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Abstract

Cancer is hard to cure and radiation therapy is one of the most popular treatment
modalities. Even though the benefits of radiation therapy are undeniable, it still has
possible side effects. To avoid severe side effects, with clinical evidence, delivering
optimal radiation doses to patients is crucial. Intensity-modulated radiation therapy
(IMRT) is an advanced radiation therapy technique and will be discussed in this thesis.
One important step when creating an IMRT treatment plan is radiation beam geometry
generation, which means choosing the number of radiation beams and their directions.

The primary goal of this thesis was to find good gantry angles for IMRT plans by
combing computer graphics and machine learning. To aid the plan generation process, a
new method called reverse beam was introduced in this work. The new solution consists
of two stages: angle discovery and angle selection. In the first stage, an algorithm based
on the ray casting technique will be used to find all potential angles of the beams. For
the second stage, with a predefined beam number, K-means clustering algorithm will be
employed to select the gantry angles based on the clusters.

The proposed method was tested against non-small cell lung cancer dataset from The
Cancer Imaging Archive. By using IMRT plans with seven equidistant fields with 45◦

collimator rotations generated by the Ethos therapy system from Varian Medical Systems
as a baseline for comparison, the plans generated by the reverse beam method illustrated
good performance with the capability of avoiding organs while targeting tumors.
Keywords Beam Geometry, CT Images, Computer Graphics, DICOM, IMRT, K-means

Clustering, Machine Learning, Radiation Therapy, Ray Casting, Reverse Beam
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1 Introduction

“ Cancer is a leading cause of deathworldwide, accounting for nearly 10 million
deaths in 2020.

World Health Organization [1], Global Cancer Observatory [2] ”
According to Global Cancer Observatory (GCO)1, approximately 20 million cancer

incidences were reported in 2020 [2]. With the given statistics, receiving "you have
cancer" understandably strikes fear into the hearts of millions of patients around the
world. However, the last decade has seen significant advances in the fight against cancer.
For example, treating cancer became more precise because cancer treatment changed
from the one-size-fits-all approach to personalized medicine based on the detailed genetic
information of the patient’s specific cancer [3]. As indicated in the Annual Report to the
Nation on the Status of Cancer by National Cancer Institute (NCI)2, "from 2015 to 2019,
cancer death rates decreased 2.3% per year (on average) for men and 1.9% per year (on
average) for women" [4].

Depending on the type and the stage of the cancer, doctors and the patient will
make decisions about treatment plans accordingly. The most common cancer treatment
modalities are surgery, chemotherapy, and radiation. American Cancer Society (ACS)3
reported that more than half of cancer patients receive radiotherapy [5]. Even though
the benefits of radiation therapy are undeniable, it still has possible side effects, such as
slightly raising the risk of getting another cancer. Since the fundamental of radiotherapy
is to damage the DNA of cancer cells using radiation, surrounded healthy tissues and
organs will be incidentally irradiated as a consequence. Olsson et al. [6] showed the
relationships between severe symptoms and dose tolerances from 33 identified studies
including 36 to 746 patients per symptom domain. With the clinical evidence, delivering
optimal doses to patients is crucial.

With the advances in technology, especially artificial intelligence (AI), there are
more and more practical applications in radiotherapy. For example, the deployment of
deep-learning-based image segmentation has significantly sped up the tumor contouring
process, in which physicians determine and separate cancer tumors from healthy organs.
According to Siemens Healthineers, "95% of the contouring results [generated by AI-Rad
Companion Organs RT] are clinically usable or require minor edits" [7]. Another example
is the utilization of AI for identifying cancer risks in advance. MIT researchers developed
a new AI model that can predict whether a person will develop lung cancer in the next
year with accurate percentages ranging from 86% to 94% [8].

Because radiation treatment planning is a complex process involving complicated
calculations, optimizations, and simulations, there is still room for improvement. Intensity-
modulated radiation therapy (IMRT) is an advanced radiation therapy technique and will
be discussed in this thesis. One important step when creating an IMRT treatment plan
is beam geometry generation, which means choosing the number of radiation beams
and their directions. With the inspiration from how ray casting is used in computer

1https://gco.iarc.fr/
2https://www.cancer.gov/
3https://www.cancer.org/

https://gco.iarc.fr/
https://www.cancer.gov/
https://www.cancer.org/


10

graphics for rendering and the rapid growth of AI, a new beam geometry generation
method is proposed in this thesis with the aim to speed up the process while maintaining
the treatment quality.

1.1 Research questions
Even though modern treatment planning systems for radiotherapy are capable of creating
a new treatment plan within minutes, generating a high-quality one with acceptable
dose distribution is still a time-consuming task. Dose objectives for the target and the
organs at risk (OAR) need to be fine-tuned manually by medical physicists and medical
dosimetrists, and this process needs to be repeated until all clinical goals are reached.
Additionally, the plan quality is also affected by multiple elements, such as the experience
of the planner, the allotted time for plan generation, or even the guidelines of the medical
department.

A new solution, which is called reverse beam, is proposed and studied in this thesis to
aid the workflow. The method consists of two stages: angle discovery and angle selection.
In the first stage, an algorithm based on the ray casting technique will be used to find
all potential angles of the beams (fields). For the second stage, with a predefined beam
number, K-means clustering algorithm will be employed to aid the users in selecting the
gantry angles based on the clusters.

By using the proposed method to generate IMRT plans targeting lung cancer with data
from The Cancer Imaging Archive (TCIA)4, the thesis aims to answer the fundamental
quantitative question "Can the advanced beam geometry generation algorithm still be
improved" via the following observations:

1. How well does the proposed method perform, in terms of performance and quality?

2. How do the new plans compare to the ones with equidistant fields?

3. Is there an IMRT plan that has fewer beams than the given one, but is still capable
of achieving the same clinical goals?

1.2 Structure of the thesis
The thesis consists of six chapters. The first chapter, which you are reading, states the
motivation and the story behind it. Chapter 2 introduces background information related
to cancer, computer graphic, and machine learning. It is worth mentioning that this
chapter will not be able to cover all aspects of the given topics. However, the provided
knowledge will be sufficient to act as the foundation to build up the proposed solution.
Chapter 3 describes the TCIA dataset, how to process it, and how it was used to generate
the radiotherapy plans and doses dataset. The environment setups for development are
also defined in the same chapter. In Chapter 4, the existing methods are described and
the new solution is delivered. The performance and quality are revealed in Chapter
5 by comparing and contrasting with plans generated by Ethos5 therapy system. In

4https://www.cancerimagingarchive.net/
5Varian Medical Systems, Palo Alto, CA

https://www.cancerimagingarchive.net/
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addition, this chapter also discusses how the proposed method can be further improved
and suggests ideas for future work. Finally, Chapter 6 concludes the thesis.
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2 Background
All key concepts of the work will be provided in this chapter. First of all, a brief intro-
duction to cancer and its types will be given to explain why cancer is so hard to cure.
Then, radiation therapy will be described. How information technology has been used in
radiation therapy will be discussed as this work follows the standards and conventions.
Furthermore, an overview of computer graphics and machine learning will be presented,
as they are the foundation stone of this thesis. It is worth mentioning that the theory
will be provided on "just enough" basics, since there are well-written books that covered
the mentioned topics in detail.

2.1 Cancer

“ Cancer is a large group of diseases that can start in almost any organ or tissue
of the body when abnormal cells grow uncontrollably, go beyond their usual
boundaries to invade adjoining parts of the body, and/or spread to other
organs.

World Health Organization [1] ”
Cancer is classified as a genetic disease [9]. Genes are sections of DNA that carry

instructions to make a protein or several proteins. The basic building blocks of the human
body are cells and each cell has a copy of our genes. Normally, if faults exist in genes, they
will be repaired by cells and when the damage is severe, the cell will self-destruct or be
killed by the immune system for being recognized as abnormal. Thanks to this mechanism,
the human body is protected from cancer. However, the mutation of important genes
sometimes causes a cell to no longer follow the instructions. The mentioned cell, which
then starts to multiply out of control, will not repair itself properly nor die when it should.
This can lead to cancer.

Cancer-related genetic changes can occur due to multiple reasons. For example, a
random DNA mistake happens as our cells multiply, or carcinogens in the environment
alternate our DNA. Additionally, World Health Organization (WHO)6 states that "around
one-third of deaths from cancer are due to tobacco use, high body mass index, alcohol
consumption, low fruit and vegetable intake, and lack of physical activity" [1].

The amount and spread of cancer in a patient’s body are described by using the TNM
staging system. According to NCI, the TNM staging system is defined as follows: "The T
refers to the size and extent of the main (primary) tumor", "the N refers to the number
of nearby lymph nodes that have cancer", and "the M refers to whether the cancer has
metastasized" [10].

2.1.1 Common types of cancer

As cancer incidences vary widely by geography, lifestyle, and other external factors,
cancer statistics on a global scale can be provided to give an overview of common types
of cancers.

6https://www.who.int/

https://www.who.int/
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Figure 1: Estimated number of new cancer cases in 2020. Population: World. Sex: females.
Age groups: all ages. [2]

Figure 2: Estimated number of new cancer cases in 2020. Population: World. Sex: males.
Age groups: all ages. [2]

According to GCO [2]:

1. Breast cancer is the most common cancer in women worldwide. As shown in Figure
1, there were more than 2.3 million new cases of breast cancer in 2020.

2. Lung cancer is the most common cancer in men worldwide. Figure 1 and Figure 2
reveal that in 2020, there were around 2.2 million new cases of lung cancer.

3. Prostate cancer used to be the leading cancer diagnosis among men worldwide. As
seen in Figure 2, there were approximately 1.4 million new cases of prostate cancer
in 2020.
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2.1.2 Why cancer is hard to cure?

Per American Association for Cancer Research (AACR)7 and NCI, cancer is not a single
disease, but a group of more than 100 distinct ones, which are classified based on the
type of cell that they start in [11] [12]:

1. Carcinomas are the most common type of cancer [12]. They occur on the skin or
tissues that line internal organs [11].

2. Sarcomas are cancers that occur in the bone, cartilage, fat, muscle, blood vessels,
or other connective or supportive tissue [11].

3. Leukemias are cancers that occur in the cells of the blood and bone marrow [11].

4. Lymphomas are cancers that occur in the cells of the immune system and typically
appear within the lymphatic system [11].

5. Central nervous system (CNS) cancers are cancers that occur in the cells of the
brain and spinal cord [11].

As cancers originate from a build-up of cell mutations, two people with the same broad
type of cancer might have different accumulated mutations. Hence, a drug that works for
one patient might have absolutely no effect on another. Moreover, there is a commonly
known phenomenon called drug resistance, which describes the situation when cancer
cells contain molecular changes that make themselves insensitive to a particular drug. It
means a cancer patient may have success with a treatment for some time, but ultimately
finds out the course just stops working.

2.1.3 Treatment modalities

There are different types of cancer treatment and some common types of cancer mutation
respond to a certain treatment. According to ACS, the most common treatment options
are [13]:

1. Surgery is the earliest form of cancer treatment and originates with attempts
at curative resections. Bowser and Waxman state that there are six main roles
of surgical oncology: "cancer prevention, cancer diagnosis and staging, treating
cancer, management of oncological emergencies, palliation of cancer symptoms,
and surgical reconstruction following cancer therapy" [14].

2. Chemotherapy or chemo uses drugs to destroy cancer cells. There are three main
roles of chemotherapy in cancer treatment: cure, control, and palliation. Chemo is
a systemic treatment because the drugs travel throughout the body, in contrast to
local treatments such as surgery and radiation therapy which affect one part of the
body [15].

7https://www.aacr.org/

https://www.aacr.org/
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3. Hormone therapy or endocrine therapy uses hormones to treat cancer. Some
cancers depend on hormones to grow and by blocking or altering hormones, the
growth of the cancer can be slowed or stopped. As stated by ACS, "hormone therapy
is mostly used to treat certain kinds of breast cancer and prostate cancer" [16].

4. Radiation therapy or radiotherapy, which is written in more detail in Section
2.2, uses different types of radiation beams to destroy cancer DNA.

A suitable treatment course will be chosen depending on several factors, such as the
type of cancer, its stage, its location, as well as the patient’s overall health and medical
records. According to NCI: "Some people with cancer will have only one treatment. But
most people have a combination of treatments, such as surgery with chemotherapy and
radiation therapy" [17].

2.2 Radiation therapy

“ Radiotherapy remains the most effective non-surgical treatment in the man-
agement of malignant disease.

Peter Hoskin [18] ”
Radiation therapy is defined as a treatment using "high doses of radiation" to "kill

cancer cells or slow their growth by damaging their DNA" [19]. When the DNA of the
cancer cells is damaged beyond repair, the cells will stop dividing and eventually die. Then,
they will be broken down and removed by the body. Unfortunately, due to the radiation
therapy mechanism, patients might face side effects, including fatigue, skin reactions,
nausea, and hair loss, among others. However, the symptoms can vary depending on
the type and intensity of the treatment, and many can be reduced with medication or
supportive care.

Radiation therapy is a local treatment [19], which means it treats only the targeted
part of the body that contains the tumor. There are two main types of radiation therapy:
internal and external [19]. Internal radiation therapy is a treatment in which a source
of radiation, such as radioactive metal or capsules, is put inside the body. With external
radiation therapy, a treatment unit is used to aim beams of radiation at the tumor.

2.2.1 Information technology in radiation therapy

“ Modern radiotherapy departments cannot function without IT support.
Niall MacDougall and Andrew Morgan [18] ”

Information technology plays a critical role in radiation therapy. It is used to manage
patient records, imaging data, and treatment plans, as well as to facilitate communication
and collaboration between radiation therapy team members.

Digital Imaging and Communication in Medicine (DICOM)8 is the international
standard for the management and transmission of medical data. By using the DICOM

8https://www.dicomstandard.org/

https://www.dicomstandard.org/
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standard, medical equipment from different manufacturers is capable of sending and
receiving data without the need for data conversion. DICOM files can contain a variety
of data, such as patient demographic information, imaging modality, and image data.

A treatment planning system is used to develop treatment plans. The software allows
treatment plans to be optimized and ensures the radiation dose is delivered accurately
and precisely. Additionally, it is capable of running a treatment delivery simulation to
guarantee that a collision between the patient and the treatment unit does not happen.

2.2.2 Linear accelerator

To deliver radiation doses in external radiation therapy, a linear accelerator (LINAC) is
widely used. As seen in Figure 3, it consists of a large metal structure that houses the
radiation source and a treatment couch.

Figure 3: Schematic depiction of a LINAC used in external beam radiation therapy. [20]

The radiation source is produced by accelerating electrons through a waveguide and
directing them toward a heavy metal target, such as tungsten. After that, the collisions
will emit high-energy X-rays or electrons, which are then directed at the tumor.

Figure 4: LINAC coordinate systems (X, Y, Z) and the available movements. [21]
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The coordinate systems illustrated in Figure 4 will be used throughout the thesis work
unless stated otherwise. The collimator, gantry, and couch are capable of rotating and
moving independently around the isocenter. The versatility in the movements of these
treatment units allows them to deliver various forms of external radiation therapy.

2.2.3 Types of external radiation therapy

External radiation therapy is commonly used to treat solid tumors, such as cancers of the
prostate, breast, lung, head, and neck. It can also be used to alleviate symptoms such as
pain or bleeding caused by tumors that cannot be removed surgically. There are many
different types of external radiotherapy, including but not limited to [22]:

1. Three-dimensional conformal radiation therapy (3D-CRT) constructs the
detailed three-dimensional models of the patient’s anatomy from computed tomog-
raphy (CT) or magnetic resonance imaging (MRI) scans [22]. By using the models
to aim the beams, high doses can safely be used while lowering the risk of side
effects as damage to healthy tissue is avoided.

2. Stereotactic radiation therapy (SRT) is capable of delivering a large and precise
dose to a small tumor area. The patient must remain completely still with the
help of shells or molds so the treatment can be accurate as possible [22]. Different
terms for stereotactic radiotherapy are used depending on the treatment site. If
it is the brain, stereotactic radiosurgery (SRS) is used, and stereotactic body
radiotherapy (SBRT) for the body.

3. Intensity-modulated radiation therapy (IMRT) delivers a highly precise dose
of radiation to the tumor by using multiple radiation beams from multiple distinct
angles. Not only the shape but also the intensity of the radiation beams can be
adjusted during the treatment. While 3D-CRT uses the same intensity for each
beam, the dynamic intensity of IMRT beams helps it avoid healthy tissue better.

4. Volumetric modulated arc therapy (VMAT) delivers radiation in continuous
arcs while simultaneously adjusting the intensity and the shape of the beam. This
allows VMAT to deliver radiation more quickly than IMRT and reduces the overall
treatment time for the patient. Hence, it is used for patients who are unable to lie
still for long periods of time.

Figure 5 illustrates the beam geometry of different IMRT and VMAT plans, which
were generated by using Ethos therapy system, for the same patient with the same clinical
goals. The thick pink plane is the couch and the green objects are the lungs. The gantry
positions for IMRT plans are represented by the yellow squares and the gantry movement
for VMAT plans are illustrated by the red circles. As the tumor totally locates in the left
lung, lateral and half-arc plans are also valid options where the healthy right lung is not
exposed to radiation. Besides multiple types of external radiotherapy, there are different
types of radiation beams.
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(a) Seven equidistant IMRT fields (b) Seven lateral IMRT fields

(c) Two full VMAT arcs (d) Two VMAT half-arcs

Figure 5: Beam geometry of different IMRT and VMAT plans.

2.2.4 Types of radiation beams

The radiation beams of external radiation therapy come from three types of particles:
photons, protons, and electrons [23]. The latter ones, protons, and electrons, togetherwith
neutrons, are the three basic particles that construct atoms. Hence, it is understandable
to question why neutrons are not commonly used in radiation therapy. This will be
explained shortly. As carbon ion is used in radiotherapy, the structure of a carbon atom
is illustrated in Figure 6.

Photons are fundamental particles representing a quantum of light or other electro-
magnetic radiation. The NCI states that photon beams are available on most radiation
therapy machines and are employed to treat tumors located deep inside the body [23].
However, this type of beam scatters radiation along the path while traveling through the
body. Hence, it is important to target the photon beam carefully to minimize radiation
exposure to healthy tissue while maximizing its effectiveness.

Protons are positively charged particles. Similar to photon beams, proton beams are
also utilized to treat tumors deep in the body. Unlike photon beams, proton beams do not
scatter radiation on the path and they will stop once they reach the tumor [23]. Therefore,
proton beams are useful for treating tumors that are located near critical organs, such as
the brain or the spinal cord. However, due to the high cost and the size of the treatment
unit, the use of proton beams is limited.
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Electrons are negatively charged particles. In contrast to photon beams and proton
beams, electron beams have a shallow depth of penetration. As they cannot travel far
through body tissues, they are used to treat superficial tumors [23].

Figure 6: An illustration of the structure of carbon-12 (12
6 C).

Neutron beams have been used in the past. Due to unacceptable and unexpected
side effects discovered in clinical trials in the 1970s and 1980s, they fell out of favor. One
main side effect is a higher risk of radiation-induced secondary cancers in comparison
to other types of radiation therapy. This risk is due to the high linear energy transfer
radiation from neutrons, which potentially causes complex and dangerous DNA damage.
However, in 2021, according to Physics World, boron neutron capture therapy (BNCT)
"has shown significant promise in clinical trials for the treatment of malignant brain
tumours and locally recurrent head-and-neck cancers – complex indications that are
difficult to address using conventional radiotherapy techniques" [24].

Figure 7: Multileaf collimator system shapes the radiation field to deliver a more precise
radiation dose. [25]

The size of the radiation beam can be controlled by using a device called a beam
collimator, which is constructed of depleted uranium, lead, or tungsten. As seen in
Figure 3, it is mounted to the gantry and acts as the last contact point before the beam
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leaves the LINAC head. Modern LINACs often have multileaf collimator (MLC), which is
made up of several individual metal leaves that can move independently as illustrated in
Figure 7. This enables even more precise radiation therapy delivery and better control
over the size and shape of the radiation field. As the main goal of the treatment plans is
to efficiently eliminate tumors, defining and contouring target volumes that will receive
radiation beams is a critical step.

2.2.5 Definition of target volumes

There are several target volume definitions defined by International Commission on
Radiation Units and Measurements (ICRU)9. They are introduced by International Atomic
Energy Agency (IAEA)10 in [26] according to Figure 8 as:

1. Gross tumor volume (GTV) is the volume that can be seen by the eyes either
on the patient or with the help of imaging. This volume follows strictly what is
actually seen without adding any margin for possible extension [26].

2. Clinical target volume (CTV) is a tissue volume that contains a GTV and/or
subclinical microscopic malignant disease, which has to be eliminated [26].

3. Internal target volume (ITV) is obtained by adding an internal margin to the
CTV. The margin accounts for the variation of position, volume, and shape of CTV
during a multifraction treatment [26].

4. Planning target volume (PTV) is ITV including geometric uncertainties in daily
set-up and machine tolerances [26].

5. Treated volume is the region receiving the prescribed dose. In an ideal situation, it
would perfectly fit with the PTV. However, it is not uncommon that the prescribed
dose to the PTV is actually delivered to a larger volume, especially when the PTV
is not a simple geometric figure, such as concave or asymmetrical [26].

6. Irradiated volume is the region around the treatment volume, which receives
lower doses, but still a significant amount of radiation energy [26].

Figure 8: Various target volume definitions from ICRU 50/62/83. [26]
9https://www.icru.org/
10https://www.iaea.org/

https://www.icru.org/
https://www.iaea.org/
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As shown in Figure 3, there is a small dot called isocenter, in which the gantry
and couch rotate around. This is the point where the radiation beam is most precisely
aimed and where the maximum radiation dose is intended to be delivered. Therefore, the
isocenter is placed inside the treatment volume and usually overlaps the center of mass
of the tumor.

Furthermore, the organ at risk (OAR) is a critical concept that is used throughout the
world in daily radiotherapy practice. OARs are normal organs in the body that are close to
the target area and are at risk of being damaged by radiation. OARs can vary depending
on the location of the tumor, such as the lungs, heart, spinal cord, bladder, and rectum.
Damaging OARs during radiation therapy can result in serious side effects and long-term
health complications for the patient. Therefore, it is essential to minimize the radiation
dose to these normal tissues while ensuring that the tumor receives a sufficient dose to
achieve optimal treatment outcomes. This can be achieved through careful treatment
planning that takes into account the location of the tumor, the radiation dose needed to
treat it, and the proximity of OARs to the tumor.

2.2.6 Monitor unit

Before diving into the monitor unit (MU) , the radiation dose should be explained first.
According to Sibtain et al., the dose is defined as "the energy absorbed by a fixed amount
of material" [18]. Its unit is Gray (Gy) and 1Gy = 1J

kg
. Hence, when measuring the dose,

the measuring volume must remain the same. Furthermore, as explained by Ballard, the
radiation intensity is "inversely proportional to the square of the distance" [27]. This is
known as the Inverse Square Law illustrated in Figure 9. Therefore, the absorbed dose is
reduced if the object moves away from the radiation source. Moreover, before reaching
the tumor centroid, the radiation beams need to go through body tissues and/or organs,
which makes them attenuated.

Figure 9: Inverse square law, I ∝ 1
d2 . [27]

As a result, per Sibtain et al., MU is needed as it indicates "how much radiation the
LINAC should produce to deliver a certain amount of dose to a specific position within a
patient" [18]. MU is measured by the monitor chamber which is built into the treatment
head of the LINAC as:
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MU = dose per fraction (Gy)
output dose (Gy/MU )

, (1)

with the following calibration conditions:

1. source to surface distance (SSD) is 100 cm,

2. reference depth is notated as dmax, whose common value is 1.3 cm or 5.0 cm,

3. open field area is 10 × 10 cm2,

4. source to reference measurement distance is 100 + dmax cm.

This can be interpreted as 1cGy is equal to 1MU at a source to measurement point
distance of 100 + dmax cm and an attenuation depth of dmax [18].

2.2.7 Dose distribution

The dose distribution visualizes how the body is irritated when receiving the prescribed
dose. Figure 10 and Figure 11 illustrate the dose distributions of the treatment plans
in Section 2.2.3 calculated by using Ethos therapy system. The Jet colormap, which is
commonly referred to as "dose color wash" in radiotherapy, is used to represent the dose
distributions, which means the red color area receives more doses than the blue one. As
observed in Figure 10, the dose between any two beams spikes as they sum up. Hence,
the distance between the beams must also be considered.

Figure 10: Dose distribution with gantry angles visualized.
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(a) Seven equidistant IMRT fields dose distribu-
tion

(b) Seven lateral IMRT fields dose distribution

(c) Two full VMAT arcs dose distribution (d) Two VMAT half-arcs dose distribution

Figure 11: Dose distributions of different IMRT and VMAT plans.

It is apparent that the dose delivered by VMAT is more homogeneous than by IMRT.
Besides, dose-volume histogram (DVH) as in Figure 12 is also used interchangeably.

Figure 12: Seven equidistant IMRT fields DVH.

Calculating dose distribution is a part of the treatment planning step, which belongs
to the radiation therapy clinical workflow.



24

2.2.8 Clinical workflow of radiation therapy

The clinical workflow of radiation therapy involves several complex steps and depending
on the form of radiation therapy, the process will be customized for the patients. However,
as described by a senior software engineer11, it is expected to have five basic steps
illustrated in Figure 13: initial consultation, simulation, treatment planning, treatment
delivery, and post-treatment follow-up. Due to the complexity, the whole workflow
requires a team of medical professionals, which includes radiation oncologists, radiation
therapists, medical physicists, medical dosimetrists, and radiation oncology nurses, to
plan and deliver the treatment.

Figure 13: Simplified clinical workflow of radiation therapy.

1. Initial consultation is the very first step. This involves an appointment with a
radiation oncologist, who will evaluate the patient’s medical history, perform a
physical exam, and review radiology images. Based on the review, if radiotherapy
is determined as an appropriate treatment option, the patient will be offered an
appointment for simulation.

2. Simulation is the second step, which allows the radiation oncologist to define
the exact location of the tumor and the configuration of the treatment by using
CT or MRI scans. The patient will then be placed on the treatment couch, and
to maintain the patient’s position during the treatment, usually, there will be
customized “immobilization” devices such as mesh masks, or form-fit body molds.
Additionally, the area on the body that requires treatment will be marked with a
small tattoo “dot”. As the treatment is delivered daily over several weeks, this will
ensure that the patient is placed correctly and radiation is directed properly each
day.

3. Treatment planning is the next step, which involves radiation oncologist, medi-
cal physicist, and medical dosimetrist. The main goal of treatment planning is
to generate treatment plans that are capable of delivering a high dose of radiation
to the tumor while limiting the dose received by healthy surrounding tissue. There-
fore, treatment plans are personalized for each patient. Developing the treatment
plan is a complex process aided by the use of computers and specialized software
to outline the radiation dose, beam angles, number of fields, and other parameters
specific to the patient’s tumor.

4. Treatment delivery phase begins after treatment planning. Patients receive
radiation therapy in daily sessions over several weeks. For each treatment session,

11Varian Medical Systems Finland Oy
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the radiation therapist is responsible for positioning the patient in the same position
as in the simulation step and for delivering the radiation dose prescribed by the
radiation oncologist. Normally, a session will last no more than 20 minutes and
much of this time is used for accurate positioning. The prescribed dose of radiation is
then delivered by a LINAC or other radiation delivery device. During the treatment
delivery period, radiation oncology nurse will provide the patient care, support,
and guidelines for skin care and nutrition.

5. Post-treatment follow-up is scheduled upon the completion of the treatment
to assess its effectiveness and to monitor for any potential side effects. Additional
diagnostics may be ordered, which include imaging scans, physical exams, and
laboratory tests.

2.3 Computer graphics

“ The term computer graphics describes any use of computers to create and
manipulate images.

Shirley et al. [28] ”
Even though there is no concrete definition of computer graphics, in Lehtinen’s lecture

[29], he mentioned: "Computer graphics means generating pictures by computation".
According to Shirley et al. [28], the major areas of computer graphics consist of:

1. Modeling deals with the mathematical specification of shape and appearance
properties in a way that can be stored on the computer. Figure 14 illustrates the 3D
model of a well-known clay figurine, the "Stanford Bunny" [30], rendered by using
a custom render engine compares to its photograph.

2. Rendering deals with the creation of shaded images from 3D computer models.
This will be addressed in more detail in Section 2.3.3.

3. Animation is a combination of both modeling and rendering to create an illusion
of motion through sequences of images.

(a) 3D wireframe (b) Model (c) Photograph [30]

Figure 14: The "Stanford Bunny".
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Visual effects, video games, information visualization, and medical imaging are some
applications of computer graphics. In order to utilize and communicate with a graphics
processing unit (GPU), an application programming interface (API) is needed. There are
several API collections, such as Vulkan12, Metal13, DirectX14, and OpenGL15. With the
advancements in both hardware and software, the reality of computer graphic output
has been improved significantly.

2.3.1 Viewing pipeline

Before getting into the details of the viewing pipeline, polygon mesh should be intro-
duced first. Consisting of vertices, edges, and faces, a polygon mesh represents an object
by mimicking its shape and surface.

Figure 15: 3D wireframe of "Standford Bunny".

Figure 15 is the zoom-in view of the same 3D wireframe of Standford Bunny in Figure
14. Two things can be observed: the model itself is a collection of triangles, which is
formally called triangle mesh, and the inside of the model is actually empty, as we
are only interested in how to construct the visible surface geometry of the subject. In
addition to triangle meshes, quadrilaterals, and other polygons are also used.

The viewing pipeline, which is illustrated in Figure 16, is a part of the graphics
pipeline. There are multiple graphics pipelines depending on the API one uses. However,
they are fairly similar on a high level, and they all are highly parallelized and optimized
for efficient computing on GPUs.

Figure 16: Viewing pipeline.

12https://www.vulkan.org/
13https://developer.apple.com/metal/
14https://developer.nvidia.com/directx
15https://www.opengl.org/

https://www.vulkan.org/
https://developer.apple.com/metal/
https://developer.nvidia.com/directx
https://www.opengl.org/
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Each object has its vertices defined in its own coordinate system called object space
to keep it isolated from other objects. The object space is usually represented in a
three-dimensional Cartesian coordinate system (x, y, z) and hence, there exists an origin
(0, 0, 0), which is often the center of the objects. A benefit of having the object space is
that the objects can be transformed individually without interfering with others [29].

A scene consists of multiple objects. Therefore, a common coordinate system to
represent the relativity of the objects’ positions is needed. It is called world space
and similar to the object space, it is expressed using the three-dimensional Cartesian
coordinate system, and the origin is usually located at the center of the scene. There may
exist multiple object spaces, but there will be only one world space [29]. The world space
is the common frame of reference for not only objects but also cameras, lights, and other
elements within a scene [31].

Similar to real life, there is a need for a camera to capture the scene. The camera
space also uses the three-dimensional Cartesian coordinate system, and the origin is the
camera’s position. In the camera space, objects are relatively transformed to the camera’s
viewpoint. This helps the rendering process to determine which objects are visible and
to compute the perspective effects. By discarding the objects that are outside of the view
frustum, the performance is improved and this is known as view-frustum culling [32].

Lastly, there is a screen space defined by the actual screen (display). Unlike others,
the screen space is a two-dimensional coordinate system (x, y) with the origin (0, 0)
located at the top-left corner of the viewport [32] [33]. The unit of measurement in
the screen space is a pixel, short for picture element. Once the objects are projected
onto the screen space from the camera space, further operations can be applied, such as
rasterization, texture mapping, shading, and anti-aliasing [29].

2.3.2 Transformations

In computer graphics, geometric transformations are used to change the positions, scale,
and orientation of points in space. Per Lehtinen’s lecture [29], these transformations are
considered to be the building blocks of computer graphics, and complex ones can be built
out of them:

1. Translation modifies the object’s position while preserving its shape or orienta-
tion.

2. Rotation rotates the object around a specific axis or point while preserving its
shape.

3. Scaling makes the object become larger or smaller. The shape of the object is not
necessarily preserved.

4. Reflection produces a mirror image of an object along a specific axis and the
object’s shape is preserved.

5. Shearing slants the shape of the object along one or more axes.
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6. Planar perspective transformation or projective transformation is the most
general and it projects the object onto a two-dimensional plane [29]. One important
characteristic of projective transformation is that the projection process simulates
the behavior of human vision.

Figure 17: Examples of transformations. [29]

All transformations mentioned above can be represented using matrices. Linear
transformations including rotation, scaling, reflection, and shear, can be represented as:

x′ = ax + by

y′ = cx + dy[︄
x′

y′

]︄
=

[︄
a b
c d

]︄ [︄
x
y

]︄
p′ = Mp ,

(2)

where p′ = (x′, y′) is the new point, M is the transformation, and p = (x, y) is the
original point. However, affine transformations, which include all linear transformations
and translation, cannot be represented in the form of p′ = Mp due to six degrees of
freedom (DoF) - or 12 DoF in the three-dimensional space:

x′ = ax + by + e

y′ = cx + dy + f[︄
x′

y′

]︄
=

[︄
a b
c d

]︄ [︄
x
y

]︄
+

[︄
e
f

]︄
p′ = Mp + t .

(3)
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To solve the problem, homogeneous coordinates are used as they make the affine
transformations linear in this one-higher-dimension. The homogeneous coordinates
were first introduced by August Ferdinand Möbius in his Der barycentrische Calkul (1827;
“The Calculus of Centres of Gravity”)16. Besides computer graphics, computer vision also
employs homogeneous coordinates to represent projective transformations by matrices.

To convert to homogenous coordinates, an extra dimension is added:

[︄
x
y

]︄
⇒

⎡⎢⎣x
y
1

⎤⎥⎦ . (4)

To convert from homogeneous coordinates:⎡⎢⎣x
y
w

⎤⎥⎦⇒ [︄
x/w
y/w

]︄
. (5)

Hence, the affine transformations in Equation 3 can now be represented as:⎡⎢⎣x′

y′

1

⎤⎥⎦ =

⎡⎢⎣a b e
c d f
0 0 1

⎤⎥⎦
⎡⎢⎣x

y
1

⎤⎥⎦
p′ = Mp .

(6)

By using homogeneous coordinates, as mentioned above, complex successive trans-
formations can be represented easily by using matrix multiplications. It is worth noting
that they are noncommutative, i.e. the order matters.

2.3.3 Rendering

“ Rendering refers to the entire process that produces color values for pixels.
Jaakko Lehtinen [29] ”

There are two major techniques for rendering, which are rasterization and ray tracing
as represented in Algorithm 1 and Algorithm 2, respectively. At the first glance, the two
algorithms are different. However, fundamentally, they still solve the same problems with
different orders, and ultimately, this leads to the consequence that each algorithm requires
different hardware to run it efficiently. Per Caulfield [34], "modern NVIDIA GPUs can
generate over 100 billion rasterized pixels per second", and the ones with specialized RTX
hardware are capable of tracing "billions of rays per second".

16https://www.cambridge.org/core/services/aop-cambridge-core/content/view/
235A89804289968FD4C285175D234A86/S0013091500030923a.pdf

https://www.cambridge.org/core/services/aop-cambridge-core/content/view/235A89804289968FD4C285175D234A86/S0013091500030923a.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/235A89804289968FD4C285175D234A86/S0013091500030923a.pdf
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Algorithm 1 Rasterization. [29]
for each triangle do

for each pixel do
Does triangle cover pixel?
Keep closest hit

end for
end for

Algorithm 2 Ray tracing. [29]
for each pixel (ray) do

for each object do
Does ray hit object?
Keep closest hit

end for
end for

Besides, there exists the "rendering equation" that was presented by Kajiya [35] with
the introduction of path tracing. The sample image in Kajiya’s paper is 512 by 512 pixels
and took more than 20 hours to render in 1986, which was totally impractical at that
time. However, with the increase in computing power, the practical application of the
technique lies on the horizon. Figure 18 illustrates the output of different rendering
techniques.

Figure 18: Renders of different rendering techniques. [34]

There are different rendering engines ranging from real-time rendering used in video
games, such as Unreal Engine17 and Unity18, to offline rendering used in graphics, such

17https://www.unrealengine.com/
18https://unity.com/

https://www.unrealengine.com/
https://unity.com/
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as Blender19, movie production, such as V-Ray20 and Arnold21, and animation production,
such as RenderMan22 and MoonRay23. Nevertheless, the common goal of those engines
is still to determine how the scene should be visually depicted.

2.3.4 Ray tracing and ray casting

“ The ray tracing algorithm was extended and improved, giving it the power
to handle many different kinds of optical effects. Today ray tracing is one of
the most popular and powerful techniques in the image synthesis repertoire:
it is simple, elegant, and easily implemented.

Andrew S. Glassner [36] ”
According to Hofmann [37], the principle of ray tracing was presented by Albrecht

Dürer in 1525. In 1969, Arthur Appel brought ray tracing to computer graphics and
applied it to computing visibility and shadows [34][38]. The very early version of ray
tracing-based algorithms is non-recursive, which is called ray casting nowadays.

Ray casting operates in a straightforward manner. It casts one primary ray per pixel
directly from the camera position to find the closest hits and does not take into account
lighting effects.

Ray tracing, on the other hand, is a more advanced technique that aims to simulate the
behavior of light by tracing rays and imitating their interactions with objects. Therefore, it
is capable of accurately modeling complex lighting effects such as reflections, refractions,
or global illumination. Figure 19 illustrates the reflection and refraction using Fresnel
equations24 and Phong shading25.

Figure 19: Illustration of reflection and refraction in ray tracing.

19https://www.blender.org/
20https://www.chaos.com/3d-rendering-software
21https://www.arnoldrenderer.com/
22https://renderman.pixar.com/
23https://openmoonray.org/
24https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--reflection_refraction.

pdf
25https://stanford.edu/class/ee267/lectures/lecture3.pdf

https://www.blender.org/
https://www.chaos.com/3d-rendering-software
https://www.arnoldrenderer.com/
https://renderman.pixar.com/
https://openmoonray.org/
https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--reflection_refraction.pdf
https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--reflection_refraction.pdf
https://stanford.edu/class/ee267/lectures/lecture3.pdf
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While both methods involve tracing rays of light, the differences in the algorithms’
complexity lead to the variance in the outputs’ realism. Furthermore, aliasing has been a
major problem for both ray tracing and ray casting algorithms. This can be solved by
stochastic sampling [36].

2.4 Machine learning

“ Machine learning is essentially a form of applied statistics with increased
emphasis on the use of computers to statistically estimate complicated func-
tions and a decreased emphasis on proving confidence intervals around these
functions;

Goodfellow et al. [39] ”
Machine learning is a subset of artificial intelligence. While the concept of a machine

that is capable of imitating humans starts in the early 1940s (or even sooner) [40][41], the
term "machine learning" is believed to be coined by Arthur Samuel in 1959 [42]. Mitchell
gave a precise definition of the "learning" part in machine learning as "A computer
program is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E" [43].

Machine learning is especially useful in tasks that are too complex for normal programs
since it provides powerful techniques to extract valuable insights from data and to make
predictions based on provided data. Hence, it has a wide range of applications across
various domains, such as natural language processing, recommendation systems, and
fraud detection.

2.4.1 Machine learning types

According to Bishop, machine learning algorithms "can be classified into three types:
supervised learning, unsupervised learning, and reinforcement learning" [44].

1. Supervised learning describes algorithms that learn from labeled training data
to make predictions or classifications on a new dataset. In supervised learning,
the data consists of input (features) and the corresponding output (labels). Once
the model is trained, new and unlabeled data can be used as input. Supervised
learning can be applied to forecasting sales numbers, classifying emails as spam or
non-spam, recognizing handwriting, diagnosing diseases, and many more.

2. Unsupervised learning is represented by algorithms that learn from unlabeled
data and discover the data pattern. In unsupervised learning, the input data consists
only of the features, without any associated output labels. Unsupervised learning
can be used for customer segmentation, market basket analysis, text and image
clustering, and recommendation systems, and is extremely useful when manually
labeling the data would be impractical or infeasible.
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3. Reinforcement learning is defined by algorithms that learn from feedback (re-
wards or penalties) based on their actions in an environment so that in the end, the
cumulative rewards are maximized. Reinforcement learning has demonstrated its
capability in game playings, such as AlphaGo26, robotics, and autonomous vehicles.

There are common challenges encountered in machine learning. Addressing them
often involves a combination of techniques, such as model selection, data preprocessing,
and feature engineering.

1. Imbalanced data refers to a dataset where a class is significantly more prevalent
than others. which can make the model become biased as the majority is favored.
Oversampling and undersampling can be used to handle imbalanced data.

2. Noisy data contains errors and outliers that happens during data collection, data
transmission, or even the data generating process. It can negatively impact model
performance as data features might not be properly extracted. Data preprocessing
and analysis techniques are necessary to deal with noisy data.

3. Overfitting and underfitting are two common phenomena occur to regression
problems. They relate to the model’s ability to perform on unseen data. To ad-
dress overfitting and underfitting, early stopping and increase model complexity
techniques can be used, respectively.

As illustrated in Figure 20, Goodfellow et al. [39] used a linear function, a quadratic
function, and a polynomial of degree 9, respectively, to fit the data that was generated by
a quadratic function.

Figure 20: Illustration of algorithm’s capacity. [39]

Besides the mentioned techniques, appropriate evaluation methods have a huge
impact on model performance. Root mean square error (RMSE) is a commonly used
metric in linear regression problems. It penalizes large errors more heavily than small
errors due to the squaring of the differences. It is defined as:

26https://www.deepmind.com/research/highlighted-research/alphago

https://www.deepmind.com/research/highlighted-research/alphago
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RMSE =

⌜⃓⃓⎷ 1
N

N∑︂
i=1

(yi − yî)2 , (7)

where N is the total number of the data points, yi is the observed label of i-th data
point , yî is the predicted label of i-th data point. The lower RMSE, the better the model
performance is. Figure 21 illustrates how RMSE works. The blue line is the regression
line, green dots are data points and purple lines represent the distances, i.e. differences
between the real labels and the predicted labels.

Figure 21: Illustration of how RMSE works.

For binary classification, confusion matrix is a useful tool for understanding the
accuracy, precision, recall, and other performance metrics of a classifier. For example,
precision or positive predictive value can be calculated as:

precision = NT P

NT P + NF P

, (8)

where NT P is the total number of true positive predictions, and NF P is the total number
of false positive predictions.

Figure 22: Confusion matrix. [45]

2.4.2 Clustering

“ The goal in such unsupervised learning problems may be to discover groups
of similar examples within the data, where it is called clustering, ...

Bishop [44] ”
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The main goal of clustering is to divide a dataset into groups, where the data points
within each group should be as similar as possible and the data points from different
groups should be as dissimilar as possible. There are two major types of clustering:

1. Hard clustering where each data point belongs to exactly one cluster.

2. Soft clusteringwhere each data point can belong to multiple clusters with different
probabilities.

There are several clustering algorithms and their variations; and depending on the data
types and the task requirements, a suitable one should be selected. Some common types
of clustering are centroid-based clustering, density-based clustering, and hierarchical
clustering.

K-means is a centroid-based clustering algorithm [46]. Its goal is to partition the
data into k distinct clusters, where k is a predefined number. The algorithm works
iteratively by initially randomly assigning k cluster centroids and then updating them
until convergence. Each data point is assigned to the cluster with the closest centroid
based on predefined distance metrics. K-means seeks to minimize the sum of squared
error (SSE) between data points and the cluster centroids. SSE is calculated as:

SSE =
K∑︂

i=1
(xi − x̂)2 , (9)

where K is the number of data points, xi is an data point and x̂ is the cluster centroid
nearest to xi. The advantages of the K-means algorithm are it is guaranteed for the
algorithm to converge and it can scale to large datasets [47]. However, its disadvantages
are the number of clusters "k" needs to be selected manually, it is dependent on the initial
values and outliers can impact the clusters significantly [47].

2.4.3 Clustering distance metrics

The similarity or dissimilarity between data points is measured by using distance metrics.
There are several distance metrics and different metrics are suitable for different data
types.

Cosine similarity measures the similarity between two non-zero vectors as:

cosine_similarity = cos(θ) = a · b
∥a∥∥b∥

, (10)

where a and b are n-dimensional vectors. Hence, the cosine similarity always belongs to
the interval [−1, 1], where two like vectors have a cosine similarity of 1, and two opposite
vectors have a similarity of −1.

Haversine distance or great circle distance calculates the angular distance between
two points on a sphere surface given the longitudes and latitudes as [48]:

d(a, b) = 2arcsin
[︃√︂

sin2((x1 − y1)/2) + cos(x1) cos(y1) sin2((x2 − y2)/2)
]︃

, (11)

where (x1, y1) is the latitude and longitude in radians of point a and (x2, y2) is the latitude
and longitude in radians of point b.
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Euclidean distance measures the straight line distance between two points as:

d(a, b) =
√︂

(b1 − a1)2 + (b2 − a2)2 + · · ·+ (bn − an)2 , (12)

where (a1, a2, · · · , an) is the Cartesian coordinates of point a and (b1, b2, · · · , bn) is the
Cartesian coordinates of point b in an n-dimensional Euclidean space.

Manhattan distance or cityblock distance or L1 distance calculates the sum of
the absolute differences between the coordinates of two points as:

d(a, b) = |b1 − a1|+ |b2 − a2|+ · · ·+ |bn − an| , (13)

where (a1, a2, · · · , an) is the Cartesian coordinates of point a and (b1, b2, · · · , bn) is the
Cartesian coordinates of point b in an n-dimensional Euclidean space.

Figure 23 illustrates the Euclidean distance, whose color is purple, and Manhattan
distance, whose color is green, between points A and B.

Figure 23: Euclidean distance and Manhattan distance.

2.4.4 Clustering evaluation metrics

In machine learning, it is important to select a proper measurement for quantitatively
evaluating the correctness of the model output. These metrics provide objective measures
which support the comparison between different models or variations of the same model.
For clustering problems without ground-truth labels, the metrics that are listed below
can be used for quantitative comparisons.

Silhouette index was introduced by Rousseeuw in 1987 [49]. It measures the com-
pactness and separation of clusters in a dataset. The Silhouette index of a point x is
calculated as [50]:

S(x) =

⎧⎨⎩0 if x is a cluster of its own
b−a

max{a,b} otherwise
, (14)

where a is the average distance between the data point and all other data points in the
same cluster, a = avg{d(x, y)|x ∈ C, y ∈ C}, and b is the average distance between the
data point and all data points in the nearest neighboring cluster, b = minq avg{d(x, y)|x ∈
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C, y ∈ Cq, C ̸= Cq}. S(x) ranges from −1 to 1, where 1 indicates that the data point is
well clustered and lies far away from the neighboring clusters, and −1 indicates that the
data point is likely assigned to a wrong cluster.

Davies–Bouldin indexwas jointly introduced by Davies and Bouldin in 1979 [51]. It
also measures the compactness and separation of clusters similar to the Silhouette index.
Davies-Bouldin index is calculated as [50]:

SDB = 1
K

K∑︂
i=1

max
j ̸=i

Si + Sj

Dij

, (15)

where Si =
(︂

1
|Ci|

∑︁
x∈Ci

dt(x, Ci)
)︂ 1

t stands for within-cluster scatter with distance dt and
typical value for t-norm is 2, K is the size of the cluster, Dij = Lp(Ci, Cj) represents the
separation between clusters Ci and Cj . SDB ranges from 0 to infinity where the smaller
the value, the better the data points were clustered.
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3 Research materials

“ If we have data, let’s look at data.
If all we have are opinions, let’s go with mine.

Jim Barksdale ”
This chapter describes the data that is used to evaluate the reverse beam method, and

the data that is generated out of the original dataset to further improve the proposed
method. Additionally, the data processing step is elaborated in detail and the environment
setup is briefly mentioned.

3.1 NSCLC-Radiomics dataset
Due to the nature of this work, the dataset must have DICOM Radiotherapy Structure
Sets (RTSTRUCTs) to construct the 3D models of the tumors and OARs. The NSCLC-
Radiomics27 dataset from TCIA is suitable as it has not only CT scans but also the necessary
structure sets. Additionally, NSCLC stands for non-small cell lung cancer, which is the
most common type of lung cancer as 85-90% of lung cancers are NSCLC [52]. Besides,
small cell lung cancer (SCLC) is less common and the term “small cell” refers to the size
and shape of the cells when viewed under a microscope [52].

3.1.1 Data description

The NSCLC-Radiomics dataset is a collection of pretreatment CT scans and structure sets
from 422 non-small cell lung cancer patients. Patients are labeled as "LUNG1-xyz", where
"xyz" is a unique increasing index. It should be noted that the data is anonymized, which
means the patient’s identity is completely removed and cannot be traced back. Because
of time constraints and resource limitations, only the first 50 patients (except patient
LUNG1-035, whose CT scans cannot be connected to ARIA28 oncology information system,
and patient LUNG1-050, whose contour data was missing, were replaced by patients
LUNG1-051 and LUNG1-052) were used.

The CT scans were acquired by using several different scanners: Siemens Biograph
40, Siemens Sensation Open, Siemens Sensation 16, and CMS XiO. All images have 512
pixels for the width and 512 pixels for the height. The number of CT scans of each patient
varies from 82 to 197 slices.

The 3D volume of the primary gross tumor volume, which is labeled as "GTV-1", and
the selected anatomical structures (the heart, lungs, spinal cord, and esophagus in this
study) were manually delineated by a radiation oncologist. The number of CT scans
varies from patient to patient, and not all patients have all listed organs contoured. For
example, patient LUNG1-001 has 134 CT slices and has contours for the lungs and spinal
cord. For visibility, only 10 slices out of 21 slices that contain the tumor from patient
LUNG1-001 are shown in Figure 24.

27https://doi.org/10.7937/K9/TCIA.2015.PF0M9REI
28Varian Medical Systems, Palo Alto, CA

https://doi.org/10.7937/K9/TCIA.2015.PF0M9REI
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Figure 24: Example of CT scans of patient LUNG1-001 of NSCLC-Radiomics dataset.

3.1.2 Data processing

Even though DICOM is an international standard, different medical centers have different
conventions for naming and organizing DICOM files. It is common that structure sets
are stored in different DICOM files than the ones that store CT scans, which is again not
distinguishable based solely on the file’s name. Hence, in order to query the structure
sets, the whole DICOM directory and its subfolders must be read and processed, which
causes a big overhead for the whole process. However, this step needs to be performed
only once. Afterward, the information on the region of interest (ROI), which means the
tumors and OARs, is available in ROI Contour Module29 from the RTSTRUCT files:

1. Coordinates of the contours defined by sequences of (x, y, z) triplets in the Patient-
Based Coordinate System30 are extracted from Contour Data31.

2. Color representations of the contours defined by RGB triplet ranging from 0 to 255
are extracted from ROI Display Color32.

Figure 25 represents the contour data that was found in the RTSTRUCT file of patient
LUNG1-001. The spinal cord, the left lung, and the right lung were contoured for all
patients. Additionally, the heart and esophagus were contoured for 30 and 41 patients,
respectively. 23 patients have more than one tumor contoured. However, due to the
scope of this thesis, only the "GTV-1" volumes were processed.

29https://dicom.nema.org/medical/dicom/current/output/chtml/part03/sect_C.8.8.6.html
30https://dicom.nema.org/medical/dicom/current/output/chtml/part03/sect_C.7.6.2.html
31Tag (3006,0050)
32Tag (3006,002A)

https://dicom.nema.org/medical/dicom/current/output/chtml/part03/sect_C.8.8.6.html
https://dicom.nema.org/medical/dicom/current/output/chtml/part03/sect_C.7.6.2.html
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Figure 25: Patient LUNG1-001 ROIs.

In order to draw the contours on top of the CT scans for better visualization, the
contour data, which is stored in Patient-Based Coordinate System, needs to be converted
by using the following conversion:

(x, y)ICS = (x, y)P BCS − (Ox, Oy)P BCS

ratio
, (16)

where (x, y)ICS is the contour data in the Image Coordinate System, (x, y)P BCS is the
Contour Data (contour data in the Patient-Based Coordinate System), OP BCS is the Image
Position (Patient), and ratio is the Pixel Spacing. Different CT scans of the same patient
will have their own OP BCS . However, the (x, y) values should be the same while the
z-value changes. It is worth emphasizing again that the images of the CT scans and the
contour have different origins, the upper left-hand corner, and the lower left-hand corner,
respectively.

Hence, more information can be utilized, and this time it comes from Image Plane
Module33 in the CT scans:

1. The upper left-hand corner coordinates of the CT images in the Patient-Based
Coordinate System are retrieved from Image Position (Patient)34.

2. Physical distance in mm between the center of each pixel, specified by a numeric
pair (width and height) is retrieved from Pixel Spacing35.

3. The order of the CT scans is determined by Slice Location36, which matches the
z-value of the contour data without performing any conversions.

33https://dicom.nema.org/medical/dicom/current/output/chtml/part03/sect_C.7.6.2.html
34Tag (0020,0032)
35Tag (0028,0030)
36Tag (0020,1041)

https://dicom.nema.org/medical/dicom/current/output/chtml/part03/sect_C.7.6.2.html
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After performing all necessary conversions, Figure 26 illustrates the CT slices of pa-
tient LUNG1-001 in different view planes, with the ROI contours shown in the transversal
view.

(a) Frontal view (b) A CT slice with tumor and OARs contoured

(c) Transversal view (d) Sagittal view

Figure 26: Images of CT slices of patient LUNG1-001.

These CT scans use MONOCHROME2 standard defined in Photometric Inter-
pretation37. Hence, it can be interpreted in a way that bones, calcifications, and metal
objects have a brighter color while soft tissue has a darker one [53].

37Tag (0028,0004)
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3.2 Radiotherapy plans and doses dataset
In order to analyze the relation between good gantry angles and the plan’s properties,
radiotherapy plans (RTPLANs) and the corresponding radiotherapy dose (RTDOSEs) are
needed. From this point onward, this dataset will be referenced as the RTPD dataset.

The RTPD dataset is a collection of 19.500 IMRT RTPLANs and RTDOSEs that were
generated using Ethos therapy system for 50 patients mentioned in Section 3.1. It should
be stated clearly that they are not state-of-the-art plans and were not used clinically.
However, they were still optimized with the clinical OAR constraints shown in Table 1
and if the contour of an OAR is missing, its goal will be omitted. These clinical goals were
provided by a medical physicist38 and were used specifically for this NSCLC-Radiomics
dataset. The prescribed dose is 66 Gy delivered in 33 fractions using 6 MV photons for
all plans. The PTV is derived from the GTV with 0.5 cm of margin.

Structure Goal Priority
PTV D98.0 % > 95.0% 1-Most important

D2.0 % < 107.0% 2-Very important
Spinal canal D0.1 % < 45.0 Gy 1-Most important
Esophagus D1.0 % < 66.0 Gy 2-Very important

V55.0 Gy < 30.0% 3-Important
Dmean < 34.0 Gy 3-Important

Heart V25.0 Gy < 50.0% 2-Very important
V40.0 Gy < 30.0% 3-Important

Both lungs Dmean < 20.0 Gy 3-Important
V20.0 Gy < 35.0% 3-Important
V5.0 Gy < 60.0% 3-Important

Lung (left)1 V5.0 Gy < 40.0% 2-Very important
Lung (right)2 V5.0 Gy < 40.0% 2-Very important

1 Left and bilateral lung cancers will not have the "Lung (left)" goal.
2 Right and bilateral lung cancers will not have the "Lung (right)" goal.

Table 1: Clinical goals for the generated treatment plans.

The clinical goals are interpreted as: the dose received by 98 % of the PTV must be
more than 95 % of the prescribed dose (D98.0 % > 95.0 %); the dose received by 2 %
of the PTV must not exceed 107 % of the prescribed dose (D2.0 % < 107.0 %); the dose
received by 0.1 % of the spinal canal must be less than 45.0 Gy (D0.1 % < 45.0 Gy); the
dose received by 1.0 % of the esophagus must be less than 66.0 Gy (D1.0 % < 66.0 Gy);
the volume of the esophagus receiving 55.0 Gy must be less than 30.0 % (V55.0 Gy < 30.0
%); the mean dose receiving by the esophagus must be less than 34.0 Gy (Dmean < 34.0
Gy); the volume of the heart receiving 25.0 Gy must be less than 50.0 %(V25.0 Gy < 50.0
%); the volume of the heart receiving 40.0 Gy must be less than 30.0 % (V40.0 Gy < 30.0
%); the mean dose received by both lungs must be less than 20.0 Gy (Dmean < 20.0 Gy);
the volume of both lungs receiving 20.0 Gy must be less than 35.0 % (V20.0 Gy < 35.0 %);

38Varian Medical Systems Finland Oy
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the volume of both lungs receiving 5.0 Gy must be less than 60.0 % (V5.0 Gy < 60.0 %);
the volume of the left lung receiving 5.0 Gy must be less than 40.0 % (V5.0 Gy < 40.0 %);
the volume of the right lung receiving 5.0 Gy must be less than 40 % (V5.0 Gy < 40.0 %).

The RTPD dataset is a collection of individual patient’s IMRT treatment plans with
the following Gantry Angle39 setup:

1. Plans that have only one beam and all 360 angles were calculated separately.

2. 30 plans that have 12 equidistant fields, where all gantry angles are increased by
i ∈ [0, 29] simultaneously and synchronously.

As mentioned in Section 2.2.4, the collimator setup also impacts the treatment plan
quality. Figure 27 illustrates MLC sequences where the MLC, whose colors are purple,
pink, blue, and grey, fits the shape of the tumor, whose color is red. Since it is not in the
scope of the thesis, and to make the setup of all plans as similar as possible, the collimator
angle40 of 45◦ was used. Li et al. [54] states that the angle yields an optimal result for
prostate VMAT treatment plans and, as the comparison in Figure 27 shows, it is also a
good setup for the IMRT plans in this work. However, unlike the collimator angle, the
collimator movements41 need to be strictly optimized based on the tumor shape, which
was done by using the Ethos therapy system algorithm.

(a) 0◦ (b) 45◦ (c) 90◦

Figure 27: Different collimator angles targeting LUNG1-001 PTV.

3.3 Data analysis
The analyzing step was done to find any abnormalities in the datasets. There is a gender
imbalance, which is explainable, in the selected NSCLC-Radiomics dataset: 10 females
and 40 males. According to McDowell [55]: "Historically, lung cancer rates have been
higher in men mainly because of their smoking patterns". For the female patients, there
are five cases of left lung cancer, four cases of right lung cancer, and one case of bilateral
cancer. For the male patients, there are 10, 27, and 3 cases, respectively. There are studies

39Tag (300A, 011E)
40Beam Limiting Device Angle - Tag (300A, 0120)
41Control Point Sequence - Tag (300A, 0111)
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showing that gender plays a critical role in thoracic malignancies and immunotherapy
[56], [57]. However, as the same research for radiotherapy is limited, gender will not be
taken into account in this thesis.

The left and right lungs differ in size and shape to accommodate other organs situated
in the thoracic cavity. The right lung is divided into three lobes and is shorter than the
left lung due to the liver underneath it. The left lung consists of two lobes and is slightly
smaller than the right lung allowing room for the heart [52]. Figure 28 represents the
tumor centroid coordinates in x− y and z − y axes. It is clear that the tumor centroids
are clustered according to the lung side as expected. Even though the tumor centroids
have a variety of z-values, the distribution density of the left lung tumors is higher than
the right ones on the x− y axis. Figure 29 shows that there is no tumor that is too close
to any OARs indicating that good beam angles can be found for most (if not all) patients.

Figure 28: Tumor centroids in the Patient-Based Coordinate System represented in 2D.
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(a) To left lung centroids (b) To right lung centroids

(c) To heart centroids (d) To esophagus centroids

Figure 29: Histogram of the distance in mm between tumor centroids and OARs centroids.

The average magnitude of MU for IMRT plans with one field and 12 equidistant fields
is illustrated by Figure 30. The Jet colormap is used to represent the MU magnitude,
which means the gantry angles that have the red color has higher MU than the blue ones.
The statistic of MU is presented in Table 2.
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(a) Left lung cancer
One field

(b) Right lung cancer
One field

(c) Bilateral cancer
One field

(d) Left lung cancer
12 equidistant fields

(e) Right lung cancer
12 equidistant fields

(f) Bilateral cancer
12 equidistant fields

Figure 30: Heatmap of the average magnitude of MU for IMRT plans with one field and
with 12 equidistant fields.

Plan type Cancer site Min Max Mean
IMRT plan with Left lung cancer 128.6 440.5 249.4
one field Right lung cancer 142.8 613.9 250.2

Bilateral cancer 140.3 503.9 252.3
IMRT plan with Left lung cancer 0.6 118.5 63.6
12 equidistant fields Right lung cancer 12.6 172.1 65.8

Bilateral cancer 20.2 167.7 72.1

Table 2: MU statistics.

3.4 Development setup
Both cloud computing and local workstation were used in this work. Their configurations
were as follows:

1. The VMWare vCloud environment consists of Intel Xeon 86 CPUs @ 3.0Ghz and
400GB of RAM. It has ARIA oncology information system and Ethos therapy
system installed and configured. As the Ethos therapy system algorithm requires
the data to be in its convention, the NSCLC-Radiomics dataset cannot be used
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directly to generate new treatment plans. A new patient record must be created
first and associated with the corresponding CT scans and RTSTRUCT file in ARIA
oncology information system. Then, from Ethos therapy system, the newly created
record will be fetched and a new treatment plan can be assigned to the patient. As
mentioned in Section 2.2.5 and further elaborated in Section 3.2, the region receiving
the prescribed dose is PTV, not GTV, Ethos therapy systemwill automatically derive
the required PTV from the given "GTV-1". After this, the "usable" patient model
will be exported to be used in the local environment.

2. The local workstation contains Intel Xeon 12 CPUs @ 3.2GHz with 64GB of RAM
and Nvidia RTX A3000. As generating treatment plans and calculating dose distri-
butions are significantly faster with a GPU than with a CPU, the local environment
was utilized for these tasks with the exported patient model mentioned above.
Additionally, this machine was also used to evaluate the algorithms.
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4 Methods
In this chapter, a brief explanation of the existing techniques which are used to generate
beam geometries is provided. Based on this, a new method that aims to improve perfor-
mance and plan quality by using ray casting and machine learning is described in detail
and accompanied by the pseudo-code.

4.1 Existing methods
As mentioned by Webb [58], there were several approaches to improve the quality of
treatment plans by optimizing beam direction. A technique introduced by Pugachev and
Xing was implemented inside the PLUNC42 planning system [58]. It employs the pseudo
beam’s eye-view optimization, which was developed also by Pugachev and Xing, with
prior knowledge (Bayesian priors) of geometry and dosimetry for an accurate estimation.
However, the technique was resource-demanding and took more than two hours on a
fast workstation. The authors concluded that "the problems of optimizing beam profiles
and beam directions in IMRT are coupled" and "individualized beam configurations were
needed to maximally utilize the technical capacity of IMRT" [58].

(a) Seven equidistant IMRT
fields

(b) Nine equidistant IMRT fields (c) 12 equidistant IMRT fields

Figure 31: Beam geometry of different IMRT plans, which are aligned with the gantry
angle 0◦ placed at straight vertical.

On Ethos therapy system, the IMRT plans with equidistant fields are focused and
the beam angles are fixed. It means that the beams will be distanced equally by 50◦, 40◦,
and 30◦ for 7, 9, and 12 equidistant IMRT fields plans, respectively. They are illustrated
in Figure 31. By doing this, the plan generation process is sped up, but it is arguable
whether the plan quality is maintained.

4.2 Reverse beam
To select gantry angles for an IMRT plan, a straightforward method is to construct the
three-dimensional models of GTV and OARs from imaging scans and then perform
calculations in three-dimensional space. Even though this idea might yield a high-quality

42PLUNC had been developed by the University of North Carolina since 1985 for research and educational
purposes, and was retired from service in 2015.
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plan, it is computationally demanding as there is a large number of combinations to go
through.

Hence, a new solution, which is called reverse beam, is proposed and studied in
this thesis. The method consists of two stages: angle discovery and angle selection. The
simplified acceptance criteria listed below should be followed:

1. all OARs must not receive any radiation doses,

2. doses in other areas should be minimized as much as possible,

3. 100% of tumor surface area is covered by radiation beams,

to mitigate side effects and even prevent health complications from the treatment as
mentioned in Section 2.2.5. They are prioritized in the given order and will be mentioned
across the method.

4.2.1 Angle discovery

It is a natural approach to simulate radiation beams from the gantry targeting the tumor.
Instead of starting from the outside, the process could also start from the inside out,
meaning that the beams are now emitted from the tumor itself. By doing this, all beams
are guaranteed to reach the target from a good angle. This step is inspired by the ray
casting technique which was described in Section 2.3. Additionally, performance can be
improved as the computations are still performed in the three-dimensional coordinate
system. Hence, an algorithm for dimension reduction is employed. The z-value is
selected for the truncation because it tends to be the same for all beams since normally
the tumor has only one centroid. The data loss caused by the z-value truncation will be
discussed in Chapter 6.

To loosely encode the z-value for dimension reduction, Algorithm 3 is used to calculate
the opacity of a pixel. The denser the tissue along the z-axis, the higher the opacity
value is. The higher the opacity of a point, the lesser light will pass through. This follows
the MONOCHROME2 standard specified in Section 3.1.2. The value is guaranteed to
be in the range [0, 1]. The algorithm consists of two nearly identical loops to avoid the
tumor opacity from being overridden. Additionally, the opacity of the OAR containing
the tumor needs to be lower than other OARs and higher than the tumor values. The
reason is that while we want to avoid damaging the OAR as much as possible, the beams
cannot reach the tumor without irradiating the mentioned organ.

The result of Algorithm 3 is illustrated in Figure 32. All CT slices that contain the
tumor have been blended together with the opacity map to create the final fusion image.
The advantage of the fusion image is that both the tumor and OARs are highlighted while
utilizing the body tissues presentation from the CT scans.
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(a) Overlapped CT slices (b) Opacity map (c) Fusion of the CT slices with
the opacity map

Figure 32: Fusion process where CT slices are blended with the opacity map.

Algorithm 3 Opacity calculation
Input: images[N, W, H]|N > 0, W > 0, H > 0,

where images are the CT images that contain the tumor, N is the total number of the
mentioned CT images, and W and H are their width and height.

Output: Array opacity[0 · · ·W − 1, 0 · · ·H − 1]
opacity ← [0 · · · 0, 0 · · · 0] ▷ Init with black color
ops← 1/N ▷ Opacity per layer
for n← 0 to N − 1 do ▷ Handle OARs

for w ← 0 to W − 1 do
for h← 0 to H − 1 do

if images[n, w, h] ∈ OAR then
if OAR ∩ tumor then

opacity[w, h]← opacity[w, h] + 0.5 ∗ ops
else

opacity[w, h]← opacity[w, h] + 1 ∗ ops
end if

end if
end for

end for
end for
for n← 0 to N − 1 do ▷ Handle tumor

for w ← 0 to W − 1 do
for h← 0 to H − 1 do

if images[n, w, h] ∈ tumor then
opacity[w, h]← 0

end if
end for

end for
end for
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To perform beam discovery, Algorithm 4, which evaluates the beam’s accumulated
color, was employed. Since the CT images contain noise, the fusion image must have
been picking it up. Hence, a threshold is needed, but this is not a must, as it depends on
how the beams’ color is evaluated. The output of Algorithm 4 after being processed is
illustrated in Figure 33. The pink tumor centroid is the origin of the beams. Since the
angle discovery is performed in 2D, it is fast and reproducible. As shown, the algorithm is
capable of avoiding OARs, which are the right lung and the spinal cord. The red, yellow,
green, and purple lines represent 0◦, 90◦, 180◦, and 270◦, respectively. This follows the
convention that was specified in Section 2.2.2.

Algorithm 4 Beam color calculation
Input: image[W, H]|W > 0, H > 0,

beam_origin(x, y)
threshold

where image is the fusion image, and W and H are the width and height of it;
beam_origin(x, y) is the (x, y) coordinates of the ray origin, and threshold is used to
filter noise.

Output: Array angles[0 · · · 359]
angles← [0 · · · 0] ▷ Init with black color
for w ← 0 to W − 1 do

for h← 0 to H − 1 do
if average(image[w, h]) < threshold then

skip
end if
φ← ∠(beam_origin, (w, h)) ▷ Calculate the angle
angles[φ]← angles[φ] + image[w, h]

end for
end for

Figure 33: Angle discovery is capable of avoiding OARs while targeting GTV.
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At first glance, the ranges [110◦, 140◦], [150◦, 170◦], and [320◦, 350◦] were not
accepted is abnormal as they seem to have good positions. However, the algorithm is
working as it should since we want to minimize the dose to healthy tissue and maximize
it to the tumor. If those angles had been accepted, the targeted tumor area would have
been much smaller than the irradiated left lung area.

One important finding is that a good angle returned by this angle discovery step does
not necessarily mean it is ultimately selected. This can be explained by using Figure
34. The tumor, whose color is purple, and the gantry trajectory are simplified as circles
whose centers are notated by O. The OARs are represented by the two pink circles. A
blue angle ˆ︂BOC with the angle value α, where the radiation beams originated from O
are not blocked by OARs, is assumed to exist. On the circular arc>BC, point A is selected
as a candidate for beam position. From there, radiation beams can be emitted within an
upper limit α-angle. By assuming that the IMRT has only one field represented by the
green angle β, this field has to cover as much area of the GTV as possible. While the
OAR2 is outside of the beam, the OAR1 is irradiated.

Figure 34: Illustration of upper limit α-angle.

4.2.2 Angle selection

After getting good gantry angle ranges, the next step is to select individual angles based on
the given number of fields. K-means clustering was chosen, as it can correctly return the
number of clusters as required. Since the angles are in degrees and there is a discontinuous
in the value, which is value 359◦ and 0◦, the angles have to be transformed so that
Euclidean distance can be calculated, and the discontinuous is mitigated. Hence, the
conversion is performed by using:

x = sin(angle)
y = cos(angle) .

(17)

where angle is the angle that needs to be converted and (x, y) is the converted Cartesian
coordinates. By using sin and cos for x and y, respectively, the convention in Section
2.2.2, which is the angle starts from straight vertical and rotates clockwise, is followed.
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As an example, the output of K-means clustering for the good gantry angle ranges of
patient LUNG1-001 is represented in Figure 35.

Figure 35: Clusters of good gantry angle ranges of patient LUNG1-001.

As mentioned in Section 2.2.7, if the beams are too close, the dose can sum up. Hence,
a good strategy, for now, is to select the middle angle of the clusters. By doing this, the
distance between the angles can be ensured. If there is a gap in the cluster, such as the
dark purple cluster in Figure 35, and the precise middle angle does not exist, the closest
one might be a good alternative. Figure 36 illustrates the middle angles in black, which
are also the gantry angles for the IMRT plan.

Figure 36: Gantry angles are chosen from the given clusters.

As the K-means clustering was performed solely based on the beam geometry, it is
hard to determine whether the task was performed well. However, as the angle 359◦

and 0◦ were partitioned into the same cluster, the conversion performed by Equation
17 worked. Besides visually assessing the clustering quality, evaluation metrics were
calculated. For K-means clustering targeting seven clusters, the Silhouette index ranges
from 0.52 to 0.65 with a mean of 0.56 and a standard deviation of 0.03, while the Davies-
Bouldin index ranges from 0.38 to 0.55 with a mean of 0.48 and a standard deviation of
0.04.
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5 Evaluation
This section will evaluate the performance of the reverse beam method. The IMRT plans
generated by the proposed method will be compared against the IMRT plans with seven
equidistant fields. Furthermore, a more sophisticated method to select gantry angles from
given clusters will be introduced, and ideas for future work will be suggested.

5.1 Performance
The run time of the fusion and color calculation algorithms is listed in Appendix A. In
general, if the CT scan size varies, the run time is expected to be O(nk2) and O(k2) where
k is the CT slice dimensions and n is the number of CT slices. Assuming the CT scans
have the same size, the expected run time of the fusion and color algorithms are O(n)
and O(1), respectively. Table 3 shows the statistics of the angle discovery algorithm and
Figure 37 plots the fusion algorithm run time. The following values are reported as mean
± standard deviation. In general, each patient has 21.2 ± 9.7 CT slices, and 4.4 ± 0.8
OARs. The fusion and color calculation tasks took 8.9 ± 4.7 s and 1.6 ± 0.1 s to complete,
respectively.

Patient No. CT slices No. OARs Fusion time (s) Color cal. time (s)
LUNG1-017 43 4 21.1 1.5
LUNG1-019 19 4 8.5 1.9
LUNG1-026 48 5 20.4 1.6
LUNG1-027 3 3 1.0 1.7
LUNG1-032 27 4 10.4 1.3

Table 3: Angle discovery statistics.

Figure 37: Fusion time has a strong correlation (0.952) with the number of CT slices.
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Figure 38 illustrates how often an angle was returned by the angle discovery algorithm.
The Jet colormap is used to represent the angle distributions, which means the red color
angles are selected more often than the blue ones. The white and black lines represent
the angles that appear the most (the first occurrence) and the least (the first occurrence),
respectively. In general, it can be seen that the algorithm favors the angles that were
not blocked by the lungs. The exhausted list of the angle probability can be found in
Appendix B.

(a) Left lung cancer - 138 ◦ - 262 ◦ (b) Right lung cancer - 222 ◦ - 77 ◦

(c) Bilateral cancer - 7 ◦ - 37 ◦ (d) Lung cancer - 199 ◦ - 81 ◦

Figure 38: Output of the angle discovery algorithm.

5.2 Comparison
Via clinical goals, which were described in Table 1, the plans generated by the reverse
beam method are compared against the ones with equidistant fields. All plans are IMRT
plans with seven fields with 45◦ collimator rotations generated by Ethos therapy system.
In short, both methods have their advantages and disadvantages.



56

Figure 39: Clinical goals that the reverse beam method performed better.

Figure 40: Clinical goals that the reverse beam method performed better.



57

Figure 41: Clinical goals that the reverse beam method performed worse.

Figure 42: Clinical goals that the reverse beam method performed worse.
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As shown in Figure 39, for 50 patients, the reverse beam method performs well in
avoiding irradiating the lungs, heart, and esophagus, which is expected and explainable.
Figure 40 illustrates the difference between the two types of plans in terms of clinical
goals. There are outliers in the heart goal, as not all patients have the heart contoured.

Taking patient LUNG1-001 as an example, Figure 43 illustrates the angles of an IMRT
plan with seven equidistant fields in green and the angles of an IMRT plan generated
by the reverse beam method in blue. The selected angles are 32◦, 65◦, 98◦, 158◦, 205◦,
316◦, and 357◦. One of the Ethos plan beams goes straight through the right lung while
the reverse beam method avoids it, which leads to the advantages. The clinical goals
comparison is also shown in Table 4, which reflects the observation from Figure 40.

Figure 43: The gantry angles returned by the reverse beam method and the equidistant
angles are in blue and green, respectively - LUNG1-001.

ROI Clinical goals Equidistant fields Reverse beam
PTV D98.0 % > 95.0% 95.3% 95.2%

D2.0 % < 107.0% 104.6% 103.9%
Spinal canal D0.1 % < 45.0 Gy 22.74 Gy 22.00 Gy
Both lungs Dmean < 20.0 Gy 10.18 Gy 9.35 Gy

V20.0 Gy < 35.0% 17.9% 16.9%
V5.0 Gy < 60.0% 40.3% 33.9%

Lung right V5.0 Gy < 40.0% 31.9% 20.8%

Table 4: Comparison between the plans with equidistant fields andwith the fields returned
by the reverse beam method - LUNG1-001.

Similarly, it can be seen from Figure 41 and Figure 42 that the reverse beam method
performs badly for the spinal canal. Even though the goal PTV D98.0 % > 95.0 % looks
bad at the first glance, it is still acceptable as the difference between the two types of
plans is not much, which can be observed from Figure 42.
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Patient Silhouette index Davies–Bouldin index
LUNG1-001 0.61 0.44
LUNG1-010 0.57 0.47
LUNG1-013 0.55 0.50
LUNG1-017 0.61 0.48
LUNG1-033 0.60 0.45

Table 5: Evaluation metrics of K-means clustering outputs.

(a) LUNG1-010 (b) LUNG1-017 (c) LUNG1-033

Figure 44: Poor performance for bilateral cancer patients. The gantry angles returned by
the reverse beam method and the equidistant angles are in blue and green, respectively.

Figure 45: The gantry angles returned by the reverse beam method and the equidistant
angles are in blue and green, respectively - LUNG1-013.
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ROI Clinical goals Equidistant fields Reverse beam
PTV D98.0 % > 95.0% 95.2% 95.2%

D2.0 % < 107.0% 103.5% 106.7%
Spinal canal D0.1 % < 45.0 Gy 21.91 Gy 42.93 Gy
Both lungs Dmean < 20.0 Gy 3.48 Gy 2.04 Gy

V20.0 Gy < 35.0% 1.6% 2.5%
V5.0 Gy < 60.0% 21.5% 8.3%

Table 6: Comparison between the plans with equidistant fields andwith the fields returned
by the reverse beam method - LUNG1-013.

While plans for bilateral cancer have relatively good evaluation metrics compared
to LUNG1-001 as shown in Table 5, it can be confirmed that the algorithm does not
perform well for bilateral cancer, as three out of four plans generated by the reverse
beam method perform worse than the ones with equidistant fields. Figure 44 illustrates
the selected gantry angles compared to seven equidistant fields for patients that have
bilateral cancer: LUNG1-010, LUNG1-017, and LUNG1-033, besides LUNG1-013. Patient
LUNG1-013, whose tumor locates outside both of the lungs as shown in Figure 45, is used
as an example of an unexpected study case causing the 20 Gy outlier for the spinal canal
clinical goal. The selected angles are 3◦, 162◦, 181◦, 200◦, 219◦, 331◦, 347◦. The clinical
goals comparison is also shown in Table 6. Since the good angle ranges for the beams are
narrowed, the algorithm incorrectly selects an angle that goes through the spinal canal.
Additionally, a part of the right lung is also impacted. This behavior is understandable,
as the spinal canal and the affected part of the lung are smaller than the rest of the lungs,
the algorithm chose the angles that have the least impact as sacrificing healthy tissue is
unavoidable in this situation.

5.3 Ranking angles
Instead of choosing the middle angle from a given range as described in Section 4.2.2,
a more sophisticated method was explored. By leveraging the fluctuation of the MU43,
the angles inside a cluster were ranked accordingly. Better gantry angles were found
and the total number of beams was lowered by consolidating closely distanced angles.
Unfortunately, this method is impractical as it is resource-demanding. Patients LUNG1-
001 and LUNG1-013 were used for evaluation.

5.3.1 Observations

The RTPD dataset was used to observe the relation between MU and good gantry angles.
Given an IMRT plan with 12 equidistant fields and 12 IMRT plans with 1 field whose
gantry angle belongs to the given 12 equidistant fields:

43BeamMeterset - Tag (300A,0086)



61

Wi = MUi∑︁12
n=1 MUn

W12_i = MU12_i∑︁12
n=1 MU12_n

Si = Wi −W12_i ,

(18)

where Si is the score of the angle i, Wi and W12_i are the weight of the angle i of the
IMRT plans with one field and 12 equidistant fields, respectively, MUi is the monitor unit
of the angle i from the IMRT plan with one field and MU12_i is the monitor unit of the
angle i from the IMRT plan with 12 equidistant fields.

Corollary 5.1 The proposed gantry angle ranges are constrained by OARs, but not ob-
structed by them. Hence, the difference between the weights Wi and W12_i represented by
the score Si relates solely to the body tissue.

By comparing the score Si, with Corollary 5.1 and the definition of MU mentioned in
Section 2.2.6, Lemma 5.1 can be made:

Lemma 5.1 If the score Si is non-negative, i.e. the weight Wi is greater than or equal to
the weight W12_i, the angle i must be a good gantry angle as more dose can be delivered to
the same tumor volume without affecting surrounding OAR(s).

(a) Left lung cancer (b) Right lung cancer (c) Bilateral cancer

Figure 46: The scores of the angles were calculated by using Equation 18.

The scores of the angles illustrated by Figure 46 are fairly in alignment with Figure 38
illustrating how often an angle was returned by the angle discovery algorithm. The Jet
colormap is used to represent the scores of the angles, which means the red color angles
have higher scores than the blue ones. Additionally, by ranking the gantry angles based
on their score S, it is highly likely that there exist adjacent clusters where the angles with
the highest score are closely distanced. Since the doses from closely distanced angles
accumulated as mentioned in Section 2.2.7, these angles can be consolidated resulting in
a lower-than-required number of beams. For experimental purposes, 15◦ is the threshold
value that was used to define the close distance. Furthermore, any beam angles that have
a negative score will also be eliminated.
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5.3.2 Result

Figure 47 and Figure 48 illustrate the scores by using the Jet color scheme. The color can
be interpreted as if the score of a gantry angle is higher than the scores of other angles in
the same cluster, the red color will be used.

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

(e) Cluster 5 (f) Cluster 6 (g) Cluster 7

Figure 47: Scores of the angles - LUNG1-001.

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

(e) Cluster 5 (f) Cluster 6 (g) Cluster 7

Figure 48: Score of the angles - LUNG1-013.

As observed in Figure 47 and Figure 48, the scores can be positive, negative, or zero.
This is presented by Figure 49 where the blue color is used for angles whose score is
non-negative, and the grey color stands for the rest.
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(a) LUNG1-001 (b) LUNG1-013

Figure 49: Angles that have non-negative scores are in blue.

LUNG1-001 LUNG1-013
Angle Score Angle Score
11◦ 2.5 0◦ 2.1
23◦ 2.7 168◦ 2.4
79◦ 2.6 178◦ 2.6
90◦ 2.8 205◦ 3.2
144◦ 2.0 214◦ 3.7
187◦ 3.0 334◦ 1.4
320◦ −1.6 356◦ 2.6

Table 7: The angles that have the highest scores in each cluster of the seven clusters.

In each cluster, the angle whose score is highest will be selected. Table 7 shows the
angles that have the highest score in each cluster of the seven clusters from patients
LUNG1-001 and LUNG1-013. For patient LUNG1-001, the most suitable angles are 11◦,
23◦, 79◦, 90◦, 144◦, 187◦, 320◦, with the angles 11◦, 79◦, and 320◦ removed. Hence, this
results in an IMRT plan with four fields. In regards to patient LUNG1-013, the good
angles are 0◦, 168◦, 178◦, 205◦, 214◦, 334◦, 356◦, with the angle 0◦, 168◦, 205◦ removed.
As a result, an IMRT plan with four fields was created.

To perform an exhaustive comparison, IMRT plans with four fields were generated
by using the original reverse beam method with the middle angles selected. The middle
angles are 76◦, 156◦, 203◦, and 357◦ for patient LUNG1-001; and 0◦, 172◦, 211◦, and 335◦

for patient LUNG1-013. Additionally, IMRT plans with four equidistant fields were also
created for completeness. Figure 50 illustrates the angles of an IMRT plan with seven
equidistant fields in blue, the angles of an IMRT plan with four equidistant fields in
green, the angles of an IMRT plan with four fields generated by the original reverse beam
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method in yellow, and the angles of an IMRT plan with four fields and ranked angles in
purple.

(a) LUNG1-001 (b) LUNG1-013

Figure 50: The angles of an IMRT plan with seven equidistant fields are blue, the angles
of an IMRT plan with four equidistant fields are green, the angles of an IMRT plan with
four fields generated by the original reverse beam method are yellow, and the angles of
an IMRT plan with four fields and ranked angles are purple.

ROI Clinical goals 7 e. f.1 4 e. f.2 M. a.3 R. a.4

PTV D98.0 % > 95.0% 95.3% 95.2% 95.1% 95.2%
D2.0 % < 107.0% 104.6% 105.7% 105.1% 105.6%

Spinal canal D0.1 % < 45.0 Gy 22.74 Gy 2.21 Gy 22.76 Gy 14.72 Gy
Both lungs Dmean < 20.0 Gy 10.18 Gy 11.17 Gy 9.75 Gy 9.66 Gy

V20.0 Gy < 35.0% 17.9% 22.2% 15.8% 14.7%
V5.0 Gy < 60.0% 40.3% 36.9% 34.8% 37.0%

Lung right V5.0 Gy < 40.0% 31.9% 27.5% 22.5% 26.5%
1 IMRT plan with seven equidistant fields.
2 IMRT plan with four equidistant fields.
3 IMRT plan with four fields generated by the original reverse beam method with the

middle angles selected.
4 IMRT plan with four fields generated by the reverse beam method with ranked

angles.

Table 8: Comparison between different IMRT plans - LUNG1-001.
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ROI Clinical goals 7 e. f.1 4 e. f.2 M. a.3 R. a.4

PTV D98.0 % > 95.0% 95.2% 95.1% 95.0% 95.3%
D2.0 % < 107.0% 103.5% 103.6% 105.2% 104.3%

Spinal canal D0.1 % < 45.0 Gy 21.91 Gy 42.34 Gy 43.86 Gy 44.36 Gy
Both lungs Dmean < 20.0 Gy 3.48 Gy 2.91 Gy 1.85 Gy 2.06 Gy

V20.0 Gy < 35.0% 1.6% 4.7% 1.8% 2.1%
V5.0 Gy < 60.0% 21.5% 11.8% 7.0% 8.1%

1 IMRT plan with seven equidistant fields.
2 IMRT plan with four equidistant fields.
3 IMRT plan with four fields generated by the original reverse beam method with the

middle angles selected.
4 IMRT plan with four fields generated by the reverse beam method with ranked

angles.

Table 9: Comparison between different IMRT plans - LUNG1-013.

Table 8 and Table 9 compare the clinical goals between different plans of patients
LUNG1-001 and LUNG1-013, respectively. Even though this method still does not perform
well on bilateral cancer, the results of patient LUNG1-001 are acceptable with all clinical
goals passed. Furthermore, when lowering the number of fields for patient LUNG1-013,
with the original reverse beam method, one clinical goal failed while with ranked angles,
the same goal passed. It can be concluded that by ranking angles, clinical goals can be
achieved and the number of fields can be even lowered.

5.4 Future development
The proposed reverse beam method has been focused only on the coplanar IMRT plans
where the couch does not rotate. To support non-coplanar plans, 3D transformations,
which were mentioned in Section 2.3.2, can be applied at the beginning of the workflow
to rotate the structure set accordingly. However, another problem might arise, that is
how to create a fusion image properly from skewed images.

As mentioned in Section 4.2.1, the z-value truncation caused data loss. So far, the
used dataset has regularly shaped tumors with an assumption that the tumor mass is
equally distributed. In case the tumor is too long leading to multiple pseudo-centroids, the
proposed method will not work well as not all tumor surfaces can be irradiated. Instead
of creating a fusion image for all layers at once, multiple fusion images can be created.
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Figure 51: Clustering using HDBSCAN and the haversine distance - LUNG1-001.

As discussed in Section 4.2.2, the angle clustering is performed by using the K-means
algorithm. While testing against HDBSCAN44 using the haversine distance, a good
clustering result was also achieved as seen in Figure 51. The Silhouette index ranges from
0.02 to 0.80 with a mean of 0.42 and a standard deviation of 0.17. The Davies-Bouldin
index ranges from 0.29 to 12.69 with a mean of 1.09 and a standard deviation of 1.75. This
approach might be useful when finding a plan that has as few beams as possible.

Last but not least, the ranking angles method proposed in Section 5.3 is impractical
as it requires too many plans to be generated. Given specific constraints, if there exists a
deep learning model that can predict the MU efficiently, the proposed improvement might
become realistic. Additionally, the angles are clustered solely based on the geometry.
Perhaps clustering based on MU from the beginning might yield a good result as stated
in Lemma 5.1.

44https://hdbscan.readthedocs.io/en/latest/

https://hdbscan.readthedocs.io/en/latest/
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6 Conclusions
The primary goal of this thesis was to find good gantry angles for IMRT plans by combing
computer graphics and machine learning. In this work, a new method called reverse beam
was introduced to aid the plan generation process. The proposed solution consists of
two stages: angle discovery and angle selection. In the first stage, an algorithm to fuse
CT images by leveraging the opacity map was employed. Based on the fusion output,
an algorithm inspired by ray casting performs an evaluation to find good angle ranges.
In the second stage, K-means clustering algorithm is responsible to partition the angles
based on their geometry. Finally, good distanced angles are chosen from the processed
clusters.

Through testing and validation, this thesis has successfully answered the three re-
search questions that were made at the beginning of the work. For the first question
"How well does the proposed method perform, in terms of performance and quality
?", the algorithms illustrated good performance as they are capable of avoiding organs
while targeting tumors in an acceptable time frame. The second question "How do the
new plans compare to the ones with equidistant fields ?" was answered by using IMRT
plans with seven equidistant fields with 45◦ collimator rotations generated by Ethos as a
baseline. The reverse beam method performs better while preserving the organs from
radiation as the gantry angles are personalized instead of being hard-coded. For the last
question "Is there an IMRT plan that has fewer beams than the given one, but is still
capable of achieving the same clinical goals ?", the answer is yes. By ranking the angles
based on the MU, the number of beams was proven to be lower-able while achieving
predefined clinical goals.

While this thesis demonstrated how ray casting and K-means clustering algorithm
can be used together to find good gantry angles, there is still room for improvement.
For example, while the plans generated by the reverse beam method for bilateral cancer
passed the given clinical goals, they can still be refined. Furthermore, the reverse beam
method was evaluated by comparing clinical goals. A more sophisticated method that
employs dose distribution comparisons might yield better insights into how homogeneous
the doses are.

In conclusion, radiation therapy is complex and radiotherapy treatment planning is
more than just optimizing the beam geometry. Defeating cancer is not a battle that can be
won in just one day and may need many generations to come. In the meantime, raising
cancer awareness and participating in screening programs might keep cancer incidence
in control. By investing in research, the discovery of more advanced treatment methods
can be accelerated. With that being said, the author believes that ultimately, this thesis
work will contribute to the creation of a world without fear of cancer.
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A Angle discovery performance

Patient No. CT slices No. OARs Fusion time (s) Color cal. time (s)
LUNG1-001 21 3 7.27 1.56
LUNG1-002 26 5 10.44 1.36
LUNG1-003 17 5 7.23 1.73
LUNG1-004 36 4 14.31 1.49
LUNG1-005 24 5 13.31 1.50
LUNG1-006 23 5 9.22 1.70
LUNG1-007 10 5 3.93 1.48
LUNG1-008 15 5 5.30 1.55
LUNG1-009 22 4 9.13 1.72
LUNG1-010 13 5 4.78 1.55
LUNG1-011 14 5 4.92 1.82
LUNG1-012 29 5 13.42 1.73
LUNG1-013 8 3 4.24 1.59
LUNG1-014 11 5 3.58 1.43
LUNG1-015 5 3 1.54 1.45
LUNG1-016 22 5 9.32 1.60
LUNG1-017 43 4 21.05 1.51
LUNG1-018 24 4 9.30 1.41
LUNG1-019 19 4 8.46 1.87
LUNG1-020 19 5 11.51 1.35
LUNG1-021 29 5 11.80 1.36
LUNG1-022 27 5 13.55 1.48
LUNG1-023 36 5 15.63 1.64
LUNG1-024 13 5 4.43 1.75
LUNG1-025 24 5 9.56 1.41
LUNG1-026 48 5 20.38 1.64
LUNG1-027 3 3 0.91 1.74
LUNG1-028 14 5 5.23 1.36
LUNG1-029 15 3 4.50 1.37
LUNG1-030 27 5 14.16 1.54
LUNG1-031 18 5 6.83 1.41
LUNG1-032 27 4 10.40 1.28
LUNG1-033 30 5 13.09 1.55
LUNG1-034 23 5 8.28 1.48
LUNG1-036 15 3 4.40 1.28
LUNG1-037 9 4 3.27 1.40
LUNG1-038 26 5 10.07 1.46
LUNG1-039 9 5 3.24 1.62
LUNG1-040 22 5 7.74 1.84
LUNG1-041 15 4 4.72 1.34
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LUNG1-042 28 5 15.93 1.55
LUNG1-043 44 5 18.54 1.50
LUNG1-044 27 4 9.78 1.51
LUNG1-045 16 3 5.27 1.54
LUNG1-046 23 5 11.17 1.45
LUNG1-047 27 4 10.67 1.70
LUNG1-048 19 3 11.60 1.29
LUNG1-049 4 3 1.48 1.57
LUNG1-051 17 5 6.77 1.38
LUNG1-052 22 4 8.76 1.53
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B Angle discovery result

Angle Left lung cancer Right lung cancer Bilateral cancer
0 0.18 0.28 0.04
1 0.20 0.30 0.06
2 0.20 0.30 0.06
3 0.20 0.28 0.06
4 0.18 0.28 0.06
5 0.20 0.28 0.06
6 0.18 0.28 0.06
7 0.18 0.28 0.08
8 0.18 0.26 0.08
9 0.16 0.26 0.08
10 0.18 0.26 0.08
11 0.18 0.26 0.08
12 0.18 0.26 0.06
13 0.22 0.24 0.04
14 0.22 0.26 0.04
15 0.22 0.26 0.04
16 0.24 0.26 0.02
17 0.24 0.26 0.02
18 0.22 0.24 0.02
19 0.22 0.24 0.02
20 0.22 0.26 0.02
21 0.22 0.22 0.02
22 0.22 0.22 0.02
23 0.22 0.22 0.02
24 0.22 0.22 0.02
25 0.22 0.22 0.02
26 0.24 0.24 0.02
27 0.24 0.28 0.02
28 0.24 0.26 0.02
29 0.24 0.26 0.02
30 0.24 0.28 0.02
31 0.24 0.22 0.02
32 0.24 0.26 0.02
33 0.24 0.20 0.02
34 0.24 0.20 0.02
35 0.24 0.16 0.02
36 0.22 0.14 0.02
37 0.22 0.16 0.00
38 0.22 0.14 0.00
39 0.24 0.14 0.00
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40 0.24 0.18 0.00
41 0.24 0.16 0.00
42 0.24 0.12 0.00
43 0.24 0.12 0.00
44 0.22 0.10 0.00
45 0.24 0.10 0.00
46 0.24 0.08 0.00
47 0.24 0.06 0.00
48 0.24 0.06 0.00
49 0.24 0.06 0.00
50 0.24 0.06 0.00
51 0.24 0.06 0.00
52 0.24 0.06 0.00
53 0.24 0.06 0.00
54 0.24 0.06 0.00
55 0.24 0.04 0.00
56 0.24 0.02 0.00
57 0.24 0.02 0.00
58 0.24 0.04 0.00
59 0.24 0.04 0.00
60 0.24 0.04 0.00
61 0.24 0.04 0.00
62 0.24 0.04 0.00
63 0.24 0.02 0.00
64 0.26 0.02 0.00
65 0.24 0.02 0.00
66 0.26 0.02 0.00
67 0.26 0.02 0.00
68 0.26 0.02 0.00
69 0.26 0.02 0.00
70 0.26 0.02 0.00
71 0.26 0.02 0.00
72 0.26 0.02 0.00
73 0.24 0.02 0.00
74 0.26 0.02 0.00
75 0.26 0.02 0.00
76 0.26 0.02 0.00
77 0.26 0.00 0.00
78 0.26 0.00 0.00
79 0.24 0.00 0.00
80 0.24 0.00 0.00
81 0.20 0.00 0.00
82 0.20 0.00 0.00
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83 0.20 0.00 0.00
84 0.20 0.00 0.00
85 0.22 0.00 0.00
86 0.26 0.00 0.00
87 0.22 0.00 0.00
88 0.20 0.00 0.00
89 0.24 0.00 0.00
90 0.22 0.00 0.00
91 0.22 0.00 0.00
92 0.22 0.00 0.00
93 0.22 0.00 0.00
94 0.22 0.00 0.00
95 0.22 0.00 0.00
96 0.22 0.00 0.00
97 0.20 0.00 0.00
98 0.20 0.00 0.00
99 0.22 0.00 0.00
100 0.22 0.00 0.00
101 0.20 0.00 0.00
102 0.22 0.00 0.00
103 0.22 0.00 0.00
104 0.22 0.00 0.00
105 0.20 0.04 0.00
106 0.22 0.06 0.00
107 0.22 0.08 0.00
108 0.22 0.10 0.00
109 0.22 0.12 0.00
110 0.22 0.12 0.00
111 0.22 0.12 0.00
112 0.24 0.12 0.00
113 0.22 0.14 0.00
114 0.24 0.16 0.00
115 0.22 0.16 0.00
116 0.22 0.18 0.00
117 0.22 0.20 0.00
118 0.22 0.20 0.00
119 0.24 0.18 0.00
120 0.24 0.20 0.00
121 0.24 0.18 0.00
122 0.24 0.18 0.00
123 0.24 0.18 0.00
124 0.24 0.22 0.00
125 0.24 0.22 0.02
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126 0.24 0.28 0.02
127 0.24 0.32 0.04
128 0.24 0.32 0.04
129 0.24 0.32 0.04
130 0.24 0.36 0.04
131 0.26 0.34 0.02
132 0.26 0.36 0.02
133 0.26 0.30 0.02
134 0.26 0.32 0.02
135 0.26 0.32 0.02
136 0.26 0.30 0.02
137 0.26 0.34 0.02
138 0.28 0.36 0.02
139 0.28 0.38 0.02
140 0.28 0.38 0.02
141 0.28 0.40 0.02
142 0.28 0.40 0.02
143 0.28 0.40 0.04
144 0.26 0.38 0.04
145 0.26 0.36 0.04
146 0.26 0.36 0.04
147 0.26 0.38 0.04
148 0.26 0.34 0.04
149 0.24 0.36 0.04
150 0.24 0.34 0.04
151 0.26 0.36 0.04
152 0.26 0.40 0.04
153 0.26 0.42 0.06
154 0.26 0.42 0.04
155 0.26 0.42 0.04
156 0.26 0.42 0.04
157 0.26 0.44 0.04
158 0.26 0.42 0.06
159 0.24 0.42 0.04
160 0.26 0.42 0.04
161 0.26 0.42 0.04
162 0.22 0.42 0.04
163 0.26 0.42 0.04
164 0.22 0.42 0.06
165 0.24 0.44 0.04
166 0.26 0.44 0.04
167 0.24 0.44 0.04
168 0.24 0.42 0.06
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169 0.24 0.42 0.06
170 0.26 0.42 0.06
171 0.24 0.42 0.06
172 0.24 0.42 0.06
173 0.24 0.42 0.06
174 0.24 0.44 0.06
175 0.24 0.44 0.06
176 0.22 0.40 0.06
177 0.22 0.46 0.06
178 0.24 0.42 0.06
179 0.22 0.42 0.04
180 0.22 0.42 0.06
181 0.22 0.44 0.04
182 0.22 0.40 0.04
183 0.20 0.38 0.04
184 0.22 0.42 0.04
185 0.24 0.42 0.04
186 0.24 0.40 0.04
187 0.26 0.42 0.04
188 0.26 0.40 0.04
189 0.26 0.40 0.04
190 0.26 0.42 0.04
191 0.24 0.38 0.04
192 0.26 0.42 0.04
193 0.26 0.42 0.04
194 0.26 0.40 0.04
195 0.26 0.40 0.04
196 0.26 0.44 0.04
197 0.26 0.44 0.04
198 0.26 0.42 0.04
199 0.28 0.46 0.04
200 0.28 0.42 0.04
201 0.28 0.44 0.04
202 0.24 0.44 0.04
203 0.24 0.42 0.04
204 0.24 0.44 0.04
205 0.24 0.44 0.04
206 0.22 0.44 0.04
207 0.24 0.46 0.04
208 0.24 0.44 0.04
209 0.22 0.44 0.04
210 0.22 0.44 0.04
211 0.22 0.42 0.04
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212 0.22 0.46 0.04
213 0.22 0.46 0.04
214 0.18 0.48 0.04
215 0.20 0.50 0.04
216 0.20 0.50 0.02
217 0.18 0.50 0.04
218 0.18 0.50 0.04
219 0.18 0.48 0.02
220 0.20 0.50 0.02
221 0.20 0.48 0.02
222 0.20 0.52 0.02
223 0.20 0.48 0.02
224 0.18 0.50 0.02
225 0.20 0.48 0.02
226 0.22 0.48 0.02
227 0.22 0.46 0.02
228 0.20 0.48 0.02
229 0.22 0.46 0.02
230 0.20 0.48 0.00
231 0.18 0.46 0.00
232 0.14 0.44 0.00
233 0.16 0.44 0.02
234 0.16 0.44 0.02
235 0.16 0.44 0.02
236 0.16 0.44 0.02
237 0.14 0.44 0.00
238 0.14 0.44 0.00
239 0.10 0.44 0.00
240 0.10 0.42 0.00
241 0.10 0.42 0.00
242 0.10 0.38 0.00
243 0.10 0.38 0.00
244 0.12 0.38 0.00
245 0.10 0.36 0.00
246 0.10 0.36 0.00
247 0.08 0.36 0.00
248 0.08 0.36 0.00
249 0.08 0.38 0.00
250 0.08 0.36 0.00
251 0.08 0.36 0.00
252 0.08 0.38 0.00
253 0.06 0.38 0.00
254 0.06 0.38 0.00
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255 0.02 0.38 0.00
256 0.02 0.38 0.00
257 0.02 0.38 0.00
258 0.02 0.38 0.00
259 0.02 0.36 0.00
260 0.02 0.36 0.00
261 0.02 0.36 0.00
262 0.00 0.36 0.00
263 0.00 0.34 0.00
264 0.00 0.36 0.00
265 0.00 0.36 0.00
266 0.00 0.32 0.00
267 0.00 0.34 0.00
268 0.00 0.36 0.00
269 0.00 0.36 0.00
270 0.00 0.34 0.00
271 0.00 0.36 0.00
272 0.00 0.38 0.00
273 0.00 0.40 0.00
274 0.00 0.40 0.00
275 0.00 0.40 0.00
276 0.00 0.42 0.00
277 0.00 0.42 0.00
278 0.00 0.40 0.00
279 0.00 0.44 0.00
280 0.00 0.42 0.00
281 0.00 0.48 0.02
282 0.00 0.44 0.02
283 0.00 0.44 0.02
284 0.00 0.44 0.02
285 0.00 0.44 0.02
286 0.00 0.44 0.02
287 0.00 0.46 0.02
288 0.00 0.44 0.02
289 0.00 0.46 0.02
290 0.00 0.46 0.02
291 0.02 0.44 0.02
292 0.02 0.44 0.02
293 0.02 0.46 0.02
294 0.02 0.42 0.02
295 0.02 0.40 0.02
296 0.02 0.40 0.02
297 0.02 0.42 0.02
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298 0.00 0.40 0.02
299 0.00 0.42 0.02
300 0.04 0.38 0.02
301 0.04 0.44 0.02
302 0.04 0.42 0.00
303 0.04 0.42 0.00
304 0.04 0.36 0.00
305 0.04 0.38 0.00
306 0.04 0.38 0.00
307 0.04 0.36 0.00
308 0.04 0.36 0.00
309 0.04 0.36 0.02
310 0.04 0.40 0.02
311 0.06 0.34 0.02
312 0.06 0.36 0.02
313 0.06 0.36 0.02
314 0.06 0.38 0.02
315 0.08 0.30 0.02
316 0.06 0.34 0.00
317 0.06 0.30 0.02
318 0.08 0.36 0.00
319 0.08 0.32 0.00
320 0.08 0.34 0.00
321 0.08 0.34 0.00
322 0.06 0.30 0.00
323 0.06 0.32 0.00
324 0.08 0.32 0.00
325 0.08 0.34 0.02
326 0.10 0.32 0.02
327 0.10 0.32 0.02
328 0.10 0.34 0.02
329 0.10 0.36 0.02
330 0.10 0.32 0.02
331 0.10 0.32 0.02
332 0.10 0.32 0.02
333 0.10 0.36 0.02
334 0.10 0.32 0.02
335 0.10 0.32 0.02
336 0.12 0.32 0.02
337 0.12 0.32 0.02
338 0.10 0.32 0.02
339 0.10 0.30 0.02
340 0.12 0.28 0.02
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341 0.14 0.30 0.02
342 0.12 0.28 0.02
343 0.14 0.28 0.02
344 0.18 0.28 0.02
345 0.16 0.28 0.02
346 0.16 0.28 0.02
347 0.16 0.28 0.02
348 0.14 0.30 0.02
349 0.14 0.28 0.02
350 0.14 0.28 0.02
351 0.14 0.30 0.02
352 0.14 0.32 0.02
353 0.16 0.30 0.04
354 0.18 0.32 0.04
355 0.18 0.30 0.04
356 0.18 0.30 0.04
357 0.18 0.30 0.04
358 0.18 0.28 0.04
359 0.18 0.30 0.06
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