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1. Introduction

The task of game testing is repetitive and expensive. Automatic analysis
of human player data or replacing playtesters with artificial intelligence
(AI) could save game companies time and money. For instance, Al-based
analysis of human playtesters’ data could help with accelerating the as-
sessment of large-scale playtest datasets or modeling player behavior [130].
In addition, employing AI agents can assist developers in selecting the
best game design or finding bugs in a current design without hiring human
playtesters with varying playing styles. This empowers game developers
to test small design alterations fast and at the early stages of development
[130].

This dissertation advances game testing through the lens of player ex-
perience. Since emotion is considered essential for understanding player
experience [151], first, we investigate machine learning for analyzing
playtesters’ emotional expressions. Second, simulation-based methods are
developed to predict the game difficulty and engagement experienced by
players. In other words, this dissertation aims to solve two main problems:
1) How to better collect and analyze data from real humans, and 2) How to
augment expensive human data with synthetic data.

The first part of this dissertation focuses on analyzing human player emo-
tion, which can be used to examine the game events or select highlights of
the game for further inspection. We investigate the role of multi-modality
and emotional event granularity levels in detecting human emotion ac-
curacy. This is made possible by modern deep neural network tools that
allow flexible and accurate analysis of multiple data types such as facial
images, audio signals, and speech transcripts [79].

The focus of the second part of the dissertation is on simulation-based
player experience and behavior modeling. We employ Al agents for predict-
ing human player data such as pass and churn rates, which helps identify
problematic game levels and optimize them before presenting them to real
players. Here, we build on recent advances in deep learning and reinforce-
ment learning that have empowered automatic game testing by making
it possible to create Al agents that can play the games as well as human
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players [95, 96, 125]. Simulation-based testing research ranges from gener-
ating human-like agents [57, 2] and agents with diverse behaviors [121] to
creating Al agent gameplay visualization tools [1]. Furthermore, Al agents
have been employed in various areas such as game parameter tuning, find-
ing bugs, and player experience and behavior modeling [9, 55, 45, 105, 49].
In this dissertation, we concentrate on using Al agents in predicting game
difficulty and engagement.

Although the first and second parts of the dissertation are both applicable
and beneficial in game testing as they are, there is another important
connection between the two parts. Since emotion is a regulator of decision-
making and memory processes, Al agents with emotion would be desirable
in game testing because they could behave more human-like. In this
regard, Publication I's Affect Gradient method could be used to evaluate
and visualize computational models of emotions by comparing synthetic
affect gradient data generated by Al agents to real affect gradient data
from human players. For recent advances in augmenting Al agents with
computational emotion models, see the review by Ojha et al. [101]. For
example, the Affect Gradient reduction at a particular game event as time
passes could be an indicator of an event gradually losing its novelty for
the players. One might also generate game-testing agents with virtual
facial expressions that produce similar Affect Gradient measures as human
players.

Initially, the Affect Gradient was built on top of facial expression analysis,
however, as shown by Publication II, adding extra modalities helps emotion
detection, so using other modalities would likely also improve Affect Gra-
dient measurements, and help to generate better emotional models. In the
future, it might be possible to develop and evaluate agents that not only ex-
press facial expressions but also produce emotional think-aloud narratives.
Recent research on Large Language Models (LLMs) has demonstrated
the ability of LLMs to precisely reason using chain-of-thought prompting
[146] and express human-like emotion with respect to a particular prompt
[134]. Based on this, it might be possible to automatically generate textual
descriptions of game events and have an LLM like GPT-3 [20] to generate
human-like think-aloud narratives of the subjective player experience.

1.1 Publications

Publication I employed a convolutional neural network (CNN) to clas-
sify human facial expressions into seven predefined emotion classes.
Then, the affect changes at game events were investigated to explore
the players’ reactions to different game events.

Our main finding was that players usually react to the getting killed
event by smiling, which is detected as happiness. On the other

18
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hand, players’ concentration at events like killing enemies could
be detected as mild anger. We hypothesized that players might
laugh at the getting killed event because of the irony of the event or
social signaling regarding being observed by the researchers. Our
findings warn researchers that a direct interpretation of players’
facial expressions might be misleading. In addition, we urged further
inspection of other expression signal modalities like voice and speech
in player emotion detection.

Publication II provided a dataset of emotional events (e.g., startle, happy)
in steams of a puzzle game. The annotated events were also clas-
sified into pleasant/unpleasant/neutral and top5/not-top5 highlight
categories. The automatic detection of these emotional events was in-
vestigated. We exploited the combination of facial, voice, and speech
expressions for better detection of emotional events. For this matter,
we used a novel neural network architecture that integrates the low-
level audio features and emotional probability outputs of multiple
networks pretrained with large datasets of facial images, voice data,
and review text. Our results suggest that extra input modalities
could help detect emotionally salient events.

Publication III proposed a pass and churn rate prediction method for a
mass-market mobile puzzle game. Our two-level simulation approach
combined Deep Reinforcement Learning (DRL) game-playing agents
and simulation of player population evolution over game levels. Game
level difficulties predicted by DRL agents’ performance were used to
model how the player population with simulated attributes like skill,
persistence, and boredom changes over game levels.

We demonstrated that the simulation of player population changes
over game levels is able to model individual player differences and
capture the relation between the pass and churn rates over the
levels without requiring training multiple Al agents per game level.
However, improving the pass and churn rate predictions, for example,
using Monte Carlo tree search agents, remained as future work.

Publication IV extended the previous paper by combining Monte Carlo
Tree Search (MCTS) with the pretrained DRL agents and propos-
ing a better feature selection approach for the pass and churn rate
prediction models.

According to our results, combining MCTS and DRL improves predic-
tion results. We also confirmed the finding of Kristensen et al. [75]
that calculating Al agent performance based on its best runs can be
a better predictor of human data rather than the AI agent’s average
performance.
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1.2 Outline of the Thesis

In chapter two, psychological theories behind human motivation, emotion,
and experience are briefly overviewed. Chapter three elaborates on auto-
matic and Al-assisted game testing approaches, including playtest data
exploration and game-playing agents. We summarize our developed meth-
ods, results, and possible future improvements in chapter four. Finally, the
main findings of this dissertation and possible future works are discussed
in chapter five.

20



2. Psychological Background

The following chapter explains the psychological background necessary
for understanding the motivation and reasoning behind the technology
developed in this dissertation for player behavior and experience analysis
and modeling. First, human motivation and emotion are discussed, then
player experience and its relation to game engagement are explored. In
short, player experience can be defined as how the player perceives the
interaction with the game [152].

2.1 Human Motivation

As defined by Fiske and Taylor [42], "motivations provide the motor for
behavior". In other words, the reason humans do certain things in specific
ways resides in their motivations. There are multiple motivation theories
that attempt to explain human behavior and propose different hierarchies
and categories. For instance, Forbes [43] proposes a motivational model
constructed by a 3 x 3 table with the focus of aspiration (self, material
world, social world) as columns and the level of aspiration (expectations,
experiences, outcomes) as rows.

Human motivation is often classified into extrinsic and intrinsic subcat-
egories [31]. Motives initiated by external rewards or punishments are
called extrinsic. External drives, such as shame, fame, and wealth, come
from an individual’s surrounding environment. In contrast, intrinsic moti-
vations arise from the inner satisfying characteristics of activities rather
than external and detachable outcomes and are a result of satisfying basic
psychological needs [32]. Both extrinsic and intrinsic motivations direct
human behavior, but in different ways. Self-determination Theory (SDT)
[114] as one of the popular motivation theories posits competence, auton-
omy, and relatedness as core psychological needs. Satisfying these needs,
which are common among diverse cultures, facilitates intrinsic motivations
and causes self-motivation. The needs can be defined as [115]:

Autonomy The need to act willingly

21



Psychological Background

Competence The need to be challenged and overcome the challenges
Relatedness The need to connect with the other individuals

SDT has been widely applied in different domains like sport, healthcare,
education [92], as well as video games [113] to predict the effective outcome.
On the other hand, other sources discuss and identify a wider palette of
needs, e.g., self-actualization [120] and novelty [5].

2.1.1 Motivation in Games

Player type identification classifies players based on their motivations
to play the game. In an early work, Bartle [7] introduces four player
types, including killer, achiever, explorer, and socializer, in a multiplayer
Dungeon game. Bartle states that an engaging game should satisfy all
types of players. In order to validate the player types introduced by Bartle,
Yee [153] performs an empirical study of player motivations in an online
multiplayer game. After performing factor analysis on a questionnaire with
40 questions, achievement, social, and immersion motivations with ten
subcategories are suggested. Recently, Hamari and Tuunanen [53] have
proposed achievement, exploration, sociability, immersion, and domination
as five key dimensions of player type and motivation modeling.

For the sake of a general player motivation model and independence to
game genres, Ryan et al. [115] experimented with the application of SDT in
video games. They used the Player Experience of Need Satisfaction (PENS)
questionnaire to measure the effect of different game features on satisfying
basic player needs and two additional factors of presence and intuitive
controls. Based on their findings, satisfying autonomy, competence, and
relatedness is a predictor of game enjoyment and the tendency for future
play. Furthermore, they found that perceived autonomy and competence
are correlated with the feeling of presence.

2.2 Human Emotion

Several studies define emotion as a process in which humans show feelings
and emotions in response to their environments. For instance, appraisal
theory [116] posits that the way humans evaluate an event based on
variables like novelty, goal relevance, social norms, and agency results in
different emotions. The procedural nature of appraisal theory makes it a
popular computational model of emotion in human-computer interaction
and artificial intelligence fields[29].
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® Anger Surprise
Fear ]
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Figure 2.1. Basic emotions mapped to a valence-arousal 2D map [112].

2.2.1 Discrete Emotion Models

Some emotion theories introduce fundamental or basic emotions like fear,
anger, and joy [136, 38], which have been developed through human evolu-
tion, and each has an adaptation functionality. Each emotion can activate
a particular neural circuit and result in a specific response and action.
For example, neural activity related to fear has been developed with the
purpose of survival [98]. As evidence of basic emotions, Ekman et al.
[38] propose emotion-specific facial expression patterns and show their
universality.

2.2.2 Continuous Emotion Models

According to continuous emotion models, emotions are characterized by
continuous dimensions like valence and arousal [111]. Figure 2.1 illus-
trates basic emotions in the valence-arousal 2D map. Later, the dominance
component was added to the valence and arousal dimensions for better dis-
crimination of emotions [18]. Valence denotes the positivity (pleasantness)
of emotion; the activation (responsiveness) of emotion is denoted by the
arousal dimension, and dominance indicates the controllability (power) of
emotion [112].

2.2.3 Emotion in Games

Emotion and games are intertwined, and one cannot easily separate them
from each other [151]. In defining fun in games, Lazzaro [78] identifies
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emotions as the key factors and shows that each type of fun elicits different
emotions. For example, frustration and fiero feelings are expressed in hard
fun, and the feeling of wonder is expressed in easy fun. Furthermore, sev-
eral studies associate (positive) emotions with positive player experience
[90]. On the other hand, there exists a growing body of research on how
negative emotions and emotional challenge can also be central to games
that players appreciate [14].

Emotions can be expressed as physiological reactions. Therefore multiple
researchers have studied physiological data like electromyography (EMG),
galvanic skin response (GSR), and electrocardiography (ECG) signals in
detecting emotions in games [73]. In a study by Mirza-Babaei et al. [93], a
user research tool is introduced, in which EMG signal is combined with
game logs. Tan et al. [133] combine physiological signals and think-aloud
data and show that they have a complementary effect on player experience
understanding. Other signals like gaze, head and body pose, and facial ex-
pressions have also been studied in detecting the affective state of players
[119, 132]. Researchers should be aware of the complementary effect of
different signals. For instance, [87] states that as GSR is more sensitive to
arousal, EMG is more responsive to valence.

Emotion in games has mainly been applied for developing adaptive
games [11, 13]. Interaction with games triggers player emotions. An
adaptive game adjusts itself to respond to players’ emotional changes.
Game content, non-player characters (NPCs), and game difficulty can be
adjusted to improve the player experience. For instance, Blom et al. [11]
exploit facial expressions to decrease the game difficulty when the player
looks angry and increase it when the player seems neutral.

2.3 Player Experience and Game Engagement

Player experience can be measured through popular game questionnaires
like Player Experience of Need Satisfaction (PENS) [115], Game Engage-
ment Questionnaire (GEQ) [19], and Ubisoft Perceived Experience Ques-
tionnaire (UPEQ) [4]. Game engagement, which has an intricate and
multidimensional essence, is usually approached with respect to the sub-
jective experience of enjoyment and motivations behind playing games
[17]. Csikszentmihalyi [27] identifies an activity to be engaging when it
creates the Flow state characterized by challenges and the required skills
to overcome them, immersive experience, high amount of concentration,
sense of control, clear goals, and immediate feedback.
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Figure 2.2. Flow theory emphasizes the balance between challenge and skill [28].

2.3.1 Game Engagement and Difficulty

According to the Flow theory [27], there should be a balance between game
difficulty and player skill level to make an engaging game (Figure 2.2).
Otherwise, excessive challenge yields anxiety, while a very easy game
causes boredom. In both situations, the state of flow cannot be achieved.

In addition, many studies acknowledge challenge as one of the key mo-
tivations for playing the games [17]. Lucas and Sherry [83] applied six
factors of uses and gratification theory (challenge, competition, diversion,
fantasy, social interaction, and arousal) to playing games and found chal-
lenge as the main reason for playing games for both males and females.
Similarly, competence in self-determination theory is one of the basic hu-
man needs and is satisfied when players encounter challenges in balance
with their skill level so that they feel capable of overcoming the challenges
[115, 109].

Nevertheless, the relation between game engagement and difficulty is
not always straightforward, and it might depend on the type of game. This
has been shown by Lomas et al. [82] who observed that lower difficulty
leads to higher player engagement in their educational game. Considering
game enjoyment as a key contributor to game engagement [17], Mekler et
al. [90] distinguish enjoyment (i.e., the valence of player experience) from
engagement (i.e., the intensity of player experience) and state that players
might experience enjoyment even in the lack of challenge-skill balance,
while player’s skill level is higher than the challenges (Figure 2.3).
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Figure 2.3. Achieving game enjoyment does not always depend on the challenge-skill
balance [90].
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3. Technical Background

What if one could provide methods to facilitate more efficient inspection
of collected game testing data, exploit the enormous available data in
game streams, or replace human playtesters with Al agents? This chap-
ter discusses prior research on these topics to provide background and
contextualize the technical contributions of this dissertation.

3.1 Al-assisted Playtest Data Exploration

Game companies perform large-scale game testing to validate their game
design or tune their game parameters. Beyond game analytics data logged
by game code, it is also possible to collect playtest video data at scale,
through online services such as PlayTestCloud. A good visualization tool
for summarizing and further exploration of playtest videos can accelerate
the playtesting process.

Gameplay data can be visualized using different visualization techniques
such as charts, movement trajectories, heatmaps, and node-link graphs
[145]. Charts come in various types and are useful for comparison or to
show aggregated statistics. Movement trajectories illustrate the explo-
ration in the game environment. Heatmaps are useful to show the intensity
of a variable at specific positions in the game map. Node-link graphs are
able to demonstrate the data variables and the relations between them.
Each visualization technique has its own weakness and strength and can
coexist together to convey more information [145].

Mirza-Babaei et al. [93] have developed biometric storyboards, a visual-
ization method that illustrates player experience graphs along with player
physiological signals collected during playing the game. However, graphs
might make the comparison between players difficult because they are
gameplay-dependent. In many games, players have various game-playing
styles and spend different amounts of time interacting with different parts
of the game, which results in very different gameplays. As a good alterna-
tive to graphs, one can inspect game events.
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Previous work has studied game events with a focus on player behavioral
data analysis [72, 89]. Medler et al. [89] record and use graphs to visualize
game events in a multiplayer online game, such as when players die or
kill other players, when a weapon is obtained, or at the winning/losing the
game. Visualizing game events assists in monitoring player performance
and balancing the game. Drenikow and Mirza-Babaei [36] have created
a visualization tool for game playtesting in which players’ facial data,
movement trajectories, and in-game events are recorded. To illustrate
where the events have happened, in-game events are shown as 2D sprites
inside the game environment.

In Publication I, like the methods in [89, 36], we also study game events,
but we focus on the effect of different events on affect. Error bar and
histogram charts are used to visualize and summarize the affect changes
around each game event of a platformer game [71].

3.2 Automatic Gameplay Highlight Detection

Sometimes there are no predetermined game events like in game streams,
and sometimes the game events cannot encompass all the valuable infor-
mation like the aesthetic aspects of the game. In these cases, detecting
gameplay highlights and further investigating them would be helpful for
game designers.

Ringer and Nicolaou [110] propose a novelty-based highlight detection.
They extract features from audio and visual data of game streams, in-
cluding reconstruction errors of auto-encoders [138] applied to the game
streamer’s facial images and gameplay images. Then, extracted features
are fed into Long Short-Term Memory (LSTM) [56] layers to predict the
next frame features. 0.01% of the frames with the highest LSTM predic-
tion errors are considered as the highlights. After manually labeling the
detected highlights via different modalities, they found that the facial
data is mostly good for detecting social-interaction events, the gameplay is
good for detecting action events, and all modalities together have the best
highlight detection performance.

3.2.1 Multi-modal Emotionally Salient Event Detection

Game events provoke player emotions which are expressed through the
player’s face, voice, and speech. Therefore, player emotional expressions
can be used as an indicator of emotionally valuable game highlights. Recog-
nizing player emotional expressions allows us to identify game highlights
and classify such events into various categories like pleasant or unpleasant,
which will be advantageous for player experience estimation.

Services like Youtube and Twitch construct the required foundation for
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Figure 3.1. A game streamer sharing her facial video ( https://www.kotaku.com.au/2018/01/
how- to- stream-pc-games-on- twitch/).

consumers to act as content creators and let them interact with their
audience through the fast-growing online broadcasting industry known
as streaming. Interestingly, more and more users prefer watching other
people’s gameplays, which motivates game streamers to create even more
content [128]. Streamers usually narrate their game experience through
the gameplay in a non-controlled environment, and some of them also
share their facial video. This makes game streams one of the perfect
resources for exploring player emotional expressions using different modal-
ities, especially as when playing and streaming a game as a performance,
one is motivated to be expressive, which avoids the problem of players
becoming expressionless with a high degree of concentration on the game.

Using various modalities would be helpful in capturing an individual’s
true feelings. In a hypothetical situation where a subject is nervously
laughing, speech or physiological signals might help detect the laughter
as not signaling joy. Even though physiological signals are not available
in game stream data, facial images, vocal data, and linguistic aspects of
speech are other modalities that could be used.

As shown in Figure 3.2, different modalities can be combined in feature
level (i.e., early fusion) or decision level (i.e., late fusion) [123]. In the
first case, extracted features from all the resources are fused together, and
machine learning methods are applied to the combined feature vector. In
the decision-level fusion, each resource outputs its own predictions, which
are combined to produce the final predictions.

29


https://www.kotaku.com.au/2018/01/how-to-stream-pc-games-on-twitch/
https://www.kotaku.com.au/2018/01/how-to-stream-pc-games-on-twitch/

Technical Background

ity L Moduel
Module 1 |— Feature 1
Modality 1

. | Combining — Predictions
. module

Modality N

ity 1 | Module1 —> Predicti
Module 1 Predictions 1
Modality 1 odule

* \. Combining

4 /" module
Ian,” —> Predictions N
Modality N

— Predictions

Figure 3.2. Top: Early fusion, in which extracted features from different modality modules

are combined to output the final predictions. Bottom: Late fusion, in which
predictions of different modality modules are combined to output the final
predictions.

3.2.2 Facial Expression Recognition

The task of recognizing emotional expressions from facial images is called

Facial Expression Recognition (FER). Facial expressions can be classified
into categorical classes of emotions like happiness, sadness, and anger.
In addition, they can represent player experience. Tan et al. [132] show
that player facial expressions are correlated with Game Experience Ques-

tionnaire [62] dimensions, including competence, immersion, flow, tension,
challenge, negative affect, and positive affect.

Datasets Since automatic facial expression recognition is a well-explored

problem, several datasets have been developed for it. For exploring
these datasets, we refer to [80], but here we briefly introduce the ones
that have been used in this dissertation.

A Kaggle competition! provides a public dataset containing approx-
imately 28K training images, 7K test images, and corresponding
emotional labels. Facial images are in grayscale and have a size of
48 x 48. Labels include six basic emotions: happiness, sadness, anger,
disgust, surprise, fear, and an additional neutral class.

AffectNet [97] contains over 500K images from the Internet with
their manually annotated labels of six basic emotions and additional
classes like neutral, contempt, uncertain, non-face, and none. The
uncertain label is assigned to the images that the annotator had not
been sure about the facial expression. Non-face label encompasses
images that are very distorted. Expressions like sleepy, tired, and

1https J/Iwww.kaggle.com/c/challenges-in-representation-learning-facial-
expression-recognition-challenge/data
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shame that cannot be described by the six basic emotions, contempt
or neutral, are annotated with the none label. In addition, AffectNet
provides the valence and arousal values for all the images except
those with non-face and uncertain labels.

Methods To prepare the recorded videos of players for facial expression
analysis, first, one needs to perform face detection and crop the faces
from the video frames. Next, face alignment should be applied to the
cropped images [80]. Pitaloka et al. [106] showed that techniques
like data augmentation by adding noise to the images and global
contrast normalization, in which the image is normalized by its mean
and standard deviation could improve the facial emotion recognition
performance.

After preparing and preprocessing the data, feature extraction and
classification steps should be done. Early methods used Histogram
of Gradients (HOG) or Local Binary Patterns (LBP) for feature ex-
traction and logistic regression, Support Vector Machine (SVM), or
K-nearest Neighbours (KNN) for the classification part [77].

Feature extraction and classification steps are unified in deep learn-
ing methods, which have attracted much attention in various machine
learning domains, including computer vision. Convolutional Neural
Networks (CNNs) [149], as a subset of deep learning, are popular in
the field of computer vision and have been employed for the facial
expression recognition task as well [80].

A convolutional layer scans the whole image with a window called
filter, to quantify the local spatial dependencies between pixels, e.g.,
whether there’s a corner or edge. In addition, using a shared window
across an entire image reduces the number of parameters one needs
to learn. A convolutional neural network (Figure 3.3) stacks multiple
convolutional layers to extract a hierarchy of features from low level
to high level.

Pooling layers are also popular in convolutional networks. Pooling
is usually applied after convolutional layers to aggregate features
locally, reduce the computational complexity by reducing the size of
features for the next layer, and make the model almost invariant to
small local translations in the input [46].

In the experiments of this dissertation, we deploy the VGG16 [126]
architecture, one of the popular CNN models, for facial expression
classification. Figure 3.4 illustrates the VGG16 architecture. The cat-
egorical cross-entropy loss function is used for training the network.
The neural network outputs the probability of basic emotion classes,
which later is used as one set of emotional features for detecting the
emotional events in game streams.
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Figure 3.3. An example of a convolutional neural network. Convolutional layers extract
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features from the image, and pooling layers aggregate features over rect-
angular regions by computing averages or finding maximum values, and
subsampling the results to decrease output resolution. The number of ex-
tracted features at each layer is equal to the number of orange boxes at that
layer. Finally, a fully-connected layer outputs the final classifications.
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Figure 3.4. The VGG16 architecture. FC denotes a fully connected layer.

3.2.3 Audio Emotion Recognition

In addition to the face, humans usually express their emotions through
their voice. For instance, they change their voice pitch regarding their
emotion about an event. Acoustic characteristics of voice like energy, pitch,
and tone can convey information about the emotional state of a subject

[26].

Datasets There are many databases for the Audio Emotion Recognition
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(AER) task, such as IEMOCAP [23], TESS [37], RAVDESS [81],
SAVEE [68], and CREMA-D [24]. IEMOCAP [23] includes audio-
visual data of 10 actors reading pre-written scripts or having impro-
vised dialogues in different emotional states. In this dataset, discrete
emotion labels (i.e., happiness, sadness, anger, surprise, fear, disgust,
frustration, excitement, neutral) and continuous emotion values of
valence, arousal, and dominance ranked from one to five are provided
by multiple human annotators.

RAVDESS [81] is another audio-visual dataset containing 7356 videos
recorded from 12 male and 12 female actors in two strong and normal
emotional intensities. It contains emotional labels, including calm,
happiness, sadness, anger, fear, surprise, and disgust.

CREMA-D [24] includes 7442 videos from 91 actors and actresses
of different ethnicities and ages. Actors say 12 sentences in the
neutral state and basic classes of emotion except for surprise, with
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low, medium, high, and unspecified emotional intensities.

SAVEE [68] contains the recording videos from 4 English male actors
reading 15 sentences in 6 basic emotional states and the neutral
state. In addition, TESS [37] dataset includes voices of 24 and 64
years old actresses saying the sentence "Say the word ..." filled with
a word from a set of 200 words, in 6 basic emotion and neutral states.

Methods Traditional audio emotion recognition methods first extract
features like pitch, energy, and Mel-Frequency Cepstrum Coefficients
(MFCC) and then add a classification method like Hidden Markov
Model (HMM) or SVM on top of the extracted features [39]. However,
like many other machine learning tasks, we can leave the feature
extraction to the neural networks and have an end-to-end recognition
system [137, 139]. However, in addition to the raw audio signals,
audio spectrograms are also widely used as the input of deep neural
networks applied to the AER task [100, 60].

For converting the raw audio signal to the spectrogram, the Short-
Time Fourier Transform (STFT) as a time-frequency representation
of the signal is computed by applying discrete Fourier transforms
in overlapping windows over the signal. The Fourier spectra are
complex-valued vectors, so magnitude spectra or power spectra are
calculated. Then, spectra are converted to decibels, which gives us
log spectra. The heatmap visualization of the log spectra is called the
spectrogram? (Figure 3.5).

Yafeng et al. [100] perform data augmentation using the retinal imag-
ing principle algorithm to get spectrograms in various sizes and apply
AlexNet [76], a convolutional neural network, to the spectogram in-
puts. Another type of deep neural network that has been utilized
for the AER task is Recurrent Neural Networks (RNNs) (Figure 3.6),
which are specialized for sequential data learning. Long Short-Term
Memory (LSTM) [47] is a recurrent neural network that can utilize
information from longer sequences by regulating the amount of in-
formation passing through the network using its sigmoid activation
gates (Figure 3.7). Huang and Narayanan [60] use a combination of
convolutional and LSTM [60] layers to capture the temporal aspect
of audio signals.

In Publication II, we convert the stream’s audio signal to spectro-
grams, which later are mapped to 7 classes of emotions by the VGG16
model [126]. The last fully-connected layer of the network uses soft-
max activation to output the probability of each emotion class. These
probabilities are another set of emotional features extracted from the
streams.

thtps //wiki.aalto.fi/display/ITSP/Spectrogram+and+the+STFT
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3.24 Speech Sentiment Analysis

Alternative equipment for humans to express their emotions is the lin-
guistic part of speech. Therefore, the positivity or negativity of the speech
is another modality that can be used in detecting human feelings. To
automatically classify the speech into positive or negative, first, we need
to convert speech to text. This task can be done by humans or automatic
speech recognition modules [154]. Nowadays, services like Youtube provide
automatic speech recognition for many videos, including game streams.

Datasets Databases like Amazon review dataset® or IMDB movie reviews
[84] are available for the sentiment analysis task. IMDB dataset
includes 50K highly polarized reviews with an equal number of posi-
tive and negative reviews. Amazon review dataset contains around
3600K train and 400K test data. This dataset leaves out 3-star (i.e.,
neutral) reviews and labels 1-star and 2-star reviews as negative and
4-star and 5-star reviews as positive sentiment.

Methods First, the input text is standardized by removing special char-
acters and HTML tags, lower-casing, and expanding contractions.
Second, each data point is split into smaller tokens. For example,
sentences are tokenized into words. In some methods, the input data
should be converted to equal-length sequences. This can be done by
truncating the longer sequences and zero-padding the shorter ones.

Traditional methods used hand-crafted features such as part-of-
speech (i.e., labeling each word with its role in the sentence as noun,

3 https://www.kaggle.com/bittlingmayer/amazonreviews/discussion/33444
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verb, etc.), word n-grams (i.e., the combination of n consecutive words
in the text), and sentiment lexicon (i.e., having a list of positive and
negative words, and computing the number of positive and negative
words in the text) [150]. Then, classifiers like Maximum Entropy
(ME) or SVM were trained on extracted features to predict the senti-
ments [150].

Although classic machine learning methods have produced good re-
sults, deep neural networks simplify the natural language processing
tasks by providing a good representation of the text without requir-
ing hand-crafted features. Recurrent neural networks like LSTM or
temporal convolutional networks (1D convolution) are typical choices
for the sequential and time-series data type like textual data.

In a text classification task, Zhang and Wallace [155] first tokenize
each sentence into words and then convert the data into n x d matrix,
with n length of the sentence and d the word vector size. They apply
1D convolutional layers to the matrix by moving the kernel along the
sentence dimension. Furthermore, researchers have combined CNN
and LSTM to capture both local and long-term dependencies in the
data [61].

Another popular type of deep neural network that has been widely
used in the field of Natural Language Processing (NLP) is trans-
formers [141]. Transformers employ a self-attention mechanism to
relate different parts of the input sequence to each other. Unlike
RNNSs, transformers do not process the sequence in order; therefore,
they can utilize parallel processing to make the training faster. In
order to use the sequential ordering of tokens, transformers employ
positional encoding, which can be learned or fixed vectors. Vaswani
et al. [141] use sine and cosine functions with different frequencies
for this matter.

To prepare the text data for the deep neural networks, we need to
represent the text as numbers. One can use the one-hot encoding of
words, an extremely sparse representation, or assign a unique integer
value to each word of the vocabulary, which is a dense representation
but still cannot encode the similarity of the words.

An efficient substitute for the above representations is word embed-
dings which are trainable real-valued vectors. They provide a dense
representation space where semantically similar words have similar
encodings. For instance, Word2Vec [91] learns word embeddings by
skip-gram or continuous bag-of-words models in an unsupervised
manner. Unlike the skip-gram model, which predicts the surround-
ing words from the current word, the continuous bag-of-words model
predicts the current word given the surrounding words.
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In Publication II’s stream emotion recognition task, we used Keras
trainable embedding layer [25] and 1D convolutional layers for sen-
timent analysis of the streamers’ speech. The positivity probability
of their speech played as another feature for our final game stream
emotional event recognizer.

3.3 Game Evaluation Metrics: A Computational View

3.3.1 Game Difficulty

Game difficulty and challenge are intertwined concepts and are used in-
terchangeably by researchers [34]. There are different types of challenge:
performative, cognitive, and emotional challenge. While performative chal-
lenge describes the challenges related to the player’s physical performance,
reaction, and accuracy, cognitive challenge encompasses difficulties related
to the player’s memory, strategy, and decision-making abilities [34]. Emo-
tional challenge occurs when the player faces a difficult subject, has to
make a hard decision, confronts an ambiguity or emotional narrative, or
feels identification with the game characters [34, 15].

Game difficulty has been measured by game element characteristics like
the gap size in a platform game [129], number of NPCs, the existence
of pathfinding/traps in a General Video Game AI (GVGAI) game [58],
or the board layout in a puzzle game [140]. Although calculating such
metrics is not computationally expensive, they are game-specific and do
not generalize well to all game genres. Furthermore, they do not cover the
game difficulty caused by the player’s interaction with the game mechanics.

Other methods have operationalized game difficulty by the simulated
agents’ performance like the average time required for solving a puzzle [85],
the number of moves or problem decomposition capability [69], obtained
game scores [99, 67], and success rate [3, 107, 51]. Success rate, which is
practical even in case the game score is not available, is applicable to many
types of challenge, especially the performative and cognitive challenge.

3.3.2 Game Engagement

Game usage and time spent playing games can be seen as game engage-
ment measurements [17]. Game companies attempt to reduce the churn
rate, which is defined as the percentage of players leaving the game, e.g.,
per day or per played level. Some work predicts an individual player churn
probability [10, 12], and others estimate the average churn ratio per game
level [108]. The former is used to offer extra personalized stimulus to the
players that are likely to leave the game. The latter can indicate problem-
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atic and non-engaging game levels, allowing game designers to resolve
the issues by game parameter tuning like game difficulty adjustment or
presenting more novel and engaging game content/mechanics.

3.4 Game Al Agents

Advances in deep learning and access to more computational resources
have expedited the creation of artificial intelligent agents and motivated
game companies to replace and/or augment human playtesters with Al
agents. Deep Reinforcement Learning (DRL), Monte Carlo Tree Search
(MCTS), and their combination have successfully implemented game-
playing agents capable of outperforming human players [95, 125, 144].

3.4.1 Markov Decision Process

Markov Decision Process (MDP) is a sequential decision-making formalism
in which an agent at state s; € S interacts with an environment by taking
action a; € A based on policy 7 and receives the reward r; € R <R and the
new state s;+1 € S with the transition probability of p(s;i1,7¢lss,a;). The
Markov property denotes that the current state should encapsulate all the
information required for predicting the future state of the environment.
Therefore, an agent will be able to decide independently of the past states
and just based on the current state [131].

3.4.2 Deep Reinforcement Learning

Reinforcement learning (RL) is a common approach for learning (approx-
imately) optimal actions for an MDP. In an MDP environment, a rein-
forcement learning agent (Figure 3.8) acts based on its current learned
policy to gather experience in the form of (s;,a;,7¢,s:+1) tuples. The policy
n(as|s;) maps each state to a specific action distribution. Using the col-
lected experience, the policy will be optimized to maximize the expected
cumulative discounted future reward G; =, [ZkT:tyk’trk} , where T is the
termination time of an agent-environment interaction episode and y is
the discount factor, which determines the value of future rewards [131].
Typically, the policy is initialized to produce random actions, and the action
noise gradually decreases during training as the policy transitions from
exploration to exploitation.

Other important concepts in RL are on-policy state value V”*(s;) € R and
on-policy state-action value @"(s;,a;) € R functions. V”(s;) defines how good
a state is in terms of the expectation of the cumulative future reward under
the policy 7. @"(s;,a;) defines a similar expectation to show the value of
taking a specific action in a particular state [131]. In problems with large
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Figure 3.8. A reinforcement learning agent.

state and action spaces, where simple lookup tables are not sufficient, deep
reinforcement learning utilizes deep neural networks for approximating
the value and policy functions.

Policy Gradient

This dissertation utilizes policy gradient, a type of RL that directly opti-
mizes the policy ng parameterized by 6, using gradient ascent to maximize
the objective function J(0) with respect to policy parameters:

6t+1 =0t+aVJ(0t). (31)

REINFORCE algorithm [147] is an ancestor of the most policy gradient
methods, which uses the expected total return as the objective function:

T
J0) =G =Ey lZy’”rk] (3.2)
k=t

The gradient of the objective can be derived as Equation 3.3 [131]. For
positive G, following the gradient will increase the probability of sampling
a; in state s;. For negative G;, following the gradient will make taking a;
in state s; less likely. Thus, the updated policy will produce more actions
with high returns.

VJ(0y) = Ex [G¢V1ogmg(a:ls,)] (3.3)

REINFORCE is simple and quite intuitive, but the gradient has high
variance. However, the variance can be minimized by replacing the re-
turn G; with advantage A" (sy,a;) = rys1 + YV (sp41) — V7(s¢) [94]. Intuitively,
this means that gradient ascend increases the probability of actions that
produced higher returns than expected using the policy. In practice, the
values need to be approximated using a value function predictor network,
i.e., value function Vg(s ;) parametrized by ¢, which can produce bias and
make learning unstable. This is why Generalized Advantage Estimation
(GAE) [117] was proposed.

To reduce the bias, the n-step return can be used to calculate the advan-
tage A"(sy,as) = Eff;’;ry +7/V$(st+n) - Vg(st), but it causes variance. GAE
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generalizes n-step advantage, so instead of cutting off the trajectory at an
arbitrary n, it calculates the weighted sum of advantages ), wnAZ with
the exponential decay weights w, « 1*~!, which results in:

A(s1,a) =81+ (YBps1 + oo+ GV 1574, (3.4)

Where 6; = ry+1 +y\7$(st+1) - Vg(st), and A determines the bias-variance
trade-off.

Nowadays, various open-source implementations of RL algorithms exist
[70, 35], and one typically only needs to define the learning problem as an
MDP, i.e., compose the state observations, define actions and apply them in
the environment, and implement the code needed to compute the rewards.
Furthermore, most RL algorithms operate in an episodic fashion, which
can be described in pseudo-code as:

Algorithm 1 episodic reinforcement learning

for each iteration do
for each episode do
Sample an initial state
until a terminal state encountered or time limit 7' do
Sample an action a; ~ n1g(a;|s;) and apply it in the environment
Observe next state s;+1 and reward r;
Store the experience tuple (s;,as,7¢,5:+1)
end
end
Update ny using the collected experience
end

This means that one also needs to implement the initial state sampling
and define which states are terminal ones. In games, the initial state is
typically the game’s start, and player dying is considered a transition to a
terminal state.

This dissertation utilizes Proximal Policy Optimization (PPO) [118], one
of the most popular episodic RL algorithms. PPO combines GAE with a
regularized gradient update to prevent large changes to the policy weights.

Intrinsically motivated Reinforcement Learning Agents

One crucial component of reinforcement learning is the reward function.
Different reward functions lead to different performances and problem-
solving strategies. Additional to the rewards that come from the envi-
ronment, another type of reward is usually defined based on the agent’s
internal state, which is called intrinsic reward (Figure 3.9). Intrinsic re-
ward ideas are borrowed from human intrinsic motivations and are often
used for better exploration in case of sparse external rewards. Moreover, it
has been shown that intrinsically motivated agents can produce diverse
and human-like behaviors [86].
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Figure 3.9. An intrinsically motivated reinforcement learning agent adapted from [127].
Such an agent, in addition to the reward from the environment (r.,), receives
an intrinsic reward (r;,) based on its internal model.

Curiosity, novelty, information gain, and empowerment are popular in-
trinsic rewards in reinforcement learning methods. Curiosity encourages
the agents to the transitions that yield high prediction error over a learned
model [103]. Novelty-seeking methods give unseen states higher rewards
[8]. Furthermore, information gain assigns higher rewards to the tran-
sitions that provide the agent with the most information about the envi-
ronment. Information gain can be defined as the KL-divergence between
p(zly) and p(z) [59], which means the larger the KL-divergence, the more
information about the latent variable z, is given by observing y. The la-
tent variable z denotes the agent’s knowledge of the environment, such as
the transition function pg(s;+1lss,a:), whereas the variable y could be the
collected experience (s;,as,s:+1) through interacting with the environment.

Another intrinsic reward slightly different from the ones above is em-
powerment, defined as having the maximum comprehensible effect on
the environment. Empowerment is known as the mutual information
between the agent’s action and next state given current state I(a;s’|s) =
H(a|s)— H(als',s). In multi-agent environments, coupled empowerment
has been demonstrated to produce emergent cooperative and competitive
behaviors [48, 50].

Pathak et al. [103] use the error of the learned forward dynamic model
as a curiosity measure. Therefore, the agent is rewarded whenever it
encounters novel and unseen transitions. Later, Burda et al. [21] show
that Pathak et al.’s work is sensitive to randomness in the environment,
and the agent receives rewards for spending time at the sources of ran-
domness. For solving this problem, Burda et al. [22] propose Random
Network Distillation (RND), in which the agent learns the output of a
fixed random neural network. More recently, Pathak et al. [104] used the
disagreement between the ensembles of deterministic neural networks as
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the intrinsic reward so that the agent does not receive any reward due to
the randomness within the environment.

In Publication IV, Unity ML-agents 0.10.0 [70] framework, which imple-
ments the PPO algorithm [118] and curiosity reward [103] is employed to
implement a game-playing agent for playing a match-3 game.

3.4.3 Monte Carlo Tree Search

Monte Carlo Tree Search is an alternative to RL for solving MDP prob-
lems. In MCTS, for selecting the approximately best action at each state,
four main steps (Figure 3.10) should be iteratively performed until the
simulation budget is exhausted:

Selection Traverse the tree from the root according to the tree policy
until reaching an under-explored node (i.e., a node that has at least
one unexpanded child). Upper Confidence bounds for Trees (UCT) is
used as the tree traversal policy:

V(sg+1) InN,,
argmax +c

) (3.5)
54+1€C(sq) Ny Ny

Where C(sq) denotes the set of children and Ny, is the visit number
of the node s; at depth d. V(sg,1) indicates the value of the node
sq+1, one of the node s4’s children. Parameter ¢ adjusts the trade-off
between exploitation and exploration.

Expansion One of the unexplored actions of the selected node in the
above step is randomly chosen to be expanded.

Simulation From the expanded node’s state, the environment is forward
simulated based on the rollout policy until it reaches a terminal state
or the time horizon limitation is met. Rollout policy could be any
policy, even a random one.

Back-propagation The return of the simulation is back-propagated to-
wards the tree’s root, and the visit numbers of all the nodes in this
path are increased by one.

Unlike reinforcement learning, MCTS does not require lengthy training
and can be run with an arbitrary computational budget. However, MCTS
can be computationally expensive, which can be mitigated by employing a
pre-trained DRL policy as the MCTS rollout policy. This can yield more
reliable rollout returns. MCTS has been a very successful game-playing
agent [52, 107, 57] and can even play the game of Go better than humans
when combined with RL [124].
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Selection Expansion Simulation Back propagation

Figure 3.10. A Monte Carlo tree search agent.

3.4.4 Simulation-based Game Testing Applications

Nowadays, more and more game companies show interest in employing
simulated agents for tuning game parameters, estimating the level difficul-
ties, or detecting bugs [66, 51, 30] because this can reduce the cost of game
testing substantially. In the context of game testing, winning the game is
not necessarily the ultimate goal and Al agents which act like humans are
preferable [16].

One can create human-like agents by imitation learning [51, 105]. Gud-
mundsson et al. [61] trained an agent in a supervised learning manner to
learn the human actions in each game state of a match-3 game. Then, the
agent performance was used to predict the average human pass rates of
the game levels. Similarly, Pfau et al. [105] created different simulated
agents by learning human players’ actions in different character classes of
a role-playing game. They tried to balance the game parameters through
inter-class matches between the agents. Imitation learning is a data-driven
approach, so it needs lots of human data, which is not always available,
for instance, when new game mechanics or game contents are introduced.
Moreover, it has difficulty generalizing to the states that are not available
in the expert dataset.

According to computational rationality [44], an alternative to imitation
learning, humans behave in the direction of maximizing the utility of
actions under the restricted computational capabilities of their brains.
Computational rationality can be implemented using DRL or MCTS if
the reward function can be defined or inferred. Poromaa [107] showed
that the performance of an MCTS agent could be mapped to the average
human pass rates per game level. Bergdahl et al. [9] employed DRL
agents to detect parts of the map that agents get trapped inside them or
unexpected paths that agents could use to reach the goals. In a match-3
game, Kristensen et al. [75] predicted each level’s pass rates using the
number of moves a PPO agent uses to complete the level. They investigated
the effect of curriculum learning. They found that training the agent on

43



Technical Background

a batch of preceding levels and fine-tuning it on the target level produces
the best results.

Some work concentrates on predefined strategies and player types such
as runner, explorer, and achiever [52, 30, 57, 121] to generate game-playing
agents. Silva et al. [30] tested a board game using rule-based agents with
different game-playing styles and found multiple defects in the game
ruleset. Holmgaard et al. [57] replaced the UCT formula of MCTS with
different utility functions corresponding to different game-playing styles.
They investigated the interaction of each type of agent with the game
elements and the way each of them traverses the dungeon maps. Such
agents later could be employed to test whether an expected outcome from
a particular game-playing style (e.g., the time each player type spends
in various parts of the map) would be satisfied or not. Shun et al. [122]
created more human-like agents with less training cost by using common
strategies among human players as the action space of the DRL agents.
The main limitation of the heuristic-based methods is that predefined
heuristics created by game designers may not cover all human strategies.

There is a need for methods that are less dependent on manually defined
heuristics. For example, Shen et al. [121] combined evolutionary algo-
rithms, DRL reward shaping, and multi-objective optimization for creating
various agent types in a combat game, e.g., defensive, neutral, and aggres-
sive. Furthermore, intrinsic rewards can be used to create self-motivated
agents with particular or diverse behaviors [48, 50, 41]. Recently, Matusch
et al. [86] have shown that intrinsically motivated agents produce similar
behavior to human players by measuring the overlap in their observa-
tions. However, the combination of different intrinsic rewards and their
application in game testing remains under-explored.
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4. Developed Methods

This chapter summarizes the methods developed for publications I-IV.
On a high level, Publication I analyzes the players’ facial expressions at
game events. It raises caution for direct usage of facial expressions in
guiding game development since they may not communicate real player
emotions. Publication II extends Publication I by taking advantage of
multi-modal expression signals, including facial, vocal, and speech data.
This attempt shows that expression signals, especially facial and vocal data,
can be used to detect game highlights. However, they are less successful
in detecting fine-grained emotions, and this task appears hard even for
human annotators.

Publications IIT and IV focus on employing artificial intelligence to model
player experience and behavior. Publication III trains a deep reinforcement
learning agent per game level, collects agent gameplay data, and uses the
data to predict game level pass and churn rates, i.e., measures of difficulty
and retention/engagement. The player population changes over the game
levels are simulated, capturing how the relation between levels pass and
churn rates evolves. In practical game production, the results could be
used for identifying game levels that would cause high churn rates. This
method is extended in Publication IV by utilizing Monte Carlo tree search
agents and a better feature selection for the pass and churn rate prediction
models. One of the main takeaways of Publication IV is that computing
statistics from the best agent runs can be a better predictor of human
player data than the average agent performance.

4.1 Publication |

We propose a vision-based system for analyzing players’ facial expressions
at game events, utilizing an existing platformer game dataset with event
logs and facial videos [71]. Our approach computes changes in emotional
expression intensities at each game event, which we call affect gradients.

Our motivations for this publication are: 1) facilitating the generation
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Figure 4.1. Happiness signal for an individual player on three instances of getting killed
by enemy event. a) the raw signal. b) the median-filtered signal. c) the median-
filtered and mean-normalized signal. d) a line is fitted to the signal, and its
slope shows the affect gradient.

and validation of computational models of players’ emotions and motiva-
tions, and 2) creating a tool for analyzing and summarizing playtest videos
to reduce game testing costs.

4.1.1 Facial Expression Analysis

A VGG16-based deep neural network [126] is trained to map players’ facial
expressions to 7 basic classes of emotions, e.g., happiness, anger, sadness,
and surprise. We train the neural network on Kaggle facial expression
recognition challenge dataset!.

4.1.2 Affect Gradient

We use Platformer Experience Dataset (PED) [71] to evaluate our auto-
matic facial expression analysis system. PED contains the game events
and their corresponding timestamps, collected from 28 males and 30 fe-
males playing a clone of Super Mario Bros, while their facial data has been
recorded.

Figure 4.1 illustrates our affect gradient method steps. First, the neural
network trained on the facial expression recognition dataset is applied to
the facial data extracted from the PED dataset to get the raw expression
signals (i.e., the probability of emotion classes). Then, having videos of 30
frames per second, a median filter with a kernel size of 15 (half a second) is
used to smooth the expression signals. For each game event, a time window
of [-15, 30] frames ([-0.5, 1] seconds) around it is extracted, and the mean
of the window is subtracted from the signal. Finally, the slope of a line
fitted to the resulting expression signal is considered the affect gradient of
that game event. Moreover, for each game event, we present the histogram
of individual affect gradients and the summary plot of means and standard
deviations of all segmented signals (Figure 4.2). The slope of a line fitted
to the mean signal is considered as the summary affect gradient.

1https J//www.kaggle.com/c/challenges-in-representation-learning-facial-
expression-recognition-challenge/data
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Figure 4.2. Top: summary plots of means and standard deviations of all happiness signal
segments and the summary affect gradients (i.e., the slopes of the lines fitted
to the mean signals). Bottom: histograms of affect gradients computed from
the segmented signals.

4.1.3 Summary of Results

Our key finding—replicating previous work using facial electromyography
instead of vision [74]-is that getting killed by enemy often causes smiling,
perhaps due to irony or social signaling related to the recording situation
of being observed in a research setting. This is detected as increased
happiness by the system. In contrast, events like killing enemy might
get interpreted as anger since players usually frown during concentration.
Our results warn of direct usage of player facial expressions to guide
game development. For example, although getting killed by enemy has the
highest happiness gradient, it does not seem reasonable to design a game
that kills the player as often as possible.

4.1.4 Discussion and Future Work

Visual inspection of the Affect Gradient showed similar results to the
previous physiological emotion analysis methods [74]. However, for the
Affect Gradient to be used reliably, it would need further validation beyond
the observations made in the paper. Such a quantitative analysis would
require comparison with some ground truth measure (e.g., physiological
signals), or could be done by evaluating the success of Affect Gradient in
predicting game success or modeling player experience, which is beyond
the scope of this research and remains future work.

We further emphasize that the paper’s contribution is to introduce a tool
for visualizing and summarizing playtest videos by focusing on game events
instead of gameplay graphs; it does not intend to compare the approach
against some existing human emotion analysis approach. In the same
vein as recent critical affect research [6, 135], this paper further highlights
the limitation of facial expression analysis in game design. Naively, one
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might expect to optimize the game experience by delivering situations to
the players that make them happy. However, a direct interpretation of our
happiness measurement is that dying makes the players happy, while it is
obvious that maximizing the player death rate is not a viable design goal,
except in rare cases where the extreme difficulty is used for comical and
viral purposes, as with Flappy Bird and Trap Adventure II. The limitation
of facial expression analysis motivates Publication II to investigate other
modalities like player speech in player emotion analysis.

4.2 Publication Il

Publication II investigates the emotional expressions of game streamers
in two puzzle games, Unravel [63] and its sequel, Unravel 2 [64]. Multi-
modal expression signals of players, including facial expressions, voice
expressions, speech sentiment, and low-level audio features like pitch and
loudness, are integrated using multiple neural networks to detect the
players’ emotions labeled by human annotators.

The main motivation of this publication is to create an automatic emotion
recognition system to assist game testing by detecting gameplay highlights.
Such a system could help analyze player experience by selecting parts of
the playtest videos for further investigation.

4.2.1 Dataset Creation

The reason behind selecting Unravel and Unravel 2 for our analysis is
that their linear game design leads to an almost similar experience for
all the players, and there were enough game streams available for them.
Videos in which the players’ face was visible, only one player was present,
and an automatic English transcript was available were selected to be
annotated. Instead of using basic emotions, 13 event codes related to the
stream videos, such as startle, happiness, and surprise, were selected,
and their expressive features were defined. Not Applicable (NA) label,
one of the 13 codes, was assigned to the events that none of the 12 codes
could describe. In addition, each event code was classified as pleasant,
unpleasant, or neutral. Two human annotators labeled each video and
marked the Top 5 most emotionally salient events for each video.

4.2.2 Automatic Emotion Recognition

Our dataset is too small to allow training a large neural network model
that could map the raw video and audio directly to the target labels.
Therefore, as shown in Figure 4.3, first, separate neural networks trained
with existing larger datasets extract emotionally salient features. Then,
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Figure 4.3. Overview of our automatic emotional event detection system.

a final small neural network trained on our custom dataset maps these
features to our targets. Our system comprises the following building blocks:

Facial expression analysis VGG16 neural network [126] is trained for
classifying facial data into seven emotion classes. This neural net-
work is trained on Affectnet dataset [97], which contains approxi-
mately 500k manually annotated facial images. In order to mitigate
the class imbalances, we down-sample the dataset into the final 73K
train and 18K test images. Finally, the trained neural network is
applied to the cropped facial images of streamers and outputs the
emotion probability signals.

Audio expression analysis Streamer’s audio signal is resampled at 16
KHz. Audio’s power spectra calculated using Short-Time Fourier
Transform (STFT) with a window size of 512 and stride of 128 are
converted to decibel units and down-sampled by a factor of 4. Each
3 seconds of audio signal results in a 64 x 94 spectrogram image
that is mapped to 7 classes of emotions through a VGG16 neural
network [126] trained with 9K and tested with 2K data points from
the composition of various datasets [23, 37, 81, 68, 24, 23].

The trained neural network is used to extract features from the
stream’s audio. However, besides the streamer’s voice, the stream’s
audio also includes game music. In order to separate the vocal part,
we use the Librosa library [88] to filter out the harmonic part of the
audio. Then, the streamer’s audio in segments of 3 seconds is fed to
the trained neural network, which outputs the emotion probability
signals. The emotion probabilities of the blank parts of the audio
signal are filled by linear interpolation of the neighbor values.

Speech sentiment analysis A neural network encompassing embedding,
temporal convolution, and fully-connected layers is trained on the
Amazon reviews dataset? to map the reviews into positive and nega-

2htt;ps J/Iwww.kaggle.com/bittlingmayer/amazonreviews/discussion/33444
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Table 4.1. Event congestion and inter-rater agreement in different window lengths and
granularity levels.

Window length | Congestion Inter-rater agreement
2-class | 2-class-top events | 4-class | 14-class
1 0.0 59.6 53.4 34.9 18.8
2 0.1 64.3 56.8 39.3 24.0
3 0.3 67.0 59.1 41.8 27.3
4 0.5 68.3 61.0 431 29.4
5 1.1 68.7 60.3 43.7 30.8

tive classes. The dataset contains 3600K train and 400K test data.
First, streamer speech is extracted using Youtube automatic tran-
script system. Then, we feed the 3-second segments of speech to
the trained neural network to get their positivity probabilities. Like
the audio signal, we have to handle blank speech segments where
the streamer does not speak. The sentiments of these segments are
interpolated linearly based on the nearest non-blank segments.

Low-level audio features Voice loudness and pitch often change with
emotional events. Thus we include audio pitch, root-mean-square
audio signal power, and perceptually weighted loudness as extra
features.

Emotionally salient event detection In the final step, we combine all
the extracted features from the above steps and feed them to the neu-
ral network with multiple temporal convolution layers and one fully-
connected layer. We test multiple classification tasks with different
granularities: event/no event binary classification, pleasant/unpleas-
ant/neutral/no event classification, top 5 event/ no top 5 event binary
classification, and full 13 event codes plus no event classification.

4.2.3 Summary of Results

Table 4.1 shows the congestion of events, i.e., the percentage of timestamps
that are logged by the same annotator in the same window as an event,
and human annotators’ inter-rater agreement in different window lengths
and granularity levels. As granularity increases, the agreement between
annotators decreases due to the difficulty of detecting subtle expressions
[148] and discriminating between less-distinct emotions like startle and
surprise. Increasing the window length results in a higher inter-human
agreement, but it also increases the event congestion, so we limited our
automatic emotion analysis to windows with a size of 1 to 5 seconds. Our
automatic emotion analysis results (Table 4.2) indicate that our system is
mainly successful in binary classification tasks, which could make it suit-
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able for game stream highlight detection. Furthermore, facial expressions
and audio features are the most effective modalities in our system.

4.2.4 Discussion and Future Work

Using all the modalities does not typically produce the best results, which
might be because of overfitting. All the input features should present
significant additional information to prevent overfitting, but features like
speech sentiments and audio emotion expressions have low impacts, as
shown in Tables 4.2 and 4.3. Since we are using Youtube automatic tran-
script, the data quality might not be good. Moreover, the low performance
of audio emotion analysis might be because of the game music and other
sound effects degrading the audio quality.

Notably, our automatic emotion recognition system and the inter-rater
agreement are not completely comparable, because the automatic system
tries to predict the aggregation of both human annotators’ data.

A major limitation of our work is the audio and video classifier training
data, which has fewer emotion classes than our own data. Future work
should investigate the use of new and more extensive datasets [33, 102].

For future work, one can improve our dataset by providing manually-
extracted transcripts of the streams and augmenting the dataset with
the duration of each event instead of just marking the event’s occurrence
timestamps. In addition, providing game events as an extra modality
would be beneficial. Recent work has shown that game events can be
extracted using supervised learning applied to gameplay videos [65].

4.3 Publication llI

Publication III is motivated by the need to develop better models of player
experience and behavior for testing a game’s design before releasing it to
the real players. This reduces the need for human playtesters and eases
the repetitive and expensive task of game testing.

In Publication III, game-playing agents’ gameplay statistics are used to
predict the difficulty and engagement of match-3 game levels. In addition,
we try to capture the relation between these two game metrics.

4.3.1 Game Description

A non-deterministic physics-based free-to-play mobile game, Angry Birds
Dream Blast [40], is used for evaluating our method (Figure 4.4). Angry
Birds Dream Blast is a match-3 game in which players should collect game
objects specified as the level goal to pass a level. They can collect adjacent
bubbles with the same color or use boosters to collect a large number of
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Table 4.2. Accuracy of classification using different window lengths and granularity levels.
In each column, different input features are enabled for the final neural net-
work. FE, S, AE, and AF indicate facial expressions, speech sentiment, audio
expression analysis, and audio features, respectively. "full" column uses all 4
types of input features.

Window
Granularity Accuracy (%)
length
FE | FE+S | FE+S+AE | FE+S+AF | Full
1 63.0 | 63.5 63.6 64.9 64.9
2 68.5 | 68.7 68.3 70.7 69.8
2-class 3 67.9 | 67.5 67.0 68.6 67.5
4 67.6 | 67.0 66.8 68.7 68.0
5 68.1 | 67.6 67.1 68.7 68.0
1 70.2 | 68.7 67.3 72.5 71.3
9-class/ 2 749 | 76.3 75.9 804 77.6
3 74.3 | 73.4 73.4 75.6 76.6
top events 4+ |71]| 716 | 715 772 | 780
5 71.2 | 69.0 71.3 74.2 76.3
1 41.9 | 42.9 42.2 40.3 39.5
2 42.7 | 43.9 43.0 44.5 43.2
4-class 3 42,8 | 42.3 40.3 42.5 41.6
4 445 | 44.0 43.5 45.4 43.5
5 41.0 | 41.7 419 42.1 41.7
1 19.8 | 21.6 21.0 194 20.7
2 24.0 | 22.6 23.5 26.4 25.1
14-class 3 18.3 | 22.7 21.3 21.7 21.3
4 19.6 | 21.2 20.5 23.8 22.8
5 19.7 | 19.1 19.7 22.7 20.8
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Table 4.3. F1-score of classification using different window lengths and granularity levels.
In each column, different input features are enabled for the final neural net-
work. FE, S, AE, and AF indicate facial expressions, speech sentiment, audio
expression analysis, and audio features, respectively. "full" column uses all 4
types of input features.

Window
Granularity Fi-score (%)
length
FE | FE+S | FE+S+AE | FE+S+AF | Full
1 60.0 | 60.3 61.4 63.0 62.3
2 66.5 | 66.9 66.8 69.9 68.4
2-class 3 65.8 | 65.2 64.3 66.3 64.3
4 65.0 | 64.5 64.0 66.4 65.3
5 65.1 | 65.0 64.0 66.9 65.1
1 69.1 | 66.8 64.6 71.5 69.3
9-class/ 2 74.4 | 76.0 75.9 80.7 77.4
3 73.2 | T1.7 71.6 74.1 75.3
top events 4 722 | 70.3 70.4 765 | 78.0
5 69.0 | 65.8 69.1 72.6 75.3
1 51.8 | 524 51.9 49.5 49.1
2 53.4 | 54.5 53.5 55.4 54.0
4-class 3 53.4 | 53.1 50.6 53.3 52.1
4 549 | 54.0 53.6 55.5 53.8
5 51.1 | 51.8 52.1 52.0 51.8
1 29.5 | 34.0 33.1 29.2 32.0
2 359 | 34.1 35.4 39.4 38.1
14-class 3 28.1 | 34.1 32.2 32.9 31.6
4 30.1 | 32.6 31.7 34.9 33.6
5 29.5 | 29.3 30.7 34.4 32.2
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Figure 4.4. A screenshot of Angry Birds Dream Blast.

objects in a row or column. There are obstacles and locks in the game
which should be removed in order to move forward.

4.3.2 Game-playing Agent

A Deep Reinforcement Learning (DRL), particularly Proximal Policy Opti-
mization (PPO) [118], agent is trained per Angry Birds Dream Blast [40]
level. In order to use DRL, as explained earlier in Section 3.4, the game
should be framed in the form of a Markov Decision Process (MDP). The
MDP is defined as follows:

State observation A combination of 84 x 84 game screenshot images and
a numerical vector encompassing game details like the number of
moves left, the number of level goals to collect, lock information, and
the camera position is used as the state observation. The images are
encoded through a composition of convolution and fully-connected
layers and then concatenated with the numerical vector observation.

Action space Each action specifies a position in the game environment
that the agent can tap. The game screen is discretized into a 32 x 32
grid with the center of each cell corresponding to one of the actions,
leading to a discrete action space with the size of 1024.

Reward function The agent’s reward function consists of extrinsic re-
wards from the game environment and the intrinsic reward calculated
as the forward dynamic model prediction error [103], which indicates
how surprised and curious the agent is about a transition.

54



Developed Methods

Extrinsic reward components are: win bonus, lose penalty, level goal
collection percentage, progress in unlocking the game locks, spatial
movement of the agent toward the end of the game, a small constant
negative reward for penalizing the agent for each tap, and a click
reward which directs the agent towards tapping on the matches as
d
C1

close as possible and is computed as rg;stance = co€xp (— ), where d is

the distance to the closest match and ¢y and c; are tuning parameters.

4.3.3 Game Level Difficulty and Engagement Prediction

Game level difficulties are measured by the levels’ average player pass
rates. In addition, levels’ churn rates are used as a measure of engagement.
We propose two methods for predicting the pass and churn rates. The
Baseline model uses simple regression models to map Al agents’ gameplay
statistics (e.g., min, max, mean, std, different percentiles of agent’s pass
rate, cleared goals percentage, and moves left ratio) to the pass and churn
rates. The Extended model (Figure 4.5) considers how the player popula-
tion evolves over the game levels as the churned players are removed from
the population. This leads to better modeling of the relation between pass
and churn rates.

4.3.4 Extended Model

This method considers a population of players with skill, persistence,
and the inclination to get bored attributes. Initially, the attributes are
sampled from normal distributions. In addition, game level difficulties are
estimated with the normalized baseline model’s pass rate predictions.

Given the initial player population distributions and level difficulties,
the player population evolution over game levels is simulated using simple
behavioral rules. At each game level, if a simulated player’s skill level is
higher than the level difficulty, the player passes the level. Otherwise, the
player tries again and learns from its own mistakes until it passes the
level or the number of attempts is higher than the player’s persistence
level; in the latter case, it leaves the game. This way, we can model how
less persistent players leave the game earlier. Moreover, players who pass
the level will leave the game with some probability according to their
tendency to get bored. This way, we can model how game engagement
usually reduces over time [143, 142]. Finally, the players who have not left
the game advance to the next level, and the process is then repeated for
that level.

We use CMA-ES [54] for optimizing our simulation parameters, including
the means and standard deviations of the skill, persistence, and boredom
normal distributions, learning rate, and the amount of noise added to skill
and persistence. The objective function MSE(p,)+ wepurn MSE(p,) is used,
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Figure 4.5. The overview of our extended pass and churn rate prediction method. Level
difficulty and current player population are passed to the pass and churn rate
simulation block, which at each level outputs the pass and churn rate of that
level and the remaining player population for the next level.

where MSE is the mean squared error, p, and p. are pass and churn rate
predictions, and we use human pass rate variance divided by human churn
rate variance as wepyrn.-

4.3.5 Summary of Results

Table 4.4 presents mean squared errors (MSEs) and mean absolute er-
rors (MAESs) of the baseline and extended methods computed using 5-fold
cross-validation. The extended model acts similarly to the baseline model
in terms of pass rate prediction, but it improves churn rate prediction
with an effect size of approximately two standard deviations. Figure 4.6
demonstrates our extended method’s ability to better model the relation
between the pass and churn rates over game levels.

Table 4.4. Mean squared errors and mean absolute errors of pass and churn rate predic-

tions.
Validation MSE Validation MAE
Method Pass rate | Churn Pass rate | Churn
rate rate
Baseline
1= 0.02244| 1=0.00013| 2 =0.11228| 1 =0.00866
o =0.00803| 0 =0.00003| 0 =0.01663| o =0.00076
Extended model
1 =0.02320| 1 =0.00008| p=0.11467| p=0.00607
0 =0.00831| 0 =0.00002| 0 =0.01647| o =0.00073
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Figure 4.6. The scatter plots of the real players’ and our simulations’ pass and churn rates
over 168 Angry Birds Dream Blast levels. The baseline method uses simple
regression models to predict the pass and churn rates. Our Extended method
improves it by considering player population changes over the levels. Scatter
plot colors and shapes correspond to different game levels.

4.3.6 Discussion and Future Work

Evaluating our method on a fairly small dataset of game levels and the
low training speed of the DRL agents are the main limitations of this work.
Furthermore, our pass rate predictions for the harder levels are not very
accurate (Figure 4.6). This issue is investigated in Publication IV, which
directly builds on Publication III.

4.4 Publication IV

Like Publication III, this publication aims to improve Al agents for ac-
curate player experience and behavior modeling, which could help game
developers tune game parameters and select a more engaging game design
without requiring human playtesters. In this publication, we extend Publi-
cation IIT with two improvements: 1) using Monte Carlo tree search and 2)
better feature selection for the prediction models. We use the same dataset
as Publication III to measure if these modifications yield more accurate
predictions.

4.4.1 Feature Selection

Publication III extracted 16 features from the agent’s gameplay, including
mean, standard deviation, min, max, and different percentiles of the
agent’s pass rate, cleared goals percentage, and moves left ratio over
multiple runs. Then, it predicted the average human pass and churn rates
of each game level using these features.

In this work, we only use the three features which have the highest
correlation with human pass rates: Al pass rate, average cleared goals
percentage, and average moves left ratio. Furthermore, inspired by Kris-
tensen et al. [75], we test computing the features over the percentage of
agent’s best runs (i.e., runs with the highest moves left ratio) that yields
the highest correlation with human pass rates. In the following, we denote
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the full 16 features as F'16, the 3 features as F3, and the 3 features com-
puted from only the best runs as F3P. As shown in Figure 4.7, although Al
pass rates calculated over all the runs have the highest correlation with
human pass rates, using only 5% and 15% of the best runs is better for
computing the average cleared goals percentages and the average moves
left ratios.

4.4.2 Summary of Results

For our experiments, we use a total of 12 settings encompassing 2 pre-
diction methods from Publication III (i.e., baseline and extended models),
3 feature selection strategies (i.e., F16, F3, and F3P), and 2 Al agents
(i.e., DRL and MCTS). Since collecting MCT'S statistics is computationally
expensive, we only execute 20 runs, which makes applying F3P feature
selection on MCTS statistics unreliable. Therefore, we combine F3 fea-
tures from MCTS and F3P features from DRL for MCTS-F3P experiments.
Furthermore, to make MCTS more sample-efficient, we use the DRL policy
as the rollout policy.

According to the box plots of pass and churn rate prediction mean squared
errors in Figures 4.9 and 4.8, our F3P features yield the best pass rate
predictions, and Extended-MCTS-F3P produces the best overall results. All
the extensions in this work act similarly in terms of churn rate prediction.

4.4.3 Discussion

Our experiments demonstrate that MCTS combined with DRL can yield
better predictions of human pass rates. Additionally, we confirm that
computing the statistics over the best agent’s runs rather than the agent’s
average performance can improve the predictions. The main limitation of
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Figure 4.9. Box plot of pass rate mean squared errors.

our work is that our current dataset contains a limited number of early
game levels, and we have not evaluated our method on late or new game
levels. In addition, due to computational limitations, we could not assess
the effect of more MCTS runs and different parameter values.
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5. Conclusion

This dissertation advances Al-assisted playtesting in two ways. First, it
proposes methods for the automatic inspection of player emotions and sum-
marizing the analysis results. Our Publication I proposes a new approach
for analyzing players’ facial expressions. We demonstrate an ability to
summarize player data and extract outlier game events. Inspection of the
results shows that our emotion analysis approach produces similar results
to previous physiological methods without requiring extra hardware with
better scaling to large amounts of playtest data.

In addition, Publication II investigates multi-modal expression signals
for inspecting game streamers’ emotions in different granularities. In
this paper, we provide a game stream emotion dataset, which could be
utilized in the future game stream and player emotion research. More-
over, the paper demonstrates that extra expression modalities like player
voice could improve the automatic detection of emotionally salient game
events. Our method produces accuracies on par with the human inter-rater
agreements and our results suggest that increasing emotion granularity
level makes emotion recognition harder for both machine learning methods
and human annotators. Publications I and II’s player emotion analysis
methods could be used in game testing and player experience research by
selecting highlights of playtest videos for further inspection.

Second, this dissertation advances simulation methods and game-playing
agents for player experience and behavior modeling. Such methods can
assist game developers in detecting game design flaws and selecting the
most engaging design from a variety of existing ones without requiring
human playtesters. This way, games could be tested at a low cost before
releasing to real human players. Our third publication collects Al agent
gameplay statistics to predict game level difficulty and engagement. It
shows simple simulation-based modeling of player population evolution
can replace the need for training different agent types per game level
and result in accurate level difficulty and churn predictions. Moreover,
Publication IV extents Publication III, and demonstrates that a better
selection of features out of Al agent gameplay statistics and combining
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DRL with MCTS can improve the predictions.

Regarding limitations and future research, Publication I demonstrated
that the direct application of player facial expression analysis for game
design is not completely reliable. Publication II prepared a new emotion
dataset and illustrated that having other expression signals like voice and
speech improves emotion detection. However, augmenting Publication II’s
dataset with manually extracted video transcript, each emotional event’s
duration, and annotations of game events remain as future work. Adding
game event annotations, similar to Publication I, could improve the ac-
curacy of emotional event detection and help distinguish each expression
signal’s role in different game event types. The game events could be la-
beled by human annotators or even automatically extracted using machine
learning. In addition to enhancing the current dataset, collecting data
in a controlled environment, where the players do not get distracted by
social interactions and players’ voices can be recorded with higher quality,
is another possible avenue for future study.

Publications IIT and IV model the relation between pass and churn rates
in early game levels of a match-3 game. It would be interesting to check
the generalizability of our approach in later game levels and other game
genres. One could also investigate the changes required in Publication III’s
player population simulation module for modeling the relation between
the pass and churn rates in other game types. Possible options would
be a simulation module that includes a more sophisticated model of how
consecutive passing/losing affects player behavior and a more complex
learning curve model. In future work, it would also be interesting to deploy
and test our methods in an actual game development process, to test new
game levels before releasing them to real players.

In the long run, advancing the understanding of human emotion, experi-
ence and behavior may allow generating human-like and self-motivated
artificially intelligent agents. Such agents could act more similarly to
human players and be a better replacement or complement for human
playtesters. For instance, it might be possible to empower game-testing
agents with computational models of emotion. Furthermore, if the agents
express their modeled emotions through synthetic facial and speech data,
one could then exploit the emotion analysis approaches proposed in this
dissertation to visualize the data, detect gameplay highlights, and validate
the models by comparing them to real human data. This was one of our
motivations for this dissertation from the beginning, but many aspects
remain to be explored, e.g., modeling game event novelty, which might also
require better models of both human perception and memory.
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Errata

Publication IV

In section 6, we mentioned that "The Baseline-
DRL-F16 and Extended-DRL-F16 combinations
are the original approaches analyzed previously".
However, while Publication III collects Al agent
gameplay data from the last training iterations,
Publication IV collects Al agent gameplay data

in inference mode when the agent is not trained
anymore. This, together with the inherent ran-
domness of RL training, explains the slight dif-
ferences between the numerical values reported
in the publications. Nevertheless, the conclu-
sions remain the same.
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