞). Apply Fekete’s lemma with 𝑎𝑖 = − log 𝑆𝑛 (𝑃). □

2.3 Reduction rules
In this section we will see examples of how the extremal function changes with some
matrix transformations mentioned in [13].

Theorem 2.6. (1) Let 𝑃′ be a matrix obtained by adding a new column to 𝑃 and
placing a single 1-entry there next to an existing one. Then

ex(𝑛, 𝑚, 𝑃′) ≤ ex(𝑛, 𝑚, 𝑃) + 𝑛.

(2) Let 𝑃′ be a matrix obtained by adding a new row to 𝑃 and placing a single 1-entry
there next to an existing one. Then

ex(𝑛, 𝑚, 𝑃′) ≤ ex(𝑛, 𝑚, 𝑃) + 𝑚.

Proof. (1) Without loss of generality, suppose the column was added to the left side.
Let 𝐴′ be the maximum mass 𝑛×𝑚 matrix avoiding 𝑃′. Let 𝐴 be a matrix constructed
by deleting the rightmost element in each row. Then 𝐴 has at least ex(𝑛, 𝑚, 𝑃′) − 𝑛

elements. Notice that 𝐴 avoids 𝑃. Indeed, if 𝐴 contains 𝑃, the the representation
together with deleted element of the appropriate row would give the representation of
𝑃′.
(2) Similar argument, but with deleting elements in columns, works. □

Lemma 2.7. (1) If 𝑃′ is a matrix constructed from 𝑃 by adding two empty columns to
the boundary,

ex(𝑛, 𝑚, 𝑃′) ≤ ex(𝑛, 𝑚, 𝑃) + 2𝑛.

(2) If 𝑃′ is a matrix constructed from 𝑃 by adding two empty rows to the boundary,

ex(𝑛, 𝑚, 𝑃′) ≤ ex(𝑛, 𝑚, 𝑃) + 2𝑚.

11



Proof. Let 𝑀′ be a 𝑛 × 𝑚 matrix avoiding 𝑃′ and |𝑀′| = ex(𝑛, 𝑚, 𝑃′). Let 𝑀 be the
matrix constructed by deleting all elements in the first and last columns. It has at least
ex(𝑛, 𝑚, 𝑃′) − 2𝑛 entries. Notice that 𝑀 avoids 𝑃. Indeed, if 𝑀 contains 𝑃, then 𝑀′

contains 𝑃′. Thus, ex(𝑛, 𝑚, 𝑃′) ≤ ex(𝑛, 𝑚, 𝑃) + 2𝑛.
To prove the second statement repeat the reasoning above with deleting all elements

of 𝑀′ of the first and the last rows. □

Lemma 2.8. (1) If 𝑃′ is a matrix constructed from 𝑃 by adding 𝑘 consecutive empty
rows into the matrix,

ex(𝑛, 𝑚, 𝑃′) ≤ (𝑘 + 1) ex
(︂ 𝑛

𝑘 + 1
, 𝑚, 𝑃

)︂
+ 2𝑘𝑚.

(2) If 𝑃′ is a matrix constructed from 𝑃 by adding 𝑘 consecutive empty columns into
the matrix,

ex(𝑛, 𝑚, 𝑃′) ≤ (𝑘 + 1) ex
(︂
𝑛,

𝑚

𝑘 + 1
, 𝑃

)︂
+ 2𝑘𝑛.

Proof. Let 𝑀′ be a 𝑛 × 𝑚 matrix avoiding 𝑃′ and |𝑀′| = ex(𝑛, 𝑚, 𝑃′). Let 𝑀 be
the matrix constructed by deleting all elements in the first and last 𝑘 rows. Let
𝑀𝑎, 0 ≤ 𝑎 ≤ 𝑘 be a matrix:

𝑀𝑎 (𝑖, 𝑗) = 𝑀 (𝑖, 𝑗), if 𝑖 mod (𝑘 + 1) = 𝑎

𝑀𝑎 (𝑖, 𝑗) = 0, otherwise.

This way 𝑀𝑎 contains rows of modulo 𝑎 of 𝑘 . For 𝑎 ≠ 𝑎′ matrices 𝑀𝑎 and 𝑀𝑎′ do not
intersect and

𝑘−1∑︁
𝑎=0

|𝑀𝑎 | = |𝑀 |.

Each 𝑀𝑎 avoids 𝑃. Indeed, if 𝑀𝑎 contains 𝑃, then 𝑀 will contain 𝑃′. Thus,

ex(𝑛, 𝑚, 𝑃′) = |𝑀′| ≤ |𝑀 | + 2𝑘𝑚 ≤ 𝑘 ex
(︂
𝑛,

𝑚

𝑘 + 1
, 𝑃

)︂
+ 2𝑘𝑚.

The proof of the second statement is similar. Repeat the reasoning above but with
deleting column elements instead of rows. □

Here is an example of how these properties could be applied to estimate the
extremal function for a particular matrix.

Lemma 2.9.
ex

(︃
𝑛, 𝑚,

(︃
• •

•

)︃)︃
≤ 2𝑛 + 𝑚.

Proof. Let us first apply theorem 2.1, and then theorem 2.6.

ex
(︃
𝑛, 𝑚,

(︃
• •

•

)︃)︃
≤ ex

(︃
𝑛, 𝑚,

(︃
• • •

•

)︃)︃
≤ ex

(︁
𝑛, 𝑚,

(︁
• • •

)︁ )︁
+ 𝑚

≤ 2𝑛 + 𝑚,
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the last inequality holds, because a matrix avoiding 1 × 3 all-ones matrix can not have
more than 2 elements in each row. □

The following reduction rule was proved in [13].

Theorem 2.10. Let 𝐴 and 𝐵 be two matrices. Assume that 𝐴 has an entry in its
lower right and 𝐵 at its upper left corner. Let 𝐶 be a pattern consisting of 𝐴 at its
upper left part and B at its lower right part with exactly one common 1-entry (𝐶 is
almost 𝐴 ⊕ 𝐵, but with overlapping in 1 element). Then 𝑚𝑎𝑥(ex(𝑛, 𝐴), ex(𝑛, 𝐵)) ≤
ex(𝑛, 𝐶) ≤ ex(𝑛, 𝐴) + ex(𝑛, 𝐵).

Proof. The first inequality is trivial. Now suppose for a contradiction that 𝑀 avoids
𝐶 and |𝑀 | = ex(𝑛, 𝐴) + ex(𝑛, 𝐵) + 1. 𝑀 must contain 𝐴, since |𝑀 | ≥ ex(𝑛, 𝐴) + 1.
Fix a representation of 𝐴 in 𝑀 and delete the entry corresponding to the lower right
element of 𝐴. The mass of 𝑀 decreases by one. Repeat this process ex(𝐵) + 1
times, until |𝑀 | = ex(𝑛, 𝐴). Let 𝑀′ be the matrix containing only deleted elements,
|𝑀′| = ex(𝑛, 𝐵) + 1. It follows that 𝑀′ contains 𝐵. Take this representation of 𝐵 in
𝑀. The upper right element is from 𝑀′ meaning that there is a representation of 𝐴,
where this entry is a lower right element of 𝐴. That gives a representation of 𝐶. □
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3 Permutation matrices
In this section, we focus on the properties and examples of permutation matrices
avoidance. Also, we review two proofs of Füredi-Hajnal conjecture.

3.1 Properties
The notion of contraction matrix will be used. Let 𝑀 be an 𝑛 × 𝑚 matrix. Divide
𝑀 into blocks of size 𝐵1 × 𝐵2, where 𝐵1 divides 𝑛 and 𝐵2 divides 𝑚: let 𝑆𝑘𝑙 ,
1 ≤ 𝑘 ≤ 𝑛/𝐵1 and 1 ≤ 𝑙 ≤ 𝑚/𝐵2, be 𝐵1 × 𝐵2 matrix containing all elements 𝑀𝑖 𝑗 for
𝑖 ∈ [(𝑘 − 1) · 𝐵1 + 1, 𝑘𝐵1], 𝑗 ∈ [(𝑙 − 1) · 𝐵2 + 1, 𝑙𝐵2]. A contraction matrix 𝑀′

corresponding to this division of size 𝑛
𝐵1

× 𝑚
𝐵2

is defined the following way:

(𝑀′)𝑘𝑙 =
{︄

0, |𝑆𝑘𝑙 | = 0
1, otherwise

.

We refer as superrow to a row of blocks, and as a supercolumn to a columns of blocks.

Lemma 3.1. If 𝑀 avoids some permutation 𝑃, then 𝑀′ avoids 𝑃.

Proof. Suppose for a contradiction that 𝑀′ contains 𝑃. Fix a realization of 𝑃 in
𝑀′. Each 1-entry of 𝑀′ corresponds to a block in 𝑀, that has at least one element.
Fix an entry in each of the blocks, giving realization of 𝑃′. Notice that since 𝑃 is a
permutation, all these entries are in different rows and columns. They represent 𝑃 in
𝑀 , which gives a contradiction. □

Notice that this reasoning only works with permutation matrices. The statement
is not necessarily true if 𝑃 is a random pattern. Indeed, consider the following
counterexample.

𝑃 =

(︃
• •
•

)︃
.

Let 𝐴 be 6×6 matrix, avoiding 𝑃. Let 𝐴′ be the contraction, corresponding to division
into blocks of size 2 × 2:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

•
•

•
• •

•
•

⎞⎟⎟⎟⎟⎟⎟⎟⎠
; 𝐴′ =

⎛⎜⎝
•

• •
• •

⎞⎟⎠ .
Clearly, 𝐴′ contains 𝑃.
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3.2 Examples
Theorem 3.2. For every 2-permutation 𝑃, ex(𝑛, 𝑚, 𝑃) = 𝑛 + 𝑚 − 1.

Proof. There are only 2 possible permutations:

(1, 2) =
(︃
•

•

)︃
and (2, 1) =

(︃
•

•

)︃
.

They are symmetric, thus it is enough to show the estimation for the first one. Let
𝐴 be a matrix of maximum mass, |𝐴| = ex(𝑛, 𝑚, (1, 2)), avoiding (1, 2). Suppose it
has two 1-entries on the same diagonal. Thus, these two entries give realization of
permutation (1, 2). There are (𝑛 + 𝑚 − 1) diagonals and each has at most 1 entry,

ex(𝑛, 𝑚, (1, 2)) ≤ 𝑛 + 𝑚 − 1.

To show that this bound is the best, consider an 𝑛 × 𝑚 matrix, that has 1 entries in the
last row and in the first column. It has exactly 𝑛+𝑚 − 1 entries and it avoids (1, 2). □

Theorem 3.3. For every 3-permutation 𝑃, ex(𝑛, 𝑚, 𝑃) ≤ 2(𝑛 + 𝑚).

Proof. There 2 essentially different classes of 3-permutations [22]. Permutations
(123) and (321) are symmetric. As well as (132), (213), (231) and (312). Thus, we
only need to show the estimation for one element of each class.
(123): Suppose there are 3 elements on one diagonal. Then they give a 3-permutation.
Thus, each of 𝑚 + 𝑛 − 1 diagonals have at most 2 elements. Also, there are 2 diagonals
of size 1 (the bottom-left element and the top-right element),

ex(𝑛, 𝑚, (123)) ≤ 2(𝑛 + 𝑚 − 3) + 2 = 2(𝑛 + 𝑚 − 2).

To show that this is the best bound, consider an 𝑛 × 𝑚 matrix, that has 1-entries in the
last two rows and first two columns. It has exactly 2(𝑛 + 𝑚 − 2) elements and avoids
(123).
(213): By theorem 2.1,

ex ⎛⎜⎝𝑛, 𝑚,
⎛⎜⎝

•
•

•
⎞⎟⎠⎞⎟⎠ ≤ ex ⎛⎜⎝𝑛, 𝑚,

⎛⎜⎝
•

• •
• •

⎞⎟⎠⎞⎟⎠ .
To estimate this extremal function, use theorem 2.6:

ex ⎛⎜⎝𝑛, 𝑚,
⎛⎜⎝

•
• •

• •
⎞⎟⎠⎞⎟⎠ ≤ ex ⎛⎜⎝𝑛, 𝑚,

⎛⎜⎝
•
•
•
⎞⎟⎠⎞⎟⎠ + 2𝑛 ≤ 2(𝑛 + 𝑚).

The last inequality is true, since matrix avoiding this permutation can not have more
than 2 elements in each of 𝑚 columns. □

Notice that the argument for identity permutations of size 2 and 3 works in a
general case.
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Theorem 3.4. If 𝑃 is an identity matrix of size 𝑘 , then ex(𝑛, 𝑚, 𝑃) = 𝑂 ((𝑛 + 𝑚)𝑘).

Proof. Let 𝑀 be 𝑛 × 𝑚 matrix, avoiding 𝑃. Notice that it can not have more than 𝑘

elements on each diagonal, because otherwise these entries would represent 𝑃. There
are 𝑛 + 𝑚 − 1 diagonals. Thus, ex(𝑛, 𝑚, 𝑃) ≤ (𝑛 + 𝑚 − 1)𝑘 . Also, the exists a matrix
with (𝑘 − 1)𝑛 + (𝑘 − 1)𝑚 − (𝑘 − 1)2 elements avoiding 𝑃: fill first (𝑘 − 1) columns
and (𝑘 − 1) rows with 1 entries. □

3.3 Connection between 𝑐(𝑃) and 𝐿 (𝑃)
Theorem 3.5. Füredi–Hajnal conjecture implies Stanley–Wilf conjecture. [17]

Definition 5. Let 𝑇𝑛 (𝑃) be the number of 𝑛 × 𝑛 matrices avoiding 𝑃.

It is clear that 𝑆𝑛 (𝑃) ≤ 𝑇𝑛 (𝑃).

Theorem 3.6. 𝑇𝑛 (𝑃) ≤ 𝐶𝑛
𝑃

for some constant 𝐶𝑃.

Proof. Suppose we have a 2𝑛 × 2𝑛 matrix 𝑀, avoiding 𝑃. Consider a contraction
matrix 𝑀′ constructed the following way: partition 𝑀 into 2 × 2 blocks, an entry of
𝑀′ corresponds to a block of 𝑀 . If the block has at least 1 element, the corresponding
entry of 𝑀′ is 1. Otherwise, it is 0. Since 𝑀′ is a contraction matrix, 𝑀′ also avoids
𝑃. The matrix 𝑀′ is also an image of 15|𝑀′| matrices under the described contraction.
Indeed, each 1-entry of 𝑀′ corresponds to a 2 × 2 block in 𝑀 with at least 1 element,
there are 15 options. Since |𝑀′| ≤ ex(𝑛, 𝑃), it allows us write the following recursion:

𝑇2𝑛 (𝑃) ≤ 𝑇𝑛 (𝑃)15ex(𝑛,𝑃) .

Then, since ex(𝑛, 𝑃) = 𝑐(𝑃)𝑛, choose 𝐶𝑃 = 15𝑐(𝑃) and the statement will follow from
induction. □

Since (𝑆𝑛 (𝑃))
1
𝑛 ≤ 𝑇𝑛 (𝑃)

1
𝑛 ,

𝐿 (𝑃) ≤ (𝑇𝑛 (𝑃))
1
𝑛 ≤ 15𝑐(𝑃) .

Later it was shown by Cibulka [6], that these two limits are polynomials of each other.
[6]

Lemma 3.7. Let 𝑃 be a permutation matrix and 𝑡, 𝑛 be integer numbers. Let 𝑁 = 𝑡𝑛.
Then,

𝑆𝑁 (𝑃) ≤ 𝑇𝑛 (𝑃)𝑡2𝑁 .

Proof. Let 𝐴 be 𝑁 × 𝑁 permutation matrix avoiding 𝑃. Partition 𝐴 into 𝑡 × 𝑡 blocks
and consider a contraction matrix 𝐵 of size 𝑛 × 𝑛, 𝐵 also avoid 𝑃. Thus, 𝐵 is one of
𝑇𝑛 (𝑃) possible matrices. Let us see how many different matrices 𝐴 would give 𝐵 after
contraction. Notice that since 𝐴 is a permutation matrix, 𝑡 rows of 𝐴 contain at most 𝑡
elements. Thus, each row of 𝐵 contains at most 𝑡 1-entries. Each row of 𝐴 has one
element. It can be located in positions corresponding to nonzero elements of 𝐵. There
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are 𝑡 of them, and the width of the block is 𝑡. Thus, given 𝐵, there are 𝑡2 options where
the element of each row is located. This gives an estimate

𝑆𝑁 (𝑃) ≤ 𝑇𝑛 (𝑃)𝑡2𝑁 .

□

Corollary 3.7.1. 𝐿 (𝑃) = 𝑂 (𝑐(𝑃)2).

Proof. Substitute 𝑡 = 𝑐(𝑃) and 𝑛 = 𝑁/𝑐(𝑃) into this theorem. Also notice, that by the
proof of 3.6, 𝑇𝑛 (𝑃) ≤ 2𝑂 (ex(𝑛,𝑃)) ≤ 2𝑂 (𝑐(𝑃)𝑛) .

𝑆𝑁 (𝑃) ≤ 𝑇𝑛 (𝑃)𝑐(𝑃)2𝑁 ≤ 2𝑂 (𝑐(𝑃)𝑛)𝑐(𝑃)2𝑁 = 2𝑂 (𝑁)𝑐(𝑃)2𝑁 = (2𝑂 (1)𝑐(𝑃))2𝑁 .

Take the 𝑁th root of this inequality:

𝐿 (𝑃) = lim
𝑁→∞

𝑁
√︁
𝑆𝑁 (𝑃) ≤ 2𝑂 (1)𝑐(𝑃)2.

□

Cibulka also shows a polynomial relation in the second direction in [6].

Theorem 3.8. Stanley–Wilf conjecture implies Furedi–Hajnal conjecture, and for
every permutation matrix 𝑃,

𝑐(𝑃) = 𝑂 (𝐿 (𝑃)4.5).

The proof requires a technical lemma.

Lemma 3.9. Let 𝐵 be 𝑏 × 𝑐 matrix, which has at least 𝑏 entries in each row and
avoids some permutation 𝑃. Then,

|𝑆𝑏 (𝑃) | ≥
(︃
𝑏2

𝑒2𝑐

)︃𝑏
.

Proof. Since each of 𝑏 rows contains at least 𝑏 elements, there are at leas 𝑏! occurrences
of 𝑏-permutation in 𝐵. Each permutation avoids 𝑃 since 𝐵 avoids 𝑃. Some of these
occurrences correspond to same permutations. Since the width of 𝐵 is 𝑐, a given
permutation avoiding 𝑃 can occur at most

(︁𝑐
𝑏

)︁
times.

𝑆𝑏 (𝑃) ≥
𝑏!(︁𝑐
𝑏

)︁ ≥
( 𝑏
𝑒
)𝑏

( 𝑐𝑒
𝑏
)𝑏

≥
(︃
𝑏2

𝑒2𝑐

)︃𝑏
.

□

Theorem 3.10. Let 𝑙 be an integer, such that 7√
𝑙 is also an integer. Let 𝑃 be a

permutation matrix. If

𝑆
𝑙
10/7 (𝑃) <

(︃
𝑙

6/7

2𝑒2

)︃ 𝑙10/7

,

then
ex(𝑛, 𝑃) ≤ 𝑛(2𝑙27/7 + 10𝑙24/7 + 8𝑙2).
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Proof. Firstly, it follows from 2.4, that 𝑆𝑛𝑘 (𝑃) ≥ 𝑆𝑘 (𝑃)𝑛. We can apply this to the
statement of the theorem and get

𝑆𝑙 (𝑃) <
(︃
𝑙

6/7

𝑒2

)︃ 𝑙
,

𝑆
𝑙
8/7 (𝑃) <

(︃
𝑙

6/7

𝑒2

)︃ 𝑙8/7
.

Notice that if 𝑙 = 1, theorem holds. Let 𝐴 be 𝑛 × 𝑛 permutation matrix avoiding 𝑃.
Divide 𝐴 into blocks of size 2𝑙2 × 2𝑙2 and delete incomplete not square blocks on the
right and at the bottom. We will have ⌋𝑛/2𝑙2⌊ blocks in a row and in a column. We
call a block wide if it has at least 𝑙 nonzero columns, very wide if the number is at
least 𝑙8/7, and ultra wide if it is at least 𝑙10/7. Similarly define tall, very tall and ultra
tall blocks. Notice that number of nonzero blocks is at most ex(𝑛/2𝑙2, 𝑃), because
contraction matrix of size 𝑛/2𝑙2 × 𝑛/2𝑙2 also avoids 𝑃.

We will count number of entries in these types of blocks separately.

• Deleted blocks have at most 2 · 2𝑙2𝑛 elements.

• Neither wide or tall blocks have at most 𝑙2 elements. There are at most
ex(⌊𝑛/2𝑙2⌋, 𝑃) of them.

• If the block is ultra wide or ultra tall, it has at most 4𝑙4 elements. There
are to most 𝑙10/7 ultra wide blocks in each column of blocks. Suppose for a
contradiction, that there are at least 𝑙10/7 ultra wide blocks in a column. Contract
each of these blocks into a row of length 2𝑙2. We will get a 𝑙

10/7 × 2𝑙2 matrix,
where each row has at least 𝑙10/7 entries. By lemma 3.9,

𝑆
𝑙
10/7 (𝑃) ≥

(︄
𝑙

10/72

2𝑒2𝑙2

)︄ 𝑙10/7

=

(︃
𝑙

6/7

𝑒2

)︃ 𝑙210/7

.

That gives a contradiction. The same holds for the number of ultra tall blocks in
a row of blocks.

• If the block is very wide or very tall, but not ultra wide or ultra tall, it has at
most 𝑙20/7 elements. Now we need to find maximum possible number of very
wide blocks in a columns. To do that, contract every wide block in a row with at
least 𝑙8/7 elements. Notice that if there are 𝑙8/7 consecutive rows, such that all of
their entries are located in 𝑙

10/7 columns, this would give an 𝑙
8/7 × 𝑙

10/7 matrix,
and it would imply that

𝑆
𝑙
8/7𝑃 ≥

(︃
𝑙

6/7

2𝑒2

)︃ 𝑙8/7
,

which gives a contradiction. It follows, that in every 𝑙
8/7 consecutive rows, there

are at least 𝑙10/7 non-zero columns. If we contract each group of 𝑙8/7 consecutive
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rows, we will get rows with at least 𝑙10/7. By the previous point, there can not be
more than 𝑙

10/7 of such rows. Thus, the number of very wide blocks in a column
of blocks is at most

𝑙
8/7 · 𝑙10/7 = 𝑙

18/7.

Same hold for the number of very tall blocks in a row.

• If the block is wide or tall, but not very wide or very tall, it has at most 𝑙16/7

entries. To count the number of wide blocks in a column of blocks, contract
each 𝑙 consecutive wide blocks into a single row. If all the elements of these 𝑙

rows are located in 𝑙
8/7 columns, that would give a contradiction, since

𝑆𝑙 (𝑃) ≥
(︃
𝑙

6/7

𝑒2

)︃ 𝑙
.

Thus, we in the resulting rows, there would be at least 𝑙8/7 elements. By the
previous point, there are at most 𝑙18/7 of such rows. Thus, the number of wide
blocks in a column of blocks is at most

𝑙 · 𝑙18/7 = 𝑙
25/7.

Now we are ready to prove the bound by induction on 𝑛.

ex(𝑛, 𝑃) ≤ 2 · 2𝑙2𝑛 + 𝑙2ex(⌊𝑛/2𝑙2⌋, 𝑃) + 2(4𝑙4 · 𝑙10/7 + 𝑙
20/7 · 𝑙18/7 + 𝑙

16/7 · 𝑙25/7) 𝑛

2𝑙2

≤ 2𝑙2𝑛 + 𝑛

2
(2𝑙27/7 + 10𝑙24/7 + 8𝑙2) + 𝑛(4𝑙24/7 + 𝑙

24/7 + 𝑙
27/7)

≤ 𝑛(2𝑙27/7 + 10𝑙24/7 + 8𝑙2).

□

Proof. (Theorem 3.7) Choose the smallest 𝑙, such that it is a seventh power of an
integer and

𝑙 > (2𝑒2𝐿 (𝑃))7/6.

Notice that 𝑙 ≤ 27(2𝑒2𝐿 (𝑃))7/6. Since 𝑆𝑛 (𝑃) ≤ (𝐿 (𝑃))𝑛, then

𝑆𝑛 (𝑃) ≤
(︃
𝑙

6/7

2𝑒2

)︃𝑛
.

By theorem 3.10, and since 𝑙 ≤ 27(2𝑒2𝐿 (𝑃))7/6,

𝑐(𝑃) ≤ 2𝑙27/7 + 10𝑙24/7 + 8𝑙2 = 𝑂 (𝐿 (𝑃)4.5).

□

This proof uses similar technique to the one appeared in [18]. In the next section
we will review this result.
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3.4 Marcus and Tardos’ proof
In this subsection we give a proof of Füredi-Hajnal conjecture by Adam Marcus and
Gábor Tardos [18].

Theorem 3.11. For any permutation matrix 𝑃, ex(𝑛, 𝑃) = 𝑂 (𝑛).

Proof. Let 𝑃 have size 𝑘 . Then take 𝑀 to be a maximum mass 𝑛 × 𝑛 matrix avoiding
𝑃, |𝑀 | = ex(𝑛, 𝑃). Suppose 𝑘2 divides 𝑛.

Consider a contraction matrix 𝐵 of size 𝑛

𝑘2 × 𝑛

𝑘2 corresponding to partition into
blocks 𝑆𝑖 𝑗 of size 𝑘2 × 𝑘2. By lemma 3.1, 𝐵 avoids 𝑃.

Consider a block 𝑆𝑖 𝑗 . We will call a block wide, if there are at least 𝑘 out of 𝑘2

columns with a non-zero entry. We will call a block tall, if there are at least 𝑘 rows
with non-zero entry.

Lemma 3.12. Consider a set of blocks 𝐶 𝑗 = {𝑆𝑖 𝑗 , 1 ≤ 𝑖 ≤ 𝑛

𝑘2 }, 𝑗 th supercolumn. The
number of blocks in 𝐶 𝑗 that are wide is at most 𝑘

(︁𝑘2

𝑘

)︁
.

Proof. Suppose for a contradiction, that there are more than 𝑘
(︁𝑘2

𝑘

)︁
wide blocks. Since

it is greater than
(︁𝑘2

𝑘

)︁
, there are at least two blocks having 1-entries in the same columns

𝑐1 < . . . < 𝑐𝑘 . Applying the pigeonhole principle 𝑘 times, we will find 𝑘 blocks
having 1-entries in the columns 𝑐1 < . . . < 𝑐𝑘 . This gives a representation of all-ones
𝑘 × 𝑘 matrix. We will find a representation of 𝑃. That gives a contradiction. □

Lemma 3.13. Consider a set of blocks 𝑅𝑖 = {𝑆𝑖 𝑗 , 1 ≤ 𝑗 ≤ 𝑛}, 𝑖th superrow. The
number of tall blocks in 𝑅𝑖 is at most 𝑘

(︁𝑘2

𝑘

)︁
.

Proof. Similar to the previous lemma. □

Since 𝐵 avoids 𝑃, the number of neither wide or tall blocks can be estimated as
ex( 𝑛

𝑘2 , 𝑃).
Now let us estimate the mass of 𝑀. We will do it by estimating the masses of

blocks separately.

• Blocks that are neither wide or tall have at most (𝑘 − 1)2 elements,

• Wide blocks have at most 𝑘4 elements, which is the total number of elements in
𝑘2 × 𝑘2 matrix,

• Tall blocks have at most 𝑘4 elements.

In each of the 𝑛

𝑘2 supercolumns the number of wide blocks is bounded by lemma
3.12. Thus, number of elements which are in the wide block is at most

𝑛

𝑘2 𝑘
4
(︃
𝑘2

𝑘

)︃
.
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The same estimation works for the number of elements in tall blocks. Now, the total
mass of 𝑀 is at most

ex(𝑛, 𝑚) ≤ ex
(︂ 𝑛
𝑘2 , 𝑃

)︂
· (𝑘 − 1)2 + 𝑘

(︃
𝑘2

𝑘

)︃
· 𝑛

𝑘2 · 𝑘4 + 𝑘

(︃
𝑘2

𝑘

)︃
· 𝑛

𝑘2 · 𝑘4

= (𝑘 − 1)2ex
(︂ 𝑛
𝑘2 , 𝑃

)︂
+ 2𝑘3

(︃
𝑘2

𝑘

)︃
𝑛.

Solving the recursion above will give linear estimation.

Lemma 3.14. ex(𝑛, 𝑃) ≤ 2𝑘4 (︁𝑘2

𝑘

)︁
𝑛.

Proof. Let us prove the statement using induction by 𝑛. Suppose it is true for all
𝑛′ < 𝑛. Take 𝑛0 to be the largest integer, such that 𝑛0 ≤ 𝑛 and 𝑘2 divides 𝑛0. Then
apply the induction hypothesis

ex(𝑛, 𝑃) ≤ ex(𝑛0, 𝑃) + 2𝑘2𝑛 ≤ (𝑘 − 1)2𝑒𝑥
(︂𝑛0

𝑘2 , 𝑃
)︂
+ 2𝑘3

(︃
𝑘2

𝑘

)︃
𝑛0 + 2𝑘2𝑛

≤ (𝑘 − 1)2 𝑛0

𝑘2 2𝑘4
(︃
𝑘2

𝑘

)︃
+ 2𝑘3

(︃
𝑘2

𝑘

)︃
𝑛0 + 2𝑘2𝑛

≤ 2𝑛
(︃
𝑘2

𝑘

)︃
𝑘2(1 + 𝑘 + (𝑘 − 1)2)

≤ 2𝑘4
(︃
𝑘2

𝑘

)︃
𝑛.

Here the last inequality is true for all 𝑘 ≥ 2. □

That concludes the proof of the theorem. □

3.5 Fox’ proof
As it was mentioned in the Introduction, the constant factor from the previous proof
was improved later by Jacob Fox [9]. We will present his proof in the rest of this
section.

The new notations will be used.

Definition 6. The interval contraction of 𝑘 consecutive rows (columns) replaces them
with a new row (column), s.t. the entry is 1 if in at least one row (column) has an
element in the same place.

A matrix 𝑃 is an interval minor of 𝑀, if some interval contraction contains 𝑃.
Otherwise, 𝑀 avoids 𝑃 as an interval minor.

For a matrix 𝑃, denote as 𝑚(𝑛, 𝑃) the maximum mass of 𝑛 × 𝑛 matrix avoiding
𝑃 as an interval minor. For a permutation matrix 𝑃 this definition is equivalent to
avoidance, and ex(𝑛, 𝑃) = 𝑚(𝑛, 𝑃). Denote as 𝑓𝑃 (𝑡, 𝑠) the maximum number 𝑁 , such
that there exists an 𝑁 × 𝑡 matrix with at lest 𝑠 elements in each row, avoiding 𝑃 as an
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interval minor. Also, denote as 𝑔𝑃 (𝑡, 𝑠) the minimum number 𝑁 , such that any 𝑡 × 𝑁

matrix with at least 𝑠 elements in each column avoids 𝑃 as an interval minor.
Firstly, we generalize the construction of Marcus and Tardos in the following

lemma:

Lemma 3.15. For any positive integers 𝑠, 𝑡, 𝑛, 𝑠 ≤ 𝑡 and matrix 𝑃,

𝑚(𝑡𝑛, 𝑃) ≤ 𝑚(𝑠 − 1, 𝑃)𝑚(𝑛, 𝑃) + 𝑚(𝑡, 𝑃) 𝑓𝑃 (𝑡, 𝑠)𝑛 + +𝑚(𝑡, 𝑃)𝑔𝑃 (𝑡, 𝑠)𝑛.

Proof. Let 𝐴 be 𝑡𝑛× 𝑡𝑛 maximum mass matrix avoiding 𝑃 as an interval minor. Divide
𝐴 into blocks of size 𝑡 × 𝑡 and obtain a contraction matrix 𝐵 of size 𝑛 × 𝑛. 𝐵 also
avoids 𝑃 as an interval minor. Call a block wide (tall), if it has at least 𝑠 non-zero rows
(columns). The number of blocks that are neither wide or tall is at most 𝑚(𝑛, 𝑃) and
they have at most 𝑚(𝑠 − 1, 𝑃) elements, since each block avoids 𝑃 as well.

Notice that each supercolumn has at most 𝑓𝑃 (𝑡, 𝑠) wide blocks, because otherwise
the contraction of rows in each block would give a matrix that contains 𝑃 as an interval
minor by definition of 𝑓𝑃 (𝑡, 𝑠). Same holds for the number of tall blocks in each
superrow: it is at most 𝑔𝑃 (𝑡, 𝑠). There are 𝑛 superrows and supercolumns. Each wide
or tall block has at most 𝑚(𝑡, 𝑃) elements. Together it gives the following estimation:

𝑚(𝑡𝑛, 𝑃) ≤ 𝑚(𝑠 − 1, 𝑃)𝑚(𝑛, 𝑃)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
neither wide or tall

+𝑚(𝑡, 𝑃) 𝑓𝑃 (𝑡, 𝑠)𝑛⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
wide

+𝑚(𝑡, 𝑃)𝑔𝑃 (𝑡, 𝑠)𝑛⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
tall

.

□

Notice that in the lemma below we did not require matrix 𝑃 to be a permutation
matrix. This is because of the difference between the usual avoiding a matrix and
avoiding as an interval minor.

The plan of the proof of Füredi-Hajnal conjecture is to upper bound the extremal
function 𝑚(𝑛, 𝐽𝑘 ) for all-ones matrix of size 𝑘 , denoted as 𝐽𝑘 , with exponential bound.
Then, since 𝐽𝑘 contains all possible 𝑘-permutations, the result will follow. Denote as
𝐽𝑟,𝑘 all-ones matrix of size 𝑟 × 𝑘 . The proof of next lemmas are rather technical.

Lemma 3.16. Let 𝑠 ≤ 𝑡 be positive integers and 𝑡 be even. Then,

𝑓𝑟,𝑘 (𝑡, 𝑠) ≤ 2 𝑓𝑟,𝑘
(︂ 𝑡
2
, 𝑠

)︂
+ 2 𝑓𝑟,𝑘−1

(︂ 𝑡
2
,
𝑠

2

)︂
,

where 𝑓𝑟,𝑘 (𝑡, 𝑠) = 𝑓𝐽𝑟 ,𝑘 (𝑡, 𝑠).

Proof. Let 𝐴 be 𝑁 × 𝑡 matrix avoiding 𝐽𝑟,𝑘 as an interval minor with at least 𝑠 ones in
each row, where 𝑁 = 𝑓𝑟,𝑘 (𝑡, 𝑠). Divide 𝐴 into two supercolumns of width 𝑡/2. There
are three types of rows in 𝐴: (1) rows, that has elements only in the first supercolumn,
(2) rows with elements only in the second supercolumn, (3) rows with elements in
both supercolumns. There are at most 𝑓𝑟,𝑘 (𝑡/2, 𝑠) elements in rows of type (1) and (2).

For the third type, consider only rows, that have at least 𝑠/2 elements in the first
supercolumn. Then contract the last 𝑡/2 columns into one to get a matrix of width
𝑡/2 + 1. There are at least 𝑠/2 + 1 non-zero entries and the last element should be one.
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That means, that there are at most 𝑓𝑟,𝑘−1
(︁
𝑡
2 ,

𝑠
2
)︁

such rows. Same argument holds for
rows, have at least 𝑠/2 elements in the second supercolumn. Now all the rows are
considered and that gives the desired estimation:

𝑓𝑟,𝑘 (𝑡, 𝑠) ≤ 2 𝑓𝑟,𝑘
(︂ 𝑡
2
, 𝑠

)︂
+ 2 𝑓𝑟,𝑘−1

(︂ 𝑡
2
,
𝑠

2

)︂
.

□

Lemma 3.17. Let 2𝑘−1 ≤ 𝑠 ≤ 𝑡 be integers and 𝑡 is a power of 2. Then

𝑓𝑟,𝑘 (𝑡, 𝑠) ≤ 𝑟2𝑘−1 𝑡
2

𝑠
.

Proof. The proof uses induction on 𝑘, 𝑡 and lemma 3.16.
Base: 𝑓𝑟,1(𝑡, 𝑠) = 𝑟 ≤ 𝑟 𝑡

2

𝑠
.

Ind. step: Suppose it holds for all 𝑘′ < 𝑘 or 𝑡′ < 𝑡. Then,

𝑓𝑟,𝑘 (𝑡, 𝑠) ≤ 2 𝑓𝑟,𝑘
(︂ 𝑡
2
, 𝑠

)︂
+ 2 𝑓𝑟,𝑘−1

(︂ 𝑡
2
,
𝑠

2

)︂
≤ 𝑟2𝑘 𝑡

2

4𝑠
+ 𝑟2𝑘−1 𝑡

2

2𝑠
= 𝑟2𝑘−1 𝑡

2

𝑠
.

□

Theorem 3.18. 𝑚(𝑛, 𝐽𝑛) ≤ 𝑘28𝑘𝑛.

Proof. To see how recursion works, apply lemma 3.15 with 𝑃 = 𝐽𝑘 , 𝑡 = 22𝑘 and
𝑠 = 2𝑘−1. We can use trivial bounds 𝑚(𝑠− 1, 𝑃) ≤ 𝑠2 and 𝑚(𝑡, 𝑃) ≤ 𝑡2 in the formula.
Also, since 𝐽𝑘 is symmetric, 𝑓𝐽𝑘 (𝑡, 𝑠) = 𝑔𝐽𝑘 (𝑡, 𝑠). Together we get an estimate

𝑚(22𝑘𝑛, 𝐽𝑘 ) ≤ 22𝑘−2𝑚(𝑛, 𝐽𝑘 ) + 2𝑡2 𝑓𝐽𝑘 (22𝑘 , 2𝑘−1)𝑛.

Apply lemma 3.17 with 𝑟 = 𝑘:

𝑚(22𝑘𝑛, 𝐽𝑘 ) ≤ 22𝑘−2𝑚(𝑛, 𝐽𝑘 ) + 2𝑘28𝑘𝑛.

Now we can write this recursion for 𝑚(𝑛, 𝐽𝑘 ) and iterate this process for 𝑠 steps, where
𝑠 is such that 𝑛2−2𝑘𝑠 ≤ 22𝑘 :

𝑚(𝑛, 𝐽𝑘 ) ≤ 22𝑘−2𝑚(𝑛2−2𝑘 , 𝐽𝑘 ) + 2𝑘28𝑘𝑛2−2𝑘

≤ 24𝑘−4𝑚(𝑛2−4𝑘 , 𝐽𝑘 ) + 2𝑘26𝑘−2𝑛 + 2𝑘26𝑘𝑛

≤ 2𝑘26𝑘𝑛 (1 + 1
4
+ 1

42 + . . .)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝑠 terms

+(22𝑘−2)𝑠𝑚(𝑛2−2𝑘𝑠, 𝐽𝑘 )

≤ 4
3

2𝑘28𝑘𝑛 + 𝑛𝑚(22𝑘 , 𝐽𝑘 ) ≤ 𝑛(4
3

2𝑘28𝑘 + 24𝑘 )

≤ 3𝑛𝑘28𝑘 .

□

The Füredi-Hajnal conjecture follows from the fact that for permutation matrix 𝑃,
𝑒𝑥(𝑛, 𝑃) = 𝑚(𝑛, 𝑃) ≤ 𝑚(𝑛, 𝐽𝑘 ), where 𝑘 is the size of 𝑃.

Corollary 3.18.1. For any permutation matrix 𝑃, 𝑐(𝑃) ≤ 𝑂 (𝑘28𝑘 ).
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4 Light matrices
We will call an 𝑘 × 𝑠 matrix light if there is only one element in each column and
no empty rows. Denote light matrix with 𝑠 elements as 𝐿𝑠. Permutation matrices
are light in both rows and columns. In this section we show the bounds of extremal
function for light matrices. First, we will prove the bound for matrices of size four and
five. Then, we will prove the general case for matrices of size 𝑠. The deduction in
these three cases will be similar and consist of the following two steps: we explain the
construction giving the recursive formula and solve the recurrence.

To start, consider two trivial cases when the matrix has only two or three elements.
The are only three different light matrices of size two:(︃

•
•

)︃
,

(︃
•

•

)︃
,

(︁
• •

)︁
.

Matrix of size 𝑛 × 𝑚 avoiding any of these three matrices can have at most 𝑛 + 𝑚

elements. Indeed, apply lemma 3.2
Thus,

ex(𝑛, 𝑚, 𝐿2) ≤ 𝑛 + 𝑚.

For light matrices of size three, there are more options. All permutations of size three
are light. Besides them, there are three more different matrices:(︃

• •
•

)︃
,

(︃
•

• •

)︃
,

(︁
• • •

)︁
,

and their symmetric matrices. Thus, notice that

ex(𝑛, 𝑚, 𝐿3) ≤ 2(𝑛 + 𝑚).

It hold for permutation matrices by lemma 3.3. It also holds for matrices above by
lemma 2.9 and reduction rules.

To work with light matrices of a bigger sizes, we need the definition and some
properties of the inverse Ackermann function.

4.1 Inverse Ackermann function
Denote

𝑓 [𝑘] (𝑥) = 𝑓 ( 𝑓 (. . . 𝑓 (𝑥) . . .))⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝑘 times

.

Definition 7. log∗(𝑛) denotes the number of times we need to apply log2(𝑥) until the
result is at most 2,

log∗(𝑛) = min{𝑘 : log[𝑘] 𝑛 ≤ 2}.

The next proposition follows from the definition.
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Proposition 4.1.

(1) log∗ 𝑛 ≤ log 𝑛

(2) log[𝑘]∗ 𝑛 ≤ log[𝑘−1]∗ 𝑛

(3) log∗(log(𝑛)) = log∗(𝑛) − 1.

Definition 8. We define inverse Ackermann function the following way:

𝛼(𝑛, 𝑚) = min{𝑘 : log[𝑘]∗𝑚 ≤ 𝑛

𝑚
+ 1},

where

log[𝑘]∗ 𝑛 = log

𝑘⏟⏞⏞⏟
∗ . . . ∗ 𝑛.

It differs from the standard definition by a small constant. Denote 𝛼(𝑛) = 𝛼(𝑛, 𝑛) =
min{𝑘 : log[𝑘]∗ 𝑛 ≤ 2}.

It turns out that if we slightly change the definition of a star function it will not
affect the inverse Ackermann function. In particular, consider the following definition.

Definition 9.
𝛼(𝑠) (𝑛, 𝑚) = min{𝑘 : (log𝑠 𝑚) [𝑘]∗ ≤ 𝑛

𝑚
+ 1}.

In the Definition 9 instead of log[𝑘]∗𝑚 we use (log𝑠 𝑚) [𝑘]∗. Then, the next theorem
holds.

Theorem 4.2. 𝛼(𝑠) (𝑛) ≤ 𝛼(𝑛) +𝑂 (1) for big enough 𝑛.

We might apply this result in the where it seems more relevant to work with power
of logarithm. The rest of the subsection is dedicating to proving theorem 4.2.

Lemma 4.3. For any 𝑠 ≥ 2 and any 𝑘 ≥ 1,

(log𝑠 (𝑛)) [𝑘] ≤ (𝑠3 log[𝑘] (𝑛))𝑠 .

Proof. Fix 𝑠 ≥ 2. We will prove the statement by induction on 𝑘 . In the base case
𝑘 = 1 the inequality is trivial. Suppose it holds for all 𝑘′ < 𝑘 . Then,

(log𝑠 (𝑛)) [𝑘] ≤ log𝑠 ((log𝑠 (𝑛)) [𝑘−1]) ≤ (log(𝑠3𝑠 (log[𝑘−1] (𝑛))𝑠))𝑠

= (3𝑠 log 𝑠 + 𝑠 log[𝑘] (𝑛))𝑠

≤ (3𝑠 log 𝑠 + 𝑠)𝑠 (log[𝑘] 𝑛)𝑠

≤ (𝑠3)𝑠 (log[𝑘] 𝑛)𝑠 .

□

Corollary 4.3.1. If 𝑠 ≥ 2, (log𝑠 𝑛)∗ ≤ 2 log∗ 𝑛 for big enough 𝑛.
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Proof. Substitute 𝑘 = log∗(𝑛) into the previous theorem.
By definition, log[log∗ (𝑛)] (𝑛) ≤ 2. Then,

(log𝑠 (𝑛)) [log∗ (𝑛)] ≤ (2𝑠3)𝑠 .

It follows that log∗ 𝑛 ≤ (log𝑠 𝑛)∗ since we still need to apply log𝑠 a number of times
until the result is at most 2.

(log𝑠 (𝑛))∗ ≤ log∗(𝑛) + (log𝑠 (2𝑠𝑠3𝑠))∗ ≤ 2 log∗ 𝑛,

for big enough 𝑛, since 𝑠 is a constant. □

We can show the similar inequality for any number of stars.

Lemma 4.4. For integer 𝑘 , 𝑠 ≥ 2 and big enough 𝑛

(log𝑠 𝑛)

𝑘⏟⏞⏞⏟
∗ . . . ∗ ≤ 2 log

𝑘⏟⏞⏞⏟
∗ . . . ∗ 𝑛

Proof. Let us prove the statement by induction on 𝑘 . The base case follows from
corollary 4.3.1. Suppose it is true for 𝑘′ < 𝑘 . Then

(log𝑠 𝑛) [𝑘]∗ ≤ ((log𝑠 𝑛) [𝑘−1]∗)∗ ≤ (2 log[𝑘−1]∗ 𝑛)∗ ≤ 2 log[𝑘]∗ 𝑛.

□

Proof. (Theorem 4.2) Substitute 𝑘 = 𝛼(𝑛) into theorem 4.4. Then log[𝑘]∗ 𝑛 ≤ 2 and

(log𝑠 𝑛) [𝑘]∗ ≤ 4.

□

Notice that the same holds for general definition 𝛼(𝑛, 𝑚) for big enough 𝑚 and 𝑛.
The proof repeats the reasoning above. We can choose 𝑚 to be such that 𝑛/𝑚 ≤ 1.

4.2 Matrix of size 4
In this subsection we present the proof of quasi-linear bound for light patterns of size
four. The proof will be divided into two main steps: derivation of recurrence, and
solving the recurrence.

Let 𝐿4 be light matrix of size 4.

Theorem 4.5. ex(𝑛, 𝑚, 𝐿4) = 𝑂 (𝑛𝛼(𝑛, 𝑚)).

Proof. The goal of the first step of the proof is to derive the recursive formula for
ex(𝑛, 𝑚, 𝐿4). Let 𝑀 be an 𝑛 × 𝑚 matrix of maximum mass avoiding 𝐿4, |𝑀 | =
ex(𝑛, 𝑚, 𝐿4). Let 𝐵 > 0 and divide 𝑀 into 𝑚/𝐵 supercolumns: 𝑖th supercolumn is a
block 𝑀𝑘𝑙 , 1 ≤ 𝑘 ≤ 𝑛 and 𝑖 − 1) · 𝑚/𝐵 + 1 ≤ 𝑙 ≤ 𝑖 · 𝑚/𝐵. We call an element 𝑀𝑘𝑙 local,
if there are no elements in the row 𝑖 outside of the supercolumn of column 𝑗 . Notice
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that if the element is local, all elements in its row are also local. We will call such
rows local. The are at most 𝐵 elements in a local row. Denote the number of local
rows, which element lie in 𝑖th supercolumn as 𝑛𝑖.
The rest of the rows are called global, the number is denoted as

𝑛𝑔 = 𝑛 −
𝑚
𝐵∑︁
𝑖=1

𝑛𝑖 .

An element is called first, if it’s in a global row, and there are no elements in the
supercolumns before. It means it is in the first non-zero block in its row. An element
is last, if the are no elements in the supercolumns after. The rest of 1 entries in global
rows are called middle. See figure 1.

𝑙𝑜𝑐𝑎𝑙

𝑚𝑖𝑑𝑑𝑙𝑒𝑓 𝑖𝑟𝑠𝑡 𝑙𝑎𝑠𝑡

𝑙𝑜𝑐𝑎𝑙 𝑟𝑜𝑤

𝑔𝑙𝑜𝑏𝑎𝑙 𝑟𝑜𝑤

Figure 1: The local row contains elements in the second supercolumn. The global
row has first, last and middle elements. There are no elements in the supercolumns
before first or after last.

We will estimate |𝑀 | by considering local first, last and middle elements separately.
The number of local elements is estimated as

|Local| ≤
𝑚
𝐵∑︁
𝑖=1

ex(𝑛𝑖, 𝐵, 𝐿4).

Indeed, there are 𝑛𝑖 local rows non-zero in 𝑖th supercolumn. They form a submatrix of
size 𝑛𝑖 × 𝐵, which must avoid 𝐿4.

Now we can focus on the rest of the matrix. First, last and middle elements use 𝑛𝑔
rows. Notice that a matrix can not be sum decomposable and skew-sum decomposable
at the same time. Without loss of generality, suppose 𝐿4 is not sum decomposable.

To estimate the number of first entries, consider a block-diagonal matrix 𝐷 𝑓 : the
sum of supercolumns of 𝑀 , containing only first elements. Delete all zero rows from
𝐷 𝑓 . Notice that 𝐷 𝑓 has size 𝑛𝑔 ×𝑚. Indeed, it has the same number of columns as 𝑀 .

27



The number of nonzero rows is the number of rows, containing first elements, which
is 𝑛𝑔.

Let 𝑃 𝑓 be the matrix constructed the following way: delete the last column from 𝑃

with a single element. In case the first of last row of 𝑃 𝑓 has no entries, add an element
next to the one from the second or second to last row. For example,

𝑃 =
⎛⎜⎝

•
•

• •
⎞⎟⎠ , 𝑃 𝑓 =

⎛⎜⎝
•
•

• •
⎞⎟⎠ .

Then, the following lemma holds.

Lemma 4.6. 𝐷 𝑓 avoids 𝑃 𝑓 .

Proof. Suppose for a contradiction 𝐷 𝑓 contains 𝑃 𝑓 . Since 𝐿4 is not sum decomposable,
𝑃 𝑓 is also not sum decomposable. Then, 𝐷 𝑓 must contains 𝑃 𝑓 in a single block
(supercolumn). Consequently, the original matrix 𝑀 also contains 𝑃 𝑓 in a single
supercolumn. Consider the element of 𝐷 𝑓 corresponding to the row of deleted right
entry of 𝐿4. In the original matrix 𝑀 there would be an element to the right in the
same row (from the last block). Thus, that element together with realization of 𝑃 𝑓 that
would give a realization of 𝐿4. □

In case 𝑃 𝑓 has no empty rows, it is a light matrix of size three and

|First| ≤ ex(𝑛𝑔, 𝑚, 𝐿3) ≤ 2(𝑛𝑔 + 𝑚).

In case 𝑃 𝑓 has an empty row in the middle, we can apply lemma 2.8 with 𝑘 = 1 and get

|First| ≤ 2ex
(︂𝑛𝑔

2
, 𝑚, 𝐿3

)︂
+ 2𝑚 ≤ 2𝑛𝑔 + 6𝑚.

In case a new element was added into the first or the last row of 𝑃 𝑓 , use lemma 2.6
and get

|First| ≤ ex(𝑛𝑔, 𝑚, 𝐿3) + 𝑚 ≤ 2𝑛𝑔 + 3𝑚.

The second estimate is more general. Thus, we will use it.
Analogously, by considering block diagonal matrix 𝐷 𝑙 containing only last ele-

ments, we can get estimate
|Last| ≤ 2𝑛𝑔 + 6𝑚.

This follows from the similar reasoning, since the 𝐷 𝑙 will avoid a pattern constructed
by deleting the first column of 𝐿4 and adding an element in the first or last row if
needed.

To estimate the number of middle elements, consider a block diagonal matrix 𝐷𝑚:
the sum of supercolumns of 𝑀 , containing only middle elements. Notice that 𝐷𝑚 must
avoid the matrix 𝑃𝑚, which is constructed by deleting the first and the last columns of
𝐿4. If 𝑃𝑚 has zero top or bottom rows, add elements next to the existing ones.

Lemma 4.7. 𝐷𝑚 avoids 𝑃𝑚.

28



Proof. Indeed, if 𝐷 contains it, it must contain it in a single block. Thus, 𝑀 would
also contain the same permutation. Since 𝐷 consists of only middle elements, there
is at least 1 element to the right and to the left for each entry of 𝐷. Thus, 𝑀 would
contain 𝐿4. □

Lemma 4.8. 𝐷𝑚 has size 𝑛′ × 𝑚, where 𝑛′ ≤ ex(𝑛, 𝑚/𝐵, 𝐿4).

Proof. Suppose 𝐷𝑚 has more than ex(𝑛𝑔, 𝑚/𝐵, 𝐿4) rows. Let 𝑀′ be contraction matrix
of size 𝑛/𝐵 × 𝑚, corresponding to the division of into supercolumns. Each element
of 𝑀′ corresponds to a row of matrix 𝐷𝑚. As 𝑀′ is a contraction matrix, it avoids
𝐿4. This holds, since we did not contract any rows, and 𝐿4 is light. Thus, if 𝐷𝑚

has more than ex(𝑛𝑔, 𝑚/𝐵, 𝐿4) rows, matrix 𝑀′ has mass greater than ex(𝑛𝑔, 𝑚/𝐵, 𝐴),
which gives a contradiction. □

To get the most general bound on the mass of 𝐷𝑚 we need to apply lemma 2.8
with 𝑘 = 1 two times. Then,

|Middle| ≤ 4 ex
(︃
𝑛′

4
, 𝑚, 𝐿2

)︃
+ 6𝑚 = 𝑛′ + 10𝑚.

For simplicity, denote 𝑇 (𝑛, 𝑚) = ex(𝑛, 𝑚, 𝑃). The resulting recurrence formula is

𝑇 (𝑛, 𝑚) ≤
𝑚
𝐵∑︁
𝑖=1

𝑇 (𝑛𝑖, 𝐵) + 4𝑛𝑔 + 12𝑚 + 𝑇

(︂
𝑛𝑔,

𝑚

𝐵

)︂
+ 10𝑚

=

𝑚
𝐵∑︁
𝑖=1

𝑇 (𝑛𝑖, 𝐵) + 4𝑛𝑔 + 22𝑚 + 𝑇

(︂
𝑛𝑔,

𝑚

𝐵

)︂
. (1)

This concludes the first step of the proof. The rest of the subsection is dedicated to
solving recurrence 1. Lemmas 4.9 and 4.10 are intermediate results, which are base
cases for the main result, lemma 4.11.

Lemma 4.9. 𝑇 (𝑛, 𝑚) ≤ 12(𝑛 + 𝑚 log𝑚).

Proof. We prove using induction by 𝑛 and 𝑚. The inequality is trivial in base cases,
when 𝑛, 𝑚 ≤ 4. Now suppose it is true for all 𝑛′ < 𝑛 and for 𝑚′ < 𝑚 if 𝑛′ = 𝑛. Choose
𝐵 = 𝑚/2. Now we only have two blocks and there are no middle elements. Then, by
induction hypothesis,

𝑇 (𝑛, 𝑚) ≤ 𝑇 (𝑛1, 𝐵) + 𝑇 (𝑛2, 𝐵) + 4𝑛𝑔 + 12𝑚
≤ 12(𝑛1 + 𝐵 log 𝐵) + 12(𝑛2 + 𝐵 log 𝐵) + 4𝑛𝑔 + 12𝑚.

Notice that 𝑛1 + 𝑛2 + 𝑛𝑔 = 𝑛, and thus

𝑇 (𝑛, 𝑚) ≤ 12
(︂
𝑛 + 𝑚 + 𝑚 log

(︂𝑚
𝐵

)︂)︂
= 12(𝑛 + 𝑚(1 + (log𝑚 − log 2))) = 12(𝑛 + 𝑚 log𝑚).

□
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Lemma 4.10. 𝑇 (𝑛, 𝑚) ≤ 34(𝑛 + 𝑚 log∗𝑚).

Proof. Use induction by 𝑛 and 𝑚. The inequality is trivial in base cases, when
𝑛, 𝑚 ≤ 4. Now suppose it is true for all 𝑛′ < 𝑛 and for 𝑚′ < 𝑚 if 𝑛′ = 𝑛. Here let us
substitute 𝐵 = log𝑚.

𝑇 (𝑛, 𝑚) ≤
𝑚/𝐵∑︁
𝑖=1

𝑇 (𝑛𝑖, 𝐵)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝑙𝑜𝑐𝑎𝑙

+4𝑛𝑔 + 22𝑚 + 𝑇

(︂
𝑛𝑔,

𝑚

𝐵

)︂
⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞

𝑚𝑖𝑑𝑑𝑙𝑒

.

Apply induction hypothesis to the terms corresponding to the local elements, and
lemma 4.9 to the last term.

𝑇 (𝑛, 𝑚) ≤
𝑚/𝐵∑︁
𝑖=1

34(𝑛𝑖 + 𝐵 log∗ 𝐵) + 4𝑛𝑔 + 22𝑚 + 12
(︂
𝑛𝑔 +

𝑚

𝐵
log

𝑚

𝐵

)︂
≤ 34(𝑛 − 𝑛𝑔 + 𝑚 log∗(log𝑚)) + 16𝑛𝑔 + 22𝑚

+ 12𝑚
log𝑚

(log𝑚 − log log𝑚)

≤ 34(𝑛 + 𝑚(1 + log∗(log𝑚))) ≤ 34(𝑛 + 𝑚 log∗𝑚),

where the last inequality is true by the properties of log∗ function. □

We can apply the same reasoning to get the following estimation.

Lemma 4.11. For every 𝑘 ∈ N, 𝑇 (𝑛, 𝑚) ≤ 22(𝑘 + 1)
(︂
𝑛 + 𝑚 log[𝑘]∗𝑚

)︂
, where [𝑘]∗

denotes 𝑘 stars.

Proof. We will prove that by induction on 𝑘 , where base case is covered by lemma
4.10. Suppose the statement is true for all 𝑘′ < 𝑘 . We will show it for 𝑘 using the
same induction by 𝑛, 𝑚.

Choose 𝐵 = log[𝑘−1]∗𝑚. Now

𝑇 (𝑛, 𝑚) ≤
𝑚
𝐵∑︁
𝑖=1

𝑇 (𝑛𝑖, 𝐵) + 4𝑛𝑔 + 22𝑚 + 𝑇

(︂
𝑛𝑔,

𝑚

𝐵

)︂
.

By induction hypothesis,

𝑇 (𝑛𝑖, 𝐵) ≤ 22(𝑘 + 1)
(︂
𝑛𝑖 + 𝐵 log[𝑘]∗ 𝐵

)︂
,

𝑇 (𝑛𝑔,
𝑚

𝐵
) ≤ 22𝑘

(︂
𝑛𝑔 +

𝑚

𝐵
log(𝑘−1)∗ 𝑚

𝐵

)︂
.
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Substitute that into estimation:

𝑇 (𝑛, 𝑚) ≤
𝑚
𝐵∑︁
𝑖=1

22(𝑘 + 1)
(︂
𝑛𝑖 + 𝐵 log[𝑘]∗ 𝐵

)︂
+ 4𝑛𝑔 + 22𝑚

+ 22𝑘
(︂
𝑛𝑔 +

𝑚

𝐵
log(𝑘−1)∗ 𝑚

𝐵

)︂
≤ 22(𝑘 + 1) (𝑛 − 𝑛𝑔) + 22(𝑘 + 1)𝑚 log[𝑘]∗ 𝐵 + 4𝑛𝑔 + 22𝑚

+ 22𝑘𝑛𝑔 + 22𝑘𝑚

≤ 22(𝑘 + 1)𝑛 + 22(𝑘 + 1)𝑚
(︂
1 + log[𝑘]∗

(︂
log[𝑘−1]∗𝑚

)︂)︂
≤ 22(𝑘 + 1)

(︂
𝑛 + 𝑚

(︂
1 + log[𝑘]∗𝑚 − 1

)︂)︂
= 22(𝑘 + 1)

(︂
𝑛 + 𝑚 log[𝑘]∗𝑚

)︂
.

□

Now substitute 𝑘 = 𝛼(𝑛, 𝑚) into lemma 4.11. Then

ex(𝑛, 𝑚, 𝐿4) = 𝑂 (𝑛𝛼(𝑛, 𝑚)).

That finishes the proof of theorem 4.5. □

4.3 Matrix of size 5
Let 𝐿5 be a light matrix of size 5.

Theorem 4.12. ex(𝑛, 𝑚, 𝐿5) = 𝑂

(︂
2𝛼(𝑛,𝑚)𝑛

)︂
.

Proof. Let 𝑀 be a maximum mass 𝑛 ×𝑚 matrix avoiding 𝐿5. The proof is similar the
theorem 4.5. First we divide matrix 𝑀 into supercolumns of width 𝐵. Define local,
first, last and middle elements with respect to this division in a similar manner. Let 𝑛𝑖
denote the number of local rows with elements in supercolumn 𝑖, and 𝑛𝑔 denote the
number of global rows. Recall that

𝑛/𝐵∑︁
𝑖=1

𝑛𝑖 + 𝑛𝑔 = 𝑛.

We will estimate |𝑀 | by considering local first, last and middle elements separately.
The number of local entries is at most

|Local| ≤
𝑚/𝐵∑︁
𝑖=1

ex(𝑛𝑖, 𝐵, 𝐿2),

because each supercolumn has 𝑛𝑖 local elements, they must avoid 𝑃. The number of
first entries is at most

|First| ≤ 2ex
(︂𝑛𝑔

2
, 𝑚, 𝐿4

)︂
+ 2𝑚.
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For the last,
|Last| ≤ 2ex

(︂𝑛𝑔
2
, 𝑚, 𝐿4

)︂
+ 2𝑚.

The first and last elements avoid a light matrix of size 4 with an empty row in the
middle in the worst case.

To estimate the number of middle entries, again consider a block diagonal matrix
𝐷𝑚 and use similar argument. The size of 𝐷𝑚 is 𝑛′ × 𝑚, where 𝑛′ ≤ ex(𝑛𝑔, 𝑚/𝐵, 𝐿5).
In the worst case there will be two empty rows in the middle. Then, apply lemma 2.8
two times. The number of middle elements is at most

|Middle| ≤ 4ex
(︃
𝑛′

4
, 𝑚, 𝐿3

)︃
+ 6𝑚 ≤ 8

(︃
𝑛′

4
+ 𝑚

)︃
+ 6𝑚 ≤ 2𝑛′ + 14𝑚.

For simplicity, denote 𝑇 (𝑛, 𝑚) = ex(𝑛, 𝑚, 𝐿5). In total it gives:

𝑇 (𝑛, 𝑚) ≤
𝑚/𝐵∑︁
𝑖=1

𝑇 (𝑛𝑖, 𝐵) + 4 ex
(︂𝑛𝑔

2
, 𝑚, 𝐿4

)︂
+ 4𝑚 + 2𝑇

(︂
𝑛𝑔,

𝑚

𝐵

)︂
+ 14𝑚.

Lemma 4.13. 𝑇 (𝑛, 𝑚) ≤ 52
(︂
𝑛 + 𝑚 log2 𝑚

)︂
.

Proof. Use induction on 𝑛, 𝑚. The base cases 𝑛, 𝑚 ≤ 4 are trivial. Substitute 𝐵 = 𝑚
2 .

In that case the first sum has only two terms and there are no middle elements. Use
induction hypothesis for the first terms.

𝑇 (𝑛, 𝑚) ≤ 𝑇 (𝑛1, 𝐵) + 𝑇 (𝑛2, 𝐵) + 4 ex
(︂𝑛𝑔

2
, 𝑚, 𝐿4

)︂
+ 4𝑚

≤ 52
(︂
𝑛 − 𝑛𝑔 + 𝑚 log2 𝑚

2

)︂
+ 4𝑚 + 48

(︂𝑛𝑔
2

+ 𝑚 log𝑚
)︂

≤ 52𝑛 + 52𝑚
(︂
log2 𝑚

2
+ log𝑚

)︂
≤ 52(𝑛 + 𝑚 log2 𝑚).

□

Now let us consider the next step.

Lemma 4.14. 𝑇 (𝑛, 𝑚) ≤ 258
(︃
𝑛 + 𝑚

(︂(︂
log2 𝑚

)︂∗)︂2
)︃
.

Proof. Use induction on 𝑛, 𝑚. The base cases 𝑛, 𝑚 ≤ 4 are trivial. Substitute
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𝐵 = log2 𝑚.

𝑇 (𝑛, 𝑚) ≤
𝑚/𝐵∑︁
𝑖=1

𝑇 (𝑛𝑖, 𝐵) + 4 ex(
𝑛𝑔

2
, 𝑚, 𝐿4) + 4𝑚 + 2𝑇

(︁
𝑛𝑔, 𝑚/𝐵

)︁
+ 14𝑚

≤ 258
(︃
𝑛 − 𝑛𝑔 + 𝑚

(︂(︂
log2 𝐵

)︂∗)︂2
)︃

{local}

+ 4𝑚 + 34 · 4
(︂𝑛𝑔

2
+ 𝑚 log∗𝑚

)︂
{first and last}

+ 52 · 2
(︂
𝑛𝑔 +

𝑚

𝐵
log2 𝑚

𝐵

)︂
+ 14𝑚 {middle}

≤ 258𝑛 + 122𝑚 + 258
(︃
𝑚

(︂(︂
log2 𝐵

)︂∗)︂2
)︃
+ 136 (𝑚 log∗𝑚)

≤ 258
(︃
𝑛 + 𝑚

(︂(︂
log2

(︂
log2 𝑚

)︂)︂∗)︂2
+ log∗𝑚

)︃
≤ 258

(︃
𝑛 + 𝑚

(︃(︂(︂
log2 𝑚

)︂∗
− 1

)︂2
+ log∗𝑚

)︃)︃
≤ 258

(︃
𝑛 + 𝑚

(︂(︂
log2 𝑚

)︂∗)︂2
)︃
.

□

Lemma 4.15. 𝑇 (𝑛, 𝑚) ≤ 980 · 2𝑘

(︄
𝑛 + 𝑚

(︃(︂
log2 𝑚

)︂ [𝑘]∗)︃2
)︄
.

Proof. We will prove the stronger inequality. Define the sequence

𝐴1 = 258, . . . 𝐴𝑘 = 2𝐴𝑘−1 + 88(𝑘 + 1) + 18.

We will show that 𝑇 (𝑛, 𝑚) ≤ 𝐴𝑘 (𝑛 + 𝑚(log[𝑘]∗𝑚)2). The solution to the recursion
above is

𝐴𝑘 = 980 · 2𝑘 − 176𝑘 − 56 ≤ 980 · 2𝑘 ,

which gives the estimate from the statement.
Prove the statement using induction on 𝑘 . The base case is described in the

previous lemma. Use induction on 𝑛, 𝑚. Substitute 𝐵 = ((log2 𝑚) [𝑘−1]∗)2. For the
local terms, use induction on 𝑛, 𝑚. For the first and last terms, use estimate from
lemma 4.11, since first and last elements avoid 𝐿4. For the 𝑇 (𝑛𝑔, 𝑚/𝐵) use induction
on 𝑘 . Thus, by induction hypothesis,

𝑇 (𝑛𝑖, 𝐵) ≤ 𝐴𝑘

(︄
𝑛𝑖 + 𝐵

(︃(︂
log2 𝐵

)︂ [𝑘]∗)︃2
)︄
,

ex
(︂𝑛𝑔

2
, 𝑚, 𝐿4

)︂
≤ 22(𝑘 + 1)

(︂𝑛𝑔
2

+ 𝑚 log[𝑘]∗𝑚
)︂
,

𝑇 (𝑛𝑔, 𝑚/𝐵) ≤ 𝐴𝑘−1

(︄
𝑛𝑔 +

𝑚

𝐵

(︃(︂
log2 𝑚

𝐵

)︂ [𝑘−1]∗
)︃2

)︄
.
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𝑇 (𝑛, 𝑚) ≤
𝑚/𝐵∑︁
𝑖=1

𝑇 (𝑛𝑖, 𝐵) + 4 ex
(︂𝑛𝑔

2
, 𝑚, 𝐿4

)︂
+ 4𝑚 + 2𝑇 (𝑛𝑔, 𝑚/𝐵) + 14𝑚

≤ 𝐴𝑘

(︄
𝑛 − 𝑛𝑔 + 𝑚

(︃(︂
log2 𝐵

)︂ [𝑘]∗)︃2
)︄

{local}

+ 88(𝑘 + 1)
(︂𝑛𝑔

2
+ 𝑚 log[𝑘]∗𝑚

)︂
+ 4𝑚 {first and last}

+ 2𝐴𝑘−1

(︄
𝑛𝑔 +

𝑚

𝐵

(︃(︂
log2 𝑚

𝐵

)︂ [𝑘−1]∗
)︃2

)︄
+ 14𝑚 {middle}

≤ 𝐴𝑘 (𝑛 − 𝑛𝑔) + 44(𝑘 + 1)𝑛𝑔 + 2𝐴𝑘−1𝑛𝑔

+ 𝐴𝑘𝑚

(︃(︂
log2 𝑚

)︂ [𝑘]∗
− 1

)︃2

+ 88(𝑘 + 1)𝑚 log[𝑘]∗𝑚 + 2𝐴𝑘−1𝑚 + 18𝑚

≤ 𝐴𝑘𝑛 + 𝐴𝑘𝑚

(︃(︂
log2 𝑚

)︂ [𝑘]∗
− 1

)︃2

+ (88(𝑘 + 1) + 2𝐴𝑘−1 + 18)𝑚 log[𝑘]∗𝑚

= 𝐴𝑘𝑛 + 𝐴𝑘𝑚

(︄(︃(︂
log2 𝑚

)︂ [𝑘]∗
− 1

)︃2
+ log[𝑘]∗𝑚

)︄
≤ 𝐴𝑘

(︄
𝑛 + 𝑚

(︃(︂
log2 𝑚

)︂ [𝑘]∗)︃2
)︄
.

□

Now substitute 𝑘 = 𝛼(2) (𝑛, 𝑚) into the previous lemma. We will get

ex(𝑛, 𝑚, 𝐿2) ≤ 𝑂

(︂
2𝛼(2) (𝑛,𝑚)𝑛

)︂
= 𝑂

(︂
2𝛼(𝑛,𝑚)𝑛

)︂
.

That concludes the proof. □

4.4 General case
Let 𝐿𝑠 be light matrix of size 𝑠.

Theorem 4.16. ex(𝑛, 𝑚, 𝐿𝑠) ≤ 𝑂

(︂
2(5𝛼(𝑛,𝑚)) (𝑠−3)

𝑛

)︂
.

Proof. For simplicity denote 𝑇𝑠 (𝑛, 𝑚) = ex(𝑛, 𝑚, 𝐿𝑠). Using the same construction
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as in theorems 4.5 and 4.12 we get the recursive formula.

|Local| ≤
𝑚/𝐵∑︁
𝑖=1

𝑇𝑠 (𝑛𝑖, 𝐵),

|First| ≤ 2𝑇𝑠−1

(︂𝑛𝑔
2
, 𝑚

)︂
+ 2𝑚,

|Last| ≤ 2𝑇𝑠−1

(︂𝑛𝑔
2
, 𝑚

)︂
+ 2𝑚,

|Middle| ≤ 4𝑇𝑠−2

(︃
𝑛′

4
, 𝑚

)︃
+ 6𝑚, where 𝑛′ ≤ ex

(︂
𝑛𝑔,

𝑚

𝐵
, 𝐿𝑠

)︂
.

𝑇𝑠 (𝑛, 𝑚) ≤
𝑚/𝐵∑︁
𝑖=1

𝑇𝑠 (𝑛𝑖, 𝐵) + 4𝑇𝑠−1

(︂𝑛𝑔
2
, 𝑚

)︂
+ 4𝑚

+ 4𝑇𝑠−2

(︃
𝑛′

4
, 𝑚

)︃
+ 6𝑚.

We will prove 3 analogous lemmas by induction on 𝑠.

Lemma 4.17. 𝑇 (𝑛, 𝑚) ≤ 3 · 5𝑠−3
(︂
𝑛 + 𝑚 log𝑠−3 𝑚

)︂
.

Proof. The base case when 𝑠 = 5 follows from lemma 4.13. Use induction on 𝑛, 𝑚.
Substitute 𝐵 = 𝑚/2. In that case there are no middle elements.

𝑇𝑠 (𝑛, 𝑚) ≤ 𝑇𝑠 (𝑛1, 𝐵) + 𝑇𝑠 (𝑛2, 𝐵) + 4𝑇𝑠−1

(︂𝑛𝑔
2
, 𝑚, 𝐿𝑠−1

)︂
+ 4𝑚

≤ 3 · 5𝑠−3
(︂
𝑛 − 𝑛𝑔 + 𝑚 log𝑠−3 𝐵

)︂
+ 12 · 5𝑠−4

(︂𝑛𝑔
2

+ 𝑚 log𝑠−4 𝑚
)︂
+ 4𝑚

≤ 3 · 5𝑠−3
(︂
𝑛 + 𝑚

(︂
log𝑠−3 𝑚

2
+ log𝑠−4 𝑚

)︂)︂
≤ 3 · 5𝑠−3

(︂
𝑛 + 𝑚 log𝑠−3 𝑚

)︂
.

□

Lemma 4.18. 𝑇𝑠 (𝑛, 𝑚) ≤ 25𝑠−3
(︃
𝑛 + 𝑚

(︂(︂
log𝑠−3 𝑚

)︂∗)︂ 𝑠−3
)︃
.

Proof. The base case is 𝑠 = 5, it follows from lemma 4.14. We will use induction
on 𝑛, 𝑚 to estimate local terms and induction on 𝑠 to estimate first and last. For the
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middle terms we will use induction on 𝑠 and lemma 4.17. Substitute 𝐵 = log𝑠−3 𝑚.

𝑇𝑠 (𝑛, 𝑚) ≤
𝑚/𝐵∑︁
𝑖=1

𝑇𝑠 (𝑛𝑖, 𝐵) + 4𝑇𝑠−1

(︂𝑛𝑔
2
, 𝑚

)︂
+ 4𝑚

+ 4𝑇𝑠−2

(︃
1
4
𝑇𝑠

(︂
𝑛𝑔,

𝑚

𝐵

)︂
, 𝑚

)︃
+ 6𝑚

≤ 25𝑠−3
(︃
𝑛 − 𝑛𝑔 + 𝑚

(︂(︂
log𝑠−3 𝐵

)︂∗)︂ 𝑠−3
)︃

{local}

+ 4 · 25𝑠−4
(︃
𝑛𝑔

2
+ 𝑚

(︂(︂
log𝑠−4 𝑚

)︂∗)︂ 𝑠−4
)︃
+ 4𝑚 {first and last}

+ 25𝑠−5
5𝑠−3

(︂
𝑛𝑔 +

𝑚

𝐵
log𝑠−3 𝑚

𝐵

)︂
+ 4 · 25𝑠−5

𝑚

(︂(︂
log𝑠−5 𝑚

)︂∗)︂ 𝑠−5
+ 6𝑚. {global}

For simplicity, consider terms with 𝑛 and with 𝑚 separately.

25𝑠−3 (𝑛 − 𝑛𝑔) + 2 · 25𝑠−4
𝑛𝑔 + 25𝑠−5

5𝑠−3𝑛𝑔 ≤ 25𝑠−3
𝑛𝑔 .

Now consider all the terms with 𝑚.

25𝑠−3
𝑚

(︂(︂
log𝑠−3 𝐵

)︂∗)︂ 𝑠−3
+ 4 · 25𝑠−4

𝑚

(︂(︂
log𝑠−4 𝑚

)︂∗)︂ 𝑠−4

+ 25𝑠−5
5𝑠−3𝑚

𝐵
log𝑠−3 𝑚

𝐵
+ 25𝑠−5

𝑚

(︂(︂
log𝑠−5 𝑚

)︂∗)︂ 𝑠−5
+ 10𝑚

≤ 25𝑠−3
𝑚

(︂(︂
log𝑠−3 𝐵

)︂∗)︂ 𝑠−3

+
(︂
4 · 25𝑠−4 + 25𝑠−5

5𝑠−3 + 25𝑠−5 + 10
)︂
𝑚

(︂(︂
log𝑠−3 𝑚

)︂∗)︂ 𝑠−4

≤ 25𝑠−3
𝑚

(︃(︂(︂
log𝑠−3 𝑚

)︂∗
− 1

)︂ 𝑠−3
+

(︂(︂
log𝑠−3 𝑚

)︂∗)︂ 𝑠−4
)︃

≤ 25𝑠−3
𝑚

(︂(︂
log𝑠−3 𝑚

)︂∗)︂ 𝑠−3
).

The last inequality is true since

(𝑎 − 1)𝑘 + 𝑎𝑘−1 ≤ 𝑎𝑘 ,

for 𝑎 ≥ 1 and integer 𝑘 . We estimated separately all the terms with 𝑛 and with 𝑚. In
total it gives:

𝑇 (𝑛, 𝑚) ≤ 25𝑠−3
(︃
𝑛 + 𝑚

(︂(︂
log𝑠−3 𝑚

)︂∗)︂ 𝑠−3
)︃
.

□

Lemma 4.19. For every 𝑘 , 𝑇𝑠 (𝑛, 𝑚) ≤ 2(5𝑘)𝑠−3

(︄
𝑛 + 𝑚

(︃(︂
log𝑠−3 𝑚

)︂ [𝑘]∗)︃ 𝑠−3
)︄
.
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Proof. Induction by 𝑘 . Base case 𝑘 = 1 is lemma 4.18. Again, use induction on 𝑛, 𝑚

to estimate local terms and induction on 𝑠 to estimate first and last. For the middle
terms, use induction on 𝑘 and 𝑠. Substitute 𝐵 = (log𝑠−3 𝑚) [𝑘−1]∗.

𝑇𝑠 (𝑛, 𝑚) ≤
𝑚/𝐵∑︁
𝑖=1

𝑇𝑠 (𝑛𝑖, 𝐵) + 4𝑇𝑠−1

(︂𝑛𝑔
2
, 𝑚

)︂
+ 4𝑚

+ 4𝑇𝑠−2

(︃
𝑛′

4
, 𝑚

)︃
+ 6𝑚

≤ 2(5𝑘)𝑠−3

(︄
𝑛 − 𝑛𝑔 + 𝑚

(︃(︂
log𝑠−3 𝐵

)︂ [𝑘]∗)︃ 𝑠−3
)︄

{local}

+ 4 · 2(5𝑘)𝑠−4

(︄
𝑛𝑔

2
+ 𝑚

(︃(︂
log𝑠−4

)︂ [𝑘]∗)︃ 𝑠−4
)︄
+ 4𝑚 {first and last}

+ 2(5𝑘)𝑠−5
2(5(𝑘−1))𝑠−3 ⎛⎜⎝𝑛𝑔 + 𝑚

𝐵

(︄(︃
log

𝑚

𝐵

𝑠−3
)︃ [𝑘−1]∗

)︄ 𝑠−3⎞⎟⎠
+ 4 · 2(5𝑘)𝑠−5

𝑚

(︃(︂
log𝑠−5

)︂ [𝑘]∗)︃ 𝑠−5
+ 6𝑚. {middle}

Terms with 𝑛 and 𝑛𝑔:

2(5𝑘)𝑠−3 (𝑛 − 𝑛𝑔) + 2 · 2(5𝑘)𝑠−4 + 2(5𝑘)𝑠−5
2(5(𝑘−1))𝑠−3

𝑛𝑔 ≤ 2(5𝑘)𝑠−3
𝑛.

Terms with 𝑚:

2(5𝑘)𝑠−3
𝑚

(︃(︂
log𝑠−3 𝐵

)︂ [𝑘]∗)︃ 𝑠−3
+ 4 · 2(5𝑘)𝑠−4

𝑚

(︃(︂
log𝑠−4

)︂ [𝑘]∗)︃ 𝑠−4

+ 2(5𝑘)𝑠−5
2(5(𝑘−1))𝑠−3 𝑚

𝐵

(︄(︃
log

𝑚

𝐵

𝑠−3
)︃ [𝑘−1]∗

)︄ 𝑠−3

+ 4 · 2(5𝑘)𝑠−5
𝑚

(︃(︂
log𝑠−5

)︂ [𝑘]∗)︃ 𝑠−5
+ 10𝑚

≤ 2(5𝑘)𝑠−3
𝑚

(︃(︂
log𝑠−3 𝑚

)︂ [𝑘]∗
− 1

)︃ 𝑠−3

+
(︂
4 · 2(5𝑘)𝑠−4 + 2(5𝑘)𝑠−5

2(5(𝑘−1))𝑠−3 + 4 · 2(5𝑘)𝑠−5 + 10
)︂
𝑚

(︃(︂
log𝑠−3 𝑚

)︂ [𝑘]∗)︃ 𝑠−4

≤ 2(5𝑘)𝑠−3
𝑚

(︃(︂
log𝑠−3 𝑚

)︂ [𝑘]∗)︃ 𝑠−3
.

□

Now substitute 𝑘 = 𝛼(𝑠−3) (𝑛, 𝑚) into the previous lemma. We will get

ex(𝑛, 𝑚, 𝐿𝑠) ≤ 𝑂 (2(5𝛼(𝑠−3) (𝑛,𝑚)+5)𝑠−3
𝑛) ≤ 𝑂 (2(5𝛼(𝑛,𝑚))𝑠−3

𝑛).
□
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5 Main results
In this section the main results of the thesis are presented. We will prove Füredi-Hajnal
conjecture using a new approach based on construction from theorem 4.5. The
construction similar to one from light matrices will provide a recurrence relation.
Solving it will give us a double exponential upper bound.

Theorem 5.1. For any 𝑘-permutation 𝑃,

𝑐(𝑃) = 2
𝑂

(︃
2
𝑘
2

)︃
.

Notice that this upper bound is bigger than the best known mentioned in the
Introduction. Still, the proof shows how the different method can be applied.

In the proof we will work with matrices of size 𝑛 × 𝑚, which is a more general
case. For this form, the limit is defined as

𝑐(𝑃) = lim
𝑛,𝑚→∞

ex(𝑛, 𝑚, 𝑃)
𝑛 + 𝑚

,

which differs from the original definition on case 𝑛 = 𝑚. But the difference is in
constant factor, which does not affect the theorem.

Consider the following recurrence relation:

ex(𝑛, 𝑚, 𝑃) ≤ 𝑛(2𝐵 + 4𝑐2
𝑘−2 + 14𝑐𝑘−2 + 12)

+ 𝑚(6𝑐𝑘−2 + 10) + (𝑐𝑘−2 + 2)2ex
(︂ 𝑛
𝐵
,
𝑚

𝐵
, 𝑃

)︂
. (2)

Suppose it holds and let us show how the proof of theorem 5.1 will follow.

5.1 The proof
Lemma 5.2. ex(𝑛, 𝑚, 𝑃) ≤ (20𝑐2

𝑘−2 + 76𝑐𝑘−2 + 70) (𝑛 + 𝑚).

Proof. We will prove it using induction by 𝑛, 𝑚. Suppose the inequality holds for
every (𝑛′, 𝑚′) such that 𝑛′ < 𝑛 or 𝑛′ = 𝑛 and 𝑚′ < 𝑚. Then for given 𝑛 and 𝑚 let 𝑛0
and 𝑚0 be largest integers, such that 𝑛0 ≤ 𝑛, 𝑚0 ≤ 𝑚 and 2(𝑐𝑘−2 + 2)2 divides both of
them. By induction hypothesis,

ex
(︂𝑛0

𝐵
,
𝑚0

𝐵
, 𝑃

)︂
≤ (20𝑐2

𝑘−2 + 76𝑐𝑘−2 + 70) 𝑛0 + 𝑚0

𝐵
.
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Set 𝐵 = 2(𝑐𝑘−2 + 2)2. Then

ex(𝑛, 𝑚, 𝑃) ≤ ex(𝑛0, 𝑚0, 𝑃) + (𝐵 − 1) (𝑛 + 𝑚)
≤ 𝑛(2𝐵 + 4𝑐2

𝑘−2 + 14𝑐𝑘−2 + 12 + 𝐵 − 1) + 𝑚(6𝑐𝑘−2 + 10 + 𝐵 − 1)

+ (𝑐𝑘−2 + 2)2(20𝑐2
𝑘−2 + 76𝑐𝑘−2 + 70) 𝑛 + 𝑚

2(𝑐𝑘−2 + 2)2

= 𝑛(6(𝑐𝑘−2 + 2)2 + 4𝑐2
𝑘−2 + 14𝑐𝑘−2 + 11)

+ 𝑚(2(𝑐𝑘−2 + 2)2 + 6𝑐𝑘−2 + 9)
+ (10𝑐2

𝑘−2 + 38𝑐𝑘−2 + 35) (𝑛 + 𝑚)
= 𝑛(20𝑐2

𝑘−2 + 76𝑐𝑘−2 + 70) + 𝑚(2𝑐2
𝑘−2 + 14𝑐𝑘−2 + 9)

≤ (20𝑐2
𝑘−2 + 76𝑐𝑘−2 + 70) (𝑛 + 𝑚).

□

Proof. (Theorem 5.1) We will prove the statement for even 𝑘 . If 𝑘 is odd, notice that

𝑐𝑘 ≤ 𝑐𝑘+1 = 2
𝑂

(︃
2
𝑘+1
2

)︃
= 2

𝑂

(︃
2
𝑘
2

)︃
.

By the lemma 5.2,

𝑐𝑘 ≤ 20𝑐2
𝑘−2 + 76𝑐𝑘−2 + 70 ≤ 166𝑐2

𝑘−2.

By taking the logarithm, we get

log 𝑐𝑘 ≤ log 166 + 2 log 𝑐𝑘−2.

Define the sequence

𝑑1 = log 𝑐2, 𝑑2 = log 𝑐4, 𝑑𝑘/2 = log 𝑐𝑘 .

Then,
𝑑𝑚 ≤ 2𝑑𝑚−1 + 𝑓 , where 𝑓 = log 166.

The solution to this recurrence is

𝑑𝑚 ≤ 2𝑚−1𝑑1 + (2𝑚−1 − 1) 𝑓 .

Then,
log 𝑐𝑘 ≤ 2

𝑘
2−1𝑑1 + (2 𝑘

2 − 1) log 166,

𝑐𝑘 ≤ 2𝑂 (2
𝑘
2 ) .

□

The rest of the section is devoted to proving the formula 2.
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5.2 Construction: Step 1
We will use similar argument to the one used in the proof for light matrices. Consider
an 𝑛 × 𝑚 matrix 𝐴, which avoids 𝑘-permutation 𝑃 and |𝐴| = ex(𝑛, 𝑚, 𝑃). We
assume an integer number 𝐵 divides 𝑛 and 𝑚. Divide 𝐴 into 𝑚/𝐵 supercolumns of
width 𝐵: for 1 ≤ 𝑖 ≤ 𝑚/𝑏, denote the submatrix formed by consecutive columns
(𝑖 − 1)𝐵 + 1, (𝑖 − 1)𝐵 + 2 . . . , 𝑖𝐵 as 𝑖th supercolumn.

Next we introduce the notion of local, first, last and middle elements similar to the
way it was used in the theorem 4.5.

We will call an entry (𝑖, 𝑗) local, the row 𝑖 has entries only in one supercolumn.
Let 𝐴𝑙𝑜𝑐 denote 𝑛 ×𝑚 matrix containing only local elements of 𝐴. If a row has a local
entry, then all of its entries are local. We will call such rows local. Notice that local
row has at most 𝐵 elements. Otherwise, a row is global. Let 0 ≤ 𝑛𝑙 ≤ 𝑛 be the number
of local rows. Denote as 𝑛𝑔 the number of global rows. Then 𝑛𝑙 + 𝑛𝑔 = 𝑛.

In a global row, we call an entry (𝑖, 𝑗) first if there are no 1-entries in a supercolumn
before. Analogously, the entry is last, if there are no entries in the supercolumns after.
Let 𝐴 𝑓 and 𝐴𝑙 denote matrices containing first and last elements, respectively.

The rest of entries are middle. Let 𝐴𝑚 denote the matrix containing all middle
elements. See figure 1 for illustration. Notice that

|𝐴| = |𝐴𝑙𝑜𝑐 | + |𝐴 𝑓 | + |𝐴𝑙 | + |𝐴𝑚 |.

We will study each matrix separately.
Local 𝐴𝑙𝑜𝑐: Notice that in each local row entries may occur only in one supercolumn

of width 𝐵. In other words, each local row contains at most 𝐵 elements. Thus,
|𝐴𝑙𝑜𝑐 | ≤ 𝐵𝑛𝑙 = 𝐵(𝑛 − 𝑛𝑔).

First and last 𝐴 𝑓 , 𝐴𝑙 : There are at most 𝐵 first elements in each global row,
because they may occur only in one supercolumn. Thus, there are no more than 𝐵𝑛𝑔
first elements. Similarly, there are 𝐵𝑛𝑔 last elements. In total, last and first sum to

|𝐴 𝑓 | + |𝐴𝑙 | ≤ 2𝐵𝑛𝑔 .

Middle 𝐴𝑚: Define a 𝑘 × 𝑘 matrix 𝑃′ in the following way.

• Let (𝑝𝑟 , 𝑘) and (𝑝𝑙 , 1), 1 ≤ 𝑝𝑟 , 𝑝𝑙 ≤ 𝑙 be the rightmost and the leftmost entries
of 𝑃, respectively.

• Delete these two elements from 𝑃.

• If 𝑝𝑟 or 𝑝𝑙 is 1, then add element in the first row such that it is next to the element
in the second row.

• If 𝑝𝑟 or 𝑝𝑙 is 𝑘 , then add element in the last row such that it is next to the element
in the (𝑘 − 1)th row.

See figure 2 for illustration. Notice that 𝑃′ has 2 empty columns and at most 2 empty
rows. Matrix 𝑃′ is an altered (𝑘 − 2)-permutation matrix.
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𝑃 𝑃′

(1, 𝑝𝑙)

(𝑘, 𝑝𝑟 )

Figure 2: The first matrix is a permutation matrix 𝑃. The second pattern is 𝑃′

constructed by deleting elements in the first and the last columns and adding an
element in the first row.

Matrix 𝑃′ can not be sum decomposable and skew-sum decomposable at the
same time, since the first and the last rows are not empty. Without loss of generality,
suppose 𝑃′ is not sum decomposable. Then let 𝐷 be a block-diagonal matrix, which
is skew-sum of supercolumns of 𝐴𝑚. This construction of block diagonal matrix 𝐷

allows us to write different avoidance restrictions.

Lemma 5.3. 𝐷 avoids 𝑃′.

Proof. Suppose for a contradiction that 𝐷 contains 𝑃′. Let us fix the realization of 𝑃′

in 𝐷. Since 𝑃′ cannot be written as a skew-sum, the realization must occur in one
block of 𝐷. Indeed, if at least 2 blocks contain it, it gives skew decomposition of
𝑃′. Consequently, matrix 𝐴𝑚 contains 𝑃′. Now let us consider the row of 𝐴𝑚 that
contains row 𝑝𝑟 of 𝑃′. This row might not have any entries, but in the original matrix
𝐴 this row has the element in the last block, and it would realize the rightest entry of
𝑃. Analogously, in the row 𝑝𝑙 of 𝐴 we will find the leftmost element in the first block.
In total, the realization of 𝑃′ together with the rightmost and the leftmost elements
will give us the realization of 𝑃 in 𝐴. That gives a contradiction. □

The goal is to estimate the mass of 𝐷 and, consequently, mass of 𝐴𝑚. Firstly, we
need to determine size of 𝐷.

Lemma 5.4. 𝐷 has size 𝑛′ × 𝑚, where 𝑛′ ≤ ex
(︁
𝑛𝑔,

𝑚
𝐵
, 𝑃

)︁
.

Proof. It has the same number of columns as 𝐴, thus this number is 𝑚.
Suppose 𝐷 has more than ex(𝑛𝑔, 𝑚/𝐵, 𝑃) rows. Let 𝐴′ be contraction matrix of size

𝑛/𝐵 × 𝑚, where element (𝑖, 𝑗) is 0 if and only if elements of 𝑖th row of supercolumn 𝑗

are all zeros. Each element of 𝐴′ corresponds to each row of matrix 𝐷. As 𝐴′ is a
contraction matrix, it avoids 𝑃. Thus, if 𝐷 has more than ex(𝑛𝑔, 𝑚/𝐵, 𝑃) rows, matrix
𝐴′ has mass greater than ex(𝑛𝑔, 𝑚/𝐵, 𝐴), which gives a contradiction. □

Lemma 5.5. |𝐷 | ≤ (𝑐𝑘−2 + 2)ex
(︁
𝑛𝑔,

𝑚
𝐵
, 𝑃

)︁
+ 6𝑚 + 4𝑐𝑘−2𝑚.

Proof. For simplicity, let us denote 𝑛′ = ex(𝑛𝑔, 𝑚/𝐵, 𝑃). Then, matrix 𝐷 has size at
most 𝑛′ × 𝑚. Matrix 𝐷 avoids 𝑃′, which is a matrix of (𝑘 − 2)-permutation with 2
empty columns on the boundary and 2 modified rows. Let 𝑃′

1 be a matrix constructed
by deleting 2 empty columns on the boundary. Then, by lemma 2.7,

|𝐷 | ≤ ex(𝑛′, 𝑚, 𝑃′) ≤ ex(𝑛′, 𝑚, 𝑃′
1) + 2𝑛′.
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In case 𝑃′
1 has the first or last row altered, with an entry added next to an existing

one, we can apply lemma 2.6. In case 𝑃′
1 has empty rows, lemma 2.8 is needed. The

case when 𝑃′
1 has two empty rows of 𝑃′

1 which are not consecutive is the worst case,
because the bound is bigger then. Thus, we need to apply lemma 2.8 two times with
𝑘 = 1. Let 𝑃′

2 be the matrix constructed by deleting the first empty row, and 𝑃′
3 be the

matrix after deleting both empty rows. Matrix 𝑃′
3 is a (𝑘 − 2)-permutation matrix.

ex(𝑛′, 𝑚, 𝑃′
1) ≤ 2ex

(︃
𝑛′

2
, 𝑚, 𝑃′

2

)︃
+ 2𝑚,

ex(𝑛
′

2
, 𝑚, 𝑃′

2) ≤ 2ex
(︃
𝑛′

4
, 𝑚, 𝑃′

3

)︃
+ 2𝑚

≤ 2𝑐𝑘−2

(︃
𝑛′

4
+ 𝑚

)︃
+ 2𝑚 = 𝑐𝑘−2

𝑛′

2
+ 2𝑚 + 2𝑐𝑘−2𝑚.

In total it would give

ex(𝑛′, 𝑚, 𝑃′
1) ≤ 𝑐𝑘−2𝑛

′ + 6𝑚 + 4𝑐𝑘−2𝑚, and
|𝐷 | ≤ 𝑐𝑘−2𝑛

′ + 2𝑛′ + 6𝑚 + 4𝑐𝑘−2𝑚

= (𝑐𝑘−2 + 2)ex
(︂
𝑛𝑔,

𝑚

𝐵
, 𝑃

)︂
+ 6𝑚 + 4𝑐𝑘−2𝑚.

□

Now we are ready to estimate the whole matrix 𝐴:

|𝐴| = |𝐴𝑙𝑜𝑐 | + |𝐴 𝑓 | + |𝐴𝑙 | + |𝐴𝑚 |

≤ 𝐵(𝑛 − 𝑛𝑔) + 2𝐵𝑛𝑔 + (𝑐𝑘−2 + 2)ex
(︂
𝑛𝑔,

𝑚

𝐵
, 𝑃

)︂
+ 6𝑚 + 4𝑐𝑘−2𝑚

≤ 𝐵𝑛 + 𝐵𝑛𝑔 + 4𝑐𝑘−2𝑚 + 6𝑚 + (𝑐𝑘−2 + 2)ex
(︂
𝑛𝑔,

𝑚

𝐵
, 𝑃

)︂
.

The formula above describes recursion for 𝑚, but there is no recursion for 𝑛. In the
next step we estimate the extremal function ex

(︁
𝑛𝑔, 𝑚/𝐵, 𝑃

)︁
further the same way, but

with respect to the first coordinate 𝑛.

5.3 Construction: Step 2
To get recursion in 𝑛, we can repeat step 1 but with respect to horizontal division into
blocks.

Let 𝐶 be a 𝑛𝑔 × 𝑚/𝐵 matrix avoiding 𝑃, such that |𝐶 | = ex
(︁
𝑛𝑔, 𝑚/𝐵, 𝐴

)︁
. Assume

that 𝐵 divides 𝑛𝑔. We will split matrix 𝐶 horizontally into 𝑛𝑔/𝐵 superrows of size 𝐵.
Define local, first, last and middle elements with respect to this division.

We will call an element of 𝐶 (𝑖, 𝑗) local, if its column 𝑗 has no 1-entries outside
the superrow of (𝑖, 𝑗). Then, the column with local elements is called local. The rest
of the columns are called global. Let 𝑚𝑔 ≤ 𝑚/𝐵 denote the number of global columns
and 𝑚𝑙 =

𝑚
𝐵
− 𝑚𝑔 denote the number of local columns.
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The element in the global column is called first, if there are no elements in the
superrows above. Similarly, the element is last, if there are no entries in the suprerows
below. The rest of the entries are called middle. Define matrices 𝐶𝑙𝑜𝑐, 𝐶 𝑓 , 𝐶𝑙 and
𝐶𝑚, in a similar manner, as matrices containing local, first, last and middle elements,
respectively.

We will estimate the mass by counting elements of 𝐶𝑙𝑜𝑐, 𝐶 𝑓 , 𝐶𝑙 and 𝐶𝑚.
Local 𝐶𝑙𝑜𝑐: Each of 𝑛𝑙 columns has at most 𝐵 elements,

|𝐶𝑙𝑜𝑐 | ≤ 𝐵(𝑚
𝐵

− 𝑚𝑔).

First and last 𝐶 𝑓 , 𝐶𝑙 : each global column has at most 𝐵 first and 𝐵 last entries,

|𝐶 𝑓 | + |𝐶𝑙 | ≤ 2𝐵𝑚𝑔 .

Middle 𝐶𝑚: Let 𝑃′ be 𝑘 × 𝑘 matrix constructed by deleting the top and the bottom
elements of matrix 𝑃. Thus, 𝑃′ is matrix corresponding to (𝑘 − 2) permutation with 2
empty columns and to empty rows on the boundary. Suppose it can not be written as a
skew sum of 2 matrices. Let 𝐹 be a block matrix which is a skew sum of superrows of
𝐶. Then, the following lemmas hold.

Lemma 5.6. 𝐹 avoids 𝑃′.

Proof. The proof is similar to 5.3. □

Lemma 5.7. 𝐹 has size at most 𝑛𝑔 × ex
(︂
𝑛𝑔
𝐵
, 𝑚𝑔, 𝑃

)︂
.

Proof. The proof is similar to lemma 5.4. □

Lemma 5.8. |𝐹 | ≤ (𝑐𝑘−2 + 2)ex
(︂
𝑛𝑔
𝐵
, 𝑚𝑔, 𝑃

)︂
+ 6𝑛𝑔 + 4𝑐𝑘−2𝑛𝑔.

Proof. The proof is similar to lemma 5.5. □

Then,

|𝐶 | ≤ 𝐵

(︂𝑚
𝐵

− 𝑚𝑔

)︂
+ 2𝐵𝑚𝑔 + (𝑐𝑘−2 + 2)ex

(︂𝑛𝑔
𝐵
, 𝑚𝑔, 𝑃

)︂
+ 6𝑛𝑔 + 4𝑐𝑘−2𝑛𝑔

= 𝑚 + 𝐵𝑚𝑔 + (𝑐𝑘−2 + 2)ex
(︂𝑛𝑔
𝐵
, 𝑚𝑔, 𝑃

)︂
+ 6𝑛𝑔 + 4𝑐𝑘−2𝑛𝑔 .

Let us substitute the estimate above in. Notice that 𝑛𝑔 ≤ 𝑛 and 𝑚𝑔 ≤ 𝑚/𝐵.
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ex(𝑛, 𝑚, 𝑃) ≤ 𝐵𝑛 + 𝐵𝑛𝑔 + 4𝑐𝑘−2𝑚 + 6𝑚 + (𝑐𝑘−2 + 2)ex
(︂
𝑛𝑔,

𝑚

𝐵
, 𝑃

)︂
≤ 𝐵𝑛 + 𝐵𝑛𝑔 + 4𝑐𝑘−2𝑚 + 6𝑚+

(𝑐𝑘−2 + 2) (𝑚 + 𝐵𝑚𝑔 + (𝑐𝑘−2 + 2)ex
(︂𝑛𝑔
𝐵
, 𝑚𝑔, 𝑃

)︂
+ 6𝑛𝑔 + 4𝑐𝑘−2𝑛𝑔)

≤ 2𝐵𝑛 + (4𝑐𝑘−2 + 6)𝑚

+ (𝑐𝑘−2 + 2) (2𝑚 + (𝑐𝑘−2 + 2)ex
(︂ 𝑛
𝐵
,
𝑚

𝐵
, 𝑃

)︂
+ (4𝑐𝑘−2 + 6)𝑛)

≤ 2𝐵𝑛 + (6𝑐𝑘−2 + 10)𝑚

+ 4𝑐2
𝑘−2𝑛 + 14𝑐𝑘−2𝑛 + 12𝑛 + (𝑐𝑘−2 + 2)2ex

(︂ 𝑛
𝐵
,
𝑚

𝐵
, 𝑃

)︂
≤ 𝑛(2𝐵 + 4𝑐2

𝑘−2 + 14𝑐𝑘−2 + 12)

+ 𝑚(6𝑐𝑘−2 + 10) + (𝑐𝑘−2 + 2)2ex
(︂ 𝑛
𝐵
,
𝑚

𝐵
, 𝑃

)︂
.

5.4 Remarks
In conclusion, we applied the technique from the light matrices into a different setting,
using the fact that permutation matrices are light in both directions. It made it possible
to use contraction of superrows and supercolumns.

In lemma 5.2 we substitute 𝐵 = 2(𝑐𝑘−2 + 2)2. Notice that this choice is optimal. It
follows from the resulting recursive formula. Suppose we want to choose optimal 𝐵 to
find the best estimation for 𝑐𝑘 by induction.

ex(𝑛, 𝑚, 𝑃) ≤ 𝑛(2𝐵 + 4𝑐2
𝑘−2 + 14𝑐𝑘−2 + 12 + 𝐵 − 1) + 𝑚(6𝑐𝑘−2 + 10 + 𝐵 − 1)

+ (𝑐𝑘−2 + 2)2𝑐𝑘
𝑛 + 𝑚

𝐵
.

Thus, we want to choose 𝐵 to minimize the solution 𝑐𝑘 to the following inequality

𝑛(3𝐵 + 4𝑐2
𝑘−2 + 14𝑐𝑘−2 + 11) + 𝑚(6𝑐𝑘−2 + 9 + 𝐵)

+ (𝑐𝑘−2 + 2)2𝑐𝑘
𝑛 + 𝑚

𝐵
≤ 𝑐𝑘 (𝑛 + 𝑚).

Notice that if 𝐵 ≤ (𝑐𝑘−2 + 2)2, there are no solutions for 𝑐𝑘 . Let 𝐵 = 𝐴 · (𝑐𝑘−2 + 2)2.
Thus we have

𝑛(3𝐴 · (𝑐𝑘−2 + 2)2 + 4𝑐2
𝑘−2 + 14𝑐𝑘−2 + 11) + 𝑚(6𝑐𝑘−2 + 9 + 𝐴 · (𝑐𝑘−2 + 2)2)

+ 𝑐𝑘
𝑛 + 𝑚

𝐴
≤ 𝑐𝑘 (𝑛 + 𝑚).

Let us find the solution to the stronger inequality:

3𝐴 · (𝑐𝑘−2 + 2)2 + 4𝑐2
𝑘−2 + 14𝑐𝑘−2 + 11 ≤ (𝐴 − 1)𝑐𝑘

𝐴
,

𝑐𝑘 ≥ 𝐴

𝐴 − 1
(3𝐴 · (𝑐𝑘−2 + 2)2 + 4𝑐2

𝑘−2 + 14𝑐𝑘−2 + 11).

44



The right part is minimal when 𝐴 = 2. Thus, 𝐵 = 2(𝑐𝑘−1 + 2)2 is optimal.
In concept, the result has a double exponential bound because we have the square

term in recurrence 𝑐𝑘 = 𝑂 (𝑐2
𝑘−2). It appears because the construction has two steps:

each of them includes multiplication of the main term by coefficient 𝑂 (𝑐𝑘−2).
Compared to the proof for light matrices, notice that we used a different bound for

the number of local, first and last elements. Here we used trivial bound, saying that in
each row the number of local, first and last is at most 𝐵. But there are different ways
to estimate the number of these elements. 𝑃 or a smaller pattern. For example,

|Local| ≤
𝑚/𝐵∑︁
𝑖=1

ex(𝑛𝑖, 𝐵, 𝑃).

For the first and last elements, we can consider the block diagonal matrix 𝐷, defined
in the proof, but consisting only first or last elements. By the same reasoning, the size
of 𝐷 is at most 𝑛′ × 𝑚, where 𝑛′ = ex(𝑛𝑔, 𝑚/𝐵, 𝑃). Then

|First| ≤ ex(𝑛′, 𝑚, 𝑃′
1),

|Last| ≤ ex(𝑛′, 𝑚, 𝑃′
2),

where 𝑃′
1 is matrix constructed by deleting the rightmost element of 𝑃, and 𝑃′

2, by
deleting the leftmost element. Even though, these bounds seem more tight, the solution
will still be of double exponential order, since we will have a quadratic term.

Possible future research might be focused on continuing working with the con-
struction described in section 5. There are different options for choosing 𝐵. Suppose
that in the beginning we choose 𝐵 to be large, for example, 𝐵 = 𝑚/10. Define local, first,
last and middle elements as before. For the middle entries use the same construction
with block diagonal matrix, avoiding a smaller pattern. The estimation will be

|Middle| ≤ (𝑐𝑘−2 + 2)ex
(︂
𝑛𝑔,

𝑚

𝐵
, 𝑃

)︂
+ 6𝑚 + 4𝑐𝑘−2𝑚.

Here 𝑚/𝐵 = 10 and then the term ex(𝑛𝑔, 𝑚/𝐵, 𝑃) can be trivially bounded as

ex
(︂
𝑛𝑔,

𝑚

𝐵

)︂
≤ 10𝑛𝑔 .

Then the number of middle elements is at most

|Middle| ≤ 10(𝑐𝑘−2 + 2)𝑛𝑔 + 6𝑚 + 4𝑐𝑘−2𝑚.

This estimation is linear and does not use recurrence at all. Although, for the local,
first and last elements trivial bound will not work anymore, since

𝐵(𝑛 − 𝑛𝑔) =
𝑚

10
(𝑛 − 𝑛𝑔),

𝐵𝑛𝑔 =
𝑚

10
𝑛𝑔 .

The problem with this approach is that we can not now estimate 𝑛𝑔 and we always
upper bound it by 𝑛. In that case we will have quadratic estimate, which is too weak.
The possible future work may include analyzing 𝑛𝑔 variable and trying to find more
tight upper bound depending on 𝐵 in a random matrix.

45



References
[1] Arratia, R. On the Stanley-Wilf conjecture for the number of permutations

avoiding a given pattern. The Electronic Journal of Combinatorics 6 (1999), 4.

[2] Bouvel, M., and Rossin, D. A variant of the tandem duplication —
random loss model of genome rearrangement. Theoretical Computer Science
410 (2009), 847–858.

[3] Bóna, M. Exact enumeration of 1342-avoiding permutations: A close link
with labeled trees and planar maps. Journal of Combinatorial Theory, Series A
80, 2 (1997), 257–272.

[4] Bóna, M. Permutations avoiding certain patterns: The case of length 4 and
some generalizations. Discrete Mathematics 175 (1997), 55–67.

[5] Bóna, M. The solution of a conjecture of stanley and wilf for all layered
patterns. Journal of Combinatorial Theory, Series A 85, 1 (1999), 96–104.

[6] Cibulka, J . On constants in the Füredi–Hajnal and the Stanley–Wilf conjecture.
Journal of Combinatorial Theory, Series A 116, 1 (2009), 290–302.

[7] Cibulka, J . , and Kyncl, J . Better upper bounds on the Füredi–Hajnal
limits of permutations. In ACM-SIAM Symposium on Discrete Algorithms
(2016).

[8] Fekete, M. Uber die verteilung der wurzeln bei gewissen algebraischen
gleichungen mit ganzzähligen koeffizienten. Math. Z. 17 (1923), 228–249.

[9] Fox, J . Stanley-Wilf limits are typically exponential. arXiv:1310.8378 (2013).

[10] Füredi , Z. The maximum number of unit distances in a convex n-gon. Journal
of Combinatorial Theory, Series A 55 (1990), 316–320.

[11] Füredi , Z. , and Hajnal, P. Davenport-Schinzel theory of matrices.
Discrete Mathematics 153(1-3) (1996), 185–196.

[12] Geneson, J . Forbidden formations in multidimensional 0-1 matrices. Euro-
pean Journal of Combinatorics 78 (2019), 147–154.

[13] Keszegh, B. Forbidden submatrices in 0-1 matrices. Master’s thesis, Eötvös
Loránd University, (2005).

[14] Keszegh, B. On linear forbidden submatrices. Journal of Combinatorial
Theory, Series A 107, 1 (2009), 232–241.

[15] Kitaev, S. Patterns in permutations and words. Monographs in Theoretical
Computer Science. An EATCS Series. Springer Verlag, (2011).

46



[16] Klazar, M. A general upper bound in extremal theory of sequences, comment.
Commentationes Mathematicae Universitatis Carolinae 33, 4 (1992), 737–747.

[17] Klazar, M. The Füredi–Hajnal conjecture implies the Stanley–Wilf conjec-
ture. Formal Power Series and Algebraic Combinatorics (2000), 250–255.

[18] Marcus, A. , and Tardos, G. Excluded permutation matrices and the
Stanley–Wilf conjecture. Journal of Combinatorial Theory, Series A 107, 1
(2004), 153–160.

[19] Pach, J . , and Tardos, G. Forbidden paths and cycles in ordered graphs
and matrices. Israel Journal of Mathematics 155 (2006), 359–380.

[20] Pettie, S. Applications of forbidden 0–1 matrices to search tree and path
compression-based data structures. Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms (2010), 1457–1457.

[21] Stanojevic, M., and Steedman, M. Formal basis of a language universal.
Computational Linguistics 47, 1 (2021), 9–42.

[22] Vatter, V. Permutation Classes. Handbook of Enumerative Combinatorics
(2015), 754–833.

47


	Abstract 
	Contents
	1 Introduction
	1.1 Definitions
	1.2 Introducing the question
	1.3 Structure

	2 Basic facts about forbidden 0-1 matrices
	2.1 Properties
	2.2 Super additivity
	2.3 Reduction rules

	3 Permutation matrices
	3.1 Properties
	3.2 Examples
	3.3 Connection between c(P) and L(P)
	3.4 Marcus and Tardos' proof
	3.5 Fox' proof

	4 Light matrices
	4.1 Inverse Ackermann function
	4.2 Matrix of size 4
	4.3 Matrix of size 5
	4.4 General case

	5 Main results
	5.1 The proof
	5.2 Construction: Step 1
	5.3 Construction: Step 2
	5.4 Remarks


