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Purpose of the study 

 
The primary purpose of this thesis is to compare the effectiveness of four Obstructive 
Sleep Apnoea (OSA) treatment methods. The thesis focuses on the following treatment 
options: Continuous Positive Air Pressure (CPAP), Oral Appliance (OA), bariatric surgery, 
and upper airway surgery. The effectiveness of a treatment intervention is measured by 1) 
the risk of relapse and 2) cumulative relapse recurrence. Relapse is defined as the return 
of the signs of increased OSA severity. 
 
Methodology and data 
 
The data for this thesis consist of Electronic Health Records (EHR) data obtained from 
Turku University Central Hospital, which contains the information of approximately 
24 700 sleep apnoea patients. The patients were followed between the years 2003 and 
2019. In addition, the data were collected from patient visits and CPAP machines at home.  
 
Treatment response is studied with a multistate modelling technique that measures how 
previous events affect the probabilities of future events. The risk of relapse is measured 
with Markov chain state transition probabilities, and cumulative relapse recurrence is 
calculated with a Nelson-Aalen procedure. 
 
Results 

 
The study results suggest that for all treatment arms, the risk of relapse is higher in milder 
OSA states. Consequently, the risk of relapse and the estimated relapse recurrence are 
lower in patients with severe OSA. The study findings support the previous consensus on 
the treatment effectiveness of CPAP. In addition, OA performs well in all severity states. 
Bariatric surgery and upper airway surgery showed poor performance in milder OSA 
states. Furthermore, the study finds a statistically significant relationship between oxygen 
desaturation values and OSA severity. 
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Tutkielman tarkoitus 
Tämän pro gradu -tutkielman ensisijaisena tarkoituksena on tutkia neljän obstruktiivisen 

uniapnean hoitokeinon tehokkuutta. Tavoitteena on verrata ylipainehengityshoitoa, 

uniapneakiskoa, kirurgisia laihdutusleikkauksia sekä ylähengitysteitä avartavia 

leikkauksia toisiinsa. Hoitokeinojen tehokkuutta mitataan 1) uusiutumisen 

todennäköisyytenä ja 2) kumulatiivisena uusiutumistodennäköisyytenä.    

 

Metodologia ja aineisto 

  

Tutkielman aineisto koostuu Turun yliopistollisesta keskussairaalasta saadusta 

potilasrekisteristä, joka pitää sisällään noin 24 700 uniapneapotilaan tiedot. Potilaat ovat 

olleet seurannassa vuosina 2003–2019. Aineistoa on kerätty sekä potilaskäynneiltä että 

potilaiden kotona ylipainehengityshoitoihin käytettävistä laitteista.  

 

Hoitovastetta tutkitaan monitilamallin avulla, jossa tarkastellaan miten aiempi tapahtuma 

vaikuttaa myöhemmän tapahtuman todennäköisyyteen. Mallissa uniapnean uusiutumisen 

todennäköisyys määritellään mallin alku ja lopputilan väliseksi 

ennustetodennäköisyydeksi. Lisäksi sairauden progressiivisuutta tutkitaan kumulatiivisen 

uusiutumisen estimaateilla.  
 
Tulokset  
 
Löydösten mukaan obstruktiivisen uniapnean uusiutumisen riski on korkeimmillaan 
lievimmissä vaikeusasteissa. Lisäksi vakavimmissa vaikeusasteissa uusiutumisen sekä 
kumulatiivisen uusiutumisen riski on matala. Tutkimustulokset tukevat asiantuntijoiden 
yksimielisyyttä CPAP hoidon tehokkuudesta. Lisäksi tulokset osoittavat uniapneakiskon 
tehokkuuden kaikkien uniapnean vaikeusasteiden hoidossa. Lihavuusleikkaus ja 
ylähengitysteitä avartavat leikkaukset osoittivat matalaa tehoa lievissä vaikeusasteissa. 
Tutkielma havaitsi myös tilastollisesti merkittävän yhteyden happisaturaation ja 
uniapnean vaikeusasteen välillä. 
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1 Introduction 
1.1 Background and Motivation 
Obstructive Sleep Apnoea (OSA) is a common disorder among the Finnish population, and 
it has a rising incidence rate along with its comorbidities (Mattila et al., 2022; Tolonen, 
2022). Although general awareness of OSA has increased among the Finnish healthcare 
professionals and the overall population, the condition remains underdiagnosed 
(Mandereau-Bruno, 2021; Mattila et al., 2022). Lääkärilehti (Finnish Medical Journal, 
2021) recently published a report estimating that approximately 1.46 million Finns (~26% 
of the population) suffer from mild OSA. In contrast, nearly 850 thousand individuals 
(~15% of the population) have been diagnosed with a more severe form of the condition 
(Bachour & Avellan-Hietanen, 2021). These figures emphasise the significance of OSA; 
therefore, research on treatment effectiveness is integral to the further development of 
medical care.           
 Almost half of the Finnish lung disease referrals are related to OSA (Bachour & 
Avellan-Hietanen, 2021). According to the study conducted by Mattila et al. (2022), the 
annual number of OSA outpatient visits to the Finnish healthcare system increased from 
9 700 (in 1996) to 122 000 (in 2018). The expanding number of patients seeking medical 
care has caused significant resource strains in special healthcare units (Bachour & Avellan-
Hietanen, 2021). Furthermore, the process for diagnosis and care is complex; unique 
patients often require multiple hospitalisations to undergo sleep studies or surgical 
interventions. The current solution for finding an optimal OSA treatment is a trial-and-
error process that often results in treatment failure (Kapur et al., 2017; Pépin et al., 2022). 
Subsequent treatment failures cause relapsing patients who are then redirected back to the 
healthcare pipeline for further investigations and new treatment trials. Nevertheless, 
specific OSA treatments are irreversible surgical interventions, making treatment 
reallocation an unsustainable approach. The resource requirements for treating OSA are 
accompanied by a high cost. For example, according to the recent Finnish study conducted 
by Mattila et al. (2022), the cumulative number of annual work absences due to OSA 
increased from 1 100 days to 46 000 between 1996 – 2018. Therefore, the economic 
impact of OSA affects the overall healthcare expenditure and extends to businesses 
through sick leaves and healthcare costs. 
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Besides OSA treatment effect research providing an avenue for the healthcare system 
to optimise its services, the actual impact happens on an individual level. An effective 
OSA treatment prevents the occurrence and further development of morbidities such as 
type 2 diabetes, strokes, or heart attacks (Vijayan, 2012; Newman et al., 2005; Gleeson et 
al., 2022). Aside from physical health problems, the disease can significantly reduce a 
person’s life quality and impact work, family, and social life (Antic et al., 2011; Bergeron 
et al., 2020). Furthermore, OSA treatment decreases the risk of mortality (Yuan et al., 
2015; Guo et al., 2016). Against the backdrop of an increasing OSA patient population, the 
exposure to the associated risks becomes more evident. Thus, there is a need to capitalise 
on previous treatment responses by researching OSA treatment outcomes. Furthermore, an 
enhanced understanding of the OSA treatment effect supports the optimisation of treatment 
allocation, which reduces queues and upgrades the overall quality of healthcare services.  
1.2 Research Problem and Objectives of the Study  
Previous observational studies on the OSA treatment effect have often centered on one or 
two treatment interventions and covered failures in those treatment modalities (Moeller et 
al., 2021; Martínez-García et al., 2012; Moxness et al., 2014; Marin et al., 2005). However, 
broader long-term comparative research on OSA treatment effect is scarce (Venema et al., 
2020). Therefore, research efforts should be refocused on longer follow-ups instead of 
short-term comparisons between individual treatment interventions.   

The purpose of this study is to compare the long-term effectiveness of four OSA 
treatment interventions. To determine treatment effectiveness, emphasis is placed on 
treatment failure or relapse. Relapse is defined as a transition to a disease state of 
increased severity. Nevertheless, the definition of OSA severity has continuously evolved, 
resulting in conflicting research on the assessment of OSA severity (e.g., Edwards et al., 
2014; Bakker et al., 2014; Korkalainen et al., 2019). Consequently, as a prerequisite for 
evaluating patient relapse, this study investigates whether there are differences between the 
OSA severity levels. Therefore, the first research question covers severity classification: 

 
Research question 1: Are there statistical differences between OSA severity levels? 
 
After statistically validating the severity categories, the following phase of the study 
considers treatment analysis. Treatment analysis includes four OSA treatment methods: 
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CPAP, OA, upper airway surgery and bariatric surgery. The sample of this study is divided 
into four treatment subsamples according to treatment prescriptions. Each of the treatment 
subsamples represents a distinct treatment arm. The following research question covers 
treatment effect analysis. 
 
Research question 2: Do the different OSA treatment interventions lead to different outcomes?  
Research question 2 guides in comparing the four treatment interventions with one another. 
The outcome of interest is relapse, a transition to a disease state of increased severity. 
Therefore, this study considers three types of relapses: 
 

• Relapse from ‘no OSA’ to ‘mild OSA’ 
• Relapse from ‘mild OSA’ to ‘moderate OSA’ 
• Relapse from ‘moderate OSA’ to ‘severe OSA’  OSA treatment outcomes are measured with 1) the probability of relapse and 2) cumulative 

relapse recurrence. Firstly, the probability of relapse indicates the likelihood of each type 
of relapse. Secondly, cumulative relapse recurrence estimates the progressiveness of the 
disease. The three types of relapse recurrence are based on the three relapse types. Relapse 
recurrence is explained in Figure 12. 
 
 
 
 
 
 
 
 
 
 
Figure 12. The Three Types of Relapse Recurrence  

The interest lies in the cumulative number of expected relapses, assuming each type of 
relapse is repeatable.  In other words, we investigate the number of times we expect relapse 

No OSA
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OSA
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Moderate 
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Severe 
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Moderate 
OSA

1. type of relapse recurrence 2. type of relapse recurrence 3. type of relapse recurrence
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to occur repetitively in each relapse type. A cumulative hazard function then measures the 
total amount of risk accumulated up to a certain point (Klein, 1991). 
1.3 Scope of the Thesis 
The scope of this thesis is defined as follows: 

• The analysis considers the four official OSA treatment methods stated in the 
Finnish Current Care Guidelines (2022): CPAP, OA, upper airway surgery and 
bariatric surgery. 

• The data of this study contains biological samples from specialised healthcare visits 
(instead of primary healthcare visits). 

• All study subjects were treated within the Hospital District of Southwest Finland. 
• All study subjects were diagnosed with OSA according to the Finnish Current 

Care Guidelines (2022). Patients diagnosed with central sleep apnoea (CSA) are 
beyond the scope of this study. Additionally, all subjects are over 18 years of age. 

• The study cohort consists of  nearly 24 700 patients followed between 2003 and 
2019.  

1.4 Structure of the Thesis 
This thesis aims to follow a logical structure. First, chapter 2 covers the literature review, 
which entails four concrete sections: section 2.1 reviews the previous literature involving 
OSA, and section 2.2 focuses on the latest research advancements concerning OSA 
treatment. Subsequently, section 2.3 addresses relevant modelling concepts to EHR data, 
and section 2.4 presents the hypothesis development of the study. Chapter 3 explains the 
research methodology. Research methodology is divided into two segments that structure 
the research process: section 3.2 explains the methods employed for severity classification, 
and section 3.3 covers the modelling choices for treatment effect investigations. Third, 
chapter 4 introduces the data in this study. This part presents the dataset, model variables, 
sample selection process, data pre-processing and finally, a descriptive analysis of the 
dataset. The large emphasis on the extraction and pre-treatment of the data is justified as it 
composed a large part of this work. Lastly, chapters 5 and 6 discuss the results of this study 
more thoroughly. In addition to a summary and discussion of the study results, chapter 6 is 
also reserved for discussing the limitations, ethical considerations, and possible future 
research avenues. 
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2 Literature Review 
This chapter reviews recent literature on OSA and its treatment methods. First, section 2.1 
concerns an overview of OSA. Subsequently, section 2.2 examines the most common OSA 
treatment methods. Then, section 2.3 presents standard concepts associated with 
longitudinal data and section 2.4 covers hypothesis development. 
2.1 Obstructive Sleep Apnoea 
OSA is a common sleep-related breathing disorder characterised by the cessation of breath 
resulting from recurrent upper airway collapses during sleep (e.g., Peppard et al., 2013; 
Rossi et al., 2021; Punjabi, 2008; Bikov et al., 2020). Obstructive events generate 
progressive asphyxia, often caused by the softening of the muscles in the back of the throat 
(Cowie, 2017; Spicuzza et al., 2015). The apnoea-hypopnoea index (AHI) is a parameter 
that measures the number of obstructive events per hour of sleep (Duodecim, 2022). 
Consequently, an obstructive event can be either “apnoea” when referring to a complete or 

near-complete cessation of breath for 10 seconds or more, or “hypopnoea” when referring 

to a 30% reduction in breathing for 10 seconds or more (Duodecim, 2022). Interrupted 
ventilation causes a below-normal level of oxygen in the blood, also known as hypoxemia 
(e.g., Dewan et al., 2015; Farré et al., 2018; Cowie, 2017). Chronic exposure to 
intermittent hypoxemia generates hypoxia, a state where body tissues become deprived of 
adequate oxygen supply (Cowie, 2017). Symptoms of OSA are categorised into diurnal 
and nocturnal symptoms. During the daytime, patients experience tiredness, cognitive 
impairment, decreased libido, sore throat, mood swings, morning headache and a tendency 
towards depression. (e.g., Jacobsen et al., 2013; Spicuzza et al., 2015). Nocturnal 
symptoms include irregular and loud snoring, excessive perspiration, apnoeic sleep 
episodes, arousal, insomnia, and nightmares (Cowie, 2017; Duarte et al., 2022).  
2.1.1 Disease Progression and Morbidities 
According to a large body of research, OSA has the characteristics of a chronic condition 
that tends to progress slowly over the years (Heatley et al., 2013; Sahlman et al., 2007; 
White & Younes, 2012). Marin-Oto et al. (2019) presented a framework with four stages to 
describe OSA disease progression: First, the ‘stage of susceptibility’ is characterised by 
initial symptoms such as snoring. Second, the ‘pre-symptomatic stage’ is characterised by 
nocturnal symptoms; however, patients at this stage are less likely to report diurnal 
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symptoms. Thirdly, the condition evolves to a ‘stage of clinical illness’, which is 
characterised by the development of morbidities. Finally, untreated patients might 
experience disability or death due to the unbalance of the cardiovascular system. Figure 3 
outlines this process: 

 
Figure 3. OSA progression chart. (Adopted from Marin-Oto et al., 2019) 
Studies have shown that OSA severity progression depends mostly on weight gain and, to 
a less degree, on time (Newman et al., 2005; Berger et al., 2009; Schwartz et al., 2008). 
Furthermore, evidence suggests a bidirectional relationship between OSA and other 
coexisting health conditions (Gleeson et al., 2022; Dewan, 2015; Bonsignore et al., 2019; 
Rossi et al., 2021). A critical factor influencing the development of morbidities is oxygen 
deprivation caused by interrupted ventilation (Cowie, 2017). Oxygen deprivation generates 
low levels of oxygen in the blood and produces a state called hypoxemia, which can 
consequently trigger chronic hypoxia (e.g., Dewan et al., 2015; Farré et al., 2018; Cowie, 
2017). Over time, sleep deprivation, recurrent apnoeic episodes and hypoxia impact the 
proper functioning of the metabolism, affecting the cardiovascular system and altering the 
metabolic balance (Spicuzza et al., 2015; Drager et al., 2010; Kent et al., 2011).  
2.1.2 Diagnosis of the Condition 
In Finland, OSA diagnosis is based on three factors: (1) physical examination, (2) 
anamnesis, and (3) overnight polysomnogram (Duodecim, 2022). First, physicians conduct 
extensive physical examinations to evaluate the respiratory, cardiovascular, and nervous 
system (Aro et al., 2019). Second, patients who report signs indicating OSA presence are 
referred for anamnesis (Aro et al., 2019). In anamnesis, health experts evaluate patient 
history, occupational factors, allergies, lifestyle choices and coexisting health conditions. 
In addition, sleepiness symptoms are assessed with the Epworth Sleepiness Scale (ESS) 
survey, which measures a patient’s general daytime sleepiness (Aro et al., 2019). Thirdly, 
patients are directed to a sleep study at home or a hospital (Aro et al., 2019). The overnight 
polysomnogram conducted in a sleep laboratory is the standard diagnostic test (e.g., 
Punjabi et al., 2008; Spicuzza et al., 2015; Kapur et al., 2017). However, the lack of 

Stage of susceptibility(snoring) Stage of pre-symptomatic disease (apnea)
Stage of recovery, disability or death(early death)

Stage of clinical disease (morbidities)
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standardisation in sleep studies challenges the comparativeness of sleep study results 
across laboratories (Hirshkowitz, 2016). 
2.1.3 Severity Classification 
The Finnish Current Care Guidelines (2022) follow international standards and hence 
consider the apnoea-hypopnoea index (AHI), oxygen saturation percentage (SaO2%) and 
daytime sleepiness as the three critical indicators of OSA severity. The severity levels with 
their respective measurement metrics and thresholds are explained in Table 1. 
Table 1: The Finnish Severity Classification Guidelines 
  Measurement Metrics 

Severity level  AHI SaO2% Daytime sleepiness 
 

Mild 
  

5 – 15 
 

On average ≥ 90 and 
minimum ≥ 85 

Minor daytime sleepiness 
in social and occupational 

situations. 
 

Moderate 
  

16 – 30 
 

On average < 90 and 
minimum ≥ 70 

Daytime sleepiness in 
situations that require 

moderate concentration.  
 

Severe 
  

> 30 
 

On average < 90 and 
minimum < 70 

Daytime sleepiness in 
situations that require 
deep concentration. 

Adapted from the Finnish Current Care Guidelines (2022) 
AHI is the most widely recognised OSA severity indicator in scientific societies 
(Nishibayashi, 2008; Won, 2020). A significant number of treatment analyses consider 
AHI as a metric to determine the successfulness of a treatment intervention (e.g., Khan et 
al., 2009; Cielo et al., 2019). Nevertheless, the connection between AHI and OSA severity 
remains unclear (Linz, 2019; Prasad, 2016; Ahmadi, 2009; Hudgel, 2016). Despite 
standardisation attempts, uncertainty around the hypopnoea definitions persists (Berry et 
al., 2012; Ruehland et al., 2009; Hudgel et al., 2016). Some sources measure the nocturnal 
decrease in airflow, while others track the decrease in oxyhaemoglobin saturation (Hudgel, 
2016; Ruehland et al., 2009). Another OSA severity indicator is the percentage of oxygen-
saturated haemoglobin molecules in arterial blood (SaO2%) (Hafen et al., 2022). A healthy 
level of SaO2% is approximately 95%; levels below 90% require external oxygen 
supplementation, whereas levels below 70% are life-threatening. (Hafen et al., 2022). In 
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addition to factors such as AHI and SaO2%, OSA severity assessment considers a patient’s 

subjective perception of daytime sleepiness. Although occasionally, patients with higher 
AHI tend to rank lower in sleep quality than individuals with lower AHI (McNicholas, 
2017; Macey et al., 2010).         
 Nevertheless, more variables than AHI or SaO2% should be considered in 
measuring OSA severity (Hudgel, 2016). The diagnostic and coding manual of the 
American Academy of Sleep Medicine (2017) points out that “…a single numerical cut 

point (such as apnoea index) is often not an appropriate division between levels of severity 
and clinical judgement of several indexes of severity is considered superior”. The 
ambiguity in OSA severity raises difficulties in generalising inferences among clinical 
studies. In addition to this, the polysomnogram (PSG) scoring criteria has experienced 
changes over time, but the severity classification standards have not been calibrated to 
adjust to these changes (Hudgel, 2016). 
2.1.4 Risk Factors 
Findings from extensive population studies have contributed to a better understanding of 
the OSA risk factors. Table 2 summarises structural and non-structural OSA risk factors. 
Table 2: OSA Risk Factors 

Structural Risk Factors Non-structural Risk Factors 
Anatomic variation Obesity 
Facial deformations Male sex 
Shorter jaw length Age 

Abnormalities in skull shape  Postmenopausal state 
Abnormal growth of tonsils Smoking 

Down syndrome Family history 
Pierre Robin, Marfan, and Prader-Willi syndromes Habitual snoring 

High, arched palate (particularly in women) Supine sleep position 
Inferior displacement of the hyoid Substance abuse 

Adapted from Buchanan et al. (2016) ‘Cone-beam CT analysis of patients with obstructive sleep apnea 
compared to normal controls.’ 
 
A substantial contributor to the increasing prevalence of OSA is the rising obesity among 
the population (Newman et al., 2005; Berger et al., 2009; Schwartz et al., 2008; Bikov, 
2020). According to Tuomilehto et al. (2013), approximately 70% of OSA patients suffer 
from obesity. Furthermore, the study conducted by Ong et al. (2013) shows a reciprocal 
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relationship between weight gain and OSA, suggesting that the metabolic unbalance 
caused by OSA contributes to further weight gain or the inability to lose weight. Other 
non-structural risk factors include male sex, age, menopause, family history, and 
behavioural factors such as alcohol consumption and smoking (Duodecim, 2022). In 
contrast, structural risk factors entail risks associated with abnormal skeletal structures and 
excessive soft tissue in the upper airway (Buchanan et al., 2016). For example, a narrow 
upper airway is a common abnormality in OSA diagnosed individuals (Junior, 2010). 
Furthermore, small mandibles, large tongue area, inferior hyoid bones and narrow 
posterior airway spaces are all more common in nonobese OSA patients (Yu et al., 2003). 
2.2 Treatment Methods 
This section covers essential information regarding the relevant treatment interventions in 
this study.  
2.2.1 Treatment Methods and Indications 
This study considers four OSA treatment interventions: CPAP, OA, upper airway surgery, 
and bariatric surgery. Table 3 presents the treatment indications for each treatment. 
Treatment indication refers to the reasoning behind any treatment prescription. 
Table 3: Treatment Methods and Treatment Indications 

OSA treatment practice focuses on symptom improvement and preventing long-term 
health risks. CPAP is the most common OSA treatment and often the first intervention 
offered to patients seeking symptomatic relief (Bachour & Bäck, 2015). Although a crucial 
factor in OSA treatment is the interaction of the upper airway anatomy, each patient’s 

Treatment Methods Treatment Indications 
CPAP  Clinical symptoms include daytime sleepiness, cognitive impairment, sleep problems or cardiovascular disease (Finnish Current Care Guidelines, 2022). 
Upper airway surgery Firstly, an obstructive abnormality of the upper airway (e.g., large tonsils). Secondly, contraindications for non-surgical therapies. Thirdly, to improve other OSA therapies, such as OA (Finnish Current Care Guidelines, 2022). 

Bariatric surgery 
 

A body-mass index (BMI) > 35 kg/m2, aged 18-60 and showing a clear motivation for a lifestyle change (Finnish Current Care Guidelines, 2022).  
OA Intolerance to CPAP therapy or patient preference for alternative therapy (American Academy of Sleep Medicine, 2017). 
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specific pathology is not always assessed as part of the diagnostic process (Duodecim, 
2022). For this reason, treatment selection is often a trial-and-error process that starts with 
the CPAP method (Kapur et al., 2017; Pépin et al., 2022). 
2.2.2 Previous Research on OSA Treatment Effect 
Previous research on individual OSA treatment interventions has been proliferating, but 
comparative research between treatment interventions is scarce (Venema et al., 2020). 
Figure 4 displays the growing number of publications on individual OSA treatment 
methods.

 
 
                Data from Scopus database (04/2022)  
Figure 4. Scopus Publication Volume on OSA Treatment Methods (1970-2021) 
The prevalence of CPAP as a standard OSA treatment intervention explains the growth of 
publications containing the keyword ‘CPAP’. Despite a high number of yearly 
publications, a significant limitation in OSA treatment research is the lack of long-term 
follow-up research (Moeller et al., 2014; Martínez-García et al., 2012; Moxness et al., 
2014; Marin et al., 2005; Venema et al., 2020). Long-term research has been challenging to 
implement before 2010 due to the lack of EHR data (DesRoches et al., 2013). Furthermore, 
no long-term observational analyses containing the four most common treatment 
interventions were found during this study. The following subsections, 2.2.3, 2.2.4, 2.2.5 
and 2.2.6, explore each of the four treatment interventions in detail. 
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2.2.3 Continuous Positive Airway Pressure (CPAP) 
CPAP is recognised as the standard treatment method for OSA patients (e.g., Bachour & 
Bäck, 2015; Antic et al., 2011; Caples et al., 2005). The CPAP machine creates pressure 
that supports the opening of the collapsing upper airway during sleep (Issa et al., 1984; 
Padma et al., 2007; Li et al., 2020). According to a substantial number of studies, CPAP 
effectively controls the symptoms of OSA and improves daily functioning, cognitive 
processing, and quality of life (e.g., Weaver, 2019; Vakulin et al., 2017; Ryan et al., 2005; 
Nural et al., 2013).         
 Despite previous evidence supporting the effectiveness of CPAP, not all studies 
corroborate the effectiveness of CPAP in treating OSA (e.g., Shapiro et al., 2010). Some 
specific factors, such as nose, throat, or glottis lesions, can contribute to the failure of 
CPAP treatment (Li et al., 2020). Furthermore, treatment adherence is crucial for 
maintaining CPAP efficacy, and failure in treatment commitment can lead to the re-
emergence of symptoms (Weaver et al., 2007). Nonetheless, failing to consider CPAP 
adherence often generates bias in research outcomes (Shapiro et al., 2010).  
2.2.4 Oral Appliance (OA) 
Oral appliances (OA) are custom-fitted dental devices that maintain a patient’s airway 

open during sleep (Sutherland et al., 2014). The device repositions the lower jaw slightly 
forward and enlarges the upper airway by simultaneously preventing the tongue from 
blocking the airway during sleep (e.g., Sutherland et al., 2014). A large body of research 
demonstrates the efficacy of OA in reducing obstructive breathing events (Okuno, 2016; 
Zhu et al., 2015; Ilea et al., 2021). As a result, OA is considered an alternative to CPAP, 
and numerous patients prefer OA due to its user-friendliness (Gotsopoulos et al., 2002). 
Although clinical trials confirm that CPAP is more efficient in reducing OSA symptoms, 
this superiority does not necessarily translate into more effective health outcomes in 
clinical practice (Sutherland et al., 2014; Balk et al., 2011). In addition, previous 
comparative research has reported higher OA adherence compared to CPAP. Thus, OA’s 

inferiority in treatment efficacy could be compensated by greater treatment adherence 
(Sutherland et al., 2015; Li et al., 2013). Nonetheless, there might be adverse effects 
associated with OA compared to CPAP. For example, short-term adverse effects include 
painful teeth, increased salivation, discomfort, and long-term adverse effects comprehend 
dentoskeletal alterations such as teeth movements (Minagi et al., 2018; Baldini et al., 
2021). 
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2.2.5 Upper Airway Surgery 
Upper airway surgery attempts to surgically modify dysfunctional anatomical areas 
connected to the upper airway area (e.g., Mackay et al., 2020). The procedure consists of 
enlarging a patient’s upper airway by reducing the amount of soft tissue or widening the 

airways with bony reconstructions (e.g., Kemppainen et al., 2019). Consequently, a stiffer 
soft palate is less likely to touch the back wall of the throat as the muscles relax during 
sleep. Upper airway surgery has been proven to normalise symptoms, reduce AHI values, 
and improve SaO2% levels (Kemppainen et al., 2019). A standard surgical procedure for 
OSA is uvulopalatopharyngoplasty (UPPP) (Won et al., 2008). UPPP is often performed in 
conjunction with tonsillectomy (Won et al., 2008). Furthermore, research has shown a 
surprising success rate in tonsillectomy as an OSA treatment (e.g., Khan et al., 2009; Lee 
et al., 2012). Further developments in surgical upper airway interventions include 
multilevel surgery that combines various surgical methods to attain higher treatment 
effectiveness (Mackay et al., 2020). Nevertheless, multilevel surgery is beyond the scope 
of this study. 
2.2.6 Bariatric Surgery 
Weight loss reduces AHI in obese patients; hence obesity surgery has been proven an 
efficacious option for treating OSA (Sarkhosh et al., 2013; Cowie, 2017; Fritscher et al., 
2007; Greenburg, 2009; Rao, 2009; Ashrafian, 2015). As of 2022, the two main types of 
bariatric surgeries performed in Finland are sleeve gastrectomy and the Roux-en-Y gastric 
bypass procedure (Duodecim, 2022). However, data in this study include a timeframe 
where the laparoscopic adjustable gastric banding procedure was still conducted in 
Finland, and it is thus considered in this study. 
 

Figure 5. The Three Bariatric Surgery Types in Finland: (A) Laparoscopic Adjustable Gastric Banding, (B) 
Sleeve Gastrectomy and (C) Roux-en-Y Gastric Bypass Procedure. (Dixon et al., 2011/ permission granted) 
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Firstly, laparoscopic adjustable gastric banding (A) is a minimally invasive weight loss 
surgery. The procedure consists of placing a restrictive silicone ring around the upper part 
of the stomach, thus decreasing food intake by only filling the top part of the stomach (e.g., 
Himpens et al., 2011). Secondly, sleeve gastrectomy (B) consists of removing a significant 
part of the stomach to restrict food intake (Sarkhosh, 2013). Thirdly, Roux-en-Y gastric 
bypass (C) alters the gastrointestinal physiology by restricting food intake and enabling 
faster absorption of nutrients to the small intestine (Abdeen et al., 2016). The following 
section, 2.3, explains essential concepts regarding EHR treatment effect research. 
2.3 Treatment Effect Research in Longitudinal Study Settings 
This section explains relevant concepts to EHR studies. First, subsections 2.3.1 and  2.3.2 
explain treatment effect research and longitudinal studies. Then, subsection 2.3.3 explores 
the basics of multistate models in life history analysis and subsection 2.3.4 presents 
essential concepts in survival analysis. Finally, subsection 2.3.5 dives into some critical 
challenges in longitudinal studies. 
2.3.1 The Practice of Treatment Effect Research  
Treatment effect research aims to assess the effectiveness of different treatments or clinical 
interventions. Moreover, the treatment effect measures whether there are any benefits in 
prescribing a specific treatment over others (Yao et al., 2018). Efficacy and effectiveness 
are often distinguished in the following way: treatment efficacy refers to the success of an 
intervention under ideal circumstances, whereas effectiveness refers to treatment 
performance in the real world, where conditions cannot be controlled (Sutherland et al., 
2015). EHR data proceed from actual medical visits; hence longitudinal studies often 
represent the latter. According to Sutherland et al. (2015), a significant decrease in AHI 
indicates an effective OSA treatment. Furthermore, a large body of research (Nishibayashi 
et al., 2008; Johansson et al., 2009; Boyd et al., 2013; Matiello et al., 2010) has based the 
evaluation of OSA treatment effect solely on AHI values. However, as discussed in 
subsection 2.1.2, accounting only for AHI to determine disease severity is controversial.  
2.3.2 Longitudinal Studies involving EHR 
Longitudinal studies consist of repeatedly measured variables (e.g., blood pressure) within 
the same clusters (e.g., patients) (Twisk, 2013, p.1). Longitudinal research is observational, 
as subjects are not explicitly involved in the study process (Gail et al., 2019; Twisk, 2013, 
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p.7; Cook & Lawless, 2007, p.16). EHRs often serve as a data source for longitudinal 
studies. EHRs are records of a patient’s medical history tracked and managed by 
healthcare professionals. For every individual patient, there is typically a longitudinal 
record of medications, medical visits and biomarkers that proceed from laboratory data. 
The primary benefits of EHRs are improved patient care and reduced errors, as EHRs 
provide easy access to complete patient histories. The rapid adoption of EHR systems has 
resulted in the increased availability of data generated as a byproduct of routine healthcare 
visits (Lin et al., 2022). EHR data convey benefits to biomedical research, as access to 
large patient datasets enables a wide variety of longitudinal research designs (Huang et al., 
2020). Nonetheless, medical visits are often irregular, generating a discontinuity in 
measurements as well as substantial information loss (Huang et al., 2020). 
2.3.3 Multistate Models for Studying the Disease Process  
Multistate modelling is an established statistical technique commonly applied for 
describing longitudinal data (e.g., Andersen & Keiding, 2002). These models are utilised to 
model the relationships between different states (Cook & Lawless, 2007, p.14). A 
multistate process consists of a finite number of states, and any transition between states 
may be considered (Andersen & Keiding, 2002). The procedure is a stochastic process in 
which a study subject can occupy one state out of discrete states at different time points 
(Allignol, 2011). In probability theory, a stochastic process reflects a set of variables that 
represent the evolution of a process (Allignol, 2011). This way, multistate models can be 
applied to model the probability of an individual transitioning from one disease state to 
another (e.g., Ching, 2013, p.3; Allignol, 2011). The complexity of a multistate model 
depends on the number and progressiveness of the states. Multistate models typically 
satisfy the Markov property, which assumes that every event depends on a previous event 
(e.g., Zhang et al., 2010). A multistate model is an extension of classical survival analysis; 
thus, the following subsection, 2.3.4, explains the most basic concepts regarding survival 
analysis. 
2.3.4 Key Concepts in Survival Analysis 
Survival analysis is a method for statistical analysis where the outcome of interest is the 
time T* until an event occurs (e.g., Miller et al., 2011, p.8). An event can be death, disease 
incidence or relapse, and time is calculated from the beginning of the follow-up of an 
individual (Kleinbaum & Klein, 2012, p.4). Survival functions are applied in several fields, 
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but they are ubiquitous in biomedical studies to analyse disease occurrence or life 
expectancy among treated and untreated patients (e.g., Liu, 2012; Fizazi et al., 2012; 
Mueller, 2018). In this study, survival regression is applied along with multistate models to 
investigate failure rates over time. Standard statistical regression is inappropriate because 
survival times are often incompletely observed (Kleinbaum & Klein, 2012, p.23). 
Furthermore, patients often enter and leave clinical studies at different time points. 
Therefore, censoring and truncation account for the distinct entry and exit times in 
survival models (Koul et al., 1995). Censored individuals are study subjects that have not 
experienced the outcome of interest within the observation period (e.g., Kleinbaum & 
Klein, 2012, p.286). This study assumes right-censoring. Right-censoring happens when 
the survival time exceeds the censoring time or when a study subject abandons the study 
before the event of interest occurs (Kleinbaum & Klein, 2012, p.286). Furthermore, 
survival time could exceed censoring time if an individual remains alive after the study has 
terminated or the subject is lost to follow-up (Kleinbaum & Klein, 2012, p.17). In 
epidemiologic studies, patients are followed from the time of study entry and not from time 
0 (in the relevant time scale, such as age) (Leung et al., 1997). Thus, in addition to right-
censoring, longitudinal studies are subject to left-truncation (Aalen et al., 2008, p.4). Left-
truncation occurs when records hold data from subjects who have already survived until 
the study entry (Aalen et al., 2008, p.4). 
2.3.5 Challenges in EHR Longitudinal Studies 
The complexities and limitations of EHR data make medical findings prone to biases 
(Huang et al., 2020). Some challenges relevant to this study include the following: 

• Attrition: Longitudinal studies experience attrition as individuals withdraw from 
the study or are lost to follow-up (Casey et al., 2016). Attrition can result from 
death or participants moving away.  

• Correlated responses: Statistical analysis of longitudinal EHR data often requires 
methods that consider the correlations in response measurements (Hedeker, 2003). 

• Data missingness: The large amount of EHRs pose challenges in ensuring that the 
data is collected consistently and accurately (Huang et al., 2020). The data 
collected from EHR databases reflect not only the health of the patients but also the 
interactions between patients and healthcare professionals. Measurements are 
irregular since individuals are observed at discrete time points during routine 
medical visits. Therefore, understanding assumptions related to missing data is vital 
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for finding a suitable missing value imputation method (Twisk, 2013, p.215). Data 
can be classified as missing completely at random (MCAR), missing at random 
(MAR), or missing not at random (MNAR) (e.g., Sainani et al., 2015). Table 4 
explains the definitions behind the three distinct types of missingness. 

Table 4: Types of Missingness 
Type of missingness Description 

Missing Completely at 
Random (MCAR) 

Missingness is not dependent on any observed or unobserved variables. There are no systematic differences between missing and observed data. 

Missing at Random (MAR) Missingness may depend on observed variables but does not depend on unobserved variables. Therefore, there is a systematic relationship between the missing values and observed data. 

Missing Not at Random 
(MNAR) 

Missingness is dependent on unobserved variables. Thus, data missingness is systematically related to unobserved data (factors not measured by the researcher). 
Adapted from Sainani et al. (2015) ‘Dealing with missing data’ 
Other essential factors in handling EHR data for research purposes include ensuring the 
privacy of the study subjects and maintaining a functional data management architecture 
for the project (Huang et al., 2020). The following section, 2.4, explains the hypothesis 
development procedure.  
2.4 Hypothesis Development for OSA Treatment Effect Analysis 
The purpose of this study is to compare the four major OSA treatment interventions with 
one another. To accomplish that, we must first validate the OSA severity levels as a 
prerequisite for comparing treatment outcomes. OSA severity levels are relevant as they 
help define treatment effectiveness. Therefore, this study considers the following research 
questions: 

 
RQ1: Are there statistical differences between OSA severity levels? 
RQ2: Do the different OSA treatment interventions lead to different outcomes? 
 
The literature review accentuates the problem statement of this study. Previous research on 
OSA treatment interventions is limited to short-term follow-ups of one or two treatments, 
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but long-term comparative research is scarce (Moeller et al., 2021; Martínez-García et al., 
2012; Moxness et al., 2014; Marin et al., 2005; Venema et al., 2020). Furthermore, 
outcomes from distinct research publications are hard to compare. For example, the 
definition of OSA severity has constantly evolved, and there is inconsistent evidence on 
the factors that should be considered when assessing OSA severity (e.g., Edwards, 2014; 
Bakker, 2014; Korkalainen, 2019). Studies have often employed AHI as an OSA severity 
indicator (e.g., Khan et al., 2009; Cielo et al., 2019). Notwithstanding, previous evidence 
indicates that the OSA severity indicator should consider more variables than AHI (Linz, 
2019; Hudgel, 2016; Kapur et al., 2017). Therefore, as a requirement for assessing patient 
relapse, this study investigates whether there is a statistical relationship between OSA 
severity (when defined solely with AHI) and other patient biomarker data. The first 
hypothesis is developed to validate and support the harmonisation of the severity variable. 
 
Research hypothesis 1, (H1): There are statistical associations between OSA severity and 
biomarker variables. Specifically, that OSA severity increases in ODI and decreases in 
SaO2%. 
 
Previous literature supports a significant relationship between SaO2% and OSA severity, 
and patients with increased OSA severity tend to have lower oxygen saturation levels 
(Kainulainen et al., 2019; Myllymaa et al., 2015; Dewan et al., 2015; Farré et al., 2018; 
Hudgel, 2016). Similarly, we argue that the results of this study show a significant 
relationship between increased OSA severity and decreased oxygen saturation levels. In 
addition to oxygen saturation, the Finnish Current Care Guidelines 2022 also consider 
ESS a relevant OSA severity indicator. Nevertheless, previous studies have reported a poor 
association between AHI and ESS (McNicholas, 2017; Macey et al., 2010). Therefore, this 
study does not expect any evident relationship between AHI-defined OSA severity and 
ESS. After validating the severity indicator, the second research hypothesis tests 
differences between treatment outcomes. 
          
Research hypothesis 2, (H2): There are statistical differences between the four OSA 
treatment arms. CPAP is expected to have the most substantial effect in decreasing the risk 
of relapse and relapse recurrence in OSA. 
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This research hypothesis tests whether the data provide statistical evidence on differences 
between treatment outcomes. Each of the four treatment arms represents a subgroup of 
participants that received a specific OSA treatment intervention. Previous studies support 
the effectiveness of CPAP over other OSA treatment interventions (Vakulin et al., 2017; 
Bäck & Bachour, 2015; Sutherland et al., 2015; Ryan, 2005). For example, studies argue 
that CPAP is more effective in reducing OSA symptoms than OA (Sutherland et al., 2014; 
Balk et al., 2011). Similarly, we expect CPAP to show superiority over other OSA 
interventions. However, although CPAP is the standard OSA treatment method, poor 
treatment adherence is common (Shapiro et al., 2010; Weaver et al., 2007). Moreover, it 
has been shown that CPAP does not enable a permanent cure, and withdrawal from 
treatment often leads to the re-emergence of symptoms (e.g., Weaver et al., 2007; Rasheid 
et al., 2013). Therefore, CPAP might still show relatively high estimates for relapse 
recurrence.         
 Furthermore, there is conflicting research on the relative effectiveness of bariatric 
surgery as an OSA treatment intervention. While some studies imply that bariatric surgery 
could prevent the recurrence of OSA and enable a permanent cure (Verse, 2005; Rasheid et 
al., 2013), others state that Bariatric surgery does not solely suffice for treating OSA (e.g., 
Peromaa-Haaviso et al., 2016). Additionally, it has been shown that the effectiveness of 
upper airway surgery diminishes over time (Lin et al., 2008). Thus, despite the 
disadvantages concerning CPAP treatment adherence, we expect that CPAP might 
generally be more effective in treating OSA than other interventions. 
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3 Research Methodology 
This chapter covers the research methodology. Section 3.1 introduces the research process, 
section 3.2 presents the methods for the severity classification, and section 3.3 explains the 
methods for the treatment analysis.  
3.1 Defining the Research Process 
The purpose of this section is to structure the research procedure by briefly describing the 
research objectives and outlining the necessary research phases. This study aims to analyse 
and compare the treatment effect of four OSA treatment interventions. A key indicator to 
measure treatment response is relapse, defined as the worsening or reappearance of a 
disease after improvement or recovery. Consequently, OSA severity is the variable of 
primary interest for investigating relapse. Therefore, we propose a two-phased study 
design, where we first statistically validate the severity indicator and then model the 
relapse rates with a Markov procedure. After this, we compare the relapse behaviour 
between the four treatment arms. Figure 6 outlines the two phases of this study: 
 

Figure 6. Illustration of Study Process 
The first phase of this study consists of severity classification. As noted in subsection 
2.1.3, OSA severity definitions are subject to controversies in clinical studies. Thus, it is 
necessary to quantify disease severity across treatment arms. Therefore, the first phase of 
the study considers an ordinal logistic regression analysis with an AHI severity indicator as 
a dependent variable. The second phase of the study consists of the treatment analysis and 
considers the ‘relapse’ variable built from the ‘severity’ variable as an input for modelling. 
This phase is based on a Markov state-transition model that investigates relapse among 

Severity Classification
Dependent variable AHI

Phase 2 

Treatment AnalysisDependent variable composed of time-to-event & relapse

Phase 1 
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treatment arms. Now, we have provided a summary of the research procedure. Section 3.2 
explains the methodology for the first phase of the study. 
3.2 Severity Classification 
The objective of severity classification is to estimate the influence of physiological factors 
on OSA severity and thus validate the severity division applied later in this study. The 
dependent variable ‘severity’ is an ordinal response variable ranging from 1 to 4, with a 
natural ordering in levels. Each of the timestamped EHRs is classified as either (1) ‘no 
OSA’, (2) ‘mild OSA’, (3) ‘moderate OSA’ or (4) ‘severe OSA’. The numeric coding of 
an ordinal variable is a naming convention, and these names should be considered labels 
rather than values (McCullagh, 1980). The division into severity states is based on the AHI 
thresholds stated in the Finnish Current Care Guidelines (2022). Figure 7 shows the AHI 
thresholds that dictate the rules for labelling the patient records in this study. 
 

Figure 7. Four Severity Categories. 
The EHR data of this study are in repeated measures format. Repeated measures data 
violate the assumption of independence by nature, and therefore standard ordinal logistic 
regressions are outside the scope of this study (Bakdash, 2017). Two model types are 
common for modelling individual responses that are correlated with one another: 
Generalised Linear Mixed Models (GLMM) and Generalised Estimating Equations (GEE) 
(Twisk, 2013, p.235). Theoretically, both approaches are equally appropriate and highly 
suitable for longitudinal data (Twisk, 2013, p.235). However, GLMM is known to be 
slightly more flexible than GEE (Twisk, 2013, p.81). This study employs a GLMM 
procedure called Cumulative Link Mixed Model (CLMM) to model clustered ordinal 
outcome data (Christensen, 2019). The CLMM is an extension of Cumulative Link Models 
(CLM) (Christensen, 2020). The following subsection, 3.2.1, briefly explains the theory 
behind CLM. 



Research Methodology 21  
 

 

3.2.1 Ordinal Response Models 
Ordinal regression models are often applied to analysing ordinal outcomes (McCullagh, 
1980). Cumulative Link Models (CLMs) are ordinal regression models where continuous 
outcomes are categorised in ordinal classes according to thresholds (McCullagh, 1980). 
CLMs are based on the cumulative (or accumulated) response probabilities (Christensen et 
al., 2019). The cumulative response probabilities indicate the likelihood of a randomly 
selected observation falling in a specific class or below (Agresti, 2010). For example, in 
the OSA model, 𝑃(𝑌 ≤ 2 ) would refer to the probability of being in state ‘No OSA’ or 

‘Mild OSA’ versus being in state ‘Moderate OSA’ or above. The general form of CLM is 
noted as follows: 

𝐺−1[𝑃(𝑌 ≤ 𝑗 )] = 𝛼𝑗 − 𝑋𝛽 
 (1) 
Where:  
Y is the ordinal response variable,  
j is the level of an ordered category with J levels. (e.g., j=1 equals ‘no OSA’), 
X is the model matrix,  
𝛽 represents the intercept (𝛽

0
) and the coefficients for each regressor (𝛽

1
, 𝛽

2
, 𝛽

3
. . . 𝛽

𝑚
), 

𝛼𝑗  represents the threshold for level j, j=1,…J for an ordinal variable with J levels, 
𝐺−1 is the link function (logit for this study) 

 

  
The link function relates the expected value of the response to the linear model predictors 
(Greenwell et al., 2018; Christensen et al., 2019). Generally, logit is the most common link 
function due to its simple interpretability and computational convenience (Agresti, 2010). 
This study applies the logit link function for modelling. The logit link represents the 
inverse cumulative density function of a logistic probability distribution (Agresti, 2010). 
Furthermore, CLMs are known to have two main assumptions. One is the proportional 
odds (PO) assumption, and the other is the independence assumption (Christensen, 2015). 
following subsection 3.2.2 explains how to extend the CLM to deal with repeated-
measures data, while subsection 3.2.3 covers the PO assumption. 
3.2.2 Random Effects Account for Patient Clusters 
Logistic regression models assume independence of observations (Hedeker, 2003). 
Nevertheless, repeated-measures longitudinal data violate this assumption by nature. In 
this study, multiple patient measurements originate from a single patient; therefore, each 
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patient forms a nested unit of multiple measurements. Thus, to consider the correlated 
observations, we include a random effect as a grouping structure to the CLM (e.g., 
Hedeker et al., 2009). Furthermore, the CLMM assumes normally distributed random 
effects (Christensen, 2018). Moreover, this study applies an extension of the CLM that 
includes random effects in the location part of the predictor. Thus, the cumulative link 
mixed model formula with random effects is written as follows:  

 
𝐺−1[𝑃(𝑌 ≤ 𝑗 )] = 𝛼𝑗(𝑍𝑡[𝑖]𝑢𝑡 − 𝑋𝑖𝛽) (2) 

Where:  
𝑢𝑡  is the vector of coefficients for the group-level predictor,  
𝑍𝑡[𝑖] represents the group-level predictors for observation i in cluster t 

 
  
The random effect considers the intra-cluster correlations between observations (Hedeker, 
2003). However, model estimates may be unstable for small observation clusters (Liang, 
1993). Random effects deploy partial pooling, while fixed effects do not (Bartels, 2008). 
Partial pooling happens when data are grouped, and the effect estimates are based partially 
on the more abundant data from other groups (Bartels, 2008). Partial pooling then masks 
group-level variation between samples (Bartels, 2008).  
3.2.3 The Proportional Odds Assumption 
An ordinal regression model assumes a common slope for the effect of any of the 
explanatory variables in the model (McDonald et al., 2010). The PO assumption considers 
that the differences regarding the logit of the cumulative probability for 𝑌 ≤ 𝑗 are constant 
for the values of X. 

 
The PO assumption is satisfied when no predictor variable disproportionally affects a 
specific level of the response variable (Brant, 1990). A violation of the assumption 
indicates that the effects of a predictor variable differ across cutpoint equations in the 
model (Argresti, 2010). Therefore, the modelling approach fails because it cannot reduce 
the model’s coefficients to a single set across all ordinal response levels (Christensen, 
2019). The PO assumption can be tested via a likelihood ratio test (LRT) (Murphy et al., 
1997). The test hypothesis is that the model fit does not improve by relaxing the PO 

𝐺−1[𝑃(𝑌 ≤ 𝑗 | 𝑋  )] − 𝐺−1[𝑃(𝑌 ≤ 𝑖 | 𝑋 )] =  𝛼𝑗 − 𝛼𝑖   (3) 
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assumption. Therefore, significant p-values from this test indicate model failure 
(Christensen, 2015). Furthermore, failing the PO assumption results in unreliable model 
parameters (Christensen, 2019). In addition to the PO assumption, CLMMs make 
assumptions about an underlying latent distribution, but they are robust to violations of 
these assumptions. 
3.2.4 CLMM Model Diagnostics  
Model diagnostics refer to a set of procedures applied to assess the validity of the results of 
a regression analysis (Greenwell et al., 2018). Methods for model diagnostics include 
graphical methods, quantitative approaches, and hypothesis tests. Nevertheless, there is 
limited availability of diagnostic tools for ordinal regression models (Liu et al., 2018). For 
example, traditional goodness-of-fit metrics are generally unavailable for GLMM ordinal 
models (Lorenzo-Arribas, 2019). Furthermore, the nature of ordinal outcomes poses 
challenges in defining residual statistics that are valid and simple to interpret (Liu et al., 
2018). As advised in the work of O’Connell and Liu (2011), this thesis assesses model 
residuals by converting the ordinal response variable back to a continuous variable and 
applying a linear mixed-effects model residual analysis. In addition to analysing model 
residuals, this study applies an LRT to test whether the final model explains the outcome 
better than a reduced model. The LRT is formulated as follows: 

Where m1 represents the reduced model and m2 the full model. 
 
The LRT assesses how well a model explains an outcome compared to a model with fewer 
predictors (Christensen, 2018). This study builds the reduced model based on a few non-
significant independent variables from the original model. Thus, the LRT examines 
whether one model fits the data significantly better than a reduced model. 
3.3 Treatment Analysis 
This section presents the methodology for the treatment analysis. The section is composed 
in the following manner: subsections 3.3.1 and 3.3.2 discuss the objectives and problem 
characterisation of treatment analysis. The following subsections, 3.3.3 and 3.3.4, explain 
the approach for modelling patient relapse. Finally, subsection 3.3.5 discusses the OSA 

𝐿𝑅𝑇 = −2𝑙𝑛 (
𝐿(𝑚1)

𝐿(𝑚2)
) (4) 
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multistate model; subsections 3.3.6 and 3.3.7 cover the estimators, and subsection 3.3.8 
explains hypothesis testing.  
3.3.1 Objectives of Treatment Analysis 
The objective of treatment analysis is to compare the clinical effectiveness (or 
ineffectiveness) of four OSA treatment alternatives. The treatment interventions considered 
in this study are CPAP, OA, upper airway surgery and bariatric surgery. Treatment 
effectiveness is measured by treatment failure, which is characterised by an occurrence of 
relapse after treatment prescription. Consequently, the analysis aims to understand 1) the 
risk of relapse and 2) the progressiveness of the disease. Disease progressiveness is 
measured by the cumulative recurrence of relapse. After briefly defining the objectives of 
the study, the following subsection, 3.3.2, defines the problem characterisation more 
precisely. 
3.3.2 Problem Characterisation  
Firstly, each study subject is randomly allocated to a treatment subsample according to 
database treatment identifications (see: Table 8). Each treatment subsample represents a 
treatment arm. A patient’s observation period begins after treatment prescription. Patients 
can start at any state, but they transition from one severity state into another in a 
predetermined order (Figure 8). A transition into a healthier state indicates effective OSA 
treatment. Consequently, a transition into a state of increased severity indicates ineffective 
treatment or relapse. Figure 8 illustrates the severity states, the transition order, and all 
three transition alternatives present in this study:  
 

Figure 8. OSA Progression Diagram. 
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A transition from ‘no OSA’ to ‘mild OSA’ is considered a relapse instead of falling ill 
because a prerequisite for entering the study sample is an OSA diagnosis (AHI>5). 
Therefore, all study subjects in the state of ‘no OSA’ have previously been in the state of 
‘mild OSA’. Furthermore, transitioning to a state of increased severity starts to count as 
relapse from the second time the subject enters the severity state.     
 The focus is to study ineffective treatment, measured by 1) the probability of 
relapse and 2) cumulative relapse recurrence. A distinct patient could undergo multiple 
transition types during observation, but we only include relapses between consecutive 
states. Therefore, this study only accounts for three relapse types: 
 

• Relapse from ‘no OSA’ to ‘mild OSA’  
• Relapse from ‘mild OSA’ to ‘moderate OSA’ 
• Relapse from ‘moderate OSA’ to ‘severe OSA’ 

 
Furthermore, cumulative relapse recurrence measures the repetitiveness of each relapse 
type. Thus, cumulative relapse recurrence captures the number of times each relapse type 
is estimated in each treatment category. Figure 9 illustrates cumulative relapse recurrence. 
 
 

Figure 9. Illustration of Cumulative Relapse Recurrence by Type of Relapse 
This subsection explained the problem characterisation of this study. The subsequent 
subsection, 3.3.3, covers the modelling strategy for relapsing events. 
3.3.3 Multistate Analysis and Back Transitions 
Multistate models can consider back transitions (relapses) to previously occupied states 
(Andersen & Keiding, 2002). If a process is assumed to be present in a particular state 𝐸1 , 
the return of the process to 𝐸1  may be classified as a recurrent event. Figure 10 illustrates 
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a simplified Markov Chain transition diagram with back transitions for an OSA multistate 
model. 
 

Figure 10. Markov Chain Diagram to Model the Relapsing Events in OSA 
The graphical representation of a multistate model consists of nodes and arrows. The nodes 
denote the states, and the arrows denote the transitions and describe the disease pathway. 
Every node between two states represents a dichotomous event that describes the transition 
from one state to another. In a multistate setting, individuals can start from different initial 
states and move forward through a sequence of states. Transition probabilities or transition 
intensities describe the transitions from one state to another. (Hougaard, 1999) 
3.3.4 Markov Chain Models 
Multistate models often rely on the Markov property, which refers to the memoryless 
property of a stochastic process (e.g., Aalen et al., 2008, p.463). The memoryless property 
indicates that the next state of a Markov model depends on the most recent point in the 
trajectory, and not on the history of the process (Aalen et al., 2008, p.463). A random 
variable 𝜏  has the memoryless property if for all 𝑡 ,  ℎ ≥ 0  it satisfies the following 
condition: 

 
𝑃( 𝜏 > 𝑡 + ℎ|𝜏 > 𝑡 ) = 𝑃( 𝜏 > ℎ) (5) 

  
Where the probability of surviving for time ℎ given, we have survived to time 
𝑡 is the same as the (unconditional) probability of surviving for time ℎ.  
 

SevereOSAModerateOSA

Mild OSA No OSA
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Two major types of multistate models are present in literature: discrete-time Markov chain 
processes and continuous-time Markov chain processes (Wan et al., 2016; Geweke et al., 
1986; Aziz et al., 1996). Both techniques are related and can be applied to model state 
transitions (Aalen et al., 2008, pp.463-465). However, the assumptions behind these 
techniques differ and might generate different results (Wan et al., 2016). Discrete-time 
multistate models assume evenly spaced data (Wan et al., 2016). Nevertheless, EHR 
observations are often inconsistent since longitudinal data are subject to irregular 
observations (Aalen et al., 2008, p.17). Therefore, this study employs a continuous-time 
multistate model for unevenly spaced measurements. Furthermore, Markov models can be 
either time-homogeneous or time-inhomogeneous (Aalen et al., 2008, p.465). Time-
homogeneity indicates that the transition probabilities are independent of time (Aalen et 
al., 2008, p.463). In non-homogeneous chains, transition probabilities often vary across 
time (Aalen & Johansen, 1978).         
 In this study, we propose a time-inhomogeneous continuous-time Markov model to 
account for the changes in transition probabilities as subjects age. Therefore, we denote an 
inhomogeneous continuous-time Markov process X has transition probabilities that depend 
on the start and end time of the transition period in the following manner: 

 
3.3.5 Obstructive Sleep Apnoea Model 
Formally, a Markov chain is specified by the following components: 

(1) a set of N states, 
(2) a transition probability matrix  
(3) initial probability distribution over states. 

 

𝑃𝑥𝑦(𝑠, 𝑡) = 𝑃(𝑋𝑡 = 𝑦| 𝑋𝑠 =  𝑥)  = 𝑃( 𝑋𝑡 = 𝑦 | 𝑋𝑠 =  𝑥, 𝑃𝑎𝑠𝑡 ), 𝑠 ≤ 𝑡. (6) 
 
The underlying Markov process is time-inhomogeneous, as the transition 
probabilities depend on the actual time interval [𝑠, 𝑡]. However, the Markov 
chain still has the Markov property that conditions on the past state y, given the 
present is state x. (Beyersmann et al., 2011, p.30) 
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In this study, with K states of disease severity, the underlying process is defined as 
𝑋(𝑡) 𝜀 {1,2, . . . , K}, 𝑡 ≥ 0. Where 𝑋(𝑡) denotes the occupied severity state at time t. If a 
patient is observed at times T = (𝑡0, 𝑡1, . . . , 𝑡𝑚 ), then we can define X = (𝑋0, 𝑋1, . . . , 𝑋𝑚 ) 
and the respective occupied severity states are denoted as follows: 𝑋𝑙  =  𝑋(𝑡𝑙), 𝑙 =

 1,2, … , 𝑚.  Consider the following transition diagram for a four-state Markov process: 
 

Figure 11. Transition Diagram of the Relapsing-remitting Process for OSA 
The Markov chain behaves according to the values of a transition matrix. These values 
specify the probabilities of the transitions between different states (Aalen & Johansen, 
1978). The following matrix may then represent the Markov chain from Figure 11: 

𝑄 = [

𝑞11 𝑞12 0 0
𝑞21 𝑞22 𝑞23 0
0 𝑞32 𝑞33 𝑞34

0 0 𝑞43 𝑞44

] (7) 

Where  𝑞11, 𝑞12 𝑞21, 𝑞22, 𝑞23, 𝑞32, 𝑞33, 𝑞34, 𝑞43, 𝑞44 are all transition rates in a Q-matrix  
 
The transition intensity matrix describes the Markov chain and the directions of the 
transitions between health states. The elements of one row represent the probabilities of 
transitioning from a single state to any of the other states or staying in the same state. The 
following subsection, 3.3.6, explains the Aalen-Johansen estimator applied for modelling 
the transition probabilities. 
3.3.6 Aalen-Johansen Estimator to Compute the Risk of Relapse 
This study employs the Aalen-Johansen estimator to model the empirical transition matrix 
and compute the transition probabilities (Aalen & Johansen, 1978). The Aalen-Johansen 
estimator is suitable for continuous-time inhomogeneous Markov multistate models for 
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left-truncated and right-censored data (Aalen & Johansen, 1978). The model is derived 
from a Nelson-Aalen estimator of integrated transition hazards (Aalen & Johansen, 1978). 
The Aalen-Johansen estimator fits on the residuals of each transition time and builds on the 
assumption that the data are Markovian (Meira-Machado, 2006). Nevertheless, the Markov 
property might not be fulfilled for real data, and thus it needs to be demonstrated with 
statistical testing (Jackson, 2011). The Aalen-Johansen estimator employs a plug-in 
estimate to estimate transition probabilities. Therefore, the transition matrix 𝑃(𝑠, 𝑡)  is 
estimated with the Aalen-Johansen estimator  �̂�(𝑠, 𝑡): 
 

 
The Aalen-Johansen estimator, also known as the empirical transition matrix, is a finite 
matrix product over all event times u in (s, t] and matrices 𝐼 + Δ�̂�(u) (Beyersmann et al., 
2011, p.33). In clinical studies, individuals might leave the study before the study 
terminates. Therefore, we cannot observe the actual time a study subject leaves, but a 
‘censoring time’ instead (Kleinbaum & Klein, 2008, p.5). In this study, patients are 

assumed to be right-censored and followed until their last relapse. Nevertheless, for the 
analysis to be valid, censoring times must be independent of the times at which an event 
occurs (Aalen et al., 2008, p.58). Independent censoring essentially means that within any 
sample of interest, censored patients should represent all the individuals that remained at 
risk in the sample (Aalen et al., 2008, p.58). Furthermore, both the Aalen-Johansen 
estimator and the Nelson-Aalen estimator assume independent censoring (Aalen et al., 
2008, p. 60). this study tests independent censoring via visual assessment. As noted in 
subsection 2.3.4, left-truncation, also known as late entrance, happens when individuals 
enter the study after time origin t=0 (e.g., Borgan, 2014). The following subsection, 3.3.7, 
covers the theory behind the Nelson-Aalen Estimator for survival functions. 

�̂�(𝑠, 𝑡) =  ∏ (Ι

𝑠<𝑢≤𝑡

+ Δ�̂�(u)) (8) 
Where:  
I is the identity matrix, 
�̂� is the matrix from the Nelson-Aalen estimator 
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3.3.7 Nelson-Aalen Estimator to Estimate Cumulative Relapse Recurrence 
The Nelson-Aalen estimator is a non-parametric survival regression model employed to 
analyse recurrent events (Aalen et al., 2008, p.71). The Nelson-Aalen estimator can 
consider any Markov process with a finite number of states to model a subject’s life history 

(Borgan, 1997). The method measures the risk of failure over time (Klein, 1991). The risk 
of failure is the probability of a subject experiencing an event of interest, such as relapse 
(Klein, 1991). Furthermore, recurring events of the same type might be considered for each 
study subject (Borgan, 1997). Thus, the estimator estimates the cumulative number of 
expected events within a certain period (Borgan, 1997). Non-parametric methods are 
distribution-free, meaning they do not have assumptions about underlying distributions of 
the survival times (Györfi et al., 2002). The Nelson-Aalen estimator �̂�𝑁𝐴(𝑡) applies a 
hazard function to interpret the cumulative risk of failure (Borgan, 1997). The estimator is 
formulated as follows: 

 
The Nelson-Aalen estimator is a right-continuous step function with increments 𝑑𝑗/𝑛𝑗  at 
failure times (Aalen et al., 2008, p.72). The numerator represents the increments in a 
transition-specific counting process (Beyersmann et al., 2011, p.22). The denominator 
shows all patients who entered the specific state x before time j and are still present in state 
x again or censored (Beyersmann et al., 2011, p.22). The variance of the Nelson-Aalen 
estimator is formulated as follows: 

 
The numerator represents the number of observed transitions at time j, and the 
denominator includes the number of patients at risk in state x prior to time j (Aalen et al., 
2008, p.72). A confidence interval (CI) yields the probability that an interval produced by 

�̂�𝑁𝐴(𝑡) = ∑
𝑑𝑗

n𝑗
𝑇(𝑗)≤𝑡  , (9) 

Where  
𝑑𝑗 is the number of observed relapses at time j  
n𝑗 is the number of individuals at risk just prior to time j 

 

𝜎2̂(𝑡) = ∑
(𝑛𝑗−𝑑𝑗)𝑑𝑗

(𝑛𝑗−1)𝑛𝑗
2𝑇(𝑗)≤𝑡  . (10) 
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the model includes the actual value of the estimator (e.g., Beyersmann et al., 2011, p.34). 
Variance can be applied to construct an approximately 95% CI in the following manner: 

 
Where 1.96 represents the 0.975 quantiles of the standard normal distribution.   
3.3.8 Hypothesis Testing: Differences Between Treatment Arms 
Hypothesis testing is a statistical inference method that tests whether the results of an 
experiment are statistically significant (e.g., Braumoeller, 2004). Hypothesis testing 
consists of two statistical hypotheses: (1) the null hypothesis and (2) the alternative 
hypothesis. The null hypothesis, H0 is the one being tested, while the alternative 
hypothesis, HA is the suspected outcome. Hypothesis testing is subject to two types of 
errors. We can either reject H0 when H0 is true, leading to a false positive (type-I error) or 
reject H1 when H1 is true and generate a false negative (type-II error) (Braumoeller, 2004). 

The log-rank test serves time-to-event studies to test the null hypothesis of no 
difference between study subgroups (e.g., Yang & Prentice, 2010). More precisely, the 
log-rank test assesses whether the time until relapse differs significantly from one 
treatment arm to another (Yang & Prentice, 2010). Consequently, it compares the 
distribution curves of the sample subgroups, as similarity in distribution curves implies 
similarity in event rates (Lakatos, 1988). Furthermore, the log-rank test can handle well 
right-censored data, which makes it a suitable approach for this study (Zhao, 2004). This 
study examines the differences between four treatment subsamples and applies the log-
rank test to compare the treatment arms with one another. For analysing the distribution 
curves of four subsamples, it is necessary to apply a generalisation of the log-rank test to 
account for more than two groups (Bland & Altman, 2004). Therefore, we propose the 
following hypotheses for the log-rank test: 

 
H0: There are no statistical differences between the four treatment arms. 

HA: There are statistical differences between the four treatment arms. 
 
If the p-value of the test is less than the predetermined significance level of 5%, then we 
can reject the null hypothesis. Consequently, there is sufficient evidence to conclude that 

�̂�𝑁𝐴(𝑡) ± �̂�(𝑡) ∙ 1.96. (11) 
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the groups differ in time-to-event (until relapse). The log-rank statistic is approximately 
distributed as a chi-square statistic and formulated as follows: 
 

 
Furthermore, the log-rank test assumes similar assumptions as the Kaplan Meier survival 
curve (Bland & Altman, 2004). These assumptions include that the censoring patterns must 
be similar for all treatment arms, and the proportional hazards (PH) assumption must be 
satisfied (Bland & Altman, 2004). However, this study does not assess the PH assumption, 
as the log-rank test is still statistically valid under non-PH (Lin et al., 2020). Although the 
log-rank test might suffer from substantial power loss due to the unmet assumption (Lin et 
al., 2020).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∑
(∑ O𝑗𝑡− ∑ 𝐸𝑗𝑡)

2

∑ 𝐸𝑗𝑡
. 

Where  
∑ O𝑗𝑡 is the sum of the observed number of events (O) in the jth treatment arm 
over time, t (e.g., j = 1,2)  
∑ 𝐸𝑗𝑡 represent the sum of the expected number of events (E) in the jth 
treatment arm over time, t. 

(12) 
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4 Data 
This section describes the data in this study, along with preparatory measures. Section 4.1 
entails an overview of the database, and section 4.2 explains the data architecture. Sections 
4.3 and 4.4 present essential model variables and the treatment identification criteria. 
Section 4.5 describes the sample selection procedure, and section 4.6 outlines the 
necessary pre-processing steps. Finally, section 4.7 presents the exploratory analysis. 
4.1 Description of Data 
The health data acquired for this study was a fully anonymised data set obtained from 
Auria Biobank (2019). Auria Biobank operates together with Turku University Hospital to 
collect biological samples from patient visits for research initiatives. The data were 
composed of patient information collected during individual medical care visits. Overall, 
the database contained the pseudonymised EHRs of approximately 24 700 unique patients 
tracked between 2003 and 2019. The patient cohort consisted of a heterogenous 
population, and all the patients had been diagnosed with sleep apnoea (ICD code G47.3, 
including both OSA and CSA patients). Table 5 describes the PostgreSQL 
(www.postgresql.org) database tables utilised for this thesis: 
Table 5: PostgreSQL Tables Utilised for this Thesis 
Table name Table description Distinct 

patients 
Distinct 
records 

Customers Records with descriptive patient information such as gender, birthdate, and death date.  24 669 
 

24 749 

Features Records with timestamped biomarker values such as blood pressure, AHI, computed BMI and SaO2%, among others.  21 786 1 651 360 

Visits Records about visits to specialists, including time stamps, diagnosis codes, visit specifications and descriptions.  24 375 2 285 851 

Procedures Records from patient procedures such as surgeries, X-ray screenings and other physical examinations.  24 475 957 248 

Resmed Records collected from PAP machines. The table contains session times, device types, dates, and clinical metrics such as mask leakage and AHI values.  
7 649 617 844 
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4.2 Data Architecture and Tools 
The raw patient data were stored in tables inside a PostgreSQL database. The data were 
accessed and explored with the help of SQL (Structured Query Language) queries. Data 
analysis tasks, such as severity classification and treatment pre-processing, required a 
connection between the PostgreSQL database and the programming applications Python 
(www.python.org) and R (www.R-studio.org). Figure 12 illustrates this process: 

 
Figure 12. Data Architecture 
After acquiring all the necessary information for modelling, the newly processed tables 
were inserted back into the PostgreSQL database as tables under a new section created for 
this project. Finally, treatment analysis was completed in the R programming application, 
so a connection between the new tables and R was established to run the final models. 
4.3 Model Variables  
This section explains the variables considered in this study. First, the section introduces the 
dependent variable (AHI) and continues to explain the explanatory biomarker variables. 
This study defined the AHI-derived severity variable according to the prevalent severity 
classification thresholds in the Finnish Current Care Guidelines (2022). AHI was 
considered an ordinal variable with four severity levels, and the exact severity thresholds 
are described in Table 6. 
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Table 6: AHI Thresholds for the Severity Variable 
Severity level Dependent variable AHI 

No OSA  AHI < 5 
Mild OSA 

Moderate OSA 
Severe OSA 

5  ≤ AHI < 16   
16 ≤ AHI ≤  30   

AHI > 30 
 
Previous studies have applied different derivations to create an OSA severity variable, both 
including and excluding SaO2% values (Kainulainen et al., 2019; Myllymaa et al., 2015). 
Nonetheless, the severity classification phase of this study utilised only AHI as a response 
variable and biomarker values such as SaO2% and BMI as explanatory variables. Table 7 
presents all the biomarker variables and their descriptions, data types and inclusion ranges. 
Table 7: Variable Descriptions and Inclusion Ranges 

 Variable  Variable description  Type Inclusion range 
AHI The Apnoea Hypopnoea Index (AHI) refers to the number of apnoeas or hypopnoeas per hour of sleep (Duodecim, 2022). The hourly AHI values are averaged per night.  

Numerical 0–120 

ODI The Oxygen Desaturation Index (ODI) measures the number of desaturation events per hour. A desaturation event is described as a drop of either 4% (ODI4) or 10% (ODI10) below baseline levels. (Iber et al., 2007) 

Numerical 0–130 

Age Age at diagnosis. Numerical 18–101 
BMI The Body Mass Index (BMI) measures the weight of an individual in kilograms divided by the square of height in meters. 

Numerical 10–80 

Diastolic BP Diastolic Blood Pressure is the pressure in the arteries when the heart rests between beats. Numerical 30–190 
Systolic BP Systolic Blood Pressure measures the pressure the blood exerts against the artery walls as the heart beats. Numerical 20–250 
Glu The Blood Glucose Level (Glu) measures the glucose concentration in the blood.  Numerical 0–25 
SaO2 Arterial Oxygen saturation (SaO2) refers to the percentage of oxygen in the blood.  Numerical 60–100 
Min SaO2 The minimum SaO2 value per night. Numerical 60–100 
Deps Patient values for Depressiveness questionnaire.  Numerical 0–30 
ESS Patient values for ESS questionnaire. Numerical 0–25 
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Inclusion ranges were discussed with healthcare professionals and adjusted to contain 
realistic values. Additionally, the Isolation Forest algorithm was applied as a more 
advanced outlier detection method.  
4.4 Treatment Identifications  
Treatment identifications were conducted manually from the database tables. All patients 
in the data were diagnosed with OSA; therefore, any treatment suitable for OSA was 
considered as such. Table 8 conveys an overview of the treatment variables in this study. 
Table 8: Treatment Variables and Identification Criteria 

 

Treatment  Identification criteria Identified patients 
CPAP Patient records with information on CPAP devices. A total of 10 different device types were identified.   13 882, (11 874*) 

Upper airway surgery Patient records with visit type specifications such as 
“uvulopalatopharyngoplasty”, “tonsillectomy”, “adenoidectomy”, and other upper airway surgery specifications. 

1 921, (1 674*) 

OA At least one visit to an oral specialist with the following visit type specification: “oral appliance”, “mouthguard”, or “dental appliance.” 
1 002, (1 002*) 

Bariatric Surgery Patient records with specialist visits to areas of bariatric surgery and a recorded BMI ≥ 35 (The BMI threshold is aligned with the Finnish Current Care Guidelines, 2022). The three identified bariatric surgery types were 1) laparoscopic adjustable gastric banding, 2) sleeve gastrectomy, and 3) Roux-en-Y gastric bypass procedure.  

704, (629*) 

*Count of patients assigned to each final treatment arm after handling patients with multilevel treatment plans. 

In addition to the four official OSA treatment methods, other treatment methods were 
present in the data. Nevertheless, this study only considers the four most official OSA 
treatment methods. Furthermore, some unique patients were assigned to two or more 
treatment methods during the follow-up. Unique patients treated with multiple treatments 
posed a challenge in the research design. For example, if we evaluate the efficiency of 
CPAP, but a portion of the patients treated with CPAP has been treated with upper airway 
surgery afterwards, connecting a patient’s relapse solely to upper airway surgery or CPAP 
is ambiguous. There are two established approaches for reducing the bias that treatment 



Data 37  
 

 

reallocation causes in clinical trials (Gupta et al., 2011). (1) An intention-to-treat approach 
consists of analysing patients according to the treatment prescription that they have been 
assigned at the beginning of the treatment plan. Although an intention-to-treat approach is 
often considered conservative, the approach was unfeasible for this study due to a lack of 
data on treatment intention. (2) A per-protocol approach considers only the received 
treatment instead of the randomised treatment. This study followed the per-protocol 
approach, considered only the first treatment received and excluded the patients at the 
point of switching treatments. Figure 13 explains the per-protocol approach relevant to this 
thesis. 

 
Figure 13. Example of the Per-protocol Approach in a Patient’s Timeline  
The per-protocol approach was applied to all patients treated with multilevel treatment 
plans. Thus, only the first treatment method was included per patient. The following 
section, 4.5, explains the reasoning behind the sample selection process. 
4.5 The Sample Selection Process 
This section describes the sample selection process of this study. Firstly, patients under 18 
years old were excluded from the sample population. Age was calculated as age at 
diagnosis. Furthermore, patients with signs of central sleep apnoea (CSA) were removed 
from the study sample. CSA patients were identified based on specialist recordings and the 
treatment machine type. The CSA treatment machine type is the adaptive servo-ventilation 
(ASV), a non-invasive ventilatory treatment option (Resmed.com, 2022). Additionally, 
patients with no treatment data were automatically excluded from the study scope. 
Furthermore, only patients with two state transitions or more were included. Hence, some 
patients with only one available record were automatically considered outside of the study 
scope. Table 9 presents the sample selection process step by step: 

 

A single patient’s timeline CPAP Upper airway surgery

2006 2012
CPAP Treatment arm

Patient eliminated from the study 

sample.
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Table 9: The Sample Selection Process 
Exclusion criteria Eliminated Patient sample after selection 
(All patients at the beginning of the study) - (24 669) 
Remove individuals aged under 18 2 979 21 690 
Remove CSA suspects 382 21 308 
Remove patients with not enough observations 5 487 15 821 
Remove individuals with no treatment data 642 15 179 
Total Sample 15 179 

  
After removing all the patients considered beyond the scope of this study, the final sample 
was composed of 15 179 study subjects. The following section, 4.6, covers all data pre-
processing steps relevant to this study. 
4.6 Data Pre-processing 
This part explains the data pre-processing steps relevant to this thesis. Subsection 4.6.1 
covers time-series irregularities, and subsection 4.6.2 concerns the outlier detection 
methods. Subsection 4.6.3 explains the strategy for missing value imputation and 
subsection 4.6.4 presents the multicollinearity tests. 
4.6.1 Irregular Time-series Data 
Medical care visits are often irregular, which generates irregularity in the collected 
biomarkers. For patients with more healthcare visits, variables were followed more 
frequently than for patients not appointed to visits as repeatedly. Furthermore, a high 
amount of healthcare visits per patient could implicate a higher degree of severity, which 
could cause data to be biased towards the more severe cases of OSA. To limit the amount 
of physiological data, such as blood pressure measurements, each patient was left with 
only one recorded observation for each biomarker variable per month. The first approach 
included only the last monthly observation to reflect the most recent monthly values. 
However, further data analysis showed high variability between values collected at the 
beginning of the month compared to those collected at the end of the month. To stabilise 
this variation, monthly averages were utilised for biomarker observations. 
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4.6.2 Outlier Detection 
Outlier detection is essential for flagging implausible EHRs that can influence the 
reliability of the study results. Hence, one of the goals of data pre-processing was to 
modify data accordingly. This study handled anomaly detection with the Isolation Forest 
algorithm together with predefined inclusion ranges from medical practitioners (presented 
in Table 7). Figure 14 exemplifies the outlier detection procedure. 

  
a) Variable glu before outlier detection b) Variable glu after outlier detection 

Figure 14. An Example of the Outlier Detection Procedure. (A boxplot with lower 25th and upper 75th   
percentiles as box boundaries, the line inside the box is the median, lower and upper error lines are 10th and 
90th percentiles, and filled circles indicate data outside the 10th and 90th percentiles.) 

4.6.3 Data Missingness 
Missing data refers to any observation that would be intentional to have but is not recorded 
for any reason. The observations in the dataset were nested within participants, so it was 
necessary to utilise a missing data imputation method suitable for such a multilevel 
structure (Twisk, 2013, p.215). After investigating the type of missingness, we considered 
the data to be consistent with MAR (see definition in Table 4). Furthermore, under the 
conditions of MAR and MCAR, the multiple imputation technique should result in 
unbiased estimates (Sainani, 2015). The multiple imputation technique calculates several 
imputation values for each missing value, and the final set of imputed values is then 
applied to form a completed dataset (Twisk, 2013, p.223). We applied the ‘MICE’ 

(Multiple Imputation by Chained Equations) package that had several options to deal with 
correlated longitudinal data. In this study, the missing values were imputed with a two-
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level predictive mean matching (PMM) technique that handles well non-normally 
distributed variables (White et al., 2011). Furthermore, the MICE model accounted for the 
multilevel nature of the data. The patient ID variable represented the class variable for 
patient clusters. The final imputation method selection was based on model performance: 
exploring other alternative imputation methods included the implementation of algorithms 
such as missForest, K-nearest neighbour and the last observation carried forward. The 
MICE imputation method yielded the highest accuracy scores in preliminary logistic 
regression trials. Thus, we selected the MICE imputation method with the PMM technique 
as our missing data imputation method. 
4.6.4 Multicollinearity 
Finally, it was essential to test for multicollinearity to investigate possible data quality 
issues regarding correlated independent variables. Therefore, multicollinearity was tested 
by analysing a correlation matrix (Table 10)  and the Variance Inflation Factors (VIF). 
Both techniques were implemented with methods suitable for repeated measures data.  
Table 10: Correlations Between Variables 

 
There were no strong correlations between variables. Furthermore, all VIF values were less 
than 2, indicating that the VIF values in this study do not indicate multicollinearity 
problems. Generally, a VIF value greater than 5 indicates multicollinearity (Gujarati & 
Porter, 2009, p. 340; Alin, 2010). Based on these results, the data in this study does not 

 

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
(1) AHI 1            
(2) BP diast -0.014 1           
(3) BP syst 0.0066 -0.45 1          
(4) DEPS 0.0057 0.0017 0.009 1         
(5) ESS 0.0017 -0.011 0.017 -0.080 1        
(6) ODI10 0.00073 -0.029 0.0145 -0.017 0.028 1       
(7) ODI4 0.070 0.0018 0.030 -0.054 0.018 0.070 1      
(8) SaO2% -0.10 -0.032 0.027 0.17 0.023 0.020 0.094 1     
(9)SaO2%min   -0.12 -0.095 -0.010 -0.016 -0.10 0.024 -0.22 -0.14 1    
(10) BMI 0.012 -0.027 -0.034 -0.017 0.27 0.060 0.094 0.026 0.0064 1   
(11) GLU 0.0026 0.028 -0.028 0.017 0.013 0.10 0.0132 0.0021 0.0070 0.010 1  
(12) Age 0.022 0.11 -0.13 0.0072 0.056 -0.12 -0.010 0.042 0.018 0.16 0.011 1 
 
 

      

0.0090 
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suffer from multicollinearity problems. The following section, 4.7, presents a descriptive 
analysis of the data. 
4.7 Descriptive Analysis 
This section entails the exploratory analysis. First, subsection 4.7.1 presents an overview 
of the study sample. Then, subsection 4.7.2 explores differences between the severity 
levels, and subsection 4.7.3 covers the treatment methods in this study. Finally, subsection 
4.7.4 analyses the development of relapses. 
4.7.1 Overview of the Study Sample 
The final sample included observations from 15 179 diagnosed OSA patients. These 
patients were treated and observed between the years 2003 - 2019. The sample of this 
study had a twofold OSA prevalence in males (66.35%) compared to females (33.65%). 
This ratio is consistent with the information on the Finnish Current Care Guidelines 
(2021), which states that OSA is twice as common in males compared to females. 
Furthermore, the mean age at diagnosis of the study sample was approximately 57. The 
mean age coincides with previous research, which has demonstrated an OSA occurrence 
peak in individuals between 55-59 years of age (Huang et al., 2008; May et al., 2018; 
Costa et al., 2019). Figure 15 depicts the distribution of age between male and female OSA 
patients. 
 
 
 
 
 
 
 
 
 
Figure 15. Distribution of Age at Diagnosis by Gender 
The distribution of male patients is skewed towards the left, while the distribution of 
female patients is approximately normal. Left-skewed distribution indicates that a higher 
volume of male patients was diagnosed younger, while generations over 70 years did not 
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show significant gender differences in the age of diagnosis. According to the National 
Institute of Health (2022), the menopausal transition starts in women aged 45 to 55. 
Menopause has been studied as an independent risk factor for developing OSA (Young et 
al., 2003; Lee et al., 2019). Therefore, menopause could explain the rapid growth of 
diagnosed female patients aged between 45 and 55. 

The mean BMI value in this study was 33.52 kg/m2, categorised as overweight in 
the BMI classification scale. Conversely, according to the publication from Abarca-Gómez 
et al. (2017), the age-standardised BMI among the Finnish population was approximately 
26.5 kg/m2 in 2017. Therefore, the sample of this study coincides with previous evidence 
that suggests a strong association between obesity and OSA (Newman et al., 2005; Berger 
et al., 2009; Schwartz et al., 2008). The following subsection, 4.7.2, explores the study 
sample from the perspective of disease severity. 
4.7.2 The Characteristics of The Severity Groups 
The severity groups were derived from the AHI thresholds stated in the Finnish Current 
Care Guidelines (2022). Table 11 describes the characteristics of each severity level. 
Table 11: Descriptive Statistics of the Sample Population by Severity Levels 

 SEVERITY STATES 
  No OSA         Mild OSA  Moderate OSA Severe OSA 
Variables Mean Sd Mean Sd Mean Sd Mean Sd 
AHI 3.12 1.25 9.70 2.99 20.9 3.83 35.2 4.35 Glu 8.25 2.76 8.21 2.74 8.24 2.72 8.10 2.69 
ESS 6.16 4.35 6.23 4.36 6.50 4.53 7.05 4.64 
DEPS 6.39 6.25 6.45 6.29 6.52 6.28 6.67 6.34 
ODI10 5.35 11.9 5.60 12.4 6.40 12.99 11.5 18.3 
ODI4 11.6 13.6 12.3 14.2 19.7 19.9 42.5 30.2 
Age 57.5 12.6 57.8 12.5 57.9 12.8 53.6 13.3 
BMI 33.2 7.4 33.1 7.29 33.2 7.34 34.1 8.15 
SaO2% 94.5 3.3 94.4 3.29 93.8 3.56 92.3 4.33 
SaO2% min 80.4 7.4 79.9 8.59 78.9 9.28 74.4 10.82 
Systolic BP 139 20.1 139 20.1 140 20.1 143 20.1 
Diastolic BP 78.8 12.6 78.9 12.6 79.9 12.6 81.9 13.5 
Data from 84 311 observations from 15 179 study subjects 

 

There were apparent differences between biomarker values at distinct severity states. 
Studies have often identified direct associations between AHI-calculated OSA severity and 
SaO2% measurements (Fernandes, 2021; Almazaydeh, 2012). As expected, severe OSA 
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records show lower SaO2% (and SaO2% min) values than milder patient records. For 
example, the non-OSA group (mean SaO2: 94.49 %) had similar values to healthy adults, 
whose SaO2 values are approximately 95% (Hafen et al., 2022). In addition to AHI and 
SaO2%, ESS is often considered when diagnosing patient severity. The data demonstrated 
that ESS values increased in proportion to severity categories. Thus, low ESS scores were 
more common in the ‘no OSA’ and the ‘mild OSA’ states than in the higher severity 
levels. The following subsection, 4.7.3, explains the results from treatment identifications. 
4.7.3 Treatment Types 
The final sample included 15 179 study subjects that had been prescribed to a total of 
17 509 treatment methods. Individuals treated with two or more treatment methods were 
assigned to a treatment arm according to the per-protocol approach. The per-protocol 
approach only considers the first assigned treatment per patient. Thus, patients with 
multiple treatments were excluded from the study after switching treatments. Figure 16 
summarises the final treatment division relevant to modelling. 

 
Figure 16. Treatment Distribution Among Patient Sample 
CPAP was the most widely prescribed treatment method in the study sample (11 874 
prescriptions, 80% of the sample). Evidence-based medical research often supports the 
efficaciousness of CPAP as the first treatment method (Rotenberg et al., 2016). As CPAP 
is frequently the first treatment a patient receives, it is often present in different treatment 
combinations (Bachour & Bäck, 2015). Analysis showed that the prescription of CPAP 
had increased the most over time, while other treatment methods had only moderate 
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Upper airway surgery
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Bariatric surgery
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changes. Furthermore, treatment pre-processing showed that almost 2 000 individual 
patients had undergone some nasal intervention, such as the elimination of nasal polyps. 
Approximately 75% of the patients with a nasal intervention had also been prescribed to 
another treatment, such as CPAP or upper airway surgery. This suggests that various 
patients in the study sample were assigned to a multilevel treatment plan. Nevertheless, 
this study does not consider the effects that multilevel treatment could have on relapsing 
patients.  
4.7.4 Patient Relapses 
After transforming the data into a time-to-event format, the data set was composed of one 
row per patient transition. There was a total of 84 311 transitions that can be divided into 
three transition types: (1) no transition (40 421 observations), (2) transition to a healthier 
state (22 455 observations) and (3) transition to a less healthy state (21 435 observations). 
Thus, there was a total of 21 435 relapses in the data sample. Although not all 21 435 
observations were accounted for modelling as the model only considers consecutive 
relapses. This study focuses on treatment effects; therefore, it was of particular interest to 
understand more details on the relapsing process regarding each treatment arm. Figure 17 
depicts the yearly relapses by treatment category.  

 
Figure 17. Total Yearly Relapses in Each Treatment Arm 
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Figure 17 demonstrates a pattern of growth and decay in the relapses of patients treated 
with CPAP. Other treatment arms experienced moderate yearly changes. Further analysis 
showed that the prescriptions of CPAP had increased simultaneously. Thus, there could be 
a connection between treatment effectiveness in patients treated with CPAP and a 
decreasing rate of relapses. This exploratory section investigated the data set from different 
perspectives relevant to this study. The subsequent chapter 5 presents the empirical 
findings and results of the study. 
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5 Empirical Findings and Results 
This chapter presents the results of this study. Section 5.1 covers the results of the severity 
classification analysis, and section 5.2 explains the results of the treatment analysis.  
5.1 Severity Classification 
This section presents the results of severity classification. First, the effects of covariates on 
OSA severity were examined with a CLMM ordinal logistic regression procedure 
(equation 2). The random effects structure of the model accommodates the repeated 
measures format of the data. Table 12 presents the results for the CLMM model. 
Table 12: Results from CLMM  on Associations between Patient Biomarkers and OSA severity 
   PARAMETER ESTIMATES  
 Covariates  Exp.  Coefficient  95% CI  p-value  
 BP diastolic  + 0.038 0.033, 0.096  0.33  
 BP systolic  + 0.027 0.028, 0.10  0.42  
 SaO2% min  -  - 0.39 - 0.45, - 0.12  < 0.01 **  
 SaO2%          -  - 0.16 - 0.18, - 0.025  < 0.001 ***  
 DEPS  + 0.082 - 0.014, 0.10  0.51  
 ESS  + 0.092 0.050, 0.11   0.094  
 ODI10  + 0.12 0.11, 0.14  < 0.01 **  
 ODI4  + 0.40 0.33, 0.46  < 0.001 ***  
 Glu  + 0.0011 - 0.07, 0.05  0.71  
 BMI   +  0.025 - 0.029, 0.030  0.52  
 Age  + 0.032 0.028, 0.045  0.33  
Note: Asterisks represent significance levels: *p < 0.05, **p < 0.01, ***p < 0.001. Variables are 
defined in Table 7.  

 

The results demonstrated that from eleven (11) variables, only four (4) were statistically 
significant. SaO2%, SaO2% min, ODI4 and ODI10 were significant predictors of OSA 
severity. The SaO2% and SaO2% min coefficients were negative, indicating that higher 
oxygen saturation is associated with lower OSA severity. Moreover, one unit increase in 
SaO2% was associated with a 0.78 decrease in the expected severity value on the odds 
scale, given that all other variables are held constant. Conversely, ODI predictors show 
positive coefficients, which indicates that an increase in ODI was associated with an 
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increase in OSA severity. Based on the results of this study, one unit increase in ODI4 is 
associated with a 1.49 increase in severity on the odds scale. To summarise, the results 
demonstrate that a drop in oxygen saturation is associated with increased OSA severity. 
5.1.1 Research Hypothesis 1: The Determinants of OSA Severity 
This subsection evaluates the plausibility of the research hypothesis 1 (H1) developed for 
severity classification in section 2.4. This hypothesis aims to validate and support the 
harmonisation of the severity variable.  
 
 H1: There are statistical associations between OSA severity and biomarker variables. 
Specifically, that OSA severity increases in ODI and decreases in SaO2%. 
 
The associations between OSA severity and biomarker variables were analysed with the 
LRT (equation 4). The LRT evaluated how well a model explains an outcome compared to 
a model with fewer predictors. Therefore, we built another ordinal logit model with only 
two covariates (systolic and diastolic blood pressure, as they were statistically non-
significant in the original model). Then, we statistically compared it to the original model 
from Table 12. The LRT resulted in a significant p-value (p<0.001), indicating that the 
original model from Table 12 explains the outcome variable better than the reduced model. 
Therefore, we assume a significant negative association between OSA severity and SaO2% 
(including min SaO2%). Additionally, we assume a significant positive association 
between OSA severity and ODI (including ODI4 & ODI10). However, the model did not 
show any other significant associations between variables. Thus, we conclude that there 
are differences in the OSA severity levels of this study, and covariates related to oxygen 
saturation explain those differences.  
5.1.2 Reliability of the Results: Ordinal Regression  
The association between oxygen saturation and OSA severity seem reliable as it is 
consistent with previous research. This study assessed model residuals by converting the 
ordinal response variable back to a continuous variable and applying a linear mixed-effects 
model residual analysis. The residuals were normally distributed, although slightly skewed 
towards the right. However, the distribution was not radically different from a normal 
distribution. Therefore, the model might not fit perfectly, but it serves the purpose of 
validating the differences between OSA severity levels. Furthermore, multicollinearity 
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analysis did not show significant correlations between variables (subsection 4.6.4), and the 
random effects were normally distributed. The results of the PO assumption test were non-
significant, which concludes that the PO assumption is reasonable; thus, an ordinal 
regression model is valid for this data.  
5.2 Treatment Analysis  
This section presents the results of the treatment analysis. First, subsection 5.2.1 explains 
the results regarding relapse probabilities, and subsection 5.2.2 presents relapse recurrence.  
5.2.1 Relapse Probabilities Measure the Risk of Relapse 
The probabilities of relapse measured treatment inefficiency and were computed with a 
continuous-time inhomogeneous Markov chain procedure via an Aalen-Johansen estimator 
(equation 8). Figure 18 presents the relapse probabilities for each treatment arm. 

 

 

Figure 18. Aalen-Johansen Relapse Probabilities in Each Treatment Arm (95% CI) 
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As noted in the methodology subsection 3.3.2, the model considered three types of 
relapses: (1) relapse from ‘no OSA’ to ‘mild OSA’, (2) relapse from ‘mild OSA’ to 
‘moderate OSA’ and (3) relapse from ‘moderate OSA’ to ‘severe OSA’. The patients were 
followed between the years 2004 and 2019. The y-axes represent the probabilities of 
relapse. The x-axes represent the time in years. The following bullet points explain the 
results of each relapse type. 
• Relapse from ‘no OSA’ to ‘mild OSA’: This relapse category held the highest 

probability values among all treatment arms. The group treated with upper airway 
surgery had the highest average probability of relapse (50%). In comparison, the group 
treated with bariatric surgery had the lowest average relapse probability (49%). The 
probabilities of relapse ranged from 36% to 73%. Moreover, the variance in each 
treatment arm increased as time passed, and the number of subjects in the risk set 
decreased. Especially the variances for the patients treated with OA and bariatric 
surgery were high. Nevertheless, a higher sample size stabilised the variation for 
CPAP. For patients treated with upper airway surgery and OA, the transition 
probabilities decreased towards the end of the observation period. A decrease in 
transition probabilities could indicate that the risk of relapse decreased as time passed. 
Nonetheless, another explanation for decay could be that the set of patients at risk 
became smaller as time passed.  

• Relapse from ‘mild OSA’ to ‘moderate OSA’: The average relapse probability in 
this relapse category was 13% for all treatment arms. The probabilities of relapse 
ranged from 0% to 60%, with increments towards the end of the observation period. 
The group treated with bariatric surgery had the highest average relapse probability 
(22%), while the group treated with CPAP had the lowest average relapse probability 
(12%) within this relapse category. Patients treated with OA and upper airway surgery 
had decreasing probabilities of relapse.  

• Relapse from ‘moderate OSA’ to ‘severe OSA’: The average relapse probability in 
this relapse category was 1.7% for all treatment arms. The yearly values ranged 
between 0% and 6.4%. Patients treated with OA had the highest average probability of 
relapse (3.1%), and those treated with CPAP had the lowest average probability of 
relapse (1.6 %). All groups had a slight increase in this relapse category after year 8.  
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Table 13 shows the numerical values for relapse probabilities, 95% CI levels and the 
number of patients at risk in each relapse type. 
Table 13: Probabilities of Relapse, 95% CIs and Number of Patients at Risk. 

 TREATMENT METHOD  
  CPAP  Upper Airway Surgery  Oral Appliance  Bariatric Surgery 
  Prob CI95% at risk  Prob  CI95% at risk Prob    CI95%        at risk   Prob    CI95% at risk 
2004 1 → 2 40%        37%-41%     2 358 40%       38%-42%        385 40%      37%-45%       200 44%       42%-45%       113 
2006 1 → 2 51%        50%-52%     1 848 48%       45%-52%        280   51%      46%-55%       153 39%       33%-44%       143 
2008 1 → 2 51%        49%-53%     1 865 50%       50%-57%        267 50%      44%-55%       108 50%       44%-56%       154 
2010 1 → 2 52%        46%-56%     1 012 54%       52%-66%        148 53%      43%-63%        30 48%       43%-52%        94 
2012 1 → 2 48%        44%-60%      788 58%       51%-66%         44 52%      35%-68%        15 41%       31%-51%        27 
2014 1 → 2 57%        30%-85%       30 53%       39%-67%         47 53%      35%-69%        10 35%       18%-51%        13 
2016 1 → 2 55%        31%-79%        2 36%        0%-87%           0 44%      29%-67%        5   0%         0%-0%           1 
2018 1 → 2   -   -    - - - -   -               -                   - - - - 

              
2004 2 → 3 0.22%  0.10%-0.20%  3 145 0%          0%-0%         470 0.3%       0%-1.0%       310  0%        0%-0%          143 
2006 2 → 3  11%     9.1%-12%      2 694 11%        9%-13%       390    11%      8.2%-14%       248 13%     9.6%-17%       124 
2008 2 → 3 12%      10%-13%       1 900 10%        8%-13%       352 8.7%     5.5%-12%       145 14%     9.8%-18%       137 
2010 2 → 3 13%      10%-17%       1 578                      10%        8%-14%       230 12%      6.2%-18%        50 13%     6.8%-21%       122    
2012 2 → 3 13%      7.9%-19%       900 11%        7%-15%        82 20%      6.7%-33%        13 10%       3%-21%         28 
2014 2 → 3 22%      6.6%-18%        45 12%        3%-21%        24 19%      7.5%-34%        10 8.7%      5%-20%         12   
2016 2 → 3 13%      0%-46%           20 14%        0%-36%         0 73%     0.52%-0.96%     1 2.3%      0%-30%          1 
2018 2 → 3   - -    - - - - - - - - -   - 

              
2004 3 → 4  0%         0%-0%          1 276  0%         0%-0%         162 0%           0%-0%             81 0%          0%-0%          58 
2006 3 → 4 12%       0%-0.12%      1 000 1.2%      0.10%-2%     150 2.2%      0.45%-4.1%       56 3.8%      1.7%-6%        55 
2008 3 → 4 0.2%      0%-0.53%        541 1.4%      1%-2.2%        91 2%         0.34%-3.6%       45 3%        1.4%-4.6%      32 
2010 3 → 4 1.7%     0.10%-3.9%      217 2.2%       0%-4%          40 1.6%      0.41%-3.2%       36 1.7%      0%-3.3%        43 
2012 3 → 4 1.7%      0.10%-4%         41 2.8%       0%-5%           17 1.7%      0.22%-3.1%       22 4.7%      0%-7.4%        38 
2014 3 → 4 1.7%       0%-4.3%          18 3.6%       0%-8.4%        6 2.4%      0.13%-0.5%       10 6.6%      0%-15%         11 
2016 3 → 4  0%          0%-0%             0  0%         0%-0%           2  0%          0%-6.7%           7 0%         0%-0%            1 
2018 3 → 4   -   -      - - -     - - - - - - - 

              
Prob = Probability of Relapse 
CI95% = 95% Confidence Interval 
at risk = Patients at risk  
 

        

  
‘Patients at risk’ refers to a subset of the sample at each time point, which can increase or 
decrease depending on whether patients enter or leave the study. As shown in the table, 
there is frequently a higher number of patients relapsing from the state ‘moderate’ 
compared to the other states. The following subsection, 5.2.2, covers the results from the 
Nelson-Aalen estimator. 
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5.2.2 Cumulative Relapse Recurrence and Disease Progressiveness 
This subsection explains the results of the Nelson-Aalen estimator that estimates the 
cumulative relapse recurrence (equation 9). The estimator provides the number of times 
relapse could be expected during the observation period. Figure 19 presents the Nelson-
Aalen estimates for the cumulative intensities of relapse in each treatment arm: 

 

 

Figure 19. Nelson-Aalen Estimates for Relapse Types and Treatment Arms (with 95% CI) 
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The y-axes represent the Nelson-Aalen estimates of the cumulative intensities of relapse. 
The x-axes represent the time to occurrence in years. The Nelson-Aalen estimator curve 
demonstrates how the hazard rate changes over time. Thus, the ‘slope’ of the estimated 
curve indicates the relapse behaviour in different treatment arms. Steeper slopes indicate a 
higher risk of relapse. Furthermore, the approximate linearity suggests constant risk. The 
following bullet points compare each treatment method within a relapse type: 

• Cumulative relapse recurrence from ‘no OSA’ to ‘mild OSA’: The patients that 
relapsed from the state ‘no OSA’ (AHI<5) had the highest estimates for relapse 
recurrence in all four treatment arms. High estimates indicate a faster accumulation of 
risk. The hazard rates were similar in all treatment arms, but slight differences were 
apparent: the patients treated with CPAP had a steadily increasing failure rate over the 
observation period. The subsamples treated with OA and upper airway surgery started 
with high estimate rates at the beginning of the observation period, but the rates 
decreased as time passed. A decay in hazard rates indicates that the risk of relapse 
recurrence decreases over the observation period. The patients treated with OA and 
upper airway surgery had similar estimate curves, but those treated with OA had the 
lowest number of cumulative relapses (11.7 relapses). The group treated with bariatric 
surgery had the steepest slope and the highest estimate of cumulative relapses (17 
relapses). Thus, bariatric surgery was the treatment arm that accumulated the most risk 
of relapse during the observation period. 
• Cumulative relapse recurrence from ‘mild OSA’ to ‘moderate OSA’: The 
results from this relapse type indicate that patients at state ‘mild OSA’ experienced 
significantly fewer cumulative relapses than those relapsing from state ‘no OSA’. 
Patients treated with OA and CPAP had the slowest rates of failure; thus, these 
treatment types accumulated the least risk of relapse recurrence in this state. Patients 
treated with CPAP had the lowest estimate of cumulative relapse recurrence (three 
relapses). All treatment arms had increasing failure rates, and the arm treated with 
bariatric surgery reached the highest estimate of cumulative relapse recurrence (five 
relapses). 
• Cumulative relapse recurrence from ‘moderate OSA’ to ‘severe OSA’: 
Overall, the results of this relapse type had the lowest estimates for cumulative relapse 
recurrence. The estimates did not reach a higher value than one during the observation 
period. Estimates below one indicate that the model does not estimate disease 
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recurrence in patients relapsing from ‘moderate’ to ‘severe OSA’. In this category, 
upper airway surgery had the highest rate of failure (0.65 relapses), while OA had the 
lowest (0.16 relapses). 

Table 14 shows the numerical values for Nelson-Aalen estimates, 95% CI levels and the 
number of patients at risk. 
Table 14: Nelson-Aalen Estimates, 95% CIs and Number of Patients at Risk. 

 TREATMENT METHOD  
  CPAP  Upper Airway Surgery  Oral Appliance  Bariatric Surgery 
  NA CI95% at risk  NA CI95% at risk NA   CI95%      at risk        NA           CI95%.       at risk 

2004 1 → 2 0.79        0.76-0.84      2 358     0           0-1.7           385  0              0-0           200    1.3         1.1-1.5         113 
2006 1 → 2  1.5          1.4-1.5        1 848    1.9        1.8-2.1         280   1.6         1.4-1.8        153    3.6         3.3-3.9         143 
2008 1 → 2  2.7          2.6-2.8        1 865    3.6        2.8-4.8         267 3.3         3.2-3.6        108    6.1         5.7-6.5         154 
2010 1 → 2  4.2         4.1-4.3         1 012    4.4        4.1-4.6        148 4.6         6.6-7.2         56    8.6          8-9.2            94 
2012 1 → 2   6           5.9-6.2           788    7.7        7.2-8.3         44 8.7         6.1-7.2         30     11         10-12            27 
2014 1 → 2  10          9.8-12             30    10         9.5-11          47 9.8         8.6-11          10     14         13-15            13 
2016 1 → 2  13          12-14               2    12         11-14            0 11           10-14           5     17         15-20             1 
2018 1 → 2 -  - - -   -    -   -                  -                -     -                 -                   - 

          
2004 2 → 3 0.16      0.14-0.27       3 145   0             0-0              470 0                0-0             310    0.30       0.23-0.41     143 
2006 2 → 3 0.42      0.40-0.44       2 694 0.41     0.35-0.48         390    0.30        0.21-0.55      248    0.89       0.74-1.1       124 
2008 2 → 3 0.71      0.67-0.72       1 900 0.88       0.79-1            352 0.54       0.47-0.76       145     1.5         1.2-1.7        137 
2010 2 → 3 1.1        0.92-1.1         1 578                      0.92       0.67-1            230 0.76       0.50-0.81       50           2         1.8-2.3         122    
2012 2 → 3 1.5        1.5-1.6            900 1.6         8-15.1             82 1.2          1.4-2.2          30                     2.7        2.3-3           28 
2014 2 → 3 2.1        1.9-2.3             45 1.6         2-2.8               24 1.8          1.4-2.7          10      3.1       2.6-3.7         12   
2016 2 → 3 3.1        2.6-3.6             20 3.9        2.3-6.6              0 2.1          1.6-2.6           2      5.0       3.2-5.1          1 
2018 2 → 3 -  -    - - - - - - -      -                  -                 - 

            
2004 3 → 4 0.032    0.021-0.45    1 276   0            0-0               162   0                 0-0              81       0            0-0              58 
2006 3 → 4 0.061   0.052-0.082   1 000 0.03      0.012-0.091    150 0.015       0.010-0.019     56  0.092    0.031-0.24     55 
2008 3 → 4 0.093    0.063-0.12      541 0.06      0.031-0.15       91 0.023       0.012-0.034     45  0.17     0.082-0.37      32 
2010 3 → 4 0.16      0.12-0.20        217 0.06      0.034-0.16       40 00.13       0.065-0.15       36     0.33     0.16-0.66        43 
2012 3 → 4 0.30      0.21-0.41         41 0.40      0.083-2.1         17 00.14       0.063-0.20       22     0.34     0.17-0.66        38 
2014 3 → 4 0.37      0.26-0.54         18 0.43      0.086-2.1          6 00.15       0.071-0.37     10     0.35     0.22-0.67        11 
2016 3 → 4 0.50      0.28-0.87          0 0.65      0.18-2.3            2 00.16       0.093-0.37      7     0.35     0.17-0.66         1 
2018 3 → 4    -  -     - -   - - - - -     -                 -                   - 

            
NA = Nelson-Aalen estimate 
CI95% = Confidence interval of 95% 
at risk = Patients at risk  
 

        

 This concludes the analysis regarding the OSA treatment effect. The following subsection, 
5.2.3, examines the research hypotheses. After that, subsection 5.2.4 discusses the 
reliability of the results. 
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5.2.3 Research Hypothesis 2: Differences in Treatment Outcomes 
This subsection evaluates the plausibility of research hypothesis 2 (H2) developed for 
treatment analysis in section 2.4. Hypothesis H2 demonstrates whether the data shows a 
statistical difference between treatment arms. Thus, the research hypothesis is presented in 
the following way: 

 
 H2: There are statistical differences between the four OSA treatment arms. CPAP is 
expected to have the most substantial effect in decreasing the risk of relapse and relapse 
recurrence in OSA. 
 
We applied a log-rank test to compare the four treatment arms. The result of the log-rank 
test was statistically significant (p<0.001), indicating that we can reject the null hypothesis 
of no statistical difference between the treatment arms. Therefore, there is sufficient 
evidence to conclude that there are significant differences between the four treatment arms. 
Furthermore, we expected CPAP to be the most effective treatment for OSA. Based on the 
results of this study, the relative effectiveness of OSA treatment depends on the severity 
state; thus, CPAP is the most effective intervention for treating mild-to-moderate OSA. 
Therefore, we conclude that there are differences between treatment arms, and CPAP is 
superior to other methods in mild-to-moderate OSA. 
5.2.4 Reliability of the Results: Treatment Effect Analysis 
This subsection explains the factors behind the reliability of the results from treatment 
analysis. There were evident similarities between the results of the Nelson-Aalen estimator 
and the Aalen-Johansen estimator in terms of relapse types. Thus, the results from both 
models support the main finding regarding the higher risk of relapse (or relapse recurrence) 
in milder states. Furthermore, CIs surrounding transition probabilities and Nelson-Aalen 
estimates were acceptable but got wider towards the end of the observation period. 
Therefore, the unreliability of the results increases as the set of patients at risk becomes 
smaller. Additionally, the high variance in the probabilities of relapse makes them hard to 
compare with averages. Furthermore, we assessed the general goodness-of-fit of the 
models via graphical evaluation. We compared the observed relapse probabilities with the 
expected transition probabilities within each treatment arm. The results from this analysis 
showed that while the differences between observed and predicted transition probabilities 
were significant at the 0.05 level of significance for some periods, the differences were 
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minor. Furthermore, the discrepancies were more evident at the end of the observation 
period. Thus, it is safe to assume that the model fitted satisfactorily.   
 Nonetheless, to rely on the inference from transition intensities, it was required to 
investigate whether the Markov assumption holds. The following hypotheses were 
developed for testing the Markov assumption:  
 
   H0: The sequence is first-order Markov 
   H1: The sequence is not first-order Markov 
 
The procedure applies a Kolmogorov-Smirnov test for uniformity and a Ljung-Box test for 
independence. The smallest adjusted p-value represents the overall p-value from the test. If 
the p-value is less than the significance level, then the sequence is not first-order Markov.  
Table 15: The Markov Assumption Test 

 Markov Assumption Test  
 Test  P  
 Ljung-Box  0.23  
 Kolmogorov-Smirnov   0.37  
Asterisks represent significance levels: *p < 0.05, **p < 0.01, ***p < 0.001  

  
Table 15 shows that the Box-Ljung test had the smallest p-value (0.23) for this test. As the 
p-value was higher than a significance level of 0.05, the null hypothesis cannot be rejected. 
Therefore, the sequence is assumed to be first-order Markov. Furthermore, we conclude 
that the Markov property is satisfied, and any current state of the process was enough to 
predict the future state of the process. Additionally, it was necessary to investigate whether 
independent censoring holds in the data. Independent censoring assumes that within any 
subgroup of interest, the censored subjects should represent the subgroup that remained at 
risk (Aalen et al., 2008, p.58). Independent censoring was tested via visual assessment by 
plotting the non-censored and censored values against time and evaluating patterns across 
both groups. The assumption of independent censoring was especially relevant for the 
Aalen-Johansen estimator and the Nelson-Aalen estimator (and, to some extent, relevant 
for the log-rank statistic).         
 Moreover, the log-rank statistic assumes that the censoring patterns must be similar 
for all treatment arms (Bland & Altman, 2004). The analysis of censored values did not 
show any apparent differences between the treatment arms. Thus, it is safe to assume that 
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the similarity assumption of censored values across treatment arms is satisfied for the log-
rank test. However, the log-rank statistic also assumes that the PH assumption is met. This 
study did not assess the PH assumption, as the log-rank test is still statistically valid under 
non-PH (Lin et al., 2020). Although the log-rank test might suffer from substantial power 
loss due to the unmet assumption, the moderate sample sizes might mitigate this weakness 
(Lin et al., 2020). Nevertheless, the unassessed PH assumption weakens the reliability of 
the log-rank test. 
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6 Conclusions & Discussion 
The purpose of this chapter is to discuss the findings of this study. This chapter is 
constructed as follows. First, section 6.1 summarises the key findings of this study, and 
section 6.4 discusses the limitations of the study. Then, section 6.5 considers future 
research avenues. Finally, section 6.6 elaborates on the ethical considerations of this study, 
and section 6.7 presents the final conclusions. 
6.1 Summary  
This study investigated the treatment effect of four OSA treatment methods: CPAP, upper 
airway surgery, OA, and bariatric surgery. Treatment (in)effectiveness was measured by 1) 
the risk of relapse and 2) the progressiveness of the disease. The study was a retrospective 
cohort study where all participants had been diagnosed with OSA and treated within the 
Hospital District of Southwest Finland. The data consisted of irregular time-stamped 
EHRs, and the final sample included 15 179 patients matching the sample selection 
criteria. The data were collected from an EHR database of patients followed between 2003 
and 2019.           
 A large part of the work involved extracting and cleaning study features from the 
EHR database. Treatment identifications were processed from raw patient data, which 
resulted in size variations among the treatment subsamples. The treatment identification 
procedure showed signs of patients with multilevel treatment plans. However, only the first 
treatment method was considered for patients treated with two or more treatment methods. 
Study findings from the pre-processing phase were visualised as an exploratory analysis 
presented in section 0. The analysis of patient biomarker data showed clear signs of OSA 
among the patient sample. Biomarker values such as blood pressure and ODI were higher 
in the study sample than in healthy adults. Additionally, as expected, values from subjects 
categorised as severe OSA patients showed lower SaO2% values and higher ESS values. 
Moreover, the exploratory analysis showed that the number of relapses had decreased over 
time. Especially patients treated with CPAP showed significant decay in relapses over 
time. Now that we have summarised the study process, the following sections discuss the 
findings in more detail. The following sections are divided according to the two phases of 
this study: section 6.2 presents the findings from severity classification, and section 6.3 
covers treatment analysis.  
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6.2 Severity Classification 
The objective of severity classification was to estimate the influence of physiological 
factors on OSA severity levels and thus validate the severity division relevant to calculate 
patient relapse. The following research question guided in analysing severity classification: 
  
RQ1: Are there statistical differences between OSA severity levels? 
 
The study results demonstrated statistical differences between the four OSA severity 
levels.  To summarise, this study considered the effect of eleven biomarker variables on 
AHI-derived OSA severity. Four variables related to oxygen saturation (SaO2%, SaO2% 
min, ODI4 and ODI10) were statistically significant predictors of OSA severity. This 
finding indicates that patients with higher OSA severity tend to experience lower oxygen 
saturation levels. The association between low oxygen saturation and high OSA severity is 
consistent with clinical consensus (Fernandes, 2021; Almazaydeh, 2012; Sahib, 2022). 
Furthermore, according to theory, the low levels of oxygen in the blood produce a state 
called hypoxemia (Dewan et al., 2015; Farré et al., 2018; Cowie, 2017). Prolonged 
exposure to hypoxemia can generate a chronic state of intermittent hypoxia (Fletcher et al., 
2001; Tobaldini et al., 2017). Therefore, moderate-to-severe OSA patients with lower 
SaO2% levels are at a higher risk of chronic intermittent hypoxia. Furthermore, hypoxia 
relates to other risks, such as autonomic deregulation and increased risk of 
cardiopulmonary diseases (Fletcher et al., 2001; Tobaldini et al., 2017). The findings of 
this study emphasise the importance of treating OSA at milder states before the disease 
evolves in severity.  
6.3 Treatment Analysis 
The objective of treatment analysis was to compare the clinical effectiveness (or 
ineffectiveness) of four OSA treatment alternatives. This study analysed the outcomes of 
CPAP, OA, upper airway surgery and bariatric surgery. The following research question 
was considered to guide the investigation: 
 
RQ2: Do the different OSA treatment interventions lead to different outcomes? 
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The results of this study indicated statistically significant differences between treatment 
outcomes. Nevertheless, regardless of significant differences, all relapse types (i.e., relapse 
from ‘no OSA’ to ‘mild OSA’) had similar value ranges in all treatment arms. Therefore, 
the following subsections explain the findings of this study in the following order: 
subsection 6.3.1 summarises the common findings among treatment arms. In contrast, 
subsection 6.3.2 entails a comparative analysis of treatment outcomes. 
6.3.1 Summary of OSA Treatment Effect Analysis 
This study demonstrated that non-OSA patients (AHI<5) had the highest risk of relapse. 
Non-OSA patients had approximately a 50% risk of relapse and a high relapse recurrence 
of nearly 12 relapses in all treatment arms. The high risk of relapse in asymptomatic 
patients accentuates the difficulty of achieving a permanent cure for OSA. Therefore, to 
avoid disease recurrence in treated OSA patients, it might be necessary to continue with 
non-surgical treatment options after a treatment intervention, even if all symptoms appear 
to have healed. Furthermore, disease severity assessment should always consider the 
subjective symptoms of a patient, as there is a high likelihood of disease presence after 
momentary healing.           
 Igelström et al. (2017) demonstrated that patients with greater severity at baseline 
often experience more significant AHI reductions. Consequently, the categorisation of AHI 
might be too insensitive to capture the actual disease progression. Thus, the shorter AHI 
range in non-OSA patients compared to mild OSA patients partly affects the high 
likelihood of relapse in non-OSA patients. Furthermore, patients relapsing from ‘mild 
OSA’ (5 ≤AHI≥ 15) had approximately a 15% risk of relapse and a moderate relapse 
recurrence (approx. three relapses) in all treatment arms. Moreover, patients with 
‘moderate OSA’ (15<AHI≥ 30) had the lowest probability of transitioning into a severe 
OSA state (AHI< 30). The probabilities of relapse were less than 6% for all treatment 
arms. The results for cumulative relapse recurrence were aligned with this finding, and 
estimates for relapse recurrence did not pass one unit of relapse in any treatment arm.
 To summarise, the results indicate that patients with milder forms of the condition 
are more at risk of relapsing than patients with increased disease severity. Similarly, Lin et 
al. (2008) reported that patients with severe OSA benefit more from treatment than patients 
with milder OSA. Thus, it could be further hypothesised that all four OSA treatments are 
more effective in preventing relapse and relapse recurrence in the more severe OSA states. 
However, there is not enough evidence to support this hypothesis, as there was no control 
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group to indicate the relapse behaviour of untreated patients. Furthermore, although study 
results were similar in differing treatment arms, some differences were apparent. The 
results from this study support previous evidence indicating that different treatments might 
be more beneficial at differing severity levels (Chang, 2020; Campos-Rodriguez, 2012). 
The following subsection, 6.3.2, presents the comparisons between treatment outcomes. 
6.3.2 Comparisons of Outcomes by Treatment Arms 
Table 16 summarises the main findings of the comparative analysis. 
Table 16: Summary Table: Relapse Probabilities and Cumulative Relapse Estimates 

 RESULTS SUMMARY TABLE  
   Relapse: ‘no OSA’ to ‘mild’ Relapse: ‘mild’ to ‘moderate’ Relapse: ‘moderate’ to ‘severe’ 
   Relapse P%  Cumulative   Relapse P% Cumulative  Relapse P% Cumulative  
  Min  40 %   6 %   1 %   
 CPAP Max 57 % 12.7  21 % 3   3 % 0.501  
  Avg 50 %   12.3 %    1.4 %   
            
 Upper Min  36 %   8 %   0 %   
 Airway Max 58 % 12.1  36 % 4  5 % 0.652  
 Surgery Avg 50.2 %    14.5 %   1.6 %    
            
  Min  40 %   6 %   0.88 %   
 OA Max 73 % 11.7  29 % 3  6 % 0.163  
  Avg 50.1 %   16 %   3.1 %    
            
  Min  39 %   7 %   0 %   
 Bariatric  Max 68 % 17.1  60 % 5  3 % 0.352  
 Surgery Avg 48.7 %     22.1 %    2 %   
            

  
The following analysis elaborates on the study findings regarding each treatment arm: 
 
CPAP: Patients treated with CPAP had relatively low relapse probabilities in all three 
relapse categories. CPAP was the most effective treatment in the category ‘mild OSA’ by 
having an overall probability of relapse of 12.3% and an estimated cumulative relapse 
recurrence of 3 relapses. In addition, patients treated with CPAP had the lowest average 
relapse probability when relapsing from ‘moderate OSA’. Recent research has 
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demonstrated that CPAP is more effective for moderate and severe OSA than for milder 
forms of the condition (McEvoy, 2016; Chowdhuri et al., 2016). The results of this study 
strengthen this finding by suggesting better suitability of CPAP for more severe OSA. 
Furthermore, clinical studies have reported CPAP as superior to OA (Sutherland et al., 
2014; Balk et al., 2011). Based on the results of this study, the superiority of CPAP is 
unclear: although CPAP did perform slightly better than OA at the state ‘moderate OSA’, 
it was less effective for those at the state ‘no OSA’. Nevertheless, the results of this study 
align with the general recognition of the effectiveness of CPAP therapy. Furthermore, the 
results of this study support the prescription of CPAP to patients at all severity levels. 
 
Upper Airway Surgery: Upper airway surgery did not perform best in any of the three 
relapse categories. Verse et al. (2011) argue that patients with mild-to-moderate OSA have 
an equal response rate for upper airway surgery as for CPAP. The results of this study 
support equal performance between CPAP and upper airway surgery when relapsing from 
‘no OSA’. Conversely, upper airway surgery did perform worse than CPAP in ‘moderate 
OSA’ states. Furthermore, it has been shown that the effectiveness of upper airway surgery 
diminishes over time (Sher, 2002). The results of this study align with this argument, as the 
high estimates for cumulative relapse recurrence could demonstrate long-term 
ineffectiveness for upper airway surgery. Furthermore, Lin et al. (2008) researched upper 
airway surgery and discovered that OSA severity could not predict treatment outcomes. 
Nevertheless, this study does not coincide with the findings of Lin et al. (2008), as 
treatment failure was less likely to occur in OSA states of increased severity. Therefore, 
there is a higher relapse probability in milder OSA states. To conclude, this study ranks 
upper airway surgery as a less effective treatment method in all three relapse types. The 
results of this study show that upper airway surgery would be most suitable for patients 
with mild OSA. 
 
OA: Patients treated with OA performed comparatively well within all relapse types. OA is 
seen as an alternative to CPAP because of its non-invasive nature, but clinical studies often 
report OA as less effective than CPAP (Sutherland et al., 2015; Li et al., 2013; Marklund et 
al., 2017; Lam et al., 2007). Conversely, the results of this study do not show clear 
inferiority of OA compared to CPAP. Furthermore, OA was the most effective in 
preventing recurrence in all relapse categories. OA’s effectiveness regarding disease 

progressiveness could be explained by better treatment adherence (Sutherland et al., 2015; 
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Li et al., 2013). Previous studies coincide with the effectiveness of OA, especially for the 
milder forms of OSA (Ilea et al., 2021; Ferguson et al., 2006). Nevertheless, the results of 
this study show a comparatively high risk of relapse in patients relapsing from ‘moderate 
OSA’. To summarise, this study supports the effectiveness of OA and would recommend 
OA for patients with recurrent relapses. The results of this study would support OA as a 
non-invasive treatment alternative for CPAP. 
 
Bariatric Surgery: This study ranks bariatric surgery as a comparatively less effective 
treatment method. This result aligns with previous findings. For example, Peromaa-
Haavisto et al. (2016) argue that bariatric surgery is insufficient for treating OSA, even 
though weight loss treatment in OSA patients is justified. The results of this study support 
this argument, as bariatric surgery shows low effectiveness in treating milder OSA forms.  
Therefore, patients treated with bariatric surgery could benefit from a multilevel treatment 
plan that combines bariatric surgery with other treatments. Furthermore, the results of this 
study show that bariatric surgery is not successful in promoting a permanent cure. 
Permanent cure is unlikely as patients treated with bariatric surgery had the highest relapse 
recurrence estimate in non-OSA and mild patients, suggesting poor long-time treatment 
response. This finding does not coincide with previous findings claiming that obesity 
surgery could effectively promote a permanent cure (Verse et al., 2005; Rasheid et al., 
2013; Boot et al., 2000). Therefore, we conclude that non-surgical interventions and upper 
airway surgery are more effective than bariatric surgery in preventing recurrent relapse. 
6.4 Limitations 
The findings of this study are subject to a variety of limitations. The following subsections 
explain the limitations relevant to this study. 
6.4.1 Intermittent Observations and Missing Data 
A standard limitation in longitudinal studies is the intermittent nature of biomarker 
measurements. Longitudinal EHRs are snapshots of a patient’s timeline; therefore, the 
observed disease progression does not always match the underlying health status. For 
example, a patient could experience more relapses than recorded in the EHR data or a 
patient could spend most of the time in a relapsed state but become healthier on the day the 
measurements were taken and then relapse back to a less healthy state. In both cases, 
measurements would not record the true status of health. Another consequence of 
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intermittent data collection is the complexity of capturing the true disease progressiveness. 
The scope of this thesis was limited to only analysing relapses from consecutive states, and 
therefore relapses that skipped states were excluded. An example of a relapse that does not 
happen between two consecutive states would be a relapse from mild-to-severe OSA. Here 
the patient records would not show any visit to the state ‘moderate’ before entering to state 
‘severe’. Therefore, a missing record for state ‘moderate’ would be a consequence of 
irregular visits that fail to capture the true progressiveness of a disease. Not accounting for 
all relapse types generates a loss of information; but taking all possible transitions into 
account would overcomplicate the analysis. Misclassification models account for the issues 
that arise from the intermittent data. However, for this study, there were no software 
packages for connecting the Nelson-Aalen estimator to a Hidden Markov Model of 
misclassified states.        

In addition to misclassified states, data quality showed critical data missingness. 
There were less biomarker data available for the early years of the observation period 
compared to later years. Missing data reduces the statistical validity of a study and 
produces biased estimates and invalid conclusions (Huang et al., 2020). Thus, it was 
essential to find an imputation method that could handle a high level of missingness, non-
normally distributed biomarker variables and nested EHRs. Another limitation was that 
CLMM is not equipped to handle censored data. Censored data is a special type of missing 
data in time-to-event analyses (Koul et al., 1995). Furthermore, the treatment analysis 
assumed the data to be right-censored, but the data could also be interpreted as interval-
censored. Unfortunately, identifiability problems prevented further evaluating the 
assumption of right-censoring (see: Beyersmann et al., 2011, p.23). However, there is a 
high likelihood that the data is right-censored, as right-censoring is the most common type 
of incompletely observed time-to-event data (Beyersmann et al., 2011, p.23). 
6.4.2 Research Design 
The lack of a control group proposed a weakness in the study design. Clinical 
investigations often approach treatment effect research by comparing the probability of an 
event on individuals exposed to an intervention with those not exposed. This comparison is 
made via a control group, a group of subjects identical to the treatment sample except that 
they lack the intervention of interest (Malay et al., 2012). A control group is beneficial as it 
enables greater comparability of outcomes, and the observed effects in the intervention 
group are more directly attributed to the treatment alone (Malay et al., 2012). However, the 
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original data did not distinguish between treated and untreated patients. Additionally, the 
study results assume treatment adherence, but treatment adherence had not been 
documented in the data. Treatment adherence is relevant for CPAP and OA.  
        
6.4.3 The Research Sample 
This study applied the per-protocol approach in handling patients with multiple treatments. 
The per-protocol approach consists of excluding patients at the point of switching 
treatments. Although this is a valid method, the approach is often considered less 
conservative because it increases the probability of making a type I error (Gupta, 2011; 
Currow, 2012). In addition, the method might overestimate the treatment effect. However, 
the data acquired for this thesis did not have the treatment intention information required 
for conducting the research utilising the more conservative intention-to-treat approach. 
Furthermore, another limitation of the per-protocol approach was that patients might have 
been treated with another OSA intervention before participating in this study. 

The data comprised only specialised EHRs; therefore, patients with milder OSA had 
been allocated to primary healthcare units. This generated an over-representation of 
patients with a more severe condition. Consequently, the over-representation of severe 
patients led to higher sample sizes in patients relapsing from moderate OSA but smaller 
sample sizes in patients relapsing from milder OSA states. Smaller sample sizes in milder 
patients resulted in larger CIs and uncertainty in the results. Furthermore, the treatment 
arms differed in sample sizes. Differing sample sizes are common in epidemiologic studies 
and pose challenges in comparing the results. Unequal sample sizes generate unequal 
variances and a general loss of power.  

Furthermore, the generalisation of the results between OSA and bariatric surgery 
must be cautious, as the leading medical condition in the ‘bariatric surgery’ treatment arm 
has likely been obesity rather than OSA. Therefore, although bariatric surgery is an OSA 
treatment method, the analysis should consider the possible bias generated by assuming 
that the surgery was performed as OSA treatment.      
6.5 Future Research 
This study points to several avenues for future research on OSA severity and treatment 
effect analysis. The adoption of EHR data collection systems has increased rapidly since 
2010. Consequently, EHR databases with extended observation periods are becoming more 
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available for research purposes. As noted in section 6.4, EHR data is subject to intermittent 
observations that cannot capture the actual underlying process of a disease. Future research 
could apply Hidden Markov models to model the underlying disease progression behind 
irregular sampling times. Additionally, the definition of OSA severity requires 
reassessment in clinical studies. The lack of generalisation in OSA severity makes studies 
hard to compare. Therefore, more in-depth research on OSA severity assessment would 
support OSA severity standardisation. Based on the results of this study, future research 
could consider a combination of AHI and ODI (or SaO2%) to construct a new OSA 
severity indicator. 

Furthermore, future OSA treatment effect research could incorporate the analysis of 
covariates to gain more information on patient characteristics that influence relapse. OSA 
is considered a heterogenic disease, meaning that the efficiency of treatment varies 
depending on the age, sex, and ethnicity of the patient (Geovanini, 2018). Associating the 
OSA treatment effect with patient characteristics such as obesity would emphasise the role 
of individual attributes in the relapsing process. For example, distinct patient phenotype 
clusters could have differing relapse responses depending on the OSA treatment type. 

Future OSA treatment effect research could consider investigating the relapse 
response for multilevel treatment and reviewing different treatment combinations in 
conjunction. Instead of analysing individual treatment responses, the study could focus on 
comparing patient groups that have undergone a set of distinct treatments. The data set 
contained approximately 1 000 records for nasal interventions, and 70% were associated 
with either CPAP or upper airway surgery. Thus, nasal surgery is considered a supportive 
treatment method and should be recognised in patient responses to treatments. 
Furthermore, including a control group of non-treated OSA patients would be beneficial. 
Although finding a subsample of non-treated patients in a long-term EHR research design 
can pose practical challenges.  
6.6 Ethical Considerations 
This study considered important ethical principles to guide the research procedure. The 
study was conducted under a research permit (No T164/2019) from Turku University 
Hospital, Finland. The ethical risks of epidemiologic studies are minimised by protecting 
the confidentiality of patient data. The data set of this study was fully anonymised by 
masking direct and indirect patient identifiers. The anonymised data offered increased 
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protection of patient privacy during the research process. Additionally, any access to data 
was controlled by establishing appropriate levels of security in data transfer activities. 
Furthermore, this study utilised a legally binding data-sharing agreement. This agreement 
prohibited downloading or sharing data with third parties. Additionally, any attempt to 
identify patients was prohibited. Furthermore, no underage patients were included in the 
study. Finally, an extensive discussion on research limitations was conducted to ensure the 
understanding of possible biases in clinical decision-making processes.  
6.7 Conclusions  
The results of this study indicate that non-OSA patients had approximately a 50% relapse 
risk and the highest relapse recurrence estimates in all treatment arms. The high relapse 
rate accentuates the difficulty of finding a permanent cure for OSA. Approximately 26% of 
the Finnish population suffers from mild OSA; consequently, the number of outpatient 
visits continues to expand rapidly (Bachour & Avellan-Hietanen, 2021; Mattila, 2022). 
Thus, there might be a connection between the increased relapse potential in milder 
patients and the growing number of patients seeking medical care. The results of this study 
demonstrate that treating OSA is a long-term process, and long-term diseases imply high 
costs covered by public welfare. However, the study demonstrated that relapse recurrence 
is the lowest in states of increased OSA severity. A lower risk of relapse in severe states 
could indicate that the disease progression slows down in treated patients as the severity 
increases.  

The study results increased our understanding of the differences between OSA 
treatment outcomes. Distinct treatments are applicable at differing OSA severity levels. 
Furthermore, the results of this study support the effectiveness of CPAP as the standard 
OSA treatment method. CPAP effectively treated OSA at all severity levels, but especially 
at mild and moderate OSA states. Furthermore, patients treated with OA had the lowest 
risk of recurrent relapses, and thus it could be further argued that OA supports the 
prevention of OSA disease progression. Thus, the results of this study would support the 
prescription of OA as a non-surgical treatment alternative for CPAP. Moreover, the study 
results ranked bariatric surgery as the least effective OSA treatment method, particularly in 
milder severity levels. One factor contributing to the failure of bariatric surgery is that it 
does not address the disease directly. Bariatric surgery is performed in the abdominal area, 
but the detriments for OSA are often the excessive body tissue around the neck area.  
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In addition to the comparative analysis of the OSA treatment effect, the study 
demonstrated a statistical difference between OSA severity levels. Furthermore, the study 
results demonstrated that higher OSA severity is associated with lower oxygen saturation 
levels. This finding emphasises the importance of early diagnosis and treatment, as 
prolonged exposure to low oxygen saturation levels increases the risk of chronic 
intermittent hypoxia (Fletcher et al., 2001; Tobaldini et al., 2017). 
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