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DNA methylation is an epigenetic modification in which methyl groups bind to the DNA molecule.
It regulates gene expression and enables the normal function of the cells. On the contrary, aberrant
DNA methylation patterns have been associated with diseases such as cancer. Uncovering the
mechanisms of gene regulation and utilizing DNA methylation biomarkers in e.g. cancer screening
require advanced analysis methods for high-throughput sequencing data.

The aim of this thesis is to improve analysis of DNA methylation data with a probabilistic
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of the differentially methylated cytosines and regions found from the cord-blood data set were sex-
associated, and only a few were associated with the other clinical covariates. Additionally, the cord-
blood data analysis revealed the problem of inflated p-values and a permutation-based method for
solving the issue was proposed. Finally, methods that improved cell-free DNA methylation-based
cancer classification included a logistic regression classifier and iterative supervised principal
component analysis and Fisher's exact test for feature selection.
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DNA-metylaatio on epigeneettinen muutos, jossa metyyliryhmia kiinnittyy DNA-molekyyliin. Se
sddntelee geenien ilmentymistéd ja mahdollistaa solujen normaalin toiminnan. Poikkeamat DNA-
metylaatiotiloissa on toisaalta voitu yhdisté4 sairauksiin kuten syGpiin. Geenien
sadntelymekanismien ymmartdminen ja DNA-metylaatiobiomarkkerien hyodyntdminen
esimerkiksi syopédseulonnoissa vaativat edistyneitd menetelmia sekvensointidatan analysointiin.

Tamaén vaitoskirjan tavoite on parantaa DNA-metylaatiodatan analysointia probabilistisella
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1. Introduction

DNA sequencing technology has evolved greatly in the recent decades, and
these more precise and less expensive methods have enabled generation of
large amounts of sequencing data. Along with uncovering the genome, i.e.
the complete set of genetic material of a cell [113], we can detect epigenetic
modifications of the DNA. Epigenetic modifications are inheritable and
reversible changes in the DNA, which do not modify the DNA sequences
[113]. This includes phenomena such as histone modifications and DNA
methylation, of which the latter one is the key topic of this thesis. DNA
methylation is crucial for normal function of the cells as it is involved
in many cellular processes, but aberrant changes can also be linked to
different diseases [8].

In recent years, there has been growing interest in cell-free DNA based
liquid biopsy methods for screening and diagnosis of cancer and other
diseases [29]. Early detection can significantly decrease mortality rate
of certain cancer types, such as colorectal cancer [43]. Cell-free DNA
(cfDNA) is DNA that is not associated with any cells [42]. It can be
measured from bodily fluids such as blood plasma [101], urine [87] and
cerebrospinal fluid [20], from which the samples can be drawn in minimally
non-invasive manner, in contrast to tissue sample collection which involves
invasive operations. In case of presence of a tumor in the body, part of
the ¢cfDNA can be of tumor origin and this part is called circulating tumor
DNA (ctDNA). Different types of genetic and epigenetic characteristics
can be found from ¢fDNA: mutations [16, 95], nucleosome positions [105,
116], DNA fragmentation patterns [18, 120, 74], copy number changes
[14, 18, 120] and DNA methylation [14, 58, 101]. These characteristics can
potentially be used for screening, diagnosis and monitoring of cancer [99,
103] and other diseases [29]. More research is still needed to understand
the biology behind ¢fDNA before liquid biopsies can be used clinically
for these purposes [119]. However, cfDNA-based method for prenatal
screening is already in use in Finland [50].

The evolution of sequencing technologies has inspired the development
of tools for processing and analysis of sequencing data. The volume of
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data coming from a high-throughput sequencing experiment is high and
requires efficient computational methods for the data processing to be
feasible. There are also different types of sequencing protocols, and each
has specific features of its own which have to be taken into account. The
preprocessing of raw sequencing reads for further analysis requires mul-
tiple steps, and for each step there is a variety of tools available [115].
For example, bisulfite sequencing protocol can be used to measure DNA
methylation. Bisulfite sequencing data is often used for differential DNA
methylation analysis, i.e. finding genomic locations which have statistically
significantly different methylation states with respect to some covariate
of interest. For this purpose, numerous analysis tools have been proposed
[39, 21, 88, 2]. Also the rising interest in cfDNA-based cancer screening
has led to development of cancer classification tools which utilize statis-
tical methods and machine learning [14, 58, 101]. All in all, precise and
efficient analysis methods are essential for gaining deeper understand-
ing of the molecular biology of DNA methylation from sequencing data
and for applying the knowledge e.g. in the cancer classification task. The
aim of the doctoral research presented in this thesis is to propose meth-
ods for differential DNA methylation analysis and cfDNA-based cancer
classification.

1.1 Research questions

The four publications included in this thesis aim to answer the research
questions presented in Table 1.1. The publications Publication I and Publi-
cation II both propose differential DNA methylation analysis tools, which
enable taking spatial correlation of the neighboring cytosines’ methylation
states into account and show that this increases the accuracy of finding
differentially methylated regions. In particular, the aim was to expand
previously published tool, LuxGLM [2], into this direction. LuxGLM has
many useful features, such as allowing both binary and continuous co-
variates and taking experimental parameters into account, which makes
it an appealing basis for model development. In Publication II, the spa-
tial correlation structure also allows cytosines to not follow the general
methylation pattern of the genomic window of interest. In Publication III,
the aim is to perform differential DNA methylation analysis for finding
DNA methylation changes in umbilical cord blood with respect to maternal
and pregnancy-related covariates. This includes building a pipeline for
preprocessing and analyzing bisulfite sequencing data. While Publication
I, Publication II and Publication III handle bisulfite sequencing data, Pub-
lication IV is about analysis of cell-free methylation immunoprecipitation
sequencing data. As stated in Table 1.1, the aim of this work is to improve
the cfDNA-based cancer type classification using probabilistic modeling

12
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and different feature selection and feature extraction methods. This work
is motivated by promising results from previously published method [101],
to which the new results are compared against.

Table 1.1. Research questions related to each publication in the thesis.

Publication Research question

Publication I How to include spatial correlation in probabilistic
model for differential DNA methylation analysis and
does it increase accuracy of the method?

Publication I How to include spatial correlation into model for
differential DNA methylation analysis, while allow-
ing cytosines to not follow the general correlation
pattern?

Publication III Is there maternal or pregnancy-related differential
methylation in umbilical cord blood and how to set
up a pipeline for the analysis?

Publication IV Can cfMeDIP-seq based cancer type classification be
improved with probabilistic modeling and feature
selection methods, especially when the sequencing
depth is low?

1.2 Outline of the dissertation

This thesis is divided into two parts: an overview and an appendix con-
sisting of a set of four articles. The overview part consists of five chapters.
The second chapter gives a brief overview of the biological background of
the research presented in this dissertation, namely DNA methylation, its
role in diseases and sequencing methods that can be used to measure DNA
methylation. The steps of sequencing data processing are also introduced.
In the third chapter, the probabilistic modeling framework and the type
of models applied in this thesis, generalized linear mixed models, are ex-
plained. The fourth chapter summarizes the aims, methods and results
of each of the four articles. The dissertation concludes in the fifth chapter,
where the article contributions are discussed and conclusions on the thesis
are given.

13






2. DNA methylation

This chapter begins by describing an important epigenetic modification,
DNA methylation, and its role in diseases, such as cancer. The focus in
this thesis is on human biology. After that, the principles behind two
next-generation sequencing protocols, bisulfite sequencing and cell-free
methylated DNA immunoprecipitation sequencing, and what kind of data
is retrieved from such experiments is explained. Finally, the essential
steps of processing bisulfite sequencing data are described.

2.1 DNA methylation and its role in disease

In DNA methylation, a methyl group is attached to a cytosine in a covalent
modification, forming a 5-methylcytosine (5mC) [45]. On the contrary,
removal of a methyl group is called demethylation. There are two types of
methylation: maintenance methylation, where methyl groups are added to
newly made DNA to make sure the DNA pattern is inherited correctly, and
de novo methylation, where the methylation pattern is changed by addition
of a methyl group [15]. DNA methylation states of neighboring cytosines
have been found out to be correlated, and while the correlation is strong
between cytosines with distance under 1000 bp, the correlation diminishes
when the distance grows larger than 2000 bp [24]. 5mC cytosines can be
converted into 5-hydroxymethylcytosine (5hmC), and even further into
5-formylcytosine (5fC) and finally into 5-carboxylcytosine (5caC) by ten-
eleven translocation (TET) proteins [98]. These modifications of 5mC are
part of the demethylation process [51].

DNA methylation occurs generally in cytosines with CpG context, i.e. in
cytosines which are part of a cytosine-phosphate-guanine dinucleotide [130].
On the other hand, there are some cell type exceptions such as neurons [73]
and embryonic stem cells [69], in which non-CpG methylation is relatively
common. DNA methylation has different functions in different genomic
contexts [55]. In cytosines located in the transcription start site of a gene,
a methyl group blocks most transcription factors from binding [15]. Tran-
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scription factors are proteins, which bind to regulatory regions of the gene
and regulate gene expression [15]. Blocking transcription factors from
binding inhibits transcription. Over half of the genes contain a short CpG
rich region, which are called CpG islands [65]. Whether a CpG island
is methylated or not depends on the type of the gene: in housekeeping
genes, which are expressed in all tissue types, the CpG islands are not
methylated, while for the tissue specific genes, only the genes particular to
the tissue type in question are left unmethylated [15]. This is one of the
ways how epigenetic modifications enable cell differentiation to different
cell types, even if all cells contain the same genetic material.

The mechanisms in which DNA methylation has an important role in-
clude genomic imprinting and silencing [15]. In genomic imprinting, a
gene which is inactivated by methylation in one of the haploid gametes
keeps its methylation status even after forming of a diploid zygote and
after methylation pattern reprogramming, which happens in the early
embryo [15]. In other words, the activity of the gene copy is determined
by its parent of origin. Silencing means, that a genomic region consisting
of one gene or a larger region is inactivated in a nonspecific manner by
addition of DNA methylation and covalent changes to the histone proteins,
which makes DNA condensate and become non-accessible [15]. X chro-
mosome inactivation is also one example of silencing [15]. X chromosome
inactivation happens in female cells, where there are two X chromosomes
present. One of the X chromosomes is silenced by methylation, while the
genes from the other X chromosome can be expressed.

Above some of the functions of DNA methylation in healthy cells were
briefly described. Modifications to the normal DNA methylation patterns
can lead to aberrant behavior of the affected cell. It is known that environ-
ment can cause changes in DNA methylation [27]. For example, maternal
diet can affect the methylome of the offspring [57], and exposure to chem-
icals such as tobacco smoke [11] can alter the methylome and increase
the risk of diseases [27]. The changes in DNA methylation can also be a
result of a disease rather than the cause [47, 118]. For example, certain
DNA methylation patterns have been associated to type 1 diabetes [30],
cardiovascular disease [47] and rheumatoid arthritis [76]. Be it the cause
or result of a disease, DNA methylation patterns can be used as biomarkers
for different diseases [47].

Tumor cells usually differ from the normal cells by their lack of re-
sponse to control mechanisms, leading to abnormal cell proliferation [60].
Malignant tumor cells can also invade surrounding tissues and spread
to other locations of the body, i.e. metastasize [90]. The mechanisms of
how DNA methylation is related to cancer development are not yet well
understood, but evidence has been found of aberrant DNA methylation
affecting the regulation of cancer-related genes, global hypomethylation
promoting chromosome instability and 5mC cytosines being more prone
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to mutagenesis [60]. Also, mutations in genes encoding TET proteins [49]
and in genes regulating methylation catalyzing enzymes [102] can lead
into aberrant methylation patterns and cancer as a consequence. As of
2018, there were over 14000 publications describing cancer-related DNA
methylation biomarkers [61]. However, only few of the found biomarkers
have yet been developed into clinical tests [61]. For example, DNA and
cfDNA methylation signatures for colorectal cancer [54, 6], sarcomas [62]
and intracranial tumors [84] have been discovered.

2.2 High-throughput sequencing DNA methylation data

Bisulfite sequencing (BS-seq) is a next-generation sequencing method
which gives information of the methylation state of the cytosines in the
sequenced DNA with base pair resolution. The sequencing assay can cover
the whole genome (WGBS-seq) [32], or be targeted to CpG rich areas only
[36]. The latter approach is called reduced representation bisulfite se-
quencing (RRBS-seq). In bisulfite sequencing, bisulfite sodium treatment
is applied on the denatured DNA and it turns the unmethylated cytosines
into uracils [66]. In the case of RRBS-seq, bisulfite conversion step is pre-
ceded by a step where DNA is fragmented with a restriction enzyme, which
picks CpG-rich regions from the DNA [8]. The reduced material covers
around 1% of the whole genome. Next, the bisulfite converted DNA is am-
plified with polymerase chain reaction (PCR), which produces DNA where
the uracil-converted unmethylated cytosines appear as thymines [66]. This
is followed by high-throughput sequencing [8]. The steps before sequencing
are demonstrated in Fig. 2.1A.

From the resulting sequencing data it is possible to distinguish between
methylated and unmethylated cytosines by comparing the reads to the
original sequence [66]. Processing the data leads to total read count and
methylated read count for each cytosine, which can be used for DNA
methylation analysis. The proportion of methylated reads versus total
number of reads for a cytosine is called methylation level [106]. The
DNA methylation state of each cytosine is binary in a single cell, but
as the input of BS-seq experiment is a population of cells [106], the DNA
methylation state over cell population can be anything between 0 and 1. For
example, in a case of whole blood sample, the cell population could consist
of different blood cell types, which could each have their own distinctive
DNA methylation patterns [96, 53].

Cell-free methylated DNA immunoprecipitation sequencing (cfMeDIP-
seq) is a modification of methylated DNA immunoprecipitation sequencing
(MeDIP-seq) method which is tailored to be used with cell-free DNA [101].
MeDIP-seq is a method where DNA is first fragmented and denatured, and
the fragments with methylated cytosines are picked using methylation-
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Figure 2.1. Key steps of (A) bisulfite sequencing and (B) MeDIP-seq protocols before
sequencing the reads.

specific immunoprecipitation [121]. See Fig. 2.1B for illustration of the
immunoprecipitation step. Then the DNA is sequenced with a high-
throughput method [23]. As the selected fragments are sequenced and
mapped to reference genome, we get a signal telling how many fragments
with methylated cytosines cover each genomic region. The sequencing
data can be turned into e.g. read counts per genomic windows of con-
stant length [101]. The native average fragment length of ¢fDNA is
167 bp [105, 100]. This length originates from chromatosome structure,
where 147 bp of DNA is wrapped around histone protein core, forming a
nucleosome, while a linker histone protein is bound to the nucleosome. 20
bp of DNA is bound to the linker histone, thus the total length is 167 bp.
There are some limitations in both methods. In BS-seq, the bisulfite
conversion step can be incomplete, which means that not all unmethylated
cytosines are converted to uracils [66]. This affects the reliability of the
resulting sequencing data. The bisulfite conversion step also degrades at
least 84-96% of the input DNA [35]. This is a problem especially if the
amount of input material is limited from the beginning, which is the case
for example in cell-free DNA sequencing [100]. As 5hmC modification is re-
sistant to bisulfite conversion, BS-seq cannot distinguish between 5mC and
5hmC [48]. On the contrary, MeDIP-seq only detects 5mC, as the antibody
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used in the experiment is specific to the modification [112]. MeDIP-seq
and cfMeDIP-seq methods do not require bisulfite conversion, and so ex-
tensive input DNA degradation is avoided. However, the resolution of
methylation state information retrieved from MeDIP-seq and cfMeDIP-seq
experiments is lower than in BS-seq, rather, the resolution is restricted to
the DNA fragment length [112]. From BS-seq, the number of methylated
and unmethylated reads is retrieved for each cytosine separately [112].
Other limitations of cfMeDIP-seq include that changes in signal caused
by copy number variation cannot be distinguished from presence of DNA
methylation and that signal is only retrieved from methylated reads [100].
The latter limitation means, that it is not possible to tell from cfMeDIP-seq
data whether the absence of signal is caused by the genomic region in ques-
tion not being covered for some reason from there simply being no DNA
methylation in that region. To solve this problem in the case of MeDIP-seq,
it has been proposed that it could be combined with methylation-sensitive
restricting enzyme sequencing, which detects unmethylated CpGs [40]. In
addition to experimental limitations, there lies uncertainty in the input
DNA material too: as mentioned above, if a heterogenic sample is used as
input to the BS-seq experiment, the cell type distribution can affect the
methylation level estimates [106] and in cfMeDIP-seq the DNA fragments
can originate from both normal and tumor tissues [100]. In summary, both
approaches have their advances and limitations, which should be taken
into account when choosing an appropriate method among the different
DNA methylation measurement protocols, and also during downstream
analysis of the retrieved sequencing data.

2.3 Preprocessing bisulfite sequencing data

Bisulfite data preprocessing starts with raw sequencing read files and
results as count data matrix, which can be used for further analysis,
such as differential DNA methylation analysis. Simplified preprocessing
workflow is presented in Fig. 2.2. Below each of the steps is described
and examples of possible tools made for each step are given. Pipeline
tools which can perform all or part of the steps consecutively are also
available. Examples of such tools are SAAP-RRBS [110], MethyQA [109]
and gemBS [82], which use tools for separate steps as building blocks to
form a pipeline.

First step in processing raw bisulfite sequencing data is quality con-
trol. For example, general tools for raw sequencing files, FastQC [5],
HTQC [127] and Kraken [19], can be utilized while taking into considera-
tion the special features of bisulfite sequencing data. FastQC takes raw
sequencing data file as an input, and prints out a report with visualiza-
tions of sequence and per base quality scores, sequence lengths, duplicate
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and overrepresented sequences and adapter content, along with other
key statistics which inform about the quality of the data. If the sequenc-
ing reads are contaminated with adapter sequences, the reads must be
trimmed or removed altogether [79]. Adapters are specific sequences which
are attached to the ends of the DNA fragments in the library preparation
step of sequencing [569]. Trimming can be done for example with Cutadapt
tool [79]. HTQC [127] and Kraken [19] tool kits also include programs for
read filtering. Quality control and read trimming steps can be repeated as
needed to ensure appropriate data quality.

The next step is read mapping, where the sequencing reads are mapped
into the reference genome. Due to the bisulfite conversion, which turns
unmethylated ’C’s into "T’s, there are multiple issues in BS-seq data that
must be taken into consideration in read mapping: the reads are not
complementary to the reference genome, lowered read complexity due to
majority of non-CpG cytosines being transformed to "T" leads more easily
to misalignments and a "T” in a read might align to a ’C’ in the reference
genome but not the other way around [124, 111]. The read mapping and
the consequent methylation calling is even more complicated in the case
of paired-end sequencing [111]. Bismark, a tool for read mapping and
methylation calling, does mapping by converting both the reads and the
reference genome into C-to-T and G-to-A versions and then finding the best
matches [65]. Other mapping tools using the same approach include BS-
Seeker2 [37] and GEM version 3 (GEM3) [78, 82]. Mapping BS-seq reads
can also be done with hash table seeding algorithm, where all possible
methylation status combinations are considered [39]. This is used for
example in BSMAP tool [124]. BSMAP is used as a building block in
SAAP-RRBS pipeline [110], while gemBS pipeline uses GEM3 [82].

From the aligned reads the Bismark tool can infer the total read count
and methylated read count for each cytosine [65]. This can be called
methylation calling or extraction. E.g. MethyQA [109] and gemBS [82]
can also perform methylation extraction. Biases in the methylation level
related to the position in the read, also known as M-bias, can happen in
the both ends of the read [72]. This bias can be detected by comparing
methylation levels in the middle of the read and in the read ends and then
removed by trimming the read ends if needed [72]. The quality control tool
BSeQC for mapped reads performs automatic trimming of nucleotides with
potential technical biases which emerge as M-bias [72]. The BS-seq data
pipeline and analysis tool BSmooth [39] and above-mentioned Bismark
tool [65] provide information on the M-bias which can be used for making
filtering decisions.

After read alignment, it is also important to investigate whether there are
cytosine locations with single nucleotide polymorphisms (SNPs), meaning
genetic variation occurring in a single nucleotide, which could bias the
methylation calling [33]. Tools for BS-seq-specific SNP finding include
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Figure 2.2. The preprocessing steps for BS-seq data. The quality control and read trim-
ming steps can be repeated until desired data quality is achieved. The bisulfite
conversion efficiency calculation step applies only to data from experiments
with appropriate spike-in DNA.

BS-SNPer [33], Bis-SNP [75] and MethylExtract [7]. BS-SNPer does SNP
calling in two steps [33]. First, it finds a list of putative mutations with
high enough frequencies, and stores the position, reference base, number
of supporting reads and their sequencing qualities. In the second step,
this information is used for calculating the posterior probability for each
genotype using Bayes’ theorem. The genotype with the highest probability
is then picked as the SNP. Bis-SNP is based on Bayesian inference model
for SNP finding and genotyping, Genome Analysis Toolkit (GATK) [75],
while MethylExtract is based on VarScan method [7]. SNP finding is
performed for each sample, and if a SNP is found, the corresponding
cytosine must be filtered out before sample data is used for further analysis.

Often it is of interest to evaluate how successful the bisulfite conversion
step of the sample preparation has been, as it tells about the quality of
the experiment [106]. Samples with relatively low bisulfite conversion
rate might have to be removed from further analysis, as incomplete bisul-
fite conversion makes the data unreliable. However, some differential
DNA methylation analysis tools, such as LuxGLM [2], take the bisulfite
conversion rate into account and so it might not be necessary to remove
samples with low conversion rates. The conversion rate can be estimated
by spiking the sample DNA with unmethylated DNA, such as lambda virus
DNA [106]. When doing the mapping step, the spike-in organism refer-
ence genome is used together with the actual reference genome. The read
count of bisulfite converted cytosines divided by the total cytosine read
count aligned to the spike-in reference genome then tells the conversion
efficiency [106].

Before further analysis, cytosines with a very low read count are typically
removed sample-wise, as the methylation levels of cytosines with low
coverages cannot be estimated reliably [111]. However, if the data is

21



DNA methylation

modeled with a distribution that takes the coverage information into
account, such as binomial distribution, there is no need to filter such
observations. This is discussed in Publication III. It is also recommended
to filter out cytosines with very high read counts, as high coverage could
be result of PCR duplication bias [3].

22



3. Probabilistic modeling

In this chapter, an overview of the used probabilistic modeling and statisti-
cal methods is given. First, the principles behind probabilistic modeling
are described. Next, the generalized linear mixed models are introduced,
focusing on models with binomial likelihood and logistic regression, which
were utilized in differential DNA methylation analysis and cancer type
classification tasks, respectively. In addition, a brief overview of the used
feature selection, extraction and model regularization methods is given.
The methods used for posterior inference, MCMC sampling and variational
inference, are described in the third section. Finally, hypothesis testing
and related methods are introduced in the fourth section.

3.1 Probabilistic modeling and Bayesian inference

In probabilistic modeling data and parameters are described using proba-
bility distributions, which quantify the uncertainty about the underlying
process. Bayesian methods are a natural choice for probabilistic modeling.
The steps of Bayesian data analysis include setting up the full probability
model, calculating the posterior distribution and evaluating the fit of the
resulting model [34].

In the first step of Bayesian data analysis, all observed and unobserved
quantities are given a joint probability distribution [34]. This includes
choosing prior probabilities for the parameters and possible hyperparame-
ters. The joint probability for data y and parameter 6 is

p(0,y) = p(0)p(y]0), (3.1)

where p(f) is the parameter prior and p(y|f) is data distribution. The
prior for parameter 6 should give non-zero probability for all possible
values for 6, and it can express the prior knowledge or uncertainty about
the parameter, if such knowledge is available. When there is no prior
information available, or if the effect of the prior is desired to be minimal,
a flat, noninformative prior can be chosen. Weakly informative priors
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contain slightly more information to keep the posterior within reasonable
bounds.
In the second step, the Bayes’ rule

p(0]y) = p0y) _ pO)pulo) 3.2)

p(y) p(y)
is applied to calculate the posterior distribution [34]. Bayes’ rule defines
how the posterior distribution for parameter # depends on the prior and
observed data y. When calculating the posterior p(6|y) the data distribution
p(y|f) can be regarded as a function of parameter 6, and so the term p(y|0)
can be called likelihood. In practice, the denominator term of Eq. 3.2, p(y),
is often omitted to retrieve unnormalized posterior density

p(Oly) o< p(0)p(y|0), (3.3)

as p(y) does not depend on parameter §. How the posterior can be evaluated
in practice is discussed later in Section 3.3.

The third step of evaluating the fit of the model can include a variety of
tasks, for example sensitivity analysis, evaluation of how well the model
fits to the data and of whether the conclusions implied by the model are
reasonable [34]. External data can be used for validating model predictions.
Another technique for checking the model fit is to generate data under
the learned model and compare it to the actual observed data. This is
called posterior predictive checking. The observed and generated data can
be compared e.g. with statistical tests. If needed, the three steps of the
analysis can be repeated and modifications to the model can be done in the
first step.

3.2 Generalized linear mixed models

In this section, the basic principles of generalized linear mixed modeling
are described. The data retrieved from sequencing experiments can be of
non-Gaussian type, such as binomial count data. Therefore, generalized
linear models, which allow non-Gaussian likelihoods for the data, are often
used in sequencing data analyses. In addition to the fixed linear effects
the linear model part can be expanded by introducing random effects to
the model, leading to mixed models. In some applications, the number of
features in the model can be very high, even though not all features are
expected to be important in predicting the outcome. This calls for methods
for feature selection, feature extraction and regularization of the model.

3.2.1 Generalized linear models

Generalized linear models are an expansion of general linear models. The
general linear model assumptions include normality, homoscedasticity and
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linearity [77]. However, in the case of non-Gaussian response variable,
these assumptions cannot be met. Examples of such response variable
types include count, binary and proportion of counts data [77]. A popu-
lar approach for modeling non-Gaussian data is generalized linear model
framework. Generalized linear models can be defined with three com-
ponents: distribution of the response variable, linear predictor and link
function [1]. Response variables are stored in vector y of length NV, which
is the number of observations [1]. Response variable is given a distribution
from the exponential family, and the choice depends on the properties of
the data type. For example, count data could be given Poisson distribu-
tion and proportion of counts data could be assumed to have binomial
distribution [77]. The linear predictor can be expressed as

n=Xg, (3.4)

where X is a design matrix of size N x D and 3 is a vector of coefficients of
length D [1]. D is the number of explanatory variables and in the presence
of an intercept term in the model, D is increased by one. Explanatory vari-
ables can also be called covariates or features. The design matrix contains
covariate information and often the first column is set to ones, correspond-
ing to an intercept term. The coefficients in 3 describe the covariate effects
on the response variable y and the vector can also contain the possible
intercept term. The linear predictor is connected to the expectation of y;
through a bijective link function g(-)

g(pi) = ni, (8.5)

where p; = E(y;) [1]. The choice of the link function depends on the
distribution of the response variable. For example, logit link function is
commonly used with binomial distribution while for Poisson distribution
logarithm link function is a popular choice [77]. These link functions
are also the canonical link functions of the corresponding distributions,
meaning that the link functions transform the means to the distributions’
canonical location parameters [77].

Next, two specific generalized models are described in more detailed man-
ner. These are GLMs with binomial likelihood and logistic regression for
binary response variable. The models with binomial likelihood were used
in Publication I and Publication II to model the count data retrieved from
BS-seq experiments and to perform differential DNA methylation analysis.
In a binomial likelihood the data describes the number of successes y out
of the total number of trials n with success probability p: y ~ Bin(n,p) [77].
The probability mass function of the binomial distribution with number of
successes z, total number of trials n and success probability p is

f(z,n,p) = (:)pz(l -p)" (3.6)
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The link function should be chosen so that the values of p are in the
range (0,1), as the parameter is the success probability of the binomial
distribution, notated as p in Eq. 3.6. As mentioned above, the canonical
link function for binomial GLM is logit function [77].

In Publication I and Publication II, rather than using p; straightfor-
wardly as p, a sigmoid function is used to transform the linear predictor
into methylation proportion. The methylation proportion can then be
used for calculating the success probability parameter of the binomial
distribution.

Logistic regression can be used for modeling a binary response variable.
The generation of each of the binary observations y; can be considered
as Bernoulli trial, with the probability of observation i being 1 is P(y; =
1) = p; [1]. The probability mass function for Bernoulli distribution is
f(z,p) = p*(1 — p)'=%, where z € {0,1} [77]. The link function connecting
1; to the linear predictor in logistic regression is logit function

9(pi) = log (1 ﬁiﬂi) =x! B, (3.7)

where vector x; contains the values from row of X corresponding to obser-
vation y; [1].

Generalized linear models have been widely utilized for sequencing data
analysis, such as differential DNA methylation analysis which uses bisul-
fite sequencing data. The generalized linear model approaches often en-
able including confounding covariates, such as age or sex, into the model
through the design matrix. Some tools proposed for this purpose model
the BS-seq counts as binomial [2, 108], while some use the methylation
proportion instead of counts and apply logistic regression [3]. Another
popular choice for modeling bisulfite sequencing data is beta-binomial re-
gression [21, 88]. In beta-binomial regression the count data is binomially
distributed y; ~ Bin(n;, p;), and the success probability parameter p; is
assumed to have beta distribution p; ~ Beta(ym;,y(1 — m;)) [17]. v is a
common dispersion parameter and ; is calculated with logit link function.
Beta-binomial model is often used for handling binomial data with overdis-
persion, i.e. the variation of the data is higher than expected for a binomial
model [17].

GLMs have also been utilized in ¢cfDNA-based cancer classification lit-
erature. Logistic regression has been used for diagnostic prediction of
hepatocellular carcinoma patients from healthy controls [126]. The model
used cfDNA methylation markers as features. Logistic regression was also
used in Publication IV for building a binary classifier for distinguishing
different cancer types.
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3.2.2 Mixed models

The generalized linear model described in previous section has only fixed
effects. Next the model is expanded further by addition of random effects.
Models containing both fixed and random effects are called mixed mod-
els [77]. Mixed models can be used to describe dependence between and
within underlying groups in the data [77]. It is assumed that there is
one or more latent variables per each group, and they are assumed to be
random. These are referred to as random effects, and they can be either
intercept or slope type of terms [107]. The linear predictor in a generalized
linear mixed model can be expressed as

n—Xp+2u, (3.8)

where Z is design matrix for random effects and vector u contains the
random effects with a desired distribution [107]. u is typically given a
Gaussian distribution u ~ A(0, X,). Mixed models allow diverse corre-
lation structures, and thereby can be used for different types of grouped
data, such as repeated observations and longitudinal or spatial data [77].
The desired correlation structure of the random effect can be conveyed
through X,,.

Mixed effects are included in the differential DNA methylation analysis
tool PQLseq [108], where heritability is inserted into the model as a mixed
effect. In Publication I and Publication II, a random effect was added to
the model to account for replicate effects. Also, in Publication I spatial
correlation between neighboring cytosines’ methylation states was included
to the model through a random effect.

3.2.3 Feature selection, feature extraction and regularization

If the number of potential covariates explaining the variation of the re-
sponse variable is high, it is often reasonable and even necessary to attempt
to reduce the number of covariates. Simpler models with fewer covariates
require less computational resources, are more robust especially when
data set is small and are easier to interpret and visualize [4]. The methods
for reducing the number of covariates before model fitting can be divided
into feature selection and feature extraction methods [4]. Feature selection
means that the most important features are picked and the rest of the
covariates are discarded, while in feature extraction new features are
computationally constructed from the original features. Another approach
is to aim for model sparsity, i.e. some of the covariate coefficients being
zero or close to zero [13]. This can be enabled by using sparsifying priors
and regularizing penalty terms when learning the model parameters in
Bayesian and frequentist approaches, respectively [92].

A simple feature selection approach is to perform statistical tests to see
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whether the covariate is important for predicting the value of response
variable. Suitable test for this purpose depends on the application, but
could be for example Fisher’s exact test or moderated t-test. The test is
performed for each of the covariates and the ones with smallest p-values
can then be picked to be used in the model. This technique was applied in
Publication IV, following a previously published classifier pipeline [101].
Both Fisher’s exact test and moderated t-test test were experimented with.
The moderated t-test has also been applied in finding methylation markers
for hepatocellular carcinoma to be used as features in a diagnostic model
[126]. The statistical tests will be described in more detail in Section 3.4.

Principle component analysis (PCA) and its supervised variants, such as
iterative supervised PCA (ISPCA) [94], can be used on a high-dimensional
set of features to generate principal components which can be used as
covariates instead of the original features, i.e. PCA can be used for feature
extraction. Let us define the number of observations as N, the number of
features as D and let X be a matrix of size N x D containing the feature
values for each observation [86]. Data matrix X is centered by substracting
the mean value for each feature. The sample covariance matrix of data
Xis X = ﬁXTX. In principal component analysis the eigenvalues
A1, ..., A, of ¥ and corresponding orthonormal eigenvectors w;, i =1, ..., L
are calculated. L is the number of non-zero eigenvalues, for which applies
1 < L < min(N — 1,D) [52]. The eigenvectors, or their subset with the
highest eigenvalues, can be collected into transformation matrix W, where
vectors w; are the columns. The #’th principal axis is then defined as
the direction of eigenvector corresponding to i’th largest eigenvalue, and
the principal components Z are the projection of X on the principal axes,
Z = WTX. The number of components needed can be chosen so that
majority of the variance is explained by them.

The ISPCA method utilizes the knowledge of the values of the binary
or multiclass response variable y and finds principal components which
maximize the separation of the classes [94]. The algorithm consists of four
steps, which are iterated K times, each iteration returning a supervised
principal component. First, an univariate score S(x;,y) telling how well
a feature separates the binary classes from each other is calculated for
each feature x;, j = 1, ..., D. Then the features with score higher than a
threshold v are collected into data matrix X, and first principal component
is calculated using this matrix. w, is the eigenvector of the retrieved
principal component. Threshold ~ is chosen so that the score S(z,,y) for
the projection z, = W;FXA, is maximized. After finding the best z,, the
variation explained by it is substracted from X and a modified data matrix
X' is retrieved. Finally, X' is set as X and another iteration can begin. The
number of iterations K can be decided using a permutation test, which is
performed after each iteration. The test gives low p-values if there is still
relevant variation left in the current data matrix X. After K iterations,
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X can be used for producing unsupervised principal components. Above
the algorithm was presented for setting with binary classes, but it can be
extended to multiclass problems.

Both PCA and ISPCA approaches were experimented with in Publica-
tion IV for feature extraction, when the number of potential features for
a cancer type classifier was very high. The principal components were
used in logistic regression model for classifying different cancer types from
each other. PCA has also been applied in similar manner for example in
building a classifier for separating acute myeloid leukemia and acute lym-
phoblastic leukemia samples from each other based on their methylation
patterns [83]. Instead of using all CpG sites as features in the classifier,
principal components derived from the methylation pattern data were
used. This approach was compared with feature selection methods, such
as finding differentially methylated CpG sites using t-test.

When the potential features have been chosen and it is time to fit the
model, model sparsity can be enabled with the choice of the prior for
coefficients 3. There are many different sparsity enhancing priors, but
they share the same key idea: the prior attempts to shrink the coefficients
of the unimportant covariates to or near to zero, and give the important
covariates a non-zero coefficient [93]. Also, it is assumed that the number
of important covariates is considerably lower than the total number of
covariates [93]. Two important categories of sparsifying priors are spike-
and-slab priors and continuous shrinkage priors [93]. Next, horseshoe
prior [13] and regularized horseshoe prior [93], which belong to the latter
class, are described in detail. Following the notation in [13], the horseshoe
prior for generalized linear model coefficients 3 from 3.4 can be defined as

B ~ N(0,X37%), (3.9)

where j =1,..., D and D is the number of covariates in the model. }; is the
local shrinkage parameter for coefficient 3; and 7 is the global shrinkage
parameter, shared by all indices j. The global shrinkage parameter shrinks
all parameters towards zero, but the local parameter lets some parameters
to have higher values [92]. The local shrinkage parameters \; and the
global shrinkage parameter 7 are given half-Cauchy hyperpriors

Aj ~CT(0,1), (3.10)

and
T~ C%(0,1). (3.11)

The hyperprior choice for the global shrinkage has been discussed in [92].
The regularized horseshoe prior was proposed to enable specification of
level of sparsity and level of regularization for the larger coefficients [93].
The regularized horseshoe prior for coefficients 3 is defined as

B; ~ N(0,72X)), (3.12)
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where the local shrinkage parameter :\j is defined as

5o 0N (3.13)
T2 412 )\?’ '
and \; ~ C1(0,1). ¢? is the slab width and can be given a fixed value or for
example an inverse-Gamma prior. Through c it is possible to regularize the
coefficients in case they are weakly identified and to define the expected
maximum effect size. The global shrinkage parameter is given a half-
Cauchy prior

T~ CT(0,73), (3.14)
where
Po (o)
- . (3.15)
"=p- Po VN

In this formula, p is the prior guess of the number of non-zero coefficients,
N is the number of observations, D is the number of covariates and o is
noise level, for which a pseudo-variance value can be used.

In frequentist approaches for general and generalized linear models,
penalty parameters in the optimization target function can be used for
regularization. Examples of this are ¢; penalty lasso [114], /5 penalty
ridge regression [4] and their combination, elastic-net penalty [131]. For
example, the GLMnet tool [31] for fitting generalized linear models uses the
elastic-net penalties. GLMnet has been applied in ¢fDNA 5mC-based [101]
and cfDNA 5hmC-based cancer classification [71].

3.3 Posterior inference

This section covers the second step of Bayesian data analysis, calculating
the posterior distribution. The difficulty in Bayesian analysis is that the
posterior distribution, which is of high interest, is often of intractable
nature. When the posterior is not analytically solvable easily or at all,
Markov chain Monte Carlo (MCMC) methods and approximate methods
such as variational inference can be used.

3.3.1 Markov chain Monte Carlo

In Markov chain Monte Carlo methods, the posterior distribution of inter-
est is sampled from by forming a sequence of random numbers [34]. Each
new value drawn depends only on the last value of the sequence, thus
forming a Markov chain. The values are drawn using rules which ensure
convergence to the true posterior distribution, if infinitely many samples
are drawn. Gibbs sampler, Metropolis and Metropolis-Hastings are exam-
ples of simple MCMC algorithms. To sample parameter § with Metropolis
algorithm, a starting point 6, is first drawn from a starting distribution
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po(0) [34]. After this, for each time point ¢ = 1,2,... the following three
steps are repeated. A proposal 6* is sampled from a symmetric jumping
distribution J;(6*|#*~!). Then a ratio of densities

p(0*]y)
r=—— (3.16)
p(0"y)
is calculated. Finally, ¢! is set to
- 0* with probability min(r, 1) 3.17)
g1 otherwise.

Hamiltonian Monte Carlo (HMC) is a Metropolis algorithm, which ex-
plores the posterior space efficiently [85]. In HMC, each parameter 6 to be
sampled is assigned a momentum variable ¢ [34]. A key part of an HMC
iteration is updating the parameters and momentum variables simulta-
neously, taking L leapfrog steps. Each leapfrog step involves updating
the parameters and momentum variables, both in relation to the other
and imitating the physical dynamics. The updates are scaled with step
size factor e. The proposals 0* and ¢* are the values of parameter and
momentum vectors after the leapfrog steps. In the accept-reject step the
momentum variable is taken into account in the density ratio:

_ _P&lyple7)
~ P07 y)p(et1)’ (3.18)

where p(¢) is the momentum distribution with covariance M. In an ex-
tension of HMC algorithm called the no-U-turn sampler (NUTS) [46], the
number of leapfrog steps L is adapted in each iteration [34]. This allows
efficient exploration of the posterior distribution even in more difficult sam-
pling problems. The step size ¢ and the momentum variables’ covariance
matrix M, also known as mass matrix, can also be tuned in NUTS [34].

After running an MCMC algorithm, it is essential to check the retrieved
samples for convergence [34]. Typically, MCMC algorithms are run to pro-
duce a couple of independent chains of samples, from which the samples
can be combined after removing the samples from the warm-up period of
the sampling [34]. However, it must be checked that all of the separate
chains are stationary and that the chains are mixing together well. Conver-
gence checks are performed for ensuring that the sampling iterations have
proceeded long enough and the samples represent the target distribution,
not the starting approximations [34]. Two commonly used convergence
statistics are potential scale reduction R and the effective sample size
nesr [34]. The convergence checks must be performed on each parameter
separately.

Implementing and tuning an MCMC sampling algorithm can be a stren-
uous task and requires expert knowledge, especially in case of complex
sampling algorithms and distributions which are hard to sample from.
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Probabilistic programming language Stan [12] is one of the solutions de-
veloped for making MCMC sampling easier. Stan is supplied a Bayesian
model, input data and sampling parameters. Using these inputs, it runs
MCMC sampling and finally returns chains of posterior samples. Stan also
returns summary statistics of the samples and convergence diagnostics.
The functionalities of Stan include MCMC sampling with regular Hamilto-
nian Monte Carlo and no U-turn sampler (NUTS) algorithms, the latter of
which is the default option. In Publication I, Publication IT and Publication
IV Stan was utilized for model fitting.

3.3.2 Variational inference

In variational inference (VI) the posterior distribution p(¢|y) is approxi-
mated with distribution ¢(6), which is often chosen from a family of simple
distributions that are easy to work with [34]. The approximation is found
by minimizing the Kullback-Leibler (KL) divergence, a measure of differ-
ence between ¢(0) and p(6|y)

KL(qllp) = —Eq<log <”C§?éy))>) _— / log (péfg))q(o)do. (3.19)

Utilizing the rule for conditional probabilities p(f]y) = %}’/‘7’)) the divergence
can be written as

K(all) =~ [1og (%5 )a@as + [routoa@ras @20
(

_ Eq<log (qu’g)» + log p(y). (3.21)

The term log p(y) does not depend on ¢(#), and thus minimizing the first
term on the right hand side equals to minimizing the Kullback-Leibler
divergence. This term is called evidence lower bound (ELBO). In VI appli-
cations the posterior p(6|y) and consequently the KL divergence is often
intractable, but evidence lower bound can be minimized instead.

Stan software provides a possibility to perform variational inference
with automatic differentiation variational inference (ADVI) algorithm [67].
Using ADVI in Stan requires the user to only provide a model and a
data set, the rest has been automated. The parameters are transformed
into real-coordinate space and a fully-factorized Gaussian is chosen as the
variational distribution family. The evidence lower bound is then optimized
using stochastic gradient descent. Approximations of the ELBO and its
gradients are retrieved using Monte Carlo integration.

Compared to MCMC methods, variational inference is often faster. How-
ever, due to its approximate nature, VI methods do not guarantee conver-
gence to the true posterior like MCMC methods do [34]. In Publication
I and Publication II HMC (NUTS) and ADVI were utilized for the same
problem and the resulting accuracies were compared.

32



Probabilistic modeling
3.4 Hypothesis testing

The aim of building and fitting a generalized linear (mixed) model often is
to find out whether the chosen covariates have a statistically significant
effect on the value of the response variable [107]. This question can be
formulated into a hypothesis test. The null hypothesis is that the coefficient
of the covariate of interest is expected to be zero if there is no effect

H() . 5j ES O, (322)

where j is the index of the covariate of interest [44]. The alternative
hypothesis can then be set as

The test defined by hypotheses in Eq. 3.22 and Eq. 3.23 can also be inter-
preted as a comparison of two nested models: full model with covariate j;
and a reduced model without covariate ;.

After setting the null and alternative hypotheses, the corresponding test
statistic can be calculated. In Bayesian inference, testing is often done
using Bayes factors, defined as

_ p(y|Ho)
p(ylH1)’

for the hypotheses presented in Eq. 3.22-3.23. The Bayes factor can be
estimated with Savage-Dickey density ratio. The Savage-Dickey estimate
for BFy; presented above for parameters 6 = (5;,), where ¢ denotes the
set of nuisance parameters is

_ p(B; =0ly, Hy) { p(Y|Hp) }
Blo=" s =oim) " pls; = 0.5

Eq. 3.25 simplifies to BFy = p(8; = 0|z)/p(8; = 0) if p(|Ho) = p(¢[5; =
0, H1) [117]. The simplified estimator is easy to evaluate. MCMC samples
can be used to make a kernel density estimate of the posterior and evaluate
it at 8; = 0 to get p(8; = 0|z), while the denominator p(5; = 0) can be
evaluated straightforwardly using the prior. This approach is used in
Publication I and Publication II.

In frequentist analysis, test statistics such as log-likelihood ratio test,
Wald test, F-test and moderated t-test can be used for testing linear model
coefficients. In likelihood ratio test the likelihoods for the reduced L, and
full L; models, corresponding to the likelihoods under null hypothesis and
alternative hypothesis respectively, are compared [107]. Likelihood ratio
is defined as A = Ly/L1, but in general a distribution for A cannot be
determined. However, the test statistic

(3.24)

Fo1

(3.25)

—2log A = 241 — 24y, (3.26)
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which can be shown to asymptotically approach x? distribution [123], can
be used instead. ¢ denotes log-likelihood and v is the difference in number
of parameters in the reduced and full model. Log-likelihood ratio test
was used in RADMeth tool [21] for testing differential methylation for
individual cytosines.

Wald test can be used for testing null hypothesis Hy : 5; = 0 for individual
coefficients [44]. The test statistic is calculated as

we s , (3.27)
SE(8;)

where 3 ; 1s the coefficient estimate and SE(3 ;) is the standard error of the
estimate. W follows Gaussian distribution N (0,1). Wald test is used for
testing individual cytosines for differential methylation in MACAU [70]
and PQLseq tools [108].

F-test can be used for comparing nested models [44]. In the reduced
model under null hypothesis one or more coefficients are set to zero Hj :
Bj, = ... = B, = 0. The alternative hypothesis corresponds to the full
model. The test statistic is

~ RSSy — RSS/k

F = RSt —a (3.28)

which follows F-distribution with degrees of freedom (k,n — ¢). RSSy and
RSS are the sums of squared residuals for the reduced and full models
respectively. k is the difference in the number of parameters between the
full and reduced models, while n is the number of data points and ¢ is the
number of parameters in the full model. F-test was applied in preanalysis
step of LuxUS tool in Publication I for finding genomic windows for further
analysis.

Moderated t-test was originally proposed for differential gene expression
analysis [104, 91], but has been also applied for finding differentially
methylated regions [101]. The log-expression level of G genes is modelled
with a linear model. The statistical test for differential expression is
defined with null hypothesis 5,; = 0, where ,; is the coefficient of the
covariate of interest for gene g. The moderated t-statistic for gene g,
g=1,...G R

i p 93
91 = 3 NGF
9/ Vgj
follows a t-distribution with degrees of freedom d,; + dy under null hypoth-
esis. ng is the estimate for 8,; and v,; is its unscaled variance. In the
moderated t-test, the gene-wise residual variances are estimated using
Empirical Bayes method, and the resulting variance estimate 3, is a com-
promise of the individual gene-wise variance and global variance. d, is the
residual degrees of freedom for the ordinary t-statistic and dy corresponds

(3.29)
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to the extra information brought in by pooling information from other
genes.

The tests described above are for testing the significance of one or more
covariates in a linear model. Fisher’s exact test can be applied for testing
the independence of two factors with two levels [10]. The null hypothesis
is that the two factors are independent of each other. A contingency table
containing the numbers of observations in each factor level is formed
as presented in Table 3.1. The test statistic is 7" = f, which follows
hypergeometric distribution under null hypothesis. The moderated t-test
and Fisher’s exact test have been applied in feature selection as described
earlier in Section 3.2.3.

Table 3.1. Contingency table for testing the independence of two factors by Fisher’s exact
test [10]. Contingency table is a way to present frequencies for the different
factor levels. n is the total number of observations and f is the frequency in the
cell on the first row and column. fi. and f.1 are the marginal frequencies of
the first row and first column of the table, respectively.

Factor 1 Factor 2
Level 1 Level 2
Level 1 f fre — f J1e
Level 2 foo— f n—fle—fo1+f | n— fie
feo1 n— fe1 n

As mentioned in Chapter 2, DNA methylation states of neighboring
cytosines are often correlated. However, differential methylation tests for
bisulfite sequencing data are often performed cytosine-wise. To utilize
the autocorrelation between cytosines, the cytosine-wise p-values can be
combined. A method for this is weighted Z-test which is also known as
Stouffer-Liptak test [21]. The weighed Z-test starts by transforming a
sequence of p-values pi, ..., p, into Z-scores with z;, = ®~1(1 — p;) [129].
Then the scores are combined by using

po=1- cp( 2 ) (3.30)
\/nJr > i<y cor(2i, 2j)

where cor(z;, z;) is correlation coefficient. ® and ®~! are the cumulative
distribution function and inverse cumulative distribution function for the
standard normal distribution. Weighted z-test is used in RADMeth tool [21]
and Publication III. comb-p method implements the weighted Z-test which
can be applied in any across-genome analysis with auto-correlated observa-
tions [89]. Other solutions for utilizing the spatial correlation of neighbor-
ing cytosines include data smoothing before statistical testing [39, 41] and
performing tests for differentially methylated regions or cytosine clusters
rather than single differentially methylated cytosines [81, 122, 63]. The
latter approach was used in Publication I.
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In bioinformatics applications, the number of tests performed is often
very high. For example, when testing differential DNA methylation for the
cytosines in the whole genome, the number of tests can be in the magnitude
of millions. In such a multiple testing setting, false discovery rate (FDR)
must be controlled. False discovery rate is the proportion of tests where the
null hypothesis is falsely rejected out of all tests for which null hypothesis
was rejected [9]. The act of falsely rejecting null hypothesis is also called
type 1 error, while falsely accepting null hypothesis is called type 2 error
[97]. One commonly used method for FDR control is Benjamini-Hochberg
correction [9]. If m tests with hypotheses Hy, ..., H,, were performed and
corresponding p-values p, ..., p,, were retrieved the Benjamini-Hochberg
correction would be performed in following manner: First, the p-values are
sorted p(1) < p2) < ... < p(m), while the hypothesis corresponding to p(;) is
denoted as H ;. Then the largest index i for which applies

D) < g (3.31)
m

is found. This index is called k. ¢* is the desired false discovery rate.
Finally, all H(;) where i = 1,...,k are rejected.

Another technique for controlling FDR is to estimate the test statistic
null distribution by using permutation method [125]. In this approach,
the null hypothesis testing is repeated using permuted data. Then the
p-value threshold can be set using the estimated null distribution to reach
the desired false discovery rate. This approach was used in Publication III.
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4. Summary of the publications

In this chapter, methods and results of each of the four publications are
summarized.

4.1 Publication I: LuxUS: DNA methylation analysis using
generalized linear mixed model with spatial correlation

Publication I and Publication II propose new differential DNA methylation
analysis tools, LuxUS and LuxHS, which utilize spatial correlation between
the neighboring cytosines’ methylation states to increase the accuracy of
the analysis. The generalized linear model framework from LuxGLM
tool [2] was used as a starting point for the new models. In Publication
I, the LuxUS tool is proposed. The method is based on a GLMM with
binomial likelihood. Let us consider an experiment with Nr samples, for
which bisulfite sequencing has been performed. From sequencing and
downstream processing the total read count Nps and Npg ¢, count of
reads where a ’C’ was observed, are obtained for each cytosine. Np is the
number of fixed effect covariates. In LuxUS, the analysis is performed for
a genomic window at a time. The window contains N¢ cytosines and their
genomic coordinates are stored in vector c. The genomic windows can be
either predefined, or the preanalysis method coming with LuxUS can be
used. The preanalysis step allows filtering individual cytosines or genomic
windows. For example, minimum total read count, maximum genomic
length of the window, maximum number of cytosines in the window and a
p-value threshold for a simple statistical F-test comparing the case and
control sample methylation states can be set by the user.

The read counts Ngg c; are considered binomially distributed with num-
ber of trials being Ngg; and the success probability, the probability of
observing a ’C’, being pps.ci, ¢ = 1,..., Ng - N¢. The binomial probability
mass function was presented in Eq. 3.6. The success probability, i.e. the
probability of observing a ’C’, parameter is defined in the same way as in
LuxGLM by taking into account the possibilities of there being an error in
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the bisulfite conversion or sequencing steps of the experiment

pBs,c,i = 0i((1 — BSp,i) (1 — seqgyy,;)
+ BSgfr,i - sedpyy;)
+ (1= 0:)((1 — BSgq ) (1 — seqgy, ;)
+ BSkgr; - Sdp,i),

where 6; is methylation proportion, BSgg ; is bisulfite conversion efficiency,
seqgy,; 18 sequencing error probability and BSgg ; is incorrect bisulfite
conversion rate. The latter three are experimental parameters, which
may be evaluated using spike-in sequencing material. If it is not possible
to evaluate the experimental parameters, they can be set to 1, 1 and 0
respectively. These values correspond to perfect bisulfite conversion and
sequencing.

The methylation proportion vector 8 of length Ny - N¢ is calculated with

sigmoid link function
1

" T+exp(—n)
where 7 is the linear predictor with mixed effects. Following the GLMM
notation in Eq. 3.6, 1 is defined as

4.1)

n=XB +Zrugr + Zcuc + e, (4.2)

where X is a matrix of size (N¢ - Ng) x Np, 3 is a vector of length Np,
terms Zrug and Zcug correspond to sample and cytosine random effects
respectively. Fixed effect coefficients are given a Gaussian prior 3 ~
N(0,031), where o7 should be set so that it allows high enough variation
for 8. The last term is a noise term with distribution e ~ N(0,0%1I).
The sample random effect up of length Ny is given a Gaussian prior
up ~ N(0,0%1). The spatial correlation is brought to the model through
the cytosine random effect uc of length No. The prior for the cytosine
random effect is uc ~ N (0, X¢), where the covariance terms depend on
the distance between the cytosines

CoV(Ucyi, Ue,j) = 0(2; - exp (y) “4.3)
¢ is a lengthscale parameter with Gamma prior. The variance parameters
0%, 0% and o are each given a Gamma or inverse-Gamma prior.

The model is fitted using probabilistic programming language Stan.
For each genomic window, a Bayes factor is calculated to determine how
much evidence there is that the binomial GLMM model coefficient for the
covariate of interest is non-zero. In practice, the Savage-Dickey estimate
of the Bayes factor is used as described in Section 3.4, using the samples
retrieved from Stan.
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Figure 4.1. AUROC values as a function of number of cytosines in genomic window. Each

value (black dots) has been evaluated over 400 simulated genomic windows,
consisting of corresponding number of cytosines. The interpolation (dashed
line) has been done with third degree polynomial. In this simulation setting,
the AUROC values grow along with the number of cytosines per window
until 5-10 cytosines per window, after which analyzing more cytosines to-
gether seems not to further increase the accuracy. Figure from Publication I.
Reprinted with permission.

The LuxUS tool was tested using simulated and real BS-seq count data.
For the simulation settings, a number of genomic windows with and with-
out differential methylation were generated for model evaluation purposes.
The performance of the tool was measured using receiver operating charac-
teristics curve (ROC), which is a common method for classifier performance
evaluation [26]. ROC graph shows true positive rate

correctly classified positives

TPR = - , (4.4)
total positives
against false positive rate
FPR — incorrectly classified negatives. “4.5)

total negatives

The area under ROC curve (AUROC) was used as a scalar measure of
accuracy [26]. The AUROC values range from 0 to 1, with 1 meaning that
the classifier has separated two classes perfectly. In practice, the AUROC
values lie between 0.5 and 1, as a random guessing classifier should already
result in AUROC value of 0.5. Also, the predictions from classifier with
AUROC value below 0.5 can be flipped, resulting in classifier with AUROC
value higher than 0.5. When evaluating differential DNA methylation
analysis methods, the differentially methylated cytosines (DMCs) were
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Table 4.1. AUROC values for LuxUS with HMC and ADVI, LuxUS for separate cytosines,
RADMeth, M3D, DSS, metilene and bsseq for simulated data set with two
confounding covariates, highest value for each setting is bolded. Ngs and Ng
denote the number of sequencing reads overlapping a cytosine and the number
of samples, respectively. Table from Publication I. Reprinted with permission.

Nps Ng | LuxUS LuxUS LuxUS RAD- M53D metilene metilene DSS bsseq
HMC ADVI  sep. Meth mode 2

6 12 | 0.859 0.851 0.605 0.728 0.674 0.625 0.717 0.845 0.614
6 24 0907 0.883 0.682 0.800 0.618 0.735 0.840 0.870 0.688
12 12 [ 0.809 0.802 0.634 0.702 0.644 0.676 0.712 0.757 0.628
12 24 10938 0.899 0.748 0.821 0.722 0.772 0.861 0.915 0.737
24 12 | 0.796 0.738 0.641 0.717 0.658 0.592 0.684 0.750 0.626
24 24 | 0915 0.880 0.731 0.827 0.690 0.709 0.836 0.874 0.714

given label 1 and correspondingly the non-DMC loci were set to have label
0.

One of the simulation experiments was aimed to demonstrate the benefit
of utilizing the spatial correlation between cytosines. The simulated data
consisted of sets of genomic windows, where the number of cytosines in
the genomic window was different. The results showed, that analyzing
5-10 cytosines together increased the accuracy measured in AUROC when
compared to cytosines being analyzed individually. Increasing the number
of cytosines in a window from that seemed not to increase the accuracy
further. The results from this experiment are shown in Fig. 4.1.

LuxUS was also compared to other published differential DNA methy-
lation analysis tools which take spatial correlation into account. These
tools were M3D [81], DSS [28, 88], metilene [56], bsseq [39] and RADMeth
[21]. The comparisons were done with simulated data. For simple simula-
tion setting with no confounding covariates, the best performing tools by
AUROC values were LuxUS, metilene and DSS. When two confounding
effects, one binary covariate and one continuous covariate, were added
to the simulation, LuxUS tool performed the best, followed by DSS. The
AUROC values for the simulation setting with confounding covariates are
presented in Table 4.1. This demonstrates the benefit of taking confound-
ing effects into account, which is done by LuxUS and DSS. For metilene,
M3D and bsseq tools the results were weaker, which is as expected as they
do not allow confounding covariates. The continuous covariate had to be
binarized for RADMeth, as it only allows binary covariates. Perhaps due
to this simplification RADMeth did not reach as good results as LuxUS
and DSS. Full description of the results can be found from Publication I.

In Section 4.2 the methods of model fitting in LuxUS and LuxHS are
described and the two tools are discussed.
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4.2 Publication Il: LuxHS: DNA methylation analysis with spatially
varying correlation structure

In Publication II, LuxHS tool was proposed. The motivation for another
formulation of a binomial model with included spatial correlation was to
allow some of the cytosines in the genomic window of interest to not follow
the general correlation pattern. Such cytosines will be called deviating
cytosines in this section. Even if the DNA methylation is assumed to
be a spatially correlated phenomenon, there might be cases in which
one or more cytosines do not follow the pattern. This might be because
of e.g. transcription factor binding [22]. The LuxUS model proposed in
Publication I does not take the possibility of such deviations into account.
For this purpose, a different model formulation is needed.

In LuxHS, a GLMM model similar to the one in LuxUS is fitted, but in
contrary to LuxUS, Bayes factors are calculated separately for each of the
cytosines in the genomic window. The main difference between the models
is that in LuxHS there is no cytosine random effect, and that there are
separate fixed effect coefficients for each cytosine. So the linear predictor
can be expressed as

n = X8+ Zgrug + e, (4.6)

where X is a matrix of size (N¢ - Nr) x (N¢ - Np) and 3 is a vector of length
N¢ - Np. 3 consists of cytosine-specific coefficient vectors . The replicate
effect term and noise term are the same as in Eq. 4.2. The fixed effect
coefficients have prior 3 ~ N (0, X3). The spatial correlation is included in
the model trough the covariance matrix Xz, which is constructed in the
following way

O—% COV(Bl,laﬁl,Z) COV(/BL]JﬁNC,Np)
cov (B2, B1,1) o} o cov(Bra, Bro.Ny)
B = ‘ .
cov(Bng,Np» B1,1)  cov(Bne,Nps Br2) - o2
4.7

The diagonal terms are the coefficient variances and the off-diagonal terms
describe the covariance between the different cytosines’ fixed effect coeffi-
cients. The covariance terms depend on the distance between the cytosines:

O’% - exp 7‘%‘@;%/‘ ~dj - dj if k=F

e 4.8
cov(Bj ks Byt k') {0 if k#£K, “8

where j and ;' are the cytosine indices while k and k' are the covariate in-
dices. Covariance is set to zero between different covariates, as that would
break the assumption of uncorrelated covariates. The distance-dependent
terms are multiplied by corresponding cytosine-specific correlation weight
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region chr22:27014415-27015343 from a real BS-seq data set [38]. The top
panel shows the data, with cases plotted in purple and controls plotted in
orange. The experimental design is matched, and the matching cases and
controls have been plotted with the same markers. The middle panel shows
the LuxHS (black dots) and LuxUS (dotted blue line) Bayes factor values. The
red line shows BF value 3 for comparison. In the bottom panel the black dots
show the cytosine weights d for the LuxHS model, with red line showing value
0.5 for comparison. For most of the cytosines d is close to 1, indicating that
the cytosines follow the general correlation pattern. However, there are two
cytosines with considerably lower d values, and from the data it can be seen
that the methylation states for these cytosines seem to diverge from the rest
of the cytosines in this window. The middle panel shows that in such a case, it
might be favorable to calculate separate BFs for each cytosines in this kind of
a case like LuxHS does, instead of assigning the same BF to the whole window
like LuxUS. Figure from Publication II. Reprinted with permission.

d;. The correlation weights d; are retrieved through transforma-

dj =1- f(d;), (4.9)
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Table 4.2. AUROC values for different simulated data settings. The best AUROC value
for each setting is bolded. Np is the number of deviating cytosines in a genomic
window, N is the number of samples, Ngs is the total number of reads and up
contains the means of the coefficients 5 used in the simulations. pp = [—1.4,1]
and up = [—1.4,2.3] correspond to methylation state differences of 0.2 and 0.5
between cases and controls, respectively. Table adapted from Publication II.
Reprinted with permission.

pe = [-1.4,1] pup = [—1.4,2.3]
LuxHS LuxHS LuxUS RADMeth |LuxHS LuxHS LuxUS RADMeth
Nr Nps| HMC ADVI sep LuxUS (NaN values)| HMC ADVI sep LuxUS (NaN values)
Np =1

6 24| 059 0584 0569 0.618 0.59 (10) 0.828 0.812 0.792 0.812  0.791(10)
12 24 | 0.664 0.656 0.641 0.688 0.651(30) | 0.906 0.894 0.894 0.852  0.839 (10)
24 24 | 075 0.747 0.74 0.767 0.727(10) | 0.974 0.969 097 0.891  0.884 (30)
Np =2

6 24 | 0557 0.555 0.553 0.565 0.538(30) | 0.835 0.808 0.825 0.738  0.729(10)
12 24 | 0.648 0.641 0.651 0.622 0.588(30) 0.905 0.889 0.906 0.75 0.774 (10)
24 24 | 0696 0.695 0.702 0.658 0.639(30) | 0.965 0.957 0.965 0.785  0.787 (10)

where f(-) is a generalized logistic function which scales the d; value into
range [0, 1]. To enable sparsity, the d; have a horseshoe prior with a slight
modification of restricting d; to be a positive real number

dj ~ NT(0,7%-22), (4.10)

where )\; and 7 have the priors presented in Eq. 3.10 and Eq. 3.11, re-
spectively. If the correlation weight d; is near zero, the correlation terms
between the corresponding cytosine and the other cytosines are diminished.
This way not all of the cytosines have to follow the same methylation pat-
tern as the rest. The horseshoe prior allows some d;, j = 1,..., N¢g, to
diminish to zero.

As LuxHS model includes cytosine-specific covariate coefficients 3, the
hypothesis testing is also performed in cytosine-specific manner. Again, the
Savage-Dickey density ratio estimate of the Bayes factor is used for testing.
As result, LuxHS can detect differentially methylated cytosines, whereas
LuxUS computes Bayes factors window-wise and can detect differentially
methylated regions.

To demonstrate how LuxHS works, simulated and real data experiments
were done. The results for a genomic window from real BS-seq data set are
presented in Fig. 4.2. The figure demonstrates how the weight variable
d behaves, when the data indicates that the cytosine does not follow the
general correlation pattern. Also, in contrast to LuxUS the flexibility of
LuxHS model is shown to be beneficial in the presented case.

The performance of LuxHS, LuxUS, LuxUS method applied for separate
cytosines and RADMeth [21] were compared on simulated data. The
simulated data was generated as genomic windows of length 1000 bp, each
with 10 cytosines. The number of deviating cytosines in each window
was varied from 0 to 2. The data was simulated from LuxHS model,
and deviating cytosines were set to have correlation weights of d = 0.
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Table 4.3. The AUROC and TPR values for detecting deviating cytosines for simulated
data. TPR has been calculated with two thresholds (0.5 and 0.75) for the mean
of posterior samples for d;. Np is the number of deviating cytosines in a
genomic window, N is the number of samples, Ngs tot is the total number of
reads and pp contains the means of the coefficients § used in the simulations.
The up = [—1.4,2.3] value corresponds to methylation state difference of 0.5
between cases and controls. Table adapted from Publication II. Reprinted with
permission.

AUROC TPR (0.5) TPR (0.75)

Nr Ngs

6 12 24 6 12 24 ‘ 6 12 24
Np =1, up = [~1.4,2.3]

6 [0.774 0.853 0.888| 0.14 0.09 0.125]0.315 0.36 0.34

12 | 0.885 0.930 0.939|0.145 0.13 0.18 | 0.38 0.345 0.46

24 10965 0.967 0.983|0.175 0.17 0.19 |0.455 0.45 0.535

Np =2, up = [~1.4,2.3]

6 |0.741 0.786 0.804|0.103 0.11 0.118| 0.36 0.318 0.358

12 | 0.833 0.863 0.869|0.153 0.145 0.11 [0.423 0.408 0.313

24 10.893 0.899 0.937| 0.15 0.16 0.183|0.458 0.458 0.5

In addition to the cytosines having no correlation with the rest of the
cytosines, their differential methylation status was set to be the opposite
from the other cytosines.

Results for selected simulation settings are shown in Table 4.2. The
complete set of results is presented in Publication II. For the simulation
settings with one deviating cytosine and with small methylation difference
between cases and controls, making differential methylation analysis
harder, LuxUS had the best overall performance measured in AUROC.
However, when the methylation difference was increased, LuxHS had
overall the best AUROC values.

With two deviating cytosines and small methylation differences between
the cases and controls, LuxUS applied separately for each cytosine and
LuxUS had the best overall performances. Again, when the methylation
difference was set to be higher, LuxHS had the highest AUROC values.
Occasionally, LuxUS method applied for separate cytosines had equal or
slightly higher AUROC value. The success of the cytosine-wise LuxUS
method suggests, that addition of two deviating cytosines per genomic
window has muddled the correlation pattern severely and in such a case
cytosine-wise analysis might be the best choice. Nevertheless, LuxHS
method was able to outperform the LuxUS method applied for separate
cytosines in most simulation settings where the methylation difference
was high.

LuxHS method’s ability to detect deviating cytosines was also measured
using simulated data. For this purpose the estimated d; values were
examined. AUROC and true positive rate values were calculated for
detecting the deviating cytosines. Results for selected simulated data sets
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are presented in Table 4.3. Full results table can be found from Publication
II. Even if the AUROC values were quite high, the TPR values remained
rather low, suggesting that overall LuxHS estimated d; appropriately, but
it did not detect all deviating cytosines.

Both LuxUS and LuxHS models can be fitted using either MCMC sam-
pling or variational inference approaches provided in Stan. The accuracies
of the two approaches were compared. Based on these comparisons, both
methods produce good results, but MCMC approach is slightly more accu-
rate and more stable computationally. However, the computation times
for the MCMC approach are considerably higher than for variational in-
ference, so especially with high number of samples or covariates, the
variational inference approach might be preferable. The analysis pipeline
has been built in a way that promotes parallelization, which makes the
tools faster in case there are multiple computing nodes available. Also, the
preanalysis step can be used to filter the set of genomic windows for which
the actual analysis is performed for. However, the preanalysis method is
rather simplified, and the choice of its parameters can affect the results.
Conservative parameter settings in the preanalysis phase could lead to
accidentally filtering out differentially methylated cytosines. To allow as
many differentially methylated cytosines as possible to proceed to the
actual analysis, the parameters should be set in a rather liberal manner.

The LuxUS and LuxHS tools are interesting additions to the range
of differential DNA methylation analysis tools with their two different
ways of taking spatial correlation into account. One of the questions
regarding the methods is whether the model assumptions match reality
well enough. Although the good results from experiments with real BS-seq
data suggest that the assumptions about the spatial correlation structure
are reasonable. The LuxGLM model used as a basis can take into account
technical parameters, such as bisulfite conversion efficiency, and allows
usage of both continuous and discrete covariates. These features are
available in LuxUS and LuxHS as well. Bayesian methods are utilized, so
that the full posterior is retrieved as a result instead of just point estimates.
Bayesian methods bring along another challenge, namely how the prior
parameters should be chosen. In LuxUS and LuxHS the prior parameters
can either be set to the proposed default values, or they can be defined
by the user. The results of the analysis can be affected by the choice of
priors. Nevertheless, the LuxUS model seems to not be very sensitive to e.g.
ag value (see Publication I and its supplementary materials for details).
Finally, both LuxUS and LuxHS tools are freely available in GitHub!.

11uxUS: https://github.com/hallav/LuxUS and LuxHS: https://github.com/hallav/
LuxUS-HS.
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4.3 Publication Ill: Permutation-based significance analysis
reduces the type 1 error rate in bisulfite sequencing data
analysis of human umbilical cord blood samples

The aim of Publication III was to perform differential DNA methylation
analysis on a relatively extensive RRBS-seq data set to find out whether
there are pregnancy or delivery-related differences in cord blood methy-
lation. The data set consisted of 200 cord blood samples, which had been
RRBS-sequenced. The samples were collected from participants of the
Finnish Diabetes Prediction and Prevention (DIPP) follow-up study be-
tween 1996 and 2006 in Turku University Hospital.

Publication III proposes an RRBS-seq analysis pipeline, which culmi-
nates in differential methylation analysis. The pipeline contains all rel-
evant steps from raw sequencing data to FDR rate control. The prepro-
cessing steps of BS-seq-type data have been described in Section 2.3. The
pipeline utilizes open source tools and is freely available in GitHub?. The
workflow begins with quality control and read trimming by Trim Galore
tool [64], which combines FastQC [5] and Cutadapt [79] tools. Then align-
ment to reference genome is performed with Bismark [65], following with
Bismark methylation calling and M-bias correction. The result of the
methylation calling is a count matrix with total and methylated read
counts for each cytosine in each sample. Single nucleotide polymorphisms
are detected with bs-SNPer [33], and the counts for found SNPs were set
to NA in the count matrix. The SNPs are also utilized for building a kin-
ship matrix, which describes the genetic relatedness between the samples.
Before differential methylation analysis, coverage filtering is performed on
the count matrix.

The data set included a large number of covariates related to the partici-
pants of the study. Information about the mother, pregnancy and delivery
were available. Using Pearson correlation coefficients and Fisher’s exact
test p-values for continuous and binary covariates, respectively, correlated
covariates were first discovered. If there were two or more covariates
with significant correlation, only one of them was picked to be used in the
analysis. Missing covariate values were imputed with medians over the
non-missing values. To account for technical variation, the sequencing
batch information and first two principal components derived from the
methylation proportion data were included in the analysis as covariates.

The differential DNA methylation analysis was performed with PQLseq
tool, which uses a GLMM model that includes a genetic random effect
for taking population structures into account [108]. Information about
relatedness is passed to the model through kinship matrix, which was
estimated using the detected SNPs. After filtering and covariate selection,
the analysis included 173 samples and 24 covariates for 2752981 cytosines in

2RRBS pipeline: https://github.com/Essilaajala/RRBS_workflow.
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total. Alternative analysis was performed with RADMeth tool [21], which
is based on beta-binomial model. RADMeth does not allow continuous
covariates, so the continuous covariates had to be binarized. For both
models, the count data was transformed to pseudo-counts by adding +1
count to the methylated count and adding +2 to the total read count
for each non-missing cytosine count. Using this transformation helps in
avoiding problems caused by exact 0 or 1 methylation proportions.

After fitting the models and retrieving cytosine-specific p-values, spatial
adjustment and FDR control to the p-values can be done. First, the spatial
adjustment and Benjamini-Hochberg correction steps from RADMeth were
applied on both PQLseq and RADMeth cytosine specific p-values. However,
the p-values seemed to be inflated after testing these steps on p-values for a
permuted covariate of interest, for which no differential methylation should
be found. Tests revealed, that the PQLseq modeling part was working
as expected and the problem was caused by the spatial adjustment step.
Additionally, raw RADMeth p-values were found to be inflated and the
cause is that it cannot handle situations, where there are no observations
for one of the two classes of a binary covariate.

As a solution to the p-value inflation caused by the spatial adjustment
step, a permutation-based empirical FDR control method was used. In
short, each of the covariates are permuted P times in a way that there is no
correlation between the permuted covariate and the other covariates. The
analysis is repeated for all cytosines one permuted covariate at a time to
estimate the null distributions of the p-values. Then for each permutation
and covariate, the p-value threshold is set so that the number of discov-
eries for the permuted covariate would be less than 5% of the number of
discoveries for the original covariate. The final p-value threshold is set to
median over the P permutation thresholds. The number of permutations
P used to produce the results in Publication III was 3.

Benjamini-Hochberg-corrected PQLseq p-values and spatially adjusted,
empirically FDR-corrected p-values were calculated for each cytosine. Dif-
ferentially methylated cytosines were combined into differentially methy-
lated regions, if two or more cytosines with p-value smaller than 0.05 were
within 2000 bp of each other, and at least 90% of them are differentially
methylated in the same direction. As a result of the analysis, differentially
methylated cytosines and regions were found with respect to sex, epidural
anesthetic, 1 minute Apgar points, maternal height, age of the mother,
gestational weight gain, smoking during pregnancy and maternal insulin-
treated diabetes. The numbers of differentially methylated regions and
cytosines for each covariate are presented in Table 4.4.

One of the sex-related differentially methylated regions was technically
validated with pyrosequencing, and the measurement from the different
sequencing method supported the finding from the RRBS-seq-based analy-
sis. Detailed description of the pyrosequencing results can be found from
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Table 4.4. Results from the differential DNA methylation analysis of the cord blood data
set. The first column shows the adjusted p-value threshold for each covari-
ate, calculated with the permutation method with P = 3. The second col-
umn shows the number of differentially methylated regions (defined using
the threshold from first column) and the third column shows the number of
differentially methylated cytosines with Benjamini-Hochberg corrected PQLseq
p-value smaller than 0.05. Table adapted from Publication III. Reprinted with

permission.

Covariate Adjusted Number of | Number of
p-value DMRs DMCs
threshold

Year of birth (sample collection year) 0 0 6

Smoking during pregnancy, mother 0 0 1

Sex 4.67-1077 297 1426

Month of birth (cosine transformed) 0 0 0

Insulin-treated diabetes, mother 1.13-1071° 2 10

Induced labor 0 0 0

Height, mother 6.55- 10711 2 3

Gestational weight gain 9.53-10713 1 0

Epidural anesthetic, delivery phase 1 | 1.22-107'° 1 0

Earlier miscarriage(s) 0 0 0

Caesarean section 0 0 0

BMI, mother (pre-pregnancy) 0 0 0

Birth weight 0 0 0

Apgar points low, 1 minute 3.99-10712 2 2

Age, mother 9.59-10712 | 2 0

Publication III and from a related study, where the same data set was
used for differential DNA methylation analysis between children who
later develop type 1 diabetes and healthy controls [68]. Also, 221 of the
differentially methylated CpGs with respect to sex covariate have also
been detected in earlier microarray-based differential DNA methylation
analyses of cord blood [128, 80]. Based on these comparisons, it can be said
that the findings are reproducible between technologies and studies.

In addition to the DNA methylation analysis pipeline, Publication III
includes some recommendations for RRBS-seq data analysis. The usage
of pseudo-counts [108], was found out to significantly reduce convergence
problems encountered with PQLseq and RADMeth. The convergence
problems are caused by exact 0 or 1 methylation states, as the logit link
function values go to infinite. Concerning the read count filtering, a total
read count requirement for minimum number of samples can be used
for filtering the cytosines. However, when using models which take into
account the coverage through e.g. binomial or beta-binomial likelihoods, it
is recommended not to filter out the observations with total read counts
below the threshold.
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Figure 4.3. Venn diagrams showing the overlaps between DMRs sets found with the three
DMR finding methods. The diagrams have been plotted for each of the eight
classes separately. DMR sets from 100 data splits were pooled before plotting
the diagrams. Results for thinned data with total read counts of 10°. Figure
adapted from Publication IV. Reprinted with permission.

4.4 Publication IV: Probabilistic modeling methods for cell-free
DNA methylation based cancer classification

The aim of Publication IV was to experiment with different feature selec-
tion, feature extraction and probabilistic classification methods for improv-
ing cfMeDIP-seq based cancer classification. A blood plasma cfMeDIP-seq
data set [101] worked as a basis for the experiments. The results were
compared to the ones produced with a published method [101]. The data
set consists of discovery and validation cohorts, with 189 and 199 samples
respectively. In the discovery cohort, there are samples from seven cancer
types and healthy controls, while the validation cohort consists of three
cancer types and healthy controls.

In addition to testing various feature selection and classification methods,
one of the aims was to study if the cancer type classification could be
improved if the sequencing depth is low. For this purpose, the data was
subsampled to simulate lower sequencing depth. This way, three different
subsampled data sets were generated with total read counts, i.e. total
number of cfMeDIP-seq reads per sample, of 10°, 10° and 10* in each
sample. The original total read counts per sample were of the magnitude of
107. The data was provided in preprocessed format, where for each sample
the read counts for 505027 genomic windows, each of length 300 bp, had
been computed.
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For finding features for the cancer type classifiers, both feature selection
and feature extraction methods were experimented with. Feature selection
was done by statistical tests, which were used for finding differentially
methylated regions. In the published method [101], the features to be
used for classification were selected using moderated t-statistic, where
log-transformed count data was used as input. The moderated t-tests were
performed to the subsampled data with two log-transformations

X7 =logy(c- X +3), (4.11)

where X is the original count data, ¢ = 0.3 and constant s is set to either
s =10%0or s = 0.5. s = 1076 is the same as in the published method
and the latter is a new version of the transformation, which does not
impose such a wide gap between zero and non-zero counts as s = 10~°
does. Additionally, Fisher’s exact tests were performed using the binarized
version of the count data. Feature extraction was done with dimension
reduction methods, specifically principal component analysis (PCA) and
iterative supervised PCA (ISPCA) [94]. ISPCA utilizes the class labels
of the training data set to find components that would best separate the
classes from each other. Both binary and multiclass settings were tested
with ISPCA.

In the previously published work [101], the cancer type classification
was done with a binomial GLMnet model [31]. GLMnet utilizes elastic
net regularization and fits the model with cyclical coordinate descent. For
comparison, two types of logistic regression models were experimented
with. The first one is similar to the GLMnet model: a set of DMRs were
used as features and a sparsity inducing regularized horseshoe prior [93]
was given to the coefficients. Principal components were also tested as
features instead of DMR sites. The second model type is logistic regression
with only two covariates: the numbers of hypermethylated and hypomethy-
lated DMRs with non-zero counts. This type of a model had been found
effective in T cell receptor analysis [25] and here it was tested whether
such a simple, robust model would perform well, especially with the heavily
subsampled data and very high-dimensional feature vectors. Probabilistic
programming language Stan was used to fit the models. Feature selection,
feature extraction and model fitting was done using training sets from 100
data splits, with 80% of the discovery cohort as training data and 20% of
the discovery cohort as test data in each split. The classifiers were trained
in one-vs-rest manner.

Next, the results for feature finding and classification are briefly de-
scribed. The DMR sets found by each statistical testing method were
compared by plotting Venn diagrams. These are presented in Fig. 4.3.
Overall, there seemed to be high overlap between the three DMR sets
produced by each method. However, the moderated t-test with the original
transformation found a high number of DMRs unique to this method, while

50



Summary of the publications

A B C
3 o ° o9
° 01 L o FY
2 «®
3] 8
g’ ol L 1)
04 o ® - s
°
-1 ‘ =19
L ¢ I — AML
3 -2 Pa 0o 1 -4 -3 ;; -1 0 0 1Pc$ 3 4 AML (ost)
BLCA
° 1 .I BLCA (test)
8 BRCA
] $ °] BRCA
(test)
3 . 34 3 CRC
& o @g . %00 & & 72-L CRC (test)
> oo afloni, ® LUC
-21 -7 ® 0 0 -3
° ° ® LUC (test)
-
-2 0 2 4 3 2 -1 0 1 2 o 1 2 3 4 @ Normal
PC3 PC3 PC3 @® Normal (test)
® PDAC
2 1 ® PDAC (test)
@,
e c:o 5 0 . ® RCC
© ® 2 © © ® RCC (test)
o{e -1
8 , % g 4 )
a oo a a
-1 (Y e ° 0 % -2
2 S
3 -5
2 -1 0 1 2 -10 -5 0 5 10 1 2 3 4
PC5 PC5 PC5

Figure 4.4. Visualization of results for (A) PCA using AML class DMRs as input, (B)
binary ISPCA (AML class labels set to 1, other classes to 0) and (C) multiclass
ISPCA. Results are shown for one data split. Each plot shows two principal
components plotted against each other, and training and test samples for the
data split have been plotted in different colors. Figure from Publication IV.
Reprinted with permission.

the Fisher’s exact test and moderated t-test with new data transformation
shared a number of DMRs. The number of unique DMRs to these two
methods only were low when compared to the moderated t-test with the
original data transformation.

The results from PCA and ISPCA were also compared. PCA was run with
a set of cancer class-specific DMRs as input, while for ISPCA all genomic
windows were used. ISPCA was run with both binary and multiclass
settings. An example of the results is shown in Fig. 4.4, where the results
for subsampled data with total read count of 10° are presented for the acute
myeloid leukemia (AML) class. The first principal component from the PCA
and binary ISPCA seemed to clearly separate the AML samples from the
other classes. The rest of the principal components seemed not to separate
AML from other classes. Multiclass ISPCA showed expected behavior, and
produced components which each separated one class from the others. The
ISPCA approaches seemed to suffer from lack of information in the data
when the subsampling of the data was more severe, as the method often
produced no supervised components at all.

The classification performance was evaluated on the test data sets and on
the separate validation cohort. Full description of the results can be found
from Publication IV. Comparisons of the experimented methods against
the method presented in earlier work for the discovery cohort is visualized
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Figure 4.5. Differences between the class-specific AUROC values for the earlier published

method based on GLMnet [101] and the new methods experimented in Publi-
cation IV. The red lines show the average performance across the classes. The
A, B and C panels correspond to thinned data sets with 10, 10° and 10° total
read counts, respectively. The results are presented for the discovery cohort
set. Figure adapted from Publication IV. Reprinted with permission.

in Fig. 4.5. Our experiments showed that, as expected, the classification ac-
curacy was lower when the sequencing depth was lower. The class-specific
accuracies varied, implying that some classes are easier to classify than
others. Overall, the original GLMnet method combined with moderated
t-test DMRs performed well. But there were some cases where the new,
experimented methods seemed to improve the classification results for the
thinned data. These methods include the binary and multiclass ISPCA
and Fisher’s exact test for feature selection and logistic regression with
DMR count variables for classification.
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5. Discussion and conclusions

This thesis presents methods for two types of DNA methylation data analy-
sis: differential DNA methylation analysis using BS-seq data and cell-free
DNA methylation based cancer classification using cfMeDIP-seq data. For
the former one, a data preprocessing pipeline and two analysis tools are
proposed. For the latter one, different versions of logistic regression based
classification methods and feature selection approaches were evaluated
and compared on a data set with multiple cancer types. A feature com-
mon to all of the presented analysis methods is the usage of probabilistic
modeling. Even if DNA methylation is one of the most studied epigenetic
modifications of the DNA, research still remains to be done to understand
its role in gene regulation and to utilize DNA methylation biomarkers
e.g. in cancer diagnostics. For this purpose, advanced analysis methods
are needed. This thesis aims to take a step, even if a small one, into that
direction.

There are a couple of aspects in LuxUS and LuxHS tools proposed in
Publication I and Publication II that could be improved or explored further.
For example, different distance-dependent covariance functions could be
experimented with. The models could be expanded to enable analysis
of other methylation types, 5hmC and 5caC, in the similar manner as
LuxGLM does [2]. This would make the tools more versatile. In Publication
I and Publication II the focus was set on 5mC, as it is by far the most
widely studied modification. The preanalysis step provided in LuxUS tool
is quite simplified, and refining this step could enhance the actual GLMM
analysis too. The two tools enable usage of both continuous and binary
covariates and perform a Bayesian analysis using Stan, which provides
access to summary tables and convergence diagnostics. The drawback
of the methods is the long computation time, especially if the number
of replicates and covariates is high. However, the computation can be
parallelized genomic window-wise.

The contributions of Publication III include proposing a pipeline for
BS-seq-based differential DNA methylation analysis, consisting of open
source tools. The pipeline contains all relevant steps for the analysis, and
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takes into account bias sources such as SNPs. Publication III also reports
the inflation of spatially adjusted p-values, and suggests permutation-
based empirical FDR control method. This method should be used with
attention to sufficient number of permutations. Results from differential
DNA methylation analysis of cord blood samples show, that there are
sex-related methylation differences in the cord blood, part of which were
novel findings and some were supported by earlier microarray data based
studies.

In Publication IV, probabilistic modeling and different feature selection
methods were tested for improving the classification accuracy of tumors
based on data from cfMeDIP-seq experiments. Also, lower sequencing
depths were simulated by subsampling the preprocessed count data. The
results showed that the original method proposed for the task performed
well for all of the classes and even if sequencing depth was lower. However,
there were cases where the experimented methods could improve the
classification. Making accurate predictions even with low sequencing
depth could prove the utility of liquid tumor biopsies in clinical use.

In Publication IV, the focus was mainly in maximizing the classification
accuracy. It remains as future work to investigate the biological meaning of
the features chosen for the classifiers. For example, it would be interesting
to find out if the PCA components could be given biological interpretations.
The multiclass classification problem was simplified into multiple one-vs-
rest classifiers, but building a multiclass classifier without transforming
the problem into binary classification would be an interesting direction
to investigate. The results in Publication IV do not include classification
of early-stage and late-stage tumors into separate classes, which would
have been possible for pancreatic ductal adenocarcinoma and lung cancer
classes for which such data was available. It remains as future research
to test the new classification methods for separating the early and late-
stage tumors from each other. If the accuracy could be improved from
the already impressive results presented in earlier work [101], this would
further demonstrate the possibilities of liquid biopsies for tumor screening.

To conclude, this thesis began by introducing the topic of thesis and
declaring the research questions related to the four publications. The sec-
ond chapter described the epigenetic modification of interest in this thesis,
DNA methylation, how it is measured and how the measurement data is
processed. The third chapter explained the probabilistic and statistical
methods utilized in the research. Finally, each of the publications was
summarized and their contributions were discussed along with suggestions
for future research.
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