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Abstract 

This paper investigates the widely reported observation that the difference between implied and 
realized volatility is greater for index options than for individual stock options, which causes the index 
options to be relatively expensive. I find out that from 1.7.2012 to 1.7.2022 the implied volatility of 
the OMXS30 index exceeded the implied volatility of its tracking portfolio by 0.8 volatility points. To 
inspect whether this volatility dispersion is due to the pricing of some risk factors, or market 
inefficiency, I implement two dispersion trading approaches. The strategies’ average returns of 11 
percent and 26 percent per trade imply, that the relative expensiveness of the index options is caused 
at least partially by option markets’ inefficiency. However, the pivotal role of trading frictions and the 
computational requirements limit the strategy’s practicality, which decreases the attractiveness. 
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1. Introduction 
Dispersion trading belongs to a broader family 
of relative value strategies, which exploit the 
price discrepancies of two correlating assets, by 
selling the expensive one, and buying the cheap 
one. A popular way to monetize the relative 
value imbalance is pairs-trading1, which is an 
example of a delta one approach, that is, the risk 
exposure is linear to the price development of 
the underlying securities. An application of 
pairs trading is index arbitrage, in which a trader 
buys a basket of index constituent stocks, and 
shorts the whole index, thus benefiting if the 
index components outperform the index. In the 
late 1990s, dispersion trading emerged from 
index arbitrage, by introducing a way to exploit 
non-linear price inefficiencies between the 
index and its components2. 

As the volatility is the only unknown input in the 
widely used Black-Scholes formula (Black & 
Scholes, 1973), it is possible to trade options 
profitably by being able to estimate the volatility 
more precisely than the market. Dispersion 
trading takes a stab at this by claiming, that the 
index options tend to have too high implied 
volatility embedded in them, thus leading to 
inflated prices. This mispricing became evident 
after observing that index option implied 
volatility has exceeded realized volatility 
consistently over time, while for individual 
stock options the phenomenon is significantly 
smaller. Therefore, by selling the relatively 
expensive index options and buying the 
relatively cheap component options, a 
dispersion trader aims to benefit from this 
difference in implied volatilities. 

To explain this dispersion between the index 
implied volatilities and index component 
implied volatilities, the existing literature 

 
1 See Gatev, Goetzmann, and Rouwenhorst (2006), 
among others. 

proposes two different hypotheses. The risk-
based hypothesis argues that the index options 
are more expensive due to various risk factors 
they bear that are absent from individual equity 
options. Examples of these risk factors are the 
volatility risk, and correlation risk, which the 
index option holder must face. Due to this, 
dispersion trading can be seen as a form of 
correlation trading, as the long dispersion trade 
essentially is a short correlation trade, as will be 
illustrated later. The market inefficiency 
argument, however, interprets that the price 
disparity to results from the imbalance between 
the supply and demand of options markets, thus 
enabling arbitrage opportunities for market 
participants. 

In this paper, I contribute to the dispersion 
trading literature in the following ways. First, I 
demonstrate the widely reported options pricing 
anomaly by finding that the OMXS30 index 
options have higher implied volatility than the 
component options during the ten-year sample 
period from 1.7.2012 to 1.7.2022. The volatility 
dispersion persists, even though it is a widely 
known and researched topic, that might enable 
arbitrage-like opportunities. Second, I form two 
detailed trading strategies and investigate 
whether it is possible to exploit the volatility 
dispersion with the utilization of dispersion 
trading. I find out, that both strategies generate 
positive returns, thus implying that the volatility 
dispersion is evidence of market inefficiency, 
and dispersion trading is one way to exploit it. 
And finally, I present an in-depth analysis of the 
characteristics of the dispersion trading 
environment and discuss the opportunities and 
limitations the dispersion trading strategies have 
and provide improvement ideas for further 
research. 

2 See Meissner (2015). 
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What distinguishes this paper from other studies 
is that I will focus on the practical 
implementation of the dispersion trading 
strategy, instead of focusing on the underlying 
theoretical framework. I will develop a 
comprehensive trading strategy from scratch, 
report its design choices and the optimization 
process, analyze its performance through 
various metrics, and provide improvement ideas 
for further research and development. 
Moreover, I contribute to the fairly limited 
literature on dispersion trading by conducting 
my research with new data and a long study 
period. The very volatile markets during the past 
few years also provide an especially interesting 
insight into how the strategy performs under 
varying market conditions. 

This paper's main shortcomings are due to the 
limitations of the available data, as I was not 
able to analyze, for instance, any intra-day 
information or specific bid-ask spreads. 
Furthermore, I had to make some 
simplifications with the construction of tracking 
due to missing data, which is why it is only a 
proxy for how the actual portfolio would 
perform. 

The remainder of this paper is structured as 
follows. In chapter two, I provide a literature 
review into dispersion trading and present the 
hypotheses formation process. Chapters three 
and four discuss the data processing and 
research methodology. Chapter five presents the 
empirical evidence and quantifies it with various 
metrics, while chapter six discusses the results 
in depth. Finally, chapter seven revises the main 
conclusions. 

2. Literature review and the hypotheses 
The literature strand of dispersion trading 
provides a fairly narrow depiction of the topic, 
as it is a relatively new and unknown strategy. 
Due to its complicated nature, quantitative 
requirements, and substantial market frictions 

embedded in it, the strategy is mostly employed 
by hedge funds, market makers, and other 
sophisticated investors.  For obvious reasons, 
they often rather keep their information 
proprietary, which explains the limited amount 
and extent of published research. In the 
literature review, I first go through the 
theoretical framework, which provides a starting 
point for further research and practical 
application. Second, I present the summary of 
the most important empirical results, which 
portray a rather high-level demonstration of the 
applications of the strategy. And finally, based 
on existing literature, I present what my focus 
areas in this paper will be, and what hypotheses 
I expect to confirm. 

2.1. Theoretical framework 
Jackwerth and Rubinstein (1996) examined the 
probability distributions for option prices and 
found that the implied volatility exceeded the 
realized volatility significantly and consistently 
over their 1980-1995 sample period. 
Furthermore, they identified a distinct change in 
the shape of the implied probability distribution 
after the market crash of October 1987. During 
the post-crash period, the distribution 
transformed to significantly more left-skewed, 
thus implying a higher probability for negative 
outliers. 

Bakshi and Kapadia (2003a) first showed that 
the index option prices incorporate a negative 
volatility risk premium, which provides an 
explanation to the findings of Jackwerth and 
Rubinstein (2003). According to Bakshi and 
Kapadia, the negative risk premium is motivated 
by the negative correlation between market 
volatility and market returns, leading to higher 
option prices due to their hedging attribute. 

Moreover, Bakshi and Kapadia (2003b) 
continued their study by investigating whether 
the negative volatility risk premium was present 
with the individual equity options as well. They 
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found out that there was some volatility risk 
premium embedded in individual equity options 
in the form of a spread between implied 
volatility and realized volatility, however, the 
imbalance being significantly smaller than for 
index options. This finding kindled further 
studies on dispersion trading, as it proved that 
there was a possible arbitrage opportunity due to 
the pricing discrepancy between the index and 
individual equity options. 

Driessen, Maenhout, and Vilkov (2005) propose 
an opposing view to Bakshi and Kapadia by 
claiming that the overpricing of index options is 
due to the negative correlation risk premium 
instead of the volatility risk premium. Similar to 
volatility, there exists a negative correlation 
between market returns and stock-return 
correlations, as during market turmoil stock 
correlations tend to increase3. According to 
Driessen, Maenhout, and Vilkov, index options 
hedge this correlation risk while individual 
equity options do not, which validates the 
relative expensiveness. To depict the correlation 
risk premium, they report a substantial gap 
between average implied (46.7 percent) and 
realized (28.7 percent) correlations during their 
1996-2003 sample. In their study, they did not 
find any evidence that individual equity options 
would carry any negative risk premiums, which 
is in line with their correlation risk hypothesis. 

Contrary to Bakshi & Kapadia’s and Driessen, 
Maenhout & Vilkov’s risk-based arguments, 
Bollen and Whaley (2004) provide an 
alternative explanation that is based on market 
inefficiency. They examined the relationship 
between the net buying pressure and the implied 
volatilities of the index and individual equity 
options, and found that as the buying pressure 
increases, so does the implied volatility and 
hence the price of the option. This phenomenon 

 
3 See Longin & Solnik (2001), among others 

is the strongest for out-of-the-money index puts, 
which are generally bought by hedgers seeking 
portfolio insurance. The high demand for out-
of-the-money puts also explains the well-known 
“volatility smile” anomaly4, which became 
apparent after the 1987 market crash, as was 
shown in the work of Jackwerth and Rubinstein 
(1996) as well. 

2.2. Empirical evidence 
After the theoretical foundation for dispersion 
trading had been formed, the focus shifted more 
toward its profitable utilization in practice. 
Ganatra (2004) and Nelken (2005) introduced 
high-level strategies employing variance swaps 
to implement the dispersion trade positions. The 
benefit of variance swaps compared to plain 
vanilla options is that they remain delta-neutral 
at all times, thus eliminating the need for delta 
hedging. However, variance swaps are a bit 
more complex as an instrument and not as liquid 
as options, complicating things, especially for 
non-sophisticated investors. 

Deng (2008) investigated the two opposing 
hypotheses proposed by Driessen, Maenhout, 
and Vilkov (2005), and Bollen and Whaley 
(2004), by utilizing the major institutional 
changes that happened to the U.S. options 
market around late 1999 and 2000. This 
provided an opportunity for a natural 
experiment, as the changes in the market 
environment reduced the costs of arbitraging the 
price difference of index options and individual 
equity options via dispersion trading. 

Deng concluded that if the price discrepancy 
was due to pricing of some risk factors, like 
Bakshi & Kapadia and Driessen, Maenhout & 
Vilkov proposed, there should be no change in 
the profitability of the dispersion trading 
strategies prior and after the structural change. 

4 See Derman & Kani (1994), Ederington & Guan (2002), 
and Dupire (2004), among others 



 6 

On the other hand, if the dispersion of option 
prices was a consequence of market 
inefficiency, the profitability of dispersion 
trading should diminish significantly. During 
her sample period from 1996 to 2005, Deng 
found that after the market structure change of 
2000, the monthly profitability was reduced by 
24 percentage points, suggesting that the 
differential pricing was caused at least partially 
by option markets’ inefficiency. 

Furthermore, Deng introduced several refined 
dispersion trading applications, that improved 
the risk-return characteristics of the baseline 
approach. First, Deng used implied correlation 
as a measure to distinguish profitable trading 
windows. The implied correlation factor can be 
calculated by assuming that the implied 
volatility of the stock portfolio should be equal 
to the implied volatility of the index options. 
The average correlation in the portfolio can be 
calculated using Equation (1): 

𝜌𝑝,𝑚 =
𝜎𝑖𝑛𝑑𝑒𝑥

∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝜎𝑗
𝑛
𝑗=1

𝑛
𝑖=1

 

where𝜎𝑖𝑛𝑑𝑒𝑥 denotes the index standard 
deviation, n the number of stocks within the 
index, 𝑤𝑖 and 𝑤𝑗 the weights of stocks i and j 
within the index, and 𝜎𝑖 and 𝜎𝑗 the standard 
deviations of the returns for stocks i and j. 

Second, she used Principal Component Analysis 
to determine the most effective individual stocks 
to capture the main movement of the index, thus 
reducing the number of trades. Third, she used 
daily delta-hedging to achieve immunity to price 
swings. And finally, she examined a strategy 
that buys at-the-money (ATM) straddles and 
writes out-of-the-money index strangles5, which 

 
5 A straddle involves simultaneously buying or selling 
both a put option and a call option for the same underlying 
security with the same strike price and the same expiration 

often are the most expensive index options, as 
was showcased by Bollen and Whaley (2004). 

Marshall (2009) investigated the occurrence of 
profitable dispersion trading opportunities from 
October 2005 through November 2007 in the 
S&P 500 index and its constituents. Marshall 
focused on the efficiency with which the U.S. 
options markets price volatility, and whether it 
was possible to exploit the pricing inefficiencies 
after transaction costs were considered. In her 
study, she calculates the “index-option-implied-
volatility” (or IOIV) and “Markowitz-implied-
volatility” (or MIV)6 for each day during her 
sample period. If the divergence is large enough 
to cover the transaction costs, there is a 
profitable trading opportunity. 

During the study period consisting of 505 
trading days in total, there were 312 days for call 
options and 270 days for put options when IOIV 
exceeded MIV, the average dispersion being 
1.21 volatility points for call options (13.16 
percent versus 11.95 percent) and 0.76 volatility 
points for put options (12.80 percent versus 
12.04 percent). After the transaction costs (4.09 
volatility points) were taken into account, a 
profitable trading opportunity occurred on 84 
days for calls and 91 days for puts. These results 
imply that, first, the IOIV was consistently 
higher than MIV, thus rejecting the hypothesis 
that the index options and individual equity 
options are priced similarly. And second, even 
after employing transactions costs trading 
opportunities repeatedly arose, which suggests 
that the markets mispriced the options and that 
there was an opportunity to exploit this 
inefficiency with the dispersion trading strategy. 

Marshall (2008a) contributed to the literature of 
dispersion trading also by introducing a 

date. Strangle has a similar structure but uses different 
strike prices to benefit from larger price moves. 
6 MIV indicates the implied volatility of the basket of 
individual constituent options. 
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modified version of the Markowitz variance 
equation. The original Markowitz variance 
equation includes a correlation matrix of 
constituent cross-correlations as an input, which 
grows very quickly when the number of 
individual stocks increases. As shown by 
Markowitz (1952), the variance of a portfolio's 
return is given by Equation (2): 

𝜎𝑚
2 = ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝜎𝑗𝜌𝑖,𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

where n denotes the number of stocks within the 
index, 𝑤𝑖 and 𝑤𝑗 the weights of stocks i and j 
within the index, 𝜎𝑖 and 𝜎𝑗 the standard 
deviations of the returns for stocks i and j, and 
𝜌𝑖,𝑗 the return correlation between stock i and 
stock j. 

When calculating the implied variance of the 
S&P 500 like Marshall, the size of the 
correlation matrix is 500 × 500, thus containing 
250,000 cross-correlations. By exploiting the 
symmetrical property of the correlation matrix 
and eliminating the unit diagonal points, the 
number of cross-correlations for a correlation 
matrix of n-stocks can be reduced to: 

𝑛 ×  𝑛 –  𝑛 
2  

However, in the case of the S&P 500, the 
correlation matrix still includes a cumbersome 
124,750 correlations, which sets heavy 
computational challenges to the quantitative 
implementation. To overcome this, Marshall 
showed that a portfolio structured to replicate an 
index will, by construction, have zero 
unsystematic risk relative to the index. This 
enables to calculate the volatility of the portfolio 
by focusing only on its systematic components 
since all the risk is systematic. Thus, instead of 
calculating all the cross-correlations between 
individual stocks, the modified Markowitz 
equation requires only the return correlations for 

each stock with the market index as inputs. As 
shown by Marshall, the volatility of the index 
replicating portfolio is given by Equation (3): 

𝜎𝑚 = ∑ 𝑤𝑖𝜎𝑖𝜌𝑖,𝑚

𝑛

𝑖=1

 

where 𝜌𝑖,𝑚 denotes the return correlation for 
stock i with the market index. 

For the modified Markowitz equation to be 
accurate, one must assume that the index in 
question is sufficiently diversified, so that 
unsystematic risk is nonexistent. For S&P 500 
this is a relatively safe assumption since the 500 
constituent stocks enable extensive 
diversification. However, for instance, in the 
OMXS30 index there are only 30 constituents, 
which puts pressure on the assumption of zero 
unsystematic risk. 

Lisauskas (2011), Maze (2012), and Magnusson 
(2013) all examine basic dispersion trading 
strategies on the German, South African, and 
Swedish options markets, respectively. 
Lisauskas, and Magnusson both report similar 
results that retell the prevailing consensus: there 
is a significant spread between the implied 
volatilities of index options and the 
corresponding basket of constituent options, as 
the index implied volatility exceeds the basket 
implied volatility consistently. Furthermore, all 
the strategies produce positive returns which, 
however, are decreased substantially after the 
various transaction costs are taken into account. 

Lisauskas’ strategy features trading call options 
for both legs of the trade and then using a delta 
hedge to achieve delta neutrality. It is 
noteworthy, that the consensus of the literature 
considers the usage of straddles and/or strangles 
more convenient instead of just puts or calls. 
This reduces the need for delta hedging, as the 
straddles and strangles have, by their 
construction, a very low initial delta exposure. 
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Lisauskas tested his trading strategy from 
November 2008 to May 2010 and reported a 
10.2 percent average return per trade before 
transaction costs, and 3.3 percent after the bid-
ask spread was included. 

Magnussen had a more conventional approach, 
as he compared three different strategies: 
straddle, strangle, and a combination of those 
two. All three strategies showed positive 
performance and low market correlation, the 
straddle strategy returning the highest profit, 
and the strangle strategy the highest Sharpe 
ratio. Magnussen pointed out, however, that the 
measurement of profitability is an arbitrary 
issue, as all the positions are self-financed7, 
which makes it hard to determine the fractional 
return of the strategies. Magnusson interpreted 
the size of the index leg as a proxy for a trade 
size and attained a total return of 183 percent 
over the two-year study period from September 
2010 to October 2012. However, after the bid-
ask spread the absolute return shrunk by 65 
percent and after commissions another 5 
percentage points, which emphasizes the pivotal 
role of bid-ask spread optimization. 

Contrary to Lisauskas and Magnusson, Maze 
discovered a rather unique feature from the 
South African options market, as he did not find 
any significant discrepancy between IOIV and 
MIV. A corollary to this relatively high level of 
MIV was that Maze’s strategy entered more 
reverse dispersion trades8 than traditional 
trades.  Despite of the inverse characteristics of 
the South African market, Maze’s backtesting 
generated annual returns more than 19 percent 
on average over the six-year study period from 
May 2006 to May 2012. 

 
7 Entering the position does not require any capital, as the 
trader first sells the index straddle, and then uses the 
premium collected to buy the constituent straddle, thus the 
initial cashflow is zero. 

2.3. Hypotheses 
My focus on this paper is to investigate how the 
volatility is priced in the Swedish options 
market, and whether the pricing differs between 
index options and individual equity options. 
Furthermore, I will investigate whether it is 
possible to exploit these pricing characteristics 
profitably with the utilization of dispersion 
trading. My hypotheses revolve around the 
existing literature, and I expect to observe the 
following: 

H1 (Volatility dispersion hypothesis): Index 
option implied volatility exceeds the Markowitz 
implied volatility in the Swedish options market 
during the sample period. 

I will test this hypothesis by calculating the 
index component implied volatility using 
Markowitz’s variance equation and comparing 
it to the index implied volatility. Then, I will 
conduct the Kolmogorov-Smirnov test to check, 
whether the implied volatilities come from the 
same distribution. If the hypothesis is 
confirmed, the index options are pricing 
“richer” volatility than the individual equity 
options, which might be due to some embedded 
risk factors, or market inefficiency. 

H2 (Market inefficiency hypothesis): 
Exploitation of dispersion trading strategy 
generates positive abnormal returns in the 
Swedish options market during the sample 
period, and thus is an evidence of market 
inefficiency. 

I inspect the second hypothesis by evaluating 
the risk-return characteristics of two different 
dispersion trading strategies. If the strategies 
provide abnormal risk-adjusted returns, it is 

8 Reverse dispersion trade means buying the index option 
and selling the basket of constituent options. This strategy 
is profitable when the index options are priced cheaper 
than individual equity options, which, as proven by 
literature, is often not the case. 
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more likely that there are some inefficiencies 
with how the Swedish options market price 
volatility. An opposing hypothesis is that the 
volatility is priced efficiently despite of possible 
variation between the index and component 
implied volatilities. This might be due to some 
risk exposures, that justify the price differences. 

3. Description of the data set 

For my research, I retrieved all the data from 
Refinitiv Eikon Datastream, which provides an 
extensive selection of various options and stock 
market data. The study period is ten years long, 
from 1.7.2012 to 30.6.2022, consisting of 2,510 
trading days. However, to calculate some long-
term variables, the pre-study period starts three 
years earlier on 1.7.2009. My data set consists 
mostly of daily closing prices, which sets some 
limitations to the accuracy of the results, as any 
intraday movements are not captured. However, 
it would be rather impractical to implement the 
backtesting with much higher resolution than 
end-of-day data, thus a compromise had to be 
made. 

3.1. Data acquisition 
During the data acquisition process, I obtained 
the following data set: 

1. Bi-annual constituent lists of the OMXS30 
index from 1.7.2012 to 30.6.2022. 

2. End-of-day market values of OMXS30 
constituents from 1.7.2012 to 30.6.2022. 

3. Daily at-the-money (ATM) implied 
volatilities for the OMSX30 index and its 
constituents from 1.7.2012 to 30.6.2022. 

4. Daily constituent stock prices from 1.7.2009 
to 30.6.2022. 

5. Daily option prices, underlying prices, ATM 
strikes, and days until expiration for call and 
put options for the OMSX30 index and its 
constituents from 1.7.2012 to 30.6.2022. 

To form the tracking portfolio, I first retrieved 
the bi-annual constituent lists of the OMXS30 

index. As the index is revised twice a year, in 
January and in July, a bi-yearly update cycle 
was sufficient. During the ten-year study period, 
there were 38 different constituent companies in 
the index in total. As the OMXS30 is a market-
weighted index, the market values were also 
required to calculate the index constituent 
weights. In addition to the index weights, the 
implied volatilities are also needed to calculate 
the MIV. IOIV can be obtained directly as it is. 
Datastream provides continuous series for ATM 
options, from which the implied volatilities are 
extracted. I used implied volatilities with a 
constant time to maturity of 30 days, which are 
reverse-engineered from the prices of both call 
and put options. In order to calculate the 
historical stock return correlations, which is an 
input in the MIV equation, it was necessary to 
secure daily price data for the constituent 
companies starting three years prior to the 
beginning of the study period. To backtest the 
strategy and calculate its returns, various 
options data are required. Again, Datastream’s 
continuous series for ATM options is utilized, as 
it provides conveniently the necessary 
information. 

3.2. Data processing 

After the data is gathered, the next step is to 
refine it for further use. All the data was 
exported as CSV files from Datastream and then 
processed with Python using NumPy and 
Pandas libraries. 

To form the tracking portfolio for each trading 
day during the study period, I calculated the 
daily compositions of the index based on 
constituents’ market values. As the process of 
how the true weights are calculated differs 
slightly from just dividing the company market 
values with the index total market value, there 
were some inaccuracies between the estimated 
and true weights. However, the differences were 
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very small, thus using the market values as a 
proxy is reasonable. 

The inputs for calculating MIV include the 
index weights, implied volatilities, and cross-
correlations between the constituent stocks. 
Similar to Marshall (2009), I calculated the 
historical correlations based on three years of 
rolling monthly stock returns. Furthermore, the 
monthly returns were calculated as the natural 
logarithm of the ratio of the stock price on day t 
to the stock price 21 days prior (day t-21)9. The 
general calculation can be obtained from 
Equation (4): 

𝑀𝑅𝑡 = 𝑙𝑛
𝑆𝑡

𝑆𝑡−21
 

where MRt denotes the monthly return on day t, 
and St the stock price on day t. Then, 36 of these 
monthly returns (corresponding to three years of 
monthly returns) were used to calculate the 
historical correlation between each constituent 
company. Therefore, the correlation matrix 
consists of 900 cross-correlations (30 x 30), and 
the process is repeated each day during the 
sample period. 

When the index weights and historical 
correlations are calculated, the final step in 
calculating MIV is to input the implied 
volatilities. As mentioned, the daily ATM 30-
day implied volatilities were extracted directly 
from Datastream, and they do not require any 
treatment. However, there were five companies 
in total10, which did not have listed options 
while being a constituent, thus the implied 
volatilities were missing. Instead of using 
implied volatility for the missing companies, I 
used historical volatility as a proxy for the 

 
9 Trading year averages 252 days, which corresponds to 
21 trading days per month. 
10The missing companies were Essity AB, Evolution AB, 
Samhällsbyggnadsbolaget i Norden AB, Sinch AB, and 
Fingerprint Cards AB. 

missing data. I used three years of rolling 
monthly stock returns11  to calculate the 
historical monthly volatility and then scaled it 
by the square root of 12 to convert it to annual 
volatility. 

4. Research methodology 

Dispersion trading in its purest form consists of 
selling index options against a basket of 
constituent options when the former is relatively 
more expensive than the latter. To quantify the 
expensiveness, the literature provides two 
popular metrics: the implied volatility and the 
implied correlation of the basket of constituent 
options. Marshall (2009) used the implied 
volatility approach. She first calculated the 
modified MIV using Equation (3) and then 
compared it to the IOIV. If IOIV exceeded the 
MIV by a margin that covered the transaction 
costs, there was a profitable dispersion trading 
opportunity. Unlike Marshall, Deng (2008) first 
tried a naïve dispersion trading strategy that had 
a constant exposure, that is, did not trade 
conditionally on the expensiveness of the index 
options. This approach capitalizes on the 
observation that index implied volatility tends to 
exceed tracking portfolio’s implied volatility, 
thus reducing the need for trading signals. 
However, she was able to improve the results by 
trading conditional on correlation12. In order to 
do that, she derived two different benchmark 
measures of future correlation by plugging into 
Equation (1) either historical volatilities or 
volatilities forecasts using the Generalized 
Autoregressive Conditional Heteroskedasticity 
model (GARCH). A positive trading signal was 
then generated if the implied correlation was 

11 See Equation (4). 
12 See Equation (1). 
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above or below the estimated future correlation 
by a large enough margin. 

4.1. Trading strategy 
To find the optimal strategy, I compare both the 
volatility-based, and correlation-based metrics. 
The idea behind both approaches is to exploit 
mean reversion, which is a thoroughly 
researched phenomenon in options pricing13. 
Mean reversion is based on an assumption that 
a price level that strays far from the long-term 
norm or trend, in this case, the volatility spread 
or the implied correlation, will tend to converge 
to the historical average levels over time. Thus, 
the goal is in its simplicity to buy low, and sell 
high. 

In the volatility model, I calculate the daily MIV 
for the basket of constituent stocks using 
Equation (2), and then compare it to the daily 
IOIV. If the IOIV exceeds MIV, a trade is 
initiated. To calculate the MIV, I use the 
standard Markowitz equation instead of the 
modified version derived by Marshall (2008b). 
The choice, of whether to use the modified or 
standard version, comes down to a tradeoff 
between computational efficiency and model 
accuracy. As the OMXS30 consists of only 30 
stocks and therefore is not computationally 
unfeasible, I will use the standard Markowitz 
equation to emphasize higher accuracy14. 

In the correlation model, I exploit the mean 
reversion attribute by comparing the implied 
correlation15 to its historical moving average. 
More specifically, I will use Bollinger bands as 
an indicator to identify potential trading 
opportunities.  The design of the Bollinger band 
is an arbitrary issue; however, the common 

 
13 See Cecchetti, Lam & Mark (1990), and Bessembinder 
et al. (1995), among others. 
14 I also calculated MIV using the modified equation, 
which turned out to be almost identical to the standard 
MIV. This implies that the idiosyncratic risk is almost 
non-existent in OMXS30 index and that Marshall’s 

practice is to use two standard deviations over a 
30-day moving average (Ganatra, 2004). 
Therefore, if the implied correlation exceeds by 
more than two standard deviations its 30-day 
moving average, a trade is initiated. 

When entering a trade, ATM straddles on the 
OMXS30 index are sold using put and call 
options with the same strike price and expiry 
date. Then the position is hedged by buying 
ATM straddles on the basket of constituent 
companies. As it is impossible to buy straddles 
directly on the tracking portfolio, ATM 
straddles are bought for each constituent stock 
weighted by the stock’s index weight. Similar to 
Deng (2008), both the long and short legs of the 
trade are held until the expiration, after which a 
new trade is entered when a trade signal occurs. 

The profit from selling the index straddle is 
given by Equation (5): 

𝑅𝐼 = [𝐾𝐼 − 𝑆𝐼,𝑇]− + 𝐶𝐼 + [𝑆𝐼,𝑇 − 𝐾𝐼]− + 𝑃𝐼) 

and the profit from buying the basket of 
constituent straddles is given by Equation (6): 

𝑅𝐵 = ∑ 𝑤𝑖([𝑆𝑖,𝑇 − 𝐾𝑖]+ − 𝐶𝑖 + [𝐾𝑖 − 𝑆𝑖,𝑇]+ − 𝑃𝑖)
30

𝑖=1

 

where [x]- represents min(x, 0), [x]+ max(x, 0), 
S denotes the share price, K the strike price, T 
the maturity, C the call price, and P the put price. 

When using straddles instead of variance swaps 
as a trading instrument, delta exposure might 
become a problematic issue. Even though 
straddles are delta neutral when at-the-money16, 
they have a large gamma exposure, that is, the 
volatility of delta. Therefore, the net delta 

modified Markowitz equation is a good proxy for 
calculating the portfolio standard deviation. 
15 See Equation (1). 
16 When a straddle is ATM, the deltas of call and put 
cancel out each other thus leading to net exposure of zero. 
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exposure increases when the underlying security 
moves further away from the strike price of the 
straddle. To limit the delta exposure, one can use 
delta hedging by trading the underlying security 
to remain delta neutral despite of the price 
swings of the underlying security. However, 
similar to Maze (2012), I decided not to hedge 
against delta as it increases the complexity of the 
strategy and induces additional costs. 

4.2. Trading frictions and costs 
The main transaction costs in dispersion trading, 
and options trading in general, can be divided 
into three identifiable categories: 

1. The bid-ask spread 
2. The commission 
3. The market impact cost 

Moreover, depending on the design of the 
dispersion trading strategy, possible costs might 
arise also from the rebalancing of the positions 
and from delta hedging.  

As was shown by Magnusson (2013) the bid-ask 
spread is the most significant cost associated 
with the dispersion trading strategy. During 
Magnusson’s study period, the spread for 
OMXS30 index options traded in the 2 percent 
to 4 percent interval, while the more illiquid 
single stock options traded at around 10 percent, 
calculated as a percentage of the mid-price. In 
my research, I establish two P&L scenarios: one 
ignoring the trading frictions, and one including 
the average bid-ask spreads reported by 
Magnusson. Similar to Marshall (2009), I 
neglect the possible commissions and market 
impact costs in my research, as the magnitude of 
those is harder to estimate, and the significance 
is not as important as the bid-ask spread. 
Furthermore, as dispersion trading has 
traditionally been in the toolbox of hedge funds, 
market makers and other sophisticated investors 
who face different market frictions compared to 
retail investors, the estimation of trading 
frictions becomes an arbitrary issue. According 

to Marshall, many professional dispersion 
traders have negotiated preferential commission 
schedules, which can, for instance, take the form 
of a flat monthly fee, irrespective of the volume 
of trading. On the other hand, market makers 
can trade dispersion without the cost of the bid-
ask spread, as they operate as price makers 
instead of price takers. Furthermore, by trading 
dispersion, market makers provide more 
liquidity into the index options, which are a 
popular portfolio insurance tool, and thus 
increase market efficiency. These observations 
lean heavily towards the already observed fact, 
that dispersion trading is a far more attractive 
and practical strategy to sophisticated 
institutions instead of retail traders. Therefore, it 
is relevant to inspect the profitability of 
dispersion trading both before and after the 
market frictions are included. 

4.3. Performance calculation 
There are many possible ways to measure the 
performance of the dispersion trading strategy, 
which depends on the arbitrary design choices 
of the strategy implementation. I use a strategy, 
where all the positions are self-financed, that is, 
entering the trade does not require any initial 
invested capital. Therefore, the performance 
calculation is a bit complicated issue, as there is 
no baseline investment to which the returns 
could be proportioned to over time. However, 
similar to Magnusson (2013), I use the size of 
the index leg as a proxy, to which I compare the 
returns. Furthermore, I normalize the position 
size so that both the short and long legs 
correspond to 100 units. Thus, the number of 
index straddles sold can be obtained from 
Equation (7): 

𝑋𝐼 =
100

(𝐶𝐼 + 𝑃𝐼) 

and the number of basket straddles bought from 
Equation (8): 
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𝑋𝐵 = −
100

(𝐶𝐵 + 𝑃𝐵) 

where (𝐶𝐼 + 𝑃𝐼) denotes the received premium 
index straddle, and (𝐶𝐼 + 𝑃𝐼) the paid premium 
for the component straddles. Hence, the profit 
per trade is defined by Equation (9): 

𝑃𝑃𝑇𝑇 = 𝑋𝐼 × 𝑅𝐼 + 𝑋𝐵 × 𝑅𝐵  

where 𝑅𝐼 and 𝑅𝐵 are the profits from single 
index straddle and basket straddle, respectively, 
defined by Equations (5) and (6). Therefore, the 
percentage return per trade can be obtained by 
dividing the profit per trade by 100. 

To measure the profitability of the strategy, I 
track several financial metrics. First, I will 
calculate the total return, which is the sum of 
profits from all entered trades. I will calculate 
the cumulative sum of profits that the strategy 
generates, assuming that each trade is sized the 
same (100 units). The cumulative return can be 
obtained from Equation (10): 

𝑅𝐷 = ∑ 𝑃𝑃𝑇𝑖

𝑛

𝑖=1

 

where n denotes the number of entered trades. 
To quantify the risk-return characteristics, I 
calculate the Sharpe ratio, which measures the 
ratio of reward to volatility. The Sharpe ratio is 
defined in Equation (11): 

𝑆ℎ𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑅𝐷 − 𝑟𝑓

𝑆𝐷(𝑅𝐷) 

where 𝑟𝑓 is the risk-free rate, and 𝑆𝐷(𝑅𝐷) the 
volatility of the dispersion trading strategy. In 
addition, I will calculate the strategy’s 
maximum drawdown, which compliments the 
Sharpe ratio as a risk metric. Sharpe ratio might 
give a false impression of the nature of risks if 
the returns are not normally distributed, for 
instance in the presence of fat tails. MDD 

focuses on the magnitude of risks, instead of the 
incidence. Formally, MDD is the maximum loss 
from the global maximum peak to the following 
lowest local low, as can be obtained from 
Equation (12): 

𝑀𝐷𝐷𝑇 =
(𝑃 − 𝐿)

𝑃  

where P denotes the peak value before the 
largest drop, and L the lowest value before the 
new high is established. Furthermore, I will also 
calculate the strategy correlation with the 
OMXS30 index. 

5. Results 
First, I present the results regarding the implied 
volatility calculations, where I compare the 
index implied volatility to the basket implied 
volatility. This serves as an indicator for further 
results, as dispersion trading in general is based 
on the existence of volatility spread. Second, I 
present the baseline strategy, which uses the 
implied volatility spread as a trade signal. The 
implementation is similar to Marshall’s (2009) 
strategy and inspects whether the IOIV-MIV 
spread serves as a good indicator for profitable 
trading opportunities. Third, similar to Deng 
(2008), I introduce the implied correlation 
strategy and investigate whether I can improve 
the returns compared to the baseline strategy. 
The correlation strategy compares the implied 
correlation to its historical average, and based 
on that, initiates the entry signals. To estimate 
the performance of both strategies, I use various 
metrics to evaluate the risk-return 
characteristics and then compare them to the 
OMXS30 during the sample period. To estimate 
the profitability and practicality of the 
dispersion trading strategy for various market 
operators, I present the results first in the 
absence of trading frictions, and then with the 
estimated bid-ask spread. 
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5.1. Implied volatility dispersion 

Table 1: Implied volatility statistics 

Implied volatility statistics 

IOIV   
Mean 17.01 
Standard deviation 6.02 
Max value 75.27 
Min value 9.12 
Days when IOIV > MIV 1,457 

MIV   
Mean 16.19 
Standard deviation 4.29 
Max value 76.70 
Min value 8.53 
Days when MIV > IOIV 1,053 

Correlation between IOIV and MIV 0.79 
P-value IOIV=MIV 3.18E-06 
 
This table reports the implied volatility statistics 
that were gathered during the sample period. The 
units used are volatility points, the correlation is 
calculated as a Pearson correlation coefficient, and 
the P-value is calculated with the Kolmogorov-
Smirnov test, 

 
 

 

 

5.2. Volatility spread strategy 
As stated above, the results strongly suggest that 
the index option implied volatility is, on 
average, “richer” compared to component 
implied volatilities for the OMXS30 index 
during the sample period. The volatility spread 
strategy exploits this imbalanced pricing and 
therefore should generate positive returns when 
IOIV exceeds MIV. The fluctuations of IOIV 
and MIV are presented in Figure 1, where the 
instances when IOIV surpasses MIV are the 
trade signals. As can be seen from Table 2, the 
volatility model generated 111 trade signals 
during the sample period. The reason why there 
were not 1,457 executed trades, which is the 

 
17 See Figure 4 in Appendix to observe the shape of the 
return distribution for the volatility spread strategy. 

number of days IOIV exceeded MIV, is that the 
strategy has only one trade on the market at a 
time. Out of these 111 trades, 72 were 
profitable, and the average return per trade was 
11 percent (proportional to the size of the index 
leg). The total return during the sample period 
was 1,220 percent, which corresponds to 
approximately 28 percent on annual basis. 

Even though the returns seem impressive in 
absolute term at first glance, the risk metrics 
reveal that the generated profits did not come 
without bearing risk. The Sharpe ratio, which 
quantifies the risk-return relationship over time 
was 0.38, which itself is not that alarming. 
However, the maximum drawdown percent, 
which evaluates the magnitude of risk, was 110 
percent, meaning that at one point the trader 
would have lost all their profits so far, and some 
more. This is a rather alarming feature of the 
strategy and highlights the high risk level. By 
comparing the shape of the individual trades’ 
distribution to the normal distribution17, one can 
see, that the returns are not normally distributed. 
As the skewness is close to zero, the left and 
right sides of the distribution are rather 
symmetric and thus resemble the normal 
distribution. However, the kurtosis is over 8, 
which means that the distribution is thinner and 
has fatter tails than the normal distribution, thus 
giving a high probability to extreme values18.

18 The skewness and kurtosis of the normal distribution 
are zero and three, respectively. 
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Table 2: Volatility spread strategy performance 

Volatility spread strategy performance 

Return distribution   
Trades entered 111 
Average return per trade 11.01% 
Standard deviation 84.13% 
Skewness 0.32 
Kurtosis 8.11 

Strategy performance and risk   
Total return 1,221.7% 
Sharpe 0.38 
Maximum Drawdown 110.4% 
Correlation with the OMXS30 0.24 

    
This table presents volatility spread strategy's 
return distribution and the performance and risk 
metrics. Sharpe ratio is calculated from daily log-
returns with a risk-free rate of 0%, and the 
correlation is calculated as a Pearson correlation 
coefficient. 

 
 
 
 
 

5.3. Implied correlation strategy 
As described earlier, the implied correlation 
strategy initiates a trade if the implied 
correlation exceeds its 30-day moving average 
by more than two standard deviations. 

Furthermore, I used Bollinger bands to 
implement this condition, and the implied 
correlation plotted with the Bollinger bands can 
be seen in Figure 2. Similar to Deng’s (2008) 
findings, trading conditional on implied 
correlation improved the returns compared to 
the baseline approach. 

The implied correlation strategy generated 
roughly half the amount of trade signals 
compared to the volatility spread strategy. Out 
of these 58 trades, 37 were profitable and the 
average return per trade was 26 percent. As can 
be concluded from the number of trades entered, 
the implied correlation strategy is more selective 
in its entry signal generation process. This 
resulted in higher total return, but also lower 
volatility. Thus, the risk-adjusted return was 
higher, which a Sharpe ratio of 0.65 confirms. 
Also, the maximum drawdown was much lower 
at 37 percent, which increases the practical 
value of the strategy. An analysis of the return 
distribution reveals that the returns are not 
normally distributed (see Figure 4 in the 
Appendix). Contrary to the volatility spread 
strategy, the returns of the implied correlation 
strategy are positively skewed, as the skewness 
is 1.46. This means, that the right tail is longer 
than the left tail, which is often a desired feature 

Figure 1: Index option implied volatility (IOIV) versus Markovitz implied volatility (MIV). 
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of investment returns, as the probability for 
large gains is higher than for large losses. The 
kurtosis is 3.82, which is, in turn, closer to 
normal distribution. 

5.4. Performance after trading frictions 
As was expected, the profitability of the 
dispersion trading strategy decreases 
substantially after the bid-ask spread is 
included. I studied the effect of paying the full 
bid-ask spread on the implied correlation 
strategy, as it proved to be a more profitable 
strategy, and because the effect would be very 
similar to the volatility strategy as well. Due to 
the arbitrary nature of the commissions, and 
their minor relevance, I did not calculate them 
in the performance calculations. 

To estimate the effect of paying the full bid-ask 
spread, I used the average spreads reported by 
Magnusson (2013, which were 3.4 percent for 
index options, and 9.8 percent for the individual 
options, calculated as a percentage of the mid-
price. As can be seen from Table 4, the total 
return almost halved, and the Sharpe ratio 
decreased below the level of OMXS30 to 0.20, 
after the full bid-ask spread was paid. The 
maximum drawdown increased also to 162 
percent, underlining the high-risk level. The 
cumulative performance of the strategies with 

Table 3: Implied correlation strategy 
performance 

Implied correlation strategy performance 

Return distribution   
Trades entered 58 
Average return per trade 25.93% 
Standard deviation 65.49% 
Skewness 1.46 
Kurtosis 3.82 

Strategy performance and risk   
Total return 1,503.9% 
Sharpe 0.65 
Maximum Drawdown 37.1% 
Correlation with the OMXS30 0.88 

    
This table presents the implied correlation 
strategy's return distribution and the 
performance and risk metrics. Sharpe ratio is 
calculated from daily log-returns with a risk-
free rate of 0%, and the correlation is 
calculated as a Pearson correlation coefficient. 

 
 
 
 

 

Figure 2: Implied correlation plotted alongside two-standard deviation Bollinger bands. 
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and without the bid-ask spread compared to the 
OMXS30 can be observed in Figure 3. 

 
19 If the index volatility is richer than the component 
volatility, the markets expect that the average correlation 
will increase in future. Hence, selling the index options 

6. Discussion of the results 
First, I can confirm the Volatility dispersion 
hypothesis, that is, the index option implied 
volatility exceeds the Markowitz implied 
volatility in the Swedish options market during 
the sample period, as the IOIV exceeded the 
MIV with a significance level of 99.9 percent. 
This finding is in line with the literature, as 
Marshall (2009), Lisauskas (2011), and 
Magnusson (2013), among others, reported 
similar results. However, the existence of 
volatility spread itself does not imply, that the 
pricing of options is imbalanced. The “variable” 
is the correlation between the index constituent 
stocks, as the MIV calculation is based on 
historical correlations. If the markets expect that 
the correlations will change in the future, the 
volatility spread is justified. This is also the 
reason, why dispersion trading can be viewed as 
correlation trading, as the long dispersion trade 
is essentially a short correlation trade19. 
However, the fact that the direction of the 
volatility spread was systematically that the 
IOIV exceeded the MIV, is evidence against 
efficient pricing. The constant expensiveness of 

and buying the component options (long-dispersion) is a 
profitable trade if the realized correlation is lower than the 
implied correlation. 

Table 4: Performance comparison 

Performance comparison 

Implied correlation strategy mid-spread 
Total return 1,503.9% 
Sharpe 0.65 
Maximum Drawdown 37.1% 
Correlation with the OMXS30 0.88 

Implied correlation strategy full-spread 
Total return 804.1% 
Sharpe 0.20 
Maximum Drawdown 161.5% 
Correlation with the OMXS30 0.56 

OMXS30   
Total return, % 155.5% 
Sharpe 0.53 
Maximum Drawdown 22.5% 
    

This table presents the performance metrics for the 
implied correlation strategy with half bid-ask 
spread, full bid-ask spread, and for the OMXS30 
index. The Sharpe ratio is calculated from daily 
log-returns with a risk-free rate of 0%, and the 
correlation is calculated as a Pearson correlation 
coefficient. 

 
 
 
 
 

Figure 3: Cumulative returns for implied correlation strategy plotted with the OMXS30 total return. 
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index option implied volatility would be 
justified only if the average correlation would 
increase over time. However, due to the mean 
reversion attribute of correlation, that is 
impossible, as the correlation cannot exceed 
1.00. 

Second, to test whether the observed volatility 
spread is justified in terms of market efficiency, 
I will interpret the trading results. When 
comparing the strategies’ overall performance 
against the OMXS30, which serves as a 
baseline, it is apparent that the strategies 
outperformed the index by a substantial margin. 
The cumulative returns were manyfold for the 
dispersion trading strategies over the OMXS30 
index, and the average returns per trade were 
clearly positive. After introducing the aspect of 
risk, the performances were, however, more 
alike. The implied correlation strategy achieved 
the highest Sharpe ratio, OMXS30 being 
slightly behind, and the volatility spread 
strategy scoring the lowest. When diving deeper 
into the performance metrics, one can conclude 
that the implied correlation strategy outperforms 
the volatility spread strategy in every aspect, and 
thus seems superior, similar to Deng’s (2008) 
findings. Furthermore, based on the risk-return 
characteristics, it is not a stretch to say that the 
implied correlation strategy outperformed the 
OMXS30 as well. This finding favors the 
Market inefficiency hypothesis, as it seems that 
the dispersion trading provided abnormal risk-
adjusted returns in my sample. 

However, when evaluating the strategies, one 
must keep in mind that both the absolute and 
risk-adjusted return metrics depend heavily on 
the arbitrary design of the strategy, and thus can 
lead to distorted interpretations. Also, as stated 
earlier, the percentage returns are only 
approximations, as due to the self-financing 
attribute the trades do not require any initial 
capital. However, as especially the implied 
correlation strategy seems to be able to generate 

trades with a positive expected return, there is 
no doubt that the dispersion trading strategy 
would not be useful. As is evident from the 
rather high MDD values and fat-tailed 
distributions, the strategy has its risks and 
therefore arguably is not as attractive as an 
individual strategy though. Nevertheless, due to 
the low delta exposure and the long-short 
structure, it can be a powerful tool as a part of a 
broader portfolio. Furthermore, one can 
optimize the trade sizing and trade signal 
precision to correspond to the desired risk 
tolerance levels and portfolio structure, thus 
increasing the strategy’s flexibility and practical 
value. It can also work as a hedging instrument, 
as the volatility spreads tend to increase when 
market turmoil escalates. However, a somewhat 
surprising finding is the high correlation 
between the implied correlation strategy and the 
OMXS30 index, which indicates that they move 
together. Though, the high correlation might just 
be a consequence of the long bull-market 
happening at the same time, thus resulting in 
correlation, but not causality. Analysis of the 
graphs also supports this, as the large price 
swings for both the implied correlation strategy 
and the OMXS30 index have not happened in 
tandem: The largest surge for the dispersion 
trading strategy started almost a year before the 
COVID-19 outbreak, and during the current 
bear market the strategy has performed better 
than ever before. 

After introducing the trading frictions, the 
profitability decreased significantly, as was 
expected. As the Sharpe ratio dropped to 0.20, 
and the MDD rose to 166 percent, at least the 
most prominent excess returns disappeared. 
This finding is in line with the literature and 
emphasizes the advantage that market makers 
and other sophisticated investors have over 
retail investors when it comes to the practical 
implementation of dispersion trading. Even 
though dispersion trading might not be the go-to 
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strategy for retail traders, it still provides 
unarguably profitable opportunities for those 
with computational firepower and cost-
minimization tools. Therefore, despite of the 
questionable profitability after transaction costs, 
the Market inefficiency hypothesis still holds. 

7. Conclusion 
This paper extends the existing literature on 
dispersion trading by providing an empirical 
analysis of the existence of volatility dispersion 
and demonstrating the profitability of two 
dispersion trading strategies. The obtained 
results imply that the index option implied 
volatility indeed tends to be unjustifiably 
expensive, and with dispersion trading, it is 
possible to extract this alpha. However, due to 
the pivotal role of cost minimization and heavy 
computational requirements, it is evident that 
dispersion trading is the best fit for market 
makers and other sophisticated investors, who 
have a large edge over retail traders. 

As the strategies I introduced include many 
simplifications and emphasize practical value 
over parameter optimization, there is plenty of 
room to increase the efficiency of the strategy 
implementation. Further improvements are 
possible by, for instance, sizing the trades 
conditional on the level of volatility spread or 
implied correlation, thus combining high 
conviction with a large trade size. When 
implementing dispersion trading on indices with 
many component companies, one might also use 
partial tracking to limit the number of trades. 
Further research can also focus on the areas left 
out of this study, such as delta hedging, and 
introducing exit signals in addition to entry 
signals. These enable to modify the strategy’s 
risk characteristics according to the trader’s 
appetite, which highlights the flexibility of 
dispersion trading strategies.
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9. Appendix 
Figure 4: The volatility spread strategy return distribution plotted alongside normal distribution. 

 

 

 

Figure 5: The implied correlation strategy return distribution plotted alongside normal distribution 
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