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Abstract 
Bivariate maps are a type of map visualization where two related data series are displayed at once 
for each data point. They can answer questions of how two variables interrelate in a geographical 
context using several kinds of encodings —visual variables — such as shape or color. The most com-
mon types are choropleth maps that use color hue and lightness to encode data and symbol-based 
maps that use shape size for both data series. Bivariate maps have seen a minor surge in popularity 
with new software tools but remain an understudied visualization type with a lack of clear usage 
recommendations. 

The thesis consists of a theoretical and a practical part. The purpose was to collate existing recom-
mendations about the design of bivariate maps and determine whether they are considered a useful 
type of visualization. The theoretical part was a literature survey of relevant visualization and car-
tography literature, including empirical studies. I also sought to see whether bivariate choropleths 
are considered more effective than other types.  

The practical part was building a web tool prototype for bivariate color scale creation limited to 
choropleth maps, the Bivariate hue blender. The tool uses the Hue-Chroma-Lightness (HCL) color 
space for scheme design. By rotating the hue angle of an input color by a user-defined amount, a 
new color can be created. Intermediate colors are generated by blending these two with each other 
and a light secondary input color. The primary purpose of the tool was to improve color scheme 
creation and the building process used the framework of research-based design. It involved building 
the tool, using it to evaluate seven existing palettes, and creating three new palettes. These were 
applied to four different bivariate maps using statistical data from Finland in two different geo-
graphical divisions. Test data was selected using contingency table visualizations to ensure that all 
classes contain values. In addition to the color scales, a bivariate ordinal texture design was created.      

Bivariate maps were found to be grouped in categories using the concept of integral and separable 
dimensions. Bivariate choropleth maps were found to be a relevant visualization type, provided that 
the data is suitable, and that the number of classes is no larger than 9. An issue pertaining to color 
contrast was identified — accessibility guidelines stipulate a lightness difference between adjacent 
hues that require the use of strokes in most choropleth maps. Questions concerning effectiveness of 
other types, how bivariate symbols interact and how viewers can use bivariate maps for analytical 
tasks remain unresolved. The tool was subjectively found to enable better control over bivariate 
color scale creation than other similar software. The evaluated bivariate palettes had issues in light-
ness uniformity and separation of colors, which could be resolved in the three new palettes. These 
were found to be at least as practical as the seven initial palettes.  

This work has concluded that bivariate maps can be considered useful in special cases with the 
right data, which should encourage visualization designers to employ them. It has contributed a 
prototype tool that aids the creation of new perceptually uniform color scales for bivariate choro-
pleth maps. Three new colorblind-safe 3×3 palettes are an addition to the limited set of schemes in 
active use. The method of selecting data using contingency tables can aid in creating bivariate maps.   
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Tiivistelmä 
Kahden muuttujan tietokartat ovat visualisointityyppi, jossa kaksi toisiinsa liittyvää tietosarjaa näy-
tetään kunkin datapisteen kohdalla. Niillä voidaan tutkia kuinka kaksi muuttujaa ovat yhteydessä 
toisiinsa maantieteellisessä kontekstissa, käyttämällä useita erilaisia visuaalisia muuttujia – kuten 
muotoa tai väriä. Yleisimpiä tyyppejä ovat koropleettikartat, joissa käytetään värin sävyä ja vaa-
leutta tietojen esittämiseen, sekä symbolikartat, joissa käytetään muodon kokoa molemmille data-
sarjoille. Kahden muuttujan karttojen suosio on kasvanut uusien ohjelmistotyökalujen myötä, 
mutta ne ovat edelleen vähän tutkittu visualisointityyppi, josta puuttuvat selkeät käyttösuositukset. 

Opinnäytetyöni koostuu teoreettisesta ja käytännön osasta. Tarkoituksena on ollut koota olemassa 
olevia suosituksia kahden muuttujan kartoista ja selvittää, pidetäänkö niitä hyödyllisenä visuali-
sointityyppinä. Teoriaosuus on kirjallisuuskatsaus visualisointi- ja kartografiakirjallisuuteen, mu-
kaan luettuna myös empiiriset tutkimukset. Pyrin myös selvittämään, pidetäänkö kahden muuttu-
jan koropleettikarttoja tehokkaampina kuin muita kahden muuttujan karttatyyppejä.  

Käytännön osuus on verkkotyökalun prototyyppi, Bivariate hue blender, joka on tehty kahden 
muuttujan väriasteikkojen luomista varten. Työkalu käyttää Hue-Chroma-Lightness (HCL; sävy, 
kromaattisuus, vaaleus) -väriavaruutta. Kun syötetyn värin sävykulmaa kääntää, syntyy uusi väri. 
Alkuperäisestä ja uudesta väristä luodaan kaksi erillistä väriasteikkoa vaaleasta aloitussävystä ja 
näitä yhdistämällä muodostetaan asteikon välivärit. Työkalun ensisijaisena tarkoituksena on ollut 
helpottaa väriasteikkojen luomista. Sen kehittämisessä on sovellettu tutkimukseen perustuvaa 
suunnittelua. Työkalun avulla on arvioitu seitsemän palettia ja luotu kolme uutta. Näitä on sovel-
lettu neljään erilaiseen kahden muuttujan karttaan, joissa on käytetty tilastotietoja Suomesta kah-
den eri maantieteellisen jaon mukaan. Väriasteikkojen lisäksi on luotu kuviotekstuuri.      

Tutkimuksessa todetaan, että kahden muuttujan kartat voidaan jakaa luokkiin käyttäen kokonais-
ten ja eroteltavien ulottuvuuksien käsitettä. Koropleettikarttojen todetaan olevan toimiva laji, kun-
han aineisto on sopiva ja luokkia enintään yhdeksän. Työssä tunnistettiin värikontrastiin liittyvä 
ongelma – esteettömyysohjeissa määrätyt vierekkäisten sävyjen vaaleuserot edellyttävät ääriviivo-
jen käyttöä useimmissa kartoissa. Tutkimuksessa auki jäävät kysymykset koskevat muiden tyyppien 
tehokkuutta, kaksimuuttujaisten symbolien vuorovaikutusta ja sitä, kuinka katsoja lukee ja käyttää 
näitä karttoja. Työkalun voidaan todeta subjektiivisesti mahdollistavan paremman hallinnan kaksi-
muuttujaväriasteikkojen luomisessa vastaaviin ohjelmiin verrattuna. Arvioiduissa paleteissa oli on-
gelmia vaaleuden tasaisuudessa ja värien erottelussa, jotka nyt voitiin ratkaista kolmessa uudessa 
paletissa. Näiden todetaan olevan ainakin yhtä käytännöllisiä kuin seitsemän alkuperäistä palettia.  

Työn loppupäätelmä on, että kaksimuuttujaisia karttoja voidaan pitää hyödyllisinä tietyissä ta-
pauksissa ja niihin soveltuvalla datalla, mikä voi kannustaa visualisointisuunnittelijoita käyttämään 
niitä. Työn tuloksena on prototyyppityökalu, joka auttaa luomaan uusia tasajakoisia väriskaaloja 
kahden muuttujan koropleettikarttoja varten. Kolme uutta palettia on lisäys aktiivisessa käytössä 
olevien kaksimuuttujaisten palettien rajalliseen joukkoon. Kontingenssitaulukoihin perustuva ai-
neiston valintamenetelmä voi auttaa suunnittelijoita kahden muuttujan karttojen luomisessa. 
Avainsanat  kahden muuttujan kartat, koropleettikartat, väriasteikot, visualisointi, tekstuurit,  
visuaaliset muuttujat 
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Colors: Stevens; Data: CDC
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EU ETS traded emissions or land use, land-use 
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Figure 1.1. Top left: Example of a choropleth map adapted from Koponen 
and Hildén (2019); Top right: Early bivariate map using textures by 
von Mayr (top right) from Friendly and Denis (2001); Bottom: A modern 
bivariate choropleth map by Bostock (2019).
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1.1	 Background and motivation
I have been curious about the possibilities of bivariate maps since I learned 
about them. One important inspiration was Stevens’ blog post “Bivariate 
Choropleth Maps: A How-to Guide” (2015), which step by step describes how 
to create a bivariate choropleth map. The choropleth map is a common kind 
of thematic map, where statistical regions (such as municipalities, census 
blocks or other administrative divisions) are colored based on their data 
values. The somewhat odd name comes from Greek χῶρος, khōra, meaning 

“place,” and πλῆθος, plēthos, “multitude” 1. Choropleth maps for quantitative 
data typically show a single data series and how its values fall into differ-
ent classes for the areas on the map (Figure 1.1, top left shows an example 
of such a choropleth map of Finland). “Bivariate” refers to how instead of 
one just one data series two different data series are shown at once for each 
mapped area. They are most commonly of the choropleth type — which 
means that they use colors to encode values (as in Figure 1.1, bottom) — but 
can employ other symbolizations as well.

I do not remember exactly how and where I encountered it first, but I 
used Stevens’ instructions to create a bivariate grid map of children com-
pared to total population as a part of the Data Atlas of Finland, illustrated in 
Figure 1.2. It was part of a project launched together with Juuso Koponen 
in 20192 and consists of a zoomable map using Finnish 1km² population 
grid data, which shows how relatively more children tend to live in regions 
outside the densest urban centers. The map has an interactive legend so 
that the viewer can choose to hide different population levels. Creating it 
suggested to me that this type of visualization might be a meaningful way to 
approach geographical data. In a sense, one could say that the bivariate map 
translates a scatterplot — a chart which shows the relation between two data 
series for each data item by encoding them as points in a coordinate system, 
where one series defines the y position and the other the x position — into a 
geographical context.

1	 “Choropleth definition and meaning” (2022)
2	 The project has not been abandoned, but we have not managed to publish any new maps since 

the launch in May 2019. It is available online as it stands at tietokartasto.fi/Suburban-children/ 
(Hildén, 2019).
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A heightened awareness of reality as such is 
something mystics may dream about, but cannot 
realize. The number of stimuli that impinge on us at 
every moment — if they were countable — would be 
astronomical. To see at all, we must isolate and select. 

—E. H. Gombrich (1982)
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Figure 1.2. Screenshot of the Suburban children bivariate visualization 
(Hildén, 2019).

Looking into the background of this visualization type I found that bivariate 
maps have a long history with the earliest known example by Georg von Mayr 
coming out of the climate of innovation that marked 19th century visualizations 
(Friendly and Denis, 2001, Figure 1.1, top right). They eventually became more 
widely known and discussed with a series of U.S. Census maps in the 1970s (see 
Chapter 2., p. 70). These maps were also widely criticized as being hard to 
understand — Edward Tufte dismissively called them “puzzle graphics” that 
are experienced “verbally, not visually” (2001, p. 153). But are bivariate maps 
fundamentally flawed, or can they be designed so that they function effectively? 
In recent years there seems to have been a renewed surge in interest around 
bivariate maps, accompanied by instructions and software tools for creating 
them. Arguably bivariate maps, while visually complex, should make it possible 
to show relations between two different variables over geographical areas in a 
way that is hard to achieve with other types of visualizations.

Bivariate maps can show interesting intersections in the data, like how the 
example in Figure 1.1. highlights that the counties around Mississippi have high 
prevalence of both obesity and diabetes. Counties in Alaska on the other hand 
have mostly low rates of diabetes, despite high or medium levels of obesity. For 
me as a designer having worked with different data visualizations over many 
years bivariate maps are also in themselves fascinating, because they approach 
the limits of what can be clearly expressed in visualizations. This is due to the 
sheer number of data levels that they attempt to translate into visual form.
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While it is interesting to discuss extreme visualizations that push the 
boundaries of what can be interpreted by readers, the discussion about 
accessibility in visualizations has also become increasingly active and urgent 
in recent years. This means on one hand stricter formal requirements being 
set and required and on the other hand a growing sentiment among visu-
alization designers that these issues matter and need addressing. There is a 
recognition that visualization design — like other fields of design — actively 
should consider the varying abilities of its audience. Accessibility strictly 
refers to design for computer software, websites and visualizations that con-
siders people with disabilities, but it can also benefit people with different 
situational limitations (Henry, Abou-Zahra and Brewer, 2014).

Guidelines for visualization design seldom consider accessibility ques-
tions, something which is pronounced in the case of maps. The cartography 
textbooks that I have surveyed do not deal directly with or even mention de-
sign considerations for disabled audiences. Official accessibility guidelines 
on the other hand offer few useful guidelines for map creation — the Web 
Content Accessibility Guidelines (WGAG2.1, Accessibility Guidelines Work-
ing Group, 2018) define the requirements for accessible websites, but include 
no detailed and standardized requirements for data visualization at the mo-
ment of writing. Color scale design is not the only nor the most important 
accessibility consideration, but attempting to improve it is a necessary part 
of more accessible map design.

The WCAG does contain specific requirements for color and could even 
hastily be interpreted as ruling out the creation of common thematic maps 
where color encode data, because the adjacent colors in a map with more 
than three data classes mostly do not have sufficient contrast to each other. 
Looking at bivariate maps now means discussing at the very least whether 
the color choices used can be made in a way that satisfies contrast require-
ments and accounts for color vision deficiencies. The limitations of design 
tools means that this is not as easy as it could be. Good tools for color eval-
uation do exist, but they are mostly not an integrated part of visualization 
design workflows — especially not in desktop software.

In information design the lack of a defined “one size fits all” toolkit or 
software package means that a designer often is required to create novel 
software tools or at least modify existing ones to achieve desired results. 
This approach of tool creation is an underlying principle of generative 
design as described by Reas and Fry (2007). I was myself first introduced to 
this way of working through learning the Nodebox software (de Bleser, 2016, 
p. 43). Having participated in a Nodebox workshop in 2008 I then did an 
Erasmus exchange with the Experimental Media Group at Sint Lucas Ant-
werpen in 2009. There I learned more about generative design and Python 
programming by doing small script experiments and building a constrained 
drawing application. This established programming and tool-building as an 
important part of my design practice that continues to inform my work in 
information design.
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I am using this thesis as a way of attempting to explore further the cre-
ation of purpose-made small tools to solve design problems using the case of 
a particularly complicated category of charts, the bivariate map.

The purpose of a bivariate map ought to be that it allows the viewer to 
see relations between mapped data dimensions more easily than from a pair 
of separate graphics. To discuss the mapping of data to visual shapes, I use 
the concept of visual variables first introduced by Bertin (2011). The visual 
variables are built on the basic visual channels — color, shape, and motion. 
These are fundamental properties of visual objects that are processed in 
some extent separately in human visual perception (Ware, 2013, p. 150).

There are multiple visual variables that can be employed in static visual-
izations to encode data — the most important ones ones being location, size, 
shape, orientation, color (hue, lightness and saturation), and texture density. 
A good map must always use the most effective visual variable (location in 
space) to show spatial distribution of a phenomenon like population density 

— where the studied areas are located. Therefore, only less effective variables 
like color remain for showing additional data variables that describe the phe-
nomenon in question — the actual population density values. Contrast this 
with a simple bar chart, where the length and the position of the bars show 
population values — but not the locations of the areas studied. Introducing 
the location therefore always involves a tradeoff in visualization.

Visual encodings are also inherently more complex than simply trans-
lating numbers into visual form that then can be more or less accurately 
retrieved by a viewer. There is an ongoing discussion about how situational 
factors and different task requirements can affect the ordering of visual 
variables — color saturation and hue can for instance be more effective 
variables for appraising averages, even if they are much less accurate than 
position when reading individual values (see Franconeri et al., 2021). Even so 
there are significant differences between visual variables in how effectively 
information can be retrieved by the reader and qualitative differences in the 
visual channels available. These differences would appear to set fairly strict 
limits to the number of data variables that can be encoded into a visualiza-
tion in a way that actually can be read and understood.

As visualization researcher Robert Kosara (2022) notes in a recent com-
mentary, the visual encodings that are specified by design are not necessar-
ily the encodings that a reader actually uses to extract information from a 
graphic. The observed encodings may be more or less emergent properties. 
Kosara uses the common pie chart as an example — by design a pie chart 
uses angles to encode information, but research has shown that viewers may 
use some combination of the resulting visual properties (area, arc length, 
chord length, and shape) to determine the visualized values.

In a bivariate choropleth map the data dimensions are combined us-
ing the visual channels of color. The resulting color scale would seem to 
function more as a qualitative color scale denoting differences in kind with 
a secondary quantitative association (darker colors imply larger values). 
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Thus, the number of colors that can be separated effectively in a map limits 
the number of variables and steps in the scale. There is empirical support 
(Lee, Reilly and Butavicius, 2003) for restructuring of data to accommodate 
human visual cognition — reducing the number of dimensions displayed 
appears to lead to easier interpretation. Bivariate maps are likely to achieve 
the goal of being more effective than two separate maps only if they are well 
designed and show a limited number of data series, and they may well be 
worse for some tasks. Other kinds of bivariate maps also exist, but they are 
less common and less studied than the bivariate choropleth.

1.2	 Research questions
This thesis combines a literature survey with research-based design (Leinonen, 
2010, p. 56), where the result is the creation of a set of prototype tools and 
methods informed by the surfaced theoretical concerns.

I will survey existing research and literature on the effectiveness of 
bivariate maps and discuss how well the results align with findings on visual 
perception and how they support the design of bivariate choropleth maps in 
particular. My working assumption is that previous visualization research, 
even while not strictly done on bivariate maps, sets clear limits to the num-
ber and type of categories that can be effectively read from a bivariate data 
map. As noted, the usefulness of bivariate choropleths has also been called 
into question. This leads to two research questions:

1.	 Whether bivariate choropleth maps are currently recognized as an effec-
tive visualization type, and

2.	 What benefits are bivariate choropleths considered to have over other 
bivariate maps?

I also posit that it should be possible to improve the currently common 
color scales for bivariate choropleth maps with a color scale tool that allows 
creation and adjustment of bivariate color palettes with immediate visual 
feedback and charting of hue and lightness values. This should also help in 
solving accessibility questions. The production part of this thesis consists 
mainly of the creation of a prototype tool for this purpose. An undercur-
rent in this work is how tool creation and modification is an essential part 
in bringing insights from research into functional design and visualization 
tools. The third research question is therefore:

3.	 Can a custom-built interactive tool improve the design of color scales for 
bivariate maps?
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Using the tool, I attempt to apply existing findings and recommenda-
tions to the design of a small collection of bivariate palettes. It may be possi-
ble to further enhance the separation of colored areas using additional visual 
variables such as textures. I survey some literature on texture encodings 
and experiment with the application of textures to alleviate the accessibility 
issues of bivariate maps and improve discrimination of individual classes.

The resulting color and texture schemes are finally used to create a set of 
maps with real-world bivariate map data, which are discussed and assessed 
using a basic task analysis.

1.3	 Thesis overview and 
structure
The theoretical background in Chapter Two starts out with outlining funda-
mental features of visualizations and how they apply to bivariate maps based 
on available theoretical literature: visual variables, color and color scale de-
sign, textures, and symbol dimensionality. This chapter includes a discussion 
of how bivariate maps have been defined in a selection of the cartographical 
literature.

Chapter Three is a description of the practical part of the thesis. It deals 
with test data selection and used methods for this, the selection and assess-
ment of color scales and the choices that went into building the prototype 
tool.

Chapter Four documents the details of the created color scale web tool 
and discussion of its functionality.

Chapter Five starts with an analysis of a set of existing bivariate choro-
pleth palettes and a description of the creation of three novel palettes and a 
texture palette. The palettes are then applied to the example maps which are 
then discussed.

In Chapter Six I attempt to answer the research questions, summarize 
the learning outcomes of this process, discuss the limitations, and give some 
suggestions for further research.
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2.	 Theoretical 
background and 
methodology

In this chapter I describe and discuss theory 
related to the design of bivariate maps. I start 
from a short overview of visual variables and some 
relevant aspects of visual perception. Because 
the focus of this thesis is on choropleth maps 
particular attention is paid to the visual variables 
of color and texture. Relevant specifics of thematic 
mapping is then discussed. Finally, I describe the 
theoretical framework of research-based design 
used to inform the practical part of the thesis.
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2.1	 Visual channels
Ware (2013, p. 145) observes that research into early-stage visual process-
ing has determined that different visual properties are processed in what 
is termed to be separate channels. The basic channels are color, shape, and 
motion. The color and form of visual elements are thus treated as separate to 
some degree in human visual perception. From this follows that it is possible 
to attend to them in separation — it is for instance possible to look for visual 
elements of a certain color while disregarding their shapes, or vice versa. 
Further, there exists a subdivision of the shape channel into orientation, 
form, contrast, and size. These can be thought of as so-called spatial frequency 
channels. According to Ware they should not be thought of as entirely in-
dependent — different channels do interact, but they still represent visual 
information that is processed separately to some extent. Research has shown 
that visual distinctness on these fundamental levels is the key explanation for 
why something stands out — what is termed the pop-out effect (Ware, 2013, p. 
152).

The concept of preattentive processing was devised to account for this effect 
(Ware, 2013, p. 152), but a more current view is that all stages of visual pro-
cessing is guided by attention, which makes the pre in the term preattentive 
misleading, as perception and visualization researcher Steve Haroz notes 
on the Data Stories podcast (“Visual Perception and Visualization with Steve 
Haroz,” 2018).

Things that stand out can nevertheless be focused on using selective 
attention: we can ignore a particular class of objects and find only those with 
specific visual characteristics, provided these characteristics are sufficiently 
different. Ware (2008, p. 29) proposes to call these tunable rather than pop-
out features, to reflect that they can be tuned for selectively when planning 
eye movements. Figure 2.1. shows a selection of known tunable features with 
practical relevance for design.

Ware (2013, p. 384) notes that the selectivity of attention isn’t perfect: 
there will be some crossover from confounding elements that also get 
processed and strong stimuli (like blinking or movement) might break the 
focus of attention. Despite this, what we see is mostly what our attention is 
focused on.
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A selection of tuneable features

COLOR FEATURES

SHAPE FEATURES
PositionShape

MOTION AND CHANGE

grouping/quantity

Other shape features

density

hue

size round vs. sharp

speed vibrationdirection

elongation

lightness intensity
added 
surround color opacity

texturefill sharpnessclosureorientation

Figure 2.1. Examples of tuneable features after Koponen and Hildén 
(2019) using the terminology of Ware (2008).

From experiments it has been determined that clear differences in distinct-
ness on the level of basic visual channels mean that tasks like the following can 
be performed effectively and quickly (Koponen and Hildén, 2019, p. 52):

•	 finding an individual element
•	 identifying edges between groups or separating groups
•	 tracking elements that move
•	 assessing numbers of elements shown

Whether something stands out or not has been determined to depend 
on two factors. The first is how different the feature a test person is looking 
for (i.e., the target) is from the surrounding non-targets. The second is how 
different the non-target items are from each other. Figure 2.2. (p. 22) shows 
an example of this. The lone red circle is easy to find when surrounded by 
blue non-targets (left), but much harder to spot if the non-targets come in 
many colors (right).
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easy to find harder to find

Figure 2.2. The appearance of surrounding non-targets affects how easy 
it is to find a target feature. After Koponen and Hildén (2019).

Visual elements that are distinct from each other and from the back-
ground on multiple channels will be easier to find than ones that are more 
similar, and something that is alone in using a particular channel will be very 
easy to find — like a colored item in an otherwise grayscale graphic. (Ware, 
2013, p. 157)

Using redundant coding can make objects more distinct still, for instance 
by applying clear differences in both shape and color (see Fig. 2.3). Adding 
something to a feature typically makes it more distinct than removing some-
thing from it. It is easier to spot a single area on a map that has an added 
additional symbol than finding an individual area which lacks a symbol, as 
shown in Figure 2.4. (Ware, 2013, pp. 148–149, 157)

Highlighting 
methods

easy to find 
with surround 
shape

easy to find 
with added 
feature

Figure 2.3. Example of added features making a target object more dis-
tinct (after Ware, 2013, p. 158).

2.1.1	 Conjunction searches: combinations that can be found

More complex visual patterns result in visual tasks where rapid searches 
are impossible. While searches for clear differences based on one or several 
channels that reinforce each other are very rapid, searches based on com-
binations of visual properties become much harder. If the targets are coded 
visually into two or more intersecting groups searching for a specific target 
becomes a conjunction search — the viewer must find a specific combination 
of, e.g., color and shape attributes (Treisman and Gelade, 1980).

Feature search: find Conjunction search: find
Feature search with
reinforcing features: find

Figure 2.4. Example of feature search (left) compared to conjunction 
search (center) and redundant coding (right) after Treisman and Gelade 
(1980).
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In the illustrated example in Figure 2.4 there are both blue and red 
crosses and circles. Looking up only red objects or either circles or crosses 
are single feature searches that do not become significantly slower even 
when the number of objects in the visual image is increased. In comparison, 
finding just the object that is blue and circle, if there are both red and blue 
circles as in the middle panel takes longer time and is strongly impacted by 
the total number of objects. Referring to Treisman’s work, Ware (2013, pp. 
159–160) notes that this is a fundamental limitation — even extensive train-
ing will only modestly improve the speed of conjunction searches. Quickly 
identifying complex patterns in visualizations is therefore hard and relying 
on conjunction encodings ought to be avoided.

According to Ware (2013, pp. 160–170) there are some important excep-
tions to the limitation of conjunction searches relating to the combination of 
spatial codings such as position, stereoscopic depth, shape from shading or 
motion with another attribute like color, size, or shape. In such cases rapid 
conjunction searches appear to be possible. Of practical interest is spatial 
grouping — if items are grouped visually into clusters on the XY plane, it is 
possible to perform rapid searches for the conjunction of color and a par-
ticular cluster, by searching within each cluster separately. Movement also 
appears to allow segmentation in a similar way. Moving and non-moving 
targets can be searched rapidly in separation — a red moving target is visual-
ly distinct from a static red non-target. Movement could therefore be useful 
as a separating dimension in on-screen geospatial displays. The application 
of spatial grouping in map design is more limited, as the XY dimension is 
required to show the locations of the mapped regions.

2.1.2	 Visual variables: definition and use in maps

Visual channels can be further grouped into visual variables which are used 
to encode information into visual shapes. Visual variables as the building 
blocks of visualization were systematically defined and described by Jaques 
Bertin using the term retinal variables in Semiology of graphics, published in 
French in 1967 (2011). This work will use the current established term visual 
variables used by MacEachren (1995) and Tyner (2010) among others. In the 
original cartographical use, they refer to the visual means by which the point, 
line, and area symbols employed in maps can be further differentiated based 
on the values or characteristics that they represent (Tyner, 2010, p. 136).

There is a limited number of useful visual variables for encodings that 
can be rapidly understood. Table 1 is quoted from Ware (2013, p. 171) and 
presents such low-level graphical attributes that can be used to create glyphs 
that are practical to separate visually. This can be compared with the list of 
cartographical visual variables illustrated in Figure 2.5.
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Visual variable Dimensionality Comment

Spatial position Three dimensions: X, Y, Z

Color Three dimensions: defined by color opponent 
theory (luminance, red-green, yellow-blue)

Luminance contrast is needed to 
specify all other graphical attributes

Shape Size and orientation are basic but there may be 
more usable dimensions

The dimensions of shape that can 
be processed rapidly are unknown; 
however, the number is certainly 
small

Surface texture Three dimensions: orientation,  
size and contrast

Surface texture is not independent 
of shape or orientation; uses at least 
one color dimension

Motion coding Approximately two to three dimensions; more 
research is needed, but phase is critical

Blink coding One dimension Motion and blink coding are highly 
interdependent

Table 1. Separable graphical attributes of glyphs. After Ware (2013, p. 171).

Maps and map-like visualizations are characterized by the fact that the 
visual variables generally considered to be most effective — the vertical 
and horizontal position in space — are required to display absolute (or in 
the case of, e.g., cartograms relative) geographical locations (Koponen and 
Hildén, 2019, p. 59). Thus, the designer of a data map is forced to employ 
secondary and less effective variables for the data dimension(s). The most 
commonly used are the color variables: density (lightness/value), hue and 
saturation; area (in the case of linear features width), shape and texture (pat-
tern) (Tyner, 2010, pp. 136–137).

In theory any number and combinations of the remaining visual vari-
ables could be used to encode multiple data dimensions in the graphical 
marks on a map. In practice research into visual variables shows that cer-
tain combinations are more effective than others. A foundational work on 
this is the study by Cleveland and McGill (1984) that determined that the 
most accurate encoding for numerical values is spatial position, with length 
coming second. Color saturation is particularly ill suited for representing 
exact values. These should not be taken as being consistent across all tasks 
and contexts: Szafir et al. (2016) posit that, e.g., color encodings may be more 
effective for appraising average values in a graphic by virtue of being less 
accurate in isolation.

MacEachren (1995) proposed the classification of visual variables by 
suitability for different encoding tasks: what in semiotics is termed as their 
syntactics. These are presented in Figure 2.5.
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Location

Orientation

Color hue

Color lightness
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Texture (density)

Color saturation
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Transparency
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(non-ordered)
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Shape
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Figure 2.5. Visual variables in maps and their syntactics redrawn 
from a graphic by Roth (2017). Bertin’s associative and selective 
categories have been left out.

Nominal variables without a natural ordering (non-ordered) are in 
MacEachren’s classification useful for qualitative distinctions — identifying 
different categories. Shapes are associated with nominal differences but 
can not be sorted in an unambiguous way. Ordinal variables again, such as 
color lightness or transparency, are easy to see as sorted while not necessar-
ily being suited for quantitative encoding. Of these only position and size 
have a direct association with quantitative values. Here size is understood to 
include both length and area but reading exact numerical values from areas 
is fairly inaccurate (Koponen and Hildén, 2019, p. 60).
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While the number of data items that can be encoded in a visualization is 
limited only by the designer’s imagination, there would appear to be quite 
strict limits to what information a reader actually can retrieve from a visual-
ization accurately and in a timely fashion due to limits on visual processing 
(Haroz and Whitney, 2012). The difficulty of interpreting any graphic in-
creases with its complexity, although not in a linear way. MacEachren (1982a, 
1982b) employs the term visual complexity to refer to the level of structural and 
organizational intricacy in maps.

A glyph is a general term for a graphical object where one or several visu-
al variables such as width, area or color represent data values (Ward, 2008). 
In visualization research the term is especially used for symbols that attempt 
to encode multiple quantitative variables (Koponen and Hildén, 2019, p. 32).

2.1.3	 Color perception, color spaces and color scale design

Bivariate choropleth maps use color variables for all encodings, which moti-
vates a detailed discussion of color in the context of this thesis. Of the com-
monly used visual variables, the ones relating to color are arguably among 
the most complex. Because most humans are trichromats, meaning that we 
typically have three basic color receptors, any color can in principle be de-
fined as the combination of three primary colors. All color spaces can hence 
be understood as three-dimensional volumes. (Ware, 2013, pp. 97–98). This is 
termed the opponent process theory and the three perceptual color channels 
are red-green, yellow-blue, and black-white or luminance (Ware, 2008, p. 68). 
This is illustrated as a simplified schematic in Figure 2.6. Short wavelength 
S cones also contribute to the luminance channel, but only to a small extent 
and in particular conditions (Ripamonti et al., 2009). The rods (not illustrat-
ed) have a limited role in color vision as they are mostly inactive in brightly 
lit conditions but can contribute to the luminance channel.

long wavelength sensitive cones

Cones Channels

WHITE

YELLOW

RED

GREEN

BLUE

BLACK

luminance: 
mainly sum of long- and 
middle wavelength output

red-green:
difference 
between long and middle
cone signals

yellow-blue: difference 
between luminance 
and S cone signals

+

-

-

medium wavelength cones 

short wavelength cones

Color opponent channels

S

M

L

Figure 2.6. Schematic of the interaction of color opponent channels 
after Ware (2008).
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Brewer (1994, pp. 124–126) notes that there is some variation with regards 
to color terminology in the cartographical literature. According to Brewer 
the least confusing and most generally accessible terms for the perceptual 
dimensions of color are hue, lightness, and saturation. These three dimensions 
the make up a familiar three-dimensional color space and are understand-
able to lay persons.

•	 Hue corresponds to the named color, such as green, yellow, or red and is 
formed from the red-green and yellow-blue perceptual color channels.

•	 Lightness refers to how light or dark a surface color with a particular 
luminance appears3. Referring to the perception of self-luminous screen 
colors brightness would be more accurate (Ware, 2013, p. 80), but follow-
ing Brewer’s example I will generally prefer lightness in this thesis. The 
term value is often used to refer to lightness in cartographical literature, 
for instance by MacEachren (1995).

•	 Saturation or chroma generally refers to how colorful or vivid a color 
appears. White, grays and blacks are colors with very low or zero satura-
tion4.

The established standard for accurate measurement of colors uses the 
Commission International de l’Eclairage (CIE) system which defines three ab-
stract receptors or virtual primaries based on color perception experiments to 
determine how humans respond to color and termed X, Y and Z (Smith and 
Guild, 1931). Together they form an abstract 3-dimensional space, where all 
perceivable colors can be defined by XYZ coordinate values (The Y value is 
also the same as luminance). Light-based colors are straightforward to spec-
ify in this way with three colored lights — computers use additive red, green 
and blue primaries (RGB). Surface color measurement and specification is 
far more complex, since it is dependent on lighting conditions and pigment 
interactions. (Ware, 2013, pp. 101–103)

Ware (2013, pp. 102–103) notes that since three-dimensional CIE XYZ 
coordinates are challenging to use practically, they are usually converted 
to a different representation that separates the lightness component, giving 
in two cartesian chromaticity coordinates (x and y), and luminance (Y) — see 
Figure 2.7 for an illustration.

Because of technical limitations, not all colors that can be seen can be 
created on a particular physical display device. This limitation is termed the 
device or monitor gamut (Ware, 2013, p. 102). A color that can be displayed on 

3	 Brightness, lightness and luminance are often used interchangeably, but technically luminance 
refers to the absolute, measured amount of visible light emitted or reflected (weighted by the 
effect of each wavelength on the human visual system), brightness to perceived luminance, and 
lightness to the perceived reflectance (amount of light as reflected by a surface) relative to the 
brightness of a similarly illuminated white surface. Since luminance is perceived in a non-lin-
ear way, perceptually uniform color spaces try to adjust brightness values accordingly. (Ware, 
2013, pp. 80, p.89)

4	 If the saturation or chroma is zero, hue is not defined at all in a cylindrical color coordinate 
space, since the angle is undefined for a ray without length (Verou, 2020).
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a display device is said to be within the gamut. For display on a computer 
screen, colors have to be converted to a device color space such as sRGB 
(Ware, 2013, pp. 104–105).

The gamut of a RGB color space is defined by the red, green, and blue 
primaries and the white point. Basically, this means the appearance of the 
brightest white in the given color space, and it is set to correspond to par-
ticular lightning conditions. The most widely used white point is D65, which 
is designed to correspond to daylight from a cloudy sky. (Ware, 2013, p. 104; 
Atkins, Lilley and Verou, 2022)

Notably, device gamut is often in practice much larger than the gamut of 
the widely used sRGB color space. Many computer monitors can display a 
wider range of colors than sRGB can represent — the P3 color space, which 
corresponds to many high-gamut displays has 50% more colors (Verou, 
2020).Gamut comparison

D65 white point

CIE 1931 xy

device gamuts

Adobe RGB

sRGB

P3
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Figure 2.7. Gamut comparisons on a diagram of the CIE 1931 xy color 
space redrawn based on Myndex (2022).

Figure 2.7 shows the CIE 1931 chromaticity diagram overlaid with the 
gamuts of the P3, Adobe RGB and sRGB color spaces (Colors outside sRGB 
are dimmed as they cannot be reliably represented). The corners of the gam-
ut triangles represent the primary colors of each color space. As the diagram 
shows, the biggest differences are in the available range of green, yellow, and 
turquoise hues.

To be practically useful for creating color scales a color space should be 
perceptually uniform (Ware, 2013, p. 105). This means that in theory, an equal 
distance anywhere in the color space (i.e., equal changes in values of color 
coordinates) represents an equal difference in perceived color. The color 
spaces CIELAB or L*a*b* and CIELUV or L*u*v are transformations of the 
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CIE XYZ space that are intended to be perceptually uniform (Ware, 2013, 
pp. 105–106). They retain the property of being device-independent, which 
means that they correspond to a theoretical model of a “standard observer” 
rather than colors displayed on a particular device, and must therefore be 
converted for displaying (Ware, 2013, p. 101).

In both of these standards, L* stands for perceptual lightness, while the 
chroma and hue are mapped to the other axes. The u and v, or a and b, coor-
dinates both signify chromacity coordinates — positions on green–red and blue–
yellow axes specified somewhat differently. L*u*v has a more even distribu-
tion of colors, but can have more clipping issues (Somers, 2020).

It should be noted that while these color spaces are fairly uniform in 
lightness, neither are fully uniform in hue and chroma (Somers, 2020). A 
particularly noticeable problem in CIELAB is that a range of blues with 
equal hue but decreasing chroma will shift into purple (Atkins, Lilley and 
Verou, 2022, ch. 9.1). CIELAB was developed for reflective colors and is 
primarily used in the printing industry, while CIELUV is better suited for 
describing and creating self-luminant screen colors. According to Somers 
(2020) L*u*v is more uniform in color distribution and better suited for 
choosing colors, but L*a*b* is more widely known and directly available 
in applications like Adobe Photoshop™. OKlab (Ottoson, 2022) is a recent 
alternative perceptually uniform colorspace which improves on CIELAB by 
being more uniform and more consistent in hue and chroma5.

According to Ihaka (2003) human color understanding seems to follow 
a polar coordinate representation, even if the cartesian opponent chan-
nel model works well to describe how color vision works. This means that 
instead of defining hue and colorfulness on a plane with x and y coordinates, 
a more intuitive representation uses some kind of color wheel, where the 
different hues are placed in a circular arrangement. This can be achieved by 
a cylindrical transformation of a cartesian color space. Either CIELAB or 
CIELUV can be used in a cylindrically transformed version termed CIE LCh 6 
or the hue-chroma-lightness (HCL) space, a later development created spe-
cifically for information visualization (Zeileis et al., 2020). In HCL hue is giv-
en as an angle and colorfulness as chroma, defined by the radial distance on 
the given hue angle from a neutral color of the same lightness in the center 
of the coordinate system. They retain the differences of the original cartesian 
versions — cylindrical L*u*v thus has more even hue differences, consistent 
chroma and opponent colors are found at 180° opposite angles (Somers, 
2020). I will use the term HCL in this thesis following Zeileis, instead of the 
alternative LCH.

5	 The CSS Color Module Level 4 document by Atkins, Lilley and Verou (2022) that describes how 
color is handled in Cascading Style Sheets (CSS) (Atkins, Etemad and Rivoal, 2022) gives a 
good summary of different color spaces and color representations, and how colors can be 
specified for web documents. Latest version available at https://www.w3.org/TR/css-color-4/

6	 Sometimes also HSLuv specifically for cylindrical CIELUV; OKlab is called OKlch in its cylin-
drically transformed version
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Figure 2.8. Stepped three-dimensional representation of the cylindri-
cal hue-chroma-luminance (HCL) color space.

Figure 2.8 shows a stepped view of the HCL color space based on 
CIELAB and the color wheel at 50 lightness with the formulas for convert-
ing L*a*b values to HCL. The hue is the rotation angle (0 to 360°), the color 
intensity (chroma) increases from the center outwards, and colors are lighter 
towards the top. L for lightness in HCL is the relative luminance, which is 
precisely the same as lightness in CIELAB on a 0 to 100 range where 0 is 
black and 100 is white7. Undefined or out-of gamut colors are not shown.

Since the hue-chroma-lightness (HCL) color space is fairly established, 
in this thesis I will also use chroma instead of saturation when referring to 
exact values in the color space.

Not all HCL values are perceptually defined, since the possible range of 
chroma varies depending on hue and lightness — hence the asymmetrical 
color wheel in Figure 2.8. From a HCL model it can be observed that colors 
such as “dark yellow” or “bright violet” do not exist. Saturated yellows always 
appear light, while saturated blues or violets are much darker (Koponen and 
Hildén, 2019, pp. 66–67). Note that this is different from colors being out of 
gamut, although the practical result is the same.

7	 The numbers for lightness are usually given as unitless, but the CSS specification uses percent-
ages for compatibility reasons (Atkins, Etemad and Rivoal, 2022, ch. 9.1)
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The common Hue-Saturation-Value (HSV) and Hue-Saturation-Lightness 
(HSL) color spaces are also cylindrical, but as they are simply alternative rep-
resentations of the RGB color space they are not even somewhat perceptual-
ly uniform. For this reason, they can not be used to design equidistant color 
scales. (Brewer, 1999; Koponen and Hildén, 2019, pp. 66–67)

This can be demonstrated with visual comparisons. In a perceptually 
uniform color space hue values can be changed while lightness and chro-
ma remain constant, while a non-uniform color space will show changes in 
lightness when hue changes.

Figure 2.9. Comparison of a color gradient with constant lightness and 
saturation in OKlab with one created using HSV with changing hue and 
constant saturation and value. Image adapted from Ottoson (2022).

As Figure 2.9 shows, the Hue-Saturation-Value (HSV) representation of 
the RGB color space is not uniform, because changes in hue causes clearly 
visible shifts in both lightness and chroma that appear as bands and more 
saturated regions. The uneven lightness variation in the HSV gradient is 
apparent when plotted separately.

Lightness is essentially meaningless as a separate value in a non-uniform 
color space like HSL. In Figure 2.10 a saturated blue (left) has the same HSL 
lightness value as a saturated yellow, but they are not even close in appar-
ent lightness. To the right the same blue is contrasted with a “yellow” of the 
same hue, but the actual lightness is the same for both — resulting a brown-
ish color8. Because dark saturated yellows do not exist, its saturation value is 
much lower in the uniform HCL color space.

Figure 2.10. Comparison of HSV colors and HCL colors with similar 
values.

8	 The hue angles are different, because HSL angles do not correspond exactly to HCL (Verou, 
2020). Values were calculated with Chroma.js.
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The issue with undefined and out-of-gamut colors complicates the 
practical use of perceptually uniform color spaces like HCL as such colors 
easily can be created when inputting values (Zeileis et al., 2020). This is not 
something that can be solved simply by using wide gamut color spaces. As 
noted previously, many computer monitors can indeed display a wider range 
of colors than what the common sRGB color space can represent. However, 
this does not mean that wide gamut color spaces like P3 necessarily give 
any real advantage when designing visualizations. Such color spaces are not 
yet consistently supported for display outside specialist imaging applica-
tions, and especially not on the web (Lilley and Needham, 2022). Common 
projectors used for presentations also typically have smaller gamuts than 
screens, and for printed graphics the available range of colors tend to be 
much smaller still. An additional complication is that the colors available in 
wider gamuts are unequally distributed across the range of possible hues, as 
shown in Figure 2.7. While the increase in the number of possible colors in 
high-gamut spaces sounds impressive relative to sRGB, the practical differ-
ences are perhaps not that large in most contexts9.

Designing color scales that use the full range of colors in wide gamut 
color spaces has limited utility at least until these are reliably supported 
across web browsers and even then the advantage may be small. For these 
reasons sRGB remains the standard color space for screen use. While out-
of-gamut colors can be mapped to the available gamut in a particular display 
color space, this process is fraught and unreliable and frequently introduces 
changes that can affect perceptual uniformity (Ware, 2013, p. 138). Therefore, 
a safer and more reliable approach may for now be to work within the lim-
itations of sRGB and avoid colors that it cannot represent when designing 
colors for visualizations.

Figure 2.11. The Inkscape HSLuv color wheel (2022). Screenshot.

9	 This can be tested in, e.g., Adobe Photoshop™ by comparing a green color input with the RGB 
values 0, 255, 0 with one with the maximum L*a*b values 100, -128, 127 in a docu-
ment using L*a*b color mode and trying different display color profiles. I was unable to per-
ceive the difference between these hues on a 2016 MacBook Pro using the Color LCD (default), 
Adobe RGB, or Display P3 color profiles, but with Wide Gamut RGB it became clearly visible.
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Figure 2.11 shows an example of the HSLuv (cylindrical transform of 
CIELUV) color picker in the open-source vector drawing program Inkscape, 
demonstrating one possible solution to deal with undefined colors in an 
interactive tool. The quadrilateral shape represents the available color gamut 
for the current lightness value and input values are clipped to fall within it.

Undisplayable colors have to be considered when designing perceptually 
uniform color scales as well, where each step ought to represent a mono-
tonic uniform change in perceived color value. Without adjustments inter-
mediate hues are often undefined, even if the end and start points are valid 
colors. Figure 2.12 shows an example of this in the HCL color picker 10 (Brown, 
2022). The uniform linear interpolation between a light green and a dark 
blue with equal chroma shows a gap of undefined colors.

Figure 2.12. Undefined colors as visualized in the HCL color picker 
(Brown, 2022). Screenshot.

The HCL color space is currently not available in most desktop design 
software, but it exists as software implementations such as Gregor Aisch’s 
Chroma.js (2022a) JavaScript library, the Culori JavaScript library (Burzo, 
2022) or the colorspace R package by Zeileis et al. (2020)11. These allow 
interactive creation of colors using the HCL color space which are then con-
verted to displayable sRGB but share the fundamental usability challenge of 
undefined and out-of gamut colors.

According to the v2.4.0 documentation Chroma.js uses the CIELAB space 
for HCL colors (Aisch, 2022a). Because of its easy availability, I use the defi-
nition in Chroma.js in this thesis, despite some disadvantages compared to 
CIELUV-based HCL (see p. 29). Ardov’s (2022) Huetone is one example of 
a color picker displaying HCL or LCH, implemented with chroma.js12. Figure 
2.13 shows an example of how a selected color varies in lightness, chroma and 
hue as displayed in the Huetone app. The grey areas in the charts represent 
undisplayable or non-existent colors.

10	 Available at http://tristen.ca/hcl-picker/
11	 The colorspace package can be used online at http://hclwizard.org/
12	 https://huetone.ardov.me
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Figure 2.13. The Huetone web app displaying multiple palette colors 
(Ardov, 2022). Screenshot.

Ware (2013, pp. 106–107) notes that while perceptually uniform color spac-
es are helpful for color scale design, color interactions can lead to significant 
differences in the perception of adjacent colors that they cannot account for. 
The size of a colored area is an important factor: colors are perceived more 
accurately for large samples, while color differences very nearly can vanish for 
tiny patches, especially on the yellow–blue axis. From this follows that color 
scales need to be designed with larger difference between colors the smaller 
the colored areas in a graphic are (Szafir, 2018).

Lightness differences are critically important for making out shapes and 
detecting small details: a grayscale sequence allow a much better perception 
of form than a sequence that varies only in hue, saturation or both (Ware, 2013, 
p. 129). Monochrome grayscale sequences are however very susceptible to con-
trast effects, where the appearance of a colored area is affected by surrounding 
colors — simultaneous contrast. From this follows a recommendation to de-
sign quantitative color scales so that they combine a continuous change in hue 
with a change in lightness, creating what Ware describes as a “spiral upward in 
color space” (Ware, 2013, p. 131). Devising such color scales that are both effec-
tive and aesthetically pleasing can require careful manual work even with color 
tools that account for lightness changes. Smart, Wu and Szafir (2019) describe 
an algorithmic approach that can emulate such manually crafted quantitative 
color scales and show that it is possible to in this way create quantitative pal-
ettes that outperforms colors generated by common mathematical approaches.

2.1.3.1	Contrast and separation of colors

Quantifying the difference between individual colors is necessary for gener-
ating color scales with recognizably different colors. The difference is termed 
ΔE — (Delta E, dE) and represents a measure of change in visual perception 
between two colors. The scale of Delta E generally ranges from 0 to 100, with 
values under 1 representing differences that are not perceptible. The current 
standard for accurate color difference algorithms is Delta E 2000, proposed 
by the CIE organization (Schuessler, 2019). In the 2.4.0 version Chroma.js uses 
an implementation of this algorithm (Aisch, 2022a).



35Theoretical background and methodology

Figure 2.14. Comparison of lightness contrast and Delta E (ΔE). 

Here it is necessary to clarify that contrast and color difference are two 
related, but separate concepts. Contrast refers to differences in lightness 
between two colors, while Delta E also accounts for differences in hue and 
chroma. A pair of colors can exceed the Just Notifiable Difference (JND) 
threshold clearly while having identical lightness, i.e., zero contrast. This 
is illustrated in Figure 2.14. The pair on the left have a fairly large Delta E 
difference, while their lightness contrast (lC) is zero (see p. 36 for further 
details on the contrast calculation). The colors on the right have higher con-
trast than Delta E.

For practical use differences in color must exceed the just notifiable 
difference (JND) threshold by a fair degree. What the exact JND value is and 
how much it should be exceeded depends on the context and how Delta E is 
calculated, which means that given values should be taken as general guide-
lines (Schuessler, 2019). Schuessler (2019) argues that values from 2–10 are 

“perceptible at a glance” based on self-conducted tests.
The Leonardo online applications13 (Baldwin, 2022) correspondingly uses 

a Delta E of 11 as the lower cut-off value for a difference that will be safely 
distinguished. Such a small difference is however below any practical con-
trast requirements, as Figure 2.15 demonstrates. The first #fee8c8 and the 
last color #e34a33 in a three-class ColorBrewer OrRd scale14 have a Delta E 
of 39.6 between them, but still just barely exceed the Web Content Accessi-
bility Guidelines (WCAG 2 2018) AA level for UI components and graphics. 
A grey color with the hex value #757575 just passing WCAG criteria AA for 
regular text (24px/19px bold and below) has a Delta E of 37.2 against white.

Figure 2.15. Comparison of the first and last color in a three-step 
ColorBrewer OrRd scale in Leonardo (Baldwin, 2022). Screenshot.

13	 Leonardo uses Chroma.js with modifications for color calculations. https://leonardocolor.io/
14	 https://colorbrewer2.org/#type=sequential&scheme=OrRd&n=3; Brewer (2013)
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In the case of text, color contrast differences need to be much larger. 
Somers (2021b) argues that the difference should exceed the JND at least by 
10 times, referring to work by Christen and Abegg (2017), in which increasing 
contrast was found to support higher reading speeds under simulated low 
vision conditions for text in different shades of grey. The lowest tested value 
was a barely discernible light grey with a Delta E of 2.4 while reading speeds 
rapidly improved up to a Delta E of 39.9 — some 16 times higher15. Without 
simulated vision impairments, contrast had only little effect on the ease of 
reading (Christen and Abegg, 2017).

2.1.3.2	Issues with color contrast in visualization design

An issue with applying mathematical color science models to design and vi-
sualization work is that they do not control for important real-world factors 
that affect color perception. These include differences in viewing conditions 
such as lightning and display means (e.g. monitor type, printing techniques) 
in addition to confounding factors such as surrounding colors and varying 
sizes of the colored targets (Szafir, 2018).

In an attempt to handle some of these practical factors Stone, Szafir and 
Setlur (2014) created a simple model for computing color differences in rela-
tion to size using Euclidean distance in the L*a*b* color space for ΔE adjust-
ed, through crowd-sourced data from Mechanical Turk users. A survey was 
used to study perceived color differences at different sizes. Using data from 
the 624 participants they created a parameterized noticeable difference (ND) 
as a linear function of distance in CIELAB space for each studied target size. 
While the Euclidean distance model in itself is considerably less accurate 
than Delta E 2000 for color differences the authors argue that their parame-
trization makes their model useful for practically assessing color differences, 
which also outperforms traditional models (Szafir, 2018).

In the context of this thesis, the lower bound for differences in color that 
can be recognized is not of major importance, since any bivariate palette 
design should exceed those limits by a significant amount for all colors. 
Another consideration is that high contrast color scales may be undesirable 
in some cases. For instance, Careri (2022) notes that readers with dyslexia 
suffering from scotopic sensitivity syndrome may find strong color contrasts 
stressful and prefer color scales that are limited in hue variation.

Currently the Web Content Accessiblity Guidelines (WCAG 2 2018) do 
not define a specific level of contrast required for colors used maps and data 
visualizations16, but an established approach is applying the WCAG AA con-
trast criteria of 3:1 for graphical objects17 in these cases (Elavsky, 2021c).

15	 Text luminance was given in 8-bit greyscale where 0 is defined as black and white as 255. The 
highest tested luminance was 243 and the second-lowest 110 (Christen and Abegg, 2017), 
i.e., corresponding to rgb(243, 243, 243) and rgb(110, 110, 110).

16	 Accessibility Guidelines Working Group (2021), G111: Using color and pattern
17	 Accessibility Guidelines Working Group (2018); Success Criterion 1.4.11 Non-text Contrast
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The forthcoming update to the Web Content Accessibility Guidelines, 
WCAG 3 (Spellman et al., 2021), is proposed to use an improved algorithm for 
calculating contrast called the Accessible (or Advanced) Perceptual Contrast 
Algorithm18 or ACPA (Somers, 2022) building on the work of Stone, Szafir 
and Setlur (2014) and others. It is perceptually uniform. If the APCA contrast 
value for two different color pairs is the same, it represents similar perceptu-
al contrast, which is not the case for WCAG 2.x contrast calculations. ACPA 
also involves taking spatial frequency into account, which means different 
contrast values for different sizes — small objects (texts) require higher 
scores than large colored surfaces.

Using APCA the minimum value for usable color contrast is 15. The APCA 
algorithm or a version of it is likely what will be practically used to assess 
colors in a web environment in the future WCAG 3 (Somers, 2021a), but for 
general robustness a difference corresponding to the old WCAG2.1 contrast 
of 3:1 will be used is this thesis as a cut-off value. Different web tools exist for 
easily calculating contrast values19.

To further ensure separation of colors a stroke is commonly added to 
colored features in a chart (Shixie et al., 2020; see e.g., Organ, 2021; Elavsky, 
2021a). It is also a technique recommended by the WCAG20. This is gener-
ally necessary, as the differences between sequential colors in well-known 
schemes such as the yellow-orange-red YlOrRd from ColorBrewer21 do not 
satisfy even the lowest 3:1 contrast requirement between all the individual 
color steps, despite using the minimum three classes, as seen in Figure 2.16. 
The lightest yellow has too low contrast both to a white background and to 
the middle color. Light starting colors of typical color scales also tend to 
fall below the recommended APCA score of 30 for graphical objects when 
compared against a light background. If a dark background is used the oppo-
site problem generally occurs, with dark colors being insufficiently different 
from the background.

18	 A in name changed from Advanced to stand for Accessible in april 2022. (Somers, 2022)
19	 WCAG 2 contrast values can be determined for example with the previously mentioned Leon-

ardo or WebAIM’s contrast checker utility: https://webaim.org/resources/contrastchecker/; 
WebAIM (2021). The APCA contrast algorithm also has a web utility available at www.myndex.
com/APCA/

20	 “Provide sufficient contrast at the boundaries between adjoining colors,” www.w3.org/WAI/
WCAG21/Techniques/general/G209

21	 https://colorbrewer2.org
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Contrast comparisons
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Delta E

Delta E
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Figure 2.16. Contrast calculated with WCAG 2 and ACPA methods between 
sequential color steps in a three-step YlOrRd ColorBrewer scale.

This is a challenge for color encoding information in visualizations. 
The WCAG 2.1 Success Criterion 1.4.1 (“Color is not used as the only visual 
means of conveying information […] or distinguishing a visual element.”) 
can be satisfied, if the used colors differ in both hue and lightness, but as 
Figure 2.15 shows, this will be limited to only at most a few colors without 
adding strokes. Notably the requirement only applies to adjacent colors and 
is satisfied if they are separated with strokes. No value for minimum color 
differences in other situations is given in WCAG2.1, even though this in some 
cases would be necessary to ensure that color legends are legible22.

2.1.4	 Visually distinct textures

Texture as a visual variable also has particular relevance to area-based 
mapping, as it can be used as a qualitative and to some degree as an ordi-
nal encoding when applied to shapes. A texture or pattern23 is here defined 
as being created by repeating a shape or tile with a design on it in that is 
repeated in a periodic tiling. While many kinds of tilings exist, tilings for 
pattern design in visualization and cartography generally tend to use regu-
lar, uniform rectangular tiles24. Textures or patterns are visually distinct if 
they differ sufficiently in their main three fundamental perceptual channel 
components (Ware, 2013, p. 202) — orientation, scale, and contrast. Figure 
2.17. shows some monochrome sedimental lithology textures with different 
characteristics used for maps or charts where this can be observed. Texture 
667 differs from 669 in orientation but is similar in scale and contrast. 

22	 Accessibility Guidelines Working Group (2018); Success Criterion 1.4.11 Non-text Contrast, 
www.w3.org/WAI/WCAG21/Understanding/non-text-contrast

23	 The terms are often used interchangeably. Here I prefer to use texture referring to particular, 
designed textures and pattern as a more general term.

24	 see e.g., Jones (2011) for an example of designing tiles for use on maps in the ArcGIS software.
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Figure 2.17. Examples of patterns or textures used for geologic map 
symbolization (Federal Geographic Data Committee, 2017).

Textures 664 and 665 have larger repeating elements, so their scale is 
larger compared to the others. All textures use black figures on white, so 
their contrast is the same. Ware notes that textures have other important di-
mensions as well — randomness being particularly relevant. The regular grid 
texture 668 is clearly different from the more organic 671.

Without employing color or contrast changes, scale and orientation be-
come the most important factors for differentiation of textures. The apparent 
scale of a pattern is dependent on the spatial frequency, which means how 
often the pattern repeats per degree of visual angle. For this reason, it is also 
directly dependent on the viewing distance (Ware, 2013, pp. 59–60). One 
degree of visual angle at a viewing distance of 60 cm is about 1 cm25. Figure 
2.18 (right) shows how the visual angle is calculated and two sine wave pat-
terns with different spatial frequency (left).

Low spatial 
frequency

High spatial
frequency

Visual angle V S

V = 2 arctan(S/2D)

Visual angle

D

Figure 2.18. Illustration of visual angle with formula (left) and two 
patterns of different spatial frequency but same contrast (right).

Texture orientation and texture size variations in adjacent textures can 
also cause contrast effects — like optical illusions where a texture appears 
more fine-grained on a coarser texture background or where line orienta-
tions appear to change. These limitations lead Ware (2013) to suggest that 
visually distinct textures should differ by a factor of 3 in overall spatial 
frequency and by at least 30 degrees in orientation. In the paper Quantitative 
Texton Sequences for Legible Bivariate Maps Ware (2009) proposes a bivariate 

25	 See https://elvers.us/perception/visualAngle/ for a visual angle calculator.
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display scheme using a combination of a color sequence together with 
repeated texture symbols designed to be legible and perceptually ordered — 
termed quantitative texton sequences or QTonS. These symbols (two varia-
tions are shown in Figure 2.19) are designed to be applied to a grid (rather 
than as a shape fill), which solves issues related to how textures interact with 
borders, but also limits their use.

Figure 2.19. The ordered texture symbols or QTonS proposed by Ware 
(2009).

As Shixie et al. (2020) describe, textures can also be used as an alterna-
tive to colors in response to the accessibility issues that rise from adjacent 
colors in graphics — i.e., for satisfying the “no use of color alone” success 
criterion 1.1.4 in the Web Content Accessibility Guidelines26. However, the 
use of textures in visualizations can be perceived as disturbing, especially 
if the textures are high-contrast, and possibly may even trigger epileptic 
seizures in viewers at risk (Elavsky, 2021b). There is empirical evidence that 

“stressful” high-contrast striped lines even affect brain activity, particularly if 
the spatial frequency is about 3 cycles per degree of the viewing field (Huang 
and Zhu, 2017). At a normal screen viewing distance of around 60 cm this 
corresponds to three cycles per centimeter — in other words three dark and 
light bands per centimeter. According to Huang and Zhu (2017) this is specif-
ically a property of textures with straight stripes — a checkered pattern with 
similar spatial frequency is not perceived as equally stressful. Presumably 
the effect is also weaker for random textures with organic shapes, like zebra 
stripes.

There are significant conflicting demands concerning the application 
of textures to visualizations. Elavsky (2021b) notes that much testing and 
research is needed to establish effective guidelines for use of texture that not 
only technically satisfies requirements but also creates practical and visually 
satisfactory results.

Franconeri et al. (2021) discuss the practice of using textures as addition-
al redundant encodings and suggest that adding them inadvertently may lead 
to graphics that have no additional benefit or become confusing even for 
users without vision impairments. This may mean that following and formal-
ly satisfying the “no use of color alone” criterion can result in visualizations 

26	 Accessibility Guidelines Working Group (2018), Success Criterion 1.4.1 Use of Color: “Color is 
not used as the only visual means of conveying information, indicating an action, prompting a 
response, or distinguishing a visual element.”
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that are less understandable than ones that only employ color for encodings. 
As a counterpoint Careri (2022) writes that neurodivergent readers might 
find patterns pleasing and helpful if applied to visualizations in a way that 
reinforces hierarchies.

One approach to handling these possibly conflicting demands is allow-
ing users to toggle textures at will, as Elavsky (2021b) suggests. This approach 
does leave the use of textures in non-interactive contexts as an unresolved 
question.

2.1.5	 Integral and separate visual dimensions

The theory of integral and separable dimensions proposed by Garner (1974) is 
according to Ware (2013, p. 162) a useful additional framework for approach-
ing graphical encodings and glyph designs. The possible visual variables of 
a glyph are recognized to be interrelated and affect each other. Carswell and 
Wickens (1990) summarize: “Two physical attributes that correspond to a 
single perceptual code are integral, whereas two physical attributes that are 
each associated with distinct perceptual codes are separable.”

Integral and separable dimensions have been studied by speeded classi-
fication tasks, where test subjects are asked to rapidly sort objects (glyphs) by 
particular visual criteria (e.g. pick out all objects with the same size) (Ware, 
2013, p. 164). According to Ware the notion that visual variables fall into 
two clearly different categories is too simplistic. In reality visual variables 
will fall somewhere on a range between very integral to very separable, as 
illustrated in Figure 2.20. The lightness-hue pairing is missing from Ware’s 
graphic (2013) but based on work by Burns (2014) it may belong below the 
red-green and yellow-blue pairs. Group location cannot be used for encod-
ings on thematic maps, although it is involved in intermediate-level map 
reading tasks.



42 Theoretical background and methodology

More integral 
Dimension pairs

More separable

red-green yellow-blue

color lightness

x-size y-size

size orientation

color shape,size,
orientation

motion shape,size,
orientation

motion color

group
location color

Figure 2.20. Demonstration of glyph coding pairs sorted from most in-
tegral at the top to the most separable at the bottom (after Ware, 2013, 
p. 167).

According to Ware this ordering and distinction should still be taken as 
roughly indicative, since there are many exceptions. Ware concludes that 
while the integral–separable description essentially is the same as the chan-
nel theory, which has a firmer experimental foundation, it has the advantage 
of providing practical design recommendations.

Integral display dimensions tend to be perceived as a whole and are hard to 
separate. For instance, width and height as components of a shape tend to be 
seen together, so that two rectangles or ellipses of different sizes that have 
similar proportions will be interpreted as belonging together. Color hue is 
strongly integral — it is hard, but possible to perceive the degree of redness 
in a blue color.

In the case of separable display dimensions, it is relatively easy for a viewer 
to attend to one dimension of a visual shape in isolation: size and color is 
a typical example. This can be referred to as analytical processing. Ware (2013, 
p. 163) notes that most empirical research has been conducted on pairwise 
combinations of graphical qualities, while the interaction of three or more 
dimensions has received very little attention. Burns (2014) notes that there 
are many unknowns related to how dimension pairs interact depending on 
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situational effects from the tasks assigned. Adding redundant encodings can 
sometimes lead to unexpected interactions.

The conditions for selectivity between dimension pairs have been ex-
panded to include two additional terms in addition to the integral and sepa-
rable: the intermediate conditions of configural (Carswell and Wickens, 1990) 
and asymmetrical combinations (Nelson, 2000b, 2000a).

Configural combinations are described by Carswell and Wickens (1990) 
and MacEachren (1995) as being of optional separability. The viewer can 
attend either to the combination of visual dimensions, or to one of them in 
separation. According to Nelson (2000b) typical configurational symbols 
(see Figure 2.21) employ the same variable twice in one glyph — size / size 
(left) or lightness / lightness (right). In this case, it is possible to attend to 
either of the variables in such symbols, but they also interact strongly with-
in each symbol forming emergent dimensions such as the overall lightness or 
shape of individual glyphs.

Lightness

Lightness

Size

Size

Figure 2.21. Glyphs using configurational combinations: size / size and 
lightness / lightness.

Carswell and Wickens (1990, pp. 166–167) did not find examples of true 
integrality of visual dimensions in their study and hence argue, that the 
visual dimensions employed in most visualizations should be characterized 
as having configurable characteristics.

In asymmetrical combinations one of the paired variables is visual-
ly more distinct than the other. According to Nelson (2000b) asymmetry 
means that classification becomes easier when two symbol dimensions are 
correlated in one direction, while correlation in the opposing direction does 
not have the same effect. Emergent properties created by the two visual 
dimensions thus improve the ease of sorting, but only when they correlate 
positively. Elmer (2012) gives numerousness and size as a primary example: 
when symbol count and size increase in tandem they effectively reinforce 
each other, while combinations of low symbol count and large symbol size 
can be hard to distinguish from the opposite of high symbol count and small 
symbol size, as both combinations result in similar total coverage (the emer-
gent property). Texture and hue can also function in this manner: the hue is 
harder to distinguish in a texture that has a low total coverage.

Ware (2013, p. 168) notes that the main usefulness of the theory of 
integral and separate dimensions lies in its apparent simplicity and ease of 
application in design. According to Ware there are multiple irregularities 



44 Theoretical background and methodology

involving asymmetric combinations and exceptions in the theory, and a lack 
of an underlying underlying explanation mechanism. Interestingly, neither 
Elmer (2012) nor Nelson (2000b) refer to Treisman and Gelade’s (1980) work 
on conjunction searches.

As discussed under Visual variables: definition and use in maps (p. 
23) there is a limited number of such variables that are practically useful. 
Ware (2013, pp. 171–172) suggests that the maximum number of dimensional 
data that may be displayed clearly is eight: this would employ “color, shape, 
spatial position and motion to create the most differentiated set possible.” 
Further, the number of individual steps that can be discerned in each di-
mension has strong limitations. Color steps are limited to a maximum of 
around 12 (Ware (2013), p.126). Concerning size, no more than four steps can 
be reliably separated (see also Robinson, 1995, p. 413). The number of easily 
separated orientation steps is about four — the maximum being around 
six since the difference in orientation needs to be at least 30 degrees and 
opposing orientations are easily confused (Ware, 2013, p. 204). Ware ends up 
suggesting at most 32 easily distinguishable alternatives for shapes assum-
ing no difficult conjunction searches. As an additional complicating issue 
is the semantic appropriateness of the visual dimensions which make some 
mappings more appropriate than others, e.g., size has a natural association 
to amounts and orientation to directions.

2.2	 Definition of maps
Before discussing types of maps in more detail, a definition of maps is 
needed. Several such definitions have been proposed. Kraak and Ormeling 
quote this rather inclusive one by Board (1990): “[a map is] a representation 
or abstraction of geographic reality. A tool for presenting geographic infor-
mation in a way that is visual, digital or tactile.” (cited in Kraak and Ormeling, 
2010, p. 41)

A somewhat more narrow definition of a map would be a “measure-
ment-based miniature image of a geographical area”. (Koponen and Hildén, 
2019, p. 137)

A detailed discussion of cartography is outside the scope of this thesis. 
As accessible introductory resources for further reading on cartography one 
may recommend the books Principles of map design by Tyner (2010) or Making 
Maps: A Visual Guide to Map Design for GIS by Krygier and Wood (2016).
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2.3	 Types of maps: thematic 
maps and general use maps
There are several ways to divide and classify different types of maps. Themat-
ic cartography — the creation of thematic maps — first began to emerge as 
a separate branch of cartography with the maps showing trade winds and 
the strength of the Earth’s magnetic field published by astronomer Edmond 
Halley from the 1680s onward (Fig. 2.20).

Figure 2.20. Halley’s map of the magnetic field: an early contour or 
isoline map (Halley, 1700).

Despite the existence of early examples like this, it was only in the 19th 
century that thematic maps became commonplace. Tyner considers themat-
ic maps to now be the main type of map used in for example newspapers, 
journals and textbooks. (2010, p. 7)

Tyner (2010) employs three categories based on map function: gener-
al-purpose maps, special-purpose maps, and thematic maps. General-purpose maps 
or reference maps27 serve the purpose of representing general geographical 
features of an area, both man-made and natural. In Tyner’s classification 
special-purpose maps typically show a detailed view of a small area and are 
created for a specific use case (such as cadastral maps, geologic maps, or 
maps for route finding). According to Tyner the term thematic maps is now 

27	 Slocum et al. note (2014, p. 2) that distinguishing thematic maps from general reference maps 
largely is a convenience of categorization: a reference map could be seen as a multivariate 
thematic map that display many attributes at once, and spatial patterns of attributes can be 
observed in topographical maps, in addition to locations.
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widely accepted as the umbrella name for maps displaying quantitative or 
qualitative data against a spatial background that provides the reference for 
locating the mapped distribution. (Tyner, 2010, p. 7)

Tyner uses the terms cartogram to refer to “a geographic representation 
on which the size or distance isn scaled to a variable other than earth size 
or distance units” (2010, p. 189). Tyner further identifies diagrams as general 
term for schematic graphics that for instance show idealized climate zones 
or route connections such as subway maps (2010, p. 198).

Koponen and Hildén propose the term data maps (2019, p. 139) as a more 
general term that in addition to thematic maps also includes cartograms and 
other map-like visualizations. Data maps are then all maps or map-like visu-
alizations that allow the study of a phenomenon with a geographical distri-
bution — such as population density — by displaying geographic attributes, 
usually in addition to some background topographic information. By this 
definition thematic maps refer specifically to geographic representations of 
data that also include more or less geographically accurate dimensions.

In this thesis I will employ the following narrowed-down definition of 
a data map, which covers both geographically accurate thematic maps and 
cartograms:

A data map is a map or map-like visualization which displays geographic distri-
bution of a phenomenon using quantitative or qualitative data that is encoded in an 
explicitly determined systematic manner using one or more visual variables.

2.4	 Univariate and 
multivariate data maps
All data maps are in a sense multivariate, as they display at least three dimen-
sions: horizontal and vertical location plus some additional data dimension. 
Here univariate and multivariate maps will refer to data maps that display ei-
ther one or several additional data variables in addition to location variables.

In a univariate data map one data dimension is displayed in addition to 
geographical location using some visual variable. In the case of a choropleth 
map this is typically done by coloring the mapped regions by a data dimen-
sion such as population density. A univariate graduated symbol map uses 
symbol size to denote a data dimension. A map is not considered multi-
variate when two or more different visual variables are used to display the 
same data dimension — such as using both a color scale and symbol size 
to display values on a symbol map. This is what Roth (2017) calls redundant 
symbolization, which can be employed to strengthen the visual encoding of 
the mapped dimension.

Tyner considers all thematic maps, which display more than one addi-
tional data variable as being multivariate. A simple multivariate map uses 
two different symbols for two variables to compare them on a single map, 
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such as adding proportional symbols to a choropleth map (Tyner, 2010, p. 
178). Multivariate maps can show qualitative or quantitative data or a com-
bination thereof. This thesis is concerned with the case of bivariate quanti-
tative displays. Further, the discussion will be limited to bivariate data maps 
along with the addition of the special case of trivariate cartograms where 
two additional variables are displayed on shapes sized by population.

Here I also make a distinction between contextualizing background 
map information and thematic data: a choropleth map of postal districts 
with roads, bodies of water and names of neighborhoods is not in this sense 
multivariate, even if it does contain multiple layers of data. A data map is 
here considered univariate, if it displays exactly one data dimension (such as 
population density) using graphical marks at some geographical locations, 
even when all background information is taken out.

I focus on bivariate data maps that displays two data dimensions for 
each individual mapped region by using different visual variables in a single 
graphic. Therefore, small multiples (Tufte, 1990, p. 67) are also not here con-
sidered, even though they can be used to display multivariate geospatial data 
as shown in Figure 2.22. 

Figure 2.22. Small multiples map visualization showing support for 
school vouchers by states for different social and income groups in the 
United States in 2000. From Gelman (2011).
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In a typical small multiple each component graphic employs the same 
visual variables. Figure 2.22 is a complex example, where varying support 
for school vouchers are shown for the combination of 8 respondent groups 
and 5 income groups on 40 choropleth maps of the US using the same color 
scale and positioned in a tabular grid. Interactive maps where layers can be 
toggled or animations that go through different data sets are by the same rea-
soning also not considered.

There is no comprehensive literature on bivariate maps, but typically 
textbooks on thematic cartography will include a number of examples. How-
ever, apart from including the bivariate choropleth map there is little agree-
ment between texts on the number and types of bivariate maps presented. 
Elmer (2012) summarizes bivariate maps discussed in six different textbooks 
(Dent, Torguson, and Hodler 2009; Fisher, 1982; Krygier and Wood, 2011; 
Robinson, 1995; Slocum et al., 2003; Tyner, 2010). To this summary in Table 
2 I add Kraak and Ormeling (2010) and correct the omission of the bivariate 
choropleth from Robinson (1995) and the ray glyph from Tyner (2010):

Map type Tyner

Dent, 
Torguson, 

and Hodler Fisher
Krygier  

and Wood
Slocum 

et al.
Kraak and 
Ormeling

Robinson 
(3rd ed.)

Bivariate choropleth • • • •
Graduated pie charts  
(segmented point symbols) • • •
Multiseries dot density • • •
Ray glyph • •
Choropleth with graduated 
symbol • •
Shaded cartogram • •
Shaded graduated symbols • •
Bar graph (or composite diagram 
map) • •
Isoline with graduated symbols •
Rectangle map (height/width) •
Multiseries graduated symbol •
Table 2. Summary of bivariate maps mentioned in 7 cartography textbooks.

As Elmer (2012, p. 12) notes there is fairly little agreement between the 
textbooks on the map types mentioned, and none offer a comprehensive 
typology of bivariate maps. The bivariate choropleth is the most common 
type described in 4 out of the 7 books. Three types are mentioned only once. 
A more detailed assessment would require a survey of published maps that 
is beyond the scope of this thesis, but as Figure 2.23. illustrates the bivariate 
choropleth also appears to be one of the most popular types of bivariate map 
in general use at the moment of writing.
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Figure 2.23. The bivariate choropleth is the dominant result when using 
Google to search for bivariate map images (November 2022).

The possible design space of bivariate maps can also be more systemat-
ically explored through a framework of combinations of the visual variables 
that were discussed previously. The number of theoretically possible config-
urations becomes exponentially large, but fortunately not all combinations 
are practical or tenable.

A more systematic attempt at a taxonomy of bivariate maps based on 
visual variables is included in Nelson (2000b), here reproduced in modified 
form based on the additions made by Elmer (2012) as Figure 2.24. The bivar-
iate maps are illustrated with small 2×2 legend graphics and arranged into 
four columns based on four different relations between the variable pairings 

— separable, integral, configural and asymmetrical. Separable pairings of 
visual variables should enable relatively effortless study of either variable in 
isolation, integral ones tend to be seen together, configural variable pairings 
create a new combined dimension, and in asymmetrical pairings one visual 
variable is more salient than the other. I return to discuss these combina-
tions in more detail in the section “Main and emergent visual variables” on 
p. 62. As Elmer (2012) notes, this categorization does not attempt to 
catalogue all possible bivariate combinations, but it covers many bivariate 
types that are in common use. These are labeled with bold type. The integral 
combination of hue and lightness on both axes is the most common bivari-
ate choropleth type but is an addition to Nelson’s graphic (2000b). Value has 
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Figure 2.24. Visual variables in bivariate maps ar-
ranged by configurality after Elmer (2012).

been renamed lightness for consistency with the termi-
nology used in this thesis.

I have left out the combinations of linear pattern and 
size from Figure 2.24. as bivariate linear symbols are out-
side of the scope of this thesis. Nelson’s two examples of 
typeface combinations are also left out here, since these 
are essentially duplicates of shape / shape (typeface / style) 
and shape / size (typeface / size).

What follows is a more detailed description of some 
important types of data maps, how they are adapted to 
display bivariate data and some design considerations 
relating to them.
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2.4.1	 Areal unit maps

Areal unit maps take polygons representing geographical areas and encode 
quantitative or qualitative values using colors hues, shades or in some cases 
patterns applied to these polygons. Classified areal unit maps are general-
ly preferable to the unclassified type, since only a limited number (usually 
around 7) of different hues can be reliably separated (Koponen and Hildén, 
2019, p. 147).

Figure 2.25. shows example coloring schemes for univariate areal unit 
maps. Qualitative scale for qualitative data, binary schemes for binary (yes/
no) data, or a single-hue, multi-hue, or diverging color scale for numerical 
data. Diverging scales are employed when the data range has a natural mid-
point. (Brewer, 1994)

All areal unit maps essentially differ in how the areas are divided and 
are thus at least in principle adaptable to representing bivariate data. This is 
discussed further under Bivariate color scales for choropleth maps, p. 70.

Single-hue scale

yes / no low highdifferent 

Multi-hue scale Diverging scale

Qualitative scale Quantitative scaleBinary

low high extreme average extreme

Figure 2.25. Examples of types of univariate color schemes used in 
choropleth maps.

Choropleth maps (Figure 2.26, left) use pre-existing regional divisions 
like municipalities or postal districts as statistical units and display aggre-
gate values that are collected for each of these subdivisions using color 
or sometimes textures. According to Tyner (2010, p. 160) this is the most 
common and familiar kind of thematic map. Choropleth maps cannot show 
variation within enumeration areas, since each is colored uniformly based 
on its aggregate value. Choropleth maps are very sensitive to changes in 
enumeration areas, so in most cases data should be shown using the areal 
divisions that were used for data collection. Since areas vary in size, absolute 
values should not be visualized on a choropleth (Koponen and Hildén, 2019, 
pp. 148–150).

Dasymetric maps (Figure 2.26, middle) are similar to choropleth maps, 
but additional information is used to adjust the statistical areas and give a 
more realistic view of variations within the measured areas. In practice this 
can for instance mean that in a map dealing with population data regional 
divisions are modified by removing parts that are known to be uninhabited 
(Tyner, 2010, pp. 163–164).
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Figure 2.26. Examples of a choropleth map, a dasymetric map and a grid 
map representing the same region. After Koponen and Hildén (2019).

Grid maps (Figure 2.26, right) resemble choropleth maps where the 
visualized area is divided into cells of uniform size which are colored by 
the data dimension. Since grid cells are uniformly sized, this map type can 
display absolute values (Koponen and Hildén, 2019, pp. 150–151). Thanks to 
the uniform sizing of grid units grid maps may be more suitable to different 
bivariate displays than other areal unit maps. Especially symbol-based visual 
variables could be easier to apply to a grid map, although the advantage con-
ceivably concerns color as well, since the issue of colors appearing different 
due to the varying sizes of mapped areas is avoided.

Contour maps or isarithmic maps connect points that have similar 
values with lines (Tyner, 2010, p. 171). An isoplethic or isometric map where 
the areas are colored based on the data values can be called an area-class 
or zone map. Figure 2.27 shows an example of a bivariate area class map 
of hours of sunshine compared with precipitation in the United Kingdom. 
Area-class maps may sometimes employ color scales with significantly more 
steps than a typical choropleth map, since successive values always are locat-
ed next to each other (Koponen and Hildén, 2019, pp. 151–152).
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Figure 2.27. A bivariate area class map created by Colin Angus (2022). 
The sun and the rain. Annual hours of sunshine vs. total precipitation 
in 2021.

2.4.2	 Other types: Cartograms and multidimensional glyph 
designs

Cartograms or anamorphic maps are diagrams that in some way resemble 
maps but distort geographical dimensions to communicate additional data 
variables. According to Tyner (2010, p. 198) a cartogram by definition em-
ploys distortions that are controlled and systematic. The two main types of 
anamorphic map are the area or value-by area cartogram and the central 
point or distance cartogram. Distance cartograms distort geographical 
distances from a predefined point based on travel times. Area cartograms are 
more common and generally useful. Because cartograms involve significant 
geographical distortion conventional chart types like a bar chart may be 
more effective in cases where no clear geographic patterns can be discerned 
(Koponen and Hildén, 2019, p. 155). Cartograms are not included in the 
typologies of multivariate maps discussed above, but have frequently been 
used for bivariate data, e.g., by showing an additional variable with color 
on a population cartogram. Tyner (2010, p. 194) calls them dramatic and 
eye-catching, but considers that there is a need for more empirical research 
on their effectiveness.
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Figure 2.28. Views of the 2017 UK General Election. A cartographic look 
at the vote share of the Labour Party. A choropleth map (left) con-
trasted with a grid cartogram (middle) and contiguous cartogram (right) 
created by geographer Benjamin Henning (2017).

A contiguous area cartogram (Figure 2.28, right) renders geographical 
regions in their correct relative positions and maintaining border relation-
ships, but with their surface areas programmatically distorted to match a 
data variable, such as population. Since the distortion always is relative to 
the actual sizes of the mapped regions, recognizing them is essential for 
interpretation, but this is in practice difficult (Tyner, 2010, p. 191).

Grid or mosaic cartograms are made by dividing regions into a number 
of uniform units (Figure 2.28, middle). The number of units may correspond 
to — for instance — population or to political constituencies, as in the illus-
trated example. These units are then positioned to render an approximate 
resemblance of the mapped regions. Constructing them is more difficult and 
usually involves manual composing, compared to contiguous cartograms 
which can be easily generated by software. The House of Commons Library 
(2022) has published a non-contiguous grid cartogram of the UK. (Koponen 
and Hildén, 2019, p. 154)

Non-contiguous cartograms (not illustrated) scale the areas of regions 
in place without distorting their geometries. Including the non-distorted 
outlines of the regions can provide a frame of reference, which makes them 
easier to interpret than contiguous cartograms (Tyner, 2010, p. 192).
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Figure 2.29. Two Dorling cartograms with bivariate color schemes com-
pared with choropleth of same data set (left). The areas of the regions 
are sized by total population. Created as part of this thesis — see 
Chapter 5 for discussion.

The Dorling cartogram (Figure 2.29) is a variation of the non-contiguous 
cartogram where the mapped regions are represented by uniform shapes — 
usually circles28 — with their areas derived from the mapped data dimension 
and placed in approximately correct relative locations (Tyner, 2010, p. 193). 
The shapes should generally not overlap but the resulting diagram is often 
far removed from the underlying geography.

In a cartogram the coloring can be the main visual variable, while the 
size provides secondary information, such as in a cartogram using color 
variables to display party vote share in districts sized by population. Apply-
ing a bivariate color scheme to a Dorling cartogram thus effectively creates a 
trivariate map.

Nusrat et al. (2018) demonstrate an alternative solution for bivariate 
Dorling cartograms that is illustrated in Figure 2.30. Areas are based on the 
combination of two data series (Y and X), whose relative contributions are 
indicated for each mapped region by size, line width and a color scheme 
with three categories. When both variables are in balance, the line is thin and 
rendered in grey, when the Y value is large, one color is used and another for 
X. Larger Y or X values are mapped to line width. From a small experiment 
with 23 participants they found this type of visualization to be viable.

28	 The Demers cartogram is a variation that uses squares placed edge to edge instead of circles 
(Koponen and Hildén, 2019, p. 155).
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Figure 2.30. Example of novel bivariate Dorling cartogram created by 
Nusrat et al.: “A per-capita bivariate cartogram showing the distribu-
tion of Starbucks and McDonald’s shops per 100,000 residents in the US” 
(2018).

Statistical symbol maps (Figure 2.31, left), sometimes called diagram 
maps are proportional symbol maps that employ traditional statistical charts 
as point symbols. The most common type uses pie charts, also referred to as 
segmented circles or segmented proportional circles. Statistical symbol maps gener-
ally display data for at least three variables per location. Typically the circles 
vary in size based on total values like in a proportional symbol map while the 
wedges show percentages or fractions of the total (Tyner, 2010, p. 180).

Statistical symbol maps are considered confusing and hard to read com-
pared to both proportional symbol maps and other chart types (Koponen 
and Hildén, 2019, p. 147). Kraak and Ormeling (2010) also actively discourag-
es their use for this reason.

Chernoff faces (Figure 2.31, middle) are not listed in any of the discussed 
textbooks but may perhaps the best-known type of glyphs used on maps be-
side statistical charts. Herman Chernoff introduced these stylized face-like 
glyphs in 1973 and claimed that they would allow representing as many as 
18 different variables using dimensions such as size, curvature and width of 
the mouth, angle of the eyebrows and so forth (Tyner, 2010, p. 182). Kosara 
(2007) argues that the particularities of human face perception which is very 
specialized is likely to make these glyphs difficult to understand. Different 
facial features are not perceived in a linear or differentiated fashion and can-
not therefore easily be used as mappings for arbitrary data dimensions.
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Figure 2.31. Statistical symbol map (left) (Koponen and Hildén, 2019), 
Chernoff face map (middle) (Turner, 1977), and radar graph variations 
(right; after Tyner, 2010).

Tyner (2010, p. 183) gives variations on radar graphs as an additional 
example of point-based symbology using glyphs that could be placed on a 
map (Figure 2.31, right). These are based on three or more rays starting from 
a central point. Data is encoded using the length of the ray, or in the case 
of polygonal glyphs, the shape — not the area — of the outline. These are 
functionally similar to standalone radar graphs — also called spider or star 
graphs. This chart type is considered to be mostly ineffectual and will not be 
considered further here — for details see e.g., Few (2005).

Empirical evaluations of Chernoff faces and star graphs — see, Lee, 
Reilly and Butavicius (2003), Morris and Ebert (2000) — suggests that such 
visualizations are both difficult and time-consuming to read, and lead to a 
high number of reading errors. Using them on a map, where the placement 
is determined by geographical features is likely to only make these issues 
even more severe. While other glyphs may be designed to be more contextu-
ally relevant and might conceivably avoid the particular problems associated 
with Chernoff faces and star graphs, it is reasonable to assume that the num-
ber of variables that can be easily appraised from glyph dimensions is rather 
limited (Kosara, 2007).
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2.4.3	 Symbol dimensionality

Geographical information is understood to exist in three categories based on 
their dimensionality:

•	 point feature data,
•	 linear (or arc) data, and
•	 polygonal feature data.

These correspond to the common division of geographic phenomena oc-
curring as points, lines and areas (Tyner, 2010, p. 134). Additionally, data can 
be represented as volumes. Point data represents discrete data points corre-
sponding to point phenomena recorded without additional spatial dimensions 
at defined geographical locations, such as the position of individual trees. 
Linear data is a one-dimensional representation of linear phenomena where 
the significant dimension is length, being either physical such as roads or 
streams, intangible like political borders or conceptual data aggregations 
such as traffic volumes. Polygonal data represents the two-dimensional 
areas and shapes of areal phenomena such as lakes, administrative regions or 
building footprints or conceptual data such as land use. (Tyner, 2010, p. 134; 
Dempsey, 2017)

Volume phenomena also cover geographical areas but include a quantita-
tive third dimension. In the case of elevation, this is directly observable, but 
the third dimension can also be conceived as being conceptual in nature, in 
which case the representation forms a statistical surface. This means that data 
is collected with a z dimension in addition to the spatial latitude and lon-
gitude or x and y dimensions. A population map can be conceptualized as 
a statistical surface consisting of areas where the z-dimension (i.e., height) 
represents population density. (Tyner, 2010, p. 134)

The possible symbol dimensionalities corresponding to these phenom-
ena are usually considered to consist of points (zero-dimensional), lines 
(one-dimensional) and polygons (2d). In addition to these, some authors 
(Stefan et al., 2007; e.g., Tyner, 2010; Kraak and Ormeling, 2010) include 
rendered virtual volumes or surfaces (referred to as 2.5d) and actual 3-di-
mensional shapes (in the case of maps as physical 3d objects).

In thematic mapping, data is often encoded with a symbol that has a dif-
ferent dimensionality than the actual phenomenon displayed, as when areal 
data is displayed using point symbols placed on the center of the mapped 
region. An example is representing cities as circles with areas corresponding 
to their total population placed at their geographical center points. (Tyner, 
2010, p. 142)

Based on this, all bivariate maps can be understood as the combination 
in one map of two visual variables (size, shape, color properties etc.) and two 
symbol dimensionalities. An example of this is shown in Figure 2.32, where 
the visual variables of area and lightness are combined into a bivariate sym-
bology that uses point and polygon features.
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Visual variable I: 
area

Symbol dimensionality I:
point

Bivariate map symbology

Symbol dimensionality II:
polygon

Visual variable II:
lightness

Figure 2.32. Combining visual variables and symbol dimensionality into 
bivariate map symbols after Elmer (2013).

Elmer (2012, pp. 21–22) shows that this excluding 2.5d and 3d yields 
three possible combinations of symbol dimensionality in bivariate maps 
displaying area-based information, illustrated in Figure 2.33:

•	 polygon/polygon: both data dimensions are applied to different visual 
variables of the same area symbol

•	 polygon/point: one visual variable is varied on an area symbol, another 
on a superimposed point symbol

•	 point/point: a map using a bivariate glyph where two data dimensions 
are mapped to different visual variables, e.g., a statistical symbol map.

Point/point

Shaded graduated 
symbol map

Choropleth with 
graduated symbol

Bivariate choropleth map

Polygon/pointPolygon/polygon
Symbol dimensionality combinations with examples

Figure 2.33. Combinations of symbol dimensionality with example bivar-
iate map types, modified from Elmer (2012).

Adding a rendered 3d volume (2.5d) to the repertoire would add the ad-
ditional possible combinations of polygon volume/polygon volume (e.g. ex-
truded map polygons), polygon/point volume (area symbols with overlaid 
volume symbols that vary in height) and point volume/point volume (empty 
base map with volume symbols that vary in two dimensions). Many of these 
are likely of questionable utility as perceived volume is known to be very 
hard to judge correctly (Ware, 2013, pp. 168–169), but 2.5d polygon volumes 
with a second color variable as applied specially to grid maps could in some 
cases be interesting — such as those demonstrated by Stefan et al. (2007) 
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Figure 2.34. Bivariate view in the online project Human terrain, where 
population is mapped to volume symbol height and change magnitude and 
direction to a diverging color scheme (Daniels, 2018).

or Human terrain by Daniels (2018) shown in Figure 2.3429. Their potential 
usefulness is improved by the fact that the perceived dimension for practi-
cal purposes is height (the length of “pillars” of uniform width), rather than 
volume. A similar display based on irregular areal divisions is much harder 
to interpret.

The variable of transparency poses specific challenges. For transparen-
cy to be perceived at all in a static visualization — as opposed to lightness 
differences or color mixing — there must be some perception of overlapping 
shapes, but interferences can easily lead to confusion as to which objects 
belong together (Ware, 2013, p. 211). Interactive maps can avoid this issue, 
as the toggling of map layers allows transparency to be understood with 
relative ease. This can be used to study the interaction between symbols on 
different layers as shown by Luz and Masoodian (2014).

MacEachren (1995) argues that when transparency is used as a visual 
variable, only three levels can be reliably identified — nearly clear, inter-
mediate, and nearly or entirely opaque. Woodruff (2010) notes that their 
solution actually does not use MacEachren’s transparency variable as such, 
which is related to overlapping layers and shapes creating an illusion of 
transparency. They instead represent graded adjustments of lightness and 
saturation by a data variable mapped to the alpha channel to mix colors of 
regions with a neutral (black or white) background. As such, the 

29	 Interactive article: https://pudding.cool/2018/10/city_3d/
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Figure 2.35. Value-by-alpha map of Virginia midterms results. Screen-
shot from web article (Cox et al., 2014).

alpha channel is used as a convenient proxy. Since Roth et al.’s (2010) 
Value-By-Alpha (VBA) method actually employs a variation on ordinary light-
ness-hue-saturation color scales somewhat more steps are available than by 
MacEachren’s (1995) definition. Figure 2.35 shows the method applied to a 
midterms election map in an article by the New York Times, where the alpha 
channel is used to divide three color categories into four distinct levels (Cox 
et al., 2014).

On the other hand, this also means that bivariate symbols that use 
overlapping layers with data encoded in different transparencies become 
graphically untenable with the VBA method. Value-by-alpha methods can by 
definition only de-emphazise the visual impact of regions, which is a further 
limitation (Woodruff, 2010).

2.5	 Tasks in map reading
Franconeri et al. (2021) note that the complexity of real-world tasks and how 
they interact with different visualization types poses significant research 
challenges. The picture is further complicated by variations in design choic-
es and in the visualized data. There is a large number of possible tasks that 
readers may accomplish with visualizations and the work of creating task 
taxonomies and and studying these is ongoing. A detailed discussion of the 
specific literature on tasks in visualization and map reading is beyond the 
scope of this thesis, but a short aside on some simple tasks is warranted. The 
visual queries discussed in the section visual channels, p. 20, are some-
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what analogous with tasks that people might use to study thematic maps in 
real-world situations.

According to Elmer (2012) the simplest and most widely used taxonomy 
of thematic map reading tasks is one that involves two distinct objectives: 
identifying and comparing. The identifying task is simply about using the the-
matic map to get information about a single area, while the comparison task 
involves collating information across two or more different units on a map.

Bertin (2011) describes a typology of visualization reading tasks with 
three levels: the elementary, the general, and the global levels. Elementary tasks 
involve single mapped units (finding the values of a particular unit), general 
tasks involve groups of units (comparing one region consisting of multiple 
units with another) while global tasks deal with large visual patterns that oc-
cur on the entire map (i.e., seeing a north-south divide in the mapped data).

2.6	 Selectivity and effects of 
symbol combinations
Selectivity affects how a reader can focus their attention on one class of 
visualized objects while disregarding other, confounding objects. As dis-
cussed previously in the chapter on integral and separable visual dimensions 
(p. 41) the different possible combinations of symbols for bivariate maps 
can interact in varying ways depending on their design. Roth (2017) classifies 
these conjunctions as either homogeneous, where the same visual variable is 
used twice to map the different dimensions, or as heterogenous if two different 
variables are used. The employed symbol dimensionalities can also be either 
homogenous or heterogenous (e.g. point/point or point/area).

Based on their selective characteristics bivariate maps can be classed 
according to the concept of integral and separable dimensions as belonging 
to one of the four categories: separate, integral, configural or asymmetrical 
(Roth, 2017).

2.6.1	 Main and emergent visual variables

Bivariate maps should have a matrix of symbols that function as the map 
legend or key, as illustrated in Figure 2.36. Olson (1981) found that a clear 
legend and accompanying explanation of how to read the map is particu-
larly important for bivariate maps to be considered understandable. The 
established form for the legend is a square grid, where the horizontal X and 
the vertical Y axes show the two main variables (Trumbo, 1981; Eyton, 1984; 
Dunn, 1989). The cells representing the intersections between them form 
what Elmer (2013) terms emergent visual variables. These fall on the orthogo-
nal axes that run diagonally across the matrix and are called the Plus (+) and 
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Minus (-) axes. The selectivity is in direct relation to the map reading tasks: a 
functional bivariate encoding ought to enable selectively attending to differ-
ent groups of symbols that occur on the map (i.e., looking for variation on a 
single variable alone, or the combination of two variables).

Not many empirical studies of bivariate map reading have been conduct-
ed. Halliday (1987) investigated how well four different asymmetrical 4×4 
bivariate scales applied to a map with 43 regions were interpreted. The scales 
used — shown reconstructed in Figure 2.37 from the black and white origi-
nals — were a hue or spectrum range (red, orange, green, blue), and a light-
ness range (light green to dark green) versus a black and a white texture. It 
can be noted that the lightness scale is somewhat uneven and that the Y axis 
on the hue palette likely ought to be considered qualitative, even though all 
schemes were used for quantitative data. The experiment was a between-sub-
ject study with 120 student participants and all scales were according to 
Halliday found to be roughly equally effective.

Nelson (2000a) studied individual bivariate symbol combinations were 
studied with speeded classification tasks. In a follow-up study the Nelson 
(2000b) bivariate symbolizations grouped by dimensional interactions were 
tested on maps with real data. This was done with a group of 150 students 
and found that both rectangle height–width and bivariate choropleth maps 
using lightness and saturation encoding were effective in showing correla-
tion between the data variables. This was interpreted as supporting that these 
visualizations indeed are integral.

X

Y

+– variable X: 
chroma & lightness 

X

variable Y: 
chroma & lightness 

Y

plus (+) axis: 
lightness 

+

minus (-) axis: color
hue and saturation 
(chroma)

-

Bivariate legend split into axes

high X

high X and Y

high Y

low Y

low X

Figure 2.36. Illustration of bivariate choropleth legend decomposed 
into X/Y and +/- axes (after Elmer, 2013).
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Figure 2.37. Palettes from Halliday’s study reconstructed in color from 
provided CMYK values (1987).

Leonowicz (2006) did an empirical study with 138 university students where 
a bivariate choropleth map with nine classes was compared to two separate uni-
variate choropleth maps with three classes each. The bivariate map was found 
to outperform the separate maps in showing the relationships between the data 
series, but to be clearly less effective in showing the overall spatial distribution 
of the individual series.

Elmer (2013) conducted an experiment with 8 bivariate map types and 
visual variable combinations to study selectivity with different symbolizations. 
This is a continuation of the work of Nelson (2000b) and the types are shown in 
Figure 2.38:
•	 Shaded cartogram: separable visual variables (color/area)
•	 Choropleth w/ graded symbol: separable (color/area)
•	 Bivariate choropleth: integral data dimensions (lightness/hue and satura-

tion)
•	 Rectangle map: integral (width/height)
•	 Shaded texture: asymmetrical (lightness/texture density)
•	 Value by alpha: asymmetrical (lightness/transparency)
•	 Spoke glyph: configural (angle/angle)
•	 Bar chart: configural (area/area)

The different map types were used by Elmer (2013) to visualize to the same 
fictional data for “chicken consumption and pizza consumption” using a three-
step ordinal scale (low, medium, and high) on a map of 36 areas of roughly 
equal sizes. The 55 participants completed eight questions per map, divided 
into elementary and general levels of reading (after Bertin, 2011). Elementary tasks 
consisted of looking up values of individual units on the map, while general 
tasks involved questions related groups of mapped units. Global tasks that con-
cern the visual distributions visible on the entire map were not studied.
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Figure 2.38. Legends of Elmer’s (2013) tested bivariate designs; 
screenshot of test interface showing rectangle map.

Of the studied symbolizations the spoke glyph and the value by alpha 
maps had the worst performance based on reaction time. The bar chart 
performed poorly on general-level tasks. Accuracy rates exhibited only small 
variations with the spoke glyph and shaded texture performing worse than 
the other symbolizations. (Elmer, 2013)

Elmer (2013) concludes that the results were somewhat unexpected with 
regards to symbol selectivity and that further research into cognitive strate-
gies for interpreting bivariate maps would be needed to explain the observed 
effects.

It is unclear how well if at all these results generalize to a situation with a 
larger number of mapped regions or regions of less uniform shapes. Hal-
liday (1987) suggests that the number of regions may be a deciding factor 
for what can be interpreted by the reader. Halliday notes that a limitation 
of the previous research surveyed was the large variation in statistical units 
displayed — from U.S. census maps with around 1,000 displayed regions to 
maps with only 9.

It should be noted that the point encodings in particular require the 
statistical units to be visually fairly large and of uniform size. If the size vari-
ation of the mapped areas is large, symbolizations such as the choropleth 
with graduated symbol or the rectangle map become practically untenable. 
Franconeri et al. (2021) also argue that encodings that use color hues are 
more powerful for showing groupings than shape-based ones.

Roth (2017) makes a useful breakdown of the four types of available 
conjunctions of bivariate symbols and their interactions illustrated by one 
map each and its legend, building on the work of Elmer (2013). These are 
here reproduced in slightly modified form in Figure 2.39 on the following 
page. The green-blue color scale used by Roth has been switched to a more 
distinct gray-pink palette. Arrows on the map legends indicate an interpreta-
tion of how easily the different axes can be selectively attended to according 
to Elmer.
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The types are:
•	 A: Separable, represented by a choropleth with graduated symbol,
•	 B: Integral, represented by a choropleth with graduated symbol,
•	 C: Configural, represented by a split graduated symbol map, and
•	 D: Asymmetrical, a value-by-alpha map.

A) Separable

C) Configural D) Asymmetrical

B) Integral

• Dependent
attributes

• Independent
attributes
• Ingcongruous 
scales

Bivariate choroplethChoropleth w/ graduated
symbol

• Independent
attributes
• Congruous 
scales

Split graduated symbol

• Attributes of 
different importance

Value-by-alpha

Strong Moderate Weak Unknown/variable

Color lightness
li
gh
tn
es
s

Color hue &

color saturation

Size

Transparency

Color hue

Arrows indicate ease of selectively attending to axis

X

Y

+–

X

Y

+–

X

Y

+–

Size

Size

X

Y

+–

Figure 2.39. Conjunctions of bivariate symbols after Roth (2017).
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A map with separable dimensions like Figure 2.39 A — a choropleth with 
overlaid graduated symbols dimensions — supports studying the distribu-
tions of either variable in separation, as these are single-feature searches 
(e.g. find large circles or find light areas). Studying the conjunctions (+ and 

- axes in the illustration) can presumed to be perceptually demanding as this 
requires conjunction searches, like finding a large circle on a light back-
ground. Elmer (2013) notes that this type of display is suited for independent 
attributes that are not assumed to be in correlation and use different, incon-
gruous scales, different classifications or so forth.

By the same logic, shaded proportional symbol maps and shaded carto-
grams are both separable despite using homogenous symbol dimensionali-
ties, since the visual variables (shape and color) are separable (Roth, 2017).

With an integral conjunction like Figure 2.39 B (bivariate choropleth) 
Elmer (2013) posits that attending to the emergent Plus (+) visual dimension 
is effortless. This is due to the color scheme having decreased lightness 
along the Plus axis — seeing where X and Y values are high or low together is 
therefore easy. The original X and Y dimensions are on the other hand harder 
to interpret in separation. Roth (2017) notes that looking for regions that 
have the same value for X while ignoring differences in Y values is difficult — 
it is for instance hard to focus on all regions that are in the middle X column. 
It does however seem that color scale choice affects this. The palette used in 
Roth’s example has fairly small hue differences. Using a more distinct palette 
can arguably make the dimensions easier to separate — in Figure 2.40 the 
high X values appear to form a clear group of three colors from saturated red 
for high X - low Y to a very dark purple hue where both X and Y are high.

X

Y

X

Y

Gray Pink palette Roth / Elmer green-blue palette

Figure 2.40. Comparison of gray pink palette used in the redrawn maps 
in Figure 2.39 with the green-blue palette in the examples by Roth 
(2017).

Elmer (2013) and Trumbo (1981) recommend bivariate choropleth maps 
specifically for studying the correlation of two variables. The emergent Mi-
nus (-) axis that typically is represented by a difference in hue is assumed to 
be of unknown or variable selectivity. Contrary to the interpretation of Roth 
(2017) and Elmer (2013) the Minus axis can in some cases have fairly good 
separation with a suitable color palette — it is essentially a bidirectional 
scale with a neutral middle point. Strode et al. (2020) argues that the bivari-
ate choropleth, when designed to use complementary colors on the X and Y 
axes (what they term the diagonal model after Trumbo, 1981) also effectively 
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highlights regions where either series has large values in isolation. Therefore, 
it can be effective also in cases where the the two mapped series mostly are 
not correlated. Stevens (2015) offers a similar interpretation (see Figure 2.51). 
This gives three apparent visual categories: correlated data is shown as a 
lightness sequence on the + axis, while the Y and X axes show non-correlated 
data in two complementary color and lightness gradients. Hence, the type 
can also be used for explorative purposes to visually determine the absence 
of correlation on a map.

Configural combinations like Figure 2.39 C (split graduated symbol) 
have a clear emergent (+) dimension, but the X and Y dimensions remain 
more easily separable than in an integral display, as a viewer should be able 
to separately focus on either half of the symbol. In a configural combination 
the data for X and Y should share a common scale. When the series are in 
agreement this is apparent from the symmetrical symbol that emerges on 
the + axis. (Elmer, 2013)

Empirical studies would be needed to determine this in more detail, but 
it is reasonable to assume that shape-based encodings can lead to displays 
where conjunction searches become increasingly difficult as the number 
of mapped regions increases — it is hard to attend to just large circles on a 
dark background. In the case of split graduated symbols some combinations 
(large circles, both axes in agreement) may be easier to find than others. It 
might be possible to combine other visual variables to avoid conjunction 
searches, as Nusrat et al. (2018) demonstrate in their cartograms (see Figure 
2.30).

While looking up values of individual sides of symbols work for elemen-
tary tasks involving single areas, the configural combination used in Elmer’s 
(2013) experimental study (a pair of bar charts) exhibited long reaction times 
for general-level tasks. This appears to give some reason to suspect that 
searching for one part of a configural combination requires a conjunction 
search that takes a lot of effort and focused attention — it may for instance 
not be easy to selectively attend just to symbols where the left side is small 
(Figure 2.39, A). It is even possible, that shapes encoding opposite values 
could be grouped together due to their visual similarity (Figure 2.39, B).

X

Y

A) Selectively attending to one category (low X) in a graduated split symbol map
may require a conjunction search

B) The glyph representing 
high Y - low X (left) could be more
strongly associated to the 
visually similar low Y - high X
glyph (right) than to the 
other glyphs for low X values.

Figure 2.39. Some possible issues with configural bivariate symbols.
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An asymmetrical combination like Figure 2.39 D (Value-by-alpha) 
basically creates a situation where one channel (Y) inhibits the other (X) by 
making it stand out less for certain combinations. In the example regions 
with low Y values are visually de-emphasized. This could be useful for ad-
justing the appearance of a variable of interest by a secondary variable like 
population as proposed by Roth et al (2010). Elmer’s (2013) examples include 
a complementary graduated pattern variable to reinforce the effect. Another 
example of an asymmetrical combination is using size for one dimension 
and color for the other.

In addition to the four examples discussed in detail here there are many 
more possible types of bivariate maps that visualize numerical information 
aggregated to map regions. Elmer (2013) created a catalogue of possible 
bivariate combinations, illustrated with clarifying images. This categoriza-
tion is basically an extension of the classification in Figure 2.24 that extends 
it with the three dimensionality combinations — polygon/polygon, point/
polygon and point/point. Based on the assessments of MacEachren (1995) 
some variable combinations — like orientation applied to both data series 
for polygonal symbols — were deemed “non-functional or graphically 
untenable” and thus left out. This results in a table with a total of 42 possible 
combinations of bivariate symbolizations.

I have chosen to leave asymmetrical point/polygon features outside the 
scope of further discussion in this thesis. While point/point symbolization 

— such as split graduated symbols — may conceivably be effective in some 
cases, they pose challenges to map composition and can be hard to place if 
the mapped areas vary significantly in size.

Of these 42 combinations, 13 possible bivariate map types belong to the 
polygon/polygon category in Elmer’s figure (2013). These are listed here in 
Table 3. Bolded names refer to bivariate map symbolization that according 
to Elmer are in common use. Empty cells represent non-applicable combina-
tions. Orientation has been removed from the original table.

Polygon/polygon 
features Size

Color (hue, satura-
tion, lightness) Transparency Fill size Fill density

Size

Color (hue, satura-
tion, lightness)

Shaded 
cartogram

Bivariate 
choropleth

Transparency Value-By-Alpha 
cartogram

Value-By-Alpha 
choropleth

Fill size Cartogram w/ 
texture Shaded texture VBA w/ texture Bivariate texture

Fill density Cartogram w/ 
dot density

Shaded dot 
density VBA dot density Graduated dot 

density
Multiseries dot 
density

Table 3. Visual variable combinations of polygon/polygon solutions for numer-
ical data aggregated to polygonal features.
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Bivariate Choropleth

Bivariate texture

Y & X: color

Y & X: texture density
Multiseries dot density

Y & X: texture size

KEY:

hi×md

lo×hi

lo×hi
md×lo

hi×lo

Y×X

Y

X

Y

X

Y

X

Figure 2.41. The three homogenous bivariate symbolizations of map 
areas after Elmer (2013).

To further narrow the focus I concentrate on homogenous combinations, 
where the same visual variables are applied to the area of the mapped areas 
on both the X and the Y axis. These are all integral combinations; in that 
they focus on the Plus axis and are suited to represent phenomena that are 
assumed to have a positive correlation (more X means more Y). This leaves 
only three combinations applied to the map features themselves, illustrated 
in Figure 2.41. The bivariate choropleth map, the bivariate texture map, and 
the multiseries dot density map. Of these three, the choropleth appears least 
ambiguous, while the multiseries dot density maps seem to pose such signifi-
cant design challenges as to make them largely inpractical.

The bivariate texture map — while less problematic — is very sensitive to 
the texture designs used, in addition to the scale of presentation as discussed 
previously. This means that of these three alternatives the bivariate chorop-
leth likely makes it easiest to design a functional bivariate map that achieves 
effective separation of the classes. The following section will discuss bivari-
ate color scales in more detail.

2.6.2	 Bivariate color scales for choropleth maps

The history of bivariate choropleth maps goes back at least to the 19th centu-
ry and the work of Georg von Mayr30 (Figure 2.42). Mayr’s map uses texures 
and is thus not strictly a choropleth — Strode et al. (2020) claim that the type 
was invented for the U.S. Census maps as late as 1974, but this cannot be tak-
en as conclusive. While guidelines for color use in maps generally has been 
limited to using hue for visualizing qualitative distinctions and 

30	 Friendly and Denis (2001): 1874. Georg von Mayr.
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Figure 2.42. 1874 bivariate map by Georg von Mayr as reproduced in 
Wainer and Francolini (1980): A Two-Variable Color Map Showing the 
Joint Distribution of Horses (Pferde) and Cattle (Rindvich) in Eastern 
Bavaria Done According to Scheme 1.

lightness for quantitative values (Brewer 1994, p. 123), some theoretical and 
practical guidelines for multivariate choropleth maps have been suggested 
by different authors such as Trumbo (1981), Eyton (1984), (Brewer 1994) and 
more recently Stevens (2015). Multivariate color schemes may be created 
by mixing univariate color scales or using transparency in addition to hue 
and lightness (e.g., Gao, Li and Qin, 2019), and thereby making it possible to 
create multivariate choropleth maps. This is effectively limited to two or per-
haps three variables — bivariate and trivariate choropleth maps (Tyner, 2010, 
pp. 183–185).

Brewer (1994) provides a systematic account of the use of color schemes 
based on previously published literature on choropleth maps and other 
displays where a data dimension is visualized using colored areas. The use of 
transparency and combining color with pattern are not discussed by Brewer. 
Brewer states that her proposals are based on literature, cartographic con-
ventions and experience and that they are “not yet thoroughly tested.”

•	 One-variable color schemes, including the following four basic types of 
color scheme (see Figure 2.25.):

•	 qualitative
•	 binary
•	 sequential
•	 diverging 
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Figure 2.43. A diagram based on Brewer’s (1994) categorization of 
possible bivariate choropleth color schemes and how they interrelate. 
Schemes have been labeled with their focal models from Strode et al. 
(2020).

•	 Two-variable color schemes comprising the following combination 
schemes, illustrated in Figure 2.43:

•	 qualitative/binary
•	 qualitative/sequential
•	 sequential/sequential (with balance scheme as a special case)
•	 diverging/sequential
•	 diverging/diverging
•	 diverging/binary

Since I deal with the representation of quantitative maps, this thesis is 
concerned in particular with the sequential/sequential scheme.

In Information Visualization Colin Ware (2013, pp. 134–135) briefly discuss-
es bivariate color sequences and considers them “notoriously difficult to 
read.” As the main underlying issue Ware identifies the difficulty of reading 
color dimensions like lightness and hue in a separable way. Ware refers 
to empirical research carried out by Wainer and Francolini (1980) on the 
readability of a particular bivariate choropleth design for U.S. census data 
using a color scheme employed by the U.S. census bureau. One of the evalu-
ated maps is illustrated in Figure 2.44. In this study, Wainer and Francolini 
looked at how well a group of 16 test participants were able to read bivariate 
maps on what Bertin (2011) terms the elementary level. This involved reading 
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quantitative values for particular areas using the map colors — answering 
questions like “what is the median family income of this statistical unit?” The 
exact questions used were variations on “what is happening at this place” 
and the performance of reading a bivariate map was compared with reading 
two univariate maps (Wainer and Francolini, 1980, p. 84).

Interestingly, they state that for determining locations for a bivariate 
event, i.e., a combination of two events “… the superiority of the bivariate 
maps to the two univariate ones in this task seems so obvious that no further 
testing is required.”

Figure 2.44. The map that was evaluated in the paper by Wainer and 
Francolini (1980): H. Two-Variable Color Map Crossing Variables H and E 
(U.S. Bureau of the Census).

The performance of the test participants in interpreting the bivariate maps 
was mostly poor and based on this the authors conclude that there is little 
practical use for bivariate maps. However, this cannot be seen as conclusive, 
since the experiments were conducted using only a single color scheme which 
furthermore had four steps yielding 16 color combinations. The color classes 
were constructed by overlaying two univariate color schemes.

Wainer and Francolini (1980) argue that a possible use for these 
maps would be identifying aggregations of regions that belong together 
(e.g., “these are all blue”) but deem this use case to be limited. They appear to 
overlook their own conclusion that a bivariate map can be clearly superior 
to two separate maps in answering questions concerning bivariate events. 
They are on the other hand more positive with regards to a scheme combin-
ing texture and color, as in Mayr’s early example from 1874 (1980, pp. 88, 92, 
illustrated in Figure 2.42).
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Olson (1981) did a study with multiple experiments of the US census 
maps that came to more positive conclusions about their utility, provided 
that the test participants were instructed how to read the maps and how the 
legend works. In the open-text answers the subjects were able to describe 
aspects on the map, and most did not find them too complex to read. This is 
notable, as the 4×4 color scales in the maps can be considered less than ideal. 
An interesting suggestion by Olson is that bivariate choropleth maps should 
be accompanied by univariate maps of both distributions in separation. An 
example of this is shown in the map by Leonowicz (2006) in Figure 2.53. 
Olson’s study also involved a test map with a similar legend, where the bin 
divisions are illustrated.

As alternatives to bivariate scales where both dimensions are encoded 
with color, (Ware, 2013, p. 134) proposes using dimensions that are easier to 
separate perceptually from color, such as visual texture or height difference, 
for the second variable. Ware is skeptical of the the possibility to design gen-
erally applicable bivariate color scales that display quantities effectively and 
without distortion. Halliday’s study (1987) discussed previously lends some 
support for the notion that texture can be effective.

Stevens (2015) notes that creating a bivariate choropleth map should rest 
on the assumption that there is some meaningful connection between the 
mapped variables. Eyton (1984) indeed directly equates bivariate maps with 
scatterplots that show the correlation between two variables. An important 
additional observation by Slocum (2014, p. 252) is that bivariate choropleth 
maps are most effective when the geographical distribution of the mapped 
data correlates with the bivariate data values, so that similar areas can be 
seen forming clear regional groups. If there is little connection between lo-
cations and data values, the map looks speckled and chaotic, especially when 
the mapped statistical units are small in size. 

Figure 2.45. Bivariate choropleth map of diabetes and obesity levels by 
county in the United States by Bostock (2019).
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The bivariate map of diabetes compared to obesity in the United States in 
Figure 2.45. shows aspects of both these conditions — the states south of the 
Great Lakes are somewhat checkered in appearance, while the variation is 
smoother around the South states between Texas and Florida.

2.6.2.1	Designing bivariate choropleth maps for different use 
cases: focal models

For map publication and design Strode et al. (2020) extend on the work of 
Trumbo (1981) and provide three categories for bivariate choropleth schemes 
that they term focal models, illustrated in Figure 2.46 — Corners, Range, and 
Diagonal.

Focal
Model Inquiry syntax Focal areas Focal axes Sample color scale

Corners

low/high of x and 
low/high of y

Range

Diverging

range of y within 
low/high of x

Qualitative

range of y within 
category

Diagonal

relationship 
of x and y

X

Y

X

Y

X

Y

X

Y

Figure 2.46. Summary of focal models with their attributes after Strode 
et al. (2020). Colors scales have been replaced with the 3×3 examples 
used by Brewer (1994). Strode et al.’s diverging palette does not use 
lightness change along the X axis.
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These define palette arrangements specifically for bivariate choropleth 
maps that can be chosen depending on the data used and what relationships 
the map designer want to focus on. For consistency I have redesigned Figure 
2.46 so that each scale uses only 9 categories and the colors of Brewer (1994) 
illustrated in Figure 2.43. Each focal model has an example inquiry syntax 
(the type of questions about the data it supports), focal areas that are visually 
prominent and focal axes along which variation in the data is mainly ap-
praised. The focal axes are similar to the emergent dimensions in the typolo-
gy by Roth (2017).

The Corners focal model is essentially a diverging/diverging color scale 
where the main interest is in the four extreme values around a neutral mid-
dle point.

The Range focal model includes two subcategories — diverging and 
qualitative. The Diverging category is an asymmetrical configuration that 
looks at different ranges for a variable Y, where X varies between two ex-
tremes. This is similar to the value-by-alpha map shown in Figure 2.35 — 
although the axis there is turned 90°, so that the modifying variable is on the 
X axis. The Qualitative category simply compares ranges of Y values within 
separate categories that do not have a numerical relation on the X axis.

The Diagonal focal model is essentially the base case of the bivariate 
choropleth map that shows an integral conjunction between two data series 
with a strong focus on the Plus (+) axis. Trumbo (1981) describes the require-
ment that Strode et al. (2020) subsequently has formalized as the diagonal 
focal mode. “If display of positive association is a goal, scheme elements 
should resolve themselves visually into three classes: those on or near the 
principal diagonal, those above it, and those below.” Trumbo states that a 
minimum requirement is that the data on both axes is ordinal, which means 
that the color scheme should be visually ordered as well. Because the diago-
nal focal model arguably is the most established and generally applicable of 
the three it will be the focus of this thesis. It also offers somewhat more flex-
ibility in the design of color scales than the range and especially the corners 
models, which makes it an interesting subject for experimentation.

2.6.3	 Practical guidelines for the design of sequential 
bivariate color schemes

A diagonal focal model or sequential/sequential map essentially combines 
the classes of two separate univariate maps that both have the same N num-
ber of classes. The resulting bivariate map does therefore have N 2 classes 
that need to be identified by color. Figure 2.47. shows an example map 
created with the R package biscale (Prener, 2022), and using the “DkBlue” 
color scheme by Stevens (2015). (No additional styling applied; note that the 
category low emissions×medium value added does not occur on the map).
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Figure 2.47. Example of sequential/sequential or diagonal focal model 
bivariate map with 3×3 classes.

The number of different colors in a palette that reliably can be distin-
guished under different conditions is around 12 according to Arnkil (2013, 
p. 143). From this, it follows that the effective number of unique and distinct 
hues is smaller for sequential color scales. Bertin (2011, p. 325) states that 

“[c]olor variation alone yields only about six selective degrees. Beyond that, 
one must use schemes involving monochrome figurations.”

Because colored regions in a choropleth map often are of a wide range 
of sizes, depending on the mapped areas, this can make small areas hard to 
reliably distinguish (Dorling-like cartograms face a similar issue depending 
on the data values). One might use the approach Szafir (2018) suggests and 
algorithmically boost contrast if small regions occur, but this can create 
visual inconsistencies between maps that are shown together. A more robust 
alternative would appear to be that color scales for use in bivariate chorop-
leth maps (and other visualizations where the colored areas vary in size) are 
designed with colors that to begin with are different enough that the smallest 
areas reliably can be told apart.

Another compounding issue is that any color scale is difficult to design 
so that sufficient contrast between adjacent colors and between the lightest 
color and the background is achieved, as discussed on p. 36 in the section 
Issues with color contrast in visualization design.

According to conventional recommendations (e.g., Koponen and Hildén, 
2019, p. 77) the number of easily discernible color steps in a sequential scale 
is 5–7 for visualizations such as choropleth maps where any color in the 
scale may appear next to any other. Tyner (2010, p. 186) removes Eyton’s 
(1984) recommendation on the number of categories from a list of guidelines 
for bivariate choropleth maps but goes on to state that a map with a 3×3 leg-
end is easier to comprehend than one with a 4×4 or 5×5 legend. In contrast, 
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Strode et al. (2020) shows scales with up to 4×4 classes, while Stevens (2015) 
maintains that 3×3 steps is the practical maximum. Visualizations of contin-
uous variables, where only mostly related colors appear together may allow 
for as many as 20 different colors, since they do not need to be identified 
in isolation. However, this is unlikely to be the case in bivariate maps. The 
25 colors of a 5×5 legend is obviously outside of any conceivable scope of 
reliably separable colors.

An additional limit is placed in the case of bivariate schemes by the 
requirement that the colors should be visually related (Eyton, 1984). A 
sequential/sequential scheme is constructed from the intersection of two 
lightness schemes based on different hues — high values in both correspond 
to dark colors and low values to light colors. This puts rather clear limits 
on the number of sensible combinations. (Trumbo, 1981) states that good 
schemes for a diagonal models will have a neutral diagonal, like the com-
bination orange and cyan. Brewer (1994, p. 141) agrees in recommending a 
pairing of schemes that are approximately but not precisely complementary 
such as blue and orange-yellow to produce neutral diagonals. In the case of 
two subtractive primaries the mixing will result in new combination hues. A 
common bivariate scheme for sequential/sequential data uses magenta and 
cyan sequences that combine to create purple hues. Figure 2.48 shows four 
such color schemes created by Stevens (2015).

Figure 2.48. Examples of bivariate schemes with hex color codes employ-
ing color mixing after Stevens (2015).

Trumbo (1981) provides recommendations for color scale designs. 
However, while the underlying principles, like selecting colors by sections 
through a uniform color space, are relevant in theory they are in practice 
fairly difficult to apply, for instance due to referring to color models that are 
no longer in active use. Strode et al. (2020) do not provide a detailed discus-
sion of color scale design in their paper but quote personal communication 
with Trumbo where he recalls encountering issues in actually testing and 
creating the color schemes with the computer systems available at the time.

Similarly, Robertson and O’Callaghan (1986) describe an approach using 
the uniform CIELAB color space to generate bivariate color scales follow-
ing Trumbo’s example. They note limitations in the uniformity of the colors 
created but argue that this in practice might not matter — an eventual lack 
of uniformity between colors could well be more than offset by the effect 
of induction (i.e., simultaneous contrast). Interference of adjacent colors 
on the map creates perceived differences that are larger than the flaws in 
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uniformity. They argue that for this reason the colors used in a map do not 
have to be strictly uniformly spaced, or even the color space used for color 
scale design to be exactly uniform. In addition, they also conclude that four 
classes per series is a practical upper limit for bivariate maps.

The blog article “Bivariate Choropleth Maps: A How-to Guide” by Stevens 
(2015) is a rare recent example of a detailed explanation of how to create 
bivariate color schemes. Stevens suggests starting from two separate sequen-
tial color schemes that begin with a light, neutral hue for lows and a darker, 
saturated hue for highs. The “high” hues should be roughly but not exactly 
complementary. Overlaying the two color schemes in design software and 
using either “darken” or “multiply” blending modes provides the additional 
color combinations as illustrated in Figure 2.49. Stevens further notes that the 
resulting intersecting colors can benefit from manual adjustment: the color 
representing high values for both variables should be increased in saturation 
while the middle color should be brought closer to the high-by-high or 3-by-3 
color.

hi×lomd×lolo×lo

hi×mdmd×mdlo×md

hi×himd×hilo×hi

lo

md

hi

Dark Blue palette, component color scales

multiply darkenBlend mode 

himdlo

X

Y

×

Figure 2.49. Variations of the Dark Blue bivariate scheme recreated in 
Adobe Illustrator™ using Stevens’ method by overlaying two color scales 
and blending them with either multiply or darken, without additional 
manual adjustments.

Blend modes are mathematical transformations that use the RGB color 
channels. Technical documents like Compositing and Blending Level 2 (CSS 
Working Group, 2022) deal with blending between source and destination imag-
es that produce a result. Since only blending of individual colors is of interest 
here, I will instead refer to two source colors (1 and 2) that by blending pro-
duce a result color (1×2). Of the commonly available blending modes, only 
multiply and darken tend to result in practically viable results when mixing 
color scales. Multiply can be likened to the effect of overlaying two colored 
films. Darken results in a color that appears approximately intermediate, if the 
blended colors are complementary and differ in lightness. Figure 2.50. illus-
trates the Darken and Multiply blending modes and their respective functions 
for calculating the blended color values with the same pair of source colors.
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Figure 2.50. Darken and multiply blend modes and their corresponding 
functions as applied to combinations of two colors.

Multiply as applied to two colors takes the values for each RGB color 
channel for color 1 [0…1.0] and multiplies it with the corresponding values 
from color 2. Darken compares each channel of the source colors by val-
ue and takes the darker (smaller) RGB value for each channel to use in the 
resulting color. If neither color is white or black multiply always results in a 
color that is at least as dark as the source colors. Both modes are commuta-
tive in that the blended result color is not affected by the order of the source 
colors. (CSS Working Group, 2022)

In contrast with Elmer’s (2013) and Roth’s (2017) division into main and 
emergent visual variables Stevens’ conceptualization of the components of 
a bivariate color scale emphasizes that the “edges” of the legend are import-
ant, as illustrated in Figure 2.51. Stevens’ “agreement” is referred to as the 
Plus (+) axis in this thesis. The categories that reflect mainly either of the two 
variables are more visually salient than intermediate combinations. This is 
similar to the conceptualization of the diagonal focal model by Strode et al. 
(2020), but without their focus on the opposite or Minus - diagonal between 
high Y, low X and low Y, high X values.

Data strongly reflects 
variable one (Y)

X

Data strongly reflects 
variable two (X)

X

Y

Data shows agreement 
between X and Y (+ axis)

high Y

low Y

X
high Xlow X

Y

Figure 2.51. Data relations in a bivariate color scale after Stevens 
(2015).
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The sources surveyed in this thesis do not explicitly refer to how much 
the lightness should change on the Plus or agreement axis, nor exactly 
how the colors should interrelate in lightness, except that lightness should 
increase for higher values. Strode et al. (2020) state that “correlated data 
appear in a grayscale sequence, while non-correlated data are shown using 
gradients of complementary colors”. It is reasonable to apply the general rec-
ommendations of uniform lightness changes in quantitative color scales (see 
e.g., Ware, 2013, p. 131; Liu and Heer, 2018) to bivariate choropleth palettes 
as well, at least in the diagonal focal mode as defined by Strode et al. (2020). 
Using Stevens’ design principles does result in at least a a mostly uniform 
decrease in lightness from the low×low color along the diagonal towards 
the highest 3×3 value, which can be emphasized by turning the palettes 45° 
so that 1×1 is on the bottom. This is illustrated in Figure 2.52. Note uneven 
variations in lightness in the Brown palette (left) compared to the Dark Violet 
(right) palette, where the lightness change is more equal from low to high 
and across the diagonal.

5. Grossenbacher and Zehr | Dark Violet
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Figure 2.52. Bivariate palettes rendered in original colors and grey-
scale. The lightness change on the Plus axis in the Dark Violet (right) 
palette is more uniform.

Following Robertson and O’Callaghan (1986), it could be questioned 
whether colors in a bivariate scale strictly need to be of roughly equal 
lightness across the diagonal Plus axis — i.e., that the high Y, low X and low 
Y, high X values have similar lightness. However, the relative appearance of 
uniformity seems to be a reasonable default design approach to follow, and 
in accordance with the general principles of color scale design, described 
earlier in this chapter.

2.6.4	 Classification

In the design of any data map, the classification of quantitative data into 
brackets or classes is an important design choice that defines the visual end 
result and what it can communicate (see e.g., Schwabish, 2017; Koponen and 
Hildén, 2019, pp. 96–100). Kraak and Ormeling (2010, p. 128) describe clas-
sification as a three-step process in which a map type is chosen first, then 
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the number of classes is selected, and finally the class limits is set. As I have 
argued previously, the number of classes is effectively limited to three per 
series in a bivariate map.

The legend of a map should ideally make visible the used classification 
(Schwabish, 2017). Therefore, the question of classification is closely related 
to the design of map legends. While a detailed discussion of the methods of 
data classification for maps is outside the scope of this thesis, the six com-
mon classification methods used for choropleth maps as outlined by Ko-
ponen and Hildén (2019, p. 97) are:

•	 Round numbers: A series of round numbers within the data domain are 
used to define class boundaries. This way of defining boundaries does 
not account for the data distribution and may lead to issues like empty 
classes.

•	 Equal interval: the domain or range between the minimum and maxi-
mum values is divided into a given number of regular intervals that form 
the class boundaries. Has similar issues as using round numbers.

•	 Quantiles: The data is divided into a given number of categories with 
the boundaries defined so that each category contains roughly the same 
number of data points. While this obscures the shape of the distribution, 
quantiles are useful as a default choice for showing where values falling 
into different categories are located on a map.

•	 Natural breaks or Jenks: Gaps in the distribution are identified using a 
mathematical optimization method and used to locate a given number of 
breaks. Similar values are grouped together but the classes may be very 
different in sizes. Is not practical if no apparent gaps exist in the data.

•	 Standard deviations: Class breaks are placed at given standard devia-
tions from the median or mean.

•	 Compromise: Breaks are deliberately modified from values derived using 
one of the above methods to emphasize particular features of the data.

Leonowicz (2006) shows an example of a bivariate legend design in Figure 
2.53, where the classification is based on standard deviations and the legend 
additionally includes the ranges and a scatter plot of the data.

Alternative methods of classifications can also be considered and specif-
ically adapted to the characteristics of bivariate maps. Eyton (1984) propos-
es a scheme and an accompanying legend (Figure 2.54, A) in which values 
near the identified normal distribution of the two variables are drawn as an 
ellipse at the center, while the corner values are assigned their own comple-
mentary colors.
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Figure 2.53. 3×3 bivariate choropleth of Mazowsze Region (Województwo 
Mazowieckie) in Poland, showing the percentage of rural population and 
the percentage of population under the age of 18 in 37 rural counties. 
From Leonowicz (2006).

Figure 2.54. A. The classification and legend scheme proposed by Eyton 
(1984), and B, a simplified version by Dunn (1989). From Strode et al. 
(2020).
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Dunn (1989) argues that the customary method of dividing each vari-
able into quantiles and mapping their resulting intersection based on the 
distribution of values leads to unsatisfactory results. The majority of the 
data points end up in a few classes while others may be nearly or indeed 
completely empty. If there is a clear linear correlation this division create 
what Dunn terms a “‘staircase effect’ on the main diagonal.” As a possible 
improvement Dunn recommends a simplified version of the scheme by 
Eyton (1984) (Figure 2.54, B). Additionally, Dunn proposes instead the use of 
different interactive classifications where the user can decide how the bivar-
iate distribution will be split into classes. Dunn’s “high interaction” model is 
rather complex and is presented as a novel tool for exploratory data analysis 
by skilled users rather than as a methodology for designing static bivariate 
maps.

Despite the relevant questions concerning classifications and legend de-
sign posed by Dunn (1989), it seems that these alternative solutions in prac-
tice remain rare and the simple bivariate map created by the intersection 
of two classified data series remains the dominant type for which software 
tools and instructions are readily available (see, e.g., Figure 2.23; the tuto-
rial by Grossenbacher and Zehr (2019), or the bivariate choropleth example 
created by Bostock (2019))

One design variation that is fairly common to the legends of bivariate 
maps it to show them rotated at an angle of 45 degrees. This may have been 
inspired by Bergstrom and West (2018) who proposed a similar modification 
to scatterplots as a way of emphasizing that there is no particular relation 
to one axis being considered a predictor and the other being a predicted 
variable.

In this master’s thesis, a simple three-category quantile classification 
of the diagonal focal model will be used for demonstration purposes in the 
example visualizations.
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2.7	 Research-based design and 
tool creation as method
The practical part of this thesis is an attempt to adapt the theoretical con-
cerns outlined in this chapter to the design of prototype tools. This kind 
of approach has been described by Leinonen (2010, pp. 56–57) as a re-
search-based design process. This approach differs from the similar-sounding 
design-based research, where specific designed interventions are conducted 
and assessed in different contexts. In research-based design specific tools or 
artifacts are created in an iterative process and based on gathered knowledge, 
with the purpose of offering affordances to affect some particular problem 
(in this case making effective bivariate color scales). According to Leinonen 
this process is by definition iterative.

This approach can alternatively be framed through the concept of gener-
ative design, where tool building plays a central role. de Bleser (2016, p. 23) 
posits that a generative design approach can be instrumental in improving the 
efficiency of designers by allowing them to work around the limitations of 
ready-made tools. A generative approach also allows for more rapid testing 
of the generated concepts. An important enabler is tools or software envi-
ronments that themselves enable creating novel tools — such as Processing 
by Reas and Fry (2007), Paper.js by Lehni and Puckey (2021), or Nodebox 
by De Bleser et al. (2015). These types of tools have for instance made pro-
gramming more viable as an approach, especially to designers without a 
professional education in computer programming. Recent developments 
in web design with frameworks like Svelte (Svelte, 2022) have also lowered 
the threshold for creating and publishing small purpose-built tools without 
extensive technical knowledge.

While designer tools often are created and used by a single individ-
ual a similar approach with more focus on sharing and collaboration is 
echoed in the rationale behind Jupyter Notebooks as described by Kluyver 
et al. (2016). By having a portable format for publishing live computer code 
along with rich documentation and images, knowledge sharing can become 
more effective and interactive, and also more accessible to non-professional 
coders. This has been a significant enabler of open science and data analysis. 
Observable (Observable, Inc., 2022) is a more recent example of a notebook 
approach. While programming notebooks may not typically be considered as 
belonging to generative design, they integrate program code closely with the 
visual output that they produce, in a way that is very similar to how Nodebox 
or Processing have been designed.

Data visualization requires an approach that involves programming 
when the data complexity hits a certain threshold: as Victor (2013) argues in 
his lecture Drawing Dynamic Visualizations programming allows for flexible 
visualizations and extensive creative control of the visual end result.
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Bivariate choropleth maps are a good fit for a research-based or gen-
erative approach involving tool creation, as they are sufficiently complex 
visualizations, and working with them using manual methods often get very 
tedious rapidly. They are popular but remain rare enough that ready-made 
creating tools for them are missing from many software packages. The 
design problem of bivariate color scales is also specific enough to allow the 
possibility of improvement with custom tools.

In this framework my goals for the production part of this master’s thesis 
could be understood as striving towards four separate outcomes:

1.	 Making the actual tool(s) that can be used to design and assess bivariate 
color scales — this is described in Chapter 4, p. 101,

2.	 how said tool(s) facilitate color scale creation,
3.	 the actual maps and individual color scales that are made with the tools,
4.	 insights and ideas for improvement gained from the process of using the 

tool(s).
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3.	 Methods and 
analysis model

This chapter describes the methods for the 
production part of the thesis including data 
collection, tool creation and the final visualizations. 
It concludes with the analysis model explaining 
how the end results are discussed.
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3.1	 Methods
Using 8 different correlated data sets, bivariate choropleth maps of differ-
ent regional divisions were created to demonstrate and design alternative 
graphical treatments of the color scales using patterns in addition to hue 
and lightness.

An interactive tool was developed to aid in the design of additional 3×3 
color scales. This work focuses on bivariate choropleth displays with integral 
dimensions and the diagonal focal model, the use of which assumes that 
studying two variables in correlation is desirable.

3.1.1	 Selection of test data

To demonstrate visually different outcomes with real-world data on different 
levels of aggregation, two commonly used geographical divisions of Fin-
land were utilized: the regional and municipal levels. Finland has 19 regions 
(Finnish: maakunta; Swedish: landskap; Statistics Finland, 2020) — this di-
vision was used to demonstrate sub-national aggregate data for larger areas. 
The regions have a skewed distribution in both size and population, with the 
largest region (Uusimaa) having a population of 1,671,024 and the smallest 
region (Åland) with just 29,789 inhabitants in 2018. In that year, the popu-
lation of Uusimaa was 3.2 times that of the second-most populous region, 
Pirkanmaa. By surface area the largest region (Lapland) is 2.5 times larger 
than the second-largest, North Ostrobothnia.

By surface area the largest region (Lapland) is 2.5 times larger than the 
second-largest, North Ostrobothnia.

Figure 3.1. Regions of Finland by population size, millions.

Figure 3.2. Regions of Finland by area in km²
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The municipal level represents the smallest administrative units of Finland, 
of which there were 309 in 2018. They vary considerably in both area and pop-
ulation size. According to the Official Statistics of Finland (OSF, 2022), the me-
dian population size for the municipalities was 6,134 in 2018. While the largest 
municipality (Helsinki) had a population of 648,042 — nearly 106 times above 
the median — the lowest 25 % of municipalities by population had only 2,780 
inhabitants or less, with the smallest (Sottunga) having only 91 inhabitants.

According to National Land Survey of Finland (2018), the largest munici-
pality by area is Inari (17,333.65 km²) and the smallest Kauniainen (6 km²), with 
the median area being 760 km². As can be seen from Figures 3.3. and 3.4, while 
both population and area distributions skew heavily towards low values, the 
distribution of areas is slightly more even than that of population.

Figure 3.3. Municipalities of Finland by population size (OSF, 2022).

Figure 3.4. Municipalities of Finland by area in km² (National Land Sur-
vey of Finland, 2018).

Due to this large range in areas, many smaller municipalities will not be 
uniquely recognizable in typical choropleth maps. Since the population num-
bers skew even more unevenly, similar issues occur in population proportional 
visualizations like Dorling cartograms — although they do solve the visual 
underrepresentation of small but heavily populated municipalities.

In this thesis, two pairs of data variables were visualized for each level of 
areal division. The selection criteria employed was to use data sets that pre-
sumably are meaningfully correlated, but at the same time have geographical 
differences in distribution that are visible when represented on a choropleth 
map.

3.1.1.1	Statistical data

Statistical data series were selected for visualization based on exhibiting 
systematic and discernible regional variation. The data was retrieved from 
Statistics Finland and visualized preliminarily using the thematic mapping 
functionality in the Paikkatietoikkuna geodata portal (National Land Survey of 
Finland, 2022).
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The pairings of data series were selected based on plausible correlations. 
To ensure suitability for bivariate mapping, candidate data was analyzed in 
the Jupyter Lab environment (Project Jupyter, 2019) with the data analysis 
toolkit Pandas (Pandas development team, 2021).

Paired data sets were classified using three quantile groups (both series 
are divided into three roughly equal-size bins) and visualized with heat-
maps based on the resulting 3×3 contingency tables (Glen, 2013). An issue that 
became apparent when exploring model data was that pairings of regional 
data frequently leads to combinations, where one or more intersections are 
without data, as shown in Figure 3.5. The contingency table heatmap shows 
that three out of nine intersecting categories are missing: no region has 
either high or low shares of both elderly and young people and a high share 
of children does not occur with medium numbers of elderly.

Figure 3.5. Contingency table heatmap of a candidate pair of data sets 
with three empty categories.

A limitation with the bivariate choropleth encoding in the diagonal focal 
mode is that it is unsuitable for visualizing data in which both negative and 
positive values occur. While possible, the resulting encoding would be unin-
tuitive, since zero as a natural middle point will fall arbitrarily in one of the 
bins in the low to high range. This meant that otherwise applicable data sets 
had to be discarded. In the typology of Strode et al. (2020) the Range variant 
of the Diverging focal model can be used when one data series has negative 
and positive values and the Corners focal model could conceivably be adapt-
ed for cases where both data series have negative and positive values, but this 
was deemed beyond the scope of this thesis. Based on these considerations 
the following data sets were selected. Bin edge values are reported for each 
of the three categories in both data series.
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Figure 3.6. Histogram of variables 1.X and 1.Y for regional data.

Figure 3.7. Scatterplot and contingency table heatmap of 1.X and 1.Y 
for regional data.

Regional data, Pair 1 (Figures 3.6 and 3.7):
•	 1.X: Degree of urbanisation. Using the table Degree of urbanisation, %, 2018 

from the 2018 data provided by Statistics Finland. “Degree of urbanisa-
tion means the proportion of people living in urban settlements among 
the population whose location is known. Urban settlements are all 
groups of building with at least 200 inhabitants, where the distance be-
tween buildings usually is no more than 200 metres.” (Statistics Finland, 
2019).

•	 1.Y: Share of persons aged over 65 years: Using the table Share of persons 
aged over 64 of the population, % from the 2018 data provided by (Statistics 
Finland, 2019).
Pearson’s correlation r for 1.X and 1.Y is -0.37.

Bin edges X: minimum 62.8, 77.9, 83.9, maximum 95.5;   
Bin edges Y: minimum 17.4, 22.8, 25.6, 30.1
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Figure 3.8. Histogram of variables 2.X and 2.Y for regional data.

Figure 3.9. Scatterplot and contingency table heatmap of variables 2.X 
and 2.Y for regional data. The low outlier is Åland.

Regional data, Pair 2. (Figures 3.8 and 3.9):
•	 2.X: Share of persons aged under 15. Using the table Share of persons aged 

under 15 of the population, %,  from the 2018 data provided by (Statistics 
Finland, 2019).

•	 2.Y: Social and health care activities, operating net costs per capita. Us-
ing the table Social and health care activities, total, operating net costs, EUR per 
capita from the 2018 data provided by Statistics Finland. “Operating net 
costs = operating expenses - operating income. Operating costs = oper-
ating expenses total + depreciation and devaluation + allocated common 
expenses” (Statistics Finland, 2019).
 
Pearson’s correlation r for 2.X and 2.Y is -0.43.

Bin edges 2.X: minimum 12.8, 14.8, 16.0, maximum 19.6;   
Bin edges 2.Y: minimum 1824.0, 3365.9, 3598.2, maximum 4341.1
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Figure 3.10. Histogram of variables 1.X and 1.Y for municipal data, 1.X 
is somewhat uneven.

Figure 3.11. Scatterplot and contingency table heatmap of 1.X and 1.Y. 
for municipal data. A group of municipalities with no urbanization is 
visible.

Municipal data, Pair 1. (Figures 3.10 and 3.11):
•	 1.X: Degree of urbanization. Using the same table as for regional data 

(Statistics Finland, 2019).
•	 1.Y: Share of workplaces in services: Using table Share of workplaces in 

services, % from the 2017 data provided by Statistics Finland (2019, latest 
available data). In this statistic, every person employed corresponds to 
one workplace in the region in question. Services consists of categories 
G–H in the Standard Industrial Classification TOL 2008, including ser-
vice work both in the private and public sector.
Pearson’s correlation r for 1.X and 1.Y is 0.33.

Bin edges 1.X: minimum 0.0, 51.1, 71.3, maximum 100.0;   
Bin edges 1.Y: minimum 28., 58.4, 66.8, maximum 94.0
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Figure 3.12. Histogram of variables 2.X and 2.Y for municipal data. The 
distribution of Swedish-speakers (X) has a lump near the high end of 
the distribution.

Figure 3.13. Scatterplot and contingency table heatmap of 2.X and 2.Y 
for municipal data.

Municipal data, pair 2. (Figures 3.12 and 3.13):
•	 2.X: Share of Swedish-speakers. Using the table Share of Swedish-speakers 

of the population, % from the 2018 data provided by Statistics Finland 
(2019).

•	 2.Y: Share of foreign citizens. Using table Share of foreign citizens of the 
population, % from the 2018 data provided by Statistics Finland (2019).
Pearson’s correlation r for 1.X and 1.Y is 0.71. Both distributions are strongly skewed, with 
many very low values.

Bin edges 2.X: minimum 0.0, 0.1, 0.4, maximum 92.1;  
Bins edges 2.Y: minimum 0.4, 1.3, 2.6, maximum 19.5

3.1.1.2	Geospatial data

The geographical areas defining the mapped municipalities are from 
Municipalities (1:4,5 M) (Statistics Finland, 2018a). Regions are derived from 
the Regions (1:4,5 M) data set (Statistics Finland, 2018b).
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BrownDark Blue Dark Cyan

Dark Violet Brewer 1994a Brewer 1994bGray Pink
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Figure 3.14. Palettes discussed in the thesis: all 3 by 3 palettes in-
cluded in the initial release of the biscale package and two example 
schemes by Brewer.

3.1.2	 Some existing color scales for bivariate maps

The R package biscale (Prener, 2022) originally included five palettes: 
Dark Blue ('DkBlue'), Dark Cyan ('DkCyan'), Brown ('Brown'), Gray 
Pink ('GrPink') and Dark Violet ('DkViolet')31. The first four were creat-
ed by Joshua Stevens (2015) who did not name the palettes. Bostock’s (2019) 
bivariate map notebook uses Stevens’ palettes, but with a slightly different 
naming convention. The Dark Violet palette is an addition by Grossenbacher 
and Zehr (Grossenbacher and Zehr, 2019). These are similar to, but not iden-
tical with the two sequential / sequential example schemes given by Brewer 
(1994, p. 141). The discussed palettes are illustrated in Figure 3.14. The color 
values for Brewer’s palettes are not given in writing in the original source. 
They are instead taken from the R package pals (Wright, 2021), which also 
includes a number of other palettes not listed here.

3.1.3	 Manipulating and analyzing colors

In this thesis the main tool chosen to manipulate and analyze colors is 
the JavaScript framework Chroma.js by Gregor Aisch (2022a). It is mature, 
widely used32 and offers sufficient functionality for practical purposes, while 
being an easy-to-use implementation as well. Additionally it allows for 
convenient generation of color scales with some perceptual corrections for 
lightness. Chroma.js uses CIELAB internally for color manipulation. I use 
the R package colorblindcheck (Nowosad, 2019) to simulate color vision 
deficiencies for the created palettes.

31	 As of the v1.0.0 release 2nd June 2022 a total of 17 palettes are included, although 10 of these 
are pairs that correspond to the initial five to retain compatibility with previous versions (Pren-
er, 2022).

32	 i.e., 292,480 weekly downloads on NPM, https://www.npmjs.com/package/chroma-js
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3.1.4	 Contrast and separation of colors in bivariate maps

As discussed in Chapter 2 a three-step sequential lightness color scale where 
all color combinations satisfy a 3:1 contrast requirement with each other and 
the background is not possible within a standard computer monitor gam-
ut. However, using the updated requirements suggested by Somers (2021a) 
to construct three-step color scales with a minimum ACPA contrast of 30 
between each step becomes possible.

Despite this, it is still clear that a bivariate 3×3 scale with 9 unique colors 
is impossible to design in such a way that it is both visually uniform and that 
every color would achieve minimum contrast with every other color in the 
scale. Indeed attempting this is not even desirable, as a good quantitative 
bivariate scale is expected to have a more or less uniform change in lightness 
(Trumbo, 1981; see e.g., Brewer, 1994; Stevens, 2015) along the X, Y and + axes 
(see Chapter 2). Thus, the previously mentioned approach of using strokes to 
ensure separation between colors has been used in this thesis, employing the 
standard WCAG2.1 contrast criterion of 3:1.

In a bivariate choropleth map it is not sufficient that colors next to each 
other are distinguishable as separate. In addition, color pairs of similar light-
ness but representing values on the different axes axis also need to identifi-
able as different hues. This is assessed visually and using the Delta E calcula-
tion in Chroma.js. As a reasonably robust absolute minimum the value of 11 
for Delta E used in Leonardo33 is employed in this thesis (Baldwin, 2022).

3.1.5	 Assessing contrast of bivariate schemes

The online tool created for this thesis allows comparison and assessment 
of color scales for contrast. It uses both the current WCAG and the ACPA 
algorithm as of 1 January 2022. In Figure 3.15 the Contrast grid visualization 
is shown displaying contrast values between all 9 color combinations + white 
in the DkBlue bivariate color scale.43 of the 90 combinations (excluding 
colors paired against themselves) exceed the APCA 30 minimum without 
strokes.

33	 leonardocolor.io
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Figure 3.15. Contrast grid visualization showing contrast values for 
all possible color pairs in DkBlue bivariate color scale.

3.1.6	 Color blindness

Nowosad (2020) has assessed 12 bivariate palettes in the pals package using 
the colorblindcheck package (Nowosad, 2019). The Delta E distances be-
tween the colors in each palette was compared with appearances simulated 
for three classes of color vision deficiencies (deuteranopia, protanopia and 
tritanopia). About 8% of males and 0.5% of females have some color vision 
deficiency, mostly affecting differentiation of red and green: protanomalia/
protanopia and deuteranomalia/deuteranopia. Tritanopia causing difficulty 
distinguishing blue and yellow is much rarer, affecting only 0.008% of both 
males and females (Kalloniatis and Luu, 2007). Nowosad’s conclusion is that 
brewer.seqseq2 (1994a), stevens.greenblue (Dark Cyan), and ste-
vens.purplegold (Brown) perform best in this regard, using a minimum 
cutoff value of 6 for Delta E. The new palettes created as a part of this thesis 
will be assessed with the colorblindcheck package. A further improve-
ment would be to integrate colorblindness checking and simulation directly 
in the bivariate matrix tool, similar to the example provided by Aisch (2018).
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3.1.7	 Creation of textures

There are many implementations of patterns or textures for different visualiza-
tion environments. Matplotlib (Matplotlib development team, 2022) has a pat-
tern functionality called hatch with a few ready-made textures that can be used 
in Geopandas (Jordahl et al., 2020). For ggplot2 in R, there is the package 
ggpattern (FC and Davis, 2022), which is more flexible — but not integrated 
with the biscale package for building bivariate maps. Ggpattern is a useful 
example insofar as it offers programmatic control of multiple relevant texture 
properties, including angle, density or the proportion of area filled, spacing 
(meaning the scale of the pattern), etc.34

The open-source geographic information software QGIS also supports 
customized texture designs, but with the limitation that the output is raster-
ized. Because textures created in one visualization environment cannot easily 
be ported or used in another, and instead they have to be re-implemented, I 
deemed implementing ready-to-use new textures for a specific environment to 
be outside the scope of this thesis. Instead, the demonstration texture palette 
was created as vector graphics in Adobe Illustrator™, which offers a flexible 
and practical tool for the design of repeating texture patterns.

3.1.8	 Making custom color scale tools

The color scale tools have been developed as a web application called Color-
gridder35 with Svelte.js (Svelte, 2022). Svelte was chosen based on its straight-
forward development experience, easy hosting and smooth client-side inter-
activity — all code runs as JavaScript in the browser. This is unlike, e.g., Shiny 
(2022) for R, which needs to be hosted on a web server. Chart axes and map 
rendering uses functions from the JavaScript library D3 (2022).

Additional color scale testing and comparisons was again largely done in 
the JavaScript-based Observable (2022) notebook environment.

The application uses Chroma.js36 for color manipulation functionality 
throughout. It has two different modes: one for analyzing color lists by con-
trast (Color Scale Grid) and the other for creating novel bivariate palettes (Bivar-
iate Hue Blender). The application displays colors in the common and widely 
supported sRGB color space. Color values can be input as hexadecimal RGB 
color codes — hex strings for short, where the value for each of the three color 
channels (R, G, and B) is represented by the two digits of a hexadecimal byte 
(Web Colors Explained, 2006).

3.1.9	 Previous art

The design and content of the color scale tools in the application have been 
particularly influenced by Aisch’s Chroma.js color palette helper37 which also is 

34	 coolbutuseless.github.io/package/ggpattern/articles/patterns-stripes.html
35	 Hosted as a Github repository at github.com/hjhilden/svelte-colorgridder
36	 Documentation: https://gka.github.io/chroma.js/
37	 Aisch (2022b), gka.github.io/palettes



99Methods and analysis model

built in Svelte.js (Figure 3.16). Another influence was Hcl wizard38 by Zeileis et al. 
(2020) which served as a demonstration of the direct manipulation of hue, chro-
ma and lightness of visualization palette colors using sliders, with accompanying 
map preview (Figure 3.17).

Figure 3.16. The Chroma.js color palette helper (Aisch, 2022b). Screenshot.

Figure 3.17. The Hcl wizard web tool (Zeileis et al., 2020). Screenshot.

38	 Available online at: http://hclwizard.org:3000/hclwizard/
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The Bivariate Choropleth Color Generator by Brooke (2019) on Observable39 
was an important influence on the construction and layout of the palettes in 
the Bivariate Hue Blender.

Other significant influences were the Huetone online app by Ardov 
(2022)40; Meeks’ and Lu’s Viz palette (2018)41 ; the previously mentioned Leon-
ardo by Baldwin (2022)42 and lastly the Color picker for data by Brown (2022)43, 
which gave the original idea of a color picker that indicates out-of-gamut 
colors (illustrated in Figure 2.12). The color scale grid layout was influenced 
by the web tool Accessible Brand Colors44 (Use All Five, 2019).

3.1.10	 Creation of bivariate maps

Bivariate maps were made as vector graphics output with the Python library 
Geopandas (Jordahl et al., 2020) using custom code loosely based on the R 
package biscale (Prener, Grossenbacher and Zehr, 2020). The color scales 
created use the same formatting and also be used in the biscale package. 
The Jupyter notebooks are available as attachments.

Testing and exploration were done in RStudio, even if the intention of 
creating the maps in the R environment was abandoned during the working 
process. The rationale for using geopandas rather than biscale for the final 
maps was that this turned out to be more straightforward, as both data pre-
processing and visualizing could be done in one environment that was more 
familiar to me.

Some additional testing of geometry was further done in the graphical 
Python environment Drawbot (van Rossum, van Blokland and Berlaen, 2021). 
QGIS was used to handle and retrieve map data and Adobe Illustrator™ was 
used for graphics compositing and drawn illustrations.

3.2	 Analysis model
•	 The color palettes created are assessed by color distances (Delta E) and 

compared with pre-existing palettes
•	 Color palettes are applied to maps using real-world statistical data
•	 A texture design is applied to the created maps
•	 Map and palette combinations are discussed through subjective obser-

vation, partly based on the task categories of Bertin (2011): elementary, 
intermediate and global.

39	 Available at https://observablehq.com/@benjaminadk/bivariate-choropleth-color-generator
40	 huetone.ardov.me
41	 projects.susielu.com/viz-palette
42	 leonardocolor.io
43	 http://tristen.ca/hcl-picker
44	 abc.useallfive.com
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4.	 Description

The production part consists of bivariate maps 
made using four pairs of data sets, two on the 
regional level and two on the municipality level. 
Using the color scale tool, three new bivariate 
color scales were created. The bivariate maps 
demonstrate both versions combining textures and 
colors to separate categories and versions with 
color differences alone.
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A summary of the map creation process is as follows, illustrated in Figure 4.1:

1.	 Candidate data from Paikkatietoikkuna was explored and saved by copy-
ing from displayed tables into csv files. These were read into a Jupyter 
notebook and analyzed with Matplotlib to determine the selected data.

2.	 The selected data was joined with tables of relevant geographical codes.
3.	 Geographical data for regions was loaded using Geopandas and joined 

with with the tabular data by municipality or regional codes.
4.	 Bivariate map outputs were rendered using custom Python code for 

Geopandas and saved to vector pdf files. Color palettes were copied from 
the Biscale hue blender web application.

5.	 Vector files were imported and collated in Adobe Illustrator. In the case 
of the texture demonstrations, textures were applied manually to the tex-
ture examples using the select similar functionality and example texture 
palettes.

Figure 4.1. Diagram of the map creation process from data to final 
example images.
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4.1	 The web application
The web tool or application is a standalone website that has two modes in 
separate tabs: the color scale assessment mode Contrast grid and the palette 
creation mode Bivariate hue blender45.

The Contrast grid mode is shown in Figure 4.2. It allows for a gridded 
comparison and analysis of a supplied color scale provided as a comma-sep-
arated list of hexadecimal RGB strings (hex colors like #00ff00). The main 
purpose of this tool is to quickly assess relative contrasts between all colors 
within a color palette. For this purpose different contrast level requirements 
can be set interactively, and the desired assessments can be toggled.

Fig 4.2. Main view of contrast grid mode, October 2022 version.

45	 The application is online at https://demo.koponen-hilden.fi/colorgridder and available as a 
public repository at https://github.com/hjhilden/svelte-colorgridder
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With a given list of colors, it is easy to check whether the pairings exceed 
a given contrast requirement (either APCA and/or WCAG2) for every com-
bination in the list. This grid visualization can be exported as a SVG vector 
graphic for reuse in visual design software. Additionally, it generates a set of 
derived border colors that can be used between colors that otherwise have 
insufficient contrast.

Figure 4.3. Early version of bivariate color matrix tool using Chro-
ma.js to construct a lightness-adjusted color scale from two provided 
input hues (y), May 2022. The second (x) scale is created by offsetting 
the hue of the y axis hues 180°. The + axis colors are created from x 
and y with the “multiply” blending mode.

An early version of Bivariate hue blender is shown in Figure 4.3. This 
version used a HTML grid to show the color palette. The current version 
from December 2022 renders the color palette as a SVG graphic and is 
shown as an overview in Figure 4.4.

By default the Bivariate hue blender takes the input of two colors as RGB 
hex strings (#ffffb0) from which a bivariate palette is generated. Colors are 
named with paired numbers corresponding to their position in the matrix, 
borrowing the convention used for palette definitions in biscale.

The Bivariate hue blender allows for adjusting and interactively creating 
bivariate color scales with 2×2, 3×3 or 4×4 colors (the 4×4 option is included 
mostly to demonstrate the difficulty of reading a palette with so many colors), 
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Figure 4.4. Overview of the Bivariate hue blender, December 2022 ver-
sion. Demonstration palette with input colors #ffffd4, #4e6bcd.
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starting from two initial colors (low 1-1 and Y 3-1). The inputs and the palettes 
are shown in detail in Figure 4.5. The inputs are divided in three columns. 
The first shows the three main colors as buttons and a Hue-Chroma-Light-
ness (HCL) color picker. The individual colors can be adjusted with the pick-
er by clicking the corresponding button. The second column has the angle 
adjustment input that controls the hue of color X and a small hue-chroma 
visualization of the colors X and Y. Underneath it are numeric inputs where 
the lightness or chroma of color X can be increased or reduced. Underneath 
the dividing line are two variables controlling the mix palette mode. Alterna-
tively complete bivariate color scales generated elsewhere can be inputted 
by pasting the color values as comma-separated hex codes into a text field in 
the third, rightmost column. The tool visualizes the created palettes as color 
legends rotated 45°, with the color corresponding to the low×low or 1-1 value 
pointing down. The tool creates two parallel colors scales using two different 
mixing methods, which are visualized in two identical columns. The column 
assignment can be switched using a drop-down menu. Each palette color 
swatch can also be edited manually.

Figure 4.6. View of the input and controls of the Bivariate hue blender 
with two palette versions using the different mixing modes.

Under the color legends is a pairwise comparison that visualizes how 
every possible color pair looks and gives a summary of minimum, maximum 
and average contrast values (Fig. 4.6). Color combinations that have a Delta 
E difference below a set user-adjustable minimum value (default 22) are indi-
cated with a grey dot marker.
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Figure 4.6. Pairwise comparison visualization of color pairs in two 
palettes.

Below the pairwise comparisons there is a lightness chart and a hue 
chart for the color palettes (Fig. 4.7). with lightness on the X axis, so that the 
pairs with corresponding levels are close together. This is contrasted with 
a hue chart that shows the palette swatches as dots in a radial layout, posi-
tioned by hue angle and chroma as a function of distance from the center. 
Additionally, a small map preview (Fig. 4.8) using the regions of Finland is 
included.

Figure 4.7. Lightness (above) and hue charts (below) for two palettes, 
multiply and mix color blending modes.
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Figure 4.8. Map preview of two palettes, multiply (right) and mix 
(left) color blending modes.

Generated palettes can be copied as hex strings, formatted as either lists 
of values usable in Python or JavaScript environments or as R vectors in 
the format used by the biscale module (Prener, Grossenbacher and Zehr, 
2020).

4.1.1	 Palette creation with the Bivariate hue blender

The principle of palette generation is illustrated in Figure 4.9. The 1-1 or 
shared low×low Color low and the 3-1 or high×low color Y are the default 
inputs — a common lightest color and the Y color. The X color is by default 
created by shifting the hue of Y by 85 degrees. Chroma (distance from the 
center in the chart) is kept constant if this is possible within the gamut. The 
intermediate colors (2-1 and 1-2) are generated with uniform lightness steps 
using Chroma.js interpolation46. The remaining colors are derived by mixing 
the hues of the opponent Y and X color axes. The chroma and lightness of 
the generated X color can be tweaked manually via two sliders.

46	 In the early version shown in Figure 4.3, the lightest color was also created by hue rotation and 
blending, but this led to less control over the palette appearance.
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Figure 4.9. Schematic explaining the creation of a palette using a hue 
offset, interpolation and blending. Input angles over 360° wrap around, 
so when the starting hue angle for 3-1 was 290°, a blue color, the re-
sulting hue angle with an 85° offset is 15° for 1-3, resulting in a red 
color.

In addition to the fixed color picker that allows editing of the three main 
colors, every generated color can also be edited manually by clicking the pal-
ette visualization, which opens up a secondary pop-up color picker, as seen 
in Figure 4.10 (NB! in the December 2022 version, this functionality is only 
available in the left column). The available hue range for the selected chroma 
and lightness is displayed as a gradient in the color picker.

Figure. 4.10. Editing the palette colors with the color picker.
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Color picking was influenced by the Huetone online tool Ardov (2022). 
The approach used in my color picker design is more numbers-oriented than 
the color picking functionalities in Aisch’s Color palette helper or Meeks’ and 
Lu’s Viz palette. These both uses a collection of “preview” swatches in differ-
ent hues to indicate adjustment directions. The color picker used here may 
be somewhat less intuitive but has the advantage of explicitly showing out-
of-gamut regions of the hue scale (black sections in the hue range in Figure 
4.10).

4.1.1.1	Alternatives for mixing colors

Based on Steven’s recommendations (Stevens, 2015) and Brooke’s Bivariate 
Choropleth Color Generator on Observable (2019) darken and multiply color 
blending modes were first implemented as the methods for creating blended 
color scales in the bivariate matrix tool. Darken leads to blended colors that 
are lighter and more saturated, but trials showed that it results in poor to no 
differentiation between colors if colors X and Y are kept identical in light-
ness along either edge of the palette (high X or high Y) due to how the RGB 
channels are mixed. This can be seen clearly in the comparison in Figure 
4.11, where the colors 2-3 and 1-3 are identical when using the darken mode 
(right). This is due to the color 1-3 having lower values than 2-1 on all three 
RGB channels.

This issue can be somewhat overcome by changing the lightness as well 
as the hue of X relative to Y. However, such adjustments also make the color 
scale less visually uniform. The basic assumption is that colors on the X axis 
should correspond reasonably well in lightness to their opposites on the Y 
axis (2-1 is the same lightness as 1-2, etc.). Hence the darken mode was dis-
carded.

Figure 4.11. Illustration of case where applying darken blending mode 
results in no differentiation between colors 2-3 and 1-3 (right).

The advantage of the multiply blending mode is that it works intuitively 
by resembling the appearance of overlaid colored films. However, because 
the multiply blending mode creates colors by mixing the two series, the 
extremes of the X and Y series are not the pure input colors, but rather mixes 
with the lightest color47.

47	 This follows directly from implementing the palette creation as described by Stevens (2015).
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Therefore a third method for creating color scales named mix was de-
vised using the chroma.mix function of Chroma.js. The mix function works 
by interpolating between two colors in a given color space, thus offering 
more control over the result and pure, unmixed colors at the X and Y ex-
tremes.

Since the mix function attempts to leave lightness unaffected it was 
coupled with the darken method in Chroma.js (not to be confused with the 
blending mode of the same name) to make the hues corresponding to higher 
values darker — i.e., reduce their lightness. To adjust the amount of lightness 
reduction applied to each color a common easing function is used (exponen-
tial ease in, from Sitnik and Solovev, 2022) based on the multiplied index of 
the X and Y series. Only the mixed colors for values above the middle of the 
Plus axis (X and Y are equivalent) are darkened. The rate and coefficient can 
be modified by the user to affect to what extent lightness is reduced.

4.1.2	 Ensuring contrast and difference between colors

Originally my intention was to examine bivariate palettes using the Contrast 
grid tool, but this turned out to be unnecessary. This because due to the 
design of the scale and the available dynamic range, colors in a 3×3 bivari-
ate scale can not have sufficient contrast in every possible pairing to satisfy 
even a low APCA 30 contrast level. This is illustrated in Figure 4.12, where a 
majority of the possible color pairs from the palette in the early palette tool 
seen in Figure 4.3 can be seen to fail the set contrast requirement. Based on 
this observation I determined that it is irrelevant to analyze each individual 
color scale in this mode.
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Figure 4.12. Cross-comparison of the early trial bivariate color scale 
shown in Fig. 4.3 with white added as background color. Each color is a 
swatch along the diagonal with corresponding hex code. The cut-off is 
APCA 30, only color pairs above this contrast level are shown.

Colors can be provided with lighter or darker outlines as necessary to 
ensure differences in contrast between adjacent areas, since any color in the 
palette can appear next to any other color (including itself) on a choropleth 
map. A simple way to systematically generate outlines that separates areas is 
to check whether a color has sufficient contrast to the background or not. If 
not, the stroke color will be darkened from the original color until a min-
imum contrast level is exceeded between it and the original color48. If the 
color is distinct from the background, the stroke will instead be brightened 
until it is sufficiently different from the input color itself. The strokes may 
also be rendered in grey using the same principle. Figure 4.13. provides a 
comparison of these methods applied to the same palette.

48	 for instance 3:1, as specified in WCAG 2.1
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Figure 4.13. A 3×3 bivariate scale created with multiply mode, where a 
stroke is applied to each color. Left with desaturated (grey) strokes, 
right with strokes lightened or darkened from original color. Because 
the strokes are thin, the difference is not pronounced.

A drawback of having multicolored strokes is that the proper stroke 
ordering presents a problem: strokes of different colors will overlap depend-
ing on drawing order. A topological rendering could in principle be used to 
identify unique boundaries between regions and color them with interme-
diary hues49. This would lead to a combinatorial explosion of unique stroke 
colors becoming impractical in palette design. While this approach could 
be implemented in a map visualization itself, it is not obvious that the result 
would be an improvement over simpler approaches.

The colors in a bivariate map must also be clearly discernible as different 
hues. In the tool this is quantified using the Delta E value (see Chapter 2: 
Contrast and separation of colors, p. 34). Delta E is calculated with Chro-
ma.js and the default minimum value of 11 is used, same as in the Leonardo 
tool (Baldwin, 2022). A higher minimum value of 22 was tested50, but even-
tually found to be very hard to satisfy for most palettes — Figure 4.14 on the 
following page shows a palette where very high color contrast was attempted 
while still keeping the lightness differences uniform.

49	 see Command-Line Cartography, Part 3 by Bostock (2017) for an example of using topologi-
cal analysis to identify and render internal borders separately. medium.com/@mbostock/
command-line-cartography-part-3-1158e4c55a1e

50	 The version of Chroma.js originally used in the Bivariate hue blender had an error in the 
default Delta E calculation resulting in too high values throughout. This was corrected by 
updating to 2.4.0.
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Figure 4.14. Custom palette demonstrating an attempt to maximize color 
differences in Delta E while attempting to keep lightness differences 
uniform. The lowest Delta E is 22.21 between classes 3-1 and 2-2.

Calculated Delta E values do not necessarily in all cases correspond fully 
to experienced visual differences. In Figure 4.15 below the passing pair of 
colors (2-1 and 1-2, bottom right) appears equally or even less different than 
the example failing pair (2-2 and 1-3). This may be an issue with color render-
ing, monitor fidelity or color perception — or a combination of all of these 
factors. There are also some known issues in the Delta E formula for certain 
color combinations (Schuessler, 2019).

2-1

#a6b5ad #e5a480 #95747e #c83f4b

1-2 2-2 1-3

Delta E 28.0
Pass Fail

Delta E passing limit: 22
Failing pairs marked with grey dot

Delta E 19.4

Figure 4.15. Examples of color pairs where Delta E values seem to 
contradict perceived differences. The combination passing the chosen 
Delta E limit of 22 appears less distinct than the darker and more 
saturated combination that fails it.

["#fdfbe2", "#edbba8", "#f84b5e", 
"#b0c9dc", "#9b7e8f", "#8a2b43", 
"#647de2", "#4b4588", "#25001a"]
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5.	 Results and 
analysis

In this chapter, the existing palettes are analyzed, 
and the new palettes created as part of this thesis 
are described. The application of the palettes and 
the pattern to maps with real-world data is also 
presented. The created maps are then discussed 
and subjectively assessed.
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5.1	 Summary analysis of 
existing palettes
By inputting the seven bivariate color palettes listed in Chapter 3 in the 
Bivariate hue blender it was possible to assess and compare their character-
istics.

A number of observations concerning the palettes can be made from 
the charts in Figure 5.1. Most of the palettes have a Delta E of higher than 11 
for all their color combinations. Palettes 1. and 2. both have one pair under 
11 each. Palette 3 (Dark Cyan) is worst in this regard, with two failing color 
pairs and some further combinations that pass based on value but appear 
hard to discern reliably. It also has the lowest average color difference of the 
set.

Palette 6. (sequential / sequential 1994a by Brewer) has the biggest aver-
age color differences. Unlike the others, it uses black instead of a blended 
color for the high×high 3-3 class. The second-highest Delta E average is for 
Palette 7., which is also by Brewer.

Palette 5. (Dark Violet) is notable for having a darker starting color than 
the other palettes, but its average color difference is still roughly similar to 
the others.

From the lightness charts it can be observed that the majority of the 
palettes have quite pronounced differences in lightness between colors on 
the same level. In Palette 1. (Gray Pink) the color 1-3 is very close in lightness 
to 3-2. Palettes 5. and 6. have the strongest segmentation by lightness levels, 
so that the colors form groups readily apparent from the charts. The black 
swatch in 6. breaks the uniformity of the lightness scale and also gives this 
palette the by far biggest lightness range. Palette 4 (Brown) has the narrowest 
range, with a difference in lightness of somewhat over 50 between the dark-
est and the lightest swatch.

In the hue / chroma charts Palette 6. stands out with a bright yellow 3-1 
swatch that is considerably more saturated (high chroma value) than any oth-
er color in the palette. This gives the palette an unequal appearance. Palette 
7. also has highly saturated colors for high Y values (3-1, 3-2, 3-3). The other 
palettes are more uniform in hue and chroma, but many of them have some 
inequalities in the chroma of opposing X–Y color pairs. Palettes 3. and 5. 
have the most symmetrical chroma and hue distributions.

Out of the seven palettes, four pass the color vision deficiency check 
if using a cutoff value of 6 for Delta E as suggested by Nowosad (2020) — 
Palettes 3, 4, 5 and 6. Palette 5 (Dark Violet) is an addition to Nowosad’s list.

5.1.1	 Creation of additional color palettes

Using the color scale tool, I created three additional palettes, shown in Fig-
ure 5.2. The design goals were that the palettes should have mostly uniform 
lightness across the Plus diagonal (i.e., the Y series and X series would have 
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1. Stevens | Gray Pink / RdBu

Lightness chart Hue / chroma chartPalette Color difference comparison 

2. Stevens | Dark Blue / BuPu

3. Stevens | Dark Cyan / GnBu

4. Stevens | Brown / PuOr 

6. Brewer | sequential / sequential (1994a) / seqseq2 

5. Grossenbacher and Zehr | Dark Violet

7. Brewer | sequential / sequential (1994b) / seqseq1

1-1

1-2

1-3

2-1

2-2

2-3

3-1

3-2

3-3

1-1

1-2

1-3

2-1

2-2

2-3

3-1

3-2

3-3

1-1

1-2

1-3

2-1

2-2

2-3

3-1

3-2

3-3

1-1

1-2

1-3

2-1

2-2

2-3

3-1

3-2

3-3

1-1

1-2

1-3

2-1

2-2

2-3

3-1

3-2

3-3

1-1

1-2

1-3

2-1

2-2

2-3

3-1

3-2

3-3

1-1

1-2

1-3

2-1

2-2

2-3

3-1

3-2

3-3

delta E: max 70.53, min 12.48, 
average 34.39
failing pairs: none
color vision deficiency check: fail

delta E: max 94.60, min 13.21,
average 39.99
failing pairs: none
color vision deficiency check: pass

delta E: max 58.41, min 12.69,
average 29.27
failing pairs: none
color vision deficiency check: pass

delta E: max 53.56, min 11.98,
average 30.147
failing pairs: none
color vision deficiency check: pass

delta E: max 50.19, min 9.30,
average 26.35
failing pairs: 2 of 36
color vision deficiency check:  pass

delta E: max 54.56, min 10.88,
average 30.76
failing pairs: 1 of 36
color vision deficiency check: fail  

delta E: max 56.19, min 10.93,
average 32.74
failing pairs: 1 of 36
color vision deficiency check: fail  

delta E minimum difference 11, 
6 for color vision deficiency check

Figure 5.1. Illustration of the seven discussed color palettes, 
visualizing color difference comparison, lightness charts and 
hue / chroma chart for the different palette color.
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corresponding lightness), color differences over 11 Delta E for all the combi-
nations, and that each palette passes the colorblind check. The three palettes 
are:

1.	 Orange Cyan: Using Palette 6. (sequential / sequential 1994a by Brewer) as 
a base a new palette was made with the goal to create a visually similar 
palette with more uniform color distribution. The new palette has some-
what less saturated yellows and more saturated blues / cyans. The darkest 
hue is adjusted to a dark brown rather than complete black.

2.	 Blue Red high saturation: The primary goal of this palette was to have a high 
minimum Delta E but still keep the colors mostly uniform in lightness by 
level and evenly distributed in chroma. This palette uses a light yellow for 
the low×low category.

3.	 Green Violet: A new palette that is loosely based on Palette 3. (Stevens’ 
Dark Cyan) but more saturated. Simulating color vision deficiencies has 
very little impact on color separations in this palette.

Figure 5.2. Table of the three new color palettes, with corresponding 
color difference comparisons, lightness charts and hue / chroma charts.

1. Hildén | Orange Cyan

Lightness chart Hue / chroma chartPalette Color difference comparison 

2. Hildén | Blue Red high saturation

3. Hildén | Green Violet

delta E: max 66.45, min 15.11,
average 38.25
failing pairs: 0 of 36
color vision deficiency check:  pass

delta E: max 98.17, min 22.21,
average 40.17
failing pairs: 0 of 36
color vision deficiency check: pass

delta E: max 79.67, min 14.42,
average 41.24
failing pairs: 0 of 36
color vision deficiency check: pass

delta E minimum difference 11, 
6 for color vision deficiency check
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1-2

1-3

2-1

2-2

2-3

3-1

3-2

3-3
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1-3

2-1
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2-3
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2-1
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3-1

3-2

3-3



119Results and analysis

5.2	 Creation of texture 
palette
A texture for the 3×3 combinations required for bivariate maps was created 
in Adobe Illustrator based on roughly uniform and additive visual differenc-
es, so that the patterns corresponding to higher values appear denser and 
darker. The different patterns are further designed have obvious differences 
in orientation and contrast. The intention of the design was to create a tex-
ture that results in a bivariate palette with integral dimensions and a strong 
conjunction on the diagonal Plus axis — the Y and X textures therefore 
have similar progressions in lightness and density. Instead of using unique 
textures for each of the 9 possible combinations two series of textures 
corresponding to values low–medium–high are designed in such a way that 
the intersecting combination textures are formed by interlacing, i.e., overlap-
ping, as shown in Figure 5.3. For the low categories no texture is used. The Y 
textures consists of vertical dashed lines for medium values and dashed lines 
with heavier stroke rotated 45° for high values. The X textures are the same 
but rotated 90°. The textures created by interlacing X and Y are indicated 
with a cyan background.

To ensure good overlapping, the repeat remains the same for all textures, 
so changes in spatial frequency depend on the size of the repeating elements 
alone. This early test was created using the line dash property in Illustrator, 
which led to some rendering issues in rasterized exports.

Adobe Illustrator cannot create textures (“pattern swatches”) that con-
tain other textures, so each texture was constructed manually as 8 separate 
pattern swatches using a visual template. Although this gives improved 

Figure 5.3. Early test of bivariate “lacy” texture construction; in-
terlaced textures highlighted in blue.

texture Y interlaced textures

texture X

low 1

low 1

medium 2

medium 2

high 3

high 3

hi×lo
3-1

md×lo
2-1

lo×lo
1-1

hi×md
3-2

md×md
2-2

lo×md
1-2

hi×hi
3-3

md×hi
2-3

lo×hi
1-3
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control over the appearance of each texture, it makes the design process 
more painstaking. The textures have to be manually positioned after creation 
to ensure that the interlacing and tiling is uniform. Here a simple 2×2 square 
grid was used to draw the textures, which were then finalized within the Pat-
tern Options view as shown in Fig 5.4.

texture construction template and Adobel Illustrator™ pattern tool

Figure 5.4. Texture construction template (left) and Pattern Options 
in Adobe Illustrator (right).

The improved texture demonstrated in Figure 5.5 was created using man-
ually defined 10×10 mm grid units with separate stroked path segments that 
renders more reliably than the earlier example using dashed strokes shown 
in Figure 5.3. A dedicated interactive tool for creating these texture palettes 
could improve the process significantly and allow greater flexibility.

texture Y

texture X

low 1

low 1

medium 2

medium 2

high 3

high 3

Figure 5.5. Improved example of “lacy” bivariate texture.
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5.2.1	 Hybrid palettes combining texture and color

By adding the textures to the bivariate palettes it is possible to fulfill the 
WCAG2.1 Success Criterion 1.4.1 “Color is not used as the only visual means 
of conveying information”51 and create colors that are more easily identified 
from the map legend, despite the contrast ratios between multiple palette 
hues being lower than 3:1. The textures could either use a blending mode or 
the distinctive stroke colors calculated in the bivariate matrix tool. Figure 
5.6 shows these differences. The first row shows the pattern superimposed 
on each of the three new palettes using the overlay blending mode. The 
second row shows the patterns using outline colors. The third row shows 
the patterns in outline colors, but with the contrat reduced by applying 50% 
opacity. The spatial frequency (visual density of the pattern) can be adjusted 
by scaling the textures, which can be done without resizing shapes by tog-
gling the option Transform pattern only and inputting a value in the Transform 
palette in Illustrator.

A practical issue encountered was that Adobe Illustrator lacks the option 
to directly change colors of textures by applying a color. Using the “Recolor 
artwork” feature texture colors can be edited somewhat more easily, but this 
is still a multi-step manual process, where each swatch has to be manually 
edited.

1. Orange Cyan

Texture applied to palettes with overlay blending mode

Texture applied to palette with adjusted outline colors

2. Blue Red 
high saturation

3. Green Violet

Textures with reduced contrast (opacity 50%)

Figure 5.6. Three model palettes combined with the patterns in 
different ways. By reducing the contrast between pattern and color vi-
sual dazzle can be decreased.

51	 Understanding Success Criterion 1.4.1: Use of Color www.w3.org/WAI/WCAG21/
Understanding/use-of-color.html



122 Results and analysis

5.3	 Creation and assessment of 
example bivariate maps
The maps were created with Matplotlib and geopandas as vector output and 
then edited in Adobe Illustrator by manually applying textures to regions 
according to the scheme outlined above. The legends were rotated and rela-
belled in Illustrator. Since the function of the individual maps is to demon-
strate the coloring schemes, therefore, not all the map details were included. 
A publication-ready map would also include bin limits and other explanatory 
content.

Figure 5.7. shows the three model palettes (1. Orange Cyan, 2. Blue Red 
high saturation and 3. Green Violet) applied to bivariate choropleth maps 
showing data for the 19 regions of Finland. Maps for Data pair 1. (first row) 
shows urbanization compared to share of elderly population. Maps for Data 
pair 2. (second row) shows share of children (% of population) compared to 
cost of healthcare and social services.

The different categories are fairly distinguishable for both Data pairs 1. 
and 2. and all three palettes in Fig. 5.7, making elementary tasks easy. Even 
the cases where only a single region belongs to a category are identifiable in 
both data pairs. Due to the small number of geographical units intermediate 
task are not as salient, but it is possible to notice certain regional aspects 
such as the four regions of Ostrobothnia (along the Northwest coast) all 
falling in the high X category (high operating costs for social and health care 
activities) for Data pair 2 (lower row).

For both data pairs some clear global patterns can be distinguished (such 
as the low share of children in the East in Data pair 2.), even though the 
Finnish regions are so large that those patterns by necessity are somewhat 
ambiguous. Due to the interrelated colors, it also appears possible to visually 
group all high X separately from all high Y values, thus satisfying the con-
cept of three interrelated but somewhat independent axes of appraisal. The 
high×high and low×low categories stand out visually.

Semantically it can be noted that especially the Blue Violet scheme can 
be read as interpretative: the saturated red hue indicating a large share of 
children in data pair 2 could appear as an unintended negative association. 
It would be a convenient addition to bivariate mapping tools if the palettes 
could be easily mirrored across the Plus axis.

Figure 5.8. on p. 124 is the same as Figure 5.7, but with the texture ap-
plied at 50% opacity for each map. The textures appear relatively unobtru-
sive and could conceivably aid in disambiguating the categories. A critical 
question is the overall spatial frequency of the texture, which ultimately is 
dependent on the intended publication size and the minimum area of the 
mapped regions. Any practical tool for applying patterns should therefore 
allow for a flexible scaling of the patterns and perhaps interactive density 
adjustment.
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Figure 5.7. Color alone: bivariate choropleth maps of regional Data 
pairs 1. and 2 with the three model palettes applied. Regions are la-
belled for reference purposes in the first map.

Y: Share of persons aged over 64 of the population, %, 2018
X: Degree of urbanisation, %, 2018

X
HIGH

Y
HIGH

LOW

Bivariate maps with color scales: Regional maps
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Figure 5.8. Color and texture palettes, with texture added at 50% 
opacity.

Y: Share of persons aged over 64 of the population, %, 2018
X: Degree of urbanisation, %, 2018

Y: Share of persons aged over 64 of the population, %, 2018
X: Degree of urbanisation, %, 2018

Bivariate maps with color scales and textures: Regional maps

Y: Share of persons aged over 64 of the population, %, 2018
X: Degree of urbanisation, %, 2018

Y: Social and health care activities, total, operating net costs, EUR per capita, 2018
X: Share of persons aged under 15 of the population, %, 2018

Data pair 1: Urbanization versus share of elderly

Data pair 2: Share of children versus cost of healthcare and social services
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Figure 5.9. Color, municipal data: bivariate choropleth maps of munic-
ipal Data pairs 1. and 2 with the three model palettes applied.
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Figure 5.9. (previous page) shows the three model palettes (1. Orange 
Cyan, 2. Blue Red high saturation and 3. Green Violet) applied to bivariate 
choropleth maps showing data for the 309 municipalities of Finland in 2018. 
Maps for Data pair 1. (first row) shows urbanization versus shares of work-
places in services. Maps for Data pair 2. (second row) show share of Swed-
ish-speakers versus share of foreign citizens.

Due to the large number and big range of sizes of the mapped regions 
the municipal data series result in maps that are somewhat harder to in-
terpret. Elementary tasks are particularly challenging in a non-interactive 
setting, since many of the individual statistical units are very small. The two 
saturated palettes (1. and 2.) appear more visually restless, but individual 
units are easier to identify. Palette 1. (Orange Cyan) would seem to have the 
most effective separation of colors. Palette 2. shows that the overall dark and 
saturated appearance leads to poorer color separation between the three 
darkest categories for small areas. This is evident especially when compar-
ing the regions on the Southern Coast and Lower West Coast in Data pair 2. 
between Palettes 1. and 2. In Palette 3. the middle hue may actually be easier 
to distinguish, if it were slightly lighter.

Data pair 1. (Fig. 5.9. upper row, urbanization versus workplaces in 
services) leads to a map where the Southern part of Finland has a piebald 
appearance. On an intermediate reading level the North and East munici-
palities with mostly low to medium urbanization and high share of service 
workplaces stand out. Many municipalities in the medium×medium category 
are also easy to notice. The Northwest coastal region (Bothnian coast) has 
some high urban vs. low service areas while municipalities with larger cities 
tend to fall in the expected high×high category.

For Data pair 2. (Fig. 5.9. lower row, Swedish speakers versus foreign 
citizens) the low×low inland municipalities is the global standout feature. 
globally stand out. Some low Swedish and high foreign citizen municipali-
ties in the East and Central parts are easily noticed. Concerning this data, it 
should be reminded that the distribution is very skewed in both series, and 
hence, not necessarily well suited to the applied classification here. The me-
dium category for both data series consists of municipalities with a very low 
proportion of the respective groups. A more effective map for this data may 
be one with just two categories per series (low–high) or alternatively using 
manually or algorithmically adapted class divisions instead of quantiles (Ko-
ponen and Hildén, 2019, pp. 97, 99).
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Figure 5.10. Texture combined with Red Violet color scale at different 
sizes.

Figure 5.10 shows Data pair 2. with the Red Violet palette and a support-
ing texture in three variations:

1.	 The same texture as on the regional maps in Figure 5.8.,
2.	 the texture with reduced scale, and
3.	 the texture with reduced scale but increased density (thicker details).

Applying the pattern designs to the municipal map is more fraught, as the 
fine details (high spatial frequency) of the municipal borders interacts with 
the textures and creates a possibly confusing visual effect. This is particular-
ly obvious in variation 1. This effect can somewhat be alleviated by scaling 
down the texture and increasing the density, but the risk is that the map 
becomes visually restless. Textures are likely to require much adjustment to 
find a satisfying appearance for a particular map.

Two example Dorling cartograms (Figures 5.11 and 5.12) with areas 
scaled by population sizes were created with geopandas using default pa-
rameters in code by Daniel Lewis and collaborators (Lewis, 2021). These are 
not visually ideal examples, but serve to demonstrate that a bivariate color 
scheme can be applied to a Dorling cartogram without the result necessarily 

Texture on municipal map

Data pair 2: Swedish-speakers versus foreign citizens

Y: Share of foreign citizens of the population, %, 2018
X: Share of Swedish-speakers of the population, %, 2018

1. Texture at same scale as
regional map

2. Texture scaled down 3. Texture scaled down,
density increased
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Figure 5.11. Dorling population cartogram with bivariate regional Data 
pair 2. visualized using color scale, with and without pattern, chorop-
leth included for comparison.

being harder to interpret than the choropleth version, even though an addi-
tional third data dimension is introduced. Figure 5.11 shows the choropleth 
map for regional Data pair 2., a Dorling cartogram of the same data, and a 
Dorling cartogram with textures. All use the Orange Cyan color scale.

A main area of improvement for the cartograms concerns the relative siz-
es and positions of the circles. By reducing the maximum size, the positions 
can be made to fall closer to the actual centroids of the regions. As Nusrat et 
al. (2018) note, some of the issues inherent with cartograms can be alleviated 
by including more labelling. A scale for sizes should also be incorporated, 
despite this being secondary information in this case.

Figure 5.12 (p. 129) contrasts the municipal choropleth map of Data pair 
1. (Urbanization versus workplaces in service) with a Dorling cartogram of 
the same data, both using the Orange Cyan color scale. It is interesting to 
note how scaling the municipalities by population significantly changes the 
emphazis of the visualization. What could be guessed at from the choropleth 
with some background knowledge (that municipalities with large popula-
tions mostly are urbanized and have high share of service workplaces) is 
made immediately obvious: every municipality with high population is in the 
high×high class. The Dorling cartogram makes elementary and intermediate 

Y: Social and health care activities, total, operating net costs, EUR per capita, 2018Y: Social and health care activities, total, operating net costs, EUR per capita, 2018

Y: Social and health care activities, total, operating net costs, EUR per capita, 2018
X: Share of persons aged under 15 of the population, %, 2018
Data pair 2: Share of children versus cost of healthcare and social services
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Figure 5.12. Bivariate Dorling cartogram for municipalities.

tasks easier for regions with large population. It is also very apparent that 
the other combinations of the X and Y values occur mainly in units with 
much smaller populations but answering detailed intermediate or global 
questions about these becomes challenging. Because of the de-emphasizing 
of sparsely populated municipalities in the Dorling cartogram the global task 
of attending to low or medium urban and high service units is considerably 
harder than in the choropleth map.

Calculating the layout in Figure 5.12 took 19 m. 54 sec. and the placement 
of the circles is still unsatisfactory, with some near Central Finland over-
lapping and others being located far from the main shape. Using alternative 
software or better optimized code to create Dorling cartograms would offer 
better control over this process. Nusrat et al. (2018) employed custom car-
togram software using a force-directed layout, where the balance between 
topology (whether mapped areas are situated next to their actual neighbors), 
and locality (the geographical center points of the areas) can be interactively 
adjusted by the viewer.

Y: Social and health care activities, total, operating net costs, EUR per capita, 2018Y: Share of workplaces in services, %, 2017
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Choropleth versus Dorling cartogram, municipal data  Orange Cyan
Choropleth Dorling cartogram

Y: Social and health care activities, total, operating net costs, EUR per capita, 2018
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Y: Share of workplaces in services, %, 2017
X: Degree of urbanisation, %, 2018 
Data pair 1: Urbanisation versus workplaces in service

Y: Social and health care activities, total, operating net costs, EUR per capita, 2018
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6.	 Conclusion

Here I answer the research questions posed 
in Chapter 1. I discuss what was learned from 
building the Bivariate hue blender tool and how 
it might be improved, limitations to the work 
and offer some sprawling suggestions for further 
research.



132 Conclusion

6.1	 Answering the research 
questions
The first research question posed — whether bivariate choropleth maps are 
currently recognized as an effective visualization type — can at least tenta-
tively be answered affirmatively. The second question concerning what bene-
fits they are considered to have over other bivariate maps is harder to gauge. 
Bivariate choropleth maps are not necessarily the only or even most effective 
bivariate maps, but clearly there is support for them being functional as long 
as they use carefully designed color scales and usually have no more than 
3×3 classes. Generally the surveyed literature and examples did confirm my 
preconception that color scales used in practice often exceed perceptual 
limits.

That Halliday (1987) even found empirical support for printed bivari-
ate choropleth maps being readable despite testing maps with 4×4 classes 
is interesting and indicates that more categories in some cases may work. 
Notably Halliday’s maps used a combination of graduated textures and 
color. When bivariate choropleths have been dismissed as ineffective as 
by Tufte (2001, p. 153), it may be that too wide-reaching conclusions were 
drawn about the entire visualization type from specific, flawed examples and 
research performed on these. Unlike for instance statistical symbol maps, 
the surveyed cartographical reference literature generally did not outright 
dismiss bivariate choropleth maps. A consensus view appears to be that they 
indeed can be effective in certain use cases. (In fairness it should be noted 
that statistical symbol maps are not universally dismissed either).

Abstract studies of the symbolization alone like Nelson (2000a) may 
miss important interactions and confounding effects. On the other hand, as 
the theory of integral and separable dimensions according to Ware (2013, p. 
168) leaves open questions and bivariate visual variables are less understood 
than visual variables applied to one dimension in isolation, it may be that the 
classification of symbolizations still needs reappraising. This is hinted at by 
empirical results not neatly conforming to the integral/separable division, as 
noted by Elmer (2013).

Because bivariate maps are complex visualizations, it is challenging em-
pirically to disentangle the effectiveness of the visualization technique from 
other important factors such as choice of data and areas mapped. Studies 
with real-world data like Olson (1981) offer support that these maps do work, 
but how generalizable their results are is open for interpretation.

Elmer’s (2013) study found surprisingly small differences between the 
different types of bivariate maps studied, but one possible explanation is the 
relatively simple maps and questions employed in the survey. Basically it is 
not entirely convincing that all the surveyed types would be nearly equally 
effective in many different real applications. While glyph-based maps may 
work as well as bivariate choropleth in some cases, they have the obvious dis-
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advantage of being more challenging to design due to issues relating to plac-
ing symbols correctly within statistical units and without overlap. They may 
also be sensitive to the numbers of mapped areas. Despite the fact that in-
tegral size-size symbolizations performed well in the experiments by Elmer 
(2013) and Nelson (2000b) this type of map has remained rare compared to 
bivariate choropleths. It could be speculated that the relative flexibility of 
bivariate choropleths also adds to their popularity — the possibility to use 
different color schemes allows for more variations than encodings using size.

Asymmetrical combinations using encodings like graduated symbols 
on colored regions are unlikely to support visual searches involving symbol 
combinations (such as “small circles on dark red areas”) due to these being 
conjunction searches. For this reason their advantage compared to two sepa-
rate maps of the same data series could be assumed to be limited. Looking at 
intersections between the bivariate series for single data points (“in this area, 
the value for X is large while Y is small”) is of course possible. Research done 
on chart types other than maps also appear to suggest that symbolizations 
like spoke glyphs are unlikely to be effective in real-world cases. Apart from 
the asymmetrical value-by-alpha map (which is a special type of bivariate 
choropleth map) there is much less literature on how to practically apply 
separable and configural symbolizations and in what situations they are 
suitable, compared to the integral bivariate choropleths.

6.1.1	 Outcomes from the practical part

The third research question — can a custom-built interactive tool improve 
the design of color scales for bivariate maps — is here answered subjectively, 
based on the four outcomes defined for the production part:

The first outcome — 1. Making the actual tool(s) that can be used to 
design and assess bivariate color scales — was described in detail in Chapter 
4. An important learning outcome from that process was developing some 
understanding about how to use the Svelte framework for building web apps 
and combining it with D3 and Chroma.js. Here I proceed to discuss the 
remaining outcomes:

2.	 how said tool(s) facilitated color scale creation,
3.	 the actual maps and individual color scales that were made with the 

tools (the maps and color scales are also described in Ch. 4),
4.	 insights and ideas for improvement gained from the process of using 

the tool(s).

6.1.1.1	How the Bivariate hue blender facilitates color scale 
creation

The ability to directly adjust all the individual colors with a palette tool that 
shows the available color range and simultaneously view the result both 
on a preview map and as hue and lightness visualizations make the color 
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scale design process more deliberate and controlled. The visually indicated 
contrast assessments also assist in avoiding the easy pitfall of bivariate color 
scale design where different colors are too similar. Other good color tools 
exist, but the Bivariate hue blender integrates the entire process so that it is 
possible to design and validate color scales in one place and then immedi-
ately use them.

From the results the three new palettes seem to be at least as usable as 
the existing palettes that were used as reference. The tool made the creation 
process fairly straightforward and using it to apply tweaks to pre-existing 
palettes was also found to be effective. The direct chart feedback and vi-
sualization in a realistic context with a map preview makes the tool, while 
unpolished, superior to this specific purpose compared to design software 
like Adobe Illustrator. Arguably the new color maps are more perceptually 
uniform than the studied palettes, but it may be questioned if this matters 
and to what degree.

Using and testing the tool gives the impression that the number of 
bivariate color scales that are visibly different but also functionally practical, 
i.e., by satisfying minimum color difference requirements and being color-
blind safe is likely to be fairly limited. This raises the question of how much 
relevance further technical improvement to a tool for creating bivariate 
palettes can have. On the other hand working in a constrained design space 
benefits from a tool that gives detailed control over color generation in the 
actual use context.

6.1.1.2	Discussion of color and texture scales

The texture palette designed in this thesis should be considered a quick 
demonstration of how a sequential bivariate texture or pattern may be 
designed. Following the constraints described in Chapter 2. (Visually dis-
tinct textures, p. 38), different textures of better artistic quality could be 
created. An interesting alternative would be to use a raster-based approach 
which could enable blurred, low-contrast textures that may be less obtrusive 
particularly on maps with small regions. Lowered contrast and smooth vari-
ation would reduce the interference with the necessarily crisp boundaries of 
the geographical regions. Reducing the texture contrast by using transparen-
cy as I did here go some way to alleviate excessive contrast issues.

A big limitation for texture creation is the lack of practical tools and the 
issue of easy use of texture definitions across software implementations. 
Creating textures would be significantly easier with a tool that allows a 
hybrid approach of drawing and mathematically defining the textures and 
where textures can be “laced” together by design. By this I mean that a tex-
ture A×B could be created by overlaying two textures A and B in such a way 
that any changes made to A automatically are reflected also in the combina-
tion A×B. This effect can be simulated in Adobe Illustrator to some extent 
simply by overlaying objects with applied textures, but not directly converted 
to usable texture swatch definitions.
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6.1.1.3	Discussion of created maps

Finding example map data turned out to pose a challenge as it was hard to 
know whether a particular data set would be suitable for the purpose. The 
lack of charting tools included in the Finnish national statistics database 
that would enable rapid prototype visualization of candidate data made this 
process more difficult than it needed to be — the Paikkatietoikkuna site con-
tains only a small subset of all potential data sets with geographical dimen-
sions. The contingency table visualization created for cross-checking data 
series was an indispensable aid. Still, the example maps created in this thesis 
are mostly less informative than for instance the bivariate grid map of children 
and population density discussed in the introduction (Figure 1.2, p. 14).

The choice to use contingency table visualizations to pre-evaluate can-
didate bivariate data appears to be a novel approach, although it obviously 
cannot be excluded that someone would have described something similar 
(Leonowicz’s (2006) study includes a similar table, but as a part of a finished 
map). The advantage of using contingency tables compared to the alternative 
of directly generating bivariate maps from candidate data is that it immedi-
ately allows the designer to see whether certain classes are empty or contain 
very few data points, which is hard to do on a map if it contains more than a 
handful of regions. Furthermore it postpones the issue of spatial data coding 

— data is often not available in a format that can be linked to geographical 
regions without some intermediate processing.

In hindsight it might have been more straightforward to use established 
examples from international data, but I saw using Finnish data as having a 
certain novelty value as very few bivariate maps to my knowledge have been 
created here. It may also be that bivariate maps just in general are harder to 
make for Finnish data due to Finland’s unequal geographical distributions of 
both population and municipality sizes.

6.1.1.4	Insights from using the tool and possible improvements

An important usability improvement to the Bivariate hue blender would be 
to directly integrate color vision deficiency previews, so that the palettes 
would not have to be evaluated separately for this. The color editing process 
in the Bivariate hue blender could also be made more dynamic by making 
the accompanying hue and lightness visualizations themselves interactive 

— for instance so that the lightness of a color could be modified by directly 
moving the chart component representing it. For this to work well there 
would need to be some deliberate handling of undisplayable colors, though. 
In the current version cycling through undisplayable colors lead to some 
erratic changes in hues. Allowing some properties such as overall lightness 
to be adjusted for all colors at once may also be useful.

Using the tool I noticed that the color creation and adjustment interface 
could be improved by making it “sticky,” so that it would be available when 
scrolling down to look at the maps. But this created a new problem where 
the main interface covered the palette views, making it difficult to adjust 
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individual colors while viewing the lightness charts. A better solution would 
involve further adjustments, like a toggle to collapse the interface or have a 
narrow version of it. I found it helpful to have the color picker permanently 
visible rather than always hidden behind a popup, but the color picker itself 
is a very preliminary design and options for improving it should be explored. 
A more general problem with the Bivariate hue blender is that it now has 
multiple interfaces for doing essentially the same thing (adjusting colors). 
A more streamlined version would probably have just one color picker that 
handles all the roles, maybe in a collapsed or extended mode.

Negative or inverted color schemes, while certainly having potential 
were left outside the scope of the tool design at this stage. They may be a use-
ful future addition to the tool. The Bivariate hue blender likely would need 
further modifications than just a dark-mode background to create such color 
schemes effectively. It could also be extended to support the other schemes 
relating to the focal models of Strode et al. (2020) — corners and range. Mi-
nor tweaks include the support of inverting the color scheme (flipping X and 
Y colors).

There are a number of improvements that could be made to palette 
blending and the creation of intermediate colors. The parameters of the 

“Mix” mode are somewhat arbitrary, with just an adjustable exponent and ad-
ditional multiplier constant. It could be improved by including the possibil-
ity of directly manipulating the lightness curve. The “Multiply” mode could 
also be modified, so that the pure colors are left unblended.

Even though it is unclear how much this would affect the visual end 
results there are options for improvements to the color generation itself. 
Color.js (Verou, 2022) which was significantly updated during the time of 
writing might offer a better model for mapping undisplayable colors to the 
available color range (gamut). Some easy improvements to color generation 
may be achieved by using CIELUV-based HCL or alternatively the polar 
transform OKlch of the OKlab color space, which solves issues relating to 
hue uniformity that especially affect blue colors in CIELAB (Ottoson, 2022). 
When I found that OKlab had been added to Chroma.js the Bivariate Hue 
blender was already at a stage where there was no time for the switch.

In hindsight creating the color tools as a stand-alone web app using 
Svelte may have been a less than ideal choice for future development, main-
tainability and distribution. Building the tools in Observable would make 
them easier to share and lower the threshold for modification, thanks to the 
design of the publishing platform, which directly enables sharing and reuse. 
Less time could have been spent dealing with interface components, since 
these can be repurposed from other notebooks. Observable offers less direct 
control over the design, but the design was not the main concern in creat-
ing the tools. Rewriting the existing tools in Observable may thus be worth 
considering.
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6.2	 Limitations
The discussion of the theoretical research focused on guidelines rather than 
being a comprehensive survey of the empirical research done on bivariate 
maps. The empirical studies discussed were fairly different and no systemat-
ic attempt was here made to appraise and compare their results in detail or 
to assess their validity.

The color tool and palettes were created and evaluated strictly in the con-
text of on-screen displays. Thus it is easy to create palettes are impossible to 
use in print. This is also a limitation in much of the newer referenced empir-
ical research, which tends to be done on on-screen displays for convenience. 
Older research again was done with paper maps, which then raises questions 
as to how well it applies to screen displays where the available color ranges 
are greater. The three palettes were here not evaluated according to how well 
if at all they may be converted to CMYK inks or other printing colors.

More subtle technical details of color reproduction and display modes 
were largely ignored, since I considered that the fundamental limitations of 
perception essentially mean that the color differences used in palette de-
signs always need to be much larger than any eventual differences caused by 
display modes. For high-quality design and exacting control of color appear-
ances color reproduction and display modes do matter, however.

The color scale tools are as they stand fairly limited and have a number 
of technical issues and limitations. Notably the setting of the browser hash 
is still broken and works unreliably. The map preview for 2×2 and 4×4 color 
scales also does not work yet. Interaction and interface design has not been 
in any way thoroughly tested with different users and it remains to be seen to 
what extent they are usable without additional work on the documentation.

The discussed existing color schemes were not cross-examined with the 
three new schemes by applying them to maps, and the latter were only evalu-
ated together and alone for basic functionality. More work would be needed 
to assess whether they actually outperform or perform equally well as the 
existing schemes in different contexts.

I brought up the question of accessibility, but this only in the limited 
context of color scale design. Visualization accessibility is a much wider 
topic covering considerations such as text descriptions for screen readers 
and navigation (in interactive contexts). These important questions were not 
dealt with in this thesis and would require significant further work to expand 
upon in the context of bivariate maps.

Using specific real-world data posed some limitations on the creation 
of the maps: they cannot be considered a representative representation of 
possible cases for bivariate maps, as the data distributions mostly repre-
sent the idiosyncrasies of the data that was available and easy to find. More 
conclusive discussion and assessment of palette behavior under real-world 
conditions would need much more data with clearly different characteristics. 
The same holds for the regional data: end results may be very different for 



138 Conclusion

maps created of different countries or subdivisions. Comprehensive testing 
would also involve applying different and contextually suitable classification 
methods to the data visualized.

While I discussed them in the context of theory and past research, the 
practical part of this work did not deal with alternative solutions to bivariate 
maps. Therefore no additional contribution was made as to their practical 
applicability or whether they in some cases might outperform bivariate 
choropleth maps.

6.3	 Directions for further 
research
While this thesis used an essentially manual process to generate a small 
number of color scales it would certainly be possible to use automated 
processing to generate novel palettes. This could be done by using iterative 
algorithms to optimize the Delta E distances between colors within given 
parameters for palettes of the desired size. Using procedural generation 
and / or machine learning it would be conceivable to explore the entire 
available bivariate palette color space and generate new palettes that satisfy 
set requirements, by rolling novel but sensible suggestions in the vein of 
projects like the anonymous huemint.com (2022) or from given source colors 
like Akveo’s Deep learning color generator for their Eva design system52 (2022). 
These tools are both oriented towards branding colors and as such not di-
rectly applicable to visualization.

The Color Crafting paper by Smart, Wu and Szafir (2019) is one example 
of analyzing existing palettes created by designers in order to model the 
subtle adjustments that humans make to palette characteristics. The model 
can be used to make novel quantitative color scales from given seed colors 
that according to the authors outperform palettes made using typical math-
ematical approaches, as demonstrated in a prototype tool53. However, to 
my knowledge no finished machine-learning-powered tool for generating 
palettes geared specifically towards quantitative data visualization colors has 
been published at the time of writing. From the perspective of a person with 
a design background such a tool should also include options to adjust the 
generated colors manually to be appealing to use.

Going forward there seems to be a choice between creating (and em-
powering the creation) of more different palettes or alternatively improving 
on a limited number of established bivariate palettes and doing empirical 
research on how they are perceived and functuion in different contexts. The 

52	 Available at colors.eva.design; due to the paucity of documentation, it is unclear how and in 
what way machine learning in fact is used in this tool.

53	 Available at cu-visualab.org/ColorCrafter
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enduring popularity of individual palettes like Viridis (van der Walt and Smith, 
2015) or the ColorBrewer collection (Brewer, 2013) seem to indicate that there 
is an inherent value in using a limited set of particular, named palettes at least 
in data analytics and scientific publishing. A “tried and true” palette can be 
considered to get an advantage from familiarity as long as it is perceptually 
functional. It offers an easy choice when doing analytics and can be assumed 
to be familiar to at least specialist readers as well.

On the other hand the practical context of doing data visualizations that 
utilize particular brand colors leads to a need for a great number of unique pal-
ettes that also fulfill requirements of contrast and color differences. Since this 
process often may involve people with less experience in and knowledge of 
relevant literature there could be a real need for a practical tool like the Bivari-
ate hue blender.

Perceptual uniformity in the context of bivariate maps seems to be some-
what poorly defined. It is not strictly obvious how the colors in a bivariate 
scale should interrelate by lightness. Particularly — should the middle (2-2) 
color in a 3×3 palette be approximately equal in lightness to the 3-1 and 1-3 col-
ors, or should it be strictly in the middle between the lightest and the darkest 
swatch?

Preferences could be explored by user testing, but I expect that there is a 
certain flexibility available which allows some variation in different directions 
as long as the overall impression feels right to the viewer. Similar concerns 
apply to differences in chroma/saturation. Ultimately it might be of question-
able utility to try to explore this particular detail empirically. A palette that 
by human inspection appears reasonably uniform and where colors can be 
reliably separated may just be good enough for most use cases — something 
suggested by the results of Olson (1981) where study participants found even 
maps with colorful 4×4 scales interesting. However, this does not rule out that 
more extensive empirical testing of bivariate color scales could surface inter-
esting results.

A larger cross-comparison of the established bivariate color palettes might 
offer new insights. However, considering the relative lack of empirical research 
into bivariate map reading, even more important may be to study how varia-
tions in the number and sizes of statistical units affect the comprehension of 
these displays. To investigate this in a controlled way that produces actionable 
results likely should be done with just one color scale as to not introduce 
confounding variables. A major challenge is that variations in the distribution 
of the mapped phenomenon across the statistical units itself is likely to affect 
perception significantly — if there are clear geographical patterns evident in 
the data, then a bivariate map will be more comprehensible than one where the 
distribution appears haphazard as noted by Slocum (2014, p. 252).

Taking a wider view on color scale design, it would be relevant to intro-
duce (more) perceptually uniform color spaces such as hue-chroma-lightness 
for color picking and color design work directly in design software. The extant 
tools and libraries are accessible to technically oriented designers and soft-
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ware and web developers, but cumbersome to use for visual designers. The 
open-source vector illustration software Inkscape shows a good example 
here by including a HSLuv color picking space in the 2022 version (Derriche, 
2022).

As Franconeri et al. (2021) note there is a need for empirical research 
on how and in what ways the use of textures in addition to color encodings 
may affect the reading of charts and maps. The presumed interfering effect 
may be connected to particular features of the pattern such as contrast and 
density rather than invariant and hence possible to control or amend by 
thoughtful design choices. This is however hard to ascertain without empir-
ical testing of these conditions. Such research should be carefully designed 
to actually allow the assessment of the texture properties rather than other 
contextual variations.

The questions of color scale design and textures relate to questions con-
cerning visualization accessibility and how it can be realized in the context 
of bivariate maps specifically. Examining how bivariate maps can be made 
accessible and what toolings are needed to enable this is as a small part of 
the research necessary to develop more accessible visualizations. Because bi-
variate maps are particularly complex visualizations, the challenges in creat-
ing guidelines for accessibility features like text descriptions are formidable.

This thesis did not delve deeply into the question of bivariate choropleth 
legend design, but this appears to be a fruitful area for further improvement 
of the map type. A question to be resolved is how class limits best ought to 
be indicated. A related issue is the effect of classification. The direction of 
creating customized legends and classification systems specifically for bivar-
iate choropleths as proposed by Eyton (1984) and furthered by Dunn (1989) 
may be worth revisiting in this context. A related topic is how bivariate maps 
work in an interactive context. It is conceivable that interactive maps where 
the user can switch between a bivariate visualization and one where either 
data series is visualized alone could be effective. Interactive legends could 
also enhance their usability.

The limited literature on bivariate map reading suggests the need for 
more empirical research on how they actually can be and are used for 
different tasks. Szafir et. al’s (2016) paper on ensemble codings of visual 
information from multiple graphical objects may offer an interesting model 
to apply to bivariate maps. They defined four categories of visual aggrega-
tion tasks (identification, summary, segmentation, and structure estimation) 
and posited that different visual feature mappings will be more effective for 
some tasks than others. Identification tasks involve picking out outliers or 
particular values. Summary tasks relate to describing the visualized data as 
a whole (e.g. estimating a mean). Segmentation tasks concern seeing groups 
that form in the visualization based on a particular visual variable. In struc-
ture estimation tasks correlations or trends in the data are observed from 
a visualization. Of these at least the three first would appear to be directly 
applicable and testable on bivariate maps.



141Conclusion

6.4	 Finally
In all this thesis project has left more loose ends than clear conclusions. The 
process of writing this thesis and building the related applications has in it-
self been a good example of how the process of information design requires 
a complex negotiation of tools and methods and how it becomes necessary 
to build one’s own when the existing software falls short. Luckily, this is now 
also easier than ever.

During the work process the color scale tool changed focus and ap-
pearance. In testing different palettes it became apparent that the original 
cross-comparison of lightness contrast (the Contrast grid mode) was relative-
ly irrelevant for bivariate choropleth maps, since they fundamentally will not 
satisfy the given contrast requirements for all color combinations. I chose 
to retain the mode, as it has relevance for the analysis of color schemes in 
my visualization design work and no other existing tool has precisely similar 
functionality.

This has been a winding self-taught programmer’s journey. At the same 
time the process has demonstrated how far existing visualization recom-
mendations often are from the actual praxis of creating visualizations. The 
theoretical literature is frequently rather removed from daily chart-making 
practices and can be hard to approach. The spotty empirical recommenda-
tions that exist can be challenging to apply conclusively, although excellent 
recent efforts have been done by writers like Robert Kosara, or Franconeri et 
al. (2021) in their The Science of Visual Data Communication: What Works paper. 
Making charts is both science and art, but the blank areas on the metaphor-
ical map are so large, that significant room for art appears to remain for the 
conceivable future.

Perception science also takes a long time to cross into visualization 
writing. Having been made aware of the problem of the pre-attentive concept 
during the writing process through a podcast interview with Steve Haroz 
(2018) I now notice how it still keeps recurring as a fact in articles discussing 
visualization. We who work in visualization have something to learn about 
the limits of our current knowledge and making too certain claims.

Another question that this work surfaced was the tension between web 
design and visualization. This interaction becomes particularly relevant in 
the context of web accessibility, which until now has been developed largely 
without detailed guidance for applications in visualizations. In some sense 
visualization is a field that keeps being reinvented in different contexts, 
which creates odd gaps and overlaps — one example being visualizations 
made in the context of journalism versus those made for scientific publica-
tions versus the traditions of cartography. Since more and more material is 
being published primarily for the web the practices of web design bleeds 
into all of this, for better or for worse. Meanwhile one can wonder what hap-
pens to visualization in the world of printed artifacts.
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As an information designer without a very solid background in any 
particular field of science the process of negotiating tool creation and tool 
using inevitably involves hopscotching between different environments 
and methods and combining their outputs to reach a particular end result. 
Arguably this process may be more systematic and controlled for someone 
with a more sharply defined skillset — for instance doing all work in R. This 
thesis itself is a hybrid, written in Markdown but exported into InDesign 
with Pandoc for layout, with illustrations travelling through various software 
before reaching their final form. Using a multitude of tools and methods 
can sometimes confuse both author and reader. Then again it may also be an 
advantage when one tries to find the tool where a particular task is easiest or 
most familiar — instead of trying to hammer everything with the same im-
plement. I hope this thesis might encourage someone else in building their 
own tools to approach information desing questions.
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Appendix
Table of bivariate 3×3 palettes

Colors as hex codes listed starting from light 1-1 swatch. Delta E values refer to differences 
between palette colors. Color vision deficiency (CVD) safe calculated using 6 as minimum 
acceptable Delta E value. 

Author Name
Delta E 
average

Delta E 
min

Delta E 
max

CVD 
safe? Colors

1. Stevens Gray Pink; 
RdBu

32.74 10.93 56.19 No '#e8e8e8', '#e4acac', '#c85a5a', 
'#b0d5df', '#ad9ea5', '#985356',  
'#64acbe', '#627f8c', '#574249'

2. Stevens Dark Blue; 
BuPu

30.76 10.88 54.56 No '#e8e8e8', '#ace4e4', '#5ac8c8', 
'#dfb0d6', '#a5add3', '#5698b9', 
'#be64ac', '#8c62aa', '#3b4994'

3. Stevens Dark Cyan; 
GnBu

26.35 9.30 50.19 Yes '#e8e8e8', '#b5c0da', '#6c83b5',  
#b8d6be',  '#90b2b3', '#567994',  
'#73ae80', '#5a9178', '#2a5a5b'

4. Stevens Brown; PuOr 30.15 11.98 53.56 Yes '#e8e8e8', '#e4d9ac', '#c8b35a', 
'#cbb8d7', '#c8ada0', '#af8e53',  
'#9972af', '#976b82', '#804d36'

5. Grossen-
bacher 
and Zehr

Dark Violet 29.27 12.69 58.41 Yes '#CABED0', '#BC7C8F', '#AE3A4E', 
'#89A1C8', '#806A8A', '#77324C', 
'#4885C1', '#435786', '#3F2949'

6. Brewer sequential/ 
sequential 
(1994a); 
seqseq2

39.99 13.21 94.60 Yes '#f3f3f3', '#b4d3e1', '#509dc2', 
'#f3e6b3', '#b3b3b3',  '#376387', 
'#f3b300', '#b36600', '#000000'

7. Brewer sequential/ 
sequential 
(1994b); 
seqseq1

34.39 12.48 70.53 No '#e8e6f2', '#b5d3e7', '#4fadd0', 
'#e5b4d9', '#b8b3d8', '#3983bb', 
'#de4fa6', '#b03598', '#2a1a8a'

New palettes

Author Name
Delta E 
average

Delta E 
min

Delta E 
max

CVD 
safe? Colors

1. Hildén Orange Cyan; 
OrCy

41.24 14.42 79.67 Yes '#f1f1f1', '#73dbfb', '#00aef1', 
'#f5ca5a', '#ada09e', '#296d9c', 
'#ee8b15', '#9e550d', '#3f212a'

2. Hildén Blue Red high 
saturation;  
BuRdHS

40.17 22.21 98.17 Yes '#fdfbe2', '#edbba8', '#f84b5e', 
'#b0c9dc', '#9b7e8f', '#8a2b43', 
'#647de2', '#4b4588', '#25001a'

3. Hildén Green 
Violet; GnVi

38.25 15.11 66.45 Yes '#e8f3f1', '#b7b9e7', '#936fc4', 
'#a2cb78', '#688b7c', '#5e5392', 
'#31991b', '#276e1d', '#0d4020'

Data and code

Live web tool available at: https://demo.koponen-hilden.fi/colorgridder/

Web tool source code: https://github.com/hjhilden/svelte-colorgridder

Jupyter Notebook and supplementary material:  
https://github.com/hjhilden/bivariate-dataprocess
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