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A weight is a nonnegative, locally integrable function. Muckenhoupt weights are a
prominent class of weights in the study of harmonic analysis and partial differential
equations. The present thesis contributes to the theory of local weights defined on
a bounded Euclidean domain, as well as weights on metric measure spaces with a
doubling measure.

We show a two-weight Sobolev-Poincaré inequality on a Boman domain by the
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argument. As an application we obtain Poincaré inequalities for certain powers of
distance functions, and supersolutions of the p-Laplace equation.
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result for the natural maximal function.
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1. Introduction

Muckenhoupt, or A,, weights are an important class of weights at the
heart of this study. For 1 < p < oo, A,(X) weights are precisely those
nonnegative, locally integrable functions w that satisfy

p—1
sup (][wd,u) (][w_Pil d,u) < 00, (1.1)
BcX \UB B

This supremum is denoted [w], and called the characteristic A, constant
of w. When p = 1, we require instead that there exist a constant [w]; < oo
such that for every ball B C X

J[w du < [w]; essinf w(x). (1.2)
B x€EB

The present thesis contributes to two neglected aspects of the theory of
Muckenhoupt weights, namely local weights and weights on metric measure
spaces. In Chapter 2, based on Publication I, we work in Euclidean spaces
with weights defined on a bounded domain Q C R” instead of the whole
space X = R". Here we show a two-weight Sobolev-Poincaré inequality
based on local data by the dyadic sparse domination method.

Chapter 3 and Publications IT-IV focus on metric spaces supporting a
doubling measure. The principal results are an extension theorem for
Muckenhoupt weights, characterizing weights that satisfy a weak reverse
Hblder inequality, and characterizing the limiting classes of A, and reverse
Holder classes of functions. While most if not all of these results are
generalizations of their Euclidean counterparts, in metric measure spaces
the structure is laid bare, revealing phenomena not seen in R”. For us chief
among these is the fact that weights satisfying a reverse Hoélder inequality
are no longer necessarily Muckenhoupt. This further raises the question
of determining those structural conditions on which the Muckenhoupt—
reverse Holder equivalence depends.



Introduction
1.1 Meeting Muckenhoupt weights

Muckenhoupt’s concern in introducing the eponymous weights in his 1972
article [51] was the mean summability of Fourier series, which is achieved
in weighted norm with the weight satisfying (1.1)—(1.2). The following year,
Gehring [30] discovered that the Jacobian of a quasiconformal mapping
satisfies a reverse Holder inequality (and hence is a Muckenhoupt weight,
although Gehring does not make the connection; see also Chapter 3.3 below),
leading to a higher integrability result. Elcrat—-Meyers [50] likewise applied
reverse Holder inequalities to obtain higher integrability results in calculus
of variations. The body of research on weights and weighted inequalities
grew rapidly throughout the 1970s, as demonstrated by [25, 52].

The basic problem in the study of weighted norm inequalities is to obtain
estimates of the form

v({xEX:|Tf(x)|>}L})SCf|f|pwdx, or (1.3)
M Jx

/|Tf|pvdx£Cf|f|pwdx, (1.4)
be b'e

where 1 < p < oo, and T is an operator such as a maximal function or
singular integral. The weight functions v and w may be the same, i.e. v = w,
or different, setting apart one-weight and two-weight inequalities. It turns
out that if we take v = w and T to be the Hardy-Littlewood maximal
operator, or indeed any singular integral with a sufficiently smooth kernel
[14], the A, condition (1.1)—(1.2) (1.1)~(1.2) is necessary and sufficient to
establish the inequality (1.3) whenever p = 1, and (1.4) whenever p > 1.
As for the two-weight case, several fundamental problems remain open,
including identifying the analogy of the A, condition. We refer to [18] for a
survey and many more bibliographic references.

Of particular interest to us are weighted Poincaré inequalities, that will
be discussed in Chapter 2. Consider nonlinear partial differential equations
of divergence type

div A(x, u, Du) = 0.

The regularity of the solution depends on the structural properties of
the differential operator A. In the early article by Fabes, Kenig, and
Serapioni [26], the authors are interested in relaxing one of these, namely
the ellipticity of the operator A(x,Du) = A(x)Du(x). To this end, they
replace the ellipticity condition with a weighted version

Cw|EP < AE-E< CwlE?,

where the nonnegative weight w is allowed to either vanish, be infinite,
or both. (In the classical situation w = 1.) One might ask what are the
minimal structural conditions which guarantee that the solution has a

10



Introduction

given amount of regularity, such as local Holder continuity. In particular,
what are the conditions on the weight w? Fabes et al established a weighted
Poincaré inequality of the type

f [uff wdx < C / [Du|’ wdx, (1.5)
Q Q

where QO C R” is a bounded domain, whenever w is yet again an A, weight;
see Chiarenza—Frasca’s streamlined proof in [11]. By today, the class of
admissible weights is known to be even larger [38].

Muckenhoupt weights have also made an impact on the field of potential
theory. The classical Dirichlet problem on a domain Q C R” is to look for a
function u such that

Au=0 inQ,
{ (1.6)

ulgo = 15

where the boundary data f belongs to a space such as C(6Q) or LP(6Q).
Roughly speaking, the regularity of the domain  determines the smooth-
ness of the solution, and harmonic measure carries information on that
regularity. It follows from the work of Dahlberg [19, 20] that the Dirichlet
problem (1.6) with boundary data in L? is uniquely solvable with the solu-
tion having nontangential boundary values in L?, whenever the harmonic
measure is an A, weight on the domain boundary, and the Poisson ker-
nel associated with the measure satisfies a reverse Holder inequality. On
harmonic measure see also [8, 45].

We will be assuming a degree of familiarity with the Euclidean theory of
weights. Important general references on the topic, mostly on Euclidean
spaces, are [23, 29, 34, 35, 61, 63, 64]. Weights on metric measure spaces
are further discussed in Chapter 3.1. The lecture note [24] takes a mod-
ern approach to Muckenhoupt weights and might be recommended as an
introduction.

1.2 Notation

We begin by introducing notation and definitions that are either used
throughout or would clutter the presentation elsewhere. Whenever E C X
is a measurable subset and the function f is Lipschitz continuous on every
compact subset of E, we say that f is locally Lipschitz on E, denoted
f € Lipy,.(E). Locally integrable functions Llloc(E) are defined analogously.

If the measure v is absolutely continuous with respect to u and if there
exists a nonnegative locally integrable function w such that dv = wdu, we
call v a weighted measure with respect to u, and w a weight, following [63,
p- 11. Habitually, we abuse notation and do not distinguish between the
measure and the weight function. Consequently, for any measurable subset
F C E and weight w on E, we write w(F) = fF wdu.

11
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The integral average of a function f € L!(E) over a measurable set F C E,
with 0 < u(F) < oo, is abbreviated

1 p— p—
u(F)ﬁfd”_][I:fdﬂ_fF'

Averages with respect to a weighted measure are occasionally abbreviated

1
m /;deﬂ = fw,F-

An open ball with center x € X and radius r > 0 is denoted B = B(x, r),
where the center and radius are left out when not relevant to the discussion.
We write r(B) = r, and aB = B(x, ar) for the ball dilated by a constant
a>0.

When X = R”, the role of balls is largely taken over by cubes. A cube
@ C R” is a half-open set of the form

Q:[al,bl)x...x[an,bn)

with by —a1 = ... = b, — a,. Imitating the notation for balls, a cube @ =
Q(x, r) is determined by its midpoint x and side length 1(@) = 2r = by — a;.
We also adopt the shorthand notation a® = Q(x, ar) for dilated cubes.

In Chapter 2.2 we will encounter a wealth of vocabulary pertaining to
dyadic cubes. These are constructed as subcubes of a fixed cube @y, C R".
The collection of its dyadic children, denoted chp(Qy), are the 2" cubes with
side length 1(Qg)/2 obtained by bisecting each edge. Continuing this process
recursively, we obtain the infinite collection D(Q) of dyadic subcubes, that
consists of @ and its dyadic descendants in every generation. Each cube
® in D(Qp) \ {Qo} has a unique dyadic parent, denoted 7Q: the cube
Q' € D(Qy) such that @ € chp(Q).

With respect to a generic collection & C D(Q,) of cubes with @, € &, the
E-parent ngQ of a cube @ C Qg is the minimal cube in & that contains
®. The inclusion need not be strict, so 7g®@ = @ whenever @ € & The
&E-children chg(@Q) of a cube @ € & are the maximal cubes in & strictly
contained in Q.

The classical Hardy-Littlewood maximal function is given by

1
Mf(x)zig};ﬂ(B)/;ﬂ du, (1.7)

where X is a metric space, B ballsin X, and f € Lll0 (X). When X =R",
cubes @ replace balls in the definition.

Various constants are denoted by the letter C, whose dependence on
parameters may be indicated in parentheses. Many careful descriptions
of constants have been omitted from this presentation, and the interested
reader will do well to consult the original publication.

12



2. Weighted norm inequalities

2.1 Approaches to locality: Intrinsic methods

The attentive reader of Chapter 1.1 may have noticed an inconsistency in the
presentation. Namely, in the context of harmonic analysis, one is typically
concerned with global properties, while partial differential equations tend
to be solved within bounded domains. Compare, for instance, the weighted
inequalities (1.4) and (1.5). This observation does reflect the situation at
large. While the global theory of A, weights is well established, especially
in R", interest in local weights has been limited to solitary articles such as
[3, 40].

Our contribution to the study of local weights is Publication I (PI), whose
principal results have since been included in the book [46]. The main
result is a two-weight Sobolev—Poincaré inequality for weights defined on
a bounded domain Q. Precisely, we show that for any locally Lipschitz
continuous function u € Lip;,.(Q)

1 1
(inf f|u—c|qwdx)q < C([|Vu|pvdx)p , 2.1
ceR” Q Q

on condition that Q C R” is a Boman domain, 1 < p < ¢ < oo, and the
weights w and ¢ = v/P~! each satisfy a dyadic As condition on dyadic
subcubes of the dilated cube @* = §@, where @ is a cube in the Whitney
decomposition W(Q) of Q. Precisely, there exist constants C,,, §,, > 0 such
that for all @*-dyadic cubes R C @* and measurable sets £ C R

w(E) <c, (|E|)5w ,

R

w(B) = (2.2)

and similarly for o; we denote w, o € A%(Q%). In addition, w and ¢ must
comply to the following dyadic Muckenhoupt-type compatibility condition:

13



Weighted norm inequalities

there exists a constant K > 0 such that
1 P 2 _
(IRII_I/") w(R)io(RP ! < K. (2.3)
The standard construction of Whitney cubes can be found e.g. in [35, Ap-
pendix J]. The significance of Boman domains will be discussed shortly. For
the statement of the theorem in full detail see PI, Theorem 7.1. Comparable
two-weight inequalities and compatibility conditions have been established
by Chanillo et al [9, 10] and Chua [13].
The proof consists of two stages. To begin with, we show the local inequal-
ity

1 1
q p
( lu —ug,|"w dx) <C ( [VulP v dx) , (2.4)
Qo Qo

where @ is a fixed cube in R”, on condition that w, o € AZ(Q,), and
(2.3) is satisfied in dyadic subcubes R C Q. This is done by the sparse
domination method, which will be presented separately in Section 2.2. The
key feature of the local inequality is that it is strictly local: all assumptions
on the weights (v, w) are made within the fixed cube Q. This is why, in the
next stage, we are able to build an estimate from the inside out, without
reference to data from outside the domain.

From here, we propagate the local inequality (2.4) to the entire domain Q,
producing (2.1). This local-to-global step is where the geometry of Boman
domains comes into play. In a Boman domain Q C R”, every two Whitney
cubes @y and @; can be joined by a chain C(Q) = (Qo, ®1, ..., Qx) of
Whitney cubes such that for each j there exists a cube R C Q;‘. N Q;T_l for
which

1(R) > C(n) max {l(Q;), l(Qj_l)} .
The formal definition of a Boman domain can be found in PI, Section 6. This
class of domains was introduced in [5]. Open cubes, balls, and bounded
Lipschitz domains are Boman domains in R”. More generally, a Euclidean
domain Q is a Boman domain if and only if it is a John domain. Unlike
Lipschitz domains, John domains are allowed to have twisting cones. The
relevance of these classes is covered in [6].

The main result connecting cubewise and global estimates is the following
theorem. Its proof is based on an idea of Iwaniec—Nolder’s [42, Lemma 4].
While technical, the proof boils down to applying elementary properties
of chains. The cube @, € W(Q) is chosen to be the fixed central cube in
the chain decomposition of Q, that is, the collection {C(®) : @ € W(Q)} of
chains from @ to Q.

Theorem 2.1.1. Let QO C R” be a Boman domain, and w doubling weight
in Q. Ifue Ll (Q,w)and 1 < p < oo, then

loc

f |u — U, Q; Pwdx < C Z lu — ww, g Pwdx. (2.5)
Q Qew(Q) Y @

14
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The final steps in the proof of (2.1) are applying (2.5), Holder’s inequality,
(2.4), the fact that ¢ > p, and that the dilated Whitney cubes @* have
bounded overlap: .y X+ < C(n).

inf f|u—c|qwdeC E f lu — uw,q|" wdx
cER?
Q Q Q*

eWw(Q)
q
p
‘wdx < C E ( |Vu|Pvdx)
Q Q"

<C Z 2qf|u—uQ*
Q Q" ew(Q)

ceW(Q)

q
P q
sc( D |Vu|Pvdx) SC(/|Vu|pvdx)p.
QeW(Q) 7 @ Q

As an application of (2.1) we show two Sobolev-Poincaré inequalities
where v = 1 and w is a distance weight, respectively

d(x, E)_”+%("_p) , where E C R" is a nonempty closed set, and
d(x, 39)_“%(”_”), where Q is a Boman domain. (2.6)

Inbothcases1 <p<g< % < 00, the Assouad dimension of the set E is
bounded by %(n — p), and the weight (2.6) satisfies a doubling condition of
the type

w(QNQx,2r) < Cqw(QN Q(x,r))

where Q(x,r) C R” is a cube with its midpoint x € Q. The full statements
are Theorems 7.2—7.3 in PI, which have been adapted into Theorems 10.29—
10.30 in [46].

2.2 Outline of the sparse domination argument

The idea of sparse domination is to use “sparse” dyadic operators to control
a continuous operator pointwise. Consequently, the original problem is
reduced to showing a uniform weighted norm inequality for a significantly
simpler class of dyadic operators. Dyadic techniques have been influential in
contemporary harmonic analysis, Hytonen’s resolution of the Ay conjecture
[41] being perhaps the most famous application. We refer to Pereyra’s
lecture notes [55], modestly titled Sparse revolution, for a survey.

In PI, we apply the sparse domination argument twice in the proof of
the local inequality (2.4). This proof will serve here to demonstrate the
principles underlying the sparse domination paradigm. We operate within
a fixed cube @y C R" and its dyadic decomposition D(Qy); recall the con-
struction in Chapter 1.2. In the first stage, we follow the idea in [48] and

15
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show for every Lebesgue point x € Qg of f the pointwise estimate

|f@) = fau| < C )" Xo@) f |~ fol dy,
QS Q

where the collection S of dyadic cubes inside @ depends on f. The letter

S stands for sparse collection in the sense that there are pairwise disjoint,

measurable subsets Eg C S € §, each of which has a large w-measure

compared to that of S. Lemma 2.2.1 describes the candidate for S, whose

sparsity is subsequently quantified by Lemma 2.2.2.

Lemma 2.2.1. Let Qq be a cube in R”, f € LY(Q), and w € AL (Q) with
Cy, 0w > 0. There exists a collection S of dyadic cubes and a constant
p = p(Cy, 6y) > 1 such that for each cube S € S

(a) if @ C Qq is dyadic cube such that tgQ = S, then

J[lf—fsldep |f — fs| dx;
Q S

(b) Y w(S) < Cup P w(S) < w(S),
S’echg(S)

The collection § is constructed by a stopping-time argument. Fix a func-
tion f € L1(Q) and a constant p such that C,, p~% < 1. We place g inside
S and proceed recursively: for each dyadic cube S € S, we add to S the
maximal dyadic cubes S’ C S that satisfy the stopping condition

J[If—fsldx>p |f — fs| dx.
S’ S

This process is iterated ad infinitum if necessary. As a result, we obtain
a collection S of dyadic cubes in @ that satisfies (a). The inequality (b)
follows from the stopping rule and the A% (Q,) condition for w.

Next, we build another collection of sets Eg C S, pairwise disjoint yet
occupying a large part of the weighted measure of each S € S.

Lemma 2.2.2. Let Qg be a cube in R”, w € A% (Qo) with constants Cy,, 5, >
0, and f € LY(Q). There exists a collection S of dyadic cubes in Qq satisfy-
ing the following conditions.

(a) There is a constant n = n(Cy,, 8y) > 0 and a collection {Eg : S € S} of
pairwise disjoint sets such that for every @ € S, Eg is a measurable
subset of S with w(Eg) > nw(S);

(b) For every Lebesgue point x € Qg of f,

@ fal ey Xs@f r-poia @D
S

SeS
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Beginning with the collection S C D(Qg) from Lemma 2.2.1, we are going
to construct the collection {Eg : S € 8} by removing selected parts of the
cubes S € S, namely their S-children. For every S € S, let

Es=S\ U S’ (2.8)

S’echg(S)

The task is now to show that {Eg} is the collection postulated by Lemma
2.2.2. Disjointness of the sets Eg follows from the dyadic decomposition.
Furthermore, for a fixed S € S, (2.7) implies that

w(Bs) =w(S)— Y w(S)= (1= Cup ) w(S),
S’echg(S)

whereby (a) is verified. The content of claim (b) is that the quantity
| f- fQ0| is dominated pointwise by the dyadic sparse operator on the
right-hand side of (2.7). The idea of the proof is to express the left-hand
side in terms of dyadic differences of the type

1 = falXe <D | D D Xe(fe-fo)|-

Se8 |Q:ms Q=S8 Q' €chp(Q)

The double sum on each S is then split among Eg and S \ Eg, and is found
to collapse on both sets by virtue of the nested dyadic structure, whereby
we find (2.7).

We aim to control the right-hand side of (2.7) by duality and maximal
function arguments. Lemma 2.2.2 is used to show a localized and weighted
variant of the Fefferman—Stein inequality (see [27] and [63, Theorem III.3]),
that is of independent interest. For a cube @y and f € L1(Q), the dyadic
sharp maximal function is given by

d,
ML f(x) = sup ][ |f = fol 4,
x2Q Q
where the supremum is taken over all dyadic cubes @ C @ such that x € Q.

Theorem 2.2.3. Let Q) C R" be a cube, 1 < p < oo, w € A%(Qo), and
f € LY(Qq). Then

f|f—fQ0|”wdxscf(Mg;ﬁf)pwdx.
Qo Qo

To see this, rewrite the left-hand side using Lemma 2.2.2 (b). The pth
root of the ensuing integral can then be estimated by duality.

A Poincaré inequality on cubes [33, p. 164] shows that for a function
u € Lip(Qy), the dyadic sharp maximal function is controlled by the dyadic
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fractional maximal function of the gradient. For 0 < a < n, this function is

OWP“MJ[V'”

given by
a A flx) = SuP

where the supremum is again taken over all dyadic cubes @ C @ such that
x € Q.

To estimate the dyadic fractional maximal function we will be needing
another sparse domination argument, that is Lemma 5.1 in PI. This step
is also where we change weights, and the compatibility condition (2.3)
appears. The sparse estimate for almost every x € @, takes the form

p
(Mg g, f(@))" < C ZXS(x)(|S|11_“/” f 1f] dy) . @9
S

SeS

and the stopping rule generating the collection § is as follows. Let &y be
the smallest integer satisfying

1 f k
———— [ |f]dx < a®,
Qo' ™" Jag,

where a > 2" depends on the dyadic A% (Q) constants of the weight o,
and no longer on w. Let S;, = {Qo}, and S, for k£ > kg be the collection of
maximal dyadic cubes @ C @ satisfying

o |
b= [ If]dx
|Q|1—a/n Q

Define sets Ej ¢ by removing from @ the (£ + 1)th step of the stopping
construction:
Ek,Q = Q\ U R.
ReS;41
The collection {Ek’Q k>ky,QeS k} is the “heavy” collection that we seek.
By means of the nested dyadic structure and the stopping condition, we
have in fact pinned down the level sets {x € @ : a* < M¢ @) < ak 1)
of the maximal function. This is by no means unexpected because the
maximal function was dyadic to begin with.
The sparse estimate (2.9) leads to a two-weight inequality for the frac-
tional maximal function, which is a localized variant of [56, Theorem 1.1].

Theorem 2.2.4. Let @y C R" be a cube, 0 < o < n, 1 < p < q < oo,
and (v, w) a pair of weights in Qg such that ¢ = v~ /®~1) € A (Q,). The
following conditions are equivalent.

(a) There exists a C > 0 such that, for all f € L1(Qy),

([ (Mo‘f,QOf)qwdx)qSC( |f|pvdx)p.
Qo Qo

18



Weighted norm inequalities

(b) There exists a K > 0 such that, for all dyadic cubes @ C Q,

1\ e
(|Q|l—a/n) w(@o(QF ! < K.

With these main results in place, we are finally in a position to prove
the local inequality (2.4). We first apply Theorem 2.2.3, then a Poincaré
inequality for the dyadic fractional maximal function (PI, Lemma 4.4) and
finally Theorem 2.2.4:

1
(f |u—uQ0|qwdx) SC(/ (Mg(’)uu)qwdx)
Qo Qo

L 1
q p
<C (/ (Mii,QO |Vu|)q de) < C( IVulpvdx) )
Qo Qo

The local inequality has an independent application to weak supersolu-
tions of the p-Laplace equation

eSS

div ([Vuf*Vu) =0 in Q.

Recall that Wli;p is the Sobolev space of all functions in Lﬁ) . Whose distribu-
tional first derivatives lie in Lﬁ . Wecallu € Wlﬁép (Q) a weak supersolution
in Q if for all nonnegative n € C3°(Q)

/ IVu()lP 2 Vu(x) - Vi(x) dx > 0.
Q

As per [38, Theorem 3.59], nonnegative weak supersolutions are local A
weights in cubes “well inside” Q. This fact enables us to apply (2.4) to
obtain the following single-weighted Poincaré inequality, Theorem 7.7 in
PI.

Theorem 2.2.5. Let Q be a bounded domain, and % < p < oo. Let

w e Wliép (Q) be a weak supersolution of the p-Laplace equation in Q such

that w(x) > 0 for almost every x € Q, and Qo C Q a cube such that 4Qy C Q.
The weighted Poincaré inequality

f lu —ug,|” wdx < CUQ)? [Vul’ wdx
Qo Qo
holds for every u € Lip(Qq) with C = C(n, p) > 0.
Letting v = |Qo[""w, o = v™/®~1) ¢ = p, and @, such that 4Q, C Q, the

proof consists in verifying that w, o € A%(Q) and that (v, o) satisfy the
compatibility condition of Theorem 2.2.4 (b).
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3. Muckenhoupt weights on metric
spaces

3.1 Setting up the space

A typical metric environment to study Muckenhoupt weights is called a
space of homogeneous type in the sense of [15, Chapitre III]. This is essen-
tially a space (X, d, u) with a quasimetric (satisfying a relaxed triangle
inequality) and a doubling property: there exists a constant C > 1 only
depending on x such that for all balls B C X

0 < u(2B) < Cu(B) < co. (3.1)

These assumptions provide us with enough structure to reproduce the
Euclidean theory in its essentials. Stromberg—Torchinsky [63] investigate
and, indeed, demonstrate the importance of the doubling condition. It
turns out that once the underlying measure is doubling, the A, condition
(1.1) for some p > 1 implies several relevant properties of A, weights, such
as the reverse Holder inequality and comparability of dv = wdu to the
underlying measure [63, Theorem 15]. A Borel measure v is said to be
comparable to the measure p if there exist constants 0 < 5, € < 1 such that
for any ball B C X and measurable subset E C B,

w(E) < eu(B) implies that v(E) < nv(B). 3.2)

We will be working in a metric measure space (X, d, u), where the non-
trivial Borel measure u satisfies the doubling property (3.1). The doubling
condition implies that the space is separable, and we further assume it
to be complete and hence proper [4, Proposition 3.1]. Unlike in Euclidean
spaces, we will not be able to benefit from a convex, nested, dyadic struc-
ture. The most obvious candidates to replace dyadic cubes are Vitali- and
Whitney-type coverings with balls, and generalized dyadic sets introduced
by Christ [12]. Dyadic sets share many good properties with their Euclidean
counterparts, such as having exactly one parent and a determined number
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of children, but we have very little to say about their “shape”, including
connectedness and convexity. Whitney balls, on the other hand, are not
pairwise disjoint, although they have bounded overlap. However, as long as
the space supports a doubling measure we can find a Calderén-Zygmund
decomposition, for instance. We adopt the Whitney decomposition from [36,
Lemma 2.8]; see Publication II, Lemma 3.3.

As for the class Ax(X), we will be referring to the following characteriza-
tion, sometimes called the reverse Jensen inequality:

[w], = sup (J[w d,u) exp (—][ log w du) < 00, 3.3)
B VB B

where w € Llloc(X ) is a nonnegative function. In Euclidean spaces it is well
known that this inequality and (2.2) describe the same class of weights,
albeit dyadic in the case of the latter; see, for instance, [29, Theorem IV.2.15].
The situation in more general metric measure spaces will be discussed in
Chapter 3.3.

Considering harmonic analysis on metric measure spaces, Coifman and
Weiss’ book [15] turns out to have been ahead of its time. Fifty years later,
a good modern textbook remains to be written. The principal reference
to weight theory on metric measure spaces is the aforementioned [63].
Technical tools can be found in [31, 36]. While not directly relevant to
us, [22] is a book on Littlewood—Paley theory and wavelets on spaces of
homogeneous type, that draws on [15] for much of its basics.

3.2 Approaches to locality: Extension

Returning to the topic of local weights, an alternative to intrinsic methods
discussed in Chapter 2 is to borrow global results by finding an extension
that coincides with the original weight on the set £ C X in question.
In particular, we would like to investigate those subsets E for which an
extension can be found. The problem setting is similar to that of Sobolev
extensions, on which there exists an extensive body of research; see e.g.
[37, 44].

Publication II (PII) takes a step in this direction. Namely, we prove
the following theorem, that is the generalization of a Euclidean result
attributed to Thomas H. Wolff.

Theorem 3.2.1. Let X be a complete metric space with a doubling measure,
E C X a measurable set with u(E) > 0, and w a weight on E. Then, for
1 < p < oo, the following statements are equivalent.

(i) There exists a weight W € Ap(X) such that W = w a. e. on E;
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(ii) There exists an € > 0 such that

1 p—1
1 Lte ) 1 ( 1 )zﬁ
sup | ——= wTEd —_— —_— d < 00,
Bc}'}(u(B) ﬁmE “INu® Jpop\wive)

In addition, whenever p = 1, the condition (ii) takes the following form:
There exists a constant C > 0 such that

1 1+e : 1+
— wTtdu < Cessinf w ¢
w(B) Jpng BNE

for every ball B C X.

Comparing (ii) to the classical A, condition, it is clear that we need to deal
with weights and maximal functions restricted to arbitrary measurable
subsets £ C X. We have chosen to call these classes induced A, weights
on E, denoted A,(E).

Definition 3.2.2. On a metric space X, let E C X be a measurable subset
with u(E) > 0. Let w be a weight on E. If 1 < p < 0o, we say that w € ZP(E)
whenever

1 p-1
~sup (L L[(Ly o
”wﬂp‘i‘é}'}(uw) BOEWd”)(ﬂ(B) BOE(w) d”) < oo

If p = 1, we define A;(E) as the class of weights w for which there exists

C > 0 with
1

B) Jpng
for every ball B C X. We denote by [w]; the infimum of the C > 0 for which
this inequality holds.

wdu < Cessinfw
BNE

In other words, the extension Theorem 3.2.1 states that a weight w,
initially defined on a subset E C X, possesses an extension to the whole
space whenever w!*®

We need to assume the Zp condition for w" ¢ instead of simply stating the
corresponding condition for w, because it is unclear whether the induced
weights satisfy a self-improving property. This results from the elementary
fact that when E is an arbitrary subset, we are unable to control the
measures of the relative balls BN E. Even when the measure is positive,
1(B N E) might be very small in comparison to u(B), not to mention the
doubling property: w(2B N E) or w(2B N E) are not comparable to w(B N E)
or w(B N E) in general. As a consequence, we cannot ensure that w and
w1 ®-1 satisfy a reverse Holder inequality, and hence the Gehring lemma
cannot be used to obtain the self-improving property. See [63] and the
discussion in Chapter 3.3.

is an induced weight on E.
1+e
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The proof of Theorem 3.2.1 rests on three classical results: Jones fac-
torization, Coifman—Rochberg lemma, and the self-improving property of
Ap(X) weights. Owing to the dearth of references on A, weights in metric
measure spaces, we have chosen to prove each theorem in detail in PII. Our
version of the Jones factorization theorem involves a power of an ZP(E)
weight.

Theorem 3.2.3. Let E C X be a measurable set with u(E) >0, p > 1, and v
a weight on E such that v" € KP(E) for some r > 1. Then there exist weights
v1, 9 € A{(E) such that v = vlvé_p.

Using elementary properties of ZP(E) weights, we show that whenever
v" € Ay(E) for some r > 1, then v and v~ are induced weights on E
of classes g1 < p and g9 < p’, respectively. Here p’ denotes the conjugate
exponent of p such that 1/p+1/p’ = 1. It follows that the maximal function
relative to the set E, given by

U
mg f(x) = sup g meEIfI du,

is bounded both on L? (E, v) and L? (E, v~®~V) and we can follow the
track of the classical proof [34, Theorem 7.5.1] (in R”, but the technique is
the same).

Ultimately, we would like to characterize those subsets E C X from which
extension is possible, and preferably in geometric terms. Theorem 3.2.1
prompts us to translate the A},(E) condition into a geometric condition
on the set E. In this sense, the extension problem would appear to share
certain similarities with local-to-global problems such as the one in Chapter
2.1.

Holden [39] has verified Theorem 3.2.1 (ii) in R” under additional as-
sumptions on the set E that arise from his argument, yet we were unable
to reproduce his proof even in R". The reason is yet again the difficulty of
controlling the measures of the sets BN E (or @ N E when X = R"). In
the end, it is not clear what geometric assumptions to make on the set £
so as to overcome this problem and successfully verify the ZP(E) condition.
Publication II provides a starting point for further research.

3.3 From Muckenhoupt to reverse Holder
A well-known and remarkable property of A, weights is that they satisfy a

reverse Holder inequality (RHI): whenever Q C X is an open subset, there
exist p > 1 and a constant C such that for every ball B € Q

1
(J[wp d,u) < C][w du. (3.4)
B B
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Here and below, the relation B € Q indicates that the closure of B is a
compact subset of Q. If a function f € Lll0 c(Q) satisfies the reverse Holder
inequality with exponent p > 1, we say that f belongs to the p-reverse
Holder class, denoted f € RH,(Q). These functions were first studied by
Gehring [30] and Coifman—Fefferman [14].

In Euclidean spaces, the reverse Hélder inequality characterizes A,
weights, in the sense that a weight w belongs to A, for some p if and
only if it satisfies a reverse Holder inequality for some s > 1. In metric
measure spaces, even those with a doubling measure, this is generally
not the case. Namely, a reverse Holder inequality need not imply the A,
condition (1.1), as shown by [63, Theorem 15]. If we wish to recover the RHI
as a characterization of A, weights, we need to make another assumption
on the setting. Stromberg and Torchinsky [63] develop the A,—reverse
Hoélder theory in metric measure spaces under the assumption that the
measure of a ball depend continuously on its radius, while Kinnunen and
Shukla [47, 59] assume the a-annular decay property.

Definition 3.3.1. A metric measure space (X, d, u) with a doubling mea-
sure u is said to satisfy the a-annular decay property with 0 < o < 1, if
there exists C > 1 such that foreveryx € X,r>0,and0<d <1

p(B(x,r)\ B(x, (1 = 0)r)) < Co*u(B(x, r)). (3.5)
The constant C is independent of the point, radius, and §.

Whenever the exact parameter « is not of interest, we say that a space sat-
isfies an annular decay property if it satisfies the e-annular decay property
for some 0 <o < 1.

In [47, 59] the annular decay property guarantees that when the underly-
ing measure is doubling, any weighted measure comparable to it is doubling
as well. It follows that the comparability of measures (3.2), reverse Jensen
(3.3), and reverse Holder (3.4) inequalities can be taken as equivalent char-
acterizations of the class Ao, just as in the Euclidean case. In short, it
begins to make sense to state that

A=A,
p>1

At present, it is not clear what is the minimal necessary assumption
to reproduce the A,—reverse Holder connection on metric spaces. The
annular decay property is certainly sufficient, and enjoys the advantages
of being well known, fully quantitative, as well as formulated in terms of
the measure u alone. For convenience, we will adopt the assumption (3.5)
wherever a strong reverse Holder inequality is needed. Early publications
involving the annular decay property or a slight variant are [7, 16, 21]. It
is well known to hold true for a fairly large class of spaces, including all
length spaces; see e.g. [7, 571.
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The annular decay property unlocks the very important Gehring lemma,
which states that a uniform reverse Holder inequality is self-improving:
for a function f € RH,, there exists ¢ > p such that f € RH,. Moreover,
without an additional assumption such as the annular decay property, one
only obtains a weak RHI with exponent ¢, that will be introduced shortly.
For two different proofs of this lemma in metric measure spaces see [49,
Theorem 3.1], and [59]. We will not be directly applying Gehring’s lemma,
but it again illustrates the perhaps unexpected phenomena that occur in
metric spaces.

3.4 Weak reverse Holder inequalities

A weak reverse Holder inequality involves an increasing support on the
right-hand side. We say that a nonnegative, locally integrable function f
satisfies a weak reverse Holder inequality on Q C X, whenever there exist
p > 1 and a constant C > 0 such that for every ball B with 2B € Q,

1
Gfp d/J,) <C fdu.
B 2B

Such functions constitute the weak p-reverse Holder class WRH,(Q). This
class is a genuine relaxation of RH), (3.4) in that functions in WRH), are
no longer necessarily doubling. Furthermore, they may reach zero on
a set of nonzero measure, unlike Muckenhoupt weights. Weak reverse
Holder inequalities arise naturally in Caccioppoli estimates for quasiregular
mappings and nonlinear partial differential equations, such as in the early
articles [50, 32], while in [62] it was established that they also self-improve.
See also [4, Chapter 3.5] on Gehring’s lemma, in fact the weak version.

Much like in the strong case, the class WRH,, can be characterized in
several different ways. In Publication III (PIII), we introduce eleven char-
acterizations in total; the following theorem highlights four of these. State-
ment (iv) involves functions of bounded mean oscillation (BMO). These are
functions f € L} (Q) such that

1fllmso = sup (][ = fal dﬂ) coo
BcO\JB

Theorem 3.4.1 (selection). Let X be a metric measure space with a doubling
measure, Q C X an open set, and w a weight on Q. The following statements
are equivalent.

(i) There exist p > 1 and a constant C > 0 such that

p
][wpd,uS Cb[ wdu)
B 2B

for every ball B with 2B € Q;
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(ii) There exist n,e > 0 with n < C(f such that if B is a ball with 2B € Q
and F C B a measurable set, then u(F) < eu(B) implies that w(F) <
nw(2B);

(iii) There exists a constant C > 0 such that

f M(wXp)du < Cw(2B)
B

for every ball B with 2B € Q;

(iv) There exists a constant C > 0 such that for every ball B with 11B € Q
and every function f € BMO(Q) with || fllpmo) < 1, it holds that

flf - felwdp < Cw(2B).
B

As a matter of fact, the dilatation factor 2 could be replaced by any
other constant ¢ > 1, as detailed in PIII, Theorem 4.4. Either way, no
additional assumptions on the space need to be made, because the weighted
measure is not required to be doubling. In particular, the annular decay
assumption is not invoked. While the statements of Theorem 3.4.1 rather
unsurprisingly resemble various characterizations of Muckenhoupt A
weights, Publication III includes examples of other A-like conditions
that are not satisfied by WRH,, functions, at least not without nontrivial
modifications.

The above statements (i)-(iv) in particular derive from [1, 58, 60]. Con-
dition (ii) is, in its essence, the one we have chosen to call qualitative
nondoubling Ax: the nondoubling analogy of the fact that the measure
induced by an A, weight is comparable to the underlying measure. This
is clearly the weakest of the many possible definitions of an A, weight
[63, Theorem 15], and remains so in the weak case. Accordingly, the most
demanding part of the proof of Theorem 3.4.1 is to show that (ii) implies
(i). We need the following lemma, a distributional estimate of sorts for the
weight w.

Lemma 3.4.2. Assume that w satisfies Theorem 3.4.1 (ii). There exist con-
stants y > Cg and 8 > 0, only depending on the parameters of (ii), for which
the following statement holds. Let B be a ball with 2B € Q, 0 <r < 3/2,
and A < 1071, Then

f wdp <y / wdp,
rBN{w>yD} (r+A)BN{w>y~1D}

LU(ZB) Clog2 %+1
u(2B) ¢ '

where

D =D(A,B) = (3.6)
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An outline of the proof follows. For an n > 0 small enough such that
7702 < 1, let € be the parameter associated with 7 from (ii). We choose the
constants y, 8 > 0 so that

C2 1 1-y7t
y > max Cd, yT——F and ¥ = Y5 .
1-nCy nC;

Write I = {y € Q:w(y) > yD}, and J = {y € Q:w(y) >y~ ID}. If r is fixed
as in the assumption, and x is a Lebesgue point contained in I N rB, we
denote

:inf{s>0:B(x,s)@Qand][ wd,uSD}, and rx:%.
x,s)

It follows from the choice of parameters and the doubling condition for u
that 0 < s, < 5Ar(B). Using the assumption (ii) in addition to the good
parameters, we obtain the estimate

f wdp <y F / wdu
INB(x,5ry) JNB(x,rx)

at almost every point x € I N rB. The Vitali covering lemma [4, Lemma
1.7] provides a disjoint family of balls {B(x T J)}j such that

U B(x,r,) C UB(xj, 5r;),
J

x€INrB

where we have written r; = ry; for short. Note that r; < Ar(B)/2, which
implies that B(x, r,) C (r + A)B, and finally

[ wduSZf wdu<v52f
INnrB j INB(x;,5r;) JNB(x;, rj)

=v‘ﬁf wdusv‘ﬁf wdp.
JNU; B(xj,r;) JN(r+A)B

Spadaro’s original Euclidean proof [60, Lemma 2.1] uses the Besicovitch
covering theorem, which must here be replaced by a more careful argument.

Using Lemma 3.4.2, it is now easy to complete the proof of (ii) = (i). Let
B be a ball with 2B € Q, y and S as in the statement of Lemma 3.4.2, and
p > 1sothat 2(p — 1) < 8. Denote

1o
Ap= 2ol %Et  p_q g

We find that A; < 1/10 for every k, and that 220:1 Ar < 1/2. Also, the
corresponding constants D; = D(A;, B) given by (3.6) satisfy

o1 W(2B)
w(2B)’

Dy = =1,2,..., and Dy=y?Diy, k=2,3,...
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Then

o0
prdu:f wpd,u+2[ wPlwdp
B BN{w<yD,} k=1 < BN{yDy<w<yDj41}

< y? D} u(B) + Z (yDy+1)’ f wdu. (3.7
k=1 B

ﬂ{wZ}/Dk}

For £k =1,2,... we apply Lemma 3.4.2 repeatedly to obtain

f wdp <y~ * DBy (2B).
Bﬂ{waDk}

Combining this with (3.7), we obtain a series that converges by virtue of
the choice of p, and conclude that there exists a constant C depending on
the parameters in (ii), as well as on Cy, y, 8, and p, such that

» w(2B) )p
]l;w du < C(,u(ZB) .

A peculiarity of weak weights is the upper bound 7 < Cf that appears
in the statement of (ii). This bound tends to zero with increasing dimen-
sion and cannot be done away with, unlike in the case of Muckenhoupt
weights where any 0 < 5, & < 1 will do. The same phenomenon occurs
already in Spadaro’s Euclidean proof [60]. Example 4.2 in Publication III
demonstrates that the upper bound must be smaller than 21", which was
observed by Sawyer in dimension 2 in [58].

Statement (iii), called the Fujii—Wilson condition [28, 65], has previously
been shown for weak Ao, weights by Anderson, Hyténen, and Tapiola [1].
They prove that (iii) = (ii) by means of weak weights defined on Christ-
type dyadic systems of cubes; again see [12]. We show that (iii) = (ii)
by elementary arguments. Using nothing but fundamental properties of
the maximal function and the Vitali covering lemma, one arrives at the

following weak version of (i).

Lemma 3.4.3. For every 1j > 0 there exists € > 0 such that for every measur-
able set F C B with 4B € Q and u(F) < €u(B), we have w(F) < fw(4B).

To tighten this statement we need one more covering by balls. Let B
be a ball such that 2B € Q, and F C B a measurable set. An argument
involving the Vitali covering lemma provides a collection of balls {Bi}f\; 1
with N = N(C,;) and r(B;) = 1/5r(B), implying that u(B;) > ¢(Cy)u(B).

For any n > 0 write 7j = Nn, and € = &(C,)¢. If u(F) < eu(B), then

u(F N B;) u(F) ~
W(B) ~ ACou® =
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which by Lemma 3.4.3 implies that w(F N B;) < jw(4B;) < jw(2B) for every
i=1,...,N. We conclude that

N N
w(F) < Z w(F N B;) < ’ﬁz w(4B;) < TNw(2B) = nw(2B).
i=1 i=1

Condition (iv) is a generalization of [58, Formula 23], which was originally
stated for Muckenhoupt weights in R”. It deserves attention for bringing
up the well-known connection between A, and BMO. Namely, whenever
p > 1, we have

BMO(Q) = {alog(w): e > 0 and w € A,(Q)};

see [69, Theorem 3.11] and the remark thereafter. Assuming the weak
reverse Holder inequality (i), statement (iv) essentially follows from the
John—Nirenberg inequality. The reverse implication is (iv) = (ii), whose
proof involves a weak version of (ii) and a covering argument identical to
the above.

3.5 Symmetry of the limiting classes

The case p = co is the limiting class of reverse Holder conditions both weak
and strong. For an open set Q C X we say that the weight w belongs to
the class RHoo(Q), if there exists a constant C > 0 such that for every ball
BeQ

esssupw < C][w du. (3.8)
B B

The corresponding weak RHy, class is denoted WRH(Q), and involves wqp
on the right-hand side for balls B such that 2B € Q. From the discussion
in Publications III-IV we gather that

RH. G ( |RHs, WRHw G [ |WRH,,

s>1 s>1

RH,, C WRH,., RH,C WRH,.

We might recall that A; C ﬂp>1 A, , with an example in [43] showing that
the inclusion is proper. Indeed, the relations of A; and RH to A, and RH
when 1 < r, s < oo, respectively, exhibit a certain symmetry that is all the
more apparent in contexts where the RHI characterizes A, weights. This
is the topic of Publication IV (PIV), culminating in Theorems 3.5.2-3.5.3
that provide closely analogous characterizations of A; and RH on metric
measure spaces.

Previously, Cruz-Uribe-Neugebauer [17] have systematically investigated
the structure of reverse Holder classes in Euclidean spaces. To this end,
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1

1oc(X), they introduce the minimal function

givena f € L

mf(x) = inf ][ |f] du, (3.9)
B3x B

where the infimum is taken over all balls B C X containing the point
x. Needless to say, the minimal function mirrors the classical Hardy—
Littlewood maximal function. We are now able to express the A; and RH
conditions in terms of the two extremal functions:

w € A1(X) ifandonlyif Mw(x)<[w], w(x) fora.e x€X,
w € RH(X) ifandonly if w(x) < Cmw(x) fora.e. x € X.

Ou [58, 54] has studied the natural minimal and maximal functions of a
function f € L{ (X), respectively

M? £(x) = sup J[ fdu, mif(x)=inf ][ fdu,
B>x JB B3zx Jp

that is, (1.7) and (3.9) without absolute value signs. Since weights are
nonnegative by definition, this does not concern us overmuch. In [54] it is
shown that the natural extremal functions commute with the logarithm on
A(X). For the maximal function, for instance, it follows from the Jensen
and reverse Jensen (3.3) inequalities that

0 < (log M — M?log)w < log [w] ; (3.10)

see PIV, Lemma 3.2. The result for the minimal function is the same. The
second observation is that the natural extremal functions may be used to
characterize functions of bounded upper and lower oscillation (BUO and
BLO). Respectively, these are spaces of those functions f € Llloc(X ) for
which

1fllsvo = sup (ess sup ()~ f du) <oo,
BcX x€B B

I fllazo = sup (][fdu —essinf f(x)) < oo.
BcX B x€B

We immediately observe that ||— f||zuo = ||.f|lBLo, implying that neither of
these functionals is a norm. In fact, BUO and BLO are subsets of BMO.
The characterization lemma [2, Lemma 2] states the following.

Lemma 3.5.1. Let X be a metric space with a doubling measure, and
FeLl (X). Then f € BLOX) if and only if MY f — f € L™(X), with

loc
I £llzzo = IM*f = Fllo,
and f € BUO(X) if and only if f — mif € L®(X), with

I £llzuo = ILf = m* £llo.

31



Muckenhoupt weights on metric spaces

Using (3.10) and Lemma 3.5.1 we obtain the following nearly symmetri-
cal descriptions of A; and RH,, bringing [54] into metric spaces with a
doubling measure.

Theorem 3.5.2. Let X be a metric space with a doubling measure, and w
a weight. Then w € A1(X) if and only if w € Ax(X) and logw € BLO(X).
Furthermore,

exp (|[log wllgLo) < [w]; < [w]y exp (lllogwllzLo) -

Theorem 3.5.3. Let X be a metric space with a doubling measure and
satisfying an annular decay property, and w a weight. Then w € Ax(X) N
RH.(X) if and only if log w € BUO(X) with

C < exp(|[log wllgvo) < Cw]y,

where C is the infimal constant in the RHo, condition (3.8) for w.

Writing w € eBLO whenever log w € BLO etc., we can summarise these

results in a single line:
A1 = AxNeBO, RH, = B0,

In the proof of Theorem 3.5.3, annular decay or another suitable assump-
tion is needed in order to connect A, and reverse Holder information. The
statement of the theorem is in fact redundant, because

RH. ¢ (|RH; C | JRH; = Ax.
s>1 s>1
In other words, w € RH, implies that w € Aw. The first inclusion is [17,
Theorem 4.1] (in R”, but the proof in metric spaces is the same). The final
equality is valid under the annular decay assumption; see [47] and the
discussion above.

Using the characterizations provided by Theorems 3.5.2—-3.5.3, several
well known properties of A, weights can be shown by little more than arith-
metic with exponents on the oscillation side. The downside of operating at
this level of abstraction is that one tends to lose quantitative information:
compare PIV, Lemma 2.6, and Propositions 4.2—4.4 in [54]. The key appli-
cation of these techniques in Publication IV is the following refined Jones
factorization theorem that incorporates both A, and reverse Holder data.

Theorem 3.5.4. Let X be a metric space with a doubling measure and
satisfying an annular decay property, and 1 < p,s < oo. The weight
w € Ap(X)NRH(X)if and only if w = wiwy for some wy € A1(X)NRH(X)
and wy € Ap(X) N RHoo(X).

Furthermore, Publication IV generalizes the following boundedness result
for the natural maximal function, shown in [53] on Euclidean spaces.
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Proposition 3.5.5. Let X be a metric space with a doubling measure and
satisfying an annular decay property. If f € BMO(X), then M®f € BLO(X)
with

1M fllzzo < C(Ca)ll fllzmo-

The proof requires both the Coifman—Rochberg (PII, Proposition 2.10) and
John—Nirenberg lemmas. The Coifman—Rochberg lemma ensures that M
maps A to A;. One might conjecture that the corresponding boundedness
result for the minimal function would involve RH, in lieu of A;.
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