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1. Introduction

By the year 2022, machine learning has been utilized to obtain impressive
results in a wide range of problems, and it has become popular to the
general public as a form of artificial intelligence. Furthermore, machine
learning has already become a component of many everyday systems, such
as search engines, social media applications, online video services, and even
some cars. The rise in the popularity of machine learning has been largely
driven by deep neural networks (DNNs) that have achieved state-of-the-art
performance in, for example, large scale image classification [1, 2], image
segmentation [3], image synthesis [4], and natural language processing [5].
The artificial neural networks were already proposed in 1957 [6] and
periods of interest have emerged over the years, such as with the self-
organizing map [7] and Oja’s learning rule in the 1980s, the Helmholtz
machine [8] in the mid 1990s, and the restricted Boltzmann machine [9]
in the mid 2000s. The current re-emergence and widespread popularity
of DNNs is largely due to the advances in high-performance computing
power by graphical processing units (GPUs) and large sets of annotated
data that have facilitated the training of these networks [10].

Machine learning has also been proposed for various medical tasks, rang-
ing from diabetic retinopathy detection [11] and bone age estimation [12] to
cell segmentation [13] and low-dose computed tomography denoising [14].
Despite the large quantity of medically oriented studies and that machine
learning is being used in practice in many other areas, machine learning
has yet to become a widely used practical tool in the medical domain. This
is likely because the evaluation of algorithms differ between the technically
and clinically oriented research, for example in the use of retrospective
and prospective studies, that hinders the credibility of the claims made in
machine learning oriented studies [15].

Another, still open question, is how to design more robust DNNs, in terms
of the out-of-distribution performance and uncertainty quantification. It
has been observed that modern DNNs are overconfident in the predictions
they make, which means that in classification tasks they always place
a high probability for one of the possible classes, even when the class is
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incorrect [16]. In the medical domain, it is critical to know if the prediction
of the system can be trusted or not, such that in the latter case the decision
needs to be left for an expert.

This thesis considers machine learning for healthcare with a multidisci-
plinary view on the subject that encompasses both the technical and the
medical research interests. The focus of this thesis is in the application of
machine learning methods for various medical data modalities and predic-
tion tasks with clinically used classification systems, as well as in a more
clinically oriented validation of the human mandibular canal segmentation
task, which is a type of medical segmentation task. In addition, uncer-
tainty in deep learning for medical domain is also covered for a clinical
multi-class classification scheme of diabetic retinopathy and a clinically
oriented uncertainty measure is derived for this task. The contributions of
this thesis are as follows.

• Development of a convolutional neural network approach for diabetic
retinopathy and macular edema classification using clinical severity
scales and a relatively small retinal image dataset.

• Comprehensive analysis of approximate Bayesian deep learning
methods for uncertainty-aware diabetic retinopathy classification
using clinical hospital data and a clinical severity scale.

• Derivation of a connection between the uncertainty-based referral
process and reject option classification, and development of a novel
uncertainty measure for clinical diabetic retinopathy classification.

• Development and interobserver variability analysis of a fully convo-
lutional neural network for state-of-the-art mandibular canal seg-
mentation.

• Systematic analysis of machine learning classifiers for neonatal mor-
tality and morbidity prediction, and feature importance analysis for
the tasks.

The structure of this thesis is as follows. First, Chapter 2 presents back-
ground on machine learning methods, models, and evaluation. Second,
Chapter 3 describes deep learning and approximate Bayesian deep learning
for diabetic retinopathy and macular edema classification based on Publi-
cation I and Publication II. Third, in Chapter 4, a deep learning approach
for mandibular canal segmentation is presented and its performance is
compared to the interobserver variability in the task, corresponding to
Publication III and Publication IV. Then, machine learning classification
of neonatal mortality and morbidity is covered in Chapter 5, with a focus
on Publication V. Finally, Chapter 6 summarizes the Publications, and
Chapter 7 concludes this thesis with a discussion.
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2. Machine Learning

Machine learning is a term used for algorithms that can learn from
data [17], as opposed to handcrafted algorithms that are designed to do
a certain task. The motivation behind the paradigm of learning an algo-
rithm can be that the problem is too complex to be solved by handcrafted
algorithms [18] or simply that it is not known how to do certain tasks [19].
In addition, machine learning can be used to automate the generation of
algorithms for analysis of large quantities of data and to provide insights
to it [20].

In this thesis, x and y will denote the so-called "input" and "target"
variables, respectively. Other terms used for these variables in literature
are "independent variables" for x and "dependent variables" for y [21].
Typically the x is some measurement that can be easily obtained, for
example a retinal color image. The y is often a label of category or some
continuous assessment of x that can be harder to obtain, for example the
diabetic retinopathy severity score based on a retinal image.

The notation used for the inputs and targets is as follows. Scalar inputs
and targets are written as x, y and vectors or multidimensional arrays as
x,y. When the input is a scalar it will be x ∈ R, in the case of a vector
x ∈ Rd, in the case of an image x ∈ RC×H×W , and in the case of a volume
x ∈ RC×H×W×D, where C denotes the number of channels, and H,W , and
D denote the spatial height, width, and depth, respectively. When the
realizations of the inputs and targets are referred to as parts of a dataset,
then xn and yn refer to the n:th input and target of the dataset, respectively.
The function defined by the machine learning model will be denoted as
f . When it is important to include the parameters θ of the model in the
context, the notation will be fθ.
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2.1 Learning Problems

Supervised learning assumes that there exists some unknown function f∗

that maps the inputs to the targets [20]:

y = f∗(x), (2.1)

and that it is possible to train a machine learning model to approximate
this function, i.e. to predict the value of the target variable given the input
variable [17, 18, 21]. This can be written as y ≈ ŷ = f(x), where the ŷ is
the approximation made by the model f . In order to train the model, a
dataset of paired examples D = {(x1,y1), . . . , (xN ,yN )} is required. The
term "supervised" represents that the target variable is given for each
input variable, analogous to external feedback of what the correct answer
is for a given example [17]. The final objective of supervised learning is to
obtain a model that can predict the target for new inputs, i.e. data that is
not a part of the training dataset. The performance of the model for the
unseen data is called generalization [20] that will be covered later in this
thesis.

Unsupervised learning considers a variety of tasks for learning properties
of the input variables without the target variables. This usually means
that the only available data to the model is D = {x1, . . . ,xN}. Classic
examples of unsupervised learning are clustering [21], density estimation,
and component analysis [18]. Modern examples include more general tasks,
such as synthesis or generation of x [17] without an explicit probability
density or mass function, for example using generative adversarial net-
works [22], learning to predict the values of missing parts of x, for example
the next token in a sequence [5] or missing pixel values in an image [23],
and removal of added noise [24]. The two latter examples are also known
as self-supervised learning, a term that some researchers prefer over the
"unsupervised learning" [25], that represents that the target variables
were created from the input variables.

The third type of the usual characterizations of learning is reinforcement
learning, which deals with learning actions in an environment to maximize
rewards [18]. This type of learning is often used to train agents that can
play games, such as Go [26], and thus is less related to the subject of this
thesis. There also exist variations of the supervised and unsupervised
learning, such as semi-supervised learning that considers learning with
partially annotated datasets [27].

2.2 Classification and Image Segmentation

This thesis considers the supervised learning problem and specifically the
supervised learning tasks of classification and image segmentation. In

4



Machine Learning

classification, the target variable belongs to a set discrete categories C [18].
The set of categories could be C = {healthy, sick} or C = {cat, dog, . . . , fish},
where the former case is said to be a "binary classification task", since there
are two classes, and the latter is referred to as a "multiclass classification
task", as there are multiple classes [18, 20]. For computer processing,
the categories are encoded in a numerical manner by mapping them to
numbers [17], similar to a dictionary in Python programming language for
example. The following convention is used in this thesis: for binary classi-
fication the set of the classes is C = {0, 1}, and for multiclass classification
with K classes it is C = {0, 1, . . . ,K − 1}. Even though the classes are
encoded with integers, this thesis considers only the nominal classification
setting that has no ordering among the classes. The converse case is called
ordinal regression [28].

This thesis considers classification with probabilistic modeling. This
approach is beneficial when the data is noisy or when it can be considered
as such given a lack of knowledge about the true data generating pro-
cess [29]. The probabilistic approach models the conditional distribution
of the target given the input p(y | x) = f(x), instead of directly modeling
y ≈ f(x), and thus can encode the uncertainty with the conditional proba-
bilities [10]. The predicted label can be selected to minimize the probability
of misclassification by [18]:

ŷ = argmax
c

p(y = c | x). (2.2)

In image segmentation, also called "semantic segmentation", each pixel
(voxel) of an image (volume) is classified to belong to a certain class [30].
This means that in image (volumetric) segmentation the target is an image
(volume) and the pixel (voxel) values of it correspond to what class that
pixel (voxel) belongs to. Thus the target has typically the same spatial
shape as the input and is spatially aligned with it. As an example, the input
could be an X-ray image x ∈ R1×H×W and a possible target segmentation
with two classes y ∈ {0, 1}H×W contains 1 on pixels where the x contains a
tumour and 0 elsewhere. The probabilistic approach is simple to extend to
the segmentation task, by jointly modeling all the elements of the targets.
In this thesis, these elements are assumed to be conditionally independent
given the input. The predicted label for a target index i, j, k is then given
by, here for a volumetric target:

ŷi,j,k = argmax
c

p(yi,j,k = c | x). (2.3)

Remark 2.1. The conditional independence of the elements of the targets,
i.e. the pixel or voxel labels, given the input is a strong assumption, how-
ever, it is a common simplification used in segmentation and also other
image modeling tasks. For example, the sum of the element-wise negative
log-likelihood loss of a segmentation target [3] or a decoded image [31] is
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computing −∑︁H
i=1

∑︁W
j=1 log p(yi,j | x) = − log

∏︁H
i=1

∏︁W
j=1 p(yi,j | x), where

the target y has two spatial dimensions in this example. Thus, it can be
interpreted that we assume that

∏︁H
i=1

∏︁W
j=1 p(yi,j | x) = p(y | x), which

means that the conditional distribution of the target elements is fully
factorized, i.e. they are independent given the input.

2.3 Statistical Inference and Parameter Estimation

Most of the models considered in this thesis are parameterized such that
the conditional distribution of the targets given the inputs can be written
as:

fθ(x) = p(y | x,θ). (2.4)

The training of the machine learning model then amounts to estimating the
parameters θ. This section presents the maximum likelihood estimation,
maximum a posteriori estimation, and empirical risk minimization.

Given a dataset D = {(x1,y1), . . . , (xN ,yN )}, the maximum likelihood
(ML) estimates the parameters of the model by [17]:

θMLE = argmax
θ

p(y1,y2, . . . ,yN | x1,x2, . . . ,xN ,θ)

= argmax
θ

N∏︂
i=1

p(yi | xi,θ), (2.5)

where the θMLE is the maximum likelihood estimate (MLE) of the pa-
rameters and the factoring of the likelihood is by the assumption that all
the examples are independent. The MLE is thus the parameter estimate
that maximizes the probability of the targets given the inputs [10]. The
ML estimation is equivalent to minimizing the negative log-likelihood
(NLL) [10], that has a computationally convenient sum of log terms:

θMLE = argmin
θ

−
N∑︂
i=1

log p(yi | xi,θ). (2.6)

The MLE is a point estimate of the parameters, which means that the ML
estimation yields a single estimate for each of the parameters. On the other
hand, Bayesian inference [32] can be used to compute the Bayesian poste-
rior distribution p(θ | D) of the parameters. It can be used to specify prior
knowledge in the distribution of θ in terms of a prior distribution p(θ) [33].
The data is then used to update the prior to obtain the best current esti-
mate of the distribution of the parameters. The update rule is called Bayes’
theorem (also called Bayes’ rule) and is presented in Theorem 2.1.

Theorem 2.1. Bayes’ theorem: The posterior distribution of θ given a
likelihood function p(D | θ), a prior p(θ), and evidence p(D) is given by:

p(θ | D) =
p(D | θ)p(θ)

p(D)
.
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In machine learning, the prediction task is usually of more interest
than the analysis of the posterior distribution [20]. When the posterior
distribution has been computed, the posterior predictive distribution can
be used to predict the target y∗ for a new input x∗ by marginalization over
the parameters [32]:

p(y∗ | x∗,D) =

∫︂
p(y∗ | x∗,θ)p(θ | D)dθ. (2.7)

The integral on the right-hand side can be interpreted as a weighted
average of the conditional probability over the posterior distribution [20]. It
thus combines predictions obtained by different parameter configurations
and includes the uncertainty in them by multiplying with the posterior
density of the configuration.

Even though the Bayes’ theorem provides a principled approach to learn-
ing the posterior distribution, it is often intractable to compute for more
complex models, such as neural networks [17]. However, the parameter
value that maximizes the posterior distribution, called maximum a poste-
riori (MAP) estimate [33], can be obtained efficiently. The MAP estimate is
obtained by a similar optimization problem as the MLE:

θMAP = argmax
θ

p(θ | D)

= argmax
θ

p(D | θ)p(θ)
p(D)

= argmin
θ

−
N∑︂
i=1

log p(yi | xi,θ)− log p(θ). (2.8)

There are also posterior distribution approximation methods that yield
approximate distribution of the parameters, instead of single point esti-
mates. These methods will be introduced later in the context of deep neural
networks.

Besides the probabilistic approach, there is an optimization-centric view
to machine learning, called empirical risk minimization (ERM) [19]. The
ERM is derived from the risk of a classifier [34] and can be used with any
loss function [10]:

θERM = argmin
θ

N∑︂
i=1

l(fθ(xi),yi), (2.9)

where l is the loss function.
The ERM can be seen to correspond to the ML estimation when:

l(f(xi),yi) = − log p(yi | xi,θ), (2.10)

and to the MAP estimation when:

l(f(xi),yi) = − log p(yi | xi,θ)−
1

N
log p(θ). (2.11)
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Indeed, the optimization problems can be written in a similar manner by
defining a batch loss:

L(D,θ, l) =

N∑︂
i=1

l(fθ(xi),yi), (2.12)

where the loss function l defines what approach is used, and the optimal
parameter values are determined by:

θopt = argmin
θ

L(D,θ, l). (2.13)

2.4 Evaluation Measures

The performance of the classification and segmentation models is often
evaluated using multiple different measures to analyze the performance
more comprehensively or in a more human interpretable manner. It is also
common that the loss value is not interesting itself, but the loss acts as a
surrogate for some other measure that cannot be easily optimized, for ex-
ample the negative log-likelihood of a Bernoulli or categorical distribution
acts as a surrogate loss for the classification error [20].

This section will introduce the evaluation measures used in the Publi-
cations. Publication I, Publication II, and Publication V consider medical
classification tasks, for which important measures are sensitivity, speci-
ficity, precision, F1-score, area under the receiver operating characteristic
curve, and quadratic weighted Cohen’s kappa. Publication III and Publica-
tion IV consider mandibular canal segmentation, for which the (Søresen)
Dice coefficient, mean curve distance, and average symmetric surface dis-
tance were used.

In binary classification, one of the classes is often called the "positive"
and the other the "negative" class. In this thesis, the positive detection
is always used for the detection of mortality or disease that is denoted as
the class 1, and the negative detection is used for the normal condition
that is denoted as the class 0. The true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN) describe how the positives
and negatives were detected correctly or incorrectly. These are computed
as [20]:

TP =
∑︂
i

I[ŷi = 1, yi = 1], (2.14)

TN =
∑︂
i

I[ŷi = 0, yi = 0], (2.15)

FP =
∑︂
i

I[ŷi = 1, yi = 0], (2.16)

8



Machine Learning

FN =
∑︂
i

I[ŷi = 0, yi = 1], (2.17)

where I is the indicator function and ŷ is the predicted class label that
has the highest conditional probability, which was given in Equation (2.2).
Sensitivity and specificity are defined using these quantities as:

Sensitivity =
TP

TP + FN
, (2.18)

Specificity =
TN

TN + FP
. (2.19)

Sensitivity thus measures the proportion of the positive cases that the
model detected correctly and specificity the proportion of the negative cases
that the model detected correctly. Precision is given by [20]:

Precision =
TP

TP + FP
. (2.20)

It measures the proportion of correct positive detections to all the positive
detections.

The F1-score is computed as the harmonic mean of sensitivity and preci-
sion [20]:

F1-score = 2
Sensitivity · Precision
Sensitivity + Precision

. (2.21)

It can be used when the performance of the model for the positive cases is
important, because it does not take the true negatives into account [35].
When the dataset has a minority positive class distribution, the F1-score
is beneficial over accuracy, i.e. the proportion of all correct detections, as a
model that detects very few positive cases and almost always predicts the
negative class can reach a high accuracy, but a very low F1-score.

In the binary case, the selection of the class label that has the highest
conditional probability can also be written as:

ŷ =

{︄
1, if p(y = 1 | x) ≥ τ,

0, else,
(2.22)

where τ is a threshold parameter, also called an operating point [36], with
a value of 0.5. If sensitivity and specificity are computed as a function of τ ,
the resulting curve is the receiver operating characteristic (ROC) curve [20].
The area under the ROC curve is the area under the receiver operating
characteristic curve (AUROC). The AUROC value is in the interval of [0, 1],
and it can be interpreted as an estimate of the probability that a classifier
is able to correctly identify from two samples which is a positive and which
is a negative case [37]. Thus, AUROC values close to 1.0 indicate high
performance and values close to 0.5 that the performance is close to random
guessing.
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Cohen’s kappa is a measure of agreement between two graders for classi-
fication [38]. The weighted Cohen’s kappa introduces weights for different
disagreement scenarios [39]. It requires a disagreement weight matrix W ,
the confusion matrix C of a classifier, and the expected agreement matrix
E computed from the confusion matrix. For a classification task with K

classes, these matrices are all K ×K matrices. The confusion matrix is
defined as:

Ci,j =

N∑︂
n=1

I[ŷn = i, yn = j]. (2.23)

The element i, j of the matrix thus contains the number of examples that
had the target j but were classified as i. The expected agreement matrix
E is defined using the confusion matrix as:

Ei,j =
1

N

K∑︂
a=1

Ci,a

K∑︂
b=1

Cb,j . (2.24)

The weighted Cohen’s kappa is then defined as [39]:

κ = 1−
∑︁K

i=1

∑︁K
j=1Wi,jCi,j∑︁K

i=1

∑︁K
j=1Wi,jEi,j

. (2.25)

The quadratic weighted Cohen’s kappa (QWK) weights the disagreements
based on the square of the difference of the class labels:

κQW = 1−
∑︁K

i=1

∑︁K
j=1(i− j)2Ci,j∑︁K

i=1

∑︁K
j=1(i− j)2Ei,j

. (2.26)

In segmentation, the Dice coefficient can be used to measure the quality
of a segmentation with two classes. The Dice coefficient is another name for
the F1-score, however, this thesis makes a distinction between these, such
that the F1-score is calculated over a dataset of classification targets and
the corresponding predictions, whereas the Dice coefficient is calculated
for a single segmentation target and prediction. Indeed, in Publication III,
the segmentation performance is evaluated as the mean Dice coefficient
that is calculated as the average of the Dice coefficients obtained for all
the segmentations. Publication III and Publication IV concentrate on
volumetric segmentation of the mandibular canal, which is a task with two
segmentation targets: the mandibular canal (class 1) and non-mandibular
canal (class 0) regions. Thus, this thesis considers volumetric predictions
and targets with two possible classes. Let y, ŷ ∈ {0, 1}H×W×D, where ŷ

is computed with Equation (2.3). The Dice coefficient is then computed
as [40]:

Dice(ŷ,y) = 2
|y ∩ ŷ|
|y|+ |ŷ| = 2

∑︁
i,j,k yi,j,k ŷi,j,k∑︁

i,j,k yi,j,k +
∑︁

i,j,k ŷi,j,k

, (2.27)

where | · | is the cardinality of a set.
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In Publication III and Publication IV, the mandibular canal localization
accuracy is calculated using the mean curve distance (MCD). It measures
the average distance from one curve to another. The curves are assumed
to be collections of coordinates in three dimensions. The "point to curve"
distance is defined for a point x and a curve defined by the set S by:

d(x, S) = min
s∈S

||x− s||2. (2.28)

For two curves A and B: A = {a1,a2, . . . ,aN} and B = {b1, b2, . . . , bM}, the
MCD is then computed as [41]:

MCD(A,B) =
1

|A|
∑︂
a∈A

d(a, B). (2.29)

It should be noted that the MCD is not a symmetric measure in the
arguments, as changing the order of the arguments can produce a different
MCD value. In Publication IV, a symmetric version of the MCD is proposed,
which will be described later.

The average symmetric surface distance (ASSD) computes the average
distance between two sets of segmentation surface voxels in a symmetric
manner [42]. This resembles the MCD but is symmetric in the arguments:

ASSD(A,B) =
1

|A|+ |B|

⎛⎝ N∑︂
i=1

min
b∈B

||ai − b||2 +
M∑︂
j=1

min
a∈A

||bj − a||2

⎞⎠ ,

(2.30)
where the A and B are now the sets of surface voxel coordinates.

2.5 Generalization in Machine Learning

The performance of a machine learning model on data that has not been
used to train it is called generalization [17], and good generalization is the
goal of most machine learning algorithms [18]. Indeed, perfect performance
can be easily obtained for the training data, by simply memorizing all
the inputs and the corresponding targets, and then always returning
the target for a corresponding query train input, for example using a 1-
nearest neighbor model [20]. This type of phenomenon is called overfitting,
which means that the machine learning algorithm performs well on the
training data but does not generalize to unseen data [17]. Thus, to estimate
generalization, the performance needs to be evaluated on data that has
not been used in the training.

The set of data that is used for training is called the training set and the
data used for estimating generalization is called the test set [17]. A common
approach is to divide all the available data to training and test sets, such
that no data exists simultaneously in both of the sets. For uncurated data,
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such as clinical hospital datasets, there can also exist near duplicate data,
for example multiple retinal images for a single patient, that can lead
to overestimation of the performance. In the Publications I–V, the data
has been divided to the training and test sets such that no patient exists
simultaneously in both of the sets. The test data is left untouched until the
machine learning model can be deemed to be complete in every aspect [20].

It is also desirable to estimate the generalization performance of a model
while training it. To achieve this, a portion of the training set can be se-
lected as the so-called validation set that is not used to directly optimize the
parameters, but is used to estimate the generalization performance during
the training [17]. It is also often used to select the so-called hyperparam-
eters that are parameters of the model that cannot be directly estimated
with MLE, MAP, or ERM approaches. Instead, the hyperparameters can
be estimated by training the model with different hyperparameter values
and selecting the best hyperparameter values based on the validation set
performance [17]. Even though the validation set is not used to directly
optimize the parameters, the model can indirectly overfit to it when it is
used for the hyperparameter selection. Thus, the results evaluated on the
validation set can be over-optimistic, and it is why the test set is needed to
estimate the true generalization performance [18].

If there is only a small amount of data available, the so-called K-fold
cross validation can be used [18]. In K-fold cross validation, the dataset is
divided into K (integer ≥ 2) folds. The folds are then iterated, by using one
fold as the test set and the rest of the folds as the training set. In the end,
the test results of each fold are averaged to estimate the generalization
performance. When the hyperparameters need to be estimated, the so-
called nested K-fold cross validation can be used to avoid overoptimistic
results due to fitting the hyperparameters with the full set [43]. It does
not use the test folds for the selection of the hyperparameters, but rather
performs a cross validation loop for each of the inner K-fold training sets.
After the hyperparameters have been optimized, the folds are used as in
the K-fold cross validation.

2.6 Machine Learning Models

In the Publications I–IV, deep convolutional neural networks were used
for classification and segmentation tasks. In Publication V, the logistic
regression, linear and quadratic discriminant analysis, k-nearest neighbor,
support vector machine, Gaussian process, and random forest classifiers
were used as the machine learning models. This section will first briefly
describe the machine learning models used in Publication V and then intro-
duce deep neural networks in a more detailed manner. Interested reader
can refer to Hastie et al. [21], Rasmussen and Williams [44], and Murphy
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[10] for a comprehensive review of the methods used in Publication V.

Logistic Regression Classifier

Logistic regression is a linear classifier, which means that the decision
boundary is (or boundaries are) linear. For K possible target classes,
sometimes called multiclass logistic regression, i.e. y ∈ C = {0, 1, . . . ,K −
1}, the input x is mapped to the conditional probabilities of each class
with a linear transform and an activation function that ensures that the
probabilities sum up to one [18]. The linear transform is determined
by a weight matrix W ∈ Rd×K and a bias vector b ∈ RK , which are
the parameters of the model, and the activation function is the so-called
softmax function. The conditional probability of a class i is then given by:

p(y = i | x,W, b) =
exp(W T

i x+ bi)∑︁K−1
j=0 exp(W T

j x+ bj)
, (2.31)

where W T
i denotes the i:th row of the transposed matrix.

Remark 2.2. The multiclass logistic regression presented in Equation (2.31)
is actually overparameterized, as the parameters of one class, for example
a, can be ignored and the conditional probability of that class can be com-
puted as 1−∑︁

j∈C\{a} p(y = j | x,W, b). However, the overparameterized
version is closely related to how it is usually implemented as a layer of
neural networks, and thus used in this thesis. The K − 1 parameterized
version is presented in Hastie et al. [21, p. 119], for example.

For binary logistic regression, where y ∈ {0, 1}, it can be seen that
Equation (2.31) becomes for class 1:

p(y = 1 | x,W, b) =
exp(W T

1 x+ b1)∑︁1
j=0 exp(W

T
i x+ bj)

=
exp(W T

1 x+ b1)

exp(W T
1 x+ b1) + exp(W T

0 x+ b0)

=
1

1 + exp(−((W1 −W0)Tx+ (b1 − b0)))

=
1

1 + exp(−(wTx+ b))
. (2.32)

In the binary case, the model can be defined with just one weight vector
and bias, because the probability of the second class can be computed by
1 − p(y = 1 | x,w, b). The function 1/(1 + exp(−(·))) is called the logistic
sigmoid function [18].

The logistic regression parameters are typically learned by ML or MAP
estimation. As there is no analytical solution for the parameters, iterative
gradient based methods need to be used, such as the Newton-Raphson
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algorithm, to optimize the parameter values [21]. Detailed example of
how the logistic regression model is trained using Newton-Raphson can
be found in Bishop [18, p. 208]. A general overview of gradient based
optimization is presented later.

Discriminant Analysis Classifiers

The linear discriminant analysis (LDA) is another linear classifier. The
quadratic discriminant analysis (QDA) is a quadratic classifier, which
means that the decision boundary is a quadratic function. LDA and QDA
are also generative classifiers, i.e. they model the joint distribution p(y,x).
Both of these models assume that the conditional distribution of the input
given the target p(x | y) is a Gaussian, however, the LDA additionally
assumes that the covariance matrix is shared among the conditional densi-
ties [21].

For a classification task with K classes, Theorem 2.1 can be used to
derive:

p(y = i | x) = p(x | y = i)p(y = i)

p(x)

=
p(x | y = i)p(y = i)∑︁K−1

j=0 p(x | y = j)p(y = j)
. (2.33)

Equation (2.33) is then for the LDA:

p(y = i | x) =
1

|2πΣ|1/2 exp (−
1
2(x− µi)

⊤Σ−1(x− µi))p(y = i)∑︁K−1
j=0

1
|2πΣ|1/2 exp (−

1
2(x− µj)

⊤Σ−1(x− µj))p(y = j)
,

(2.34)

and for the QDA:

p(y = i | x) =
1

|2πΣi|1/2
exp (−1

2(x− µi)
⊤Σ−1

i (x− µi))p(y = i)∑︁K−1
j=0

1
|2πΣj |1/2

exp (−1
2(x− µj)

⊤Σ−1
j (x− µj))p(y = j)

,
(2.35)

where the parameters are µk, Σ, and Σk [21]. The maximum likelihood
estimation can be used to find analytical solutions for the parameters,
presented in, for example, Hastie et al. [21, pp. 109–110].

k-Nearest Neighbor Classifier

The k-nearest neighbor (KNN) classifier is a conceptually simple nonpara-
metric method. The training data is used to classify new query points
based on how close they are to the training data. For a metric d(·, ·), such
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as the Euclidean distance, and the number of neighbors k ∈ Z+ (a posi-
tive integer), chosen beforehand, the KNN algorithm finds the k closest
training data inputs and selects the predicted target as the one that is the
most frequent among the closest inputs [21]. The classification rule can be
written for a query point x∗ as:

S = argmin
s∈({1,...,N}

k )

∑︂
i∈s

d(x∗,xi),

ŷ∗ = argmax
c

∑︂
j∈S

I[yj = c].
(2.36)

It is also possible to estimate the posterior probability of y∗ by

p(y∗ = i | x∗,D, k) =
ki
k
, (2.37)

where ki is the number of nearest neighbors belonging to class i. A detailed
derivation of the result is presented in Bishop [18, p. 125].

Support Vector Machine Classifier

The support vector machine (SVM) classifier is a type of maximum margin
classifier [18] that in the linear case resembles the logistic regression
classifier. The linear SVM model for binary classification computes wTx+b,
and when the classes are encoded as y ∈ {−1, 1}, the classification is
performed by ŷ = sign(wTx+ b) [21]. It can be seen that, similar to logistic
regression, the model defines a hyperplane wTx + b = 0, but instead of
using the logistic sigmoid function to estimate the probability, the SVM
simply uses the sign operator to predict the class label, and thus does not
provide any probabilities [21].

The training of SVMs is motivated by finding the hyperplane that has
the largest distance to the closest training input, called the margin, while
separating the two classes to the respective sides of the hyperplane [34].
The maximum margin principle can then be used to find the optimal
parameters [34]:

(w, b) = argmax
w,b

min
i∈{1...,N}

yi(w
Tx+ b)

||w||2
. (2.38)

In the end, the closest inputs define the hyperplane and are called the
support vectors [34]. Equation (2.38) can be represented as a quadratic
programming problem [34] and it can also be relaxed to allow for some
misclassifications with the use of the so-called slack variables [21]. Fur-
thermore, the SVM model can be extended to define a nonlinear decision
boundary with the use of a kernel function [18]. The kernel SVM is de-
scribed in depth in Hastie et al. [21, pp. 423–429].
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Gaussian Process Classifier

Gaussian processes (GPs) [44] are stochastic processes that can be used
to define probability distributions over functions. If a random function
f(x) is a GP, then it is completely characterized by the mean function m(x)

and the covariance function K(x,x′), and additionally, if the function is
evaluated for a finite collection of inputs x1, . . . ,xN , the joint distribution
of the function values is a multivariate Gaussian distribution [44]:

f(x) ∼ GP (m(x),K(x,x′)), (2.39)

p(f(x1), . . . , f(xN ) | x1, . . . ,xN ) =

N

⎛⎜⎜⎝
⎡⎢⎢⎣
m(x1)

...

m(xN )

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
K(x1,x1) . . . K(x1,xN )

... . . . ...

K(xN ,x1) . . . K(xN ,xN )

⎤⎥⎥⎦
⎞⎟⎟⎠ .

(2.40)

The mean function is often set to zero, and thus the parameters θ of the
GP model are located in the kernel function [44].

In classification, the random function is regarded as a latent function
that is not observed, and the target variables are thought to be distributed
conditional to it p(y | f) [44]. This can be modelled by applying the
logistic sigmoid function on the latent function. The latent function can be
marginalized out to obtain the marginal likelihood of the targets [44]:

p(y | x,θ) =
∫︂

p(y | f)p(f | x,θ)df , (2.41)

which in turn can be used with gradient based optimization methods to
learn the parameters θ [44]. For a query point x∗, the model can be used
to predict the label by:

p(y∗ | x∗,D,θ) =

∫︂
p(y∗ | f∗)p(f∗ | x∗,D,θ)df∗. (2.42)

For exact details of training and implementation of GPs for classification,
the reader is referred to Rasmussen and Williams [44, ch. 3 & 5].

Random Forest Classifier

Random forest is a type of ensemble model that consists of decision
trees [21]. To understand the random forest classifier, the classification
and regression trees (CART) approach is described in brief first. In CART,
a decision tree is grown to iteratively split the input space to two regions
along a coordinate axis [20]. In classification, this split is determined in a
way to separate the classes in the input space, for example by selecting the
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split location to minimize the classification error. The splitting process is
terminated when the improvement in performance does not exceed some
predetermined threshold [20]. The final tree then performs a classification
by:

p(y = i | x,θ) =
∑︂
r∈R

w(i)
r I[x ∈ Sr], (2.43)

where the R is the set of regions, w(i)
r is the average target class i within

the region (computed using the training set), Sr is the region in the input
space, and θ includes the parameters of the splits [20]. For example, if
the input has two dimensions x = [x1, x2], the first split might happen
on x2 on threshold θ1, and then the input space is divided to two regions
R1 = {x | x2 > θ1} and R2 = {x | x2 ≤ θ1}. For these two regions
new splitting rules are then determined, for example: R3 = {x | x1 >

θ2,x ∈ R1}, R4 = {x | x1 ≤ θ2,x ∈ R1}, R5 = {x | x1 > θ3,x ∈ R2}, and
R6 = {x | x1 ≤ θ3,x ∈ R2}. The final terminal regions, i.e. those regions
that are not split anymore, are called the "leaves" of the tree [21], and
correspond to the regions in the set R in Equation (2.43).

The random forest algorithm consists of training multiple decision trees,
each with a bootstrap resample of the training data. Additionally, when
determining a splitting rule, the splitting variable is selected from a ran-
dom sample of all variables, in contrast to the CART method that selects
the splitting variable from all the variables [21]. This stochasticity allows
to reduce the correlation between the individual trees to decrease the
variance of the random forest estimator as a whole [20].

Deep Neural Networks

Feedforward neural networks are a class of models that typically consist
of a chain of linear and nonlinear functions [10]. The term "feedforward"
refers to that there are no feedback connections in the computational
graph [17]. This thesis considers only the feedforward type neural net-
works, and thus "neural networks" will refer specifically to the "feedforward
neural networks".

Deep neural networks (DNNs) are a composition of L functions f1, . . . , fL
that are also called layers [17]. The composition of more functions can be
thought to increase the depth of the composite function, i.e. the neural
network, that inspires the "deep" in the name "deep neural networks" [17].
There is no unanimous definition of how many layers are required for
a neural network to become a DNN, and thus this thesis calls neural
networks with more than two layers "deep neural networks", as opposed to
the more traditional neural networks with two layers. For a fully-connected
DNN, also called the multilayer perceptron (MLP), the layers are often
defined as [10]:

hi = fi(hi−1) = ρ(W T
i hi−1 + bi), i ∈ {1, . . . , L− 1}, (2.44)
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Figure 2.1. A simple deep neural network classifier for binary classification. The subscript
notation xi denotes the element i of the input vector, hi,j denotes the i:th
hidden layer neuron j, Wi,j the i:th layer weight matrix row j, and bi the bias
vector of the layer i. The colored lines highlight the weights that are from the
same row of the weight matrix, and the black lines indicate that the connection
is simply a summation of the element of the bias vector corresponding to the
neuron it connects to.

where h0 = x, the weight matrix Wi and the bias vector bi are learned
parameters associated with the layer i, and ρ is a nonlinear function, also
called an activation function. In classification, the final layer fL is often
defined as a logistic regression classifier, as is done in Publication I and
Publication II, such that for binary classification:

p(y = 1 | x,θ) = σ(wT
LhL−1 + bL), (2.45)

where σ denotes the logistic sigmoid activation and θ all the parameters
of the DNN. For multiclass classification with K classes, the softmax
activation function is used:

p(y = c | x,θ) = exp(W T
c hL−1 + bc)∑︁K−1

j=0 exp(W T
j hL−1 + bj)

. (2.46)

The functions fi, i = 1, . . . , L− 1 of a DNN are called the hidden layers
and the final layer fL the output layer [17]. The elements of the vectors
hi are called neurons [17]. The name "fully-connected" refers to that each
neuron of one layer is connected to every neuron of the next layer with
the weight matrix. A visual illustration of a small fully-connected DNN is
presented in Figure 2.1.

The flexibility of neural networks comes from the nonlinear activation
functions that enable them to approximate nonlinear functions [17, 18].
Without the activations, a neural network would simply compute a linear
transform, as is seen by removing the activation from Equation (2.44). The
activation functions used in the DNNs of this thesis are the rectified linear
unit (ReLU) and Leaky ReLU. The ReLU is defined as:

ρReLU (x) = max(0, x), (2.47)
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and the Leaky ReLU as:

ρLeakyReLU (x, α) = max(0, x) + αmin(0, x), (2.48)

where the α is usually a small value that is not learned [17]. The rectifier-
based activations are popular because they preserve the derivatives on the
positive domain of the input, and thus make gradient-based optimization
easier [17]. Neural networks have been shown (given certain conditions)
to be universal approximators [18] that is often used to justify that these
networks can learn any function, including that which maps the inputs to
the targets or to the true conditional distribution of them [17].

Convolutional Neural Networks

If there is prior knowledge that the target variable is invariant or equiv-
ariant to translation of the input, the convolutional neural network (CNN)
architecture can be beneficial [17]. The CNN is a type of DNN that intro-
duces weight sharing in a specific pattern, such that the weight matrix in
Equation (2.44) is applied on small patches, i.e. spatial windows, of the in-
put, instead of on the entire input like with the fully-connected DNNs [45].
The spatial shape of the window is called the "kernel size". This type of
computation is efficiently implemented with the convolution operation,
which gives the CNNs their name [17]. The i:th convolutional layer com-
putes the following "2D convolution" for an image or multichannel 2D
hidden layer input:

hi,o,a,b = ρ(
∑︂
z

∑︂
k

∑︂
l

hi−1,z,a+k,b+lWi,o,z,k,l + bi,o), (2.49)

and the following "3D convolution" for a volume or multichannel 3D hidden
layer input:

hi,o,a,b,c = ρ(
∑︂
z

∑︂
k

∑︂
l

∑︂
m

hi−1,z,a+k,b+l,c+mWi,o,z,k,l,m + bi,o), (2.50)

where a, b, and c denote the output spatial height, width, and depth index,
respectively, o denotes the output channel index, and z denotes the input
channel index [17]. The outputs of the convolutional layers are called
feature maps [17].

Remark 2.3. The summations in Equation (2.49) and Equation (2.50)
actually compute "cross-correlation", however, in deep learning literature
this computation is still called "convolution" [10, 17], and thus this thesis
will also use the "convolution" naming convention. The discrete convo-
lution would reverse the order of the elements of the weight that is not
done in cross-correlation. As each element of the weights of a CNN are
being learned, the same weights are learned regardless of the reversing
operation [17].
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Figure 2.2. Illustration of a 2D convolutional layer with a kernel size 2×2. The red, green,
and blue channels are the input channels, and the cyan and yellow channels
are the output channels. The cyan lines show the connectivity pattern from
the input channels to the cyan output channel bottom left corner. Additionally,
the yellow lines show the connectivity pattern to the yellow channel top right
corner. The line colors also represent that unique weights are used to compute
the two output channels.

The weight Wi is a 4D array, also called a tensor, in Equation (2.49) and
a 5D array in Equation (2.50). It connects each element of the input over
the spatial window to a single element of a channel in the next hidden
layer. The operations in Equation (2.49) and Equation (2.50) are repeated
for all the spatial locations and output channels. The output hi is then
a multichannel image or volume, and the number of channels it has is
determined by the first dimension of the weight tensor Wi. The bias bi
is a vector, such that a unique bias is applied to each output channel
separately [10]. Visual illustration of a convolutional layer is presented in
Figure 2.2.

The convolutional layers can be implemented with modifications to Equa-
tion (2.49) and Equation (2.50). One important variant of the convolution
is the strided convolution that has a step-size larger than 1. For a stride s

in both the height and width dimensions, the 2D convolution becomes:

hi,o,a,b = ρ(
∑︂
z

∑︂
k

∑︂
l

hi−1,z,sa+k,sb+lWi,o,z,k,l + bi,o), (2.51)

that can be seen to skip some spatial locations, which means it downsam-
ples the input [10]. It is simple to generalize for the 3D case, by considering
the stride in also the third spatial dimension. There are also other variants,
such as dilated convolution [10] and tiled convolution [17], however, these
are out of scope of this thesis.

Another specification is called padding. It controls how the convolution
is handled on the edges of the input. In some cases, the kernel does not
tile the input completely, for example when the input spatial shape is
smaller than the kernel size or when using a stride larger than one. There
are two common principles of how this is handled. The first approach
is to not compute the convolution on the border if the weight does not
tile the input completely, which is called the valid convolution [20]. The
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other approach is to use padding that concatenates some values on the
borders to let the convolutional weight slide over the borders of the original
input [17]. A special case of padding is the same convolution that pads the
input such that the output has the same spatial shape as the input when
stride s = 1 is used [10]. A popular type of padding is zero padding that
simply concatenates zeros to the borders [17].

The convolutional layers presented so far are equivariant to translation
(aside from "sub-stride" translations) meaning that for a CNN f(·) with
purely convolutional layers and a translation operator T : f(Tx) = Tf(x).
For segmentation, this property is desired, as the target is expected to be
spatially aligned with the input, and thus, the output of the model should
translate with the input. However, for image classification, the output
should usually be translation invariant, i.e. f(Tx) = f(x). Translation
invariance can be introduced by so-called pooling operations, the max pool-
ing and the average pooling being two popular ones [17]. These operations
are applied on small spatial windows, similar to the convolution operation,
however, they are typically applied on each feature channel independently
and do not include learned components. The max pooling computes the
maximum and the average pooling the mean of the values inside a spatial
window, which are invariant to small spatial translations [17]. It is also
common to use so-called global pooling, for example the global average
pooling that computes the average of each feature channel, which can be
used to produce a vector from the feature maps [10]. This vector can then
be used as an input to a fully-connected network or logistic regression to
perform classification.

The convolution with stride s = 1 preserves the spatial shape of an input
feature map, given a suitable padding, and a stride s ≥ 2 will downsample
it. There is also fractionally strided convolution that is more commonly
known as the transposed convolution [46]. The transposed convolution
can increase the spatial shape of the input [10], which is especially useful
for autoencoder-like CNN architectures. The transposed convolution can
be thought of as constructing a Toeplitz matrix that is equivalent with a
certain convolution operation, and then multiplying the input with the
transpose of the matrix [10].

Training Deep Neural Networks

The parameters of DNNs, both the fully-connected and the convolutional
neural networks, can be estimated by the ML, MAP, or ERM approaches, in-
troduced in Section 2.3. As DNNs are nonlinear, the optimization problems
have no analytical solutions, and thus, iterative gradient-based optimiza-
tion methods need to be used to solve them [18]. The optimization of the
parameters of a DNN starts with an initial estimate of them θ0, which is
usually drawn randomly from some heuristically selected distribution [17].
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Then, the parameters are iteratively updated to obtain θ1, θ2, θ3, and so
on, to reach estimates of the parameters that result in a lower loss. The
gradient descent methods choose the update based on the gradient [10]:

θt+1 = θt − α∇θL(θt), (2.52)

where the DNNs parameters at current iteration t are θt, ∇ is the gradient
operator, L(θt) is shorthand for L(D,θt, l), and α is the step-size, also
called the learning rate. It can be shown that the update direction based
on the negative gradient never increases the first order Taylor series
approximation of the loss:

L(θ∗ +∆) ≈ L(θ∗) +∇θL(θ∗)T∆, (2.53)

where ∆ is the update direction. Indeed, for a sufficiently small learn-
ing rate the loss always decreases or stays the same if a local or global
minimum is found [17].

To compute the gradients of the loss with respect to the parameters of
a DNN ∇θL(θ), the chain rule of calculus can be utilized [17]. Let h(i)

l be
the l:th hidden layer vector computed for the i:th training example. Then
the gradient of the batch loss with respect to the parameters of the j:th
layer ϕ is:

∇ϕL(θt) =

N∑︂
i=1

∇ϕl(fθt(xi),yi)

=

N∑︂
i=1

(∇ϕh
(i)
j+1)(∇hj+1

h
(i)
j+2)

· · ·

(∇hL−1
h
(i)
L )(∇hL

l(h
(i)
L ,yi)). (2.54)

For neural networks, efficient computation of the gradient is achieved
with the reverse mode differentiation that computes the gradient recur-
sively starting the multiplications from the end of the right hand side
term in Equation (2.54), which effectively propagates the error signal
backwards through the network [10, 18]. This algorithm is known as the
back-propagation algorithm [17, 18, 21].

The batch loss is computed on all of the N training data examples. Thus,
for the computation of the gradients, there needs to be N passes through
a DNN to compute the loss values, and N back-propagation passes to
compute the gradients. In addition, all the intermediate values, i.e. the
outputs of all linear and nonlinear operations, need to be stored in mem-
ory to compute the gradients. Thus, for large datasets, the number of
computations and required memory can become prohibitive. A common
approach is to utilize a stochastic estimate of the gradient of the batch loss,
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by sampling a mini-batch, i.e. a small subset of M examples, and updating
the parameters based on the gradient computed on the mini-batch. This is
called stochastic gradient descent (SGD) [17]. The stochastic estimate of
the gradient is given by [10]:

∇θL(θt) ≈ gθt =
N

M

M∑︂
i=1

∇θl(fθt(x̂i), ŷi), (2.55)

where (x̂i, ŷi) ∼ D, and it is used to update the parameters like in Equa-
tion (2.52):

θt+1 = θt − αgθt . (2.56)

A typical strategy is to sample the examples x̂i, ŷi without replacement [20],
and once all the data in the training set has been sampled once, it is said
that the model has been trained for an epoch [17]. Multiple epochs are
typically required, but this depends on the size of the training set [17].

The SGD algorithm can prove to be slow to converge, and thus, modifica-
tions have been proposed to enhance the convergence. In the Publications
I–IV, the SGD with momentum or the Adam algorithm [47] were utilized.
The SGD with momentum accumulates updates with an exponential decay
term β ∈ (0, 1) and computes updates as follows [17]:

mt = βmt−1 − αgθt ,

θt+1 = θt +mt.
(2.57)

The momentum can decrease the stochasticity of the updates with the
moving average [17].

The Adam algorithm [47] is a type of diagonal preconditioned SGD
variant [10]. It uses estimates of the first and second order moments
of the gradient for this preconditioner [47]. The algorithm is given by,
using the efficient and bias corrected version presented in Kingma and Ba
[47]:

mt = β1mt−1 + (1− β1)gθt ,

vt = β2vt−1 + (1− β2)g
2
θt
,

θt+1 = θt − α

√︁
1− βt

2 mt

(1− βt
1)(

√
vt + ϵt)

,

(2.58)

where the power of two in the second line and the division in the last
line are element-wise. β1 and β2 are the momentum terms for the first
and second noncentral moments, and ϵt =

√︁
1− βt

2ϵ, where ϵ is a small
stabilization factor, such as 10−8 [47].

The iterative methods update the parameters based on the gradients
computed on the training set, and usually the parameters of the DNN that
resulted in the best validation performance, according to the loss, AUROC,
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or some other measure, are selected as the parameters of the trained model.
As the validation set performance is an estimate of the true generalization
performance, this procedure should yield the parameter values that result
in the DNN with the best generalization. Furthermore, DNNs can start
to overfit while training, which means that the validation performance of
the latest iteration might be lower than that of an earlier iteration in the
training. A practical method is the so-called early stopping algorithm that
continuously monitors the validation performance and stops the training
if the validation performance has not improved during a certain amount of
iterations [17]. The number of iterations of non-increasing performance is
often called the patience.

The speed of convergence of the training procedure can be sometimes
improved with transfer learning. Instead of initializing the weights using
a random draw from some distribution, in transfer learning they are ini-
tialized by pretraining a DNN with another dataset. It has been observed
that CNNs learn similar convolutional weights when trained on different
datasets and tasks [48], and that the features which a CNN learns on large
natural image databases are useful for other prediction tasks as well [49].
Transfer learning has also been observed to improve the performance on
the primary task [48], however, Raghu et al. [50] observed that for medical
images, such as retinal images, the main benefit is the speed of convergence
and they did not observe better performance in comparison to randomly
initialized parameters.

To mitigate overfitting, there also exist other regularization strategies
than parameter regularization. Data augmentation is one such strat-
egy [17]. It creates synthetic examples from the training data that increase
the effective number of training examples. It is often used for CNNs, as
images can be easily augmented to create realistic synthetic examples.
For example, flipping an image along the vertical axis creates a mirrored
version that together with the original data already doubles the number of
the training examples. Modern deep learning libraries enable efficient aug-
mentation while training, such that different augmentations, for example
flipping, rotations, and color-space pertubations, can be randomly applied
to the training examples [51]. On the other hand, augmentations need to
be carefully selected in order to not break the input-target relationship [17].
For example, augmenting an image with random blurring removes small
details, such as very small bleeds in retinal images, and thus it can remove
the signs of a disease. For segmentation, the augmentations that alter the
spatial information, such as flipping and rotation, should be applied to
both the inputs and targets, with the same configuration, to preserve the
spatial correspondence.
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2.7 Bayesian Deep Learning

The ML, MAP, and ERM approaches of training DNNs yield a point es-
timate θ̂ of the parameters. The prediction for unseen inputs x∗ is then
performed as p(y∗ | x∗, θ̂) = fθ̂(x∗). However, this approach does not
quantify any uncertainty in the parameter configuration θ̂ [52].

Bayesian neural networks (BNNs) [52, 53] consider the Bayesian ap-
proach to infer the posterior density of DNNs parameters, given in The-
orem 2.1. The posterior density can then be used to obtain the posterior
predictive distribution p(y∗ | x∗) for an unseen input, as presented in
Equation (2.7), that marginalizes the parameters out. The Bayesian pos-
terior is proportional to the product of the data likelihood and the prior,
and the prior should reflect some domain knowledge about the parame-
ters [54]. The problem for DNNs is that the parameters are typically not
interpretable [52], and thus the priors are often selected based on compu-
tational convenience only, and thus, are not well specified [54]. However,
simple Gaussian priors have been observed to lead to competitive posteri-
ors [55], and combined with the inductive biases, such as the convolutional
architecture, even networks that are sampled from a Gaussian prior have
surprising discriminative performance [53].

Unfortunately, there typically exists no closed-form expression for the
BNN posterior distribution [55]. Furthermore, the golden standard ap-
proach of directly sampling from the posterior with Hamiltonian Monte
Carlo (HMC) [56] is very expensive, both computationally and memory-
wise, for modern DNNs. Indeed, in Izmailov et al. [55], HMC was used for
sampling from the posterior of a BNN with a modern DNN architecture,
however, 512 TPUv3 compute devices [57] were required even for the small
datasets used in the study. The high computational demand of HMC has
inspired research to approximations of the BNN posteriors.

This thesis considers the BNN approximation with deep ensembles, Monte
Carlo dropout, mean field variational inference, and generalized variational
inference. There are many other approximations, such as stochastic gradi-
ent HMC [58] and Stochastic Weight Averaging-Gaussian [59], however,
the methods presented in this section are selected based on those used
in Publication II. For the remainder of this section, let the true posterior
distribution of the neural network, a fully-connected or CNN type, be
p(θ | D) and let the approximate posterior distribution be denoted as q(θ).
The approximate posterior predictive distribution substitutes the p(θ | D)

with q(θ) in Equation (2.7), and the integral can be numerically computed
with Monte Carlo integration:

p(y∗ | x∗,D) ≈ 1

M

M∑︂
i=1

p(y∗ | x∗,θ(i)), (2.59)

where θ(i) ∼ q(θ) and M is the number of Monte Carlo samples.
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Deep ensembles [60] consist of a set of DNNs. The individual networks
are trained with different settings, for example using a different random
seed while training each network, with the aim that the resulting networks
can have non-identical parameters. The ensemble prediction is computed
as the average of the predictions of the individual ensemble members. The
deep ensemble approximate posterior distribution can then be thought
to be a discrete uniform distribution over the set of parameters of the
ensemble members. Even though the approach is conceptually simple, it
has been observed that it approximates the HMC solution with higher
fidelity than some other approximations [55].

Monte Carlo dropout (MC dropout) [61] applies the dropout [62] regular-
ization method during test-time to sample a set of neural networks that
have some parameters masked. The standard dropout method randomly
masks some neurons of a neural network to zero while training, such that
the connectivity pattern between consecutive layers is randomly altered.
This has been observed to have a regularizing effect, however, in Gal and
Ghahramani [61], it was also discovered to have a connection to varia-
tional inference considering a certain Gaussian process prior. The random
masking of neurons can be seen as masking the rows (or the columns)
of the weights and elements of the biases that gives arise to the dropout
variational distribution of the parameters. The weights Wl and biases bl of
a layer can be sampled from the dropout variational distribution q(θ)dropout

by [61]:

Wl = Ŵ l diag(z),

bl = diag(z) b̂l,

z ∼ Bern(pdrop),

(2.60)

where Ŵ l and b̂l are the variational parameters, Bern(pdrop) denotes a
Bernoulli distribution over binary vectors with the probability of each
element being one given by the corresponding element of the dropout
probability vector pdrop. However, the approach in Equation (2.60) is rarely
used, as the random masking of neurons instead of the parameters is
more efficient and available in modern deep learning libraries, such as
Pytorch [51]. MC dropout can be also extended to the convolutional layers
by dropping channels of the feature maps.

Mean field variational inference (MFVI) [63] assumes that the posterior
distribution of the parameters factorizes, typically in the extreme such
that all the parameters are independent [64, 65], and it seeks a variational
approximate distribution that minimizes the following Kullback-Leibler
(KL) divergence [66]:

DKL[q(θ) || p(θ | D)] =

∫︂
q(θ) log

q(θ)

p(θ | D)
dθ. (2.61)
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Equation (2.61) can be shown to result in the negative evidence lower
bound by:

DKL[q(θ) || p(θ | D)] =

∫︂
q(θ) log

q(θ)p(D)

p(D | θ)p(θ)dθ

=

∫︂
q(θ) log

q(θ)

p(θ)
dθ −

∫︂
q(θ) log p(D | θ)dθ

+ log p(D)

≤ DKL[q(θ) || p(θ)]− Eq(θ)[log p(D | θ)]. (2.62)

The optimal MFVI approximate posterior for a classification task is then [66]:

q(θ)MFV I = argmin
q∈Q

DKL[q(θ) || p(θ)]− Eq(θ)[log p(y | x,θ)]. (2.63)

For a parametric approximate posterior qγ(θ), this amounts to finding the
parameters γ that minimize the upper bound in Equation (2.62) [66]. It
is common to define the approximate posterior qγ(θ) and the prior p(θ)

as diagonal multivariate Gaussian distributions [64, 65], and then the
parameters γ of the approximate posterior are the mean and variance of
the Gaussian for all the parameters θ. To allow for gradient-based learning
of the approximate distribution, the so-called reparametrization trick [31]
can be used for the Gaussians. It decomposes the samples of θ from a
diagonal multivariate Gaussian distibution N (µ,diag(σ2)) as:

θ = µ+ ϵ⊙ σ,

ϵ ∼ N (0, I),
(2.64)

where ⊙ is the Hadamard product.
In Farquhar et al. [65], it was observed that the MFVI approach with

multivariate Gaussians has numerical issues related to the high norm of
the samples. As the multivariate Gaussian distribution has the so-called
"soap-bubble" phenomenon in high dimensions, which means that the
probability mass is concentrated on a thin sphere and the samples have
a high norm on expectation, the high norm of the samples can produce
numerical issues while training. In Farquhar et al. [65], the Radial MFVI
was proposed that considers a special type of approximate posterior dis-
tribution, the samples of which have the same expected norm regardless
of the dimension. It can thus avert the issues related to the norm of the
samples. The Radial posterior distribution does not have a closed form
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expression, but it can be efficiently sampled from by:

θ = µ+ ϵ̂⊙ σ,

ϵ̂ = r
ϵ

||ϵ||2
,

ϵ ∼ N (0, I),

r ∼ N (0, 1).

(2.65)

The authors also presented how the KL divergence can be evaluated up to
a constant, and thus, the Radial posterior is simple to use in place of the
multivariate Gaussian in Equation (2.62) with Monte Carlo integration.

Generalized variational inference (GVI) [54] is a novel approach for robust
variational inference. The GVI arises from the so-called Rule of Three that
views statistical inference as an optimization problem of a loss function and
a divergence measure given a space of feasible solutions. The divergence
can be selected to introduce robustness to prior misspecification, and thus,
can mitigate issues related to priors selected solely on the computational
aspects. The GVI approach arises when the space of feasible solutions is
chosen as some subset of the space of all probability measures, and the
loss function and divergence measure are chosen freely. The GVI posterior
is the solution to:

qGV I(θ) = argmin
q∈Q

Eq(θ)[l(y, fθ(x))] +D[q(θ) || p(θ)], (2.66)

where l is a loss function, f is a DNN, D is any divergence, and p ∈
Q ⊂ P(θ). It can be seen that it recovers the MFVI approach when the
loss function is the negative log-likelihood and the divergence is the KL
divergence. In Publication II, the Rényi’s α-Divergence was used as a
robust divergence. The "rescaled" variant of it is calculated as [54]:

Dα
AR[q(θ) || p(θ)] =

1

α(1− α)
log

∫︂
q(θ)αp(θ)1−αdθ. (2.67)

2.8 Machine Learning for Medical Data

Medical data poses many practical challenges to machine learning research.
It is often so that the medical data has high class imbalance, which means
that there are significantly fewer examples of some classes than of the
others [67]. Indeed, for example in Publication V, only 3.2% of the patients
were diagnosed with necrotizing enterocolitis, and in Publication II, the
clinical hospital dataset had less than 1% cases with proliferative diabetic
retinopathy. The collection of more data to accommodate the imbalance is
difficult in the medical domain, as a disease or other condition of interest
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might be inherently rare in the population and the data can only be
collected when a patient visits a healthcare provider.

The availability and accessibility of medical data also differs from other
types of data. Publicly available datasets exists in the internet, for exam-
ple in the form of data for competitions hosted by Kaggle, MICCAI, and
PhysioNet, however, these datasets have often restrictions to their use, for
example permission for research purposes only. Furthermore, there might
exist no publicly available data for certain problems, which means that
research is impossible without access to private data. Private data, such
as hospital data records, are also subject to regional and local regulations
that can demand that the data is collected, stored, and accessed in a cer-
tain manner. Thus, if an entity, such as a healthcare provider or device
manufacturer, wants to develop a machine learning algorithm for some
prediction task, the data needs to already exist or it needs to be collected,
there must be permissions for the access and use of the data for the pur-
poses of the research or development, and all the regional regulations need
to be accounted for.

The notable regulation for medical data analysis in the European Union
region is the EU General Data Protection Regulation (GDPR) [68]. Many
medical classification tasks require data that is so-called personal data
under the regulation. This is because data that is related to the physical
or mental health status or medical history of a patient is considered to
be personal data. However, classifying a physiological or mental medi-
cal condition requires this type of data for training. Data collected by
healthcare providers is also not exempt of the personal data status. The
GDPR sets guidelines when personal data is permitted to be processed.
Important notion is the controller that is an entity responsible for the
data and for compliance of all actions with the regulation. For machine
learning research, the relevant permission for data processing is the "data
controller’s legitimate interests", which can consist of scientific research
or product development if they do not infringe the patients rights and
do not compromise privacy. Indeed, GDPR promotes pseudonymization
of personal data, which means that the data cannot be identified to a
specific patient in a straightforward manner. Furthermore, if the data is
completely anonymized, i.e. it cannot be identified to a specific patient, it
is no longer considered to be personal data by GDPR.

Other regulations and laws need to be taken account for as well. Relevant
for the Publications I–V are the Finnish Medical Research Act [69] and the
Secondary Use of Health and Social Data Act [70]. If the data collection
requires intervention in the integrity of a person, for example taking a
blood sample, and the modeling task is related to health, then the research
is considered to be medical research by the Medical Research Act. Medical
research requires informed consent of all the patients and it requires an
ethical committee approval. Retrospective register data that is collected for

29



Machine Learning

other purposes can be used for research without considering the research
to be medical research, as the Secondary Use of Health and Social Data
Act considers the research to be secondary use of data. The Secondary Use
of Health and Social Data Act also requires the physical computational
machine and the software environment to be secure, such that the private
information cannot be compromised. Thus, it is often so that the machine
learning model has to be selected with the computational limitations of
the secure machine in mind. Further institutional regulations need to be
also adhered to and these can depend on the healthcare district.
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3. Deep Learning for Diabetic
Retinopathy and Macular Edema
Classification (Publications I & II)

In 2019, it was estimated that there were 463 million diabetics globally, and
that the number of diabetics grows to 578 million by 2030 [71]. High blood
glucose concentration, associated with both the type 1 and type 2 diabetes,
can cause complications and damage to the small blood vessels of the
human body, including those in the human eye [72]. Diabetic retinopathy
is the term used for the different complications of the retina that are
caused by the high glucose concentration [73]. Diabetic retinopathy affects
a third of the diabetic population and is the leading cause of blindness
in the working-aged population [74]. It can deteriorate sight and lead to
blindness if it is untreated [73]. Thus, it is important to detect diabetic
retinopathy early, such that the condition can be monitored and treated if
necessary. Diabetic retinopathy can be detected by ophthalmological means
by eye examination and retinal fundus imaging, and national screening
programmes exist in some countries, however, the screening is currently
done manually by medical experts [73]. To reduce the global burden on
manual screening programmes, automatic detection and classification of
diabetic retinopathy is of paramount interest.

There are many classification systems for the severity of diabetic retinopa-
thy. A comprehensive severity scale was introduced in the Early Treatment
Diabetic Retinopathy Study (ETDRS) [75]. However, this scale is too fine-
grained for clinical use, for which the 5-class proposed international clinical
diabetic retinopathy scale (PIRC) was introduced in Wilkinson et al. [76].
The PIRC scale is used for example in Finland [77], and some benchmark
diabetic retinopathy datasets have also been annoted using it [78, 79].
The five severity classes of PIRC are the no diabetic retinopathy (class 0),
mild diabetic retinopathy (class 1), moderate diabetic retinopathy (class 2),
severe diabetic retinopathy (class 3), and proliferative diabetic retinopathy
(class 4). The classes are progressively more severe with the class 0 having
no signs of diabetic retinopathy, classes 1–3 having increasing number and
severity of abnormalities, and finally the class 4 consisting of proliferative
diabetic retinopathy. In the proliferative diabetic retinopathy, the retina is
suffering from a low blood supply, which causes new small blood vessels to
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proliferate on the retina [73]. In the center of the retina resides the macula
of the eye that provides the most accurate vision. Diabetic retinopathy
that manifests on this area is especially dangerous for vision, and it is
often classified separately as diabetic macular edema [73, 77]. One severity
scale for it is the proposed international clinical diabetic macular edema
scale (PIMEC), also introduced in Wilkinson et al. [76]. The PIMEC has 4
classes: no diabetic macular edema (class 0), mild diabetic macular edema
(class 1), moderate diabetic macular edema (class 2), and severe diabetic
macular edema (class 3).

In early studies of machine learning for diabetic retinopathy classifica-
tion, a simplified binary referable/non-referable diabetic retinopathy (RDR)
classification system was used [11, 80]. This scale is derived from the PIRC
system by defining the referable diabetic retinopathy as moderate or worse
(class ≥ 2) and non-referable diabetic retinopathy as no or mild diabetic
retinopathy (class ≤ 1). This system was also examined in Publication I
and Publication II.

It has been observed that modern DNN classifiers suffer from poor cal-
ibration [16]. It means that the DNN always places a high probability
for one of the classes, even when the class is wrong, and thus the output
"probability" values that the network infers cannot be used to quantify
uncertainty. In diabetic retinopathy, it is critical to correctly quantify the
uncertainty in the predictions, such that if the model is uncertain for some
cases, they can be referred to a medical expert. One promising avenue
for "uncertainty-aware" deep learning is the approximate Bayesian deep
learning that is studied for diabetic retinopathy classification tasks on
clinical data in Publication II.

3.1 Prior Work

Early studies for automatic detection of diabetic retinopathy from retinal
images utilized very specialized algorithms [81, 82] or combination of
hand-crafted features and machine learning algorithms [83, 84]. The
datasets had also been of modest size, as one of the largest had 66 680
images from 16 670 patients [82]. Deep learning has been widely applied
for diabetic retinopathy classification since 2016 [85], which has been
facilitated by publicly available datasets [86]. This thesis considers the
studies by Gulshan et al. [11], Ting et al. [80], and Krause et al. [87] due to
their influentiality, originality in the sense of the used data, and as these
works were considered to be the state-of-the-art in Publication I. Deep
learning has also been applied to a wide range of other diabetic retinopathy
related tasks, such as lesion segmentation [88, 89] and detection [90], and
prediction of the progression of the disease [91], however, these tasks are
out of the scope of this thesis.
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In 2016, Gulshan et al. [11] utilized deep learning for the RDR task with
high sensitivity, specificity, and AUROC. The deep learning approach was
an ensemble of 10 ImageNet [1] pretrained Inception-v3 CNNs [92] that
utilized retinal images of resolution 299 × 299. They used a very large
dataset in training that originated from EyePACS in the United States
and from three eye hospitals in India. The training set consisted of 128 175
images from 69 573 patients. For testing the model, they used a dataset
that originated from the EyePACS, which had 9963 images from 8906
patients, and also the publicly available Messidor-2 dataset that had 1748
images [93, 94].

In 2017, Ting et al. [80] used deep learning for RDR, vision-threatening
diabetic retinopathy, possible glaucoma, and age-related macular degener-
ation classification. Vision-threating diabetic retinopathy was defined as
severe or worse (PIRC class ≥ 3) diabetic retinopathy. They used ensem-
bles of two VGG-like [95] CNNs and retinal images of resolution 512× 512.
Their training set and one of the test sets originated from Singapore. The
training set had 76 370 images from 13 099 patients and the Singapore
originating test set had 71 896 images from 14 880 patients. They also
utilized an out-of-distribution heterogeneous test set that had images from
Guangdong, Singapore, and Beijing, as well as from the African American
Eye Disease Study and clinics from Ireland, Mexico, and Hong Kong. How-
ever, for possible glaucoma and age-related macular degeneration, they
used slightly different sets, as the out-of-distribution Singapore originating
data was included in the training set and the evaluation was only per-
formed on the within-distribution test set. They observed similar results
as in Gulshan et al. [11], i.e. high sensitivity, specificity, and AUROC.

In 2018, Krause et al. [87] presented a continuation study of Gulshan
et al. [11]. They studied deep learning classification of RDR, referable
diabetic macular edema (RDME), and also the clinical 5-class PIRC grade.
The deep learning model was a more recent Inception-type CNN called
Inception-v4 [96] and 10 ensemble members were used. They also in-
creased the retinal image resolution to 799 × 799. The training set was
extremely large, as it consisted of 1 665 151 images from 238 610 patients.
It originated from the EyePACS and it included the training and validation
set of Gulshan et al. [11]. In addition, they examined the evaluation of the
algorithm when the grades were produced under an "adjudication process",
where three retinal specialists graded the images independently, and for
cases with conflicting grades they decided the grade together. On the test
set of 1958 images, they observed that the model had similar performance
in the PIRC task as individual opthalmologists and retinal specialists, and
also showed that their modifications outperformed the models in Gulshan
et al. [11].

Approximate Bayesian deep learning has been used for diabetic retinopa-
thy classification in literature, however, only for binary classification tasks.
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In 2017, Leibig et al. [97] first proposed these methods for diabetic retinopa-
thy classification. In the work, MC dropout method was used for RDR and
any diabetic retinopathy detection. It was compared to a standard neural
network and a Gaussian process classifier that was fit to the last layer
of a standard neural network. All the networks had VGG-like [95] CNN
architectures. The models were trained on an EyePACS originating Kaggle
contest dataset (EyePACS-K) [98] and the out-of-distribution performance
was evaluated on the Messidor set [93]. The EyePACS-K training set con-
sisted of 35 126 images and the test set of 53 576 images. They observed
that the MC dropout CNN could estimate the uncertainty better than the
standard CNN and the Gaussian process method for both the classification
tasks and datasets.

In Filos et al. [64], more BNN approximations were studied for the RDR
classification system. The selected methods were MC dropout, MFVI, deep
ensembles, and ensemble MC dropout. The work also used a VGG-like [95]
CNN architecture. The EyePACS-K set was used as the training set and
the APTOS [79] set was used as an out-of-distribution test set. All the
approximate Bayesian methods outperformed the standard neural network
and it was observed that the ensemble MC dropout performed the best out
of them in all of the tasks.

In Farquhar et al. [65], the Radial MFVI posterior was proposed to
remedy the issues with the multivariate Gaussian posterior. One of the
experiments in the study was RDR classification on the EyePACS-K set.
The experiment used a VGG-16 [95] type CNN architecture with global
average and global max pooling after the convolutional layers. It was found
that the Radial MFVI approach outperformed the MC dropout and MFVI
with the Gaussian posterior, and an ensemble of Radial MFVI networks
outperformed the MC dropout ensemble in the quality of the uncertainty
estimates. They also studied the calibration of MFVI, Radial MFVI, MC
dropout, and deep ensembles, and found that the Radial MFVI had the
best calibration.

Finally, a Bayesian diabetic retinopathy classification benchmark was
introduced in Band et al. [99]. The study describes RDR classification in
two settings: when the test data suffers from diabetic retinopathy severity
distribution shift, and when there is distribution shift by country. The
former was investigated using the EyePACS-K set and the latter using the
APTOS dataset as a country shifted test set. They conducted experiments
on these tasks with a standard neural network with l2 regularization (i.e.
a MAP optimization task), MFVI, Radial MFVI, function space variational
inference, MC dropout, and Rank-1 parameterized MFVI. They also pre-
sented experiments with ensembling for each of the methods. In contrast
to previous studies, they used the ResNet-50 [2] CNN architecture. For the
retinopathy severity shift task, they observed that the approximate BNNs
outperformed the MAP neural network. In the case of distribution shift
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by country, they observed that no method consistently outperformed the
others. For the within-distribution tests, the results suggest that even the
MAP network can provide useful uncertainty estimates and the ensemble
MC dropout performed the best.

There have also been studies that try to estimate the uncertainty in
diabetic retinopathy classification using other methods than approximate
BNNs. In Ayhan and Berens [100] and Ayhan et al. [101], "test-time
augmentation" was used to estimate the predictive distribution. It works
by augmenting the test images with random transforms, such as random
rotation or color-space transforms, and then averaging the DNN outputs of
multiple augmented versions of an image. In Ayhan and Berens [100], this
is said to model the heteroscedastic aleatoric uncertainty, i.e. inherent data
noise that differs for each example. Ayhan et al. [101] also studied softmax
temperature scaling that aims to calibrate a trained network by scaling the
pre-softmax output of the network. In Araújo et al. [102], a standard neural
network was trained in an ordinal regression setting where the output of
the network was one dimensional and considered to be distributed as a
Gaussian conditional to the PIRC label. The means of the Gaussians were
set as the numeric PIRC label and the standard deviation was inferred by
the network for each image independently. The probabilities of the PIRC
labels were then computed similarly as with the LDA classifier, shown in
Equation (2.34), and the inferred standard deviation was used to measure
the uncertainty. As Publication II considers approximate Bayesian deep
learning for uncertainty-aware diabetic retinopathy classification, the
test-time augmentation, softmax temperature scaling, and the ordinal
regression approaches are out of the scope of this thesis.

3.2 Deep Learning Diabetic Retinopathy and Macular Edema
Grading on a Finnish Dataset (Publication I)

In Publication I, deep learning was studied for the RDR and PIRC diabetic
retinopathy classification systems, and for the RDME and PIMEC diabetic
macular edema classification systems. The referable diabetic macular
edema was defined as any class of PIMEC other than no macular edema
(PIMEC > 0) and non-referable diabetic macular edema as no macular
edema (PIMEC = 0) for the RDME system. The clinical PIMEC scale
had not been studied before using deep learning to predict the label from
retinal fundus images. An additional diabetic retinopathy classification
system was created, which consisted of three mutually exclusive labels:
non-referable diabetic retinopathy, referable diabetic retinopathy, and
ungradable image quality (QRDR). In contrast to previous studies that
had used only one image resolution or only considered one classification
task while varying the image resolution, Publication I considered image
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sizes of 256× 256, 299× 299, 512× 512, 1024× 1024, and 2095× 2095 for all
the tasks. Similar to Gulshan et al. [11], the model was an Inception-v3
CNN with ImageNet pretrained parameters, however, due to the large
image sizes, ensembling was used only for the 512 × 512 resolution that
was selected as it was used in Ting et al. [80].

The Finnish dataset was provided by Digifundus Ltd and it consisted
of 41 122 retinal images from 14 624 patients. The retinal images were
selected for the study with a preference for the severe cases to alleviate
the class imbalance problem present in the population distribution. These
images were captured with a Canon CR2 retinal camera while the patients’
pupils were dilated with tropicamide eyedrops. The dataset was randomly
divided into train, validation, and test sets, separately for each task, with
70%, 10%, and 20% proportions, respectively. The division was performed
for all the tasks independently to achieve near identical grade distributions
among the training, validation, and test sets. The random dataset division
algorithm was implemented such that the patients did not overlap between
the sets. The number of images and class distributions of all sets are
presented in Table 3.1. The Messidor-1 dataset [93] was used as an out-of-
distribution test set for the RDR and RDME tasks and it consisted of 1200
images.

Results

For the binary RDR and RDME tasks, higher image resolutions provided
better AUROC, however, the increase in performance started to saturate
on resolution 512 × 512. For the RDME task, the ensemble model with
512× 512 could be utilized to outperform even the highest resolution single
model performance. For the PIRC and QRDR tasks, the highest QWK
was achieved at 1024 × 1024 and for the PIMEC task using the highest
resolution. Similar to the RDME task, PIMEC also improved beyond any
single model performance when the ensembling approach was used.

Comparisons of the best results obtained in Publication I to those of
the previous publications are presented in Tables 3.2 and 3.3. Similar
to Gulshan et al. [11], the operating point was selected for sensitivity
and specificity analysis such that the models had 90% sensitivity on the
validation set. It can be seen that the models presented in Publication I
have comparable or better performance to those presented in other studies.
Indeed, the RDR model outperforms Ting et al. [80] and Krause et al. [87],
and has only 0.04 lower AUROC in comparison to Gulshan et al. [11]. For
PIRC, the best model of Publication I outperforms that of Krause et al.
[87] in the QWK measure. Additionally, the Messidor AUROC values
are fairly high, however, it can be observed that for RDME the operating
point does not generalize well to the set, as the 90.0% sensitivity point
corresponds to 57.5% sensitivity point in Messidor-1. The lower sensitivity
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Table 3.1. Statistics of the Finnish diabetic retinopathy dataset used in Publication I.
Modified from Publication I.

Task Training Set Validation Set Test Set

RDR
Images Total 24 806 (100%) 3706 (100%) 7118 (100%)

Images Class 0 13 895 (56.0%) 2079 (56.1%) 4031 (56.6%)

Images Class 1 10 911 (44.0%) 1627 (43.9%) 3087 (43.4%)

PIRC

Images Total 24 941 (100%) 3560 (100%) 7129 (100%)

Images Class 0 11 160 (44.7%) 1573 (44.2%) 3229 (45.3%)

Images Class 1 2793 (11.2%) 408 (11.5%) 842 (11.8%)

Images Class 2 9221 (37.0%) 1312 (36.9%) 2597 (36.4%)

Images Class 3 1480 (5.9%) 225 (6.3%) 382 (5.4%)

Images Class 4 287 (1.2%) 42 (1.2%) 79 (1.1%)

RDME
Images Total 24 651 (100%) 3675 (100%) 7304 (100%)

Images Class 0 20 819 (84.5%) 3113 (84.7%) 6162 (84.4%)

Images Class 1 3832 (15.5%) 562 (15.3%) 1142 (15.6%)

PIMEC

Images Total 24 791 (100%) 3535 (100%) 7304 (100%)

Images Class 0 20 958 (84.5%) 2974 (84.1%) 6162 (84.4%)

Images Class 1 1531 (6.2%) 237 (6.7%) 465 (6.4%)

Images Class 2 1566 (6.3%) 222 (6.2%) 438 (6.0%)

Images Class 3 736 (3.0%) 102 (2.9%) 239 (3.3%)

QRDR

Images Total 28 787 (100%) 4109 (100%) 8226 (100%)

Images Class 0 3827 (13.3%) 533 (13.0%) 1132 (13.8%)

Images Class 1 14 005 (48.7%) 1991 (48.5%) 4009 (48.7%)

Images Class 2 10 955 (38.1%) 1585 (38.6%) 3085 (37.5%)

is likely due to the differing annotation used for the Messidor set, as the
risk of macular edema label of Messidor is 1 for images with any exudates,
whereas the PIMEC label of mild diabetic macular edema (class 1) requires
the exudates to be within a certain distance from the center of the retina.
Thus some Messidor images with label 1 would be considered as class 0 in
the PIMEC scale, which would translate to an RDME class 0. This would
explain why the sensitivity decreases, as there are false negative cases by
the Messidor labels. However, there is also distribution shift caused by
the different imaging device, study population, and some Messidor images
were imaged without pupil dilation, which can all modify the appearance
of the Messidor images in comparison to the Finnish dataset.
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Table 3.2. Comparison of the RDR and RDME results to previous publications. Sensitivity
and specificity computed at 90% sensitivity operating point. Publication I
results are for the configuration with the best AUROC. "OOD" denotes out-of-
distribution, "Sens." sensitivity, and "Spec." specificity.
∗ Operating point selected with a different criterion.

Task Publication Dataset AUROC Sens. Spec.

RDR

Gulshan et al. [11]
Internal 0.991 0.903 0.981

Messidor-2 0.990 0.870 0.985

Ting et al. [80]
Internal 0.936 0.905 0.916

OOD Best 0.983 0.989 0.922

OOD Worst 0.899 0.971 0.820

Krause et al. [87] Internal 0.986 0.971∗ 0.923∗

Publication I
Internal 0.987 0.896 0.974

Messidor 0.967 0.859 0.971

RDME

Gulshan et al. [11]
Internal - 0.908 0.987

Messidor-2 - 0.904 0.988

Krause et al. [87] Internal - 0.949∗ 0.944∗

Publication I
Internal 0.989 0.947 0.954

Messidor-1 0.953 0.575 0.995

Table 3.3. Comparison of the PIRC results and illustration of the novel results with
PIMEC and QRDR systems.

Task Publication Dataset QWK

PIRC
Krause et al. [87] Internal 0.840

Publication I Internal 0.915

PIMEC Publication I Internal 0.871

QRDR Publication I Internal 0.938

3.3 Uncertainty-aware Deep Learning Methods for Diabetic
Retinopathy Classification of Clinical Data (Publication II)

In Publication II, BNN approximations were utilized for diabetic retinopa-
thy classification to leverage the uncertainty information they provide. In
the literature, the uncertainty has been often quantifed with the entropy
of the approximate posterior predictive distribution [64, 103], mutual in-
formation between the prediction and the approximate posterior [65, 103],
or the standard deviation of the posterior predictive distribution [97]. The
uncertainty value is then compared to a threshold that determines if the
classification is accepted, or if the retinal image is referred to an expert.
In practice, this type of "referral process" is simulated by computing the
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uncertainty values for each example in the test set, ordering the predic-
tions based on the uncertainty values, and then, for a given threshold of
uncertainty, leaving the most uncertain predictions out while evaluating
the performance on the remaining examples.

Publication II showed that the referral of uncertain examples is actually
a type of reject option classification [18]. In reject option classification, the
typical approach is to use a minimal risk function [104] to quantify the
risk in a classification:

r(x) = min
ŷ

C∑︂
i=1

p(y = i | x)l(ŷ, i), (3.1)

where l(ŷ, i) is interpreted as a loss function for a correct label i and a label
prediction ŷ. The rejection then occurs if the risk exceeds some threshold τ ,
i.e. r(x) > τ . The classic minimum risk for the zero-one type loss is the risk
r0/1(x) = 1−maxŷ p(y = ŷ | x)) [105], which is equivalent to examining if
the largest conditional probability is lower than some threshold [18].

In Publication II, the expected conditional risk was used instead of the
minimum risk. The expected risk of a classifier is given as the expected
value of the loss over the input and target variables [106]:

I(f) =

C∑︂
i=1

∫︂
p(y = i,x)l(f(x), i)dx. (3.2)

The point-wise risk in x can be derived by leaving the integration over the
inputs out:

R(x) =

C∑︂
i=1

p(y = i | x)l(f(x), i). (3.3)

When the classifier is trained to model the conditional distribution f(x) =

p(y | x), the risk becomes:

R(x) =

C∑︂
i=1

p(y = i | x)l(p(y | x), i). (3.4)

The risk R(x) is called the expected (in targets) conditional (on an input)
risk to not confuse it with the expected risk of a classifier. It is straight-
forward to show that the expected conditional risk corresponds to the
entropy of the posterior predictive distribution if the loss is the negative
log-likelihood of categorical labels:

RNLL(x) = −
C∑︂
i=1

p(y = i | x) log p(y = i | x)

= H[p(y = i | x)]. (3.5)

This correspondence reveals that the entropy-based referral of uncertain
examples can be viewed as reject option classification when the expected
conditional risk is used with the negative log-likelihood loss.
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In Publication II, the expected conditional risk approach was used to
develop a new uncertainty measure for PIRC classification based on the
negative QWK as a loss. The negative QWK loss was defined as:

lQWK(p(y | x), i) = −
M∑︂
j=1

p(y = j | x)κQW (C + Sj,i), (3.6)

which is the negative expected QWK value for a predictive distribution
p(y = j | x). As the quadratic weighted Cohen’s kappa will be zero for any
single-entry matrix with element 1, it was evaluated using the confusion
matrix of the validation set C as kQW (C + Sj,i), where the Sj,i is the single-
entry matrix corresponding to a target i and prediction j. The expected
conditional risk with the negative QWK loss was called the QWK-Risk,
computed by:

RQWK(x) = −
M∑︂
i=1

p(y = i | x)
M∑︂
j=1

p(y = j | x)κQW (C + Sj,i). (3.7)

The QWK-Risk can be interpreted as the expected negative QWK value
for an input example x, similar to entropy being the expected negative
log-likelihood.

Results

In Publication II, nine approximate BNNs were examined for RDR and
PIRC classification using three benchmark datasets and an uncurated
Finnish hospital dataset. The benchmark datasets were the EyePACS-
K [98], Messidor-2 [93, 94], and the APTOS [79]. The Finnish dataset
was collected in clinical work in the Central Finland Central Healthcare
district. This dataset was called the KSSHP set. The EyePACS-K and
KSSHP sets had sufficient images for training, whereas the Messidor-
2 and APTOS sets were smaller, and thus, they were used exclusively
for testing the out-of-distribution performance. The number of images
and class distributions of the EyePACS-K and KSSHP sets are shown in
Table 3.4 and of the APTOS and Messidor-2 sets in Table 3.5.

The set of approximate BNNs selected were deep ensembles, MC dropout,
MFVI, GVI, and Radial MFVI. Ensembling was also additionally combined
with MC dropout, MFVI, GVI, and Radial MFVI resulting in nine total
BNN approximations. The baseline was a MAP network trained with
dropout and l2 weight regularization. The CNN architecture was selected
as a VGG-like [95] network, similar to most of the previous works. The
uncertainty was evaluated with the entropy of the posterior predictive
distribution, and additionally for the PIRC task, with the QWK-Risk
uncertainty measure. The utility of the uncertainty information was
evaluated with the referral process by referring no data (0%), 30% of the
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Table 3.4. Statistics of the EyePACS-K and KSSHP datasets.

EyePACS-K

Task Training Set Validation Set Test Set

RDR
Images Total 35 125 (100.0%) 10 906 (100.0%) 42 669 (100.0%)

Images Class 0 28 252 (80.4%) 8850 (81.1%) 34 445 (80.7%)

Images Class 1 6873 (10.5%) 2056 (18.9%) 8224 (19.3%)

PIRC

Images Total 35 125 (100.0%) 10 906 (100.0%) 42 669 (100.0%)

Images Class 0 25 809 (73.4%) 8130 (74.5%) 31 403 (73.6%)

Images Class 1 2443 (7.0%) 720 (6.6%) 3042 (7.1%)

Images Class 2 5292 (15.1%) 1579 (14.5%) 6281 (14.7%)

Images Class 3 873 (2.5%) 237 (2.2%) 977 (2.3%)

Images Class 4 708 (2.0%) 240 (2.2%) 966 (2.3%)

KSSHP

Task Training Set Validation Set Test Set

RDR
Images Total 39 482 (100.0%) 5652 (100.0%) 11 285 (100.0%)

Images Class 0 35 333 (89.5%) 5055 (89.4%) 10 094 (89.4%)

Images Class 1 4149 (10.5%) 597 (10.6%) 1191 (10.6%)

PIRC

Images Total 39 482 (100.0%) 5652 (100.0%) 11 285 (100.0%)

Images Class 0 27 086 (68.6%) 3857 (68.2%) 7723 (68.4%)

Images Class 1 8434 (21.4%) 1224 (21.7%) 2431 (21.5%)

Images Class 2 3350 (8.5%) 482 (8.5%) 930 (8.2%)

Images Class 3 471 (1.2%) 80 (1.4%) 177 (1.6%)

Images Class 4 141 (0.4%) 9 (0.2%) 24 (0.2%)

data, and 50% of the data. These proportions of referred data were called
the 0%, 30%, and 50% referral levels. AUROC was used as the performance
measure for the RDR task and QWK for the PIRC task.

For the RDR task, the findings were similar to those of Leibig et al. [97]
and Band et al. [99]. When the models were trained on the EyePACS-K
set, the Messidor-2 generalization of the uncertainty estimates was good,
whereas for the APTOS set, the uncertainty estimates were detrimental to
the referral process, as was also observed in Band et al. [99]. The EyePACS-
K trained models benefitted from uncertainty for the clinical KSSHP set,
however, not to the same extent as for the Messidor-2 set. When trained
using the KSSHP set, the quality of the within-distribution uncertainty
estimates was not as good as for the EyePACS-K trained models. The
uncertainty estimates generalized to the EyePACS-K set, aside from those
produced by the MAP, deep ensemble, and Radial MFVI ensemble, and they
also generalized to the Messidor-2 set. Similar degradation of performance
of the KSSHP trained models was observed for the APTOS set as with the
EyePACS-K trained models.
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Table 3.5. Statistics of the APTOS and Messidor-2 sets. Adapted from Publication II.

Task APTOS Messidor-2

RDR
Images Total 3662 (100.0%) 1744 (100.0%)

Images Class 0 2175 (59.4%) 1279 (73.3%)

Images Class 1 1487 (40.6%) 465 (26.7%)

PIRC

Images Total 3662 (100.0%) 1744 (100.0%)

Images Class 0 1805 (49.3%) 1017 (58.3%)

Images Class 1 370 (10.1%) 270 (15.5%)

Images Class 2 999 (27.3%) 347 (19.9%)

Images Class 3 193 (5.3%) 75 (4.3%)

Images Class 4 295 (8.1%) 35 (2%)

In the PIRC task, the entropy of the posterior predictive distribution
was first used as the measure of uncertainty. The EyePACS-K trained
models benefitted mostly up to 30% referral level on the within-distribution
test set, and no model improved consistently when referring data in the
KSSHP out-of-distribution test. However, the referral process did improve
the performance on the Messidor-2 and APTOS sets. When trained on the
KSSHP set, no model consistently improved on the within-distribution test
set and only the Radial MFVI, MFVI ensemble, and Radial MFVI ensemble
improved consistently on the EyePACS-K set. All the models benefitted
from uncertainty on the Messidor-2 set, however, only the ensembles
benefitted consistently on the APTOS set.

When using the QWK-Risk as the uncertainty measure, both the Eye-
PACS and KSSHP trained models improved on the respective within-
distribution test sets when referring data. In addition, the EyePACS-K
and KSSHP trained models benefitted from the uncertainty when using
the other set as an out-of-distribution test set. It turned out that the
EyePACS-K trained models benefitted from uncertainty on the Messidor-2
set, but not on the APTOS. Additionally, the performance of the KSSHP
trained models degraded on both the Messidor-2 and the APTOS sets in
contrast to the entropy-based uncertainty experiments. Results for the
clinical KSSHP set, using both the entropy and QWK-Risk uncertainty
measures, are presented in Table 3.6.
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Table 3.6. PIRC results in the quadratic weighted Cohen’s kappa for the clinical KSSHP
set. "Ref. X%" denotes the referral level X%. Bold font denotes the best result
within the referral level for an uncertainty measure. Results are given as the
mean ± standard deviation of 100 bootstrap resamples of the KSSHP test set.
Adapted from Publication II.

Uncertainty Approach
Trained on EyePACS-K Trained on KSSHP

Ref. 50% Ref. 30% Ref. 0% Ref. 50% Ref. 30% Ref. 0%

Entropy

MAP 47.6 ± 3.1 58.8 ± 2.0 67.5 ± 0.9 70.9 ± 1.6 76.0 ± 1.0 81.0 ± 0.6

MC dropout 32.6 ± 4.8 47.2 ± 2.7 67.7 ± 0.8 72.1 ± 1.4 75.3 ± 1.1 80.3 ± 0.6

MFVI 40.5 ± 3.2 45.3 ± 2.4 63.8 ± 0.9 81.4 ± 1.1 81.6 ± 0.8 79.9 ± 0.6

GVI 61.1 ± 1.8 65.6 ± 1.2 62.8 ± 0.8 74.8 ± 1.7 76.1 ± 1.1 80.0 ± 0.6

Radial MFVI 49.9 ± 2.9 59.6 ± 2.1 65.4 ± 0.9 77.6 ± 1.6 78.5 ± 1.3 79.9 ± 0.6

Deep ensemble 62.3 ± 2.0 73.1 ± 1.1 69.6 ± 0.8 78.4 ± 1.3 78.8 ± 1.0 81.1 ± 0.5
MC dropout ensemble 43.7 ± 3.9 56.0 ± 2.0 68.4 ± 0.9 71.3 ± 1.8 75.0 ± 1.0 80.6 ± 0.6

MFVI ensemble 24.4 ± 5.3 39.4 ± 2.9 66.1 ± 0.9 74.7 ± 1.5 77.7 ± 1.1 80.5 ± 0.6

GVI ensemble 40.0 ± 3.4 55.0 ± 1.9 66.8 ± 0.9 66.6 ± 2.0 76.4 ± 1.1 80.9 ± 0.5

Radial MFVI ensemble 33.4 ± 3.5 56.2 ± 2.2 66.2 ± 1.0 73.2 ± 1.6 77.8 ± 1.1 80.2 ± 0.6

QWK-Risk

MAP 81.4 ± 0.9 78.6 ± 0.9 67.5 ± 0.9 89.4 ± 0.5 87.9 ± 0.5 81.0 ± 0.6

MC dropout 79.6 ± 1.0 77.5 ± 0.9 67.7 ± 0.8 88.6 ± 0.5 87.1 ± 0.5 80.3 ± 0.6

MFVI 76.1 ± 1.0 74.5 ± 0.9 63.8 ± 0.9 87.3 ± 0.5 85.9 ± 0.5 79.9 ± 0.6

GVI 75.8 ± 0.8 73.6 ± 0.8 62.8 ± 0.8 87.9 ± 0.4 86.5 ± 0.4 80.0 ± 0.6

Radial MFVI 78.7 ± 0.9 76.6 ± 0.8 65.4 ± 0.9 87.8 ± 0.5 86.5 ± 0.5 79.9 ± 0.6

Deep ensemble 81.6 ± 0.8 80.2 ± 0.8 69.6 ± 0.8 89.5 ± 0.4 88.1 ± 0.4 81.1 ± 0.5
MC dropout ensemble 81.1 ± 0.9 78.9 ± 0.9 68.4 ± 0.9 89.4 ± 0.4 87.9 ± 0.5 80.6 ± 0.6

MFVI ensemble 80.0 ± 0.9 77.9 ± 0.9 66.1 ± 0.9 89.7 ± 0.4 87.7 ± 0.4 80.5 ± 0.6

GVI ensemble 79.3 ± 0.9 76.7 ± 0.9 66.8 ± 0.9 89.9 ± 0.4 88.4 ± 0.4 80.9 ± 0.5

Radial MFVI ensemble 79.4 ± 1.0 77.1 ± 0.9 66.2 ± 1.0 89.1 ± 0.5 87.4 ± 0.5 80.2 ± 0.6
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4. Deep Learning for Mandibular Canal
Segmentation in CBCT Images
(Publications III & IV)

The human jawbone, also called the mandible, has two nerve canals
that pass through the bone under the teeth. These canals are called
the mandibular canals and both of them contain an inferior alveolar nerve
(IAN), an artery, and a vein. Different computed tomography (CT) tech-
niques are used in dentomaxillofacial surgical planning, such as in dental
implantology, where the canals need to be accurately located to avoid dam-
age to the IAN and other structures. This is currently performed manually
by 3D imaging tools, such as Planmeca Romexis® software. Automatic
segmentation and localization of the mandibular canals would allow to
reduce the manual burden of the task.

The conventional CT approach is the fan-beam X-ray source with an
array of detectors that scans 2D axial slices of the patient anatomy, i.e. it
samples slices of the plane that divides the body in the upper and lower
parts [107]. These slices are then concatenated to produce a volumetric
image, also called a scan, of the imaged area. Multi-detector variants
(MDCT) can record multiple slices at the same time, such that the total
imaging time can be reduced [107]. Cone beam CT (CBCT) is a more recent
technique that has become popular in dentomaxillofacial radiology. It uses
a cone shaped beam instead of a fan shaped beam [108]. It subjects the
patient to less radiation and has comparable scanning time to MDCT [107],
however, because of the lower radiation dosage, it has more noise and soft
tissue resolution is decreased [108].

4.1 Prior Work

Mandibular canal segmentation using conventional CT images has been
explored before, for example using a combination of voxel value thresh-
olding, edge detection, and line tracking [109], and a combination of voxel
value thresholding and active appearance models [110]. However, it has
been observed that these algorithms might not generalize to the CBCT
data [111]. Before 2020, there were five notable works that explored
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mandibular canal segmentation from CBCT volumes. In Kainmueller et al.
[112], a statistical shape model was used to extract a bone surface model of
the mandible and a Dijkstra’s algorithm-based path search was then used
to find the canal tunnel inside the bone. In Kroon [111], Lukas-Kanade
tracking, two registration methods, statistical shape model, and active
appearance models were examined. In Moris et al. [113], a combination
of thresholding and specialized hand-crafted algorithms were proposed.
In Abdolali and Zoroofi [114], active appearance models and registration
were used in conjunction, and in Abdolali et al. [42], a statistical shape
model was used to model the mandible and the fast marching algorithm to
find the canal inside it.

Deep learning was proposed for mandibular canal and teeth segmenta-
tion from orthopantomograms, i.e. panoramic-like 2D images that traces
the center line of the mandible, in Vinayahalingam et al. [115]. More re-
cently, Cha et al. [116] investigated maxillary sinus, maxilla, mandibular
canal, and mandible segmentation from the orthopantomograms. These
segmentation tasks differ from volumetric mandibular canal segmentation
in that they cannot be used to obtain an accurate 3D model of the canals
due to the orthopantomograms being projections to a 2D image.

In early 2020, Kwak et al. [117] used deep learning for mandibular canal
segmentation from volumetric CBCT images. The work was published
three days earlier than Publication III and proposed deep learning for the
task concurrently. The work considered three network architectures: a
2D "SegNet", 2D U-Net, and 3D U-Net. The 2D variants were examined
using two parameter initialization methods: random initialization and
pretraining with natural images. The 2D variants were used to segment
a single slice of a volume at a time, however, the 2D U-Net was also
studied when four adjacent slices were used as different input channels.
The CBCT volumes used in the work were preprocessed by a mandible
extraction algorithm that combined voxel thresholding and heuristics to
determine the mandible mask. If the extraction algorithm failed, it was
tuned by hand to find the mandible. The CBCT volumes were then masked
such that only the region inside the mandible was preserved. The work
did not use established measures of mandibular canal segmentation per-
formance, such as the Dice coefficient or mean curve distance, and thus
the results of the study cannot be compared to those of Publication III.
More recently, Kurt Bayrakdar et al. [118] also studied volumetric segmen-
tation from CBCT images, however, the study did not use conventional
performance measures either.

46



Deep Learning for Mandibular Canal Segmentation in CBCT Images (Publications III & IV)

4.2 Deep Learning Segmentation Approach (Publication III)

In Publication III, the dataset consisted of 637 CBCT volumes from 594
patients from the Cranio and Dentomaxillofacial Radiology Department of
The University Hospital of Tampere, Finland. The CBCTs were imaged us-
ing Soredex Scanora 3Dx and three Planmeca ProMax devices (Promax 3D,
ProMax 3D Max, and ProMax 3D Mid). There were multiple resolutions
among the volumes. 492 volumes had spatial resolution of 0.2 mm and
141 had spatial resolution of 0.4 mm. There were also resolutions 0.1 mm,
0.15 mm, 0.3 mm, and 0.6 mm, however, there was only one volume of
each of these resolutions. The dataset was divided to training, validation,
and test sets such that the patients with multiple volumes were included
only in the training set. Also, the 0.2 mm and 0.4 mm volumes were
divided among the sets in similar proportions. All the volumes with rare
resolutions were placed in the training set. After the division, the training,
validation, and test sets contained 457, 52, and 128 volumes, respectively.

The dataset had a number of heterogeneities present in some of the
patients’ CBCT volumes. Heterogeneities caused by the imaging procedure
were differences in images based on the imaging device, artefacts caused
by the motion of the patient, and variability in the pose of the head. The
heterogeneities that were related to the health or operative status of the
patients included metallic artefacts, osteoporosis, benign or malignant
tumours, difficult anatomy or bone structure, and post bisagittal osteoma
operation. In addition, some of the volumes were from cadavers. The het-
erogeneities were not mutually exclusive and it was possible for multiple
heterogeneities to be present in a single volume.

All the volumes were annotated using Planmeca Romexis® software,
which has a built-in mandibular canal annotation tool, by two medical
professionals. The tool requires the user to specify spline control points on
the mandibular canal path, which are then used with spline interpolation
to create an approximate canal curve. The curve was then expanded to
a 1.5 mm diameter tube along the curve path to approximate the canal
surrounding the nerve. As the mandibular canal is not a constant diameter
tube, these annotations can be thought to be a form of noisy labels. 15
volumes from the test set were also annotated in voxel-level detail using
Mimics inPrint 3.0 software (Materialise, Leuven, Belgium). These high
quality annotations were used to evaluate the segmentation performance
with greater accuracy, whereas the 128 spline interpolation-based coarse
annotations were utilized to examine the performance of the model with
respect to the visual quality of the canals in the CBCT volumes.

The CNN architecture was a 3D modification to the U-Net architec-
ture [13]. It is a type of fully-convolutional neural network with an en-
coder/decoder structure with skip connections between them. The output
of the network was a volume with the same spatial shape as the input, and
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by using a sigmoid activation these output voxel values were constrained
to be within [0, 1]. The network was trained to minimize the so-called "Dice
loss" [119] that is a continuous relaxation of the Dice coefficient defined as:

LDice(f(x),y) = −2

∑︁H
h=1

∑︁W
w=1

∑︁D
d=1 f(x)h,w,d yh,w,d∑︁H

h=1

∑︁W
w=1

∑︁D
d=1 f(x)h,w,d + yh,w,d

, (4.1)

where f represents the 3D U-Net with the sigmoid output activation. It
can be seen as a more ERM type objective due to the lack of a probabilistic
interpretation. The Dice loss was selected as it performs well under class
imbalance, which was very severe in the data with approximately 0.01%
mandibular canal voxels, whereas the negative log-likelihood and weighted
variants of it did not produce competitive Dice coefficient values.

Two data preprocessing steps were performed to reduce the memory
footprint of the algorithm. First, each volume was resized to a 0.4 mm
isotropic voxel resolution that served to standardize the data and to reduce
the size of the largest volumes. Second, patches of shape 32× 32× 32 were
sampled randomly from the full CBCT volumes during training. The patch
sampling was performed only around the mandibular canal, based on the
annotations, to further reduce the class imbalance. During inference, the
volumes were processed by dividing the entire volume to patches that were
processed independently. To produce the segmentation map, the output
of the model was thresholded, such that output voxels with values ≥ 0.5

were treated as positive, i.e. mandibular canal, and otherwise negative, i.e.
not mandibular canal.

As the model was trained with patches from the neighborhood of the
canal, there were false positive canal detections in the regions not present
in the training data, such as in the nasal cavity and neck. These were
typically small in size, and thus a post processing algorithm was developed
to extract the most likely mandibular canal segmentations from the output
of the model. The algorithm performed connected component analysis that
first computed the connected components and then selected the two largest
components as the mandibular canals. The mandibular canal curve, used
to compute MCD, was extracted by a skeletonization algorithm.

Results

A comparison of the results of Publication III and those of Kainmueller
et al. [112] and Abdolali et al. [42] are presented in Table 4.1. It can be seen
that the deep learning approach outperforms the previous work in MCD
and ASSD, presented in Equation (2.29) and Equation (2.30), respectively,
and is also more stable, which can be seen as a lower standard deviation of
the results. Indeed, the deep learning approach set a new state-of-the-art
for mandibular canal segmentation. In the analysis of the performance
conditional to the subjective visibility of the canal, it was found that when
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Table 4.1. Mandibular canal segmentation results. Results are given as the mean ±
standard deviation. Publication III results are computed on the high quality
voxel-wise annotations. For MCD and ASSD lower is better and for Dice
coefficient higher is better.

Right Canal Left Canal

Method MCD ASSD Dice MCD ASSD Dice

Kainmueller et al. [112] 1.0
± 0.6

- - 1.2
± 0.9

- -

Abdolali et al. [42] 0.82
± 0.25

0.84
± 0.18

- 0.92
± 0.15

0.79
± 0.22

-

Publication III 0.50
± 0.19

0.45
± 0.11

0.58
± 0.09

0.61
± 0.16

0.45
± 0.12

0.57
± 0.08

the canal was marked as clearly visible, the model had similar performance
as for the high quality annotations. However, for those canals that were
difficult to distinguish, the model performance degraded significantly.

4.3 Multi-grader and Deep Learning Observer Variability in
Mandibular Canal Segmentation Task (Publication IV)

In Publication III, the main objective was to introduce a deep learning
approach for mandibular canal segmentation and to compare the approach
to previously proposed methods. However, as the path of the mandibular
canal can be ambiguous depending on the visibility of the canal, it is
possible that different annotators have differing opinions on the path of
the canal. Thus, it is hard to determine how well the CNN performs based
on a single annotation of the canal. In Publication IV, a comprehensive
validation of the deep learning method was performed with the main
focus on comparing the canal segmentations produced by the CNN to the
interobserver variability between multiple human annotators. In addition,
the dataset in Publication IV was much larger and consisted of CBCT
volumes imaged with five different scanners, and the patient population
consisted of both Finnish and Thai patients.

The dataset consisted of 1132 CBCT images from 1103 patients. There
were 649 images from Planmeca Promax 3D Max/Mid, 125 from Planmeca
Viso G7, 124 from Soredex Scanora 3Dx, 120 from NSTDA DentiScan,
and 114 from NewTom GiANO HR devices. The dataset had similar
heterogeneneities as the dataset used in Publication III, as described
in Section 4.2, however, the dataset had more devices and there was
additional variability introduced by the inclusion of geographically and
ethnically separate clinical data from Thailand. The data was divided to
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validation and test sets, by selecting 20 images from each device for the
validation set and 30 for the test set. The rest of the data was used as the
training set. The test data was annotated by four radiologists, referred
to as Expert1, Expert2, Expert3, and Expert4. Expert3 and Expert4 also
annotated the training and validation data, however, they did not annotate
the same data.

The deep learning model had the same architecture as in Publication III.
The segmentation post processing script was further developed by concate-
nation of close components that were found using connected component
analysis, and then a score for the anatomical plausibility of each compo-
nent was computed. The score was used to filter out some components, and
then the two most symmetric components were selected as the two canals.

The interobserver variability analysis was performed in three different
ways. In the first experiment, the interobserver variability was evaluated
with all pair-wise comparisons between the radiologists, and the human-
model variability was evaluated by comparing the model to the individual
radiologists. In the second experiment, the largest variability between the
model and any radiologist was compared to the largest variability between
the radiologists. In the third experiment, the four radiologists’ segmenta-
tions were combined by majority voting to create a reference consensus
segmentation. The radiologists and the model were then compared to it
to evaluate the objective performance of them. A senior radiologist also
examined the radiologists’ annotations and the segmentations of the model
to assess qualitatively the differences between the human and machine
made errors.

For evaluation, the MCD, presented in Equation (2.29), and the sym-
metric mean curve distance, proposed in Publication IV, were used. As
the MCD is not symmetric with respect to its arguments, meaning that
MCD(T, P ) can have a different value than MCD(P, T ), it is hard to use
for the summarization of the performance. For this reason, Publication IV
proposed the symmetric mean curve distance (SMCD) for summarizing the
distance between two curves T and P . It is computed as:

SMCD(T, P ) =
MCD(T, P ) +MCD(P, T )

2
. (4.2)

It can be seen to be similar to the ASSD, presented in Equation (2.30),
however, ASSD normalizes the sum of the distances by the number of total
points on the two curves. The issue with this normalization scheme is
that if one of the curves is much longer, it will dominate the ASSD value.
In contrast, the SMCD is the average of the MCDs computed both ways,
which ensures that even when one of the curves is much shorter, it will
have the same influence on the final score as the other.
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Table 4.2. Reference consensus segmentation results in millimetres. IQR stands for
the interquartile range and STD for the standard deviation. Adapted from
Publication IV.

Evaluator Median (IQR) SMCD Mean ± STD SMCD

Expert1 0.62 (0.23) 0.68 ± 0.38

Expert2 0.55 (0.22) 0.62 ± 0.39

Expert3 0.47 (0.14) 0.52 ± 0.38

Expert4 0.42 (0.14) 0.47 ± 0.40

Model 0.39 (0.11) 0.46 ± 0.39

Results

The median of all pair-wise MCD comparisons revealed that the low-
est variability between any pairs was with the model and Expert4, and
the highest between Expert1 and Expert3. Overall, the variability be-
tween the model and any radiologist was in the range 0.45–0.69 mm,
whereas the interobserver variability was between 0.48–0.70 mm. In the
largest variability analysis, the model had 0.74 (0.28) mm median (IQR)
and 0.81 ± 0.41 mm mean ± standard deviation (STD) SMCD, compared
to the interobserver variability with 0.77 (0.25) mm median (IQR) and
0.84 ± 0.28 mm mean ± STD.

For the reference consensus segmentation results, presented in Table 4.2,
the model had the best performance in the median and mean of SMCD,
followed by Expert4, Expert3, Expert2, and Expert1, in a decreasing
order by performance. There were two canals with large errors by all
experts and the model, which were identified manually to have been caused
by disagreements between the experts. The disagreements in the canal
path resulted in no consensus segmentation for the path of the canal on
significant portions that resulted in high SMCD.

The qualitative analysis revealed that there were differences between
the errors of the radiologists’ annotations and the CNNs segmentations.
The model produced too short canals for three out of the 300 (1%) test
volumes. Two of the errors were produced by the post processing algorithm
not connecting correct components, and one was deemed to have been
caused by incorrect segmentation around an imaging artifact. The errors
made by the radiologists were mostly annotations outside the canal path.
Out of the 1200 total annotations, these errors were present in 29 of them
(2.4%).
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5. Machine Learning for Neonatal
Mortality and Morbidity Prediction
(Publication V)

Infants under the age of 28 days are called neonates and those with a birth
weight under 1500 g are called very low birth weight (VLBW) infants. The
VLBW infants have an increased risk of neonatal mortality and morbid-
ity [120], and are treated in neonatal intensive care units (NICUs). In
the Western Europe and USA, the VLBW neonates have a mortality rate
around 11% [121], in comparison to the overall neonatal mortality rate
around 1.8% [122]. Neonatal morbidities are associated with an increased
risk of mortality, as well as possibly permanent ailments [123, 124, 125],
and thus the early detection of the morbidities is of paramount interest for
timely treatment. Several risk scores have been developed to aid in the
estimation of the health of neonates [126, 127, 128], such as the SNAP-II
and SNAPPE-II scores [129], however, these scores have been found to
perform poorly on patient level prediction [130, 131].

In Publication V, machine learning approaches were studied for the
prediction of VLBW neonatal in-hospital mortality, bronchopulmonary
dysplasia (BPD), necrotizing enterocolitis (NEC), and retinopathy of pre-
maturity (ROP). BPD is a chronic condition of the lungs that affects those
born preterm, as the lungs are underdeveloped and prone to injury [132].
It can lead to long-term ailments such as persistent pulmonary dysfunc-
tion [123]. NEC is a disease of the gastrointestinal tract that can lead to
bowel necrosis and death [133], but also has long-term issues such as gas-
trointestinal and neurodevelopmental problems [124]. ROP is retinopathy
that affects preterm babies due to their underdeveloped retinas, which can
lead to blindness [125].

5.1 Prior Work

Machine learning approaches have been proposed for neonatal mortality
and morbidity prediction. Neonatal mortality prediction has been ex-
plored using a variety of machine learning models with static admission
data [130, 134] and using decision trees with real-time data [135]. BPD
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has been predicted using neural networks and SVMs with a combination
of static and real-time data [136, 137]. In Saria et al. [138], nonlinear
Bayesian models and logistic regression were proposed for neonatal "high
morbidity" prediction, which was defined as a single label for many mor-
bidities including the BPD, ROP, and NEC, with static and real-time data.

In Publication V, a continuation work of Rinta-Koski et al. [139] and Rinta-
Koski et al. [140] was presented. In Rinta-Koski et al. [139], a Gaussian
process classifier was used to predict the BPD, NEC, and ROP status of
VLBW neonates. The data included static and time-series variables, and
comparison was made between using the first 24 and 72 hours of time-
series data. For the BPD classification, the classifier achieved 0.85 AUROC
with 24h of time-series data and 0.87 AUROC with 72h of the data. For
the NEC classification, the AUROC was 0.72 for 24h and 0.74 for 72h
datasets, and for the ROP classification, these values were 0.80 and 0.84,
respectively. It was observed that the sensitivity of the classifier was close
to zero for the NEC and ROP tasks.

In Rinta-Koski et al. [140], a similar analysis was conducted for the
in-hospital mortality of VLBW neonates. Four Gaussian process classifiers
with different kernels and an SVM classifier were used with 12, 18, 24,
36, 48, and 72 hours of time-series data, along with static data. It was
observed that all the models performed roughly equally, the Gaussian
process classifier with linear plus constant kernel being the best achieving
0.949 AUROC with 48 and 36 hours of data. The classifier performance was
also compared to the medical risk scores and it was found that the machine
learning approaches outperformed them, as the best score "SNAPPE-II"
achieved 0.875 AUROC.

5.2 Helsinki University Hospital Data

The dataset used in Publication V was collected in clinical work in the
NICU of Children’s Hospital of Helsinki University Hospital between 1999
and 2013. It was partly the same as the dataset used in Rinta-Koski et al.
[139] and Rinta-Koski et al. [140], however, it included more patients. A
detailed description of the collection and data format can be found in Rinta-
Koski [141]. The static and time-series variables were chosen as in Rinta-
Koski et al. [140]: SNAP-II, SNAPPE-II, birth weight, and gestational
age as the static variables, and as the time-series variables the oxygen
saturation, heart rate, and systolic, diastolic, and mean blood pressure. The
SNAP-II and SNAPPE-II scores were chosen as input variables, because
an ablation result in Rinta-Koski et al. [140] suggests that they improve
the performance slightly.

Some patients were excluded from the dataset. Firstly, patients who
had died or were discharged less than 72 hours after admission were
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excluded. This was to ensure that the mortality label was not leaked by
decayed vital signs. Secondly, if any of the time-series had less than 50
measurements the patient was rejected. This was to limit the noise in the
feature extraction step that is described later. The resulting dataset had
977 patients out of which 63 had died, 275 had BPD, 31 had NEC, and 77
had ROP.

Similar to Rinta-Koski et al. [139] and Rinta-Koski et al. [140], the first
72 hours of time-series data was taken into account to examine the early
prediction of the different end-points. As the mean days of hospitalization
was over 20 days for mortality and all of the morbidities, the 72h period
could be considered as an early prediction period. In addition, the classifier
performance was also examined conditional to the length of the time-series,
by using the first 12, 18, 24, 36, 48, or 72 hours them. Features were
extracted from the time-series in a similar manner as in Rinta-Koski et al.
[140]. These features were the mean and standard deviation of each time-
series, and they were concatenated with the static data to create a vector
input for the models.

As the dataset was relatively small and very imbalanced, stratified 8-fold
nested cross validation with 8 repeats was used. The training of the models
was implemented in MATLAB [142] using the built-in functions, except
for the Gaussian processes that were implemented using the GPstuff
package [143]. The performance measures were computed using scikit-
learn package [144] in Python.

Results

A large set of machine learning classifiers was selected to comprehensively
study the machine learning approach for the different tasks. The mod-
els were the logistic regression (LR), linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), k-nearest neighbor (KNN), support
vector machine (SVM), three different Gaussian processes, and random
forest (RF) classifier. The three GP classifiers differed in the choice of the
kernel function. All of them included the sum of a constant kernel, linear
kernel, and either a squared exponential (GP-SE), Matérn with ν = 3/2

(GP-M32), or Matérn with ν = 5/2 kernel (GP-M52). Description of these
kernels can be found in Rasmussen and Williams [44].

In Rinta-Koski et al. [139] and Rinta-Koski et al. [140], it was observed
that the sensitivity of the classifiers were either moderate or close to
zero, especially for the ROP classification. In Publication V, multiple data
preprocessing methods were used to examine if the predictive performance
on the positive cases could be improved. Namely, 1. standardization of
the irregularly sampled time-series by repeating the last observation to
fill missing observations, 2. excluding the first 6 hours of time-series data
to examine if the neonatal adaptation period degrades the quality of the
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extracted features, and 3. subsampling the majority, i.e. the negative,
class examples of the training set to achieve uniform class distribution.
All possible combinations of the steps 1-3 were used in addition to using
none of them, and thus there were in total 8 sets of data. In addition, the
F1-score was used as an alternative to the AUROC for classifier selection,
in order to determine if it could be used to improve the performance on the
positive cases.

When the best classifier was selected based on the highest AUROC on
the 8 sets of data, the results were generally similar in the mortality
classification to Rinta-Koski et al. [140] and in the BPD, NEC, and ROP
classification to Rinta-Koski et al. [139]. However, the RF classifier was
observed to outperform other models in mortality and NEC classification,
and obtaining the same AUROC as GP classifiers in ROP classification, but
with a higher sensitivity. Similar to the previous works, the sensitivities
of the GP and SVM classifiers were low or zero on the NEC and ROP
classification tasks. The highest AUROC was achieved for most models
with the full set of data without the majority subsampling strategy.

In the second experiment, the F1-score was used to select the classifiers.
There was a favourable tradeoff between the AUROC and sensitivity as a
result, since no classifier had zero sensitivity in any task, but the corre-
sponding AUROC values decreased only slightly. For those classifiers that
had very low sensitivity on the NEC and ROP tasks, the F1-score classifier
selection preferred the classifiers trained on the majority subsampled data.
Indeed, the best GP classifiers and the SVM were all trained on the sub-
sampled data in all the tasks, whereas in the AUROC selection they were
all trained with all the data.

Out of all the models, the RF had a consistently high performance in
every task. In the experiments where the RF classifier was selected based
on AUROC, it had the highest AUROC in mortality and NEC classification,
highest AUROC with the GP classifiers in ROP classification, and the
second highest AUROC in BPD classification. In terms of F1-score, the
RF classifier had the best performance in every experiment, even when
selected based on the AUROC value. The RF classifier is compared to
the GP classifiers presented in Rinta-Koski et al. [139], Rinta-Koski et al.
[140], and Publication V in Table 5.1 that also illustrates the improved
sensitivity of the GP classifiers when using majority class subsampled
data.

When examining the performance of the classifiers on time-series with
different lengths, results for the mortality, BPD, and ROP classification
showed only minor improvements when using a longer period. However,
on the NEC classification, all the classifiers had some benefits of using
longer periods, the RF the most in terms of the F1-score and the QDA in
terms of the AUROC. The results suggest that the mortality, BPD, and
ROP classification can be performed with as short as 12 hours of patient
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Table 5.1. Classification results for GP and RF classifiers. Results in AUROC (AUC), F1-
score (F1), sensitivity (Sens.), precision (Prec.), and Specificity (Spec.). Criterion
denotes the classifier selection criterion. "Data" is in format time-series length
(hours) - empirical or uniform class distribution (E/U).

Task Method Criterion Data AUC F1 Sens. Prec. Spec.

In-hospital
mortality

GP-SE [140] - 48h-E 0.95 - 0.46 0.66 0.98

GP-M32 [140] - 48h-E 0.95 - 0.45 0.65 0.98

GP-M52 [140] - 48h-E 0.95 - 0.44 0.66 0.98

GP-SE Pub. V AUC 18h-E 0.92 0.23 0.16 0.49 0.99
GP-M32 Pub. V AUC 72h-E 0.92 0.33 0.24 0.62 0.99
GP-M52 Pub. V AUC 36h-E 0.92 0.32 0.24 0.59 0.99

RF Pub. V AUC 36h-E 0.92 0.48 0.67 0.38 0.92

GP-SE Pub. V F1 72h-U 0.91 0.39 0.85 0.25 0.82

GP-M32 Pub. V F1 72h-U 0.91 0.39 0.86 0.25 0.82

GP-M52 Pub. V F1 72h-U 0.91 0.39 0.86 0.25 0.82

RF Pub. V F1 72h-E 0.92 0.49 0.71 0.38 0.92

BPD

GP-SE [139] - 72h-E 0.87 - 0.52 0.67 0.93
GP-SE Pub. V AUC 72h-E 0.89 0.69 0.68 0.69 0.88

GP-M32 Pub. V AUC 72h-E 0.89 0.69 0.68 0.70 0.88

GP-M52 Pub. V AUC 72h-E 0.89 0.69 0.68 0.70 0.88

RF Pub. V AUC 72h-E 0.88 0.70 0.77 0.65 0.83

GP-SE Pub. V F1 72h-U 0.88 0.69 0.86 0.58 0.75

GP-M32 Pub. V F1 72h-U 0.88 0.69 0.85 0.58 0.75

GP-M52 Pub. V F1 72h-U 0.88 0.69 0.85 0.58 0.76

RF Pub. V F1 72h-E 0.88 0.70 0.77 0.65 0.83

NEC

GP-SE [139] - 72h-E 0.74 - 0.17 0.11 0.98

GP-SE Pub. V AUC 72h-E 0.78 0.0 0.0 0.0 1.0
GP-M32 Pub. V AUC 72h-E 0.79 0.0 0.0 0.0 1.0
GP-M52 Pub. V AUC 72h-E 0.79 0.0 0.0 0.0 1.0

RF Pub. V AUC 48h-E 0.81 0.19 0.25 0.16 0.96

GP-SE Pub. V F1 72h-U 0.78 0.13 0.70 0.07 0.69

GP-M32 Pub. V F1 72h-U 0.78 0.16 0.71 0.07 0.68

GP-M52 Pub. V F1 72h-U 0.76 0.12 0.67 0.07 0.70

RF Pub. V F1 72h-E 0.79 0.22 0.27 0.20 0.96

ROP

GP-SE [139] - 72h-E 0.84 - 0.05 0.50 0.99

GP-SE Pub. V AUC 72h-E 0.85 0.0 0.0 0.0 1.0
GP-M32 Pub. V AUC 72h-E 0.85 0.0 0.0 0.0 1.0
GP-M52 Pub. V AUC 72h-E 0.85 0.0 0.0 0.0 1.0

RF Pub. V AUC 48h-E 0.85 0.37 0.64 0.26 0.84

GP-SE Pub. V F1 72h-U 0.84 0.33 0.84 0.21 0.72

GP-M32 Pub. V F1 72h-U 0.84 0.33 0.84 0.21 0.72

GP-M52 Pub. V F1 72h-U 0.84 0.33 0.84 0.21 0.72

RF Pub. V F1 72h-E 0.85 0.37 0.64 0.26 0.84
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monitoring data. There was generally no difference when excluding the
first 6 hours of data.

Feature Importance Analysis

The random forest classifier had generally the best performance in all the
tasks. To examine what features the classifier used, the feature impor-
tances were computed with random feature permutation and out-of-bag
error. It permutes randomly one feature across the patients and computes
the error on the out-of-bag, i.e. a held out subset, and the error is consid-
ered to be the measure of importance to the classification. The feature
importances are presented in Figure 5.1.

For the mortality classification, the birth weight had the largest impor-
tance, and for the BPD and NEC classification, it had the second largest
importance. This observation is in line with the general understanding
that low birth weight increases the risk of mortality [145]. In addition, for
the mortality classification, the standard deviation of blood oxygen, mean
of systolic blood pressure, and mean of mean blood pressure had generally
high importances. For the BPD classification, the gestational age had the
highest importance and the SNAPPE-II had the third highest importance,
however, with a similar value as the second most important variable birth
weight. In NEC classification, the mean of blood oxygen had the highest
importance and the mean of systolic blood pressure had only slightly lower
importance than the birth weight. Interestingly, for the ROP classification,
the birth weight had negative importance, which indicates that the feature
is not used in a meaningful manner. In addition, all the important features
were based on the time-series features, the highest being the standard
deviation of diastolic blood pressure, which was followed by the standard
deviation of systolic blood pressure, mean of blood oxygen, and mean of
mean blood pressure.
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(a) Mortality (b) BPD

(c) NEC (d) ROP

Figure 5.1. Feature importances. µ and σ denote the mean and the standard deviation
components of the feature extraction. Adapted from Publication V.
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6. Summary of Publications

This chapter summarizes Publications I–V and the contributions of this
thesis.

6.1 Publication I

This publication presented a deep learning approach for classification of
diabetic retinopathy and macular edema using a relatively small Finnish
dataset of color fundus images. The work investigated two clinically used
classification systems, as well as three simplified systems derived from
them. It also systematically analyzed the relationship between the resolu-
tion of the images and the deep learning classifier performance. Higher
resolution generally improved the performance in comparison to the lower
resolutions, however, using the highest resolution 2095 × 2095 had neg-
ligible or decreasing effect to the performance. In addition, ensembling
was found to improve the performance of the models trained with the
512× 512 resolution. The novelty and the contributions of this publication
are: demonstration that state-of-the-art CNN classifiers can be trained
for diabetic retinopathy and macular edema classification using approxi-
mately 40 000 images, systematic investigation of the relationship between
image resolution and classifier performance that provided evidence that
512× 512 is sufficient for the classification tasks, and first ever results for
a deep learning classification of a clinically used diabetic macular edema
classification system using retinal fundus images.

6.2 Publication II

This publication investigated approximate Bayesian deep learning ap-
proaches for uncertainty-aware diabetic retinopathy classification. Nine
BNN approximations were examined with a binary and a clinical 5-class
diabetic retinopathy classification system. Furthermore, an uncurated
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clinical hospital dataset was used in addition to three benchmark datasets.
The publication validated results from previous studies on the benchmark
datasets with the binary classification system. It was discovered that the
methods developed for the benchmark datasets did not generalize to the
clinical dataset when the clinical classification system was used. A classi-
fier risk-based approach was used to develop an uncertainty measure, as
an alternative to the entropy of the posterior predictive distribution, that
improved the utility of the referral process on the clinical classification
system for both the clinical and one of the benchmark datasets. The novelty
and the contributions of this publication are: first ever results for approxi-
mate BNNs for the clinically used 5-class proposed international diabetic
retinopathy classification system and clinical hospital data, derivation of a
connection between uncertainty-based referral process and reject option
classification, and development of the QWK-Risk uncertainty measure
that could be used to improve the performance of the referral process for
clinical data.

6.3 Publication III

This publication considered deep learning for mandibular canal segmenta-
tion from volumetric CBCT images. It was shown that the deep learning
approach could outperform previously proposed methods, even though the
training data was annotated with sparse control points and spline interpo-
lation that resulted in noisy voxel labels. It was observed that the errors
of the deep learning model correlated with the subjective visibility of the
canal, which manifested as higher errors for those canals deemed to be not
clearly visible. The novelty and the contributions of this publication are:
proposal of a deep learning approach for segmentation of the mandibular
canal from volumetric CBCT images, demonstration that a high voxel-level
segmentation performance can be achieved with approximate training
annotations, and setting a new state-of-the-art for the segmentation task.

6.4 Publication IV

This publication validated the model presented in Publication III in a more
clinically oriented manner. The interobserver variability of four radiol-
ogists was compared to the variability between the radiologists and the
deep learning model. It was found that the deep learning model had lower
variability to the individual radiologists than the interobserver variability
between the radiologists. In addition, the highest level of disagreement
was larger between the radiologists than between them and the model.
When comparing the radiologists and the deep learning model to a consen-
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sus reference segmentation, the model showed the highest performance.
The novelty and the contributions of this publication are: a first ever study
comparing the interobserver variability of radiologists to a deep learning
model in the mandibular canal segmentation task, demonstration that
a deep learning model can segment the mandibular canal with a lower
variability to the radiologists’ estimates than the interobserver variabil-
ity between them, and demonstration that a deep learning model can
reach a more accurate segmentation performance than radiologists when
comparing to a consensus segmentation.

6.5 Publication V

This publication systematically investigated machine learning for early
detection of VLBW neonatal mortality, bronchopulmonary dysplasia, necro-
tizing enterocolitis, and retinopathy of prematurity. The data included pa-
tient demographic variables, medical indices, and physiological time-series
measurements. Different data preprocessing methods were examined and
it was found that the majority class subsampling could be used to improve
the sensitivity of the models proposed in previous studies. The random
forest classifier was found to be generally the best in every task. Increasing
the length of the time-series was found to improve performance, however,
only marginally, and in the end, even 12 hours of monitor data was suf-
ficient for the mortality, BPD, and ROP classification tasks with most of
the classifiers. Examination of the random forest variable importances
revealed that for most of the tasks it utilized birth weight as the most
important variable that is also used as a traditional predictive measure of
neonatal well-being. The novelty and the contributions of this publication
are: systematic analysis of different machine learning classifiers, data
preprocessing methods, and time-series lengths for neonatal mortality and
morbidity prediction, validation of the feature extraction method proposed
in previous studies, demonstration that the prediction tasks are possible
with even 12 hours of monitor data, and analysis of the discriminative
features for the tasks using the random forest classifier.
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7. Discussion and Concluding Remarks

Machine learning has the potential to automate many tasks that are
currently performed manually by experts. In healthcare, machine learning
could reduce the burden on medical professionals by automating screening
or assisting in diagnosis, for example. The code associated with machine
learning can be, and often is, executed in cloud-based services, and thus
it would be possible to offer some form of diagnostic services with only
an internet connection, given that the input data can collected without
special equipment. This in turn would allow for a more wide coverage of
healthcare services, for instance in developing countries.

However, in order for these systems to become widely used and accepted,
extensive clinical validation is required to evaluate the clinical utility and
risk. A weak point of some machine learning models, especially the deep
neural networks, is the lack of human interpretable explainability of the
approaches. For deep neural networks, this issue can be even worse due to
the observed poor calibration of them. Publication I, Publication III, and
Publication V have served to propose and analyze machine learning meth-
ods in healthcare applications. Publication II has analyzed the benefits of
uncertainty information on clinical data, and also proposed a more clini-
cally oriented approach for measuring the uncertainty. In Publication IV, a
clinically oriented validation of deep learning segmentation was presented
that also analyzed the human interobserver variability in the task.

These Publications leave space for future research to the subjects. In
Publication I, the Finnish dataset was very homogeneous, as regards to
the population and imaging devices. This aspect was addressed in Publica-
tion II comprehensively, by using a clinical dataset and three benchmark
datasets, but the results did not turn out to be as good as in Publication
I. This might be because the VGG-like network in Publication II is not as
large in the terms of the parameters and depth as the Inception-v3 used in
Publication I. A possible future research avenue would be to investigate
the approximate BNNs with a more modern network architecture, such as
the ResNet-50 used in Band et al. [99]. This could provide more accurate
classification performance with the benefits of leveraging the uncertainty
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information for referring the uncertain images. A limitation of the Publi-
cation II is that the approximate Bayesian methods cannot be compared
against the true HMC solution due to computational complexity. Thus, it
is possible that the entropy would work well as an uncertainty measure
given the HMC posterior predictive distribution. However, this can only be
addressed in the future when more computational power becomes cheaply
available. On the other hand, developing better approximations to the
BNN posterior distribution is of special interest and a possible avenue for
future work. Planned future research within this domain also includes ap-
plication of BNN approximations to medical segmentation tasks. Scalable
approximations to the deep convolutional Gaussian processes [146] could
also be used in these tasks.

Due to the large amount of experiments, data augmentation methods
were not examined in Publication V. For example the SMOTE [147] or
the generative adversarial network-based actGAN [148] could be used
to create synthetic examples of the minority class, which would mean
that data would not need to be excluded, as was done with the majority
subsampling method. In future research, it is planned to utilize machine
learning models that do not require the feature extraction from the time-
series, i.e. time-series classifiers. Also, neonatal sepsis and other ICU
prediction tasks are planned to be studied with machine learning methods.

An interesting future research avenue would be the use of the so-called
wavelet scattering networks [149] for diabetic retinopathy and other medi-
cal classification tasks. They are deep convolutional networks that have
predetermined wavelet convolutional filters, and have been found to per-
form well on small datasets. However, it has been observed that they
require some learned layers on demanding tasks [150, 151]. As the wavelet
scattering network is not learned, every component remains interpretable,
which could increase the interpretability of a machine learning algorithm
using the features generated by it. Indeed, interpretable and controllable
medical segmentation is planned to be researched in future.
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