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1. Introduction

A hidden variable model is a statistical model which assumes the presence of
hidden variables or factors that can possibly explain a set of observed variables
in the model. These hidden variables are hypothesized to theoretically exist and
they are hidden because we have no measurable data on them. Hidden variable
models can explain dependencies between the observed variables. These statis-
tical models are important because they can be used to formulate and explain
many complex systems in a compact and comprehensible way. Moreover, they
have been used in various disciplines, including biology, psychology, economics,
social sciences, and many more. This thesis focuses on the hidden variable
models in the field of phylogenetics and on the factor analysis model.

Phylogenetics is a subfield of biology that studies evolutionary relationships
between extant species. The history of phylogenetics dates back to the theory
of evolution proposed by Charles Darwin, the theory of species classification
or taxonomy developed by Carl Linnaeus, and the theory of shared common
origin introduced by Ernst Haeckel. The ultimate goal of phylogenetics is to
figure out the true evolutionary relationships between a collection of species of
interest and these relationships are commonly described using a special graph
called a phylogenetic tree. There are numerous methods that have been used to
reconstruct the true phylogenetic tree. Traditionally, phylogenetic trees were
constructed by simply comparing morphological, physiological, or behavioural
similarities between species. Biologists believe that these features alone can-
not provide enough information to obtain the true phylogenetic tree [87, 52].
Technological advancements have made it possible to study phylogenetics using
molecular data, including the DNA and protein molecules. This molecular data
enables us to formulate more suitable, reliable, and rigorous mathematical
models for phylogenetic studies as they provide a large number of potential char-
acteristics available for inferring phylogenetic relationships [52, 60]. Currently
the most common method for reconstructing phylogenetic trees is based on the
comparison of the DNA or protein sequences of a collection of species using a
phylogenetic model that encodes how these sequences are inherited from their
possible ancestors and then using statistical inference to obtain a tree that best
explains the data.
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The most common approach in phylogenetics is to model evolution as a Markov
process. This stochastic process assumes that the Markov property holds. That
is, the probabilities of certain events happening in the future given the present
are independent of the past. In phylogenetics, the Markov matrices in this
model explain the probabilities of the occurrence of each event in the nucleotide
substitution process. This Markov process is commonly modeled on a phyloge-
netic tree where each vertex represents a species and each edge represents a
parent-child relationship of two species. Since we can only observe and take DNA
samples from some subset of species in consideration, it is natural to assume
the existence of some hidden variables corresponding to the extinct ancestors.

One of the most important aspects in phylogenetic modeling is to find a time-
homogeneous continuous-time Markov process that realizes our set of Markov
matrices encoding the nucleotide substitution process. This means that we want
to decide whether the Markov process can be completely characterized in terms
of instantaneous substitution rates among states in the process. If the answer
is positive, then these instantaneous rates of substitution will be displayed in
rate matrices and we call our Markov process embeddable. In the language of
matrices, a transition matrix P in a Markov chain is said to be embeddable if
there exists a rate matrix Q satisfying P = exp(Q). Any rate matrix satisfying
such property is called a Markov generator of P. Given a Markov matrix, the
question of finding its Markov generator is known as the embedding problem.
The notion of embeddability of Markov matrices was initially introduced by
Elfving [30] in 1937. An extensive list of results on the embeddability criteria
of Markov matrices is given in [26, 56, 12, 20, 23, 51, 72, 13]. These results
completely characterize the embeddability of Markov matrices up to order 4.
Moreover, the authors of [14] provide an embeddability criteria for general
Markov matrices of order n having positive and distinct eigenvalues together
with an algorithm that can enumerate its Markov generators. The embedding
problem, especially in the context of phylogenetics, constitutes one of the main
underlying topics in this thesis.

More specifically, we are interested in finding embeddability criteria for certain
nucleotide substitution models commonly used in phylogenetics. In Publication I,
we consider group-based models in which the transition matrices are determined
by the underlying group structure. This class of models includes the Jukes-
Cantor [53] and the Kimura models [54, 55]. In Publication III, we consider
a more general model that is referred to as the strand symmetric model [16]
which takes into account the complimentarity of the two strands composing
the DNA structure. Similar to the case of group-based models, the strand
symmetric model also includes the Jukes-Cantor and the Kimura models. The
main results in these two publications are derived by studying properties of
matrix exponentials and logarithms.

In recent years, biologists found more evidence that phylogenetic trees can-
not fully capture important biological phenomena like horizontal gene transfer
or hybridization which require two fully separated branches to merge again
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[1, 6, 70]. For instance, [19] and [63] suggest that these processes of reticulate
evolution can possibly occur in plants and animals. Instead of modeling phy-
logeny on a tree, in recent years we have seen numerous methods to reconstruct
phylogeny on networks which take into account these reticulate evolutionary
processes [27, 57, 8, 40, 47]. Although networks can better represent biological
phenomena, there is an obvious drawback, namely general networks are much
more complex than trees.

This thesis also focuses on understanding how to distinguish two phylogenetic
models on distinct networks. If we can distinguish phylogenetic models on
networks, then the associated network parameters are generically identifiable.
Generic identifiability ensures that up to a subset of measure zero, the phyloge-
netic model parameters can be inferred consistently. Some results on the generic
identifiability of the network parameter of a phylogenetic network model using
polynomial invariants known as phylogenetic invariants have been established
in [40, 47, 41]. In these papers, the authors consider a class of phylogenetic
networks which is called the class of level-1 networks. Roughly speaking, in each
biconnected component, these networks can only contain at most one undirected
cycle and at most one vertex that corresponds to reticulate evolution. To obtain
these results, the authors utilize some combinatorial aspects of the networks
together with some algebraic tools that include Gröbner basis computations
of an ideal associated to each phylogenetic network model. In Publication II,
we extend this approach to more complex networks that we refer to as level-2
networks. Unlike in level-1 networks, in level-2 networks, we allow each bicon-
nected component to contain at most two vertices corresponding to reticulate
evolution.

Another statistical model that assumes the existence of hidden variables is the
factor analysis model. Given a set of observable variables, the factor analysis
model seeks to find some underlying (typically fewer) hidden variables that
could explain covariance between the set of observable variables. The origin
of the factor analysis model dates back to the theory of human intelligence
proposed by Charles Spearman [75, 74]. This model has been widely used in
many fields, including social sciences, economics, and psychology. The factor
analysis model is usually implemented to simplify a set of complex observed
variables and hence it serves as a dimension-reduction technique in statistics.
The work in [28] provides a polynomial parameterization of the factor analysis
model. Moreover, the authors studied the model invariants which are polynomial
equality constraints that have to be satisfied by any covariance matrix belonging
to the model.

One fundamental assumption in the factor analysis model is that the random
variables are assumed to be Gaussian. This assumption is rather restrictive.
In Publication IV, we drop the Gaussianity assumption and we introduce the
notion of higher-order factor analysis model. This higher-order factor analysis
model can be described either using the moment or the cumulant tensors. We
focus on studying the dimension of the higher-order factor analysis model which
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is a useful information in performing model selection. This dimension will
be computed using a polynomial parameterization of the higher-order factor
analysis model.

This thesis is composed of the summary and four articles related to the al-
gebraic aspects of the hidden variable models in phylogenetics and the factor
analysis model. The summary part of this thesis is organized as follows. In
Chapter 2, we provide the necessary mathematical preliminaries on functions
of matrices, on computational algebraic geometry tools that include Gröbner
basis computations, on Markov processes, and on graph theory. In Chapter 3, we
present the main results of Publications I, II, and III concerning some algebraic
aspects of phylogenetic models. This chapter is divided into five sections. The
first two sections provide some background on the nucleotide substitution models
in consideration. In the third section, we formulate the embedding problem
and present the main results on the embeddability criteria for these models. In
the last two sections, we explain how to associate an algebraic object to each
phylogenetic network model and how to use it to distinguish phylogenetic models.
Finally, in Chapter 4, we introduce the notion of higher-order factor analysis
model in terms of cumulant and moment tensors and present the main result of
Publication IV on the model dimension.

4



2. Mathematical Preliminaries

In this chapter, we present all the necessary mathematical preliminaries that are
required in the subsequent chapters. We recall the general concept of functions
defined on the space of matrices and some results specific to particular functions.
We also present some tools from nonlinear algebra, particularly Gröbner bases
and elimination theory, which are the main algebraic tools for studying the two
hidden variable models presented in this thesis. Moreover, we provide some
background on Markov processes and graph theory which serve as foundations
for building these two hidden variable models.

2.1 Functions of matrices

In this section, we introduce the definitions and present known results in the
theory of matrix functions. There are two matrix functions that are of our main
interest. They are the matrix exponential and the matrix logarithm. We will
need these two special matrix functions to formulate the embedding problem in
Section 3.3. Almost all the results in this section can be found in most linear
algebra books, such as [37], [7], and [44].

2.1.1 Jordan decomposition

We review a specific matrix decomposition of any square matrix with complex
entries. This decomposition is called a Jordan decomposition of a matrix. Using
a similarity transformation, this decomposition reduces any square complex ma-
trix into a block-diagonal matrix such that each block appearing on the diagonal
has a triangular form. We will mention the importance of this decomposition in
the definition of a matrix function and in its relationship with the usual matrix
eigendecomposition. We will see later that we can define a matrix function using
its Jordan decomposition.

Definition 2.1.1. Let A ∈ Mn(C) . Let {λ1, . . . ,λp} be the set of eigenvalues of A.

5
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The matrix

Jm(λ)=

⎛
⎜⎜⎜⎜⎜⎝

λ 1

λ
. . .
. . . 1

λ

⎞
⎟⎟⎟⎟⎟⎠

∈ Mm(C)

is called an m×m Jordan block of the eigenvalue λ. A Jordan canonical form of
A is a matrix J ∈ Mn(C) such that there exists an invertible complex matrix Z
of size n satisfying Z−1 AZ = J and

J = diag(Jm11(λ1), . . . , Jm1l1
(λ1), Jm21(λ2), . . . , Jm2l2

(λ2), . . . , Jmp1(λp), . . . , Jmpl p
(λp)),

where n = m11 +·· ·+m1l1 +·· ·+mp1 +·· ·+mplp . The factorization A = ZJZ−1

where J is a Jordan canonical form is called a Jordan decomposition of A and
the matrix Z is called the Jordan transformation matrix associated with the
factorization.

Any square complex matrix in Mn(C) can be decomposed into a Jordan canoni-
cal form and the values of λk appearing in the Jordan canonical form above are
its eigenvalues. This Jordan canonical matrix J is unique up to the ordering of
these Jordan blocks.

Recall that the algebraic multiplicity of an eigenvalue λ of a matrix A ∈ Mn(C)
is the number of times λ appears as a root of its characteristic polynomial
pA := det(A−λIn) while its geometric multiplicity is defined as the dimension
dim(Ker(A−λIn)). There are the following relationships between the Jordan
canonical matrix J and algebraic and geometric multiplicities of eigenvalues.
The geometric multiplicity of λk equals the number of Jordan blocks in the
Jordan matrix J with the eigenvalue λk and the algebraic multiplicity equals
how many times λk is repeated along the diagonal of J. An eigendecomposition
A = ZJZ−1 is a special case of a Jordan decomposition of A when each of the
Jordan blocks appearing in J has size one giving the diagonal structure on the
matrix J = diag(λ1,λ2, . . . ,λp). In this case, A is said to be diagonalizable.

Example 2.1.2. We demonstrate a Jordan decomposition in the following exam-
ple. Suppose that

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 2 2

0 0 0 2 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and Z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0

0 1 0 0 0

−1
2 0 0 1

2 0

1 0 0 0 0

0 1
2 0 0 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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By direct computations,

J := Z−1 AZ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 2 1

0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We can see that J is a Jordan canonical form of A with a Jordan transformation
matrix Z. The spectrum of A is {0,2}. The algebraic multiplicity of 0 is 3 and
its geometric multiplicity is 2. So the Jordan blocks corresponding to 0 give the
matrix

diag(J1(0), J2(0))=

⎛
⎜⎜⎝

0 0 0

0 0 1

0 0 0

⎞
⎟⎟⎠ .

The algebraic multiplicity of 2 is 2 and its geometric multiplicity is 1. The Jordan
block corresponding to 2 is

J2(1)=
(︄

2 1

0 2

)︄
.

Using a Jordan decomposition of a matrix, we would like to generalize the
notion of a complex scalar function f (z). In the following, we present the
definition of a matrix function that takes a scalar function and a complex square
matrix A, and then we define the output f (A) to be a complex square matrix of
the same size.

Suppose that λ1, . . . ,λs are the distinct eigenvalues of A ∈ Mn(C). For each
k ∈ [s], suppose that the size of the largest Jordan block in which λk appears is
nk. Following the terminology in [44], a function f is defined on the spectrum
of A if the value f ( j)(λk), that is the jth order derivative of f evaluated at λk,
exists for j = 0, . . . ,nk −1 and k ∈ [s].

Definition 2.1.3 (Spectral resolution of a function). Given A ∈ Mn(C), let f be
a scalar complex function defined on its spectrum. Let A = ZJZ−1 be a Jordan
decomposition of A. Then the matrix f (A), often referred as the the spectral
resolution of f in A, can be computed as follows:

f (A) := Z · f (J) ·Z−1 = Z ·diag( f (Jmk )) ·Z−1,

where

f (Jmk )=

⎛
⎜⎜⎜⎜⎜⎝

f (λk) f ′(λk) · · · f (mk−1)(λk)
(mk−1)!

f (λk)
. . .

...
. . . f ′(λk)

f (λk)

⎞
⎟⎟⎟⎟⎟⎠

7
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The above definition of f (A) is independent of the choice of a Jordan canonical
form of A. Moreover, for a diagonalizable matrix A, the matrix f (A) has the
same eigenvectors as A with eigenvalues obtained by applying f to eigenvalues
of A. Indeed, given an eigendecomposition A = Z ·diag(λ1, . . . ,λp) ·Z−1 such that
the columns of Z consist of eigenvectors of A, Definition 2.1.3 implies that

f (A)= Z · f (diag(λ1, . . . ,λp)) ·Z−1 = Z ·diag( f (λ1), . . . , f (λp)) ·Z−1.

In this case, we can also see that f (A) is diagonalizable as well.

Remark 2.1.4. Using the spectral resolution of a function is not the only way
to define a matrix function. It is also possible to define a matrix function via the
Cauchy integral and Hermite interpolation. See [44, Definition 1.4 & 1.11] for
further details. It is shown in [44, Section 1.2.4] that all these three different
ways to define a matrix function are equivalent but one has to be careful when
using the definition via the Cauchy integral due to some analytical conditions
that the function f has to possess.

Example 2.1.5. We illustrate Definition 2.1.3 for the complex scalar function

f (x) = xn for a natural number n ≥ 2. Let A =
(︄

2 1

0 2

)︄
, which is already in a

Jordan canonical form. Definition 2.1.3 gives

f (A) :=
(︄

f (2) f ′(2)

0 f (2)

)︄
=
(︄

2n n2n−1

0 2n

)︄
,

which can be verified to be An.

Similarly to Example 2.1.5, given a matrix A ∈ Mn(C), if f =∑︁m
k=0 ckxk is a

polynomial function, then the matrix f (A) can be easily computed as

f (A) :=
m∑︂

k=0

ck Ak.

More generally, given any power series
∑︁∞

k=0 ckxk, one can consider the matrix
power series

∑︁∞
k=0 ck Ak where A0 = In. Therefore, it suggests that it is possible

to use a series representation of a function to define its associated matrix
function. But in this approach, one has to be careful whether the series converges
or not.

Definition 2.1.6 (Series representation of a function). Suppose that f is a
complex scalar function. Let z0 ∈ C and A ∈ Mn(C). Suppose that there exists
some r > 0 such that the series

∑︁∞
k=0 ck(z− z0)k converges to f (z) for |z− z0| < r.

If |λi − z0| < r for every eigenvalue λi of A, then the matrix series

∞∑︂

k=0

ck(A− z0In)k converges.

In this case, we define f (A) :=∑︁∞
k=0 ck(A− z0In)k.

8
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In fact, it is argued in [66, Example 7.9.3] that if |λi − z0| < r for every eigen-
value λi of A, then the series

∑︁∞
k=0 ck(A− z0In)k always converges. The proof of

this statement utilizes a Jordan form of A. Additionally, it is also shown in [66,
Example 7.9.4] that any matrix function is a polynomial matrix function. Namely,
given a complex scalar function f that is defined on the spectrum of A ∈ Mn(C),
there exists a complex polynomial function p(z) such that f (A)= p(A).

Example 2.1.7 (Neumann series). Let us consider the function f (z)= (1− z)−1

for z ̸= 1. We know that the series

(1− z)−1 =
∞∑︂

k=0

zk

converges if and only if the magnitude of z is less than one. If every eigenvalue
of A has magnitude less than one, then Definition 2.1.6 suggests that the matrix
function f (A) = (In − A)−1 can also be computed using the series

∑︁∞
k=0 Ak. In

fact, the series
∑︁∞

k=0 Ak converges if and only if every eigenvalue of A has
magnitude less than one [66, Chapter 7]. Note that In − A is non-singular if
and only if 1 is not an eigenvalue of A. These facts suggest that although the
Neumann series may not be convergent, the matrix (In − A)−1 can still exist.

2.1.2 Matrix exponential and logarithms

In this subsection, we discuss two particular matrix functions, namely the matrix
exponential and the logarithm function using definitions given in Section 2.1.1.

We start with the matrix exponentials. Definition 2.1.3 in Section 2.1.1 allows
us to define the matrix exponential using the spectral resolution of the complex
scalar exponential function f (z) = ez, denoted by exp(A). Alternatively, as
pointed out in Definition 2.1.6, we could also define exp(A) using the series
representation of the function f (z)= ez.

Definition 2.1.8. The exponential of a matrix A ∈ Mn(C) is the matrix given by

exp(A)=
∞∑︂

k=0

1
k!

Ak, where A0 = In. (2.1)

The exponential series in (2.1) converges absolutely for any square matrix
and hence it converges. It can be checked that both spectral resolution and
series representation approaches to compute the matrix exponentials coincide.
Consequently, we can use both spectral resolution and series representation
approaches interchangeably throughout this thesis.

Example 2.1.9. We demonstrate how to compute the matrix exponential. Sup-
pose that for some λ1,λ2,λ3 ∈R,

A =

⎛
⎜⎜⎝

λ1 1 0

0 λ1 0

0 0 λ2

⎞
⎟⎟⎠ .

9
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We will now compute exp(tA) for t ∈R. Let J1 =
(︄

λ1 1

0 λ1

)︄
and J2 =

(︂
λ2

)︂
. Using

the series (2.1),

exp(tA)=
∞∑︂

k=0

tk

k!
Ak =

∞∑︂

k=0

tk

k!

(︄
Jk

1 0

0 Jk
2

)︄
=
(︄∑︁∞

k=0
tk

k! Jk
1 0

0
∑︁∞

k=0
tk

k! Jk
2

)︄
.

Moreover, it can be shown that Jk
1 =
(︄

λk
1 kλk−1

1

0 λk
1

)︄
. Hence,

∞∑︂

k=0

tk

k!
Jk

1 =
(︄

eλ1 t teλ1 t

0 eλ1 t

)︄
and

∞∑︂

k=0

tk

k!
Jk

2 = eλ2 t.

Therefore, the matrix exponential exp(tA) is given by

exp(tA)=

⎛
⎜⎜⎝

eλ1 t teλ1 t 0

0 eλ1 t 0

0 0 eλ2 t

⎞
⎟⎟⎠ .

If one uses Definition 2.1.3 to compute exp(tA), then one will arrive at the same
result.

We will now mention some important properties of matrix exponentials. From
the definitions of the matrix exponential, it follows that exp(0n)= In.

Proposition 2.1.10 ([44], Theorem 10.2). Let A and B be two commuting com-
plex square matrices of size n. Then exp(A+B)= exp(A) ·exp(B).

Corollary 2.1.11 ([7], Chapter 10). Let A ∈ Mn(C). Then exp(A) is invertible
and its inverse is exp(−A).

We conclude the first part of this subsection by presenting the following well-
known formula.

Proposition 2.1.12 ([7], Chapter 10). For A ∈ Mn(C),

det(exp(A))= etr(A).

The matrix exponential has been widely used in different areas in mathemat-
ics. For instance, the matrix exponential comes up when one wants to solve a
homogeneous linear differential system with constant coefficients. More pre-
cisely, given a complex square matrix A of size n, the solution of a first order
differential equation given in the matrix form

P ′(t)= A ·P(t)

where P(t) ∈ Rn is of the form P(t) = exp(At) · P(0). Here P(0) is the initial
condition. Moreover, the matrix exponential is an important object in control

10
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theory. Namely, the matrix exponential is used whenever one wants to convert a
continuous time dynamical system to a discrete time dynamical system.

In the remainder of this subsection, we will discuss matrix logarithms and
how to find them. From complex analysis, we know that the complex logarithm
function is a multi-valued function. This suggests that unlike in the case of
matrix exponential, extra care is needed to define the matrix logarithm function.
Let us start by presenting what a logarithm of a matrix is. In Chapter 3, we
present the embedding problem, and in order to answer this problem, we need
to study some properties of the matrix logarithm. In particular, we present some
conditions known in the literature under which a (real) logarithm of a matrix
exists.

Definition 2.1.13. Let A ∈ Mn(C). A matrix B ∈ Mn(C) is a logarithm of A if

A = exp(B).

Additionally, if B is a real matrix, then B is said to be a real logarithm of A.

Definition 2.1.13 and Proposition 2.1.12 imply that if A = exp(B), then

det(A)= det(exp(B))= etr(B) ̸= 0.

Thus, singular matrices cannot have logarithms.
We briefly discuss the behaviour of a matrix function under the composition of

functions. Let A ∈ Mn(C). Suppose that f and g are scalar complex functions
such that f (A) and f (g(A)) exist. Let h(z)= f (g(z)). Then it can be shown that
h(A)= f (g(A)). See [66, Chapter 7.9] for further details.

Proposition 2.1.14. For A ∈ Mn(C), whenever the spectral resolution log(A) of
the real logarithm function log in A is defined, then exp(log(A))= A .

The fact that the spectral resolution is consistent under the composition of
functions suggests that matrix logarithms can be computed via the spectral
resolution.

Example 2.1.15. We demonstrate how to compute matrix logarithms. Suppose
we have the following two matrices:

A =
(︄

0.4 −0.1

0 0.6

)︄
, Z =

(︄
1 −1

0 2

)︄
.

Then an eigendecomposition of A is given by A = Z ·diag(0.4,0.6) ·Z−1. It can be
checked that the spectrum of A is {0.4,0.6}. Then using Definition 2.1.3 for the
real logarithm function log, we obtain

log(A)= Z ·diag(log(0.4), log(0.6)) ·Z−1 ≈
(︄
−0.916291 −0.202733

0 −0.510826

)︄
.

11
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Remark 2.1.16. Just like in the scalar logarithm function case, the matrix
logarithm is not unique. Namely, if exp(B)= A for some matrices A,B ∈ Mn(C),
then for any k ∈Z

exp(B+2πkiIn)= exp(B) ·exp(2πkiIn)= A · In = A.

In general, it is possible that an invertible real matrix has an infinite number of
real and complex logarithms.

Let f be a multi-valued complex scalar function. A single-valued complex
scalar function F is a branch of f if for every z in the domain of f , there exists a
subset Uz of the domain such that F is analytic in Uz and the value F(z) is one
of the values of f . In the following, we provide the definition of the branches of
the logarithm function.

Definition 2.1.17. Let k ∈ Z and z ∈ C. The kth-branch of the logarithm of z,
denoted by logk(z), is

logk(z) := log(|z|)+ (Arg(z)+2πk)i,

where log(|z|) denotes the natural logarithm of |z| and Arg(z) ∈ (−π,π]. When
k = 0, then the logarithm log0(z) is called the principal logarithm of z. To
simplify notation, we denote the principal logarithm of z by log(z) .

If we want to find all the logarithms of a matrix, then we have to consider all
branches of the complex logarithm as well since each branch produces a different
matrix logarithm.

Definition 2.1.18. Let A,B ∈ Mn(C). The matrix B is a primary logarithm of A
if there exists some k ∈Z such that B = logk(A). Otherwise, B is a non-primary
logarithm of A. Moreover, if B = log0(A), then it is called the principal logarithm,
denoted by Log(A).

Alternatively, one could use the following approach using series representation.
It is possible to define the principal logarithm of a matrix A ∈ Mn(C) via Merca-
tor’s series, under the assumption that the series converges. By integrating the
series representation

1
1+ z

= 1− z+ z2 − z3 +·· ·
between 0 and x, we obtain the Mercator’s series:

log(1+ x)= x− x2

2
+ x3

3
− x4

4
+·· ·

which converges if and only if |x| < 1. Then the principal logarithm can be
defined via

Log(A)= log(In + A)=
∞∑︂

k=0

(−1)k+1

k
Ak

whenever the series converges. The series converges whenever the maximum
magnitude of any eigenvalue of A is less than one. In regard to this compli-
cation, it is more convenient for us to define the logarithm of a matrix using
Definition 2.1.3.

12
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Example 2.1.19. We will study the logarithm of the identity matrix In. Using
the k-th branch logarithm function, all primary logarithms of In have the form

logk(In)= diag(2πki, . . . ,2πki) for k ∈Z.

Moreover, let us mention that for k1, . . . ,kn ∈Z, the matrix

L = diag(2πk1 i, . . . ,2πkn i)

is a logarithm of In as well. It should be clear that L is a primary logarithm if and
only if k1 = ·· · = kn. Then for any matrix Z ∈GLn(C) and for any k1, . . . ,kn ∈Z,

exp(Z ·diag(2πk1 i, . . . ,2πkn i) ·Z−1)= Z ·exp(diag(2πk1 i, . . . ,2πkn i)) ·Z−1 = In.

This will give us more logarithms of In which are not diagonal matrices.

Let A ∈ Mn(C). Consider the matrix equation exp(X )= A. According to Propo-
sition 2.1.12, if this equation has a solution, then all eigenvalues of A are
different from zero and A is invertible. Thus, the condition that A is invertible
is necessary for the existence of a logarithm of A. The following result provides
a condition that guarantees the existence of real logarithms of a real matrix.

Lemma 2.1.20 ([22], Theorem 1). An invertible matrix A ∈ Mn(R) admits a real
logarithm if and only if for every negative eigenvalue of A, its associated Jordan
blocks appear an even number of times.

In [22], the author also proves that a real square matrix admits a unique
real logarithm if and only if its eigenvalues are positive and any Jordan block
associated to any eigenvalue cannot appear more than once.

Among all logarithms of a matrix, the principal logarithm plays a special
role since it is desired in many applications. The following theorem provides
a condition that has to be satisfied by a matrix to ensure that the principal
logarithm is the only logarithm of the matrix.

Theorem 2.1.21 ([44], Theorem 1.31). Let A ∈ Mn(R) be a matrix with no eigen-
values in the closed negative real axis. Then A admits a unique real logarithm
such that the imaginary part of every eigenvalue of this logarithm lies in the
interval (−π,π) and this logarithm is given by its principal logarithm.

The following theorem enables the complete description of all logarithms of an
invertible matrix.

Theorem 2.1.22 ([37], Section 8). Let A ∈GLn(C) be an invertible matrix with
eigenvalues λ1, . . . ,λp. Suppose that A = ZJZ−1 is a Jordan decomposition of A
where

J = diag(Jm11 (λ1), . . . , Jm1l1
(λ1), Jm21 (λ2), . . . , Jm2l2

(λ2), . . . , Jmp1 (λp), . . . , Jmpl p
(λp)).

Then all logarithms of A are given by

X = ZU ·diag(logk11 (Jm11 (λ1)), . . . , logk1l1
(Jm1l1

(λ1)), . . . , logkp1 (Jmp1 (λp)), . . . , logkpl p
(Jmpl p

(λp)))·U−1Z−1,

for k11, . . . ,kplp ∈ Z and any arbitrary non-singular matrix U that commutes
with J.
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Example 2.1.23. Let

A =

⎛
⎜⎜⎜⎜⎜⎝

1
2

1
6

1
6

1
6

1
6

1
2

1
6

1
6

1
6

1
6

1
2

1
6

1
6

1
6

1
6

1
2

⎞
⎟⎟⎟⎟⎟⎠

.

In the next chapter, we will see that A is an example of a matrix whose sym-
metries encode some information that can be used in modelingevolution. An
eigendecomposition of A is given by

A = Z ·diag(1,
1
3

,
1
3

,
1
3

) ·Z−1

where

Z =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎠

.

Theorem 2.1.22 implies that all logarithms of A are given by

X ≈ ZU ·

⎛
⎜⎜⎜⎜⎜⎝

2πk1 i 0 0 0

0 −1.09861+2πk2 i 0 0

0 0 −1.09861+2πk3 i 0

0 0 0 −1.09861+2πk4 i

⎞
⎟⎟⎟⎟⎟⎠
·U−1Z−1

for k1, . . . ,k4 ∈Z and any arbitrary non-singular matrix U that commutes with
the Jordan form of A.

2.2 Tools from nonlinear algebra

In this section, we briefly discuss some nonlinear algebra tools that are going
to be used to study phylogenetic networks and factor analysis models in the
subsequent chapters. The most useful tools we consider here are Gröbner bases
and elimination theory. Roughly speaking, finding a Gröbner basis of an ideal
in a polynomial ring associated with our hidden variable models is desirable
because this basis has some nice properties and behaves well in the division
algorithm. Additionally, elimination theory formalizes the process of eliminating
variables that one often uses in order to solve a system of polynomial equations.

Throughout this section, the field k in consideration is either R or C. Most
results presented in this chapter can be found in typical commutative algebra,
algebraic geometry, or abstract algebra books, including [4], [21], and [35].
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2.2.1 Polynomial rings, ideals and Gröbner basis

Given a field k, we can construct the polynomial ring k[x̄] := k[x1, . . . , xn] with n
variables x1, . . . xn and coefficients in k. In particular, this polynomial ring is a
k-vector space with k-basis given by the set of all monomials

x̄a = xa1
1 xa2

2 · · ·xan
n , a ∈Zn

≥0.

Any element f of the ring k[x̄], referred as a polynomial, has the form

f =
∑︂

a∈Zn
≥0

caxa, (2.2)

where only finitely many coefficients ca are nonzero.
In what follows, we introduce ideals which are important algebraic objects

in a (polynomial) ring. In Chapter 3, we explain how algebra enters the study
of phylogenetics via the use of ideals associated to phylogenetic models. These
ideals will play a central role in distinguishing phylogenetic models.

Definition 2.2.1. A non-empty subset I ⊆ k[x̄] is an ideal of k[x̄] if the following
two properties hold:

1. For any f ∈ k[x̄] and g ∈ I, the product f g ∈ I.

2. For any g,h ∈ I, the sum g+h ∈ I.

Definition 2.2.2. Given a subset F ⊂ k[x̄], the ideal generated by the subset F ,
denoted by 〈F 〉, is defined as the smallest ideal of k[x̄] containing F . In this
case, the set F is said to be a generating set or basis of the ideal.

Equivalently, it can be checked that the ideal generated by F is exactly the
ideal containing all finite polynomial combinations of elements of F , namely

〈F 〉 = {
n∑︂

i=1

g i f i : n ∈N and g i ∈ k[x̄], f i ∈F for i ∈ [n]}.

Example 2.2.3. Given an ideal I ⊆ k[x̄] generated by the set F , it is possible
to find other generating sets that are different than F . For example, consider
the ideal I of R[x, y, z] that is generated by two linear polynomials x+2y+3z−4
and 5x+6y+7z−8. It can be easily verified that I = 〈x− z+2, y+2z−3〉. In fact,
using Gaussian elimination, we can transform the system of linear equations{︄

x+2y+3z−4= 0

5x+6y+7z−8= 0
to the reduced echelon form

{︄
x− z+2= 0

y+2z−3= 0
.

An ideal I of k[x̄] is finitely generated if there exists a finite generating set for
I. A polynomial ring over a field enjoys the following nice property.

Theorem 2.2.4 (Hilbert’s Basis Theorem). Every ideal of k[x̄] is finitely gener-
ated.
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Given some ideals in a polynomial ring, the following proposition provides
ways to generate more ideals in the ring.

Proposition 2.2.5 ([21], Chapter 4). If I and J are ideals in k[x̄], then so are
their intersection I ∩ J, their sum I + J, and their product IJ where

I + J := { f + g : f ∈ I, g ∈ J} and IJ := {
s∑︂

i=1

f i g i : f i ∈ I, g i ∈ J, s ∈N}.

Let n = 1. For the polynomial ring in one variable, we have the famous
Euclidean algorithm. It is a well-known fact that k[x] is a principal ideal domain,
meaning that every ideal in k[x] can be generated by only a single polynomial
in k[x]. For n > 1, this fact is not true. In general, the polynomial ring k[x̄] is a
unique factorization domain. A unique factorization domain is a domain where
every element can be decomposed into a product of irreducible elements and
units of the ring and this decomposition is unique up to permutations of factors
and multiplication with units of the ring. More details on unique factorization
domains can be found in [35, Chapter 9].

Example 2.2.6. Consider the ideals I = 〈x3 +6x2 +12x+8〉 and J = 〈x2 + x−2〉
in k[x]. Note that x3 +6x2 +12x+8= (x+2)3 and x2 + x−2= (x+2)(x−1). It can
be checked that I ∩ J = 〈(x+2)3(x−1)〉, I + J = 〈x+2〉, and IJ = 〈(x+2)4(x−1)〉.

Definition 2.2.7. Let I be an ideal of k[x̄].

1. The ideal I is maximal if I is a proper subset of k[x̄] and there are no other
ideals contained between I and k[x̄].

2. The ideal I is prime if f g ∈ I for some polynomials f , g ∈ k[x̄] implies that
f ∈ I or g ∈ I.

3. The ideal I is radical if f s ∈ I for some s ∈N and some polynomial f ∈ k[x̄]
implies that f ∈ I.

The following proposition provides some relations between maximal, prime,
and radical ideals.

Proposition 2.2.8 ([21], Chapter 4). 1. Every maximal ideal in k[x̄] is prime.
Moreover, every prime ideal in k[x̄] is radical.

2. Every intersection of prime ideals in k[x̄] is radical.

In the rest of this subsection, we will briefly discuss the concept of a Gröbner
basis of an ideal in a polynomial ring. A Gröbner basis is a special generating
set of an ideal that has nice algorithmic properties. We know that for solving a
linear system of equations, one can perform Gaussian elimination technique to
transform the original system into a much simpler system of linear equations.
Moreover, in order to compute the greatest common divisor of two polynomials,
one can perform the Euclidean algorithm which works well computationally.
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Finally, the simplex algorithm [24] is a very popular algorithm used to solve
linear programming problems and this algorithm performs well computation-
ally. Computing Gröbner basis is a generalization of these three well-known
techniques [78]. We will also see later that every set of polynomials can be
transformed into a Gröbner basis suggesting that finding a Gröbner basis of an
ideal in a polynomial ring is a very natural question to ask.

We begin with the definition of a term order which is going to be used to order
terms in a polynomial.

Definition 2.2.9. A term order on k[x̄] is a total order ≺ on the set of monomials
xa for a ∈Zn

≥0 satisfying the following two properties:

1. If xa ≺ xb then xa+c ≺ xb+c for any a,b, c ∈Zn
≥0.

2. We have 1≺ xa for any a ∈Zn
≥0 \{0}.

Example 2.2.10. Let a = (a1, . . . ,an) and b = (b1, . . . ,bn) be two elements in Zn
≥0.

In the lexicographic order, we say that xb ≺ xa if the leftmost nonzero entry
of a− b is positive. The variables x1, . . . , xn are ordered by the lexicographic
ordering as

xn ≺ xn−1 ≺ ·· · ≺ x2 ≺ x1.

If we fix a term order ≺ on a polynomial ring, then the multidegree of f , denoted
by multideg(f), is defined as the maximal a ∈Zn

≥0 in the expansion of f such that
ca ̸= 0. Moreover, every polynomial f has a unique leading monomial LM( f )
which is defined as the largest monomial xa occurring with nonzero coefficients
in the expansion of f (see (2.2)). The leading coefficient of f , denoted by LC( f ),
is defined as the coefficient cmultideg( f ). Finally, the leading term of f , denoted as
LT( f ), is defined as

LT( f )=LC( f ) ·LM( f ).

To unify the writing, we will write the terms of a polynomial in decreasing order
with respect to ≺.

Example 2.2.11. Using the lexicographic order for n = 2 in Example 2.2.10, a
quadratic polynomial in R[x1, x2] is written

f = x2
1 +10x1x2 −6x1 +5x2

2 +3x2 −19.

Suppose that I ⊆ k[x̄] is an ideal. Then the ideal of leading terms LT(I) of I is
defined as follows:

LT(I)= 〈LT( f ) : f ∈ I〉.
In general, for any ideal I ⊆ k[x̄], the ideal LT(I) and the ideal 〈LT(g) : g ∈G 〉 for
a generating set G of I are different. Hence it motivates the following definition.

Definition 2.2.12. Fix a term order ≺ on k[x̄]. Let I ⊆ k[x̄] be an ideal. A finite
subset G of I is said to be a Gröbner basis of I with respect to ≺ if the following
equality holds:

LT(I)= 〈LT(g) : g ∈G 〉.
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Alternatively, Definition 2.2.12 implies that the initial monomials of the ele-
ments of a Gröbner basis of I suffice to generate the initial ideal of I.

Proposition 2.2.13 ([21], Chapter 2). Fix a term order ≺ on k[x̄]. Then every
ideal I of k[x̄] has a Gröbner basis with respect to the term order ≺.

It can be easily checked that if the set G is a Gröbner basis for the ideal I,
then any finite subset of I containing G is also a Gröbner basis for I. This fact
motivates the following definition to remedy the non-minimality of a Gröbner
basis of an ideal.

Definition 2.2.14. Fix a term order ≺ on k[x̄]. Let I ⊆ k[x̄] be an ideal. The set
G is said to be a reduced Gröbner basis of I if the following properties hold:

1. The set {LT(g) : g ∈G } minimally generates LT(I).

2. For every g ∈G , LC(g)= 1.

3. No trailing term of any g ∈G lies in LT(I).

As a consequence of this definition, we have the following theorem.

Theorem 2.2.15 ([21], Chapter 2). For a fixed term order ≺ on k[x̄], every ideal
I in k[x̄] admits a unique reduced Gröbner basis.

Example 2.2.16. Let us consider the ideal I = 〈x+2y+3z−4,5x+6y+7z−8〉 ⊆
R[x, y, z] in Example 2.2.3. Let us now equip R[x, y, z] with the lexicographic
order z ≺ y≺ x. It can be verified that the set G = {x−z+2, y+2z−3} is a reduced
Gröbner basis for I and Theorem 2.2.15 suggests that G is the only reduced
Gröbner basis for I.

Historically, Bruno Buchberger introduced a method to compute the unique
reduced Gröbner basis of an ideal I in his dissertation [11]. The name Gröbner
comes from the name of Buchberger’s advisor, Wolfgang Gröbner. However,
Buchberger was not the first mathematician to introduce the idea of using
Göbner bases. In fact, Paul Gordan in his research paper in 1900 suggested a
similar idea of using Göbner bases. But Buchberger was the first mathematician
to formulate a method to compute Göbner bases. This algorithm is then often
referred to as the Buchberger’s algorithm. We will recall Buchberger’s algorithm
shortly.

Given a fixed ideal I of k[x̄], a monomial xa is a standard monomial if xa ∉
LT(I). It is known that the number of standard monomials is finite if and only
if for each i ∈ [n], there exists a natural umber ni such that xni

i ∈LT(I). Let us
consider the ideal LT(I)= 〈x4

1, x2
2〉 ⊂ k[x1, x2]. Here we can easily see that there

are eight standard monomials. But if we consider the ideal LT(I)= 〈x4
1, x1x2

2〉 ⊂
k[x1, x2], then we have infinitely many standard monomials.

Let us consider the quotient ring k[x̄]/I. It is immediate to see that the set of
standard monomials forms a k-vector space basis for k[x̄]/I. Hence the image of
a polynomial f in k[x̄]/I can be uniquely written as a k-linear combination of

18



Mathematical Preliminaries

standard monomials. This linear combination expression is referred to as the
normal form of f and this approach to compute the normal form of a polynomial
f given the ideal I is called the division algorithm. Roughly speaking, the
normal form of f is the remainder on division of f by a Gröbner basis G of I
in the division algorithm. For more details, interested readers can check [21,
Chapter 2, Section 3].

Let G ⊂ k[x̄] be a subset. The goal is to decide whether G is a Gröbner basis
for the ideal 〈G 〉. Let us now consider any two polynomials f and g in G . The
S-polynomial of f and g, denoted by S( f , g), is defined as

S( f , g) := xa

LC( f )
f − xb

LC(g)
g,

where xa and xb are monomials of the smallest possible degree satisfying

xa ·LM( f )= xb ·LM(g).

It is clear that S( f , g) is an element of the ideal 〈G 〉. We now run the polynomial
division algorithm on S( f , g) by G . The resulting normal form is denoted by
S( f , g)G . If it is nonzero, then it can be expressed as a k-linear combination of

monomials and none of these monomials are divisible by the leading monomial
of any element ofG .

Theorem 2.2.17 (Buchberger’s criterion). Fix a term order ≺ on k[x̄]. Let I ⊆ k[x̄]
be an ideal. A finite set G ⊂ I of polynomials is a Gröbner basis of I if and only if
S( f , g)G = 0 for all f , g ∈G .

Using Buchberger’s criterion, we can derive the Buchberger’s algorithm to
compute the reduced Gröbner basis G from any given input generating set
F of an ideal I. Buchberger’s algorithm has already been implemented in
many software, for instance in Macaulay2 [29], Mathematica [85], or CoCoA [38]. In
practice, Gröbner basis computations can be used to solve systems of polynomial
equations. More precisely, suppose that we want to seek the solution set of a
system of polynomial equations

⎧
⎪⎪⎨
⎪⎪⎩

f1(x1, . . . , xn)= 0
...

fm(x1. . . . , xn)= 0

It is often difficult to solve the system directly. Alternatively, we consider
the ideal I ∈ k[x1, . . . , xn] that is generated by the polynomials f i for i ∈ [m].
A Gröbner basis G = {g1, . . . , gs} of I might provide an easier way to find the
solution set of the original system. This Gröbner basis corresponds to the
following system of polynomial equations

⎧
⎪⎪⎨
⎪⎪⎩

g1(x1, . . . , xn)= 0
...

gs(x1. . . . , xn)= 0
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We will see in the forthcoming subsection that the solution set of the original
and the derived system corresponding to the Gröbner basis coincide.

Example 2.2.18. Consider the system of polynomial equations
{︄

x+ y= 1

x3 + y3 = 2

and the ideal I = 〈x+ y−1, x3+ y3−2〉 ⊆ k[x, y]. A Gröbner basis of I with respect
to the lexicographic order y ≺ x is given by the set G = {x+ y−1, 3y2 −3y−1}.
The system of equations corresponding to the Gröbner basis is easier to solve.
More precisely, if we solve 3y2−3y−1= 0, then we obtain y= 3±⎷21

6 . From these

values of y and using x+ y= 1, we get x = 3∓⎷21
6 . Therefore, the solution set of

the original system is given by the following two real points
{︃(︃

3−⎷
21

6
,
3+⎷

21
6

)︃
,
(︃

3+⎷
21

6
,
3−⎷

21
6

)︃}︃
.

In this example, we also see that an element of Gröbner basis is obtained by
eliminating the variable x. We will formalize the method of eliminating variables
in Section 2.2.3.

2.2.2 Algebraic varieties

In this subsection, we will recall the notion of an algebraic variety. Algebraic
varieties are one of the most important objects in algebraic geometry. Further-
more, many real-life applications of mathematics require solving a system of
polynomial equations. For instance, in an epidemiological model which describes
how a disease spreads in a population, if one wants to find a condition when
the population is at an equilibrium point, then one needs to solve a system of
polynomial equations.

Definition 2.2.19. Let F ⊂ k[x̄] be a finite set of polynomials. Then the variety
of F , denoted by V (F ), is the set of all common zeroes of the polynomials in F :

V (F ) := {p = (p1, . . . , pn) ∈ kn : f (p)= 0 for f ∈F }.

Moreover, a subset A of kn is said to be a variety if there exists a finite set
F ⊂ k[x̄] such that A = V (F ). If k =R, then the variety is called a real variety.
If k = C, then the variety is called a complex variety. A subset of an algebraic
variety A that is a variety is called a subvariety of A.

Algebraic varieties enjoy the following nice property. Let F1 ⊂ k[x̄] and F2 be
the unique reduced Gröbner basis for the ideal 〈F1〉. Then we have

V (F1)=V (〈F1〉)=V (〈F2〉)=V (F2).

When using the unique reduced Gröbner basis G , we may also observe some geo-
metric properties of a variety that are invisible from the set F as demonstrated
in the following example.
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Example 2.2.20. Let us again consider the ideal I ⊆R[x, y, z] in Example 2.2.3
with the lexicographic order z ≺ y≺ x. Using the reduced Gröbner basis {x− z+
2, y+2z−3} of I, we obtain a parameterization of V (I):

V (I)= {(t−2,−2t+3, t) ∈R3 : t ∈R}.

This parameterization implies that V (I) is a straight line in R3.

We are frequently interested to enumerate the solutions of a system of poly-
nomial equations. The set of all solutions of a system could be finite or infinite.
If there are finitely many solutions, then it is possible to write them down. For
instance, a nonzero complex univariate polynomial of finite degree always has
finitely many solutions due to the well-known Fundamental Theorem of Algebra.
If we have infinitely many solutions, then it would be desirable to obtain a
parameterization of the solution set. In particular, we are interested in finding
a polynomial parameterization of the solution set.

Let A =V ( f1, . . . , fs)⊆ kn be a variety. Then a polynomial parameterization of A
consists of polynomial functions g1, . . . , gn ∈ k[t1, . . . , tm] such that the points that
can be expressed as xi = g i(t1, . . . , tm) for every i ∈ [n], belong to the variety A.
Furthermore, it is required that the variety A is the smallest variety containing
these points. We will discuss this in more detail in Section 2.2.3. An example
of a parameterization of a variety can be seen in Example 2.2.20 with the
real parameter t. We present parameterizations of phylogenetic models in our
consideration in Chapter 3. In particular, these parameterizations are given by
polynomial functions.

It is immediate that not every set is a variety. For any subset S ⊆ kn, we can
form the following set

I(S) := { f ∈ k[x1, . . . , xn] : f (p)= 0 for every p ∈ S}.

This set is a radical ideal of k[x1, . . . , xn]. It can be checked that the variety
V (I(S)) is the smallest variety containing the set S. This fact leads us to define
the following.

Definition 2.2.21. Given S ⊆ kn, the Zariski closure of S is the smallest variety
containing S and it is equal to V (I(S)).

We end this subsection by presenting the notion of dimension of a variety. Let
I ⊆ k[x̄] be an ideal. We consider a subset S of the variable set {x1, . . . , xn} with
a property that no monomial with variables only in S appears in LT(I). We
choose such a subset S with maximal cardinality among all subsets satisfying
this property. Then the dimension of V (I), denoted by dim(V (I)) is defined
as that maximal cardinality |S|. Equivalently, the dimension of a variety V (I)
can be defined as the supremum of the length of all chains of prime ideals of
k[x]/I(V (I)).

Example 2.2.22. Consider the ideal I = 〈x+2y+3z−4,5x+6y+7z−8〉 ⊆R[x, y, z]
in Example 2.2.3 with the degree lexicographic order z ≺ y ≺ x. The reduced
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Gröbner basis is given by {x− z+2, y+2z−3} and hence LT(I)= 〈x, y〉. Since the
variable z does not appear in LT(I), according to our definition, dim(V (I))= 1.

2.2.3 Elimination theory and implicitization problem

This subsection provides a tractable method for eliminating variables in a
system of polynomial equations. The main result is presented in the Elimination
Theorem [21, Chapter 3]. We also discuss the implicitization problem which is
one application of the elimination theorem.

Definition 2.2.23. Let I = 〈 f1, . . . , fs〉 ⊆ k[x̄] be an ideal. The lth elimination
ideal of I, denoted by I l , is the ideal of k[xl+1, . . . , xn] defined as

I l := I ∩k[xl+1, . . . , xn].

Definition 2.2.23 states that the ideal I l consists of all implications of the sys-
tem of equations after eliminating the variables x1, . . . , xl . Surprisingly, Gröbner
bases also enable us to perform this elimination procedure in a systematic way
using the proper term order as presented in the following theorem.

Theorem 2.2.24 (The Elimination Theorem). Suppose that I = 〈 f1, . . . , fs〉 ⊆ k[x̄]
is an ideal. Let G be a Gröbner basis of I with respect to the lexicographic order
xn ≺ ·· · ≺ x2 ≺ x1. Then G ∩k[xl+1, . . . , xn] is a Gröbner basis of I l for every l ∈ [n].

This method of eliminating variables will be used in the subsequent chapters
to obtain some algebraic invariants associated to a phylogenetic model given
a polynomial parameterization of the model. Furthermore, these algebraic
invariants are the elements of the Gröbner basis of some elimination ideal
associated with the phylogenetic model.

Example 2.2.25. Let us consider the ideal I = 〈x+ y+ z, x2+ y2+ z2−1, x3+ y3+
z3 −2〉 ⊆C[x, y, z] with the lexicographic order z ≺ y≺ x. A Gröbner basis of I is
given by the set

{ f1 := x+ y+ z, f2 := 2y2 +2yz+2z2 −1, f3 := 6z3 −3z−4}.

The Elimination Theorem implies that the set { f2, f3} is a Gröbner basis for
the first elimination ideal I1 and the set { f3} is a Gröbner basis for the second
elimination ideal I2.

The following theorem provides some relations between the partial solutions
V (I l) and πl(A).

Theorem 2.2.26 (The Closure Theorem). Let A =V ( f1, . . . , fs)⊆Cn be a variety.
Suppose that I is the ideal 〈 f1, . . . , fs〉. Let πl : Cn →Cn−l be the projection map
onto the last n− l coordinates. Then

1. The Zariski closure of πl(A) is V (I l).

2. If A ̸= ∅, then there exists a variety B ⊂V (I l) satisfying V (I l)\ B ⊆πl(A).
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2.3 Markov chains

This section provides a brief overview of Markov processes. We will see in
Chapter 3 that we can model an evolutionary process as a stochastic process.
Many other real-life phenomena can be described using stochastic processes,
including fluctuations in the stock market, epidemiology models to describe
diseases like coronavirus, and growth models of some bacteria population. We
will need the terminology that is going to be introduced in this section to discuss
the mathematical model of an evolutionary process. Almost all the results in
this chapter can be found in most probability books, for example [58], [39], and
[3].

A stochastic process is one of the main objects of study in probability theory.
A stochastic process, or often referred to as a random process is a collection of
random variables in a common probability space and they are ordered by an
index set. Stochastic processes include the well-known Markov chain, which
would be the main object of interest in this section. Roughly speaking, a Markov
chain is a system that can undergo changes from one state to another state
under constraints given by some probabilistic rules. The Markov chain was
introduced and first studied systematically by Andrey Andreyevich Markov.

In this section, we focus on the continuous-time Markov chains. Throughout
the thesis, we assume that our state space S, which is the set of possible values
of the random variables in a stochastic process, is finite.

Definition 2.3.1. Let X = (X t)t≥0 be a collection of random variables with a
state space S. Then X is a continuous-time Markov Chain (CTMC) if the
following equations are satisfied:

P(X tn = in|X t1 = i1, . . . , X tn−1 = in−1)= P(X tn = in|X tn−1 = in−1) (2.3)

for all i1, . . . , in ∈ S and any time sequence 0≤ t1 < t2 < ·· · < tn. These equations
are referred to as the Markov property. If the Markov chain satisfies

P(X t+s = j|Xs = i)= P(X t = j|X0 = i), s, t ≥ 0, (2.4)

then we call it time-homogeneous. Otherwise, we will call the Markov chain
time-inhomogeneous.

The Markov property (2.3) says that during the process, the probability distribu-
tion of the state at some time in the future given the current state does depend
on the states occurring in the past. The Markov property in a Markov chain
implies that for 0≤ t1 < t2 < ·· · < tn,

P(X tn = in, X t1 = i1, . . . , X tn−1 = in−1)= P(X t1 = i1)
n∏︂

k=2

P(X ti = ik|X ti−1 = ik−1).

As a consequence, all finite probability distributions in a Markov chain are
completely specified by the initial distribution P(X t1 = i1) and a set of first-order
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conditional probability distributions P(X ti = ik|X ti−1 = ik−1) for i = 2,3, . . . . The
homogeneity property of a Markov process says that the conditional probabil-
ities in the process are independent of the current time. If one has a time-
inhomogeneous Markov chain, then it can be converted to a time-homogeneous
Markov chain by by making the state space appropriately larger. Some exam-
ples of time-homogeneous Markov chains include the Poisson and the Wiener
processes [58, Chapter 20].

Definition 2.3.2. Let X be a time-homogeneous CTMC. Then the transition
probability for X is defined as follows

Pi j(t)= P(X t+s = j|Xs = i)= P(X t = j|X0 = i), s, t ≥ 0.

We denote by P(t) := (Pi j(t)) ∈ M|S|(R) the matrix of transition probabilities for
X at time t. We refer to this matrix as the transition matrix of X .

Remark 2.3.3. For a time-inhomogeneous CTMC, the transition probabilities
are given by a function of two times: Pi j(s, t)= P(X t+s = j|Xs = i).

We now present the Chapman-Kolmogorov equation for a CTMC which is
attributed to Andrei Kolmogorov and Sydney Chapman.

Proposition 2.3.4 ([39], Chapter 6). For any 0≤ t1 < t2 < t3,

P(t1, t3)= P(t1, t2)P(t2, t3).

Remark 2.3.5. In the case of a time-homogeneous CTMC, the corresponding
Chapman-Kolmogorov equation is given by

P(t+ s)= P(t)P(s)

for any s, t ≥ 0. Therefore, the set {P(t) : t ≥ 0} is a semigroup and it is often
referred to as the transition semigroup.

The entries of the matrix of transition probabilities in a Markov chain lie in the
interval [0,1]. Moreover, each row of the matrix sums to one. These properties
motivate the following definition.

Definition 2.3.6. A real matrix P ∈ Mn(R) is a Markov matrix if each of its
entries is a nonnegative real number and each row sums to 1. Throughout the
thesis, we might also use transition or stochastic matrix to refer to a Markov
matrix.

The following proposition is a direct consequence of the Perron-Frobenius
theorem [36, 71].

Proposition 2.3.7. Let P be a Markov matrix. Then

1. The magnitude of any eigenvalue of P is at most one.

2. The vector 1= (1, . . . ,1)T of ones is an eigenvector of P with eigenvalue 1.
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Remark 2.3.8. For a positive Markov matrix, the eigenvalue 1 has multiplicity
1. For a nonnegative Markov matrix, the algebraic and geometric multiplicity of
the eigenvalue 1 coincide. For further details, see [66, Chapter 8].

Let X be a time-homogeneous CTMC with the state space S = {s1, . . . , sn}. Let
qi j be the instantaneous substitution rate from state si to s j for i ̸= j. More
precisely, for i ̸= j,

qi j := lim
∆t→0

P(X t+∆t = j|X t = i)
∆t

.

We then form a matrix Q = (qi j) such that the diagonal entries are given by qii =
−∑︁i ̸= j qi j. The matrix Q is referred to as the instantaneous rate matrix of X .
Every time-homogeneous CTMC is completely determined by its instantaneous
rate matrix. This instantaneous rate matrix motivates the following definition.

Definition 2.3.9. A real matrix Q ∈ Mn(R) is a rate matrix if every off-diagonal
entry is nonnegative and each row sums to zero.

Remark 2.3.10. Analogous to the case of Markov matrices, it can be shown that
for rate matrices, the vector 1 is an eigenvector associated with the eigenvalue 0.

Theorem 2.3.11 ([39], Chapter 6). Let X be a time-homogeneous CTMC with
an instantaneous rate matrix Q. Then P(t)= exp(Qt) for every t ∈R≥0 if and only
P(t) is the transition matrix from time s to s+ t.

Theorem 2.3.11 suggests that the transition matrix of a time-homogeneous
CTMC is the exponential of its unique instantaneous rate matrix Q multiplied
with some nonnegative constant. For this reason, the matrix Q is said to be the
Markov generator of the Markov chain. Alternatively, given an instantaneous
rate matrix of a CTMC, we can recover the transition matrices in the process by
solving the Kolmogorov backward or forward equation [39, Chapter 6].

Example 2.3.12. Let us consider a CTMC X on the binary state space S = {0,1}.
Suppose that a ≥ 0 and b ≥ 0 are the instantaneous substitution rates form
the state 0 to 1 and from the state 1 to 0, respectively. The instantaneous rate
matrix Q of X is given by (︄

−a a

b −b

)︄
.

By computing the matrix exponential of Qt for t ≥ 0, we obtain that the transition
matrices of X are given by

P(t)= 1
a+b

(︄
b+ae−(a+b)t a−ae−(a+b)t

b−be−(a+b)t a+be−(a+b)t

)︄
.

In Publication III, we have a great interest in studying the logarithm of certain
classes of matrices with distinct and positive eigenvalues. The following result
will be crucial since it can list all the real logarithms of any Markov matrix with
distinct and positive eigenvalues such that every row of this logarithm sums to
one.
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Proposition 2.3.13 ([14]). Let A ∈ Mn(R) be a Markov matrix having distinct
eigenvalues λi ∈R>0 for i ∈ [t] and µ j ∈ {z ∈C : Im(z)> 0} for j ∈ [s]. Suppose that

A = Z ·diag(1,λ1, . . . ,λt,µ1,µ1, . . . ,µs,µs) ·Z−1 ∈ Mn(R)

be an eigendecomposition of A with Z ∈ GLn(C). Then a matrix Q is a real
logarithm of A such that every row sums to zero if and only if

Q = Z ·diag(0, log(λ1), . . . , log(λt), logk1
(µ1), logk1

(µ1), . . . , logks
(µs), logks

(µs)) ·Z−1

for some k1, . . . ,ks ∈Z.

2.4 Graph-theoretic terminology

In this section, we introduce all graph-theoretic terminology that is essential for
discussing phylogenetic networks. In this thesis, there are two types of graphs
under our consideration. Namely, they are undirected and directed graphs. Both
types of graphs are important in phylogenetics. Most of the terminology here
can be found in standard graph theory books such as [9]. Moreover, some of the
terminology here is adapted from [40], [41], and [49].

2.4.1 Undirected and directed graphs

In mathematics, we often want to describe relationships between different
objects. A graph is a mathematical object that can be used to represent rela-
tionships between different entities, such as chemical compounds in a chemical
reaction network and biological entities in an evolutionary diagram. A graph G
is a pair (V ,E) where V is a set and E ⊆V ×V . We refer to any element of V as a
vertex of G and any element of E as an edge of G. We begin by presenting two
types of graphs that will be used throughout the thesis. Additionally, we assume
that both V and E are finite.

Definition 2.4.1. An undirected graph G = (V ,E) is a graph such that every
e ∈ E is an unordered pair (v,w) for some v,w ∈V .

The following is some common terminology used for undirected graphs. Let
e = (v,w) be an edge in an undirected graph G = (V ,E). Then we say that both
vertices v and w are incident to e. The endpoints of the e are v and w. Two
vertices are said to be adjacent if they are the endpoints of an edge of the graph.
Two edges are said to be adjacent if they share a common endpoint. In this thesis,
we assume that our undirected graphs contain no multi-edges and self-loops.
Multi-edges occur when at least two edges of the graph are incident with the
same two vertices. A self-loop occurs when both endpoints of an edge coincide.
Graphs with no self-loops and no multi-edges are called simple graphs. Finally,
the degree of a vertex is defined as the number of edges incident to it.
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Unlike in undirected graphs, every edge in a directed graph is assumed to
have a direction.

Definition 2.4.2. A directed graph G = (V ,E), or also commonly referred to
as digraph, is a graph such that every e ∈ E is an ordered pair (v,w) for some
v,w ∈V .

Similar to undirected graphs, the following is some common terminology used
for directed graphs. Let G = (V ,E) be a directed graph. Let e = (v,w) ∈ E be a
directed edge. Then e is directed from v to w. The source of e is the vertex v
and the target of e is the vertex w. We say that e an out-edge of v. Similarly,
e is said to be an in-edge of w. Let u ∈ V . Then the in-degree of u is defined
as the number of in-edges of u. Similarly, the out-degree of u is defined as the
number of out-edges of u. Finally, the degree of u is defined as the total sum of
the in-degree and out-degree of u.

We can turn an undirected graph into a directed graph by directing each edge
of the graph. Conversely, we can turn a directed graph into an undirected graph
by simply forgetting the edge directions.

We will now present some graph operations that can be done to modify graphs.
Let G = (V ,E) be a graph. The following operations can be done to directed
and/or undirected graphs.

1. If we want to delete an edge e ∈ E in a directed or an undirected graph,
then we simply remove the edge e from the graph.

2. If we want to delete a vertex v ∈ V in a directed or an undirected graph,
then we delete the vertex v from the graph and additionally all edges
incident to v.

3. Suppose that G is undirected. If we want to suppress a vertex v ∈ V of
degree two, then first we connect the vertices adjacent to v by a new edge
and remove the vertex v afterwards.

4. Suppose that G is directed. If we want to suppress a vertex v ∈ V of in-
degree one and out-degree one, then first we connect the source of the
in-edge and the target of the out-edge by a new edge and we delete the
vertex v afterwards.

Let G = (V ,E) be an undirected or a directed graph. A subgraph H = (W ,F) of
G is a graph such that W ⊆ V and F ⊆ E and for every e = (v,w) ∈ F, we have
v,w ∈ W. Let U ⊆ V be a subset. The subgraph G|U = (U ,E|U ) induced by the
subset U is defined as the graph with the vertex set U and the edge set E|U that
consists of all edges of G whose both endpoints belong to U .

An undirected path P of an undirected graph is a sequence of vertices connected
by edges such that no edges are repeated. Similarly, if G is directed, then a
directed path P is a sequence (v1, . . . ,vk) of vertices such that every pair (vi,vi+1)
of adjacent vertices is connected by a directed edge going from vi to vi+1 and
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there is no repeated edges. A directed (undirected) cycle is a directed (undirected)
path in which the first vertex is equal to the last vertex and no other vertex
can occur more than once. If a directed (undirected) graph contains no directed
(undirected) cycles then it is called acyclic.

We say that two vertices v and w in an undirected graph G are connected if we
can find an undirected path connecting v and w. If every pair of its vertices are
connected, then G is said to be connected. A maximal connected subgraph of G
is called a connected component of G. We call an edge cut-edge if by removing
this edge the graph becomes disconnected. A cut-edge is said to be trivial if one
part of the induced partition of the vertices is a singleton. A graph G is said
to be biconnected if it is connected and we cannot disconnect G by deleting any
single vertex of G. A maximal biconnected subgraph of G is called a biconnected
component of G.

We conclude this part by presenting another special type of graph called a tree.

Definition 2.4.3 ([49]). A tree is a connected graph without any (undirected)
cycles.

There are some important properties of trees that are worth mentioning.
If G = (V ,E) is a tree, then for any two vertices of G, there exists a unique
undirected path connecting them. Moreover, it holds that |V | = |E| + 1 and
adding an extra edge to G will create a cycle.

2.4.2 Rooted and binary graphs

In this section, we discuss rooted and binary graphs. Moreover, we provide some
properties of rooted directed acyclic graphs.

Definition 2.4.4. A directed graph is said the be rooted if one of its in-degree
zero vertices is declared as a root and every edge is directed away from the root.

In an undirected graph, the vertices of degree 1 are called leaves. In a directed
graph, the vertices of in-degree 1 and out-degree 0 are called leaves. In the
context of phylogenetics, we will see in the forthcoming chapter that the set of
leaves of a graph corresponds to the set of extant species of consideration while
the root of a graph corresponds to the shared common ancestors of the extant
species that is hypothesized to exist. We have the following type of graphs that
are determined by the degree of its vertices.

Definition 2.4.5. A (directed/undirected) graph is binary if every vertex that
is not either a root or a leaf has degree three. The root in a binary graph is the
distinguished vertex of in-degree zero and out-degree two.

A split of a set X is a partition A|B of X into two disjoint non-empty subsets
A and B.

Definition 2.4.6 ([80]). Let T = (V ,E) be a binary tree with its leaf set bijectively
labeled by a set X . A split A|B of X is valid if it is obtained by deleting some
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edge e ∈ E and by choosing A and B to be the two sets of leaf labels of the two
connected components of T \{e}. We denote by Σ(T) the set of all valid splits of
X .

Knowing the sets of splits of a leaf-labeled binary tree is useful. In fact, every
leaf-labeled binary tree is uniquely determined by its set of splits Σ(T) [80,
Theorem 15.1.6]. This fact is referred to as the Splits Equivalence Theorem.
Later in Section 3.4, we will use the set of valid splits of a leaf-labeled binary
tree to obtain specific parameterizations of certain phylogenetic models. These
parameterizations will be our main nonlinear algebra tool to study phylogenetics.

We will see in the next chapter that phylogenetics was originally modeled on
a rooted tree. Moreover, we will also present that the set of splits of a tree can
be used to obtain a parameterization of the associated phylogenetic model built
on the tree. The set of splits of a rooted tree can be also used in obtaining a
parameterization of a phylogenetic model built on a rooted directed acyclic graph
(DAG). This class of graphs will form the basis for rooted phylogenetic networks
which we shall see in the forthcoming chapter.

Given any two vertices v and w in a rooted DAG, we say that w is a child of
v or v is a parent of w if there exists a directed edge going from v to w. We say
that w is a descendant of v or v is an ancestor of w if there exists a directed path
going from v to w.

Lemma 2.4.7 ([49], Lemma 1.4.2). Given a rooted DAG G, every vertex of G is a
descendant of the root. Moreover, any two vertices can be joined by an undirected
path.

We will complete this section by presenting the following proposition which
provides a useful characterization of a rooted tree.

Proposition 2.4.8 ([49], Lemma 1.4.3). Given a rooted DAG G, G is a rooted
tree if and only if G admits exactly one root and all other vertices have in-degree
one.
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In this chapter, we summarize Publications I, II, and III which present interplay
between algebra and and hidden variable models in phylogenetics. The evolu-
tionary histories studied in phylogenetics are usually described using a graph.
We will present some mathematical models that are commonly used to model
evolution. Then we state the embedding problem in the context of phylogenetics
and present some criteria that can be used to check the embeddability of Markov
matrices, summarizing the main results of Publications I and III. Moreover, we
apply nonlinear algebra techniques to distinguish models associated to phylo-
genetic networks, summarizing the main results of Publication II. To keep a
certain consistency, some of the notation used in this chapter differs from the
notation in the related publications.

3.1 Mathematical models in phylogenetics

In this section, we present some mathematical models that could explain the
evolutionary histories between a set of species on a graph using data from DNA
sequence alignment. These models capture the nucleotide substitution process
occurring at the DNA level. These models have been introduced, for instance, in
[33] and [68].

3.1.1 Nucleotide substitution models

We start by presenting some facts about the polymer molecule deoxyribonu-
cleic acid (DNA). This molecule which is usually found in the cell nucleus and
mitochondria is known to carry the hereditary genetic information which is
essential for organisms to function and develop. A DNA molecule consists of
two linked strands (chains) that wound around forming a shape known as a
double helix. Each chain consists of deoxyribose and phosphate subunits. Each
deoxyribose sugar is attached to one of four nucleotide bases: adenine (A), cy-
tosine (C), guanine (G) or thymine (T). The Watson-Crick base pairings are the
chemical bonds that pair bases in the two DNA strands. In this pairing, adenine
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bonds with thymine while cytosine bonds with guanine. Moreover, nucleotides
can be grouped into two groups: purines consisting of adenine and guanine, and
pyrimidines consisting of cytosine and thymine. This classification is due to
their chemical properties.

A mutation in the sequence bases can occur during the replication process
of DNA. This is either due to mistakes when DNA is copied or as a result of
environmental factors. We model this phenomenon using nucleotide substitution
models. In these models, it is assumed that the substitution process of DNA
nucleotides follows a Markov process.

We consider the following approach in studying evolution. We fix a single
site of DNA sequences in our consideration. We only consider the conditional
probabilities between the original and the final DNA sequences at this site.
Let X and Y be the random variables at the beginning and at the end of the
evolutionary process, respectively. The state space for this Markov process
is the set of DNA nucleotides. We label the first, the second, the third, and
the fourth row (column) of the transition matrix by the elements A, G, C, T,
respectively. Hence we can write the transition matrix P of size four such that
for any i, j ∈ {A, G, C, T}, the (i, j)-entry of P is given by Pi j = P(Y = j|X = i). A
nucleotide substitution model is a model that is determined by a subset of the
set of all Markov matrices of size four. The models presented above describe the
evolutionary process at a single site within a set of DNA sequences and they
do not take time into consideration. If one wants to consider the evolutionary
process for all sites in the DNA sequences, then it is common to additionally
assume that the substitution process at every site is independent and identically
distributed.

Next, we will mention some of the most common nucleotide substitution models
in the literature. These models are motivated by certain biochemical properties
of the DNA.

1. The Jukes-Cantor (JC) model, which was originally introduced in [53] in
1969, is the most elementary nucleotide substitution model. In this model,
a transition matrix is assumed to have the following symmetries:

⎛
⎜⎜⎜⎜⎜⎝

a b b b

b a b b

b b a b

b b b a

⎞
⎟⎟⎟⎟⎟⎠

.

These symmetries captured by the JC model suggest that it only distin-
guishes whether each nucleotide base remains unchanged or mutates to
a different nucleotide base at the end of the process. In this model, we
additionally assume that the DNA nucleotides at the root have a uniform
distribution π= (πA,πC,πG,πT). Namely, it satisfies

πA =πC =πG =πT.
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2. According to the groupings of nucleotides based on their chemical proper-
ties, there are two types of substitutions. The first one is the transversion
which is a substitution of a purine by a pyrimidine or vice versa. The sec-
ond one is the transition which is a substitution within purines or within
pyrimidines. The second model in our consideration takes into account
these two types of substitutions. This model is called the Kimura model.
If we assume that all transition substitutions have the same probability
and that all transversion substitutions have the same probability, then
we obtain the Kimura 2-parameter (K2P) model [54]. A transition matrix
belonging to this model is assumed to have the following symmetries:

⎛
⎜⎜⎜⎜⎜⎝

a b c c

b a c c

c c a b

c c b a

⎞
⎟⎟⎟⎟⎟⎠

.

If we assume different parameters for the nucleotide substitutions, namely
one parameter for transitions and two parameters for transversions, then
we obtain the Kimura 3-parameter (K3P) model [55]. In this model, a
transition matrix is assumed to have the form:

⎛
⎜⎜⎜⎜⎜⎝

a b c d

b a d c

c d a b

d c b a

⎞
⎟⎟⎟⎟⎟⎠

.

If b = c = d, then the K3P model restricts to the JC model, and if c = d,
then it restricts to the K2P model. Similar to the Jukes-Cantor model, it is
common to assume that the root is uniformly distributed in both Kimura
models.

3. The strand symmetric (SS) model [16, 86] reflects the symmetry that
emerges from the complementarity between the two DNA strands. In the
SS model, the transition probabilities satisfy the following conditions:

PAA = PTT,PAC = PTG,PAG = PTC,PAT = PTA,

PCA = PGT,PCC = PGG,PCG = PGC,PCT = PGA.

Equivalently, a transition matrix in this model is assumed to have the
following symmetries: ⎛

⎜⎜⎜⎜⎜⎝

a b c d

e f g h

h g f e

d c b a

⎞
⎟⎟⎟⎟⎟⎠

.
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In this model, it is also assumed that the probability distribution π =
(πA,πC,πG,πT) at the root satisfies the following equalities:

πA =πT and πC =πG.

4. Finally, we can obtain the most general nucleotide substitution model if
we do not take into account any information regarding the substitution
processes. This model will be referred to as the general Markov model. In
this model, it is assumed that each substitution occurs with a different
probability.

Remark 3.1.1. If one considers a two-state nucleotide substitution model, then
there is the Cavender-Farris-Neyman (CFN) model [18, 32, 67] which assumes
that the transition matrix is of the form:

(︄
a b

b a

)︄
.

In practice, a continuous-time Markov process specified by the nucleotide
substitution process uses rate matrices that specify the instantaneous rates of
change of each nucleotide along the sequence. The most common approach to
model the mutation process is by a time-homogeneous CTMC.

Definition 3.1.2. The continuous-time Jukes-Cantor (JC) model is the time-
homogeneous CTMC such that its rate matrices follow the symmetries in the
JC model. In a similar fashion, we can define the continuous-time Kimura
2-parameter (K2P) model, the continuous-time Kimura 3-parameter (K3P) model,
the continuous-time strand symmetric model, the continuous-time general Markov
model, and the continuous-time Cavender-Farris-Neyman (CFN) model.

3.1.2 A phylogenetic model on phylogenetic trees

In phylogenetics, it was originally assumed that the evolutionary relationships
between species can be represented by a phylogenetic tree. The idea of repre-
senting phylogenetics in terms of trees dates back to the work of Charles Darwin
in On The Origin of Species [25] and the work of Edward Hitchcock in his book
Elementary Geology [45]. Nowadays, it is believed that the evolutionary relation-
ships between species are better described using a graph or a network which
may contain cycles. This is due to recent findings in biology on the hybridization,
horizontal gene transfer, and gene recombination processes. In this section, we
start by introducing phylogenetic models on trees, and later in Section 3.4, we
generalize phylogenetic models to networks.

In the rest of the thesis, we only consider binary trees. We start our discussion
with the notion of phylogenetic trees. A phylogenetic tree T = (V ,E) is a rooted
binary tree whose leaves are labeled by a given set of observed species. In order
to build a phylogenetic model on a tree, a random variable Xv is associated to
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each vertex v ∈V . The random variable Xv has k possible states chosen from the
state space S. For the DNA sequence, S = {A,G,C,T} and k = 4. Moreover, every
edge e ∈ E is labeled by a transition matrix that reflects probabilities of change
of the states from a vertex to its child.

In Section 3.1, we discussed how to model evolution using a time-homogeneous
continuous-time Markov process. Let T = (V ,E) be a phylogenetic tree with m
leaves. Throughout this section, we label the leaves of T by the set [m]. As
soon as the rate matrix Q(e) is specified for a fixed edge e ∈ E, by computing the
matrix exponential

P(e)(te)= exp(teQ(e)),

we obtain the probabilities of change from any base to any other during the evo-
lutionary time te. This approach in modeling evolution using time-homogeneous
CTMC is often used to approximate the biological realities in which transition
rates vary over time [46]. Additionally, it is believed that in practice, model-
ing evolutionary processes as a time-inhomogeneous CTMC is not statistically
feasible [81].

We now summarize how to compute the probability of observing a nucleotide
in an organism at a site of a DNA sequence. For each v ∈V and i ∈ S, we want to
compute the probability P(Xv = i). For each non-root vertex v ∈V , let the vertex
a(v) be the unique parent of v. Let ev ∈ E be the directed tree edge connecting
a(v) and v. Suppose that the transition probabilities of changes of states from
a(v) to v are given by a Markov matrix P(ev) ∈ Mk(R). Then

P(Xv = j)=
k∑︂

i=1

P(ev)
i j ·P(Xa(v) = i). (3.1)

Using (3.1), a joint probability distribution

pi1 i2...i|V | := P(Xvk = ik : vk ∈V for k ∈ [|V |])

on all random variables Xv for v ∈V can be easily computed as well. Since our
existing species correspond to the leaves of T, we need to take the marginal
distribution at the leaves

pi1 i2...im := P(X1 = i1, X2 = i2, . . . , Xm = im)=
∑︂

vk is non-leaf

∑︂

ik∈S

pi1 i2...i|V | .

Using a genetic system consisting of k letters, there are km of these prob-
abilities. Using this approach, the unknown parameters are the transition
matrices P(e) for each e ∈ E and the root distribution π. In the general Markov
model, each matrix entry of P(e) is an independent parameter. The number of
parameters will be smaller in the JC and Kimura models because some entries
of the transition matrix are assumed to be equal. Equation (3.1) implies that
there exists a polynomial parameterization map ϕT for the joint distribution
of the states at the leaves. Suppose that ST is the parameter space consisting
of transition matrices for every edge and the root distribution associated to
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the tree T = (V ,E). Moreover, we also assume that the parameter space ST

is a full-dimensional subset of Rn for some n ∈N. Then we have the following
complex polynomial map

ϕT : ST →∆km−1

θ ↦→pT = (pω)ω∈Sm

where ∆km−1 is the probability simplex which consists of nonnegative vectors in
Rkm−1 with unit sum.

Definition 3.1.3. A phylogenetic model on a phylogenetic tree T, denoted by
MT , is defined as the image of the polynomial map ϕT .

That is to say, the model MT contains all probability distributions obtained
from T by varying the parameters in ST .

3.2 The group-based model and its Fourier transform

In this section, we restrict our consideration to a special class of nucleotide
substitution models with very nice properties. Namely, via a linear change
of coordinates, the transition matrices belonging to these models can all be
simultaneously diagonalizable. This class of models is called the group-based
models. This class of models includes the CFN model, the JC, and the Kimura
models mentioned in the previous section.

In the rest of this chapter, the group G in our consideration will be written
additively and its identity element is 0. In this thesis, we assume that the group
is always finite abelian.

Definition 3.2.1 (Publication I, Definition 1). Given a group G , a labeling of G

is any function L : G →L for some finite set of labels L .

Definition 3.2.2 (Publication I, Section 2). A nucleotide substitution model is
a group-based model with an underlying group G and a labeling L of G if for
any edge e ∈ E in the phylogenetic tree T = (V ,E) and the transition matrix
P(e) = exp(teQ(e)) along the edge e, the entries of the substitution rate matrix
Q(e) along the edge e are given by

Q(e)
g,h =ψ(e)(h− g) for all g,h ∈G ,

and for some vector ψ(e) ∈ RG whose components sum to zero such that the
following properties hold:

1. for every g ∈G \{0}, ψ(e)(g)≥ 0, and

2. if L(g)= L(h), then ψ(g)=ψ(h).
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A rate matrix Q(e) satisfying the above three properties is called a (G ,L)-rate
matrix. In group-based models, we usually assume that Q(e)

g,h = Q(e)
h,g for any

g,h ∈ G . That is to say, the rate matrices are assumed to be symmetric. This
fact is equivalent to ψ(e)(−g)=ψ(e)(g). Under this symmetricity assumption, by
taking the matrix exponential of the rate matrix Q(e), the transition matrix P(e)

satisfies
P(e)

g,h = f (e)(h− g)

for some nonnegative vector f (e) ∈RG with entries summing to one and f (e)(g)=
f (e)(−g) for all g ∈G .

However, in general, it is not true that the equality ψ(e)(g) =ψ(e)(h) implies
that the equality f (e)(g)= f (e)(h) holds as well. For an instance, see Example 2
of Publication I. In Section 3.3, we introduce a class of special labeling functions
called G -compatible labelings which guarantee that the symmetries possessed
by the rate matrix are preserved under the matrix exponential. In this case, we
say that the transition matrix P(e) is a (G ,L)-Markov matrix. It follows from
the definition that different labelings on the same group give rise to different
group-based models. In Example 1 of Publication I, one sees that the group-
based models include the JC, K2P, and K3P models corresponding to three
different labeling functions whose underlying group is G = Z2 ×Z2. In these
group-based models, we use the following identifications of nucleotides with the
group elements of Z2 ×Z2: A= (0,0),T= (0,1),C= (1,0), and G= (1,1).

It is known that the set of characters of G consisting of all group homomor-
phism from G to C∗ forms a group under multiplication and it will be referred to
as the character group ˆ︁G of G . It can also be easily seen that there is a canonical
isomorphism between G and ˆ︁G . The image of g ∈G under this isomorphism is
denoted by ˆ︁g ∈ ˆ︁G .

Definition 3.2.3. Let G be a group. Then the discrete Fourier transform of a
function a : G →C is the complex-valued function ǎ : G →C satisfying

ǎ(g)=
∑︂

h∈G

a(h) · ˆ︁g(h).

In Publication II, we study group-based models that are endowed with sym-
metric labelings: L(−g) = L(g) for all g ∈ G . We call such models symmetric
group-based models. In a symmetric group-based model, we assume that the
transition matrices are real symmetric matrices in a symmetric group-based
model. As a consequence, the vectors ψ̌ and f̌ are real functions.

The discrete Fourier transform is a linear map in the space CG of complex-
valued functions on a group G to itself. Therefore, we can represent it as a matrix
and we denote its matrix representation by K . For g,h ∈G , the (g,h)-entry of K
is given by Kg,h = ˆ︁g(h). Moreover, if G is finite abelian, then K is symmetric [61,
Section 3.2]. The matrix K is invertible and K−1 = 1

|G |K
T [61, Corollary 3.2.2].

In a symmetric group-based model, there exist some relations between the
functions f (e) and ψ(e) that specify the transition matrix P(e) and the rate matrix
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Q(e) belonging to the model, respectively. More precisely, it holds that f̌ (e)(g)=
eψ̌(e)(g) for all g ∈G as a consequence of the matrix exponential. Furthermore,
for any g ∈ G , ψ̌(e)(g) is an eigenvalue of Q(e) with an eigenvector given by
the column vector of the discrete Fourier matrix K indexed by the element g.
Similarly, for any g ∈G , f̌ (e)(g) is an eigenvalue of P(e) with an eigenvector given
by the column vector of K indexed by the element g. More details can be found in
[65, Lemma 2.2]. It implies that both matrices Q(e) and P(e) can be diagonalized
via the matrix K such that the diagonal entries of the corresponding diagonal
matrices are given by ψ̌(e) ∈RG and f̌ (e) ∈RG , respectively. For simplicity, from
now on, we will drop the superscript in the rate and Markov matrices by fixing
an edge of a phylogenetic tree.

Example 3.2.4. The matrix representation of the discrete Fourier transform
for the group G =Z2 ×Z2 is given by

K =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎠

.

For rate or transition matrices belonging to the K3P model, we have

K−1·

⎛
⎜⎜⎜⎜⎜⎝

a b c d

b a d c

c d a b

d c b a

⎞
⎟⎟⎟⎟⎟⎠
·K =

⎛
⎜⎜⎜⎜⎜⎝

a+b+ c+d 0 0 0

0 a−b+ c−d 0 0

0 0 a+b− c−d 0

0 0 0 a−b− c+d

⎞
⎟⎟⎟⎟⎟⎠

3.3 The embedding problem in phylogenetics and some
embeddability criteria

We will formulate the embedding problem in the context of phylogenetics and
we summarize the main results of Publications I and III which aim to answer
the embedding problem.

In the embedding problem, we ask whether a Markov matrix P has a time-
homogeneous CTMC realization. Namely, we want to decide whether a Markov
matrix P = exp(tQ) for some rate matrix Q and t ∈ R≥0. It can be easily seen
that tQ is a rate matrix for any t ≥ 0 if and only if Q is a rate matrix.

Definition 3.3.1. A Markov matrix P ∈ Mn(R) is said to be embeddable if there
exists a rate matrix Q ∈ Mn(R) satisfying P = exp(Q). A Markov generator for P
is a rate matrix Q that satisfies the exponential equation.

Elfving was believed to be the first mathematician to pose the problem for
finding a valid Markov generator of a given Markov matrix [30]. This problem
became known as the embedding problem.
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There are many applications of the embeddability property varying from phy-
logenetics to mathematical finance. In Section 3.1.2, in the context of phyloge-
netics, we have seen one approach in modeling evolution as a time-homogeneous
continuous-time Markov process. A different approach appears when one only
considers the conditional probabilities between the original and the final DNA
sequences by considering the evolutionary process as a whole. In this case, we
do not care about the mutation rates. By studying the embedding problem, one
is able to connect these two approaches in modeling evolution.

We present some known embeddability criteria for Markov matrices of small
sizes. The following theorem suggests that checking the embeddability of a
Markov matrix of order two is equivalent to checking whether the matrix is
invertible or not which is a rather easier condition to check.

Theorem 3.3.2 ([56]). Let P ∈ M2(R) be a Markov matrix. The following state-
ments are equivalent:

1. P is embeddable.

2. P is invertible.

3. tr(P)> 1.

Since Markov matrices are real matrices, its complex eigenvalues occur in
complex conjugate pairs.

Theorem 3.3.3 ([23]). Let P ∈ M3(R) be a Markov matrix. Let

P = Z ·diag(1,λ,λ) ·Z−1

be an eigendecomposition of P.

1. If λ> 0, then P is embeddable if and only if its principal logarithm is a
rate matrix.

2. Suppose that λ< 0. If P is embeddable, then the matrix

Z ·diag(0, log |λ|, log |λ|) ·Z−1

is a rate matrix.

3. If λ ∈C\R, then P is embeddable if and only if its principal logarithm is a
rate matrix or the matrix

Z ·diag(0, log−1(λ), log−1(λ)) ·Z−1

is a rate matrix.

In addition to the above theorem, the following embeddability criteria appear
in the literature. In [12], a characterization of the embeddability for Markov
matrices of size three with repeated negative eigenvalues was presented, and in
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fact, this problem is equivalent to showing whether a square root of a Markov
matrix that satisfies some constraints exists or not. Moreover, more explicit
embeddability criteria for this case were given in [20]. For a Markov matrix
P with distinct eigenvalues, an explicit embeddability criterion was presented
in [51]. This criterion utilizes an expression of the logarithm of P as a linear
combination of some powers of P. Interested readers can refer to [51, Theorem
1.1] for more details. Finally, in [50], the authors presented some conditions
that guarantee the existence of a Markov generator for a Markov matrix in the
context of mathematical finance and credit ratings. Moreover, they also provide
a method on how to search for Markov generators.

For Markov matrices or size four, the embedding problem has been completely
solved in [14]. Moreover, in the same paper, the authors established a char-
acterization of embeddable Markov matrices for larger Markov matrices with
distinct eigenvalues. They also came up with an algorithm to enumerate all its
Markov generators. In addition to the embeddability of general Markov matrices
of size four, the embedding problem for the JC and Kimura models has been
specifically studied in [72] and [13]. We summarize the embeddability criteria
in Theorem 3.3.4 and 3.3.5.

Theorem 3.3.4 ([72], Corollary 3.1). Let P be a K3P Markov matrix with distinct
eigenvalues {1, x, y, z}. Then P is embeddable if and only if its eigenvalues satisfy
the following inequalities

x, y, z > 0, x ≥ yz, y≥ xz, z ≥ xy.

Moreover, it was proven in [72] that if a K3P Markov matrix with distinct
eigenvalues is embeddable, then it has a K3P Markov generator.

Markov matrices in the K2P and JC models have repeated eigenvalues. If
a Markov matrix has repeated eigenvalues, then it has infinitely many real
logarithms [22]. Hence in order to conclude that a Markov matrix with repeated
eigenvalues is embeddable, we need to check whether any of these real log-
arithms is a rate matrix. A discussion on the embeddability of K2P and JC
matrices which have repeated eigenvalues was also presented in [72, 13]. The
following theorem characterizes the embeddability of K2P Markov matrices.

Theorem 3.3.5 ([13], Corollary 3.9). Let P be a K2P Markov matrix having
eigenvalues 1, x, y, y.

1. If y= 0, then P is not embeddable.

2. If y> 0, then P is embeddable if and only if y2 ≤ x.

3. If y< 0, then P is embeddable if and only if y2 ≤ x ≤ e−2π.

In [72, Section 3], the authors displayed some examples of embeddable K3P
Markov matrices with no K3P Markov generators. Motivated by these examples,
in Publication I, we investigate a variation of the classical embedding problem
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in a general group-based model. Namely, given a Markov matrix P, we also
impose that the rate matrix Q satisfying P = exp(Q) belongs to a group-based
model used to model the evolution.

Definition 3.3.6 (Publication I). Given a group-based model associated with
a group G and a labeling L of G , a (G ,L)-Markov matrix P is said to be (G ,L)-
embeddable if there exists a (G ,L)-rate matrix Q satisfying P = exp(Q).

We will consider the following class of labeling functions that preserves the
symmetries of the entries of a rate matrix under the exponential map. Suppose
that the vector xL is the column vector whose g-th component is given by the
variable xL(g).

Definition 3.3.7 (Publication I, Definition 2). Given a group G , let K be the
matrix representation of the discrete Fourier transform for G . The labeling L on
G is called G -compatible if for any g1, g2 ∈G with L(g1)= L(g2), the following
equations hold:

Kg1,: · xL = Kg2,: · xL and (K−1)g1,: · xL = (K−1)g2,: · xL,

where Kg,: denotes the row of K labeled by g ∈G .

Given a symmetric G -compatible labeling L, if Q is a (G ,L)-rate matrix, then
it can be checked that the Markov matrix obtained from the exponentiation
P = exp(Q) is an (G ,L)-Markov matrix.

The following theorem is the main result of Publication I. This theorem charac-
terizes a (G ,L)-embeddable transition matrix in a symmetric group-based model
with a G -compatible labeling in terms of its eigenvalues.

Theorem 3.3.8 (Publication I, Theorem 1). Let G be an abelian group and
L : G →L be a symmetric G -compatible labeling. Then a (G ,L)-Markov matrix
P is (G ,L)-embeddable if and only if its eigenvalues λ= (λg)g∈G ∈RG satisfy the
following properties:

1. λ0 = 1,

2. λg > 0 for each g ∈G ,

3. for each nonzero g ∈G ,
∏︁

h∈G λ
Re((K)g,h)
h ≥ 1, and

4. if L(g)= L(h), then λg =λh.

By applying the result of Theorem 3.3.8 to the JC, K2P, and K3P models, we
will recover the embeddability criteria presented earlier in [72] and [13]. This is
expected because the JC, K2P, and K3P models are group-based models equipped
with G -compatible labelings.

Recently, a possible genetic system consisting of eight building blocks was
introduced in [48]. We refer to this genetic system as the hachimoji DNA system.
In this DNA system, there are four additional synthetic nucleotides: S, B, Z,
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and P together with the four standard nucleotides. The chemical bonds among
these synthetic nucleotides are B S and P Z. More chemical properties of these
four additional nucleotides are given in [48]. In Publication I, we propose three
different group-based models for the hachimoji DNA system with the underlying
group structure given by Z2 ×Z2 ×Z2. For these group-based models, using the
main result in Theorem 3.3.8, we provide approximations of how large the set of
embeddable Markov matrices in certain biologically meaningful subsets of the
Markov matrices of size 8 are. This concludes the main results of Publication I.

We will now discuss the main results in Publication III which concern the
embeddability of centrosymmetric matrices. It is mentioned in Section 3.1 that
if one takes into account the complementarity of the two DNA strands, then one
should consider the strand symmetric (SS) model. The algebraic structure of the
SS model was first studied in [16]. The JC, K2P, and K3P models are special
cases of the SS model. The transition matrices in the SS model belong to the
class of matrices known as centrosymmetric matrices of size 4.

Definition 3.3.9. A matrix A = (ai j) ∈ Mn(R) is called centrosymmetric (CS) if
for all i, j ∈ [n],

ai, j = an+1−i,n+1− j.

We have seen earlier that in the case of a group-based model, the transition
matrices can be diagonalized via the discrete Fourier matrix. In the case of
the SS model, it is possible to block-diagonalize an SS Markov matrix. Let us
consider the matrix

S =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 1

0 1 1 0

0 1 −1 0

1 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠

. (3.2)

We define the map F4 : M4(R) → M4(R) such that for any P = (pi j) ∈ M4(R),
F(P) := S−1PS. If P is an SS matrix, then

F(P) :=

⎛
⎜⎜⎜⎜⎜⎝

p11 + p14 p12 + p13 0 0

p21 + p24 p22 + p23 0 0

0 0 p22 − p23 p21 − p24

0 0 p12 − p13 p11 − p14

⎞
⎟⎟⎟⎟⎟⎠

.

It can be seen that if P is a Markov (rate) matrix, then the upper left block
matrix in F(P) is a Markov (rate) matrix as well. Unlike the upper left block,
the lower right block matrix does not admit such nice properties. Suppose that

λ := p11 + p14, µ := p22 + p23,

α := p22 − p23, α′ := p21 − p24,

β := p11 − p14, β′ := p12 − p13,

∆ := (α−β)2 +4α′β′.

(3.3)
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In Publication III, we consider only SS Markov matrices whose eigenvalues
are positive and pairwise different. Let P = (pi j) be such an SS Markov matrix.
By direct computations, one can check that the four distinct positive eigenvalues
of P are given by:

1, λ1 :=λ+µ−1, λ2 := (α+β)+⎷
∆

2
and λ3 = (α+β)−⎷

∆

2
. (3.4)

The following theorem is the first main result of Publication III which enu-
merates all real logarithms of an SS Markov matrix having distinct positive
eigenvalues. The main tool to prove this theorem is Proposition 2.3.13 that
lists all possible real logarithms of a Markov matrix such that each row of this
logarithm sums to one.

Theorem 3.3.10 (Publication III, Theorem 3.6). Let P be an SS Markov matrix
having positive and distinct eigenvalues 1, λ1,λ2,λ3 given as in (3.4). Let

x := log(λ1), yk := log(λ2)+2kπi, zk := log(λ3)−2kπi,

such that if ∆ > 0, then k = 0 and if ∆ < 0, then k ∈ Z. Then P admits real
logarithms given by

S

⎛
⎜⎜⎜⎜⎜⎝

α1 −α1 0 0

−β1 β1 0 0

0 0 δ(k) ε(k)

0 0 φ(k) γ(k)

⎞
⎟⎟⎟⎟⎟⎠

S−1,

where

α1 = 1−λ

2−λ−µ
x, β1 = 1−µ

2−λ−µ
x,

δ(k)= 1
2

((yk + zk)+ (α−β)
(yk − zk)⎷

∆
), ε(k)=α′ (yk − zk)⎷

∆
,

φ(k)=β′ (yk − zk)⎷
∆

, γ(k)= 1
2

((yk + zk)− (α−β)
(yk − zk)⎷

∆
).

Corollary 3.3.11 (Publication III, Theorem 3.6). Let P be an SS Markov matrix
having positive and distinct eigenvalues 1,λ1,λ2,λ3 given as in (3.4). Then any
real logarithm Q = (qi j) of P is an SS matrix whose entries are:

q11 = α1 +γ(k)
2

, q12 = −α1 +φ(k)
2

, q13 = −α1 −φ(k)
2

, q14 = α1 −γ(k)
2

,

q21 = −β1 +ε(k)
2

, q22 = β1 +δ(k)
2

, q23 = β1 −δ(k)
2

, q24 = −β1 −ε(k)
2

.

We now provide the second main result of Publication III. The theorem provides
a characterization of the embeddable SS Markov matrices with positive and
distinct eigenvalues.
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Theorem 3.3.12 (Publication III, Theorem 3.7). An SS Markov matrix P hav-
ing distinct eigenvalues 1,λ1,λ2,λ3 is embeddable if and only if the following
inequalities are satisfied for k = 0 if ∆> 0 or for some k ∈Z if ∆< 0:

λ1 > 0, (α+β)2 >∆, |φ(k)| ≤ −α1,

|ε(k)| ≤ −β1, γ(k)≤α1, δ(k)≤β1.

By applying the embeddability criteria in Theorem 3.3.12 to the case of the
K3P model, which is a special case of the SS model, we recover the embeddability
criteria in the K3P model presented in [72]. Moreover, these criteria allow us to
approximate the size of the set of embeddable SS Markov matrices inside the
space of all Markov matrices of size four having positive and distinct eigenvalues
and also inside some of its biologically relevant subsets. These proportions can
be observed in Table 5 and Table 7 in Publication III.

In Publication III, we also consider CS Markov matrices of order larger than
4. The biological applications of higher-order CS matrices can be justified by
the existence of synthetic nucleotides. In synthetic biology, scientists aim to
expand the genetic alphabet system to include synthetic unnatural base pairs
which are functionally equivalent to the natural base pairs. Earlier we have
seen the hachimoji DNA system consisting of eight DNA alphabets. In [64], a
fully functional genetic alphabet system consisting of six letters was established.
In this system, in addition to the two natural base pairs, a pair of synthetic
bases 5SICS MMO2 was added to the genetic alphabet system. This unnatural
base pair was shown to be biologically comparable to a natural base pair. This
synthetic biological research motivates us to investigate the higher-order CS
Markov matrices.

For higher-order CS matrices, we generalize the block-diagonalization proce-
dure using the matrix S in (3.2). Namely, there exists a matrix Sn ∈ Mn(R) that
can block-diagonalize a CS matrix of size n. More details on the matrix Sn can
be checked in Section 5.1 of Publication III.

Lemma 3.3.13 (Publication III, Lemma 5.6). Let P ∈ Mn(R) be a CS matrix.
Then

S−1
n PSn = diag(P1,P2),

where P1 ∈ Mn(R⌈ n
2 ⌉×⌈ n

2 ⌉) and P2 ∈ Mn(R⌊ n
2 ⌋×⌊ n

2 ⌋). Additionally, if P is a Markov
matrix, so is P1. Similarly, if P is a rate matrix, then so is P1.

As a consequence, this block-diagonal representation of a CS Markov matrix
allows us to provide a necessary condition on the set of embeddable matrices.

Lemma 3.3.14 (Publication III, Lemma 5.12). Let n ≥ 2. Let P = (pi j) ∈ Mn(R)
be an embeddable CS Markov matrix with a CS logarithm.

1. If n is even, then
n
2∑︂

j=1

(p j j + p j,n− j+1)> 1.
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2. If n is odd, then

⌊ n
2 ⌋∑︂

j=1

(p j j + p j,n− j+1)+ p⌊ n
2 ⌋+1,⌊ n

2 ⌋+1 > 1.

The previous lemma allows us to give an upper bound to the volume of the set
of embeddable CS Markov matrices inside the space of CS Markov matrices. This
upper bound is not difficult to compute since we only have linear inequalities
defining the necessary conditions. For small values of n, these estimates can be
seen in Table 8 of Publication III.

As a concrete example, in Publication III we particularly study the case of 6×6
CS Markov matrices with distinct eigenvalues and we present some embeddabil-
ity criteria. Given a 6×6 CS Markov matrix, we prove in Lemma 3.3.13 that
S−1

6 PS6is a block-diagonal real matrix such that P1 is a Markov matrix of size
three. Suppose that we have the following eigendecompositions of P1 and P2:

P1 = N1 ·diag(1,λ1,λ2) ·N−1
1 and P2 = N2 ·diag(µ,γ1,γ2) ·N−1

2

with µ ∈ R>0 and λi,γi ∈ C and for some matrices N1, N2 ∈ GL3(C). We will
define the matrix Z := S6 ·diag(N1, N2), where S6 is the matrix used to block-
diagonalize the 6×6 CS matrices.

The following theorem in Publication III completely characterizes the embed-
dability of CS Markov matrices of size 6 with distinct eigenvalues based on their
set of eigenvalues.

Theorem 3.3.15 (Publication III, Proposition 11-15). 1. If λi,γi ∈R>0 for i ∈
[2], then P is embeddable if and only if its principal logarithm is a rate
matrix.

2. Suppose that λi ∈R>0 and γi ∈C\R for i ∈ [2]. Let

V := Z ·diag(0,0,0,0,2πi,−2πi) ·Z−1. (3.5)

Suppose that

L := max
(i, j): i ̸= j, Vi, j>0

⌈︃
−Log(P)i, j

Vi, j

⌉︃
, U := min

(i, j): i ̸= j, Vi, j<0

⌊︃
−Log(P)i, j

Vi, j

⌋︃
.

Moreover, let N := {(i, j) : i ̸= j, Vi, j = 0 and Log(P)i, j < 0}. The following
statements hold:

(a) The matrix P is embeddable if and only if the set N is empty and
L ≤U .

(b) The set {Q =Log(P)+kV : k ∈Z with L ≤ k ≤U } is the set of Markov
generators for P.

3. If λi ∈ C\R and γi ∈ R>0, then P is embeddable if and only if Log(P) or
Log−1(P) are rate matrices, where

Log−1(P) := Z ·diag(0, z, z, log(µ), log(γ1), log(γ2)) ·Z−1 and z := log−1(λ1).
(3.6)
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4. Suppose that λi,γi ∈ C\R for i ∈ [2]. Let Log0,0(P) denote the principal
logarithm of P and Log−1,0(P) denote the matrix in (3.6). Let V be the same
matrix as in (3.5). For k ∈ {0,−1}, let us define:

Lk := max
(i, j): i ̸= j, Vi, j>0

⌈︃
−Logk,0(P)i, j

Vi, j

⌉︃
, Uk := min

(i, j): i ̸= j, Vi, j<0

⌊︃
−Logk,0(P)i, j

Vi, j

⌋︃
.

Moreover, let Nk := {(i, j) : i ̸= j, Vi, j = 0 and Logk,0(P)i, j < 0}. The follow-
ing statements hold:

(a) P is embeddable if and only if Nk is empty and Lk ≤Uk for k = 0 or
k =−1.

(b) If P is embeddable, then one of its Markov generators is given by

Logk,k2
(P) := Z·diag(0, logk(λ1), logk(λ1), log(µ), logk2

(γ1), logk2
(γ1))·Z−1

with k ∈ {0,−1} and k2 ∈Z such that Lk ≤ k2 ≤Uk.

5. If the set of eigenvalues of P does not belong to any of the previous four
cases, then P is not embeddable.

By applying the previous theorem, we can approximate the proportion of the
set of embeddable CS Markov matrices inside the set of all CS Markov matrices
of size 6 and some of its relevant subsets. These proportions can be seen in Table
9 of Publication III. These approximate proportions of the set of embeddable
CS Markov matrices of sizes four and six presented in Publication III suggest
that modeling the evolutionary process as CTMC in the SS model is a strong
restriction since we disregard non-embeddable matrices which are much larger
in proportion compared to those that are embeddable. Hence one should take
the above restrictions of modeling evolution as CTMC into consideration when
working with the SS model.

3.4 The phylogenetic models on phylogenetic networks

In this section, we generalize phylogenetic models built on trees to the more
general network setting. This generalization is biologically relevant due to
the fact that, unlike phylogenetic trees, phylogenetic networks may be able to
explain better many biological phenomena, including hybridization, horizontal
gene transfer, and gene recombination [73, 69, 62]. In this section, we present a
polynomial parameterization for some group-based models built on phylogenetic
networks. Moreover, we show that we can apply the Fourier transformation
to simplify the parameterization. We will see that in the case of trees, the
parameterization will be reduced to a monomial parameterization.

We start by presenting a set of assumptions on the networks that we consider.
In the rest of this chapter, we denote by X the set of taxa of our interest.
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Moreover, we will always assume that our graphs/networks are binary unless
otherwise stated.

Definition 3.4.1 ([40]). A rooted phylogenetic network N on X is a rooted con-
nected simple DAG such that its leaf set is bijectively labeled by X and the other
vertices are either tree vertices (vertices with in-degree one and out-degree two)
or reticulation vertices (vertices with in-degree two and out-degree one).

Given a rooted phylogenetic network N, an edge directed into a reticulation
vertex of N is called a reticulation edge. We say a leaf u of N is a reticulation leaf
if its unique parent is a reticulation vertex of N. The set of reticulation leaves
of N will be denoted by r(N). The following definition provides the unrooted
counterpart for phylogenetic networks.

Definition 3.4.2 ([34]). An unrooted phylogenetic network N on X is a connected
undirected simple graph such that its leaf set is bijectively labeled by X and
each vertex is either a tree vertex (vertex of degree three) or a leaf.

Let N be a (rooted/unrooted) phylogenetic network on X . A (tree) cherry is
an undirected path {x1,u, x2} such that x1 and x2 are leaves of N. Moreover, if
N is rooted, then a reticulated cherry is an undirected path {x1,u1,u2, x2} such
that x1 and x2 are leaves of N and that exactly one of u1 and u2 is a reticulation
vertex.

Definition 3.4.3 ([10, 84]). If every biconnected component of a rooted phylo-
genetic network contains at most k reticulation vertices, then the network is
called a level-k (rooted) network. Similarly, if we can produce a phylogenetic tree
by removing at most k edges in every biconnected component of an unrooted
phylogenetic network and then by contracting each vertex of degree two to one
of its neighbors then the network is called a level-k (unrooted) network.

The above definition can be used to measure how complex a phylogenetic
network is in terms of the number of its reticulation vertices and also how far a
phylogenetic network is from being a tree.

In this thesis, we will only consider the semi-directed network topology of a
given phylogenetic network due to the time reversibility of the evolutionary
process of the nucleotide substitution model which implies that the exact root
position cannot be inferred. Given a rooted phylogenetic network N, the semi-
directed topology of N can be obtained by collapsing the root of N and then
by forgetting the direction of all tree edges but keeping the direction of the
reticulation edges only.

In Section 3.1.2, we construct a phylogenetic model on a phylogenetic tree. We
generalize this construction to the phylogenetic network setting. After that, we
describe the use of discrete Fourier transform as a linear change of coordinates
to simplify the polynomial parameterization of a phylogenetic model on a tree
and network as well.

Let k ∈N. Let N be a level-k semi-directed network on X where |X | = n. We
associate an m×m transition matrix P(e) to each edge e of N where m denotes
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the cardinality of the state space of the Markov chain. In our case, m = 4 since
we consider DNA data. Let v1, . . . ,vr be the reticulation vertices of N where
r ≥ k. We introduce the following reticulation edge parameters. For i ∈ [r], let e0

i
and e1

i be the two edges directed into the reticulation vertex e i. We then assign a
parameter δi ∈ [0,1] to e1

i and δ′
i ∈ [0,1] to e0

i such that δi+δ′
i = 1. The parameter

δi denotes the probability of independently keeping the edge e1
i but deleting e0

i .
Similarly, the parameter δ′

i denotes the probability of independently keeping
the edge e0

i but deleting e1
i . A vector σ ∈ {0,1}r of length r encodes the choices

we make in keeping and/or deleting one of the two edges that are directed into a
reticulation vertex. Namely, if σi denotes the ith component of σ, then σi = 0
means that e0

i is deleted and σi = 1 means that e1
i is deleted. Given a binary

vector σ ∈ {0,1}r, if we remove the edges according to σ, then after this process,
we obtain a phylogenetic tree Tσ. For ω ∈ Sn, let (pN )ω be the joint probability
distribution of observing ω at the leaves where the nucleotide ωi is observed at
the leaf i. Then

(pN )ω =
∑︂

σ∈{0,1}r

(︂∏︂
δ

1−σi
i (1−δ′

i)
σ
i

)︂
(pTσ

)ω

where (pTn )ω denotes the joint probability of observing ω in the phylogenetic
tree Tσ. We have seen in Section 3.1.2 that the joint probability (pTn )ω can be
easily computed.

Let θN be the set of parameters on the network N consisting of the reticulation
edge parameters and the entries of the transition matrices for each edge of N.
Then we have the following complex polynomial map:

ϕN : θN →∆km−1

θ ↦→pN = (pω)ω∈Sn

(3.7)

Definition 3.4.4 ([40]). The phylogenetic network model on a phylogenetic net-
work N, denoted by MN , is defined as the image of the polynomial map ϕN .

Let T be a phylogenetic tree with n leaves. We now briefly discuss how to apply
discrete Fourier transform to simplify the parameterization (3.7) of the model
MT under a group-based model. Namely, we also require that the transition
matrices in the model MT follow the symmetries determined by the group-based
model. Let G be the underlying group for the group-based model. For each
ω ∈ Sn, we can easily compute the joint probability pω. To every split A|B ∈Σ(T)
of the leaf set of T, we associate the variables {aA|B

g }g∈G . The corresponding
Fourier coordinate qω is given by the following monomial parameterization:

qω =
{︄ ∏︁

A|B∈Σ(T) aA|B∑︁
i∈A ωi

, if
∑︁n

i=1 ωi = 0

0, otherwise.

More details on this linear change of coordinates can be found in [42, 31].

47



Algebraic Methods in Phylogenetics

The most important property of this change of coordinates is that for trees, it
reduces the polynomial parameterization of the joint probability pω for ω ∈ Sn

for the model MT into a monomial parameterization. Unlike in the trees setting,
even though the Fourier transformation simplifies the complicated polynomial
parameterization of the joint probability (pN )ω for a semi-directed network N,
the resulting parameterization need not be a monomial parameterization. As an
example, one can see Example 6 in Publication II. We will see in the subsequent
section that we can use this Fourier transformation to distinguish two network
models.

3.5 Generic identifiability and distinguishability of phylogenetic
network models

In the previous section, we constructed a polynomial parameterization of a
phylogenetic network model MN . Given two phylogenetic network models,
the goal of this section is to provide algebraic invariants that can be used to
distinguish the two models. To achieve this goal, we briefly mention how we can
associate a variety to a phylogenetic network model. Then we will define what
we exactly mean by distinguishing two network models. Finally, we summarize
some results of the distinguishability of certain classes of phylogenetic networks
in Publication II.

Let N be a semi-directed phylogenetic network with n leaf and r reticulation
vertices. We can see from the parameterization map ϕN in (3.7) that for any
ω ∈ Sn, pω is a homogeneous polynomial in the set of parameters θi and the
degree of this polynomial is equal to the number of reticulation vertices plus the
number of edges of the tree Tσ obtained after deleting exactly one of the two
reticulation edges directed to each reticulation vertex according to σ ∈ {0,1}r. In
general, the leaf set of the tree Tσ is not equal to X .

In Publication II, we focus our study on the class of semi-directed networks
called funnel-free networks. A semi-directed network is called funnel-free if no
tree vertex and no reticulation vertex satisfy neither condition:

1. it is a parent of a reticulation vertex and as well as a child of two reticula-
tion vertices of the network, or

2. it is a parent of two reticulation vertices of the network.

If the network is funnel-free, then the leaf set of the tree Tσ is equal to X for
any σ ∈ {0,1}r.

We consider the map ϕN in (3.7) as a complex polynomial map.

Definition 3.5.1. The variety VN associated with the model MN is defined as
the Zariski closure of Im(ϕN ).

Definition 3.5.2. The vanishing ideal, or simply just the ideal, associated with
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the model MN , denoted by IN ⊆C[pω : ω ∈ Sn], is defined as

IN := { f ∈C[pω : ω ∈ Sn] : f (v)= 0 for all v ∈VN }.

An element of the ideal IN is called a phylogenetic invariant associated with the
model MN .

To compute the ideal associated with a phylogenetic model, we use the poly-
nomial parameterization (3.7) and then the elimination theory to eliminate the
model parameters corresponding to the transition matrices for each edge of
the network and the reticulation edges. One approach to obtain a phylogenetic
invariants is to compute a Gröbner basis of the vanishing ideal. An element of
this Gröbner basis is a phylogenetic invariants associated with the model.

This notion of phylogenetic invariants for a phylogenetic tree was originally
introduced in [17] and [59]. An extensive list of publications studying phylo-
genetic invariants includes [31, 2, 79, 76, 77, 82]. If a network is funnel-free,
then it allows us to apply discrete Fourier transform to compute the phyloge-
netic invariants associated with the network model. If N is a tree, then the
phylogenetic invariants associated with the model MN have been well-studied.
For trees with few leaves, a complete list of phylogenetic invariants has been
collected in [15]. For bigger trees under group-based models, one can obtain a
phylogenetic invariant by computing toric fiber products of ideals associated
with some subtrees. Interested readers can check [79] for more details.

Given a family of parametric statistical models, one of the most important
questions is the identifiability of the model parameters. We aim to study the
identifiability of the network topology parameter for phylogenetic network mod-
els. This identifiability problem ensures that it is possible to find the unique
network topology that matches the probability distribution observed in the DNA
data.

We now define the notion of distinguishability of two network models.

Definition 3.5.3 ([40]). Let N1 and N2 be two distinct semi-directed networks
with n leaves. If VN1 ∩VN2 is a proper subvariety of VN1 and of VN2 , then N1 and
N2 are called distinguishable. Otherwise, N1 and N2 are called indistinguish-
able.

The above definition suggests that in order to distinguish two network models
associated with N1 and N2, we need to find two phylogenetic invariants f1 and
f2 such that f1 ∈ IN1 \ IN2 and f2 ∈ IN2 \ IN1 . This notion of distinguishability
can be used to decide whether two models are generically identifiable or not.

Definition 3.5.4. Let N1 and N2 be two distinct semi-directed networks with
n leaves. The network parameters are generically identifiable if the set of
parameters θ in θN1 that ϕN1 maps into MN2 has Lebesgue measure zero.

Proposition 3.5.5 ([40], Proposition 3.3). Let N1 and N2 be two distinct semi-
directed networks with n-leaf. If N1 and N2 are distinguishable, then the associ-
ated network parameters are generically identifiable.
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(ii) Suppose that N1 and N2 are both simple funnel-free strict level-2 semi-
directed networks. If the underlying unlabelled semi-directed topology of
N1 is isomorphic to a type 1, 2, or 3 semi-directed network, and N2 is
isomorphic to a type 4 semi-directed network, then under the JC model,
VN2 ̸⊆ VN1 . Here, the 4-leaf networks of type 1,2,3, and 4 can be seen in
Figure (3.1). In these networks, the dashed arrows represent reticulation
edges.

The main strategy to generalize the results on four leaves is to use the network
restriction procedure [40, Definition 4.1] to obtain a subnetwork with four leaves
and then apply Proposition 3.5.9. Given a semi-directed network N on X and
S ⊆ X , the network N|S denotes the restriction of N to S. The following fact
allows us to distinguish the original network using the distinguishability of
certain subnetworks of the original networks.

Lemma 3.5.10 ([40]). Let N1 and N2 be two distinct n-leaf semi-directed net-
works on X and S ⊆ X. If VN|S ̸⊆VM|S , then VN ̸⊆VM .

The following series of theorems are some results presented in Publication
II on the distinguishability of phylogenetic network models on at least five
leaves that are obtained using the network restriction procedure. We start
by presenting the distinguishability of two networks where each network has
two reticulation leaves. Let us recall that the set of reticulation leaves of a
phylogenetic network N is denoted by r(N).

Theorem 3.5.11 (Publication II, Theorem 6.13). Let n ≥ 5. Let N1 and N2 be
two distinct n-leaf funnel-free strict simple level-2 semi-directed networks such
that |r(N1)| = |r(N2)| = 2 and r(N1) ̸= r(N2). If the pair (N1, N2) is neither N1-RC
nor N2-RC, then N1 and N2 are distinguishable.

In the above theorem, we assume that r(N1) ̸= r(N2). If this assumption is not
satisfied, then we may not be able to distinguish the networks. See Example A.2
in Appendix A of Publication II.

The following results provide a way to distinguish two networks where one of
the networks has only one reticulation leaf.

Theorem 3.5.12 (Publication II, Theorem 6.14). Let n ≥ 5. Let N1 and N2 be
two distinct n-leaf funnel-free strict simple level-2 semi-directed networks on
X. Suppose that r(N1) = {a,b} and r(N2) = {c} such that c ∉ {a,b}. Let u be a
purely interior reticulation vertex of N2, a vertex whose all adjacent vertices
are not leaves. If dN1(x, y) ≥ 4 for any x ∈ r(N1) and y ∈ r(N2), then VN1 ̸⊆ VN2 .
Additionally, if the pair (N1, N2) is not N2-RC, dN2(a,u) ≥ 3, and dN2(b,u) ≥ 3,
then N1 and N2 are distinguishable.

Theorem 3.5.13 (Publication II, Proposition 6.15). Let n ≥ 5. Let N1 and N2

be two distinct n-leaf funnel-free strict simple level-2 semi-directed networks
on X. Suppose that r(N1) = {a,b} and r(N2) = {a}. Let u be the purely interior
reticulation vertex of N2. If the pair (N1, N2) is not N2-RC, dN2(a,u) ≥ 3, and
dN2(b,u)≥ 3, then VN2 ̸⊆VN1 .
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Finally, we present a result on the distinguishability of network models where
each network has only one reticulation leaf.

Theorem 3.5.14 (Publication II, Theorem 6.16). Let n ≥ 5. Let N1 and N2 be
two distinct n-leaf funnel-free strict simple level-2 semi-directed networks on X.
Suppose that r(N1) = {a} and r(N2) = {b} such that a ̸= b. Let u be the purely
interior reticulation vertex in both networks. If the pair (N1, N2) is neither N1-RC
nor N2-RC, dN1(b,u)≥ 3, and dN2(a,u)≥ 3, then N1 and N2 are distinguishable.

Similarly to Theorem 3.5.11, if the assumption r(N1) ̸= r(N2) is not satisfied,
then we may not be able to distinguish the networks. See Example A.4 in
Appendix A of Publication II.

We conclude Publication II by studying a more general class of funnel-free
strict level-2 networks. In Publication II, we refer to this class of networks
as semisimple networks. Similar to Theorem 3.5.11, Theorem 3.5.12, Theo-
rem 3.5.13, and Theorem 3.5.14, we prove some distinguishability results for
funnel-free strict level-2 semisimple networks under certain conditions.
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In this chapter, we summarize the results of Publication IV. In this publication,
we focus on studying the factor analysis model that can be considered as a
dimension reduction tool in statistical studies. We generalize the notion of the
factor analysis model and study the model dimension and codimension. Studying
the dimension and codimension of a statistical model is important because it
can give us an idea of how complicated our model is. Moreover, this information
is also essential if one wants to perform statistical model selection.

4.1 Moments and cumulants

We begin this section by providing some background on moment and cumulant
tensors of a random vector. The moment and cumulant tensors play a significant
role in statistics since many statistical calculations will require computing
either moments or cumulants and they provide some useful insights on the
probability distribution. If we know all moments of a probability distribution,
or alternatively all cumulants, then we can possibly reconstruct a probability
density function of the distribution. First studied by Chebyshev in 1961 [83],
this problem of reconstructing a probability distribution from a given set of
moments is often referred to as the moment problem. Moreover, both moments
and cumulants can be applied to study independence between random variables.
In the subsequent section, we will see that we can define a generalization of the
factor analysis model in terms of moments and cumulants.

Throughout this chapter, we use the notation (Rm)⊗r to denote the vector
space of r-dimensional tensors of format m×·· ·×m with entries in the field R.
Moreover, ∆r(Rm) denotes the subspace of (Rm)⊗r containing all diagonal tensors.
In what follows, we assume that all integrals or infinite sums exist and are
finite. Let X be a continuous random vector in Rp with the probability density
function fX (x) for x ∈ Rp. Given a function g, the expectation of the function
g(X ), denoted by E[g(X )], is defined as

E[g(X )] :=
∫︂

x∈Rp
g(x) fX (x)dx1 · · ·dxp.
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If E[g(X )]=±∞, then we say that the expectation of g(X ) does not exist. If the
random vector X is discrete, then to compute the expectation, we simply replace
the integral with a sum over the possible discrete values.

Definition 4.1.1. Let X be a random vector in Rp. Let r ∈N.

a. The rth-order moment tensor of X , denoted by M (r)
X ∈ (Rp)⊗r, is the tensor

whose ( j1, . . . , jr)-entry is given by

(M (r)
X ) j1... jr := E[X j1 · · ·X jr ].

b. The rth-order cumulant tensor of X , denoted by C (r)
X ∈ (Rp)⊗r, is the tensor

whose ( j1, . . . , jr)-entry is given by

(C (r)
X ) j1... jr := cum(X j1 , . . . , X jr )=

∑︂

(A1,...,AL)

(−1)L(L−1)!
L∏︂

i=1

E[
∏︂

j∈A i

X j]

where the summation is taken over all partitions (A1, . . . , AL) of the set
{ j1, . . . , jr}.

From the above definition, it can be easily seen that both moment and cumulant
tensors are symmetric, meaning that its ( j1, . . . , jr)-entries will not change after
any permutation of the indices ( j1, . . . , jr). There is another way to compute
moment and cumulant tensors of a random vector, namely via its generating
function. Two different probability distributions can possibly have the same
moments and hence the same cumulants. An example of two distributions with
the same moments that are finite in all orders is given in [43].

It can be checked that the first order cumulant and moment vector of a random
vector coincide and it is referred to as its mean vector. The second order cumulant
matrix of a random vector is referred to as the covariance matrix. It can be
shown that M (r)

X and C (r)
X coincide for r ∈ [3] if the random vector X has zero

mean. For r ≥ 4, the rth-order moment and cumulant tensors are different in
general. Finally, cumulants can measure how far a random variable is from being
Gaussian because, for any Gaussian random variable, its rth-order cumulant
vanishes for r ≥ 3.

Let r ∈N and X ∈ Rp be a random vector. Define the sets M (≤r)
X := ∪r

i=1M (i)
X

and C (≤r)
X := ∪r

i=1C (i)
X . The definition of cumulant tensors in Definition 4.1.1

gives rise to a polynomial map fr : M (≤r)
X →C (≤r)

X . Moreover, this map fr has a
polynomial inverse as well which is specified by the following relation

(M (l)
X ) j1... jl =

∑︂

(A1,...,AL)

L∏︂

i=1

cum((X j) j∈A i )

where the summation is taken over all partitions (A1, . . . , AL) of the set { j1, . . . , jl}.
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4.2 The factor analysis models and its higher order generalizations

The factor analysis model was first introduced by the British statistician and
psychologist, Charles Spearman in 1904. He is also well-known due to the
Spearman correlation coefficient which can be used to measure the strength of a
monotonic relationship between two random variables. The concept of the factor
analysis model came up when Spearman studied human intelligence [75, 74].
He suspected that there are two underlying hidden variables that could explain
different scores that people obtain on various tests related to intelligence. These
two factors are the general intelligence referred to as the g factor, and the specific
abilities intelligence referred to as the s factor.

The factor analysis model aims to estimate a model which can explain the
variance and covariance between observable variables by fewer hidden variables
together with some weightings. For example, in [5], the authors used factor
analysis to evaluate the economic rank of some countries. In this paper, there
are fifteen observed economic parameters that are used to evaluate economic
performance with strong correlations between them, and the authors inferred
that there are three underlying hidden factors that cause the strong correlations.
Moreover, these three hidden factors provided a good analysis of the fifteen
economic parameters.

Y1

Y2

X1

X2

X3

X4

X5

Figure 4.1. Example of a bipartite graph that encodes the interactions between the observed
variables X i ’s and the hidden variables Yi ’s in the model F5,2.

The factor analysis model on p observed variables and m hidden factors where
p > m, denoted by Fp,m, is defined as follows. Let X ∈Rp be a vector of observable
random variables. The model is determined by the following equation

X =ΛY +ε

where Y ∈Rm is the vector of hidden variables, Λ= (λi j) ∈Rp×m is the coefficient
matrix called factor loadings/weightings matrix, and ε ∈ Rp is the vector of
error terms corresponding to the unique variance of each observed variable.
An illustration of the model F5,2 is presented in Figure 4.1. The red and the
blue arrows in Figure 4.1 describe how the the hidden factors Y1 and Y2 affect
the five observed variables, respectively. Moreover, the variables λi j ’s encode

55



Factor Analysis Models

the weighting of how Y j affects X i. In summary, the factor analysis model
formulates the vector of observable random variables as a linear combination of
hidden factors plus some error terms.

The following are some assumptions in the factor analysis model.

1. The vectors Y and ε are assumed to be Gaussian.

2. For any pair (i, j), the variables Yi and ε j are independent.

3. The vectors Y and ε are centralized.

4. For any i ̸= j, the variables Yi and Y j are independent. Similarly, the
variables εi and ε j are independent as well.

The following result provides a polynomial parameterization for the factor
analysis model.

Theorem 4.2.1 ([28], Proposition 1). Every covariance matrix in the model Fp,m

can be given a parameterization as follows:

Fp,m = {Σ+ΛΛT ∈Rp×p :Λ ∈Rp×m and Σ> 0 diagonal}.

As a consequence of this polynomial parameterization, the dimension dim(Fp,m)
of the factor analysis model Fp,m can be computed. A dimension result is pre-
sented in [28].

Theorem 4.2.2 ([28], Theorem 2). The dimension of the model Fp,m is

dim(Fp,m)=min
{︃

p(m+1)−
(︃

m
2

)︃
,
(︃

p+1
2

)︃}︃
.

Since the Gaussianity of Y and ε is a rather restrictive assumption in the
factor analysis model, we would like to drop this assumption. As a consequence,
our probability distributions might have nonzero moments or cumulants up to
certain higher order. In the classical factor analysis model, only the cumulant
or moment tensors up to the second order are considered. In Publication IV, we
propose the following more general model.

Definition 4.2.3 (Publication IV, Definition 2.8). Let k ∈ N and k ≥ 2. A kth
factor analysis model is a family of random observed vectors X ∈ Rp that are
correlated with a vector of random hidden variables Y ∈ Rm with p > m such
that

X =ΛY +ε.

The model assumes the following:

1. The tensors M (≤k)
Y ,M (≤k)

ε ,C (≤k)
Y , and C (≤k)

ε exist and have finite entries.

2. The vectors Y and ε are centralized.

3. For any pair (i, j), the variables Yi and ε j are independent.
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4. For any i ̸= j, the variables Yi and Y j are independent. Similarly, the
variables εi and ε j are independent as well.

In terms of cumulant and moment tensors, the above definition has the follow-
ing counterparts.

Definition 4.2.4 (Publication IV, Definition 2.9). Let p,m,k ∈N such that k ≥ 2
and p > m.

(a) The kth-order cumulant factor analysis model, denoted by C (≤k)
p,m , is the

subset of tuples (C (2), . . . ,C (k)) of symmetric tensors that are the cumulant
tensors for some random vector X ∈ Rp in the kth-order factor analysis
model.

(b) The kth-order moment factor analysis model, denoted by M (≤k)
p,m , is the

subset of tuples (M (2), . . . ,M (k)) of symmetric tensors that are the moment
tensors for some random vector X ∈ Rp in the kth-order factor analysis
model.

In what follows, we need the following definition of the Tucker product of a
diagonal tensor with a tuple of matrices.

Definition 4.2.5. Let D(r) ∈∆r(Rm) be a diagonal tensor and Λ= (λi j) ∈ Rp×m

be a matrix. The Tucker product of D(r) with the r-tuple of matrices (ΛT , . . . ,ΛT ),
denoted by D(r) •r ΛT , is the tensor of format p×·· ·× p whose (i1 · · · ir)th entry
is given by

(D(r) •r ΛT )i1···ir :=D(r) • (ΛT , . . . ,ΛT )i1···ir :=
m∑︂

ℓ=1

dℓλi1,ℓ · · ·λir ,ℓ,

where for i ∈ [m], di ’s are the diagonal entries of D(r).

Similarly to Theorem 4.2.1, we obtain a polynomial parameterization of the
model C (≤k)

p,m .

Proposition 4.2.6 (Publication IV, Proposition 2.10). Let (C (2), . . . ,C (k)) be a
tuple in C (≤k)

p,m . Then for 2≤ r ≤ k,

C (r) =D(r) •r ΛT +E (r) (4.1)

for some matrix Λ ∈Rp×m and diagonal tensors D(r) ∈∆r(Rm) and E (r) ∈∆r(Rp).
Moreover, if r = 2, then both matrices D(2) and E (2) are positive semidefinite.

Since the moment tensors do not behave as nicely as the cumulant tensors
under linear transformations of random variables, we do not expect a nice
polynomial parameterization for the kth moment factor analysis model. However,
the existence of an invertible polynomial map from C (r)

X to M (r)
X guarantees that

there is a polynomial parameterization for the model M (≤k)
p,m . In the polynomial

parameterization in Proposition 4.2.6, we can assume without loss of generality
that D(2) is the m×m identity matrix.
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The polynomial parameterization in Proposition 4.2.6 of the cumulant factor
analysis model can be used to compute the dimension of the model. The following
theorem is the main result of Publication IV.

Theorem 4.2.7 (Publication IV, Theorem 3.1). Let p,m,k ∈N, k ≥ 3, and p > m.
Then

(a) dim(C (≤k)
p,m )= dim(M (≤k)

p,m ), and

(b) dim(C (≤k)
p,m )= (k−1)p+ (k−2)m+min

{︁
pm−(︁m

2

)︁
,
(︁p+k−1

k

)︁− p
}︁

.

This dimension result enables us to compute the codimension of the higher-order
factor analysis model which is the difference between the dimension of the
codomain of the parameterization map and the dimension of the model. We
conclude Publication IV by presenting some conditions on p and m that give rise
to a higher-order factor analysis model with positive codimension.

Theorem 4.2.8 (Publication IV, Theorem 3.3). Let ck be the codimension

codim(M (≤k)
p,m )= codim(C (≤k)

p,m )

of the kth-order factor analysis model. If k ≥ 3 and p ≥ m+1, then ck = h(k)
m (p)/k!,

where

h(k)
m (p)=

k∏︂

i=1

(p+ i)−k!(k+m)p+ k!
2

[m2 + (3−2k)m−2]. (4.2)

(a) If m ∈ [2k−3], then h(k)
m (p) has a unique positive root p(k). Therefore ck > 0

if p ≥ ⌊p(k)⌋+1.

(b) For finitely many values of m ≥ 2k−2, the polynomial h(k)
m (p) has two

positive roots, the largest denoted by p(k). Therefore ck > 0 if p ≥ ⌊p(k)⌋+1.

(c) There exists an integer m∗ ≥ 2k−2 such that h(k)
m (p) has no positive roots

for m ≥ m∗, in particular ck > 0 for all m ≥ m∗ and p ≥ m+1.
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