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1. Introduction

1.1 Interpretation of probability

Humankind has always been surrounded by uncertainties. Yet, quantify-
ing that uncertainty with probabilities is a relatively recent innovation
(Bernstein, 1996). Still, people have long thought about uncertainty, for al-
ready ancient Roman and Jewish laws of evidence include degrees of proof
and presumptions to deal with uncertainty in the court of law (Franklin,
2001). Yet, the first written record of probability calculus comes from the
1560s, when Gerolamo Cardano wrote about the sum totals when rolling
three dice and how the odds of those totals arose from the combinations of
dice rolls that could produce them (Bellhouse, 2005).

All the earliest examples of probability calculus focus on games of chance,
including writings of Cardano, Pierre de Fermat, Blaise Pascal, Christiaan
Hyugens, and even Galileo (Hacking, 2006). Because fair dice or decks of
cards provide a discrete set of possible outcomes which can all be assumed
equally likely, the underlying probabilities are easily understood. More
challenging mathematical problems arise when the number of cards or
dice increase, but this does not require substantial changes in problem
framing. However, as events with equally likely outcomes rarely appear
outside games of chance these early advances in probability theory found
little practical use (Bernstein, 1996).

Probabilities cannot be observed or measured directly, which may in part
explain why it took so long for probability theory to rise to prominence.
Advances in the field of statistics eventually led to new applications for
probability theory, finding uses in insurance pricing and policy decisions
(Bernstein, 1996). Statistics and probability seemed like such a perfect
match, that for a time, probability was widely interpreted as the frequency
of a specific outcome when a trial was repeated infinitely many times.
Whilst this frequentist interpretation explains well the probabilities of
dice rolls and variations found in statistics, it is not particularly helpful
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for determining the probabilities of future events (French, 1986). Modern
simulation models have made it possible to conduct statistical analysis
about the future in well-understood physical systems by varying the initial
conditions or simulation parameters (Hammersley, 2013)—an approach
that is used in meteorological forecasting (Wilks and Wilby, 1999) and
estimating the effects of weapon systems (Brandstein and Horne, 1998),
for example. Yet, not all systems are easy to simulate, least of all human
behavior.

Because of the difficulty or sheer impossibility of estimating the fre-
quency or propensity of future events (or human activity) in many contexts,
probabilities can instead be treated as degrees of beliefs in an event (Cor-
field and Williamson, 2001; Howard and Abbas, 2016; French, 1986; Raiffa,
1968). This interpretation is called Bayesian probability in honor of 18th-
century mathematician Thomas Bayes, who first presented a method for
updating beliefs about probabilities that is now called Bayesian inference
(Bernstein, 1996). The subjective probability interpretation itself, however,
should perhaps be more accurately attributed to Pierre-Simon Laplace
(2012). Nowadays, subjective Bayesian probabilities have become the norm
in fields like game theory and decision analysis, which deal with human
decision-making in particular (Corfield and Williamson, 2001).

It is a matter of philosophical debate, whether the true nature of prob-
ability is statistical, subjective, or simply some hidden physical property
(Kyburg and Smokler, 1980). Still, all these interpretations agree that
probabilities can be treated in a rigorous mathematical manner following
the rules of probability theory, a branch of mathematics with a well-defined
set of axioms governing probabilities (Kallenberg, 1997). Thus, the ex-
act probability interpretation rarely affects the validity of mathematical
methods but can have implications on how the probabilities should be
assessed and interpreted (Kyburg Jr, 2012). The author of this dissertation
subscribes to the subjective Bayesian school of thinking.

1.2 Decision theory

The primary reason that probability theory is so widely applicable is that
humans live in a world full of uncertainties. This is not an artifact of
the modern world but has existed throughout history (Bernstein, 1996).
Humans even seem to have evolved to have some innate understanding
of probabilities (Fontanari et al., 2014). While the specific problems faced
by humans have changed with the transition from hunter-gatherers to
modern societies, uncertainty has not disappeared.

The formal answer guiding choices between uncertain alternatives has
been known "ever since mathematicians first began to study the measure-
ment of risk" (Bernoulli, 2011). Laplace (2012) called it mathematical hope.

12
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Nowadays it is known, among other names, as mathematical expectation
or expected value. In its simplest form, it is the sum of possible outcomes
xi weighted by their probabilities pi

E[X ]= x1 p1 + x2 p2 + ...+ xn pn, (1.1)

but extensions also exist for countably and uncountably infinite sets of
possible outcomes (Kallenberg, 1997).

Maximizing expected profits is at the core of most of risk analysis, insur-
ance mathematics, and business optimization. However, for the maximiza-
tion of mathematical hope to become a truly universal answer to decision
problems under uncertainty, one more innovation was needed. In their book
Theory of Games and Economic Behavior (von Neumann and Morgenstern,
1947), John von Neumann and Oskar Morgenstern laid the foundation for
the field of decision theory (as well as game theory). Introducing what is
today known as von Neumann–Morgenstern (VNM) utility theorem they
postulated a set of axioms describing a rational decision-maker. When
faced with risky outcomes this rational decision-maker should choose an
alternative that maximizes the expected utility, defined as

E[U]= u(x1) p1 +u(x2) p2 + ...+u(xn) pn, (1.2)

where the utility function u provides a measure for the decision-maker’s
preferences over the possible outcomes xi.

The VNM utility theory has been the target of criticism since its inception,
sometimes even quite unjustly (Fishburn, 1989). Still, the theory has been
very influential at the heart of the field of decision theory (Peterson, 2017),
and even some of the critics are advocating for improving or evolving the
theory instead of abolishing it (Kahneman and Tversky, 1979; Schoemaker,
1982; Fishburn, 2013). There is a wide range of literature on the study of
utility functions and their role in human decision-making, but will not be
discussed further here, because this dissertation’s primary focus is on the
other part of equation (1.2), that is, the probability distribution.

1.3 Objectives of the dissertation

This dissertation develops mathematical methods for characterizing proba-
bility information about uncertainties in order to support decision-making.
Publications I and II focus primarily on the analysis of uncertainties
arising from the competing activity of other decision-makers, whereas
publications III and IV focus on quantifying the uncertainties based on
expert judgments.

Publication I explores how adversarial risk analysis (ARA) could be used
to model strategic and tactical decision-making in military combat mod-
eling, where uncertainty arising from the decision processes of different
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actors has traditionally not been incorporated in the analysis. Typically,
these decisions are modeled based on either very simplified game theo-
retical equilibriums or just expert opinion, leaving little to no room for
uncertainty.

Publication II presents new computational methods for performing ARA
without assigning probability distributions for all the involved uncertain-
ties. This is useful especially in security contexts because it avoids assign-
ing probability distributions to adversaries’ actions and utilities. Because
it is difficult to estimate the utility function of even a cooperative decision-
maker, it can be almost impossible to accurately estimate the utilities of
an adversarial decision-maker.

Publication III develops a new approach to cross-impact analysis by map-
ping expert judgments into corresponding probability bounds to different
system outcomes. These probabilities are then used to establish upper and
lower bounds for the system risk and other performance indicators. This
approach makes it possible to form conservative estimates about system
safety even if precise information about associated probabilities is not
readily available.

Publication IV presents a computational approach to using CIA expert
judgments, which may be imprecise and contradictory, to establish a prob-
ability distribution for possible system outcomes. This can facilitate proba-
bilistic analysis based on future events and other difficult-to-model systems,
like the ones often found in ARA.

14



2. Methodological foundations

The language used to describe decision problems is continuously evolving
and quite diverse (Keith and Ahner, 2021), so it is necessary to first
explain some of the terminology used throughout this chapter. Probability
is taken as representing a degree of belief in an event, and an event can
be any statement about the state of reality, for example, "Tomorrow it will
rain." or "Galileo died in December.". A random variable1 is a division of
reality into multiple possibilities. These possibilities, called (the random
variable’s) outcomes, are mutually exclusive and jointly exhaustive events,
so exactly one of them is guaranteed to always happen. A random variable
could be for example "Tomorrow’s highest temperature" with outcomes
{"< 0◦C", "≥ 0◦C and ≤ 20◦C", "> 20◦C"}. The random variables included in
the analysis should always be chosen to be useful for characterizing the
decision problem (Howard and Abbas, 2016).

2.1 Probability theory

The definitions here broadly follow (French, 1986) and (Kallenberg, 1997),
although some of the terms and notation used are different. To start out, let
(Ω,F ,P) be a probability space. For the sake of simplicity, we assume that
the sample space Ω is countable i.e. finite or countably infinite. Because Ω

is countable, all of its subsets can be included in the event set, and thus
the event set F = 2Ω. The set of outcomes X for random variable X is
defined as a countable partition of Ω=⋃︁

x∈X x. This means that X ⊆F , and
that the outcomes x ∈X are mutually exclusive and collectively exhaustive.
Because X ⊆ F , P(x) is defined for all x ∈ X , and also for unions and

1Various names exist for the same concept in the literature, for example, random
variable (Kallenberg, 1997), random event (Harsanyi, 1967), key factor (Bunn and
Salo, 1993), lottery (Raiffa, 1968; Myerson, 1997), distinction (Howard and Abbas,
2016), and uncertainty factor (Seeve and Vilkkumaa, 2022). Ultimately, the term
random variable is used here to keep the terminology as familiar to most readers
as possible. Notably, Publications III and IV primarily use the term uncertainty
factor instead.

15



Methodological foundations

intersections of outcomes.
Because the outcome sets are countable, the random variables are

discrete and defined as a function X : Ω → X such that the preimages
X −1(x)= x, for all x ∈X . Therefore, random variables describe the possible
states of the world by dividing them into specific outcomes. Usually, the
focus of the analysis is on the induced distribution P ◦ X−1, and the choice
of Ω plays little to no role. (Kallenberg, 1997).

It is convenient to also define the sets of possible decision outcomes D

as countable partitions of Ω=⋃︁
d∈D d. Informally, this means that making

decision d implies that we then live in a world we event d happens. This
ensures that for example conditional probabilities such as

pD(ω|d)= pD(ω∩d)
pD(d)

. (2.1)

are defined when x is an outcome of a random variable and d is a decision
alternative. We use PD to denote the beliefs specific to decision-maker D
when the distinction is necessary.

From the perspective of decision-maker D, there is normally no uncer-
tainty about the outcome, so PD(d)= 1 if they choose the decision alterna-
tive d. However, PA(d) may not be certain from the perspective of another
decision-maker A, if they are unable to directly observe the decision. Defin-
ing the decision alternatives as events in the probability space means that
all decision-makers use the same Ω and F and only different P. It also
provides an easy way to define mixed decision strategies if necessary.

2.2 Decision theory

The basic decision problem examined in this dissertation is the expected
utility maximization for a rational decision-maker D

max
d∈D

∑︂
ω∈Ω

pD(ω|d) uD(ω), (2.2)

where decision set D contains all of D’s decision alternatives. D’s proba-
bility estimate of ω given decision d is denoted with pD(ω|d). D’s utility is
represented with a VNM utility function uD :Ω→R.

Real-life problems, however, are not always modeled with just a single
conditional probability distribution, but often involve multiple decisions
and other random variables (Raiffa, 1968). The utility function can also
be expressed as a function of random variable outcomes instead of sample
space Ω to better tie it to the problem structure (French, 1986), resulting
in a utility function of form

u(ω)= f
(︁

X1(ω), X2(ω), ..., XN (ω)
)︁
. (2.3)

In fact, this is often preferable in practice because it is prohibitively difficult
to establish a utility function over a very large Ω otherwise.
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2.3 Games

Decision problems with multiple decision-makers whose interests do not
align are often modeled as games. In this context, a game is a collection of
rules that describes the decision-makers’ decision alternatives, available
information, and random variables (Myerson, 1997). Incorporating another
decision-maker changes the decision-maker D’s expected utility to

E[UD]=
∑︂
a∈A

∑︂
ω∈Ω

pD(ω|a,d) pD(a|d) uD(ω), (2.4)

where a ∈ A represents the decision made by the other decision-maker,
henceforth referred to as Adversary or A.

Finding the best decision alternative d now requires determining how
D believes A will react to the changing environment as represented by
pD(a|d). Without detailing the game, very little can be said about pD(a|d),
because it depends on the information the decision-makers act on. In adver-
sarial risk analysis, the problem is solved by assigning probabilities to the
possible Adversary types represented by pair TA = (uA, pA), corresponding
to A’s utility function and beliefs about probabilities respectively (Banks
et al., 2015).

Whilst it would be technically possible to include the Adversary’s type
in the same probability space as the decision problem, for the sake of
simplicity its probability space will be denoted here with (TA,FT ,PT

D),
where the sample space TA is the set of possible Adversary types TA.
The probabilities are denoted with PT

D to emphasize that these are D’s
subjective beliefs about the Adversary type.

Assuming that the Adversary is also a rational decision-maker, their
decision can now be determined for each possible Adversary type

a(TA)= argmax
a∈A

∑︂
ω∈Ω

pA(ω|a) uA(ω). (2.5)

Here, it is assumed that the Adversary’s decision a(TA) has a unique
solution, but that is not always true. Analyzing the Adversary’s decision
problem may produce one or multiple optimal decisions a, or there may
not be an optimum at all if set A is not finite.

The original decision problem can now be solved as

max
d∈D

∑︂
TA∈TA

pT
D(TA)

∑︂
ω∈Ω

pD(ω|a(TA),d) uD(ω), (2.6)

assuming that mixed (randomized) decision strategies are disallowed.
Incorporating mixed strategies would change the decision alternatives
of all decision-makers into probability distributions over specific actions d
and a, but otherwise, the problem would remain similar.

In practice however, it is difficult to assign well-founded probability
distributions for pT

D(TA), pD(ω|a(TA),d) and especially pA(ω|a), because a
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rational Adversary should be expected to perform an analysis of their own,
effectively mirroring what is done in (2.5) and (2.6). This translates the
problem into a Bayesian game (Harsanyi, 1967), which cannot be solved
without exploring the information upon which the decisions are based on.
Thus, complex games are often not studied purely algebraically, but also
incorporate graphical models that show what information is available at
each stage of the decision process (Myerson, 1997).

2.4 Graphical models

Visual models are an integral part of analyzing complex decision prob-
lems. They provide an easy-to-read representation of the information and
interdependence structure of the decision problem and are easier to con-
struct and interpret than purely algebraic representations. Some of the
simplest and most widely used visual representations are decision trees
(see, for example French, 1986; Raiffa, 1968), and in the case of multiple
decision-maker systems, game trees (Myerson, 1997), but they grow in size
exponentially as the problem complexity increases. Here we opt to use
graph-based models instead that provide largely the same information as
decision trees but do not grow impractically large as quickly.

These networks use directed acyclic graphs to represent dependencies
between random variables. The random variables are often chosen corre-
sponding to some physical systems or easily observable system outputs. In
more abstract problems, like those that concern warfare, counter-terrorism,
or foresight, the random variables will be less concrete, but they are still
chosen in a way that supports analyzing the decision problem at hand
(Howard and Abbas, 2016).

2.4.1 Bayesian networks

A Bayesian network (Pearl, 1985) consists of a graph G = (V ,E) that is a
pair consisting of nodes (vertices) V that correspond to random variables
and edges E that describe the conditional dependencies between the vari-
ables. With a slight abuse of notation, we will use X i to denote both the
random variables and the associated nodes of the network, so we write
V = {X1, X2, ..., XN }. The set of edges E consists of ordered pairs of distinct
nodes E ⊆ {(X ,Y )|(X ,Y ) ∈ V 2 and X ̸=Y }. Because we only discuss directed
(simple) graphs, any mentions of edges refer to directed edges, and the
existence of (X ,Y ) ∈ E implies (Y , X ) ∉ E.

Figure 2.1 shows a simple Bayesian network. The circles represent
nodes and the connecting arrows represent edges. The edges indicate
probabilistic dependencies between the random variables, i.e. an edge
from node X1 to node X2 implies that the conditional probability P(X2|X1)
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X1 X2

X3 X4

Figure 2.1. A Bayesian network.

differs in some way from probability P(X2) for some events in X1 and X2.
Conversely, the lack of a connecting edge implies conditional independence,
i.e. the conditional probability distributions of the two random variables
conditioned on each of their respective incoming edges are independent.
The conditional independence relation is context-specific and depends
on which random variables are included in the network and also on the
direction of the edges.

The probability information associated with a Bayesian network is ex-
pressed as conditional probabilities. The probability of every outcome is
conditioned on other random variables connected by an incoming edge. For
example, in the Bayesian network from Figure 2.1 random variable X2

would have its probability distribution encoded as P(X2|X1). The outcomes
of X3 are not included, because it does not share an edge with X2, and
neither are the outcomes of X4, because the edge between the two nodes is
directed from X2 to X4.

Following from the law of total probability and the definition of condi-
tional independence, these conditional probabilities are sufficient to specify
the probability of any combination of outcomes (x1, x2, ..., xN ). Using the
example from Figure 2.1 again, we get

P(x1, x2, x3, x4)= P(x1)P(x2|x1)P(x3|x1, x2)P(x4|x1, x2, x3) (2.7)

= P(x1)P(x2|x1)P(x3|x1)P(x4|x1, x2). (2.8)

From the computational perspective, these conditional probabilities are
also convenient because they require storing far less information than
probabilities of outcome combinations separately, assuming the network is
sparse enough.

2.4.2 Influence diagrams

Influence diagrams (Howard and Matheson, 2005) can be treated as
an extension of Bayesian networks despite predating them conceptually
(Howard and Matheson, 1984; Verma and Pearl, 1988; Pearl, 2005). Like a
Bayesian network, an influence diagram also consists of a graph G = (V ,E),
but unlike in a Bayesian network some nodes of the graph represent deci-
sions VD ⊂ V and decision-maker utility VU ⊂ V . In other words, an influence
diagram with neither decision nor utility nodes is just a Bayesian network
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(Kjaerulff and Madsen, 2008).

X1 X2

X3 D1 U1

Figure 2.2. An influence diagram.

Figure 2.2 depicts an example influence diagram. The circles represent
random variables as they do in Bayesian networks, the squares represent
decisions, and the hexagons represent utility to the decision-maker. The
incoming edges to decisions indicate that the outcomes of these connected
nodes are known at the time of the decision, whilst incoming edges to
utility nodes indicate which decision and random variable outcomes are
used to calculate the utility of the decision-maker.

The graphical representation is accompanied by a description detailing
if the incoming edges affect the decisions beyond providing information,
for example, if they limit the available decision alternatives in some way.
Typically, with influence diagrams, it is assumed that all the information
the decision-maker had access to during earlier decisions, as well as the
decision outcomes, are known when making later decisions (Shachter,
1986; Tatman and Shachter, 1990), but this assumption can be expressly
omitted in some cases (Mauá et al., 2012; Kjaerulff and Madsen, 2008).

Unlike random variables and decisions, utility nodes do not involve
any uncertainty. They are defined as VNM-utility functions over random
variables and decisions that are connected to the utility node. Typically,
an influence diagram will have exactly one utility node, but sometimes
multiple are used to represent separable components of the utility function
(Tatman and Shachter, 1990).

2.4.3 Multi-agent influence diagrams

Multi-agent influence diagrams (MAIDs) are influence diagrams that can
be used to represent games by including decisions, uncertainties, and
utilities of multiple decision-makers in a single graph (Koller and Milch,
2003). This provides a more compact visual representation of a game than
a game tree would, whilst still making it possible to denote the order of
decisions and uncertain events as well as the flow of information.

In the MAID in Figure 2.3 colors are used to differentiate between agents.
Here, decision-maker D’s decisions as well as utilities and uncertainties
only relevant to them are colored white, whereas vertices associated with
Adversary A are colored gray. Random variable X2 affects the utility of
both D and A, so it is colored with white and gray stripes. Random variable
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X1

D1

A1

X2

UD

UA

Figure 2.3. A multi-agent influence diagram.

X1 on the other hand is entirely irrelevant to A’s decision-making, so it is
colored white.

Sometimes when using MAIDs, coloring the random variables is omitted
because the same relevant information can be deduced from the network
structure and the accompanying descriptions of uncertainties, decisions,
and utilities. However, coloring all nodes helps separate the decision
problems of different actors. Figure 2.4 shows the decision problems of
the two agents separately. Producing these influence diagrams is very
straightforward when the original MAID is colored (Ortega et al., 2019).
The other agent’s decisions are replaced with random variables, and the
random variables and the utilities associated only with other agents are
removed.

X1

D1

A1

X2

UD

a)

D1

A1

X2

UA

b)

Figure 2.4. The decision-maker’s problem a) and the adversary’s problem b) as separate
influence diagrams.

2.5 Cross-impact analysis

Cross-impact analysis (CIA) encompasses several methods built on the
ideas presented in the seminal work of Theodore Gordon and Olaf Helmer
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in the 1960s (Gordon, 1994). CIA methods are crafted for the purpose
of examining and characterizing interdependencies that exist between
random variables, also referred to as uncertainty factors. By having experts
rate these dependencies’ magnitudes and directions on a numerical scale,
it is then possible to draw conclusions about their joint probabilities.

Whilst there are almost as many ways of measuring cross-impacts as
there are cross-impact methods (see e.g. Alter, 1979; Amer et al., 2013;
Bishop et al., 2007), this dissertation exclusively uses the definition first
presented in Publication III, referred to as the cross-impact multiplier
definition. Cross-impact multiplier for outcomes x1 and x2 of random
variables X1 and X2 respectively is defined as

Cx1x2 =
P(x1 ∩ x2)
P(x1)P(x2)

. (2.9)

It is called the cross-impact multiplier, because it describes the relative
change in probability of outcome x1 when x2 is known to happen compared
to when nothing is known about x2. This is because

Cx1x2 =
P(x1 ∩ x2)
P(x1)P(x2)

= P(x1|x2)
P(x1)

. (2.10)

Compared to other cross-impact approaches, the cross-impact multipliers
have some distinct advantages.

i They facilitate estimating numerical probabilities and are thus com-
patible with risk and decision analysis methods as well as graphical
probability models.

ii They are symmetric by design, i.e. Cx1x2 = Cx2x1 as seen from (2.9), which
means that dependencies do not need to be evaluated twice for every
outcome pair.

iii They avoid interacting directly with conditional probabilities, which can
be difficult for non-experts to estimate (Pollatsek et al., 1987).
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3. Research Contributions

This dissertation presents new methods for supporting decision-making
under uncertainty, especially in problems relating to safety and secu-
rity. Publications I-II focus on using adversarial risk analysis (ARA) to
model the decision processes of adversarial actors. Publications III-IV
develop probabilistic cross-impact methods to support risk evaluation and
probability estimation based on expert judgments. The contributions are
summarized in Table 3.1.

3.1 Publication I

ARA combines methods of statistical risk analysis and game theory to
help evaluate risks and choose countermeasures against threats posed by
intelligent and potentially malignant actors. Many of the earliest ARA
applications have focused on counterterrorism. However, despite the long
history of game theory and computational models in the military, ARA has
not been widely applied in combat modeling (at least publicly). Publication
I identifies ways to combine ARA methods with existing combat modeling
tools to broaden the scope of analyses that can be performed. Specifically,
Publication I discusses how ARA could serve to combine results from low-
level simulations to form a picture of how the success of individual units
could affect the wider conflict. The publication also offers a simple example
of how ARA can be used to evaluate the value of information and the
importance of operational secrecy.

3.2 Publication II

Evaluating the rationale of other decision-makers poses a persistent chal-
lenge in applying ARA and other methods based on game theory to real-
world problems. Evaluating the utility function of a cooperative party is
challenging, but finding reliable information about the beliefs and pref-
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Table 3.1. Summary of publications.

Publication Objectives Methodology Results
I To explore and

demonstrate the
potential of ARA
in military appli-
cations.

Adversarial Risk
Analysis,
Combat
Modeling,
Simulation

ARA can be combined with exist-
ing combat models to analyze ques-
tions that would be outside the
original model’s scope, including
decision problems, impacts on the
conflict on a larger scale, and the
value of hidden information.

II To develop new
ARA methods
to analyze prob-
lems in which
probabilities
about the ad-
versary or some
other aspect of
the system are
not known.

Adversarial Risk
Analysis,
Stochastic
Dominance,
Combat
Modeling,
Simulation

The developed method enables
solving all ARA problems repre-
sented by regular influence dia-
grams using stochastic dominance
and decision rules when exact util-
ity functions or probability dis-
tributions are not available. A
case study demonstrates the use
of the developed method for mili-
tary planning.

III To provide a
cross-impact
interpretation
founded on prob-
ability theory
for use with risk
analysis.

Cross-impact
Analysis, Risk
Analysis,
Quadratic
Programming

A new definition for probabilistic
cross-impacts founded on probabil-
ity theory is presented. Applicabil-
ity to risk analysis is demonstrated
with an optimization method and
a case study.

IV To develop a
method for com-
puting scenario
probability dis-
tribution based
on cross-impact
information.

Cross-impact
analysis,
Scenario
Analysis, Least
Squares
Approximation

A new optimization method, which
utilizes cross-impact information
to compute joint probability distri-
butions for random variables. A
Bayesian network can also be con-
structed based on the computed
probabilities. Applicability to real-
world problems is demonstrated
with a case study.
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erences of adversaries can be near impossible. To avoid having to make
unrealistically precise predictions about adversaries’ thought processes,
Publication II develops methods for characterizing their likely actions
based on more general assumptions. Publication II shows how the con-
cepts of partial information, stochastic dominance, and decision rules can
be used instead of some or all of the probability distributions and utility
functions to analyze adversarial risks. The contributions are demonstrated
with a realistic case study about choosing and deploying countermeasures
to unmanned aerial vehicles.

3.3 Publication III

Risk analysis of complex systems calls for the identification, characteriza-
tion, and analysis of numerous possible future events and developments
that may negatively impact the system. The task is further complicated
by the fact that these uncertainties can also depend on one another. How-
ever, looking individually at every possible scenario that can be formed
as a combination of these outcomes quickly becomes infeasible when the
number of random variables increases. Cross-impact analysis offers a tool
for estimating how the perceived probabilities of random variables change
based on the outcomes of others. Publication III offers a cross-impacts
definition that is founded on probability theory and admits several kinds
of probabilistic statements about dependencies between the uncertainty
factors. The publication also describes how the statements can be trans-
formed into optimization constraints and used to calculate upper and lower
bounds for the overall risk level of the system. The approach is illustrated
with an example case about the risk analysis of nuclear waste repositories.

3.4 Publication IV

Estimating the probability distributions of the different random variables
is one of the main challenges in producing probabilistic forecasts. Simu-
lation models, such as the ones used in weather forecasting and military
combat modeling, can be used to quantify future uncertainties governed
by chance. However, modeling uncertainty stemming for example from
human activity with simulations is often not feasible, and creating detailed
simulation models is challenging and time-consuming. Thus, eliciting
experts for their estimations about future uncertainties is often the only
feasible approach. Still, eliciting information about systems with multiple
interdependent random variables poses a challenge, because when the
number of variables increases the number of possible interactions with
them grows exponentially. Cross-impact methods manage this complexity
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by focusing only on the pairwise impacts between two random variables.
Publication IV presents a new optimization approach that can synthe-
size these pairwise cross-impact statements to produce a joint probability
distribution for the random variables. When combined with conditional
independence information, the calculated probabilities can also be used to
construct a Bayesian network to aid what-if analyses. The Publication also
includes a case study focusing on the future of 3D-printing in military use.
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4. Discussion

This dissertation develops new methods to account for uncertainties in
support of decision-making in adversarial risk analysis (ARA) and proba-
bilistic scenario analysis. Publications I and II focus on ARA methodology
to quantify uncertainties caused by adversarial decision-makers with com-
peting interests. Publications III and IV, on the other hand, present novel
approaches for using cross-impact analysis (CIA) to quantify uncertainties
associated with future events.

Despite having been developed relatively recently, ARA has already found
numerous applications in counter-terrorism and cyber security. Still, much
of the military combat modeling research does not use ARA or any other
game-theoretic models for adversarial activity (Washburn et al., 2009),
despite the great impact that adversaries’ actions have on the effectiveness
of tactics and weapon systems. As discussed in Publication I, ARA methods
can be used to expand the range of analyses that can be performed using
pre-existing combat modeling tools, incorporating small-scale encounters
as a part of the bigger picture and evaluating the value of secrecy and
information.

The shared common knowledge assumptions required by many game-
theoretical models have been problematic in attempts to adapt game theory
to combat modeling. Bayesian Nash equilibrium developed by Harsanyi
(1967) provides the necessary tools for finding robust solutions for facing
different types of adversaries, but coming up with a probability distribution
over adversary types (representing their utility functions and available
information) can be onerous. In Publication II, we show that even simple
assumptions about adversaries (such as wanting to minimize casualties)
can serve as a foundation for a game-theoretic analysis when interpreted
as partial preference order relations over outcomes. Whilst this type
of analysis cannot be used to predict the adversaries’ actions precisely,
some of their decision alternatives can be excluded as irrational. Thus,
it is possible to find risk mitigation strategies that work against rational
adversaries, even if the adversary’s precise type or type’s probability is not
known.
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Compared to ARA, CIA approaches quantifying uncertainty very dif-
ferently. Cross-impact information elicited from experts describes how
the likelihood of specific outcomes changes when an outcome of another
random variable is known. There exist cross-impact methodologies that
differ in almost everything except that basic idea (Alter, 1979; Amer et al.,
2013; Bishop et al., 2007). Most of the earliest methods worked similarly
to Monte Carlo simulation, drawing random events from the possible list
of outcomes and then adjusting the probabilities of remaining outcomes
based on the associated cross-impacts (e.g. Gordon, 1994; Dalkey, 1971;
Helmer, 1981). More recently, several CIA methods have been developed
that eschew probabilities entirely, and only measure the likelihood of out-
comes appearing together in terms of how consistent their cross-impacts
are (e.g. Weimer-Jehle, 2006; Seeve and Vilkkumaa, 2022). Whilst both
of these approaches have their uses in exploring the future, developing
scenarios, and fostering managerial thinking, they are not very compatible
with either risk or decision analysis.

To facilitate risk analysis based on cross-impacts, Publication III presents
a new cross-impact interpretation founded on probability theory. Called
cross-impact multipliers, this new cross-impact interpretation, together
with information about marginal probabilities of the associated random
variables, can be used to determine upper and lower bounds for system
risk. Thus it is useful, for example, in demonstrating compliance with
regulatory risk bounds as well as in comparing different risk mitigation
alternatives.

Whilst the primary focus in Publication III is on risk analysis, Publica-
tion IV takes the same cross-impact definition and presents methods for
calculating a joint probability distribution for different scenarios formed
as combinations of outcomes of random variables. It is also demonstrated,
how the computed probabilities together with conditional independence
information can be used to construct Bayesian networks, offering a useful
tool for what-if type analyses.

This dissertation opens up new research directions as well. First, the
presented methods could be tested with more empirical case studies. It
would be interesting to try how compatible ARA and CIA are together.
ARA is often the preferred method for modeling uncertainty from human
activity, and CIA is good for estimating long-term technological and other
developments. The two together could be used to analyze safety and
security problems with long time horizons, such as investments into new
weapon systems or the design of long-term nuclear waste repositories.

There is room for new methodological extensions as well. Expanding
further on the methods presented in Publication II, it would be interesting
to explore how the partial information approach could be expanded to also
include non-sequential games, i.e. games with decisions whose outcomes
are not observable before the next decision of the adversary. Although it is
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possible that the increased uncertainty would make it impossible to draw
any useful conclusions about these games (Fishburn, 1978). Another poten-
tial research topic would be examining how different types of ambiguous
preference models, such as the ones used by Danielson et al. (2014) or Salo
and Punkka (2005), could be applied in ARA.

Expanding on the CIA methods presented in this dissertation, some
work has already been done in using the computed probabilities or risks
to choose scenarios for more detailed examination (Elfving, 2023). This
way probabilistic and narrative scenario methods could be used together to
combine some of the best aspects of both traditions. The analytical models
help contextualize the scenarios and the narrative approaches provide
depth and approachability. Selecting the right scenarios to focus on is
also important in many modeling or simulation studies and offers another
potential avenue for future research.

29





References

Steven Alter. The evaluation of generic cross-impact models. Futures, 11(2):
132–150, 1979.

Muhammad Amer, Tugrul U Daim, and Antonie Jetter. A review of scenario
planning. Futures, 46:23–40, 2013.

David L Banks, Jesus M Rios Aliaga, and David Ríos Insua. Adversarial Risk
Analysis. CRC, Boca Raton, FL, 2015.

David Bellhouse. Decoding Cardano’s Liber de ludo aleae. Historia Mathematica,
32(2):180–202, 2005.

Daniel Bernoulli. Exposition of a new theory on the measurement of risk. In The
Kelly Capital Growth Investment Criterion: Theory and Practice, pages 11–24.
World Scientific, 2011.

Peter L Bernstein. Against the Gods: The Remarkable Story of Risk. John Wiley
& Sons, New York, 1996.

Peter Bishop, Andy Hines, and Terry Collins. The current state of scenario
development: an overview of techniques. Foresight, 9(1):5–25, 2007.

Alfred Brandstein and Gary Horne. Data farming: A meta-technique for research
in the 21st century. Maneuver Warfare Science, 1998:93–99, 1998.

Derek W Bunn and Ahti A Salo. Forecasting with scenarios. European Journal of
Operational Research, 68(3):291–303, 1993.

David Corfield and Jon Williamson. Foundations of Bayesianism, volume 24.
Springer Science & Business Media, 2001.

Norman C Dalkey. An elementary cross-impact model. Technological Forecasting
and Social Change, 3:341–351, 1971.

Mats Danielson, Love Ekenberg, Aron Larsson, and Mona Riabacke. Weighting
under ambiguous preferences and imprecise differences in a cardinal rank
ordering process. International Journal of Computational Intelligence Systems,
7(2):105–112, 2014.

Vikke Elfving. Scenario selection in probabilistic cross-impact analysis. Master’s
thesis, Aalto University, 2023.

Peter C Fishburn. Non-cooperative stochastic dominance games. International
Journal of Game Theory, 7(1):51–61, 1978.

Peter C Fishburn. Retrospective on the utility theory of von Neumann and
Morgenstern. Journal of Risk and Uncertainty, 2:127–157, 1989.

31



References

Peter C Fishburn. The Foundations of Expected Utility, volume 31. Springer
Science & Business Media, 2013.

Laura Fontanari, Michel Gonzalez, Giorgio Vallortigara, and Vittorio Girotto.
Probabilistic cognition in two indigenous mayan groups. Proceedings of the
National Academy of Sciences, 111(48):17075–17080, 2014.

James Franklin. The Science of Conjecture: Evidence and Probability before
Pascal. Johns Hopkins University Press, 2001.

Simon French. Decision Theory: An Introduction to the Mathematics of Rationality.
Halsted Press, 1986.

Theodore J Gordon. Cross-impact Method, volume 4. American Council for the
United Nations University, 1994.

Ian Hacking. The Emergence of Probability: A Philosophical Study of Early Ideas
About Probability, Induction and Statistical Inference. Cambridge University
Press, 2006.

John Hammersley. Monte Carlo Methods. Springer Science & Business Media,
2013.

John C Harsanyi. Games with incomplete information played by “Bayesian”
players, I–III Part I. The basic model. Management science, 14(3):159–182,
1967.

Olaf Helmer. Reassessment of cross-impact analysis. Futures, 13(5):389–400,
1981.

Ronald A Howard and Ali E Abbas. Foundations of Decision Analysis. Pearson
Education Limited, 2016.

Ronald A Howard and James E Matheson. The Principles and Applications of
Decision Analysis. Strategic Decisions Group, Palo Alto, CA, 1984.

Ronald A Howard and James E Matheson. Influence diagrams. Decision Analysis,
2(3):127–143, 2005.

Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision
under risk. Econometrica, 47(2):363–391, 1979.

Olav Kallenberg. Foundations of Modern Probability. Springer, 1997.

Andrew J Keith and Darryl K Ahner. A survey of decision making and opti-
mization under uncertainty. Annals of Operations Research, 300(2):319–353,
2021.

Uffe B Kjaerulff and Anders L Madsen. Bayesian Networks and Influence Dia-
grams. Springer, 2008.

Daphne Koller and Brian Milch. Multi-agent influence diagrams for representing
and solving games. Games and Economic Behavior, 45(1):181–221, 2003.

Henry E Kyburg and Howard E Smokler. Studies in Subjective Probability. New
York, US: Robert E. Krieger Publishing Company, 1980.

Henry E Kyburg Jr. The Logical Foundations of Statistical Inference. Springer
Science & Business Media, 2012.

Pierre-Simon Laplace. A Philosophical Essay on Probabilities. Courier Corpora-
tion, 2012.

32



References

Denis Deratani Mauá, Cassio P de Campos, and Marco Zaffalon. Solving limited
memory influence diagrams. Journal of Artificial Intelligence Research, 44:
97–140, 2012.

Roger B Myerson. Game Theory: Analysis of Conflict. Harvard University Press,
1997.

Jorge Ortega, David Ríos Insua, and Javier Cano. Bi-agent influence diagrams
from an adversarial risk analysis perspective. European Journal of Operational
Research, 273(3):1085–1096, 2019.

Judea Pearl. Bayesian networks: A model of self-activated memory for evidential
reasoning. In Proceedings of the 7th Conference of the Cognitive Science Society,
University of California, Irvine, CA, USA, pages 15–17, 1985.

Judea Pearl. Influence diagrams—historical and personal perspectives. Decision
Analysis, 2(4):232–234, 2005.

Martin Peterson. An introduction to decision theory. Cambridge University Press,
2017.

Alexander Pollatsek, Arnold D Well, Clifford Konold, Pamela Hardiman, and
George Cobb. Understanding conditional probabilities. Organizational Behavior
and Human Decision Processes, 40(2):255–269, 1987.

Howard Raiffa. Decision Analysis: Introductory Lectures on Choices under Uncer-
tainty. Addison-Wesley, 1968.

Ahti Salo and Antti Punkka. Rank inclusion in criteria hierarchies. European
Journal of Operational Research, 163(2):338–356, 2005.

Paul JH Schoemaker. The expected utility model: Its variants, purposes, evidence
and limitations. Journal of Economic Literature, pages 529–563, 1982.

Teemu Seeve and Eeva Vilkkumaa. Identifying and visualizing a diverse set of
plausible scenarios for strategic planning. European Journal of Operational
Research, 298(2):596–610, 2022.

Ross D Shachter. Evaluating influence diagrams. Operations Research, 34(6):
871–882, 1986.

Joseph A Tatman and Ross D Shachter. Dynamic programming and influence
diagrams. IEEE Transactions on Systems, Man, and Cybernetics, 20(2):365–379,
1990.

Thomas Verma and Judea Pearl. Influence diagrams and d-separation. Technical
report, UCLA, Computer Science Department, 1988.

John von Neumann and Oskar Morgenstern. Theory of Games and Economic
Behavior. Princeton University Press, 1947.

Alan R Washburn, Moshe Kress, et al. Combat Modeling, volume 139. Springer,
New York, 2009.

Wolfgang Weimer-Jehle. Cross-impact balances: A system-theoretical approach
to cross-impact analysis. Technological Forecasting and Social Change, 73(4):
334–361, 2006.

Daniel S Wilks and Robert L Wilby. The weather generation game: A review
of stochastic weather models. Progress in Physical Geography, 23(3):329–357,
1999.

33





A
-o

tl
a

D
T

67
/2

 3
2

0

9
 +d

agcb
e*GM

FTSH

I  NBS 9 3-0621-46-259-87   )detnirp(

I  NBS 9 0-1621-46-259-87   )fdp(

I  NSS 1 4394-997   )detnirp(

I  NSS 1 2494-997   )fdp(

A ytisrevinU otla

S ecneicS fo loohc

D sisylanA smetsyS dna scitamehtaM fo tnemtrape

w  fi.otlaa.ww

B  + SSENISU
E  YMONOC

A  + TR
D  + NGISE
A  ERUTCETIHCR

S  + ECNEIC
T  YGOLONHCE

C  REVOSSOR

D  LAROTCO
T  SESEH


	Aalto_DD_2023_067_Roponen_verkkoversio
	Aalto_DD_2023_067_Roponen_verkkoversio.pdf
	Abstract
	Tiivistelmä





