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A weight is a nonnegative, locally integrable function. Muckenhoupt weights are a
prominent class of weights in the study of harmonic analysis and partial differential
equations. The present thesis contributes to the theory of local weights defined on
a bounded Euclidean domain, as well as weights on metric measure spaces with a
doubling measure.

We show a two-weight Sobolev-Poincaré inequality on a Boman domain by the
dyadic sparse domination method. We first obtain a local weighted inequality for
an integral operator supported on a subcollection of dyadic cubes and majoring a
continuous operator pointwise. The local inequality is then propagated by a chaining
argument. As an application we obtain Poincaré inequalities for certain powers of
distance functions, and supersolutions of the p-Laplace equation.

A theorem by Wolff states that a weight defined on a measurable subset and satis-
fying a Muckenhoupt-type compatibility condition has an extension into the whole
space. We generalize this theorem to metric measure spaces with a doubling measure.
Related to the extension problem, we obtain estimates for Muckenhoupt weights on
Whitney chains.

We give 11 different characterizations for functions satisfying a weak reverse Hölder
inequality. Most importantly, we show that the weak reverse Hölder and weak A-
infinity conditions are equivalent in metric spaces with a doubling measure. This is
not true of the classical reverse Hölder and A-infinity conditions, unless the measure
satisfies another regularity property such as annular decay.

The natural maximal and minimal functions commute pointwise with the logarithm
of a Muckenhoupt weight. We use this observation to characterize the limiting cases
of Muckenhoupt and reverse Hölder conditions. The characterization yields a simple
proof of a refined Jones factorization theorem. In addition, we show a boundedness
result for the natural maximal function.
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1. Introduction

Muckenhoupt, or Ap, weights are an important class of weights at the
heart of this study. For 1 < p < ∞, Ap(X) weights are precisely those
nonnegative, locally integrable functions w that satisfy

sup
B⊂X
(−∫

B
w dµ)(−∫

B
w−

1
p−1 dµ)

p−1
<∞. (1.1)

This supremum is denoted [w]p and called the characteristic Ap constant
of w. When p = 1, we require instead that there exist a constant [w]1 <∞
such that for every ball B ⊂ X

−∫
B

w dµ ≤ [w]1 ess inf
x∈B

w(x). (1.2)

The present thesis contributes to two neglected aspects of the theory of
Muckenhoupt weights, namely local weights and weights on metric measure
spaces. In Chapter 2, based on Publication I, we work in Euclidean spaces
with weights defined on a bounded domain Ω ⊂ Rn instead of the whole
space X = Rn. Here we show a two-weight Sobolev-Poincaré inequality
based on local data by the dyadic sparse domination method.

Chapter 3 and Publications II–IV focus on metric spaces supporting a
doubling measure. The principal results are an extension theorem for
Muckenhoupt weights, characterizing weights that satisfy a weak reverse
Hölder inequality, and characterizing the limiting classes of Ap and reverse
Hölder classes of functions. While most if not all of these results are
generalizations of their Euclidean counterparts, in metric measure spaces
the structure is laid bare, revealing phenomena not seen in Rn. For us chief
among these is the fact that weights satisfying a reverse Hölder inequality
are no longer necessarily Muckenhoupt. This further raises the question
of determining those structural conditions on which the Muckenhoupt–
reverse Hölder equivalence depends.
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Introduction

1.1 Meeting Muckenhoupt weights

Muckenhoupt’s concern in introducing the eponymous weights in his 1972
article [51] was the mean summability of Fourier series, which is achieved
in weighted norm with the weight satisfying (1.1)–(1.2). The following year,
Gehring [30] discovered that the Jacobian of a quasiconformal mapping
satisfies a reverse Hölder inequality (and hence is a Muckenhoupt weight,
although Gehring does not make the connection; see also Chapter 3.3 below),
leading to a higher integrability result. Elcrat–Meyers [50] likewise applied
reverse Hölder inequalities to obtain higher integrability results in calculus
of variations. The body of research on weights and weighted inequalities
grew rapidly throughout the 1970s, as demonstrated by [25, 52].

The basic problem in the study of weighted norm inequalities is to obtain
estimates of the form

v({x ∈ X : |Tf(x)| > λ}) ≤ C
λp ∫

X
|f |

p w dx , or (1.3)

∫
X
|Tf |

p vdx ≤ C∫
X
|f |

p w dx , (1.4)

where 1 ≤ p < ∞, and T is an operator such as a maximal function or
singular integral. The weight functions v and w may be the same, i.e. v = w,
or different, setting apart one-weight and two-weight inequalities. It turns
out that if we take v = w and T to be the Hardy–Littlewood maximal
operator, or indeed any singular integral with a sufficiently smooth kernel
[14], the Ap condition (1.1)–(1.2) (1.1)–(1.2) is necessary and sufficient to
establish the inequality (1.3) whenever p = 1, and (1.4) whenever p > 1.
As for the two-weight case, several fundamental problems remain open,
including identifying the analogy of the Ap condition. We refer to [18] for a
survey and many more bibliographic references.

Of particular interest to us are weighted Poincaré inequalities, that will
be discussed in Chapter 2. Consider nonlinear partial differential equations
of divergence type

div A(x , u , Du) = 0 .

The regularity of the solution depends on the structural properties of
the differential operator A. In the early article by Fabes, Kenig, and
Serapioni [26], the authors are interested in relaxing one of these, namely
the ellipticity of the operator A(x , Du) = A(x)Du(x). To this end, they
replace the ellipticity condition with a weighted version

Cw |ξ|2 ≤ Aξ · ξ ≤ C1w |ξ|2 ,

where the nonnegative weight w is allowed to either vanish, be infinite,
or both. (In the classical situation w ≡ 1.) One might ask what are the
minimal structural conditions which guarantee that the solution has a
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given amount of regularity, such as local Hölder continuity. In particular,
what are the conditions on the weight w? Fabes et al established a weighted
Poincaré inequality of the type

∫
Ω

|u|p w dx ≤ C∫
Ω

|Du|p w dx , (1.5)

where Ω ⊂ Rn is a bounded domain, whenever w is yet again an Ap weight;
see Chiarenza–Frasca’s streamlined proof in [11]. By today, the class of
admissible weights is known to be even larger [38].

Muckenhoupt weights have also made an impact on the field of potential
theory. The classical Dirichlet problem on a domain Ω ⊂ Rn is to look for a
function u such that ⎧⎪⎪⎨⎪⎪⎩

∆u = 0 in Ω ,
u|∂Ω = f ,

(1.6)

where the boundary data f belongs to a space such as C(∂Ω) or Lp(∂Ω).
Roughly speaking, the regularity of the domain Ω determines the smooth-
ness of the solution, and harmonic measure carries information on that
regularity. It follows from the work of Dahlberg [19, 20] that the Dirichlet
problem (1.6) with boundary data in Lp is uniquely solvable with the solu-
tion having nontangential boundary values in Lp, whenever the harmonic
measure is an A∞ weight on the domain boundary, and the Poisson ker-
nel associated with the measure satisfies a reverse Hölder inequality. On
harmonic measure see also [8, 45].

We will be assuming a degree of familiarity with the Euclidean theory of
weights. Important general references on the topic, mostly on Euclidean
spaces, are [23, 29, 34, 35, 61, 63, 64]. Weights on metric measure spaces
are further discussed in Chapter 3.1. The lecture note [24] takes a mod-
ern approach to Muckenhoupt weights and might be recommended as an
introduction.

1.2 Notation

We begin by introducing notation and definitions that are either used
throughout or would clutter the presentation elsewhere. Whenever E ⊂ X
is a measurable subset and the function f is Lipschitz continuous on every
compact subset of E, we say that f is locally Lipschitz on E, denoted
f ∈ Liploc(E). Locally integrable functions L1

loc(E) are defined analogously.
If the measure ν is absolutely continuous with respect to µ and if there

exists a nonnegative locally integrable function w such that dν = w dµ, we
call ν a weighted measure with respect to µ, and w a weight, following [63,
p. 1]. Habitually, we abuse notation and do not distinguish between the
measure and the weight function. Consequently, for any measurable subset
F ⊂ E and weight w on E, we write w(F) = ∫F w dµ.

11
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The integral average of a function f ∈ L1(E) over a measurable set F ⊂ E,
with 0 < µ(F) <∞, is abbreviated

1
µ(F)∫F

f dµ = −∫
F
f dµ = fF .

Averages with respect to a weighted measure are occasionally abbreviated

1
w(F)∫F

fw dµ = fw,F .

An open ball with center x ∈ X and radius r > 0 is denoted B = B(x , r),
where the center and radius are left out when not relevant to the discussion.
We write r(B) = r, and aB = B(x , ar) for the ball dilated by a constant
a > 0.

When X = Rn, the role of balls is largely taken over by cubes. A cube
Q ⊂ Rn is a half-open set of the form

Q = [a1 , b1)× . . .× [an , bn)

with b1 − a1 = . . . = bn − an. Imitating the notation for balls, a cube Q =
Q(x , r) is determined by its midpoint x and side length l(Q) = 2r = b1 − a1.
We also adopt the shorthand notation aQ = Q(x , ar) for dilated cubes.

In Chapter 2.2 we will encounter a wealth of vocabulary pertaining to
dyadic cubes. These are constructed as subcubes of a fixed cube Q0 ⊂ Rn.
The collection of its dyadic children, denoted chD(Q0), are the 2n cubes with
side length l(Q0)/2 obtained by bisecting each edge. Continuing this process
recursively, we obtain the infinite collection D(Q0) of dyadic subcubes, that
consists of Q0 and its dyadic descendants in every generation. Each cube
Q in D(Q0) \ {Q0} has a unique dyadic parent, denoted ]Q: the cube
Q′ ∈ D(Q0) such that Q ∈ chD(Q′).

With respect to a generic collection E ⊂ D(Q0) of cubes with Q0 ∈ E, the
E-parent ]EQ of a cube Q ⊂ Q0 is the minimal cube in E that contains
Q. The inclusion need not be strict, so ]EQ = Q whenever Q ∈ E. The
E-children chE(Q) of a cube Q ∈ E are the maximal cubes in E strictly
contained in Q.

The classical Hardy–Littlewood maximal function is given by

Mf(x) = sup
B∋x

1
µ(B)∫B

|f | dµ , (1.7)

where X is a metric space, B balls in X , and f ∈ L1
loc(X). When X = Rn,

cubes Q replace balls in the definition.
Various constants are denoted by the letter C, whose dependence on

parameters may be indicated in parentheses. Many careful descriptions
of constants have been omitted from this presentation, and the interested
reader will do well to consult the original publication.
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2. Weighted norm inequalities

2.1 Approaches to locality: Intrinsic methods

The attentive reader of Chapter 1.1 may have noticed an inconsistency in the
presentation. Namely, in the context of harmonic analysis, one is typically
concerned with global properties, while partial differential equations tend
to be solved within bounded domains. Compare, for instance, the weighted
inequalities (1.4) and (1.5). This observation does reflect the situation at
large. While the global theory of Ap weights is well established, especially
in Rn, interest in local weights has been limited to solitary articles such as
[3, 40].

Our contribution to the study of local weights is Publication I (PI), whose
principal results have since been included in the book [46]. The main
result is a two-weight Sobolev–Poincaré inequality for weights defined on
a bounded domain Ω. Precisely, we show that for any locally Lipschitz
continuous function u ∈ Liploc(Ω)

( inf
c∈Rn∫

Ω

|u− c|q w dx)
1
q

≤ C (∫
Ω

|∇u|p vdx)
1
p

, (2.1)

on condition that Ω ⊂ Rn is a Boman domain, 1 < p ≤ q < ∞, and the
weights w and [ = v1/p−1 each satisfy a dyadic A∞ condition on dyadic
subcubes of the dilated cube Q∗ = 9

8 Q, where Q is a cube in the Whitney
decomposition W(Ω) of Ω. Precisely, there exist constants Cw , δw > 0 such
that for all Q∗-dyadic cubes R ⊂ Q∗ and measurable sets E ⊂ R

w(E)
w(R) ≤ Cw (

|E|
|R|
)
δw

, (2.2)

and similarly for [ ; we denote w, [ ∈ Ad∞(Q∗). In addition, w and [ must
comply to the following dyadic Muckenhoupt-type compatibility condition:

13



Weighted norm inequalities

there exists a constant K > 0 such that

( 1
|R|1−1/n)

p
w(R)

p
q [(R)p−1 ≤ K. (2.3)

The standard construction of Whitney cubes can be found e.g. in [35, Ap-
pendix J]. The significance of Boman domains will be discussed shortly. For
the statement of the theorem in full detail see PI, Theorem 7.1. Comparable
two-weight inequalities and compatibility conditions have been established
by Chanillo et al [9, 10] and Chua [13].

The proof consists of two stages. To begin with, we show the local inequal-
ity

⎛
⎝∫Q0

RRRRRu− uQ0
RRRRR
q w dx

⎞
⎠

1
q

≤ C
⎛
⎝∫Q0

|∇u|p vdx
⎞
⎠

1
p

, (2.4)

where Q0 is a fixed cube in Rn, on condition that w, [ ∈ Ad∞(Q0), and
(2.3) is satisfied in dyadic subcubes R ⊂ Q0. This is done by the sparse
domination method, which will be presented separately in Section 2.2. The
key feature of the local inequality is that it is strictly local: all assumptions
on the weights (v, w) are made within the fixed cube Q0. This is why, in the
next stage, we are able to build an estimate from the inside out, without
reference to data from outside the domain.

From here, we propagate the local inequality (2.4) to the entire domain Ω,
producing (2.1). This local-to-global step is where the geometry of Boman
domains comes into play. In a Boman domain Ω ⊂ Rn, every two Whitney
cubes Q0 and Qk can be joined by a chain C(Q) = (Q0 , Q1 , . . . , Qk) of
Whitney cubes such that for each j there exists a cube R ⊂ Q∗j ∩ Q∗j−1 for
which

l(R) ≥ C(n)max {l(Q∗j) , l(Q∗j−1)} .
The formal definition of a Boman domain can be found in PI, Section 6. This
class of domains was introduced in [5]. Open cubes, balls, and bounded
Lipschitz domains are Boman domains in Rn. More generally, a Euclidean
domain Ω is a Boman domain if and only if it is a John domain. Unlike
Lipschitz domains, John domains are allowed to have twisting cones. The
relevance of these classes is covered in [6].

The main result connecting cubewise and global estimates is the following
theorem. Its proof is based on an idea of Iwaniec–Nolder’s [42, Lemma 4].
While technical, the proof boils down to applying elementary properties
of chains. The cube Q0 ∈W(Ω) is chosen to be the fixed central cube in
the chain decomposition of Ω, that is, the collection {C(Q) : Q ∈W(Ω)} of
chains from Q0 to Q.
Theorem 2.1.1. Let Ω ⊂ Rn be a Boman domain, and w doubling weight
in Ω. If u ∈ L1

loc(Ω , w) and 1 ≤ p <∞, then

∫
Ω

RRRRRRu− uw,Q∗0
RRRRRR
p

w dx ≤ C ∑
Q∈W(Ω)

∫
Q∗

RRRRRu− uw,Q∗
RRRRR
p w dx. (2.5)

14
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The final steps in the proof of (2.1) are applying (2.5), Hölder’s inequality,
(2.4), the fact that q ≥ p, and that the dilated Whitney cubes Q∗ have
bounded overlap: ∑Q∈WXQ∗ ≤ C(n).

inf
c∈Rn∫

Ω

|u− c|q w dx ≤ C ∑
Q∈W(Ω)

∫
Q∗

RRRRRu− uw,Q∗
RRRRR
q w dx

≤ C ∑
Q∈W(Ω)

2q∫
Q∗

RRRRRu− uQ∗
RRRRR
q w dx ≤ C ∑

Q∈W(Ω)

⎛
⎝∫Q∗

|∇u|p vdx
⎞
⎠

q
p

≤ C
⎛
⎜
⎝
∑

Q∈W(Ω)
∫

Q∗
|∇u|p vdx

⎞
⎟
⎠

q
p

≤ C (∫
Ω

|∇u|p vdx)
q
p

.

As an application of (2.1) we show two Sobolev-Poincaré inequalities
where v = 1 and w is a distance weight, respectively

d(x , E)−n+ q
p(n−p) , where E ⊂ Rn is a nonempty closed set, and

d(x ,∂Ω)−n+ q
p(n−p) , where Ω is a Boman domain. (2.6)

In both cases 1 < p ≤ q ≤ np
n−p <∞, the Assouad dimension of the set E is

bounded by q
p(n− p), and the weight (2.6) satisfies a doubling condition of

the type
w(Ω ∩ Q(x , 2r)) ≤ Cdw(Ω ∩ Q(x , r))

where Q(x , r) ⊂ Rn is a cube with its midpoint x ∈ Ω. The full statements
are Theorems 7.2–7.3 in PI, which have been adapted into Theorems 10.29–
10.30 in [46].

2.2 Outline of the sparse domination argument

The idea of sparse domination is to use “sparse” dyadic operators to control
a continuous operator pointwise. Consequently, the original problem is
reduced to showing a uniform weighted norm inequality for a significantly
simpler class of dyadic operators. Dyadic techniques have been influential in
contemporary harmonic analysis, Hytönen’s resolution of the A2 conjecture
[41] being perhaps the most famous application. We refer to Pereyra’s
lecture notes [55], modestly titled Sparse revolution, for a survey.

In PI, we apply the sparse domination argument twice in the proof of
the local inequality (2.4). This proof will serve here to demonstrate the
principles underlying the sparse domination paradigm. We operate within
a fixed cube Q0 ⊂ Rn and its dyadic decomposition D(Q0); recall the con-
struction in Chapter 1.2. In the first stage, we follow the idea in [48] and
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show for every Lebesgue point x ∈ Q0 of f the pointwise estimate

RRRRRf(x)− fQ0
RRRRR ≤ C∑

Q∈S
XQ(x)−∫

Q

RRRRRf − fQ
RRRRR dy ,

where the collection S of dyadic cubes inside Q0 depends on f . The letter
S stands for sparse collection in the sense that there are pairwise disjoint,
measurable subsets ES ⊂ S ∈ S, each of which has a large w-measure
compared to that of S. Lemma 2.2.1 describes the candidate for S, whose
sparsity is subsequently quantified by Lemma 2.2.2.

Lemma 2.2.1. Let Q0 be a cube in Rn, f ∈ L1(Q0), and w ∈ Ad∞(Q0)with
Cw , δw > 0. There exists a collection S of dyadic cubes and a constant
ρ = ρ(Cw , δw) > 1 such that for each cube S ∈ S

(a) if Q ⊂ Q0 is dyadic cube such that ]SQ = S, then

−∫
Q
|f − fS| dx ≤ ρ−∫

S
|f − fS| dx;

(b) ∑
S′∈chS(S)

w(S′) ≤ Cwρ
−δww(S) < w(S).

The collection S is constructed by a stopping-time argument. Fix a func-
tion f ∈ L1(Q0) and a constant ρ such that Cwρ−δw < 1 . We place Q0 inside
S and proceed recursively: for each dyadic cube S ∈ S, we add to S the
maximal dyadic cubes S′ ⊂ S that satisfy the stopping condition

−∫
S′
|f − fS| dx > ρ−∫

S
|f − fS| dx.

This process is iterated ad infinitum if necessary. As a result, we obtain
a collection S of dyadic cubes in Q0 that satisfies (a). The inequality (b)
follows from the stopping rule and the Ad∞(Q0) condition for w.

Next, we build another collection of sets ES ⊂ S, pairwise disjoint yet
occupying a large part of the weighted measure of each S ∈ S.

Lemma 2.2.2. Let Q0 be a cube in Rn, w ∈ Ad∞(Q0)with constants Cw , δw >
0, and f ∈ L1(Q0). There exists a collection S of dyadic cubes in Q0 satisfy-
ing the following conditions.

(a) There is a constant η = η(Cw , δw) > 0 and a collection {ES : S ∈ S} of
pairwise disjoint sets such that for every Q ∈ S, ES is a measurable
subset of S with w(ES) ≥ ηw(S);

(b) For every Lebesgue point x ∈ Q0 of f ,

RRRRRf(x)− fQ0
RRRRR ≤ C∑

S∈S
XS(x)−∫

S
|f − fS| dy. (2.7)
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Beginning with the collection S ⊂ D(Q0) from Lemma 2.2.1, we are going
to construct the collection {ES : S ∈ S} by removing selected parts of the
cubes S ∈ S, namely their S-children. For every S ∈ S, let

ES = S \ ⋃
S′∈chS(S)

S′ . (2.8)

The task is now to show that {ES} is the collection postulated by Lemma
2.2.2. Disjointness of the sets ES follows from the dyadic decomposition.
Furthermore, for a fixed S ∈ S, (2.7) implies that

w(ES) = w(S)− ∑
S′∈chS(S)

w(S′) ≥ (1 − Cwρ
−δw)w(S) ,

whereby (a) is verified. The content of claim (b) is that the quantity
RRRRRf − fQ0

RRRRR is dominated pointwise by the dyadic sparse operator on the
right-hand side of (2.7). The idea of the proof is to express the left-hand
side in terms of dyadic differences of the type

RRRRRf
′ − fQ0

RRRRRXQ0 ≤∑
S∈S

RRRRRRRRRRRRRR
∑

Q:]SQ=S
∑

Q′∈chD(Q)
XQ′ (fQ′ − fQ)

RRRRRRRRRRRRRR
.

The double sum on each S is then split among ES and S \ ES, and is found
to collapse on both sets by virtue of the nested dyadic structure, whereby
we find (2.7).

We aim to control the right-hand side of (2.7) by duality and maximal
function arguments. Lemma 2.2.2 is used to show a localized and weighted
variant of the Fefferman–Stein inequality (see [27] and [63, Theorem III.3]),
that is of independent interest. For a cube Q0 and f ∈ L1(Q0), the dyadic
sharp maximal function is given by

Md ,♯
Q0

f(x) = sup
Q⊂Q0
x∋Q

−∫
Q

RRRRRf − fQ
RRRRR dy ,

where the supremum is taken over all dyadic cubes Q ⊂ Q0 such that x ∈ Q.

Theorem 2.2.3. Let Q0 ⊂ Rn be a cube, 1 < p < ∞, w ∈ Ad∞(Q0), and
f ∈ L1(Q0). Then

∫
Q0

RRRRRf − fQ0
RRRRR
p w dx ≤ C∫

Q0

(Md ,♯
Q0

f)
p

w dx.

To see this, rewrite the left-hand side using Lemma 2.2.2 (b). The pth
root of the ensuing integral can then be estimated by duality.

A Poincaré inequality on cubes [33, p. 164] shows that for a function
u ∈ Lip(Q0), the dyadic sharp maximal function is controlled by the dyadic
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fractional maximal function of the gradient. For 0 ≤ α < n, this function is
given by

Md
α ,Q0

f(x) = sup
Q⊂Q0
Q∋ x

1
|Q|1−α/n ∫

Q
|f | dy ,

where the supremum is again taken over all dyadic cubes Q ⊂ Q0 such that
x ∈ Q.

To estimate the dyadic fractional maximal function we will be needing
another sparse domination argument, that is Lemma 5.1 in PI. This step
is also where we change weights, and the compatibility condition (2.3)
appears. The sparse estimate for almost every x ∈ Q0 takes the form

(Md
α ,Q0

f(x))p
≤ C∑

S∈S
XS(x)(

1
|S|1−α/n ∫

S
|f | dy)

p
, (2.9)

and the stopping rule generating the collection S is as follows. Let k0 be
the smallest integer satisfying

1
|Q0|

1−α/n ∫
Q0

|f | dx ≤ ak0 ,

where a > 2n depends on the dyadic Ad∞(Q0) constants of the weight [ ,
and no longer on w. Let Sk0 = {Q0}, and Sk for k > k0 be the collection of
maximal dyadic cubes Q ⊂ Q0 satisfying

ak <
1

|Q|1−α/n ∫
Q
|f | dx.

Define sets Ek ,Q by removing from Q the (k + 1)th step of the stopping
construction:

Ek ,Q = Q \ ⋃
R∈Sk+1

R.

The collection {Ek ,Q : k ≥ k0 , Q ∈ Sk} is the “heavy” collection that we seek.
By means of the nested dyadic structure and the stopping condition, we
have in fact pinned down the level sets {x ∈ Q0 : ak < Md

α ,Q0
f(x) ≤ ak+1}

of the maximal function. This is by no means unexpected, because the
maximal function was dyadic to begin with.

The sparse estimate (2.9) leads to a two-weight inequality for the frac-
tional maximal function, which is a localized variant of [56, Theorem 1.1].

Theorem 2.2.4. Let Q0 ⊂ Rn be a cube, 0 ≤ α < n, 1 < p ≤ q < ∞,
and (v, w) a pair of weights in Q0 such that [ = v−1/(p−1) ∈ Ad∞(Q0). The
following conditions are equivalent.

(a) There exists a C > 0 such that, for all f ∈ L1(Q0),

⎛
⎝∫Q0

(Md
α ,Q0

f)q w dx
⎞
⎠

1
q

≤ C
⎛
⎝∫Q0

|f |
p vdx

⎞
⎠

1
p

.
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(b) There exists a K > 0 such that, for all dyadic cubes Q ⊂ Q0,

( 1
|Q|1−α/n)

p
w(Q)

p
q [(Q)p−1 ≤ K.

With these main results in place, we are finally in a position to prove
the local inequality (2.4). We first apply Theorem 2.2.3, then a Poincaré
inequality for the dyadic fractional maximal function (PI, Lemma 4.4) and
finally Theorem 2.2.4:

⎛
⎝∫Q0

RRRRRu− uQ0
RRRRR
q w dx

⎞
⎠

1
q

≤ C
⎛
⎝∫Q0

(Md ,♯
Q0

u)
q

w dx
⎞
⎠

1
q

≤ C
⎛
⎝∫Q0

(Md
1 ,Q0 |∇u|)q w dx

⎞
⎠

1
q

≤ C
⎛
⎝∫Q0

|∇u|p vdx
⎞
⎠

1
p

.

The local inequality has an independent application to weak supersolu-
tions of the p-Laplace equation

div (|∇u|p−2
∇u) = 0 in Ω .

Recall that W1 ,p
loc is the Sobolev space of all functions in Lp

loc whose distribu-
tional first derivatives lie in Lp

loc. We call u ∈ W1 ,p
loc (Ω) a weak supersolution

in Ω if for all nonnegative η ∈ C∞
0 (Ω)

∫
Ω

|∇u(x)|p−2
∇u(x) · ∇η(x)dx ≥ 0 .

As per [38, Theorem 3.59], nonnegative weak supersolutions are local A1
weights in cubes “well inside” Ω. This fact enables us to apply (2.4) to
obtain the following single-weighted Poincaré inequality, Theorem 7.7 in
PI.

Theorem 2.2.5. Let Ω be a bounded domain, and 2n
n+1 < p < ∞. Let

w ∈ W1 ,p
loc (Ω) be a weak supersolution of the p-Laplace equation in Ω such

that w(x) > 0 for almost every x ∈ Ω, and Q0 ⊂ Ω a cube such that 4Q0 ⊂ Ω.
The weighted Poincaré inequality

∫
Q0

RRRRRu− uQ0
RRRRR
p w dx ≤ C l(Q0)p∫

Q0

|∇u|p w dx

holds for every u ∈ Lip(Q0)with C = C(n , p) > 0.

Letting v = |Q0|
p/n w, [ = v−1/(p−1), q = p, and Q0 such that 4Q0 ⊂ Ω, the

proof consists in verifying that w, [ ∈ Ad∞(Q0) and that (v, [) satisfy the
compatibility condition of Theorem 2.2.4 (b).
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3. Muckenhoupt weights on metric
spaces

3.1 Setting up the space

A typical metric environment to study Muckenhoupt weights is called a
space of homogeneous type in the sense of [15, Chapitre III]. This is essen-
tially a space (X , d , µ) with a quasimetric (satisfying a relaxed triangle
inequality) and a doubling property: there exists a constant C > 1 only
depending on µ such that for all balls B ⊂ X

0 < µ(2B) ≤ Cµ(B) <∞. (3.1)

These assumptions provide us with enough structure to reproduce the
Euclidean theory in its essentials. Strömberg–Torchinsky [63] investigate
and, indeed, demonstrate the importance of the doubling condition. It
turns out that once the underlying measure is doubling, the Ap condition
(1.1) for some p > 1 implies several relevant properties of Ap weights, such
as the reverse Hölder inequality and comparability of dν = w dµ to the
underlying measure [63, Theorem 15]. A Borel measure ν is said to be
comparable to the measure µ if there exist constants 0 < η , ε < 1 such that
for any ball B ⊂ X and measurable subset E ⊂ B,

µ(E) ≤ εµ(B) implies that ν(E) ≤ ην(B). (3.2)

We will be working in a metric measure space (X , d , µ), where the non-
trivial Borel measure µ satisfies the doubling property (3.1). The doubling
condition implies that the space is separable, and we further assume it
to be complete and hence proper [4, Proposition 3.1]. Unlike in Euclidean
spaces, we will not be able to benefit from a convex, nested, dyadic struc-
ture. The most obvious candidates to replace dyadic cubes are Vitali- and
Whitney-type coverings with balls, and generalized dyadic sets introduced
by Christ [12]. Dyadic sets share many good properties with their Euclidean
counterparts, such as having exactly one parent and a determined number
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of children, but we have very little to say about their “shape”, including
connectedness and convexity. Whitney balls, on the other hand, are not
pairwise disjoint, although they have bounded overlap. However, as long as
the space supports a doubling measure we can find a Calderón-Zygmund
decomposition, for instance. We adopt the Whitney decomposition from [36,
Lemma 2.8]; see Publication II, Lemma 3.3.

As for the class A∞(X), we will be referring to the following characteriza-
tion, sometimes called the reverse Jensen inequality:

[w]∞ = sup
B⊂X
B∋x

(−∫
B

w dµ) exp(−−∫
B

log w dµ) <∞ , (3.3)

where w ∈ L1
loc(X) is a nonnegative function. In Euclidean spaces it is well

known that this inequality and (2.2) describe the same class of weights,
albeit dyadic in the case of the latter; see, for instance, [29, Theorem IV.2.15].
The situation in more general metric measure spaces will be discussed in
Chapter 3.3.

Considering harmonic analysis on metric measure spaces, Coifman and
Weiss’ book [15] turns out to have been ahead of its time. Fifty years later,
a good modern textbook remains to be written. The principal reference
to weight theory on metric measure spaces is the aforementioned [63].
Technical tools can be found in [31, 36]. While not directly relevant to
us, [22] is a book on Littlewood–Paley theory and wavelets on spaces of
homogeneous type, that draws on [15] for much of its basics.

3.2 Approaches to locality: Extension

Returning to the topic of local weights, an alternative to intrinsic methods
discussed in Chapter 2 is to borrow global results by finding an extension
that coincides with the original weight on the set E ⊂ X in question.
In particular, we would like to investigate those subsets E for which an
extension can be found. The problem setting is similar to that of Sobolev
extensions, on which there exists an extensive body of research; see e.g.
[37, 44].

Publication II (PII) takes a step in this direction. Namely, we prove
the following theorem, that is the generalization of a Euclidean result
attributed to Thomas H. Wolff.

Theorem 3.2.1. Let X be a complete metric space with a doubling measure,
E ⊂ X a measurable set with µ(E) > 0, and w a weight on E. Then, for
1 < p <∞, the following statements are equivalent.

(i) There exists a weight W ∈ Ap(X) such that W = w a. e. on E;
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(ii) There exists an ε > 0 such that

sup
B⊂X
( 1
µ(B)∫B∩E

w1+ε dµ)
⎛
⎝

1
µ(B)∫B∩E

( 1
w1+ε)

1
p−1

dµ
⎞
⎠

p−1

<∞.

In addition, whenever p = 1, the condition (ii) takes the following form:
There exists a constant C > 0 such that

1
µ(B)∫B∩E

w1+ε dµ ≤ C ess inf
B∩E

w1+ε

for every ball B ⊂ X.

Comparing (ii) to the classical Ap condition, it is clear that we need to deal
with weights and maximal functions restricted to arbitrary measurable
subsets E ⊂ X . We have chosen to call these classes induced Ap weights
on E, denoted Ãp(E).

Definition 3.2.2. On a metric space X , let E ⊂ X be a measurable subset
with µ(E) > 0 . Let w be a weight on E. If 1 < p <∞ , we say that w ∈ Ãp(E)
whenever

JwKp = sup
B⊂X
( 1
µ(B)∫B∩E

w dµ)
⎛
⎝

1
µ(B)∫B∩E

( 1
w)

1
p−1

dµ
⎞
⎠

p−1

<∞.

If p = 1 , we define Ã1(E) as the class of weights w for which there exists
C > 0 with

1
µ(B)∫B∩E

w dµ ≤ C ess inf
B∩E

w

for every ball B ⊂ X . We denote by JwK1 the infimum of the C > 0 for which
this inequality holds.

In other words, the extension Theorem 3.2.1 states that a weight w,
initially defined on a subset E ⊂ X , possesses an extension to the whole
space whenever w1+ε is an induced weight on E.

We need to assume the Ãp condition for w1+ϵ instead of simply stating the
corresponding condition for w, because it is unclear whether the induced
weights satisfy a self-improving property. This results from the elementary
fact that when E is an arbitrary subset, we are unable to control the
measures of the relative balls B∩ E. Even when the measure is positive,
µ(B ∩ E)might be very small in comparison to µ(B), not to mention the
doubling property: µ(2B∩ E) or w(2B∩ E) are not comparable to µ(B∩ E)
or w(B ∩ E) in general. As a consequence, we cannot ensure that w and
w−1/(p−1) satisfy a reverse Hölder inequality, and hence the Gehring lemma
cannot be used to obtain the self-improving property. See [63] and the
discussion in Chapter 3.3.
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The proof of Theorem 3.2.1 rests on three classical results: Jones fac-
torization, Coifman–Rochberg lemma, and the self-improving property of
Ap(X)weights. Owing to the dearth of references on Ap weights in metric
measure spaces, we have chosen to prove each theorem in detail in PII. Our
version of the Jones factorization theorem involves a power of an Ãp(E)
weight.

Theorem 3.2.3. Let E ⊂ X be a measurable set with µ(E) > 0, p > 1, and v
a weight on E such that vr ∈ Ãp(E) for some r > 1 . Then there exist weights
v1 , v2 ∈ Ã1(E) such that v = v1v1−p

2 .

Using elementary properties of Ãp(E)weights, we show that whenever
vr ∈ Ãp(E) for some r > 1, then v and v−1/(p−1) are induced weights on E
of classes q1 < p and q2 < p′, respectively. Here p′ denotes the conjugate
exponent of p such that 1/p+1/p′ = 1. It follows that the maximal function
relative to the set E, given by

mEf(x) = sup
B∋x

1
µ(B)∫B∩E

|f | dµ ,

is bounded both on Lp(E, v) and Lp′ (E, v−1/(p−1)), and we can follow the
track of the classical proof [34, Theorem 7.5.1] (in Rn, but the technique is
the same).

Ultimately, we would like to characterize those subsets E ⊂ X from which
extension is possible, and preferably in geometric terms. Theorem 3.2.1
prompts us to translate the Ãp(E) condition into a geometric condition
on the set E. In this sense, the extension problem would appear to share
certain similarities with local-to-global problems such as the one in Chapter
2.1.

Holden [39] has verified Theorem 3.2.1 (ii) in Rn under additional as-
sumptions on the set E that arise from his argument, yet we were unable
to reproduce his proof even in Rn. The reason is yet again the difficulty of
controlling the measures of the sets B ∩ E (or Q ∩ E when X = Rn). In
the end, it is not clear what geometric assumptions to make on the set E
so as to overcome this problem and successfully verify the Ãp(E) condition.
Publication II provides a starting point for further research.

3.3 From Muckenhoupt to reverse Hölder

A well-known and remarkable property of Ap weights is that they satisfy a
reverse Hölder inequality (RHI): whenever Ω ⊂ X is an open subset, there
exist p > 1 and a constant C such that for every ball B ⋐ Ω

(−∫
B

wp dµ)
1
p

≤ C−∫
B

w dµ. (3.4)
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Here and below, the relation B ⋐ Ω indicates that the closure of B is a
compact subset of Ω. If a function f ∈ L1

loc(Ω) satisfies the reverse Hölder
inequality with exponent p > 1, we say that f belongs to the p-reverse
Hölder class, denoted f ∈ RHp(Ω). These functions were first studied by
Gehring [30] and Coifman–Fefferman [14].

In Euclidean spaces, the reverse Hölder inequality characterizes Ap
weights, in the sense that a weight w belongs to Ap for some p if and
only if it satisfies a reverse Hölder inequality for some s > 1. In metric
measure spaces, even those with a doubling measure, this is generally
not the case. Namely, a reverse Hölder inequality need not imply the Ap
condition (1.1), as shown by [63, Theorem 15]. If we wish to recover the RHI
as a characterization of Ap weights, we need to make another assumption
on the setting. Strömberg and Torchinsky [63] develop the Ap–reverse
Hölder theory in metric measure spaces under the assumption that the
measure of a ball depend continuously on its radius, while Kinnunen and
Shukla [47, 59] assume the α-annular decay property.

Definition 3.3.1. A metric measure space (X , d , µ)with a doubling mea-
sure µ is said to satisfy the α-annular decay property with 0 ≤ α ≤ 1, if
there exists C ≥ 1 such that for every x ∈ X , r > 0, and 0 < δ < 1

µ(B(x , r) \ B(x ,(1 − δ)r)) ≤ Cδαµ(B(x , r)). (3.5)

The constant C is independent of the point, radius, and δ.

Whenever the exact parameter α is not of interest, we say that a space sat-
isfies an annular decay property if it satisfies the α-annular decay property
for some 0 ≤ α ≤ 1.

In [47, 59] the annular decay property guarantees that when the underly-
ing measure is doubling, any weighted measure comparable to it is doubling
as well. It follows that the comparability of measures (3.2), reverse Jensen
(3.3), and reverse Hölder (3.4) inequalities can be taken as equivalent char-
acterizations of the class A∞, just as in the Euclidean case. In short, it
begins to make sense to state that

A∞ =⋃
p≥1

Ap .

At present, it is not clear what is the minimal necessary assumption
to reproduce the Ap–reverse Hölder connection on metric spaces. The
annular decay property is certainly sufficient, and enjoys the advantages
of being well known, fully quantitative, as well as formulated in terms of
the measure µ alone. For convenience, we will adopt the assumption (3.5)
wherever a strong reverse Hölder inequality is needed. Early publications
involving the annular decay property or a slight variant are [7, 16, 21]. It
is well known to hold true for a fairly large class of spaces, including all
length spaces; see e.g. [7, 57].
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The annular decay property unlocks the very important Gehring lemma,
which states that a uniform reverse Hölder inequality is self-improving:
for a function f ∈ RHp, there exists q > p such that f ∈ RHq. Moreover,
without an additional assumption such as the annular decay property, one
only obtains a weak RHI with exponent q, that will be introduced shortly.
For two different proofs of this lemma in metric measure spaces see [49,
Theorem 3.1], and [59]. We will not be directly applying Gehring’s lemma,
but it again illustrates the perhaps unexpected phenomena that occur in
metric spaces.

3.4 Weak reverse Hölder inequalities

A weak reverse Hölder inequality involves an increasing support on the
right-hand side. We say that a nonnegative, locally integrable function f

satisfies a weak reverse Hölder inequality on Ω ⊂ X , whenever there exist
p > 1 and a constant C > 0 such that for every ball B with 2B ⋐ Ω,

(−∫
B
f p dµ)

1
p

≤ C−∫
2B

f dµ.

Such functions constitute the weak p-reverse Hölder class WRHp(Ω). This
class is a genuine relaxation of RHp (3.4) in that functions in WRHp are
no longer necessarily doubling. Furthermore, they may reach zero on
a set of nonzero measure, unlike Muckenhoupt weights. Weak reverse
Hölder inequalities arise naturally in Caccioppoli estimates for quasiregular
mappings and nonlinear partial differential equations, such as in the early
articles [50, 32], while in [62] it was established that they also self-improve.
See also [4, Chapter 3.5] on Gehring’s lemma, in fact the weak version.

Much like in the strong case, the class WRHp can be characterized in
several different ways. In Publication III (PIII), we introduce eleven char-
acterizations in total; the following theorem highlights four of these. State-
ment (iv) involves functions of bounded mean oscillation (BMO). These are
functions f ∈ L1

loc(Ω) such that

∥f∥BMO = sup
B⊂Ω
(−∫

B
|f − fB| dµ) <∞.

Theorem 3.4.1 (selection). Let X be a metric measure space with a doubling
measure, Ω ⊂ X an open set, and w a weight on Ω. The following statements
are equivalent.

(i) There exist p > 1 and a constant C > 0 such that

−∫
B

wp dµ ≤ C (−∫
2B

w dµ)
p

for every ball B with 2B ⋐ Ω;
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(ii) There exist η , ε > 0 with η < C−5
d such that if B is a ball with 2B ⋐ Ω

and F ⊂ B a measurable set, then µ(F) ≤ εµ(B) implies that w(F) ≤
ηw(2B);

(iii) There exists a constant C > 0 such that

∫
B

M(wXB)dµ ≤ Cw(2B)

for every ball B with 2B ⋐ Ω;

(iv) There exists a constant C > 0 such that for every ball B with 11B ⋐ Ω

and every function f ∈ BMO(Ω)with ∥f∥BMO(Ω) ≤ 1, it holds that

∫
B
|f − fB|w dµ ≤ Cw(2B).

As a matter of fact, the dilatation factor 2 could be replaced by any
other constant [ > 1, as detailed in PIII, Theorem 4.4. Either way, no
additional assumptions on the space need to be made, because the weighted
measure is not required to be doubling. In particular, the annular decay
assumption is not invoked. While the statements of Theorem 3.4.1 rather
unsurprisingly resemble various characterizations of Muckenhoupt A∞
weights, Publication III includes examples of other A∞-like conditions
that are not satisfied by WRHp functions, at least not without nontrivial
modifications.

The above statements (i)–(iv) in particular derive from [1, 58, 60]. Con-
dition (ii) is, in its essence, the one we have chosen to call qualitative
nondoubling A∞: the nondoubling analogy of the fact that the measure
induced by an A∞ weight is comparable to the underlying measure. This
is clearly the weakest of the many possible definitions of an A∞ weight
[63, Theorem 15], and remains so in the weak case. Accordingly, the most
demanding part of the proof of Theorem 3.4.1 is to show that (ii) implies
(i). We need the following lemma, a distributional estimate of sorts for the
weight w.

Lemma 3.4.2. Assume that w satisfies Theorem 3.4.1 (ii). There exist con-
stants γ > C3

d and β > 0, only depending on the parameters of (ii), for which
the following statement holds. Let B be a ball with 2B ⋐ Ω, 0 < r < 3/2,
and λ ≤ 10−1. Then

∫
rB∩{w≥γD}

w dµ ≤ γ−β∫
(r+λ)B∩{w≥γ−1 D}

w dµ ,

where
D = D(λ , B) = w(2B)

µ(2B)Clog2
4

5λ+1
d . (3.6)
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An outline of the proof follows. For an η > 0 small enough such that
ηC5

d < 1, let ε be the parameter associated with η from (ii). We choose the
constants γ , β > 0 so that

γ > max {C3
d ,

C2
d
ε

, 1
1 − ηC5

d
} , and γβ =

1 − γ−1

ηC5
d

.

Write I = {y ∈ Ω : w(y) ≥ γD} , and J = {y ∈ Ω : w(y) ≥ γ−1 D}. If r is fixed
as in the assumption, and x is a Lebesgue point contained in I ∩ rB, we
denote

sx = inf
⎧⎪⎪⎨⎪⎪⎩

s > 0 : B(x , s)⋐ Ω and −∫
B(x ,s)

w dµ ≤ D
⎫⎪⎪⎬⎪⎪⎭

, and rx =
sx
10 .

It follows from the choice of parameters and the doubling condition for µ

that 0 < sx < 5λ r(B). Using the assumption (ii) in addition to the good
parameters, we obtain the estimate

∫
I∩B(x ,5rx)

w dµ ≤ γ−β∫
J∩B(x ,rx)

w dµ

at almost every point x ∈ I ∩ rB. The Vitali covering lemma [4, Lemma
1.7] provides a disjoint family of balls {B(x j , r j)} j such that

⋃
x∈I∩rB

B(x , rx) ⊂⋃
j

B(x j , 5r j) ,

where we have written r j = rx j for short. Note that r j ≤ λr(B)/2, which
implies that B(x , rx) ⊂ (r + λ)B, and finally

∫
I∩rB

w dµ ≤∑
j
∫

I∩B(x j ,5r j)
w dµ ≤ γ−β∑

j
∫

J∩B(x j ,r j)
w dµ

= γ−β∫
J∩⋃ j B(x j ,r j)

w dµ ≤ γ−β∫
J∩(r+λ)B

w dµ.

Spadaro’s original Euclidean proof [60, Lemma 2.1] uses the Besicovitch
covering theorem, which must here be replaced by a more careful argument.

Using Lemma 3.4.2, it is now easy to complete the proof of (ii)⇒ (i). Let
B be a ball with 2B ⋐ Ω, γ and β as in the statement of Lemma 3.4.2, and
p > 1 so that 2(p− 1) < β. Denote

λk =
4
5 · 2

1−2k log γ
log Cd , k = 1 , 2 , . . .

We find that λk < 1/10 for every k, and that ∑∞
k=1 λk < 1/2. Also, the

corresponding constants Dk = D(λk , B) given by (3.6) satisfy

Dk = γ2k w(2B)
µ(2B) , k = 1 , 2 , . . . , and Dk = γ2 Dk−1 , k = 2 , 3 , . . .
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Then

∫
B

wp dµ = ∫
B∩{w≤γD1}

wp dµ +
∞
∑
k=1
∫

B∩{γDk≤w≤γDk+1}
wp−1w dµ

≤ γpDp
1µ(B)+

∞
∑
k=1
(γDk+1)p−1∫

B∩{w≥γDk}
w dµ. (3.7)

For k = 1 , 2 , . . . we apply Lemma 3.4.2 repeatedly to obtain

∫
B∩{w≥γDk}

w dµ ≤ γ−(k−1)βw(2B).

Combining this with (3.7), we obtain a series that converges by virtue of
the choice of p, and conclude that there exists a constant C depending on
the parameters in (ii), as well as on Cd , γ , β, and p, such that

−∫
B

wp dµ ≤ C (w(2B)
µ(2B))

p
.

A peculiarity of weak weights is the upper bound η < C−5
d that appears

in the statement of (ii). This bound tends to zero with increasing dimen-
sion and cannot be done away with, unlike in the case of Muckenhoupt
weights where any 0 < η , ε < 1 will do. The same phenomenon occurs
already in Spadaro’s Euclidean proof [60]. Example 4.2 in Publication III
demonstrates that the upper bound must be smaller than 21−n, which was
observed by Sawyer in dimension 2 in [58].

Statement (iii), called the Fujii–Wilson condition [28, 65], has previously
been shown for weak A∞ weights by Anderson, Hytönen, and Tapiola [1].
They prove that (iii)⇒ (ii) by means of weak weights defined on Christ-
type dyadic systems of cubes; again see [12]. We show that (iii) ⇒ (ii)
by elementary arguments. Using nothing but fundamental properties of
the maximal function and the Vitali covering lemma, one arrives at the
following weak version of (i).

Lemma 3.4.3. For every η̃ > 0 there exists ε̃ > 0 such that for every measur-
able set F ⊂ B with 4B ⋐ Ω and µ(F) ≤ ε̃µ(B), we have w(F) ≤ η̃w(4B).

To tighten this statement we need one more covering by balls. Let B
be a ball such that 2B ⋐ Ω, and F ⊂ B a measurable set. An argument
involving the Vitali covering lemma provides a collection of balls {Bi}N

i=1
with N = N(Cd) and r(Bi) = 1/5 r(B), implying that µ(Bi) ≥ c̃(Cd)µ(B).

For any η > 0 write η̃ = Nη, and ε = c̃(Cd)̃ε. If µ(F) ≤ εµ(B), then

µ(F ∩ Bi)
µ(Bi)

≤
µ(F)

c̃(Cd)µ(B)
≤ ε̃ ,
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which by Lemma 3.4.3 implies that w(F∩Bi) ≤ η̃w(4Bi) ≤ η̃w(2B) for every
i = 1 , . . . , N. We conclude that

w(F) ≤
N

∑
i=1

w(F ∩ Bi) ≤ η̃

N

∑
i=1

w(4Bi) ≤ η̃Nw(2B) = ηw(2B).

Condition (iv) is a generalization of [58, Formula 23], which was originally
stated for Muckenhoupt weights in Rn. It deserves attention for bringing
up the well-known connection between Ap and BMO. Namely, whenever
p > 1, we have

BMO(Ω) = {α log(w) : α ≥ 0 and w ∈ Ap(Ω)} ;

see [59, Theorem 3.11] and the remark thereafter. Assuming the weak
reverse Hölder inequality (i), statement (iv) essentially follows from the
John–Nirenberg inequality. The reverse implication is (iv)⇒ (ii), whose
proof involves a weak version of (ii) and a covering argument identical to
the above.

3.5 Symmetry of the limiting classes

The case p =∞ is the limiting class of reverse Hölder conditions both weak
and strong. For an open set Ω ⊂ X we say that the weight w belongs to
the class RH∞(Ω), if there exists a constant C > 0 such that for every ball
B ⋐ Ω

ess sup
B

w ≤ C−∫
B

w dµ. (3.8)

The corresponding weak RH∞ class is denoted WRH∞(Ω), and involves w2B
on the right-hand side for balls B such that 2B ⋐ Ω. From the discussion
in Publications III–IV we gather that

RH∞ ⊊⋂
s>1

RHs , WRH∞ ⊊⋂
s>1

WRHs ,

RH∞ ⊊ WRH∞ , RHs ⊊ WRHs .

We might recall that A1 ⊊ ⋂p>1 Ap , with an example in [43] showing that
the inclusion is proper. Indeed, the relations of A1 and RH∞ to Ap and RHs
when 1 < r, s <∞, respectively, exhibit a certain symmetry that is all the
more apparent in contexts where the RHI characterizes Ap weights. This
is the topic of Publication IV (PIV), culminating in Theorems 3.5.2–3.5.3
that provide closely analogous characterizations of A1 and RH∞ on metric
measure spaces.

Previously, Cruz-Uribe–Neugebauer [17] have systematically investigated
the structure of reverse Hölder classes in Euclidean spaces. To this end,
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given a f ∈ L1
loc(X), they introduce the minimal function

mf(x) = inf
B∋x
−∫

B
|f | dµ , (3.9)

where the infimum is taken over all balls B ⊂ X containing the point
x. Needless to say, the minimal function mirrors the classical Hardy–
Littlewood maximal function. We are now able to express the A1 and RH∞
conditions in terms of the two extremal functions:

w ∈ A1(X) if and only if Mw(x) ≤ [w]1 w(x) for a.e. x ∈ X ,

w ∈ RH∞(X) if and only if w(x) ≤ Cmw(x) for a.e. x ∈ X.

Ou [53, 54] has studied the natural minimal and maximal functions of a
function f ∈ L1

loc(X), respectively

M♮f(x) = sup
B∋x
−∫

B
f dµ , m♮f(x) = inf

B∋x
−∫

B
f dµ ,

that is, (1.7) and (3.9) without absolute value signs. Since weights are
nonnegative by definition, this does not concern us overmuch. In [54] it is
shown that the natural extremal functions commute with the logarithm on
A∞(X). For the maximal function, for instance, it follows from the Jensen
and reverse Jensen (3.3) inequalities that

0 ≤ (log M♮ − M♮ log)w ≤ log [w]∞ ; (3.10)

see PIV, Lemma 3.2. The result for the minimal function is the same. The
second observation is that the natural extremal functions may be used to
characterize functions of bounded upper and lower oscillation (BUO and
BLO). Respectively, these are spaces of those functions f ∈ L1

loc(X) for
which

∥f∥BUO = sup
B⊂X
(ess sup

x∈B
f(x)− −∫

B
f dµ) <∞ ,

∥f∥BLO = sup
B⊂X
(−∫

B
f dµ− ess inf

x∈B
f(x)) <∞.

We immediately observe that ∥−f∥BUO = ∥f∥BLO, implying that neither of
these functionals is a norm. In fact, BUO and BLO are subsets of BMO.
The characterization lemma [2, Lemma 2] states the following.

Lemma 3.5.1. Let X be a metric space with a doubling measure, and
f ∈ L1

loc(X). Then f ∈ BLO(X) if and only if M♮f − f ∈ L∞(X), with

∥f∥BLO = ∥M♮f − f∥∞ ,

and f ∈ BUO(X) if and only if f −m♮f ∈ L∞(X), with

∥f∥BUO = ∥f −m♮f∥∞ .
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Using (3.10) and Lemma 3.5.1 we obtain the following nearly symmetri-
cal descriptions of A1 and RH∞, bringing [54] into metric spaces with a
doubling measure.

Theorem 3.5.2. Let X be a metric space with a doubling measure, and w
a weight. Then w ∈ A1(X) if and only if w ∈ A∞(X) and log w ∈ BLO(X).
Furthermore,

exp(∥log w∥BLO) ≤ [w]1 ≤ [w]∞ exp(∥log w∥BLO) .

Theorem 3.5.3. Let X be a metric space with a doubling measure and
satisfying an annular decay property, and w a weight. Then w ∈ A∞(X)∩
RH∞(X) if and only if log w ∈ BUO(X)with

C ≤ exp(∥log w∥BUO) ≤ C [w]∞ ,

where C is the infimal constant in the RH∞ condition (3.8) for w.

Writing w ∈ eBLO whenever log w ∈ BLO etc., we can summarise these
results in a single line:

A1 = A∞ ∩ eBLO , RH∞ = eBUO .

In the proof of Theorem 3.5.3, annular decay or another suitable assump-
tion is needed in order to connect Ap and reverse Hölder information. The
statement of the theorem is in fact redundant, because

RH∞ ⊊⋂
s>1

RHs ⊂⋃
s>1

RHs = A∞ .

In other words, w ∈ RH∞ implies that w ∈ A∞. The first inclusion is [17,
Theorem 4.1] (in Rn, but the proof in metric spaces is the same). The final
equality is valid under the annular decay assumption; see [47] and the
discussion above.

Using the characterizations provided by Theorems 3.5.2–3.5.3, several
well known properties of Ap weights can be shown by little more than arith-
metic with exponents on the oscillation side. The downside of operating at
this level of abstraction is that one tends to lose quantitative information:
compare PIV, Lemma 2.6, and Propositions 4.2–4.4 in [54]. The key appli-
cation of these techniques in Publication IV is the following refined Jones
factorization theorem that incorporates both Ap and reverse Hölder data.

Theorem 3.5.4. Let X be a metric space with a doubling measure and
satisfying an annular decay property, and 1 < p , s < ∞. The weight
w ∈ Ap(X)∩RHs(X) if and only if w = w1w2 for some w1 ∈ A1(X)∩RHs(X)
and w2 ∈ Ap(X)∩ RH∞(X).

Furthermore, Publication IV generalizes the following boundedness result
for the natural maximal function, shown in [53] on Euclidean spaces.
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Proposition 3.5.5. Let X be a metric space with a doubling measure and
satisfying an annular decay property. If f ∈ BMO(X), then M♮f ∈ BLO(X)
with

∥M♮f∥BLO ≤ C(Cd)∥f∥BMO .

The proof requires both the Coifman–Rochberg (PII, Proposition 2.10) and
John–Nirenberg lemmas. The Coifman–Rochberg lemma ensures that M
maps A∞ to A1. One might conjecture that the corresponding boundedness
result for the minimal function would involve RH∞ in lieu of A1.
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