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Abstract

T-helper cells are essential for adaptive immunity. During immune response T-helper cells are
influenced by cytokines which steer cell differentiation into cellular subsets having specific
functions. The process is affected by cellular subsystems and causes profound changes in epigenetic
modifications as well as gene and protein expressions which can be experimentally observed
using high-throughput technologies. This thesis has three objectives. 1) To identify and characterize
molecular elements involved in T-helper cell differentiation and immune response through
analyzing datasets using bioinformatic tools. 2) To develop computational tool to detect
enrichments of trait associated single nucleotide polymorphisms (SNPs) on genomic regions. 3)
To develop computational frameworks for characterizing dynamic models for

regulatory networks. The goals have been achieved in five studies.

In the first study, proteomes and transcriptomes of Th17 and iTreg cells were profiled and analyzed
to understand how they change during early phases of cell differentiation and how the
transcriptomes and proteomes of the cell types differ from each other.

The second publication characterized bindings of transcription factor (TF) STAT3 genome-wide
during Th17 cell differentiation. As a SNP can alter binding affinity of a TF, we investigated whether
SNPs associated with immune diseases co-localize in STAT3-binding sites. The analysis applied
publicly available information on SNPs and empirical statistical methods.

The third publication proposes a computational tool snpEnrichR implemented in R language for
facilitating co-localization analyses of SNPs and genomic regions. Co-localization analysis of SNPs
associated to various traits and STAT6 binding sites of cells differentiating toward Th2 type showed
that incorporating proxies of the tag-SNPs enhances co-localization detection.

The fourth publication introduced a method to infer dynamically evolving regulatory networks
from time-course data. The method couples mechanistic ordinary differential equation (ODE)
models with a latent process that approximates the network structure rewiring process. When
applied to Th17 RNA-seq data the method predicted lineage specific subnetworks that are activated
sequentially and control the differentiation process in an overlapping manner.

The fifth publication studies the dynamic interplay of histone modifications signaling enhancer
activity and transcription factor binding modeling them using systems of ODEs and simulated
time-course data focusing on the parameters of the models and model selection. The method is
able to find the correct model when measurement noise level is reasonable and the number of
measurement time points is adequate.

The datasets generated and the analyses performed as part of this thesis help to understand of
T-helper cell differentiation better. The developed computational frameworks and tools available
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T-auttajasolut ovat tirkeitd hankitulle immuniteetille. Immuunivasteen aikana T-auttajasolut
erilaistuvat sytokiinien vaikutuksesta alasolutyypeiksi, joilla on kullakin omat tehtavansa.
Prosessissa solunsisiiset jarjestelmét muuttavat solun epigenetiikkaa seki proteiinien ja geenien
ilmentymia. Solun molekyyleistd voidaan saada havaintoja suurikapasiteettimittaustekniikoilla.
Téssa vaitoskirjassa on kolme tavoitetta: 1) Tunnistaa ja luonnehtia erilaistuvien T-solujen
molekyylien toimintaa analysoimalla aineistoja bioinformatiikan menetelmin. 2) Kehittaa
laskennallinen menetelmi, joka tunnistaa SNPien rikastumat annetuilla genomialueilla. 3)
Kehittaa laskennallisia menetelmid solun dynaamisten séitelyjarjestelmien mallintamiseen.
Viitoskirjan tavoitteet saavutettiin viidelld tutkimuksella.
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Kolmannessa ty0ssi esiteltiin R-ohjelmointikielella toteutettu laskennallinen tyokalu snpEnrichR
helpottamaan eri ominaisuuksiin liittyvien SNPien genomialueilla rikastumisen analysointia.
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1. Introduction

The smallest biological, functional and structural unit of a living organism is
a cell. A cell is alive when it is able to grow, metabolize, respond to stimuli,
adapt and reproduce. Genetic information needed to accomplish the activities
characterizing life is encoded in DNA (deoxyribonucleic acid) sequence from
which it flows through RNA (ribonucleic acid) to proteins that are responsible for
many of cellular functions. The biomolecules interact with each other through
sophisticated chemical pathways that control the expression of the molecules
and activities they perform. Many branches of biological or life sciences have
been devoted to study biomolecules either one by one or at system-wide level.
During a couple of previous decades, technological advances have enabled more
and more large scale studies in the field by lowering the costs and speeding up
the experimental processes. Mass-spectometry, microarray and next generation
sequencing (NGS) (successor to the Sanger sequencing) based studies produce
huge amounts of high-throughput data from proteins, DNA, RNA and other
biomolecules for various applications which can be used to gain deep knowledge
of cells. Often such kind of data is called with names ending with -omics suffix
like genomics, transcriptomics and proteomics.

Prerequirement for applying microarray or next generation sequencing based
experimental procedures is completely sequenced genome (or transcriptome).
For example, publishing of the initial sequences of human, important animal
models and other genomes (Venter et al., 2001; Lander et al., 2001; Mouse
Genome Sequencing Consortium et al., 2002; Huttenhower et al., 2012) has
been vital for biomedical studies by providing reference sequences. Microarray
and NGS both can be used to, for example, measure gene expression, identify
copy number polymorphism, genotype single nucleotide polymorphisms (SNPs),
and capture sequences of interest for downstream analysis. Emperimental
efficacy has enabled immense efforts like 1000 genome project or ENCODE that
aimed to list genetic variation between individuals and functional elements in
the human genome, respectively (Birney and Soranzo, 2015; ENCODE Project
Consortium et al., 2004). Such projects as well as many databases provide
useful data sources for further use. The other high-throughput technology, mass
spectometry (MS), is used in proteomics and metabolomics (Aebersold and Mann,
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2003; Clish, 2015). MS has been applied successfully for many purposes, such as
identifying peptides, proteins, and post-translational modifications, measuring
protein amounts, characterizing the structure of the protein, and identifying
protein interactions with proteins or nucleic acids (Sidoli et al., 2016). Despite
the potential of mass spectrometry, it has not been applied as widely as NGS
perhaps due to the fact that both biological and statistical methods are still
maturing (Sidoli et al., 2016).

As high-throughput technologies have become standard tools in life sciences,
data processing and storage must be updated to meet the requirements of the
experimental data which is noisy, have high dimension and is often derived
from relatively small sample size (Muir et al., 2016). Bioinformatics and com-
putational biology combine computer science, mathematics and statistics with
biology in order to translate data into biological insight. The field is rapidly
evolving directed by the need for novel methods and software as well as by
creative application of existing tools. Because meaningful computational accom-
plishments require both high-quality experimental data and specialists’ ability
to evaluate new biological findings, the work is done in close collaboration with
experimental biologists.

The biological context of this dissertation is cell differentiation. More specifi-
cally, the biological questions relate to adaptive cell-mediated immunity and T
cell development. Cell differentiation refers to process in which progenitor cells,
that are able to develop into different kinds of specialized cells, develop into
some specific cell type steered by external stimuli. During differentiation cells
manifest changes in various subcellular systems which can be screened with
high-throughput methods. This thesis has a dual point view into the subject.
On one hand, the studies involve a lot of data analysis and bioinformatics. Such
work consists of a variety of tasks such as quality control of the data, hypothesis
testing or model selection and calibration, pathway enrichment, functional anal-
ysis, and data visualization. Each of them requires the choosing appropriate
methodology and tools accomplishing the task. On the other hand, this thesis
introduces novel methodology and computational tools. This part of the work
focuses on detecting significant co-localization of genomic regions and genetic
variation as well as on the mechanistic modeling of subcellular systems.

This thesis consists of five peer-reviewed journal articles, which are parceled
out in three themes. The first theme concerns the protein expression profiling
of Th17 and inducible T-regulatory (iTreg) cells. It catalogues proteomic and
transcriptional changes between the cell types and the changes that occur during
respective cell differentiation. The functional analysis of the findings is naturally
incorporated. The work covered in Publication I. The second theme concerns
deciphering the importance of genomic regions, such as transcription factor
(TF) binding sites, through genetic variation represented by single nucleotide
polymorphisms (SNP). Publication IT shows that STAT3 regulates human Th17
cell differentiation and reveals that SNPs associated with disorders in immunity
affect the binding affinity of STAT3 to DNA. As a part of the study, we utilized
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co-localization analysis of SNPs and TF binding sites. It provided insight that
otherwise hidden co-localizations may be revealed when the tag-SNPs are aug-
mented with other SNPs in their linkage disequilibrium (LD). The method, the
practical toolkit for such analysis and an illuminating test case is documented
in Publication III. The third theme focuses on finding suitable mechanistic mod-
els for subcellular systems when only a limited amount of data and a little or
conflicting prior knowledge of the system is available. Publication IV covers
modeling regulatory systems that change when time passes by due to the ac-
tions of latent molecules which is a likely scenario in differentiating cells. The
study represents a computational framework for model selection and parameter
tuning for such a model. The framework found the correct model for a simulated
setting and a promising model for the gene regulatory network steering Th17
cell differentiation using time series RNA-seq data. Publication V concerns the
enhancer activation regulating cell differentiation. The work aims to discover
what is required from the data in order to make reliable model selection.

The overall aim of this dissertation is to develop methods for multi-omics data
analysis, data integration and system modelling by applying diverse compu-
tational approaches ranging from statistical analysis to ordinary differential
equations (ODEs). This work introduces applicable methods and implements
them as usable software. The objective of these contributions is to facilitate
further experimental research in immunology as well as other areas of life
sciences.

The chapters of this thesis are organized followingly. To begin with, I briefly
introduce the biological concepts relevant to this thesis in Chapter 2. Then, I
continue with describing the main statistical, computational and mathematical
methods that have been applied in this dissertation in Chapter 3. The main
results of the publications are discussed in Chapter 4 to Chapter 6. Finally,
Chapter 7 contains the discussion and the main conclusions of this dissertation.






2. Biological background

A multicellular organism can be functionally complex incorporating various
specialized systems, tissues and cell types. For example, Bianconi et al. (2013)
have estimated that an adult human body consists of 37.2 trillion cells which
can be divided into roughly 200 different cells types (DeSanctis and Loreti,
2017). Despite this complexity, all cells originate from stem cells or already
slightly specialized progenitor cells that are able to develop into some mature
cell type (Seaberg and van der Kooy, 2003). This thesis considers mainly cell
differentiation in the context certain human and mouse cells involved in adaptive
immunity which is part of the immune system. Cell differentiation is a profound
process thoroughly affecting the molecular composition and cellular subsystems
of the cells. This dissertation traces and models them and additionally considers
the possible impacts of heritable differences in DNA to cells. The main classes
of molecules are DNA, RNA and protein. This chapter considers them from the
global point of view representing them as genome, transcriptome and proteome.

2.1 Genome

Nucleotides are essential monomers for encoding hereditary information. Nu-
cleotides participating this purpose are composed of three components: 1) a
deoxiribose monosaccharide, 2) a phosphate group and 3) one of the nitrogeous
nucleobases adenine (A), cytosine (C), guanine (G) or thymine (T). A nucleotide
forms one chemical bond with the sugar and another with the adjoining nu-
cleotide. These chemical bindings create larger molecules characterized by
the resulting nucleotide sequences. DNA consists of two nucleotide sequence
in reversed order forming double helix structure (Watson and Crick, 1953) as
shown in Figure 2.1. The nucleotide sequences are known as the strands of
DNA. Hydrogen bonds between the nucleotides in the complementary strands
connects the strands together. A nucleotides bond to T in the opposite strand as
well as C to G. The bonded nucleotides form base pairs used as the basic unit
measuring the length of DNA sequences. DNA constitutes the complete genetic
material of an organism known as genome. The definition enables the molecular
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study of genes despite apparently constant speculation about the quiddity of a
gene (Pearson, 2006; Gerstein et al., 2007; Portin and Wilkins, 2017).

P
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Figure 2.1. Well-known structure of DNA is nucleotide pairing in double helix form. The chro-
matin structure formed with histones allows very compact packaging for DNA when
needed. Usually, DNA structure is uncoiled enabling gene transcription. The view re-
flects central dogma of molecular biology which describes information flows through
the cells via stages as DNA replication, transcription and translation(Crick, 1958,
1970). This work studies dynamics of the information flow focusing on the actions of
the following cellular systems 1) single-nucleotide variations, 2) chromatin modifica-
tions, 3 ) changes in transcriptomes and proteomes as well as 4) biological pathways
and processes in T cell differentiation. Figure from Annunziato (2008)).

2.1.1 Chromatin and histone modifications

In cell nuclei, DNA molecules are packed compactly in chromosomes with the
help of chromosomal proteins. The structure consisting of chromosomal proteins
and DNA molecules is called chromatin as illustrated in Figure 2.1. Chromatin
has many functions. For example, it regulates gene expression, is involved in
mitosis and protects DNA against damage (Olins and Olins, 2003). Depending on
the stage of the cell cycle, chromatin can be more or less densely packed. Sparsily
packed chromatin is called heterochromatin and densely packed euchromatin
(Gaspar-Maia et al., 2011). The nucleosome is the basic repeating subunit of
chromatin. It is formed by an octamer which consists of two copies of each
histone proteins H2A, H2B, H3 and H4 or some noncanonical variant of H2A
and a stretch of double stranded DNA (B6nisch and Hake, 2012). The adjacent
nucleosome particles are separated by linker DNA. Linker histones H1 and H5
located outside of nucleosome participate in condensing chromatin fiber (Gilbert
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et al., 2005).

Each of the core histones consists of a long N-terminal amino acid tail and
a histone fold regions. In histone octamers, the fold regions are tightly con-
nected to each other while the tails extend out of the DNA-histone core. The
histone tails are subject to many kinds of covalent modifications that control
chromatin structure (Alberts et al., 2002). Modifications are abundant. There are
over 60 different sites on histone tails where modifications have been detected
(Kouzarides, 2007). By convention, post-translational histone modifications
are named by abbreviation starting with the affected histone, continuing with
the specification of the amino acid denoted by its abbreviation and location
number and ending with the type of modification and its count. For example,
H3K4me3 stands for trimethylation of fourth lysine residue from the beginning
of N-terminal of histone H3 (Turner, 2005). Histone modifications affect ac-
cessability of DNA and thus cellular processes such as transcription as well as
DNA replication and repair (Zentner and Henikoff, 2013). This thesis considers
only certain post-translational histone modifications. Acetylation in general and
methylation of lysine 4 have been associated with active transcription (Strahl
and Allis, 2000).

2.1.2 Genetic variation

Genetic variation is the difference in DNA sequences within a species. A common
source of the differences is point mutations which are permanent changes in
DNA sequence mapping to a single base pairs. This thesis focuses on those. New
point mutations are caused by errors in DNA replication or DNA damages due
to exposure to specific chemicals or radiation that are not corrected by DNA
repair enzymes (Lodish et al., 2000). Once the error is copied and fixed in the
DNA, it is considered as a mutation. Mutations can occur in both germ cells and
other cells which are called somatic cells. When mutations occur in germ cells,
they may become heritable and can over the time affect subsequent populations
(Griffiths et al., 2000).

A variant is a specific region of the genome which differs between two genomes.
Different versions of the same variant are called alleles. If there are different
alleles at a single position in DNA sequence, it is called as single nucleotide
variant (SNV). If it is sufficiently frequent within a population, it is called single
nucleotide polymorphism (SNP) (Brookes, 1999; Karki et al., 2015).

Genetic variations are often studied at a genome scale. In such case, samples
are compared with a reference genome that consists of reference alleles. A base
that does not match the reference allele at any given locus is caller alternative
allele. There may be several alternative variants per variant. The most common
allele in a given population is called major allele and the second most common is
minor allele. The associated (relative) allele frequencies are usually represented
fractions or percentages. Especially, minor allele frequency (MAF) is a commonly
represented measure for alternative alleles.
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Sexual reproduction involves a process called meiosis. It is a specialized type
of cell division that cuts the number of chromosomes half, creating four haploid
cells distinctive from the original cell. Generating a recombinant gamete after a
round of meiosis leads to the concept of linkage disequilibrium (LD). It measures
the association of alleles at loci in the same chromosome that are not random.
Let A and B be alleles at two loci nearby each other, AB be their combination
and pa, pp and pap be the respective frequencies. Then quantity known as
coefficient of linkage disequilibtion is Dag = pap — pApB, combination AB is
called haplotype and p 4 is haplotype frequency. LD is commonly quantified
using

pa(1-pa)pp(l1-pB)
which is a correlation coefficient indicating the presence of alleles A and B.

Haplotypes can be found a setting a proper threshold for 72 or D which is specific
for every allele pair. D = 0 means that alleles are statistically independent and
thus in linkage equilibrium. An LD block consists of loci that are in LD. The
name orginates from a common practise to graphically distinguish pairs of loci
with high levels of LD (Slatkin, 2008).

2.2 Gene and protein expression

The central dogma of molecular biology describes how information flows through
the cells via stages as DNA replication, transcription and translation (Crick,
1958, 1970). It emphasizes that DNA contains information cell needs to produce
its functional molecules such as RNA and proteins.

DNA is transcribed into RNA by a molecular mechanism called transcription.
In the process, enzymes called RNA polymerases produce new RNA molecules
from the template strand of DNA. The other strand of DNA known as coding
strand has the same nucleotide sequence as generated RNA except thymines in
DNA are replaced by uracils (U) in RNA. Other main differences between the
molecules are: RNA is single stranded and it incorporates ribose sugar instead
of deoxyribose sugar.

Transcriptome is the ensemble of all RNA transcripts in cells composing the
sample with associated transcription levels (Velculescu et al., 1997; Ozsolak
and Milos, 2011). RNA transcripts can be classified into numerous categories
based for example on their size, interaction partner or functional role (Kim et al.,
2009). A basic distinction is between non-protein coding RNA and protein coding
RNA (Mattick and Makunin, 2006). The latter can be translated into proteins by
ribosomes. The regions of DNA that encode a protein or some other functional
molecule is called a gene. When a gene is part of transcriptome, it is called
expressed.

A gene consists of genomic regions called exons and introns that alternate with
each other (Gilbert, 1978). Exons encode the coding regions while intron regions
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have other functions (Chorev and Carmel, 2012). Transcribed protein coding
gene sequences form first precursor messenger RNA (pre-mRNA). Subsequent
splicing removes introns from pre-mRNA and joins exons together to form
mature mRNA (Kornblihtt et al., 2013). Alternative splicing assembles exons in
various combinations which are translated into amino acids sequences linked
by peptide bonds in protein synthesis leading into many protein isoforms from
a gene (Smith et al., 1989). Alternative splicing of non-protein coding genes is
harder to interpret but is reckoned as universal phenomenon (Deveson et al.,
2018).

Only part of genome is expressed at a given time. Gene expression can be reg-
ulated in any RNA processing stage from transcription initiation to translation.
This thesis focuses on aspects affecting transcription regulation. It is compli-
cated including several highly orchestrated processes involving interplays of
various molecules (Sims et al., 2004; Saunders et al., 2006). Particularly central
regulator molecules are the ones belonging to a special class of DNA binding
proteins called transcription factors (TF) after their positive or negative impact
on transcription through DNA binding (Karin, 1990). TFs contain DNA binding
domains having affinity to bind particular DNA sequences called transcription
factor binding sites (Latchman, 1997). Genomic regions that contain at least
one TF binding site in the same chromosome as the gene whose transcription it
affects are cis-regulatory elements (CRE) (Wittkopp and Kalay, 2012). An acti-
vating CRE near the transcription start site (T'SS) of a gene is called a promoter
(Butler and Kadonaga, 2002). TF binding to a promoter enables initiation of
the gene transcription. Co-activating CREs that are farther away from TSSs
are called enhancers (Blackwood and Kadonaga, 1998). Their function does not
depend on the distance from or the orientation relative to the promoter (Maston
et al., 2006; Pennacchio et al., 2013). TFs and enhancers govern cell type specific
gene expression (Spitz and Furlong, 2012; Heinz et al., 2015). Certain chromatin
modifications are associated with enhancers (Heintzman et al., 2007, 2009;
Rada-Iglesias et al., 2011). This thesis considers both gene expression changes
and interplay between TFs and enhancer chromatin modifications during cell
differentiation.

Proteins consist of precise amino acid sequences that have folded into particu-
lar three-dimensional shapes, or conformations, that determine their function.
All proteins are able to bind other molecules. Such interactions change the chem-
ical and physical properties of proteins enabling dynamic functions cells perform.
There are various kinds of proteins with many kinds of functions. In addition to
already mentioned TF's and histones, the proteins can be for example signaling
molecules such as cytokines or hormones, antibodies to foreign substances or en-
zymes that catalyse chemical events such as kinases catalyzing phosphorylation
of other proteins. Proteins can form complex interaction networks that underlie
cellular function involving accommodation in circumstances which can depend
on both intra- and extracellular conditions. Proteins do most of the work of the
cells. They are important in biological pathways such as signal transduction and



Biological background
metabolic pathways as well as gene regulatory networks.

2.2.1 Data from nucleotide sequences

Many experimental technologies, such as many forms of high-throughput se-
quencing, DNA microarrays and real-time quantitative polymerase chain reac-
tion (QPCR), are based on tracking fluorescently dyed deoxynucleotide triphos-
phate sequences (ANTPs) (Goodwin et al., 2016). The methods concern DNA
but can be applied to RNA when it is converted to complementary DNA (cDNA)
using reverse transcriptase (Lowe et al., 2017). Nearly all RNA expression
levels of this study are quantified using Illumina sequencing with a few notable
exceptions. Publication I used published transcriptomics data obtained with
microarrays in addition to its original sequencing data and Publication II used
microarrays in STAT3 silencing experiments. In addition to gene expression
data, this dissertation considers genotypes and genetic variation, chromatin
modifications, transcription factor binding sites and disease associated SNPs
that are commonly quantified using these kinds of measurement techniques.
Often data is obtained from public databases.

In general, PCR uses an enzyme called thermostable DNA polymerase to
amplify short specific sections of DNA called amplicons. The process evolves
in cycles, and each of them doubles the amplicon. gPCR monitors fluorescently
labelled amplicon in real-time. During some cycle fluorescence is detected.
Earlier detection indicates higher initial amount of the target DNA.

In DNA microarrays, single-stranded DNA (ssDNA) probes are attached to a
solid surface. Target DNA present in sampled is labelled with a fluorophore and
hybridized to the probes on the array. The intensities of the fluorescent signals
measured by microarray scanners are used to quantify the bound molecules
(Heller, 2002). The signal strengths must be carefully pre-processed in order to
obtain values that can be treated as proxies for molecule abundances (Draghici,
2003). The methods for both preprocessing and data analysis are well estab-
lished as the technology has been widely used for a long time. In addition
to transcriptomics, DNA microarrays have been applied in studies focusing
on biological questions resembling haplotyping and protein binding (Hoheisel,
2006).

The main difference between microarray and next-generation sequencing
(NGS) is that NGS measures the nucleotide composition of DNA fragments
directly instead of utilizing predefined probes. There are various sequencing
platforms with specific properties and technical details affecting the experimen-
tal procedure (Goodwin et al., 2016). Illumina sequencer shown in Figure 2.2
processes raw images for sequenced DNA fragments and produces nucleotide
sequences, called reads, with associated PHRED quality scores in FASTQ format
(Cock et al., 2010; Ewing et al., 1998). This allows removing bad quality reads,
adapter sequences and assessing possible biases in nucleotide distribution etc.
(Andrews, 2010). When a proper reference is available, let it be transcriptome
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Figure 2.2. Illumina sequencing involves preparing the DNA library, generating DNA clusters
on a solid surface by bridge amplification generation and sequencing by synthesis
(Mardis, 2013) (Figure taken from Illumina (2010)).

or genome, reads are convenient to align against it. Reference sequences and
annotations such as UCSC known genes (Hsu et al., 2006), Ensembl (Zerbino
et al., 2018) and gencode (Harrow et al., 2012) are publicly available and well-
maintained. Numerous software tools can be used to perform alignment (Fonseca
et al., 2012). For example, a pipeline for differential gene expression analysis
proposed by Trapnell et al. (2012) incorporates software tools Bowtie (Langmead
et al., 2009) and TopHat (Trapnell et al., 2009) based on Burrows-Wheeler trans-
formation (Burrows and Wheeler, 1994) in its alignment steps. Alignments are
usually stored in human readable SAM format or corresponding compressed
binary BAM format. Both file types can be manipulated with samtools software
(Li et al., 2009), used with genome browsers such as IGV (Thorvaldsdéttir et al.,
2013) and use with feature counting software HT'Seq-count (Anders et al., 2015).
The following differential gene expression analysis is based on the read counts
mapping to the genes.

2.2.2 High-throughput protein expression data

In general it is harder to quantify proteome than transcriptome from biological
samples. However, mass spectrometry (MS) instruments have become more
sensitive and have achieved improved resolution enabling proteome-wide charac-
terization of proteins. Now, it is possible to quantify abundances of the proteins
and protein turnover rates or identify isoforms, post-translational modifications
and sub-cellular localizations of the proteins. (Aebersold and Mann, 2016; Breker
and Schuldiner, 2014; Larance and Lamond, 2015). Proteomics studies apply
either bottom-up or top-down approach. In bottom-up methods, proteins are first
cut into peptides, which are separated by liquid chromatography (LC) to reduce
the complexity of the sample before MS is used (Hosp and Mann, 2017). In top-
down methods no peptide cutting is applied (Toby et al., 2016). This facilitates
determination of post-translational modifications and protein isoforms (Choud-
hary and Mann, 2010). The procedures continue with ionizing the molecules.
MS measures their responses to electric and magnetic forces. There are plethora
of different tools and procedures to do MS analysis in practise (Savaryn et al.,
2016). Often they produce tandem mass spectra (MS/MS) containing information
needed to quantify the peptides and identify the proteins (Hosp and Mann, 2017).

11
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A basic distinction is between quantification protocols that label the samples
chemically with some stable isotope and label-free quantification (LFQ) (Ahmad
and Lamond, 2014; Zhang et al., 2013). The latter quantifies proteins either by
MS signal intensities or fragment spectra identifying peptides of a given protein
(Bantscheff et al., 2007). Intensity determination and normalization is chal-
lenging, because different peptides are present in different samples. Delaying
normalization and maximazing peptide ratio extraction attempts to overcome
the problem (Cox et al., 2014). In practice, computational workflows detecting
proteins and quantifying them from raw MS data are implemented in widely
used platforms such as MaxQuant (Tyanova et al., 2016) which we use in this
thesis.

2.3 Immune system

An organism’s immune system cooperatively protects it from pathogens such
as viruses or bacteria. It includes various biological structures to identify and
remove harmful agents threatening the system. Non-specific innate immunity
is composed of barriers such as skin or acidic environment that are hostile to
pathogens. Moreover, innate immunity incorporates various kinds of specific
immune cells having specific abilities to control inflammatory responses or
otherwise destroy pathogens as well as infected or cancerous cells (Janeway
et al., 2001).
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Figure 2.3. CD4" cells are central in orchestrating adaptive immune responses. When an anti-
gen on a Naive Th cell is recognized, it begins to polarize into specific Th cell subtypes
based on affecting cytokines. Different kinds of Th cells produce specific cytokine pro-
files which accordingly stimulate other immune cells (Figure reproduced from Schijns
et al. (2021) with licence CC BY 4.0 https://creativecommons.org/licenses/by/4.0/.)

Adaptive immunity involves specialized cells for clearing pathogens in a sys-
temic way. The two types of adaptive immunity are humoral immunity mediated
by B cells as well as cell-mediated immunity incorporating T cells illustrated
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in Figure 2.3. The surfaces of these cells have specific receptors for substances
that cause immune responses commonly known as antigens. Receptors for T
and B cells are, well, T cell receptors (TCR) and B cell receptors (BCR). (Alberts
et al., 2002). Based on presence of co-receptors, cluster of differentation 4 (CD4)
and 8 (CD8), T cells have been subclassified into CD4* T helper (Th) cells or
CD8* cytotoxic T cells. Major histocompatibility complex (MHC) on antigen
presenting cell (APC) interact with CD4 or CD8 co-receptor making T cells
response. Cytotoxic T cells kill infected cells and T helper cells secrete specific
cytokine proteins other immune cells use for their purposes.

2.3.1 Th cells

Th cells first develop in thymus, then they move to spleen and lymph nodes
where they mature into naive T cells. When a naive T cell recognizes an antigen
represented by MHC class II protein on APC, it becomes activated. Complete
activation, that leads to actual T cell proliferation and polarization, requires two
additional conditions to hold. Co-stimulatory protein CD28 must have sufficient
stimulation from its counterparts on APC and T cell must have proper cytokine
stimulus (Corthay, 2006). Cytokine environment determines which of four major
T cell subtypes (Th1, Th2, Th17 or Treg) it begins to differentiate into (Zhu et al.,
2010). Thl and Th2 were the first recognized Th cell types (Mosmann et al.,
1986). Later discovered Th17 and Treg form another pair of Th cell types. Former
has been associated with tissue inflammation and autoimmune disorders (Korn
et al., 2009) while latter does the opposite suppressing the immune reactions
(Bettelli et al., 2006). Cell type is recognized by specific signature cytokines they
produce or the gene expression of regulatory transcription factors (Zhu et al.,
2010). However, already differentiated Th cells are able to change their function
according to changing circumstances (DuPage and Bluestone, 2016).
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3. Statistical inference

The research problems of this thesis are data-driven requiring the selection of
suitable statistical inference methods for each of them. For example, detecting
whether phenotype-associated genetic variations are significantly co-localized
or not in given genomic regions calls for hypothesis testing on an empirical
distribution. Assessing differences in gene expression both at transcription
and post-translational level between different kinds of cells calls for regression
analysis and associated hypothesis testing. Such differential gene expression
(DGE) screen reveals differentially expressed genes which can be further divided
into up-regulated or down-regulated genes or proteins. Downstream analyses
such as pathway enrichment or gene set enrichment analysis (GSEA) pursue
profound insight into the actual cellular functions occurring in cells. Further-
more, mechanistic modeling presumes linking models to data, assessing the
mathematical properties of a dynamic model, and a model selection procedure
to estimate the suitability of models to describe data. This chapter introduces
the key concept of the applied statistical techniques used in Publications I-V.

3.1 Statistical hypothesis testing and empirical p-value

Statistical inference commonly utilizes a method called statistical testing. The
underlying idea is that observed data are an outcome of random variables and
a statistical model can be constructed to describe the probability distribution
of the random variables. Often a statistical model is given as the probability
density function f. If f is fully determined using a particular mathematical
model with parameters v, the model and associated methods and techniques are
called parametric. If a model does not have a fixed number of parameters but the
effective number of parameters increase with the number of data points instead,
then the model is called non-parametric. In any case, it is possible to set a
conservative null hypothesis Hy to suggest that a simple model is responsible for
the observations. Test statistic T is selected to measure the discrepancy between
the data and Hy. By convention, large values of T are considered evidence
against Hy. The level of evidence against Hy is measured by the p-value or the
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significance probability
p =Pr(T = t|Hy), 3.1)

where ¢ is the observed value of T'. Let ¢, be such that from ¢, > ¢ follows that
Hj is rejected at level p, or 100p%, then ¢, is called critical value for ¢. Formal
definition of ¢,,, Pr(T = ¢, |Ho) = p results in an interpretation that p is the error
rate of the test. The distribution under Hy is called the null distribution of T'.

The p-value 3.1 has a uniform distribution on [0, 1] under Hy if T is continuous.
Hence, corresponding random variable P has a distribution

Pr(P < p|Ho) = p. (3.2)

Sometimes, it is accentuated that this is not exactly true if T discrete. Still,
Equation 3.2 can be considered as a valid estimation even if T is continuous.
Equations 3.1 and 3.2 are equivalent which highlights the mentioned interpre-
tation of p-value being the error rate of the test.

It is important to note that a p-value comes from a single test whereas typically
in bioinformatics multiple comparisons are applied to the same data simulta-
neously. When many tests are performed, it becomes increasingly likely that
significant p-values occur by random chance. Therefore, p-value is not a feasible
measure of statistical significance when simultaneous multiple comparisons are
performed. There are many ways to control this problem such as family-wise er-
ror rate (FWER) and false discovery rate (FDR) which is the expected proportion
of the accepted tests, when the null hypothesis should have been rejected, to all
tests found significant. In this thesis, false discovery rates are controlled using
Benjamini-Hochberg method. It assumes the tests are independent. First, the
p-values are ordered in ascending order. The smallest p-value has a rank of i = 1,
then next smallest has i = 2, etc. Then, each individual p-value is compared

=
total number of tests, and ¢* is the set false discovery rate. The largest p-value

to its Benjamini-Hochberg critical value, ( ) q*, where i is the rank, m is the

that has p < (#) q* is significant, and so are all other p-values that are smaller
than it (Benjamini and Hochberg, 1995). Even though the method as such
does not produce adjusted p-values, the procedure is commonly interpreted to
define adjusted p-value as pagjusted = poﬁginal% which produces a list of adjusted
p-values in an ascending order. In practice, the order of adjusted p-values
is enforced by setting q;+1 = q; whenever g; > q;+1. Such list enables a more
flexible inspection of multiple comparisons than setting a fixed ¢* in advance.
The method is straightforward and hence widely applied, even when it is not
realistic to assume that data is independent.

Consider a sample of data y1,...,y, and assume it is an outcome of independent
and identically distributed random variables Y7,...,Y,. It is possible to base a
statistical test either on a theoretical model for the data or just on the actual
observed — or empirical — data. In the latter case, the data is said to follow an
empirical distribution that puts equal probabilities n~! at each sample value y e
The probability distribution is described nonparametrically using the empirical
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distribution function (EDF), F , which is defined by

~ #y; <y}
Fy)= ytn y ,
or more formally
~ 1<
F(y)=—)>» H(y-y)), 3.3
(62) n; -v;) (3.3)

where H is the Heaviside function

0, ifx<0
H(x)=
1, ifx=0.

A suitable test statistic T is selected and null distribution Hj is formed in
order to apply EDF in statistical testing. The empirical distribution F of test
statistic T following null hypothesis Hj is denoted by F 0. In practice, it may be
difficult to calculate the exact empirical p-value

p =P(T = t|Fy). (3.4)

Hence, it is approximated by comparing observed test statistic ¢ to R independent
replicate samples t7,...,¢5 drawn from Fo. The p-value is then approximated by
simple proportion of the drawn test statistics ¢* reaching or exceeding ¢

#it* =1t}
Pemp = —pH— (3.5)

Sometimes in literature approximation (3.5) is modified by adding ones to both
numerator and denominator (Davison et al., 1997, p. 148). By definition, em-
pirical significance testing involves drawing repeated samples of empirical null
distribution of test statistic. However, test statistics can also be obtained in-
directly without drawing random numbers from Fo directly. In such case, one
computes test statistics for the original observed data set y and for data samples
¥1,...,¥R that are drawn from the same empirical distribution as y is drawn.
This approach is adopted to the SNPs and genomic regions co-localization anal-
ysis. The observed data set and the corresponding randomly drawn data sets
were all composed of equally many SNPs. Computed test statistic were the
counted overlaps between the SNPs in the sets and given genomic regions.

3.2 Linear and generalized linear models for detecting differentially
expressed genes

Consider detection of differential gene expression (DGE) both at transcriptional
and at post-translational level between two sample groups or biological con-
ditions. DGE and the related downstream analysis connecting it to actual
biological functions occurring in the cells motivates the transcriptomics and
proteomics screens in this thesis. The analysis is based on statistical regression
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where the models take the distinctive character of the data obtained by different
high-throughput technologies into account. Mass spectrometry quantifies pro-
teomics data which is summarized as protein intensities considered normally
distributed after logarithmic transformation. In this case, the standard linear
model is a natural selection (Hoyle et al., 2002; Kammers et al., 2015). RNA
sequencing (RNA-seq) read data are mapped to the reference transcriptome and
summarized as read counts mapping to the genes thought to follow a distribution
that can be approximated well with a distribution from the exponential family
and hence generalized linear model is well-justified (Anders et al., 2013). Nev-
ertheless, this is not the only option. Huang et al. (2015), for example, reviews
the methods of differential expression analysis for RNA-seq and acknowledges
several alternative approaches that make different assumptions of data distri-
bution. For example, Poisson, beta binomial, full Bayesian, empirical Bayesian
and nonparametric models have been used.

Assuming data vector y; for a gene i is normally distributed, linear model is
defined by expectation of y; being a linear combination of the predictor variables,
given as design matrix X, and regression coefficients 8

E(y;)=X8B. (3.6)

Thus, y; ~ A& (Xﬁ,azl). Generalized linear models (GLMs) extend the concept
by relaxing the normality assumption by introducing an invertible link function
g to Equation (3.6),

E(y) =g '(Xp) 3.7)

and a function which tells how the variance depends on the mean.

The data analysis applies two software tools based on these model families.
Limma (linear models for microarray data) is used when the summarized data
values are considered as normally distributed on logarithmic scale (Smyth,
2005). Othwerwise, the data is summarized as read counts and treated as
generalized linear model with edgeR (Robinson et al., 2010). Both tools are
widely used in bioinformatics as they are implemented as part of Bioconductor
project in R language (Gentleman et al., 2004; Thaka and Gentleman, 1996).
The benefits of Bioconductor packages include they are well developed as well
as maintained and documented actively. It is worth to note that edgeR is not
the only software package in Bioconductor that approaches DGE with similar
statistical framework. Especially, DESeq (Anders and Huber, 2010) and later
DESeq2 (Love et al., 2014) have been somewhat popular in similar studies.

Originally, limma was developed to facilitate construction of linear models to
enable DGE from microarray data under various experimental designs (Smyth,
2005). This is accomplished by constructing individual linear models of the form
of Equation (3.6) through two matrices. Design matrix X indicates the conditions
affecting the samples, and contrast matrix C indicates which comparisons are
made between the samples. The fitted models yield gene-specific contrasts of
coefficients E ;. Importantly, analysis is based on an empirical Bayes model whose
global hyperparameters connects the gene-wise models together. This enables
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Figure 3.1. Limma provides statistical tools to manage experiments with small sample sizes
and variant quality gene signals for more powerful statistical testing (Figure from
Ritchie et al. (2015).)

information borrowing between the genes to obtain posterior variance estimator
87 2 for each gene as shown in Figure 3.1 which aims to improve statistical testing
especially when experiment has a small size. Modified variance estimation is
used to build a test statistic ¢ for null hypothesis Hy : §;; = 0, for a gene i and
constrast of coefficients j under F-distribution. More recently, application of
limma is spead from microarray studies into proteomics and RNA-seq data
analysis (Kammers et al., 2015; Law et al., 2014; Liu et al., 2015). In this thesis,
limma is used in detecting differentially abundant proteins whereas RNA-seq
analysis is based on generalized linear models as implemented in edgeR.

EdgeR models count-based data with the negative binomial generalized linear
model using log link function. A reasoning for this approach can be derived
considering read counts as random variables. The number of reads in a particu-
lar gene (or any genomic region) i in a sample j can be considered as random
variable Y;; which follows binomial distribution %(N;, p;;) where N/ is the total
number of reads in the sample and success probability p;; is the unknown rela-
tive expression of gene i. If G is the total number of genes in j, then Z?:l pij=1
In this case, the probability p;; is usually quite small because of the large size of
a genome even if N; is large. Thus, binomial distribution can be approximated as
Poisson distribution Pois(1) , where parameter A represents both the mean and
the variance that are equal (Hodges and Le Cam, 1960). However in practise,
Poisson distribution is known to capture technical variation but not biological
variation between samples (Marioni et al., 2008). In fact, variation between
samples often exceeds the mean. The overdispersion relative to the mean can be
modeled with negative binomial (NB) distribution Y;; ~ NB(y;;,;), where the
mean is

E(Yij) = pij=pijN;
and the variance is
var(Yij) = /Jl‘j(l + /Jij(,bl‘). (3.8)
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Log-linear model for each gene is

Hij\ _ Tp
10g (N]) _Xj ﬁl’

where xf is the vector of covariates that specifies the treatment conditions
applied to sample j in the experimental design, and B; is a vector of regression
coefficients by which the covariate effects are mediated for gene i. Equation
3.8 embodies quadratic relationship with the mean depending on an additional
dispersion parameter ¢; (Robinson and Smyth, 2007). This stresses the im-
portance of finding a reliable estimate for ¢; as the variance, and so much of
the inference rests upon it. Usually in GLM theory, model is fitted iteratively
by using Newton-Rhapson algorithm which is equivalent with Fisher scoring
#; and leads to maximum likelihood estimates (MLE) (McCullagh and Nelder,
1989, p. 40-43). While maximum likelihood estimates are intuitive and easy to
form given the data, MLEs for variance parameters are systematically underes-
timated (Robinson and Smyth, 2008). McCarthy et al. (2012) suggests applying
Cox-Read adjusted profile likelihood (APL) for reducing the bias in MLE

-1
APL;(¢;) = Ui yi, i) — §logdetﬂi,

where [ is the log-likelihood function, y; is the vector of read counts for gene
i, ﬁi is the estimated coefficient vector and .#; is Fisher information matrix.
APL can be used to share information across genes in dispersion estimation
in three alternative ways: (i) estimate a common dispersion, so that ¢g = ¢,
by maximizing the shared likelihood function APLg(¢p) = é Z?:l APL;(¢), (i)
estimate trended dispersion ¢g; using local shared log-likelihood APLg; (¢>i)
defined as a weighted average of the APLs for gene i and its neighbouring
genes by average read counts, or (iii) estimate genewise ¢; by maximizing
APL;(¢;) + GoAPLg;(¢p;) where Gy is the weight given for the local shared log-
likelihood. Likewise in microarray transcriptomics, information sharing in
dispersion estimation aims to more robust inference where number of biological
replicates per condition of RNA-seq experiments is small. Use of contrast
matrices enables formulating variously complex null hypotheses which can be
tested using either quasi-likelihood (QL) F-test or likelihood ratio test.

3.3 Functional analysis of genes and proteins

A list of differentially expressed genes - or abundant proteins - may be a valuable
resource for biologists interested in particular molecules helping them to direct
their further work. However in general, such list is seldom a satisfactory end
point for a high-throughput screen. More often, the interest is in the physiologi-
cal or functional meaning of the detected molecules. This leads to investigating
molecules as groups with an underlying idea that, if a cellular process is atypical,
then the related molecules should emerge as a group. Nowadays, many public
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databases provide functional annotations for genes. This enables utilization of
statistical testing to decide whether an annotation is overpresented given genes
detected in the study. There are numerous computational tools using different
statistical tests for functional enrichment analysis (Huang et al., 2008). This the-
sis applies two widely applied methods. Hypergeometric test corcerns only genes
that are differentially expressed whereas gene set enrichment analysis (GSEA)
covers all genes with positive read count (Tavazoie et al., 1999; Subramanian
et al., 2005).

The hypergeometric distribution considers sampling without replacement. It
is commonly explained by a metaphor of drawing marbles from an urn or a jar.
Obviously, there can be only a finite number of marbles N in the urn. Assuming
the marbles are either blue or white implies that, if K marbles are blue, then the
rest N — K are white. Say we are interested in blue ones. That defines drawing
a blue marble as a success and white as a failure. Let the random variable
X be number of successes in the sample consisting n draws. Now, probability
mass function (pmf) of the hypergeometric distribution of observing exactly %
successes is defined by
K) (N—K)

fe,N,K,n)=Pr(X =k)= (k(N")k

where n is the number of draws. This can be used to decide whether or not the
observed £ number of successes (i.e., blue marbles) is statistically significant or
not. Let us set a conservative null hypothesis that n observations do not correlate
with the specific class composed of K objects. Observing & overlaps between
the observations and class members implies p-value p =1 - Zf;ol fG,N,K,n).
Let us return to bioinformatics from the illustrative urn parable. Now, the
hypergeometric test is applied separately for each pathway as shown in Figure
3.2. Variable n is the number of differentially expressed genes (DEGs), N is the
number of genes in an organism, K is the number of genes in the annotation,
N - K is the number of genes not in the annotation, % is the number of DEGs in
the annotion and n — & DEGs in the sample that are not in the annotation. The
choice of gene universe affects heavily hypergeometric test results. In this thesis,
gene universe consists of genes with successfully quantified (i.e., non-zero) signal
in the high-throughput screen. This kind of straightforward post-processing
of DEGs gives an intuitive view on the altered cellular functions between the
biological conditions. However, it misses subtler differences not detected by DGE
analysis in the first place. GSEA pursuits to detect coordinated but possibly
modest changes in gene expression on some prespecified sets of related genes
such as pathways by considering all genes in DGE screen instead of a DEG list
(Mootha et al., 2003).

GSEA is a nonparametric method. It involves all quantified genes in study.
That means all proteins quantified by MS, genes having probes in a microarray,
or genes having positive read counts in a RNA-seq experiment. The method
is based on a running sum statistic going through the ranked gene list from
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n-k

Figure 3.2. Hypergeometric test shown as a Venn diagram. Yellow area and the other colored
areas surrounded by it depict the set of all genes in the gene universe. Purple shows
the genes involved in a given annotation while blue represents the set of DEGs.
Different shades of purple emphasize that some of the genes in the annotation have
been found as DEGs in the preceding DGE screen whereas some others have not met
the statistical significance level.

top to bottom. The sum is increased when the gene is in the annotation and
decreased when not. The size of the increment depends on the correlation of
the gene with the phenotype. The enrichment score (ES) is the approximated
weighted Kolmogorov—Smirnov-like statistic. The score aims to reflect how much
an annotation is overrepresented at the top or bottom of the ranked list. P-value
for a gene set is derived using a permutation test. When multiple gene sets are
evaluated, ES for each gene is normalized to account for the size of the set and
FDRs are used to control multiple testing problem (Subramanian et al., 2005).

3.4 Modeling biological systems

Biological systems can be viewed as deterministic dynamic systems which are
often modeled by systems of ordinary differential equations (ODEs)
dx
— = f(x,04,t) 3.9)
T f(x,05
where the state vector x € R"x often consists of the concentrations of the molecules
at time ¢ and 0, € R™ is the parameter vector. The initial value xg = x(¢¢) is
the state at initial time ¢(. Initial values can be considered as parameters as

22



Statistical inference

well. Vector field f : R** x R"® — R"= defines the dynamics of the biochemical
species. It describes the structure of the model by specifying the relations be-
tween molecules as well as their production and degradation mechanisms. If
the modeled system is linear and sufficiently small, the initial value problem
x(t,0,) : [to,t,] x R"= — R"™= may be both possible and feasible to be solved in a

closed form .

x=x0+ | f(x,0,0dt. (3.10)
to

Generally in computational biology this is not the case and solutions for the
initial value problems are approximated by means of numerical integration. This
thesis utilizes highly optimized numerical ODE solver CVODES implemented
in the SUNDIALS package (Hindmarsh et al., 2005). The systems of ODEs in
this thesis are moderately large compared to some rather ambitious efforts in
computational system biology. In practice, this means the number of the model
parameters does not overwhelm the number of the model outputs indicating
forward sensitivity analysis (FSA) is sufficient in parameter estimation. Some
of the candidate models in our studies, may contain wirings that lead to numer-
ically stiff problems. Therefore, backward differentiation formula (BDF) with
Newton iteration and dense Jacobians are applied to solve ODEs numerically.
The technical details of the methods are explained by Serban and Hindmarsh
(2003). Perhaps computational efficiency and flexibility have made CVODES
a popular solver. It is incorporated for example in several platforms designed
for computational biology (Raue et al., 2015; Frohlich et al., 2017; Stapor et al.,
2017).

Depending on the modeled system, the structure can be assumed to remain
static over time, or it may be subject to temporal evolution. In Publication IV, we
modeled the latter case by introducing latent processes ¢(t,0,) : [to,t,] x R0 —
R"¢ where ng, represents the number of parameters 6, of the latent state ¢ that
is able to rewire the system and n/ is the dimension of the latent state. Each
component of Equation 3.9 is coupled with latent states via a weight function
w which controls the impact of the latent state depending on the concurrent
structure and time
Ji

dx;
S fii %, 00w, 000,21, 2 jn,); (3.11)
J

dt

where i = 1,...,n, and J; is the number of terms affecting x; inducing J =
Z?;H J; and Z € {0,1}** which is the incidence matrix indicating relations
between variables, and the weight function is

> ori1zrli(t,00)
D orlilr(t,00)

The solution for the coupled ODE system 3.11 is x(¢,04,4(t,0,),Z) € R™=.
It is vital to link theoretical models and observables to experimental time-

w(t,[,az,Zjl,...,Zjn[):

series data 9 = {{%ik}?;‘l, tk}Z‘:1 using statistical models that characterize well
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the modeled problem and respect the properties of the data. This ensures the
relevance of the study as proper statistical models enable weighing the data
objectively, disseminating the uncertainty of the measurements through the
models and facilitate interpreting the obtained results. In our work, the noise
is assumed to have normal distribution. Hence, the experimental data 2 is
modeled by

Xik =% (r,0x) +€ip,

where €;, ~ A (0, U?k) and x; (t3,0y) is used as a shorthand to denote the solution
xi(t,0x,¢(t,0¢),Z). In addition to the model parameters 6,, a model may contain
variables, such as standard deviation o, that can be considered as parame-
ters. Hence, we denote parameter vector more generally by 8. The modeled
observations are calibrated to the experimental data using maximum likelihood
estimation. The likelihood of observing & for the parameters 0 is

nhx N _ 2
ir —xi(t,,0
Lo®=][]] —= <—(xlk xillr,0)) > (3.12)
\/2 203,
i=1k=1 T[O'k
and MLE 0 for the parameters is
0 = argmin £(0). (3.13)

0cQy

Z4(0) depends on the solution of the model via observables. Therefore, estimat-
ing 0 is an ODE-constained optimization problem. Generally, ODEs must be
solved numerically as they rarely have closed form solutions. In order to obtain
as stable numerics as possible, 0 are estimated by minimizing the negative
logarithm of the likelihood. The objective function _#(0) = —In(Z»(0)) is

ny ng 2
2O)== ZZ <1n27m,k + (WW)) . (3.14)

lel ik

Usually in computational biology, the objective function may have multiple local
minima caused due to the optimization problem which is often nonlinear and
non-convex. This calls for a global optimization procedure. This thesis applies
local multistart optimization with initial values derived from latin hypercupe
sampling. In latin hypercube sampling, N samples of parameters 8 are obtained
by dividing the ranges of every parameter 6; into N non-overlapping segments,
each having equal probability, and then sample N points of each segments
segments so that each sample is the only one in each axis-aligned hyperplane
containing it (Owen, 1992). Each multistart is optimized using interior-point
algorithm.

Interior-point algorithm demands the gradient of the objective function with
respect to the parameters. It is estimated with forward sensitivity analysis
known to produce accurate gradients (Hindmarsh et al., 2005). The gradients
are computed upon the output trajectories of the system x(¢,0,) which we
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consider as observables. The (first order) forward sensitivities are obtained
simply by differentiating the ODEs with respect to its parameters

_ d %(t,0x)
T dt de,

X

They are used to obtain the gradient of the objective function 3.14. If variance is
fixed and known, the gradient has form

ot Xip — xz(tk) x
ag -y

i=1k=1

In some cases variance can be considered as a parameter i.e. a component in the
parameter vector 0 and is inferred with the rest of the model. In such cases, we
assume data is homoscedastic. Hence, the gradient of variance has form

et (1 @i —xit)?
L33 (G- Tt

i=1 k=1 (02)2

Parameters define the dynamic behaviour of the model. Therefore, they may
carry a lot of information about the dynamics themselves as well as the model
and its relation to the data. In practice, the parameters and specifically their
identifiabilities are assessed with profile likelihoods. Profile likelihood of param-
eter O, k€ {1,...,ng} at point c is defined by

PLg,(c) =  max - £(0). (3.15)
PL is computed by solving a sequence of optimization problems where PLg, (c) is
computed in a grid {c;}. For each point ¢, the negative log-likelihood function
3.14 is minimized subject to 87, = ¢. The minimization yields the optimal param-
eter vector, 07, the corresponding negative log-likelihood function _#(6;) and
the profile likelihood PLy, (c) = —_#(0). The process starts from MLE 6* and
progresses iteratively in both directions. In each iteration, new value for c is
selected adaptively, and parameters are optimized locally.

Two times the negative log-likelihood 2_¢ is also known as x2 or the goodness of
fit statistic. It is used to derive the confidence intervals for the profile likelihoods.
The confidence interval of the k' parameter at the confidence level « for profile
likelihood 3.15 is defined asymptotically by

Cly, o = {c | PLy, (¢) = min—7 (6) - A(“)} (3.16)

2
where the threshold A(a) is given by a-quantiles of y? distribution with one de-
gree of freedom. The confidence intervals classify parameters in three categories.
Identifiable parameters have clear profile likelihoods with unique maximum and
a restricted interval for the required threshold. Structurally non-identifiable
parameters have flat profile likelihoods indicating infinite confidence intervals
for any confidence level a. It means that any change of value of such parameters
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does not affect the likelihood as the other parameters are able to compensate the
changes. The data provides no information about such parameters. Practically
non-identifiable parameters have such profile likelihoods that exhibit unique
optimum but do cross not the threshold. In such a case, the data contain infor-
mation about the parameter, but the parameter range is unlimited. Figure 3.3
illustrates the identifiabilities of two parameters in terms of profile likelihoods.

PL
PL

Ok Ok

Figure 3.3. An identifiable parameter is on the left and a practically unidentifiable parameter
on the right.

This thesis models such cellular subsystems that do not provide sufficient
theoretical information to enable specifying a mathematical model a priori
without a doubt. Instead, models describing several plausible explanations for
the phenotype are considered in order to infer the best possible model from data.
Unlike previous sections where inference were based on statistical testing, model
selection is based on model ranking. A natural idea is to rank models according
to MLEs. However, when comparing MLEs of different models, there tends to be
bias that more complex models overfit the data. Bayesian information criteria
(BIC) for model .#; corrects the bias by penalizing the maximum log-likelihood
In %y (5 Mi) with the number of data points ng and the number of parameters

ne,,

~ 1
BIC.., =In%5 (0.4,) - 76,4, Inng. (3.17)

The concept is derived in Bayesian context, by approximating marginal like-
lihood of the data given model Pr(2 | .#4;) with the Laplace approximation of
an integral. Equation 3.17 defines BIC for the regular systems of ODEs of the
form Equation 3.9. Precise treatment of coupled models defined by Equation
3.11 involves prior probabilities of the model structures Pr(Z). In general in
model selection holds Pr(Z | ) = %. However in this work, all model
structures are assumed to be equally probable a priori , and In(Pr(Z|2)) reduces
to Equation 3.17. When the number of the candidate models is reasonable
small, it is conceivable to compute all BICs and find the highest ranked model.
However, when the number of models increases, this it not always possible in
practice. In such cases, model selection can be done using a greedy stepwise
forward-backward model selection algorithm. It records the best model structure,
causes individual changes into it and monitors their impact on BIC. Process is
iterated until no improvement occurs.

This thesis applies Bayesian information criteria in model ranking as it is
widely used and easy to evaluate. However, it has limitations to be aware of. It
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assumes that correct models are under consideration - which may not always
hold for every experiment (Kuha, 2004). Moreover, BICs does not contain prior
information of parameters 6 as it has been reduced from the formula based on
assumption the prior is unknown. In cases where model selection is crucially
based on prior information Pr(6), Bayesian factors may have an advantage
(Vyshemirsky and Girolami, 2007). Even though BIC would be considered
inherently a non Bayesian statistic, it requires sufficiently large data sample to
tightly constrain the parameter values making them well-determined (Bishop,
2006).
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4. Proteomic profiles in Differentiating
Th17 and iTreg cells

In this chapter I highlight some of the main results of Publication I.

4.1 Biological objective and experimental design

In this publication, we studied differentiation of Th17 and Treg cells from Naive
T helper cells (Th0). The cells are central in adaptive immunity having opposite
responsibilities: Th17 drives the immune responses while Treg suppresses
them. The balance of these actions are important for immune homeostasis.
Disturbances are related to cancer and autoimmune diseases. Although the
polarized cells have contrasting characters, they both originate from the same
cell type requiring the same cytokine transforming growth factor 3 (TGFf3) for
their cell fate. Th17 and Treg lineage commitment is mainly driven by presence
of cytokines interleukin 6 (IL6) and interleukin (IL2), respectively (see Figure
2.3). The differentiation process involves thorough changes in gene expression
which can be observed in transcriptomics as well proteomics level. Previous
studies had concentrated on the former revealing the regulatory networks and
many TFs orchestrating the cell differentiation by using NGS experiments.
This work went further by considering the proteomes of the cells using the
experimental procedure summarized in Figure 4.1 and applying statistical
methods described in Section 3. We hypothesized that the proteome and the
transcriptome profiles differed from each other within and between cell types.
The main results were (1) the quantified proteome catalogues of polarizing Th17
and Treg cells, (2) protein expression changes occurred during differentiation,
(3) differential protein expression between Th17 and iTreg cells, (4) comparison
of gene expression between transcriptomics and proteomics levels, (5) biological
verification of some of the findings. The results fit well with the hypotheses.
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Figure 4.1. (a) The experimental procedure: Naive CD4* T (Thp) cells were isolated from the
spleens of the animals and were in vitro polarized either towards Th17 or iTreg cells.
Thp cells were cultured for three days. Th17 cells were differentiated in 72 hours
and iTreg cells in 10 days of culturing. (b) The success of the differentiation was
confirmed by detecting expression of interleukin 17 (IL17) for Th17 and forkhead box
P3 (Foxp3) for iTreg. The transcriptomes and the proteomes were quantified with
Illumina sequencing described in Section 2.2.1 and lliquid chromatography (LC-MS)
and label-free quantitation (LFQ) represented in Section 2.2.2, respectively. The
quantified data was analyzed applying methods and tools covered in Section 3. For
data analyses, experimental design was blocked pairing replicates between cultures.

4.2 Quantified proteomic profiles of polarizing Th17 and iTreg cells

This study is based on experimental work which produced quantitative proteome
characterizations of polarizing murine Th17, iTreg, activated (Th0) and Thp
cells. The procedure comprising the sample preparation, mass-spectrometry
analysis and data quantification produced proteomics data summarized as
protein intensities. For this purpose, three independent cultures of each cell
types were processed. In total, intensities of 4,287 protein groups were detected.

The data showed that 1) different T cell lineages had distinguishable expres-
sion profiles, 2) the protein intensity profiles were consistent across all biological
replicates of each cell type, 3) proteins across a wide range of expression were de-
tected, 4) first quarter of the cumulative intensities was mostly attributed to the
cytoskeleton and glycolytic enzymes, 5) majority of the proteins were expressed
in all T cell lineages including many proteins known to be involved in all T cell
types, 6) detected proteins were annotated to almost all cellular compartments,
and 7) proteins annotated to extracellular space included cytokines important
in deciding fate of polarizing Th cell. Together, these observations suggest the
data constitute proteome profiles of T cell subsets at a reasonable coverage and

resolution.

30



Proteomic profiles in Differentiating Th17 and iTreg cells

e

-log10 (adj. p-value)

sabi

-log10 (adj. p-valuc)

ket

log2 (Th17/Th0) e T 0
0g2 (iTreg/Th0)

Figure 4.2. Volcano plots visualize signals of biological (fold changes) and statistical (adjusted
p-values) significance of each protein with respect to each other. Up- and down-
regulated proteins are denoted by red or blue color, respectively. Among DE proteins,
cluster of differentiation 69 (CD69) was significantly down-regulated in both Th17
and iTreg cells. It is a marker of early T cell activation with an immune regulatory
role. Special AT-rich sequence-binding protein 1 (SATB1) known to be a chromatin
organizer was highly expressed in Th17 cells and lowly expressed in iTreg. Moreover,
inflammation related transcription factor 7 (Tcf7) was highly expressed in Th17 cells.
IKAROS family zinc finger 4 (IKZF4) and 3 (IKZF4), were highly expressed in Th17
and iTreg cell, respectively. Finally, Vimentin (Vim) was found to be highly expressed
in iTreg cells.

4.3 Protein expression changes during Th17 and iTreg
differentiation

In order to decipher how polarization changes the proteomes of the cells, we
examined differential protein expression of Th17 and iTreg cells with respect
to TCR-activated ThO cells. This was done in two phases. Firstly, by list-
ing proteins that were exclusively expressed in polarizing cell type. Secondly,
performing differential gene expression analysis at protein level followed by
pathway enrichment analysis introduced in sections 3.2 and 3.3.

Th17 cells expressed exclusively 40 proteins. The number included well known
Th17 cell signature proteins interleukin 17F (IL17F) and TF retinoic acid re-
ceptor—related orphan receptor C (RORC). The other proteins detected only in
Th17 cells included aryl hydrocarbon receptor (AHR) and phosphodiesterase 5A
(PDE5A) and solute carrier family 4 member 2 (SLC4A2, also known as AE2).
These proteins are either active in Th17 cells associated with primary biliary
cirrhosis and autoimmune disease of the urogenital tract.

Differential protein expression analysis was performed using limma method as
described in Section 3.2 with FDR multiple hypothesis correction explicated in
3.3. Considering FDR<0.05 as threshold for statistically significance, we found
414 up-regulated and 591 down-regulated proteins in Th17 vs. ThO comparison
and 308 up-regulated and 367 down-regulated in iTreg vs. ThO cell. The results
are summarized in Figure 4.2.

T cell differentiation is driven mainly by TFs, provided that TCR is acti-
vated with its costimulatory receptors and proper cytokine stimuli are available.
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Hence, we scrutinized this protein class more closely. Foxp3 known to govern
Treg polarization were consistently detected in iTreg cultures and absent in ThO
cultures. Statistical analysis revealed changes in 75 and 50 transcription regula-
tors and ligand-dependent nuclear receptors during Th17 and iTeg polarization,
respectively. The numbers included both well-known TFs involved in the respec-
tive T cell subset specific differentiation, such as retinoic acid receptor—related
orphan receptor C (RORC) and FOXP3. Moreover, TFs CCR4-NOT transcription
complex subunit 2 (CNOT2) and family with sequence similarity 129 member B
(FAM129B), were differentially expressed in both Th17 and iTreg cells. Their
functions in Th17/iTreg cell differentiation are not well known. In addition to
TFs, we focused on kinase proteins as they are both known to be involved in cell
fate determination and targets of various medical treatments for inflammation
related diseases and autoimmune disorders. We found expression changes in
several kinases including mitogen-activated protein kinase 11 (MAPK11), right
open reading frame kinase 1 (RIOK1), and cleavage and polyadenylation factor
I subunit 1 (CLP1) not previously reported being associated with Th17 or iTreg
cell function or differentiation.

In addition to examine individual DE proteins, we investigated biological
processes involved in cell differentiation using Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis as introduced in Section 3.3.
The DE proteins from comparison between iTreg and ThO cells were enriched
in only systemic lupus erythematosus and alcoholism pathways mainly due to
expression changes of several histone cluster 1 h2 and h4 family members. Th17
cell differentiation process were associated with ten pathways including antigen
processing and metabolic changes, especially oxidative phosphorylation.

The results of the direct differential expression analysis between Th17 and
iTreg cells are summarized in Figure 4.3 (a) and (b). In addition, (c) Transcrip-
tional regulatory network of consisting 155 TF's and ligand-dependent nuclear
receptors detected as DE proteins is shown.

4.4 The coherence of gene and protein expression changes

We evaluated the concordance between the trancriptomes and proteomes for
Th17 cells. In order to obtain transcriptome for DGE analysis between Th17 and
Tho cells, we generated RNA-seq data compatible with the proteomics data using
Illumina sequencing. The sequences were processed to read counts mapping to
genes using tools and methods described in Section 2.2.1. DGE were extracted
from the count data as discussed in Section 3.2.

Exploration of Th17 proteome and transcriptome showed that we were able to
detect key molecules IL17F and RORC driving Th17 polarization at both level.
Furthermore, 96.7% of the proteins detected by LC-MS/MS were also found in
RNA-seq data. We excluded proteins with no corresponding transcripts from
further inspection. In order to investigate which protein expression changes
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Figure 4.3. (a) There were 2,040 DE proteins from which 1,067 proteins were expressed higher
in Th17 cells, and 973 higher in iTreg cells. From DE proteins known to steer
polarization towards iTreg lineage, FOXP3, IKAROS family zinc finger 4 IKZF4 and
RUNXS3 found highly expressed iTreg cells, whereas chromatin organizer SATB1 were
lowly expressed as it should when FOXP3 is highly expressed. Importantly, we found
that SATB1 was highly expressed in Th17 cells compared to both TCR-activated ThO
cells and iTreg cells. When compared the differentiated cells to TCR-activated ThO
cells, we found that 20 proteins showed pattern of low expression in iTreg cell and
high expression in Th17 cells. The opposite pattern was followed by 26 proteins. (b)
Spliceosome, ribosome, and oxidative phosphorylation pathways were enriched in
Th17 cells were while top enriched pathways in iTreg cells were metabolic pathway
and fatty acid metabolism pathways. (c) In TF network, epigenetic regulators histone
deacetylase 1 (HDAC1) and SWI/SNF-related matrix-associated actin-dependent
regulator of chromatin subfamily A member 4 (SMARCA4) emerged from the network
due to their connectivity with cell type specific proteins and high-node degree (Figure
from Publication I).

were not seen at mRNA level, we compared the DE genes and DE proteins. In
total, there were 963 genes and proteins of which only 284 (29.5%) consistently
up- or down—regulated at protein and mRNA levels. Interestingly, most of the
DE proteins were differentially expressed at mRNA level. Discrepancy between
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DE genes and DE proteins were not due to low mRNA expression as the gene
expression levels of the DE genes that encode non-DE proteins and the DE genes
that encode DE proteins were similarly distributed. This indicates translation,
protein degradation and export process, and maybe post-translation modification
are important in regulating Th17 cell protein expression.

We did similar investigation concerning iTreg lineage using published tran-
scriptomics microarray data for iTreg and Thp cells. The microarray data was
analyzed with gene-wise linear models using limma as detailed in Section 3.2.
The driving TF Foxp3 was expressed both at protein and at mRNA level. The
expression changes were consistent at protein and mRNA levels among 757
genes. However, most of the DE proteins (67.8%) had inconsistent RNA ex-
pression and 1,313 DE proteins were not differentially expressed at mRNA
level. The number includes proteins not previously associated with iTreg such
as stathmin 2 (STMN2), prolyl 4-hydroxylase subunit alpha 1 (P4HA1), and
reactive oxygen species modulator 1 (ROMO1) as well as proteins such as H3K4
histone methyltransferases, SET and MYND domain containing 3 (SMYD3)
whose contributions to iTreg cells have been well characterized.

We confirmed protein expression patterns of some selected proteins using
targeted laboratory experiments and three additional cell cultures. Protein
expressions of Th17 and iTreg cells were compared with protein expressions
of ThO cells. We validated, for example, that Enolase 3 (ENO3) was repressed
in Th17 and induced in iTreg cells, Forkhead box O1 (FOXO1) was increased
in both iTreg and Th17 cells, Nuclear factor of activated T cells 2 (NFATC2)
was upregulated in Th17 cells, SMYD3 was upregulated in iTreg cells and a
intermediate filament protein Vimentin (VIM) was highly expressed iTreg cells.

VIM was particularly interesting as it was highly expressed both at protein
and at transcription level in differentiated iTreg cells and differentially ex-
pressed in the cells already after three days of polarization. By comparing cells
derived from normal mice with cells from mice with no VIM gene under varying
cytokine miliue, we found that TGF {3 induces VIM expression in iTreg cells and
it contributes to Foxp3 expression.
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5. Transcription factor regulationon T
cell biology

In this chapter, I cover the main findings of Publication IT and Publication III
focusing mainly on the co—localization of SNPs and TF binding sites (or any set
of genomic regions).

The first publication concerns the molecular mechanism of human Th17 cell
differentiation. The focus is on direct and indirect targets of Signal transducer
and activator of transcription 3 (STAT3) during early phases of the cell differen-
tiation. The work is intergrative by involving new high-throughput experiments
and integrating pre-existing data to form a comprehensive view of the subject.
Corcerning disease associated single nucleotide polymorphisms (SNP) enrich-
ment on specific genomic regions, we made a hypothesis that using the proxies
of the tag-SNPs enhances the sensitivity of the analysis. The second publication
generalizes the statistical approach further, represents the computational tool
we developed for this kind of analyses, and demonstrates its function. The two
use cases of this approach shows that the hypothesis holds. In this chapter,
I first highlight the main findings of the first publication and then I give an
overview of the statistical approach and the software tool described in the second
publication.

RNA interference (RNAi) and RNA-seq techniques were used to verify that
STATS3 is indeed an important regulator of Th17 cell differentiation. The si-
lencing experiment showed that inhibition of STAT3 decreased secretion of
signature cytokine IL-17 and reduced expression of CCR6, a chemokine receptor
highly expressed in Th17 cells. Together, they imply that STAT3 is important
in the cell polarization. Next, DGE analysis of polarizing cells with respect to
ThO revealed 2200 and 1500 differentially expressed genes at two hour and 72
hour time points of the initiation of cell differentiation. Moreover, direct DGE
screen between STATS3 interfered and ordinary polarizing Th17 cells showed
differential expression in all measured time points and differences were highest
at the final 72 hour time point. Proportion of STAT3 regulated genes in differen-
tially expressed genes increased during differentiation while the number of the
upregulated and the number of the downregulated genes were approximately
the remained the same at every time points. This indicates that STAT3 both
promotes Th17 cell polarization and prevents the ability of the cells to differ-
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entiate to alternative lineages. The conclusion is that STATS is an important
transcriptional regulator of Th17 cell differentiation. Naturally, DGE studies
produced lists of STAT3 regulated genes.

STAT3 chromatin immunoprecipitation sequencing (ChIP-seq) study was per-
formed distinguish which of the genes affected by STAT3 are its direct and
indirect targets. The investigation was done for the cells at half an hour time
point after the induction of Th17 cell polarization. There were almost 3000
STAT3-binding sites. A fifth of the binding sites were located in the immediate
promoter regions. However, two thirds of the sites were located in introns or in-
tergenic regions. The genome types reflect possible regulation mechanism of TF.
Former suggests STATS3 regulates gene expression via binding to core promoters
of its targets while latter sings to gene expression regulation via binding to
distal regulatory elements. Nearly half of the binding sites were localized within
10 kb up- or down-stream of transcription start sites (T'SS). STATS target genes
were classified into four categories. First group contained direct STAT3 targets.
Their expression was changed during Th17 cell differentiation with respect to
ThoO cells, were found to be regulated by STATS in silencing experiments, and
had STATS3 binding was detected in ChIP-seq experiments. The second group
consisted of indirect STAT3 targets. Their expression was changed during Th17
cell differentiation, were regulated, but not bound by STAT3. Lack of STAT3
binding indicates that STATS influences the genes via indirect mechanisms. The
third group is called putative targets. Genes in the group were differentially
expressed during Th17 cell differentiation, and bound by STAT3, but not reg-
ulated. The fourth group contained TF's that were differentially expressed in
polarizing Th17 cells, but not regulated or bound by STAT3. This combination
of indications suggests that the genes express independently from STATS.

5.1 STAT3 regulated cell differentiation and the impact of the
related SNPs

As Th17 cell are known to be involved in many autoimmune diseases and many
SNPs are associated with many diseases (even when located far away from
the gene), we studied the possible enrichment of SNP associated with human
diseases in genomic regions that where STATS3 target genes or STAT3-binding
sites. In first investigation, STAT3-regulated genes were linked to SNPs near
their transcription starts sites (T'SSs) that were associated to a traits in NHGRI
GWAS catalog. Along significantly enriched traits, there were 11 autoimmune
diseases. They were crutinized more carefully using method described in section
5.2. There were no significant enrichment in any of the autoimmune-disease—
associated SNPs. Interestingly, when diseases were combined and treated as
a single trait statistical signal improved a little, but FDR was still 0.11. The
next section focuses on the method used to identify co-localizations of SNPs and
genomic regions.
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5.2 Detecting statistically signifigant SNPs in genomic regions

This section focuses on a method to decipher whether SNPs associated to some
phenotype are significantly co—localized with given genomic regions or not.
This kind of study is possible because of public catalogues of indivual genomic
variation within various population as well associations between SNPs and
various biological traits are available. The basic workflow is simple. one fetched
tag—SNPs for disease from a database, create sets of corresponding SNPs with
similar genomic attributes, and base the co—localization analysis on the empirical
statistical method described in section 3.1. In this case, the natural selection for
test statistics ¢ is the overlap of the SNPs and the genomic regions and empirical
p—value is derived by applying Equation 3.5. We developed this method further
Publication II by taking into account that obtained SNPs are affected by linkage
disequilibrium (LD) as shown in figure 5.1. We noted that considering all
expanding the sets of tag—SNPs with proxy SNPs, i.e. SNPs in LD, improves the
sensitivity of the co—localization analysis.

Genomic regions

Genome v ' VD
LD block
Genome V 1 7 ' I_"'I VB

Figure 5.1. In the upper figure, the red wegdes and rectangles highlight the tag—SNPs of a
disease derived from GWAS and the binding sites of an interesting TF in the genome,
respectively. In this example, only one of the tag—SNPs overlapped with the genomic
regions. Below, green wedges show the loci of the proxy SNPs. Now, as tag—SNPs
and their proxies combined overlap more with the genomic regions, test statistics ¢
captures more these previously hidden co-localizations.

In Publication III, we represented publicly available sotfware for co-localization
analysis. The tools was developed in the form of R package it integrates pre-
existing tools, like whole genome association analysis toolset plink and webtool
SNPsnap, enabling custom SNP co-localization analysis in a convenient and
efficient way. The packages contains functionalities to fetch data from NHGRI-
EBI GWAS Catalog, to cleanup SNPs from duplicate SNPs from the same LD,
adding all SNPs in the LD to a list of SNPs, connection to SNPsnap server in
order to make a retrieval request to generate a specified number of SNP sets
matching the query SNP sets, expanding a list of SNP with all their proxies,
computing test statistics, empirical p-values and multiple testing corrections.

In Publication III, we represented a test case where we elucidate the func-
tionality the software. In addition, we assessed the importance and feasibility
of considering proxy SNPs in the analysis. The test case was performed using
publicly available data of STAT6 binding sites in Th2 cells. As Th2 cells are part
of adaptive immunity, we tested whether we could find significant co—localization
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of the STAT6 binding sites and the SNPs associated to the same 11 immunity-
related diseases we studied in Publication II. Moreover, we added three traits
with no known association to immunity to the study. We performed the analysis
in two ways. First, was done using the tag-SNPs only and second utilized the
tag-SNPs together with their proxies. With tag-SNPs, we found significant
co-localization in two diseases which were both immune-related. Addition of
proxies resulted in detection five more immune-related diseases as significantly
co-localized. Importantly, inclusion of proxies did not neither diminish signal
of significance in any of the diseases nor indicated that all diseases with some
overlap would become artificially significant just by including the proxies. Over-
all, we conclude that the software facilitates the co-localization analysis and it

is feasible to use proxies in the analysis.
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6. Mechanistic modeling of
transcriptional regulation

This chapters covers the main results and the methodology used in publications
Publication IV and Publication V.

6.1 Representations of subcellular system

A subcellular system is visualized either as a cartoon to emphasize biological
details to be modeled or as a graph to abstract the representation from them.
A graph consists of nodes that denote the molecules and directed edges that
express interactions between the nodes. By convention, there is no heading at
the beginning of the edge while at the end there is either an arrow of a flat
head. An arrow head means the activation of the node at the end of the edge
and the consumption of the node at the beginning of the edge. An edge that
does not point to any node indicates degradation of the attached molecule and
an edge that does not begin from a node implies basal activation that does not
depend on any. The flat headed edge means that the node at the beginning
inhibits the node at the end. Especially, when the modeled system is large, edges
denoting basal activation and degradation processes are not shown or shown
with faded color in the graph in order to maintain larger graphs visually pleasing
and tractable. Figure 6.1 shows both cartoon and graph representations of a
dynamically evolving molecular system. The graphs are converted into systems
of ordinary differential equations of the form Equation 3.9 (or Equation 3.11
in the case of dynamically evolving system) where variables corresponds to the
nodes and terms to the edges of the network.

The studies consider systems from which detailed knowledge of the underlying
molecular mechanisms is not available. The objective was to find likely models
from a set of models that are composed of molecules known to be involved in
the cellular processes and mechanistically possible interactions between the
molecules. Hence, instead of using enzymatically motivated kinetics in the
ODESs, we assume that each term in every ODE in the systems is a product of
impacting molecules and associated parameter. Formally, for a system with N
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variables each ODE is assumed to be of the form
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where the name of the parameter indicates influencing variables and type of
action. In Publication V, inhibitory terms are not included in the models as the
focus is purely on enhancer activation signature.
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Figure 6.1. The upper panel consists of the cartoons that show molecular actions occurring
in the system at three occasions. The lower panel comprises graphs depicting the
network structures corresponding to the system before and after it is altered by a
hidden enzymatic process. As the network is not static, this kind of system is called
dynamically evolving (Figure from Publication IV).

6.2 Model selection for latent effect mechanistic (LEM) model

Publication IV hypothesized that incorporating non-static network structure
enables the model capture the impact of transient phenomena impact. Hence it
introduced LEM models that adapt systems ODEs to consider switches in the
interactions between the molecules, and associated model inference framework.

We applied this approach to infer models for a simulated system and the
core Th17 regulatory network. The simulated system consisted of four genes
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that interacted differently during three gradually shifting phases. This was
consistent with previously reported idea on how idea that Th17 cells differentiate.
We created data using fixed parameters and were able to infer correct model
successfully. The forward-backward-stepwise selection procedure converged
to the correct LEM model, and the inferred parameter values and the model
responses were close to the values used to simulate the data.

The core Th17 regulatory network consisted of TFs the retinoic acid receptor-
related orphan receptor gamma t (RORC), signal transducer and activator of
transcription 3 (STAT3), basic leucine zipper transcription factor (BATF), tran-
scription factor Maf (MAF) and interferon regulatory factor 4 (IRF4). Only
experimentally validated interactions between the genes were considered in
the models which were calibrated to RNA-seq time-series data. Inference con-
verged to a model which supported interactions experimentally validated with
different measurement techniques and experimental conditions. Thus, LEM
modeling can used to predict the system incorporating sequentially activated
subnetworks. Three transcriptional phases - early induction, intermediate on-
set of phenotype and amplification, and late stabilization - took place about
0-4 hours, 4-13 hours and 13-72 hours postinduction of differentiation. They
all have apparent interpretations. First, cell differentiation is initiated and
the cytokine milieu prepares cells for lineage commitment. Next, MAF and
IRF4 support differentiation and RORC is activated. Finally, RORC and STAT3
maintain differentiation supported by BATF and IRF4. Especially interesting
is that the model highlights how important STAT3 is for Th17 differentiation
during two first phases. Moreover, the inferred LEM model fitted to the RNA-seq
time-series data much better than the static model embodying all interactions
without dynamic rewirings of the network structures. This is in accordance with
the hypothesis. Parameter identifiability was analyzed with profile likelihood
estimates as described in section 3.4. Most of the parameters were identifiable,
there were no structurally unidentifiable parameters, and four were parameters
practically unidentifiable. We speculated that unidentifiablity may be removed
by reparametrizing the model, but such effort was out of the scope of this study.
Altogether, the developed methodology performed well in both simulated setting
as well as Th17 differentiation.

6.3 Modeling enhancer activation

Publication V focuses on activation of cis-regulary elements during cell differ-
entiation. Enhancers steer the differentiation by forming three dimensional
loops in the chomatin structure leading into complexes of transcription acti-
vation molecules and hence impacting the transcriptomics of the cells. Active
enhancers are known to associate with post-translational chromatin modifica-
tions and binding of context specific transcription factors. In addition to such
observable key enhancer activation molecules, the dynamical systems governing
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enhancer activity involves other molecules which are either unknown or more
difficult to measure. In this work, we modeled enhancer activity as an interplay
of the best known enhancer activity signals using systems ODEs. In the context
of T cell differentation, the systems include three activation signals. Between
them, we considered four simple interactions types: 1) The signals are indepen-
dent, 2) the signals form cascades, 3) two molecules cause the activity of the
signal synergistically, or 4) additively. Figure 6.2 depicts effectively different
models.

Our hypothesis was the selection of the correct model is achievable with rela-
tively small amount of experimental data. Hence, we introduced a Bayesianly
motivated statistical framework to link the data to the models. The construction
was used to survey potentiality of this approach for experimental biology from
two perspectives. Is this framework able to set a part the true model from other
models and are the models identifiable in term of theirs parameters. We simu-
lated data from one model of each model family. We introduced basic variability
in the dynamics by using parameters drawn from normal distribution with fixed
mean and five percent coefficient of variation. Aiming to characterize amount of
data that are feasible to obtain experimentally we created three different scenar-
ios. There were measurements from time points 0, 4 and 72 hours, 0, 4, 8, and 72
hours or 0, 4, 8, 12 and 72 hours reflecting times scale important cellular changes
are known to occur in early T cell differentiation. Simulated data were subjected
to increasing level of measurement noise standard deviation were 0.15, 0.25, 0.5,
0.75,1, 1.25 1.5 or 2.0. Execution of each setting 50 times independently, led to
4800 different independently created data sets. Model selection were done either
in deliberately liberal way in the sense that in addition to rate parameters the
initial values and measurement noise were inferred from the data or more con-
servative way that only rate parameters were considered free while the initial
values and measurement noise were fixed. In both scenarios, five time point
were sufficient to distinguish the correct model given that measurement noise
were reasonable with respect to data values (standard deviation was less than 1).
Synergistic model were notable more difficult to infer than others this limited
amount of data as its partly structurally identifiable parameters. Overall, the
framework is able to detect correct interactions between enhancer activation
signals with five time points which fits well with the hypothesis.
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Figure 6.2. There are 13 effectively different enhancer activation models. Activation impacts are
shown in solid lines. For simplicity, deactivation each component is not shown.
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7. Conclusions

The work represented in this thesis focused on some proteomic, transcriptomic,
genomic and epigenetic markers important in progressing cell differentiation.
The studies have dual nature. They apply existing bioinformatics methods
and tools to map systems levels molecular and functional progressions of the
cells. Then again, new analysis methods, modeling frameworks and associated
computational tools are developed in order to achieve new biological knowledge.

The proteomic analysis of Th17 and iTreg cells resulted in a catalogue of
proteins potentially involved in autoimmune disease in mice as well as an
outline of a data analysis pipeline. Both are immediately applicable to further
studies in the developing field of proteomics. An obvious further direction could
be conducting a similar study focusing on human cells. In addition, the study
showed some discrepancies between trancriptomics and proteomis of the cells as
well as proposed a functional network based on protein-protein interactions and
GSEA analysis. These can be interesting targets for further research as well.

Transcriptional control of Th17 cell differentiation embodies SNPs impact on
binding of the key transcription factors. This called for a method for revealing
statistical significance of co-localized sets of SNPs and TF binding sites. We
developed such method emphasizing importance of respecting LD blocks of the
SNPs, tested the method with independent public data and a published tool
implementing the method R package snpEnrichR.

Mechanism of transcriptional regulation of Th17 cells were modeled determin-
istically at two levels using systems of ODEs. First level integrated seemingly
conflicting published transcriptomics data and incorporated time-dependent
latent effects into the equations able to change the impact of variables dur-
ing differentiation. The inferred transcription regulatory network fitted the
data much better than models without latent effects. Moreover, most of the
parameters were well identifiable. The second level focused on determining data
requirements for modeling of active cis-regulatory elements. Data from five
time points sampled from dynamically active time frame may be sufficient to
fix parameters when data comes from a model describing the dynamics well. In
such case, the proposed statistical framework is able rank the generative model
high.
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Conclusions

Together, the research in this dissertation illuminates cellular systems in-
volved in Th17 cell differentiation from many perspectives as well as provides
computational methods and tools for further or similar studies on other organ-

isms or other cell types.
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