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1. Introduction

Variational methods appeared as an answer to the problem of finding min-
ima of functionals. It is about giving a necessary and sufficient condition
for the existence of the minimum, as well as conditions that allow its
calculation and algorithms that let us to compute it. Variational calculus
is intimately linked with the theory of partial differential equations, since
the conditions for existence of a solution to the minimization problem nor-
mally depend on the fact that said solution satisfies a certain differential
equation.

The main interest in this dissertation is to extend some classical results
of the calculus of variations to metric measure spaces (X ,d,μ). We focus
on some methods which, in Euclidean spaces, are related to existence and
regularity of nonlinear parabolic and elliptic partial differential equations.
Some typical nonlinear variational problems are the evolution (parabolic)
p-Laplace equation

∂u
∂t

−div(|Du|p−2Du)= 0, 1< p <∞,

and the p-Laplace equation

div(|Du|p−2Du)= 0, 1< p <∞.

Since, in a general metric measure space, we do not necessarily have
access to directions, it is not clear how to define the partial derivatives
of a function and thus, it is not clear what the counterparts of the above
equations are. However, in Euclidean spaces, these equations can be
formulated into equivalent problems. Meaning that, a function is a weak
solution of the equation if and only if it is a minimizer to the corresponding
variational problem. In this new approach, the modulus of the gradient
plays an important role. This is a major advantage when working on a
variational level, because first-order Sobolev spaces on a metric measure
space can be defined in terms of the modulus of the gradient without
the notion of distributional derivatives, see [59, 60]. Hence, the theory
of nonlinear parabolic and elliptic partial differential equations can be
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developed and studied in the metric space setting, thus combining analysis
of nonlinear partial differential equations with analysis in metric spaces.

The subject of first-order calculus in metric measure spaces provides an
integrating structure for ideas and questions from many different areas
of mathematics. Analysis on metric spaces is nowadays an active and
independent field, bringing together researchers from different parts of the
mathematical spectrum, see [29, 30, 14, 31, 39, 40]. It has applications to
disciplines as diverse as geometric group theory, nonlinear PDEs, and even
theoretical computer science. This can offer us a better understanding of
the phenomena and also lead to new results, even in the classical Euclidean
case.

This dissertation is about various classes of functions related to a Dirich-
let type integral. We concentrate especially on parabolic minimizers, varia-
tional solutions and quasiminimizers. We study existence and regularity,
including the integrability and stability properties of the solutions and
their upper gradients.

The text is organized in the following way. In Chapter 2 we present the
preliminary concepts needed in the proofs of our existence and all of our
different regularity results. In Chapter 3 we present the main theorems of
articles [II] and [III], and discuss in detail the methods and ideas behind
them. In Chapter 4 we discuss articles [I] and [IV], present the main
results and techniques used in the proofs. The last part of this thesis
contains the four original articles.

12



2. Basic concepts and preliminary
results

This chapter is devoted to collecting the basic calculus rules and properties
of metric measure spaces, as well as laying the preliminaries for what has
been achieved in the attached papers. For further details, see [3, 29, 32].

2.1 Sobolev spaces on metric spaces

Let X be a set with at least two elements, and d : X × X → [0,∞] be a
metric on X . We assume the metric space (X ,d) is complete, separable and
connected. Let μ be a Borel measure on the metric space (X ,d). Then, the
triple (X ,d,μ) is called a metric measure space.

Sobolev spaces can be defined in a metric setting by introducing the
notion of an upper gradient. These spaces are called Newtonian spaces.

Let u be a function on X . A non-negative Borel measurable function g on
X is said to be an upper gradient of u if

|u(x)−u(y)| ≤
∫
γ

g ds, (2.1)

holds for all rectifiable paths γ joining points x and y in X , whenever
u(x) and u(y) are both finite; otherwise, the path integral is defined as
being equal to infinity. Upper gradients have been studied, for example in
[14, 31, 44, 60, 59].

Unfortunately, inequality (2.1) implies that upper gradients are not
unique. Indeed, if g is an upper gradient of u then g+C remains an upper
gradient for any positive constant C. In Rn, we have that g = |Du| is an
upper gradient of a smooth function u. Therefore, we can think of upper
gradients as a generalization of |Du|. Another drawback of upper gradients
is that they are not preserved by Lp-convergence. More specifically, the
set of upper gradients of a function u is not necessarily a closed subset of
Lp(X ). This makes it necessary for us to work with the so-called p-weak
upper gradients.

Let Γ be a family of paths in X and 1 ≤ p <∞. The p-modulus of Γ is
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defined as
Modp(Γ)= inf

∫
X

gp dμ,

where the infimum is taken over all Borel functions g : X → [0,∞] satisfying∫
γ

g ds ≥ 1,

for all locally rectifiable γ ∈ Γ. For more information regarding these
definitions, see [31, 59].

If (2.1) fails only for a set of paths that is of zero p-modulus (i.e. holds for
p-almost all paths), then g is said to be a p-weak upper gradient of u.

Moreover, there exists a minimal weak upper gradient. For any u that has
a p-integrable weak upper gradient, there exists a p-weak upper gradient
denoted gu, such that for all p-weak upper gradients g of u, there holds

gu ≤ gμ-a.e. on Ω, and ‖gu‖Lp(X ) = inf
g
‖g‖Lp(X ).

We refer to gu as the minimal p-weak upper gradient of u. It is unique up to
sets of measure zero, see [3]. One major drawback about upper gradients is
that they do not have some of the good qualities of the Euclidean gradient,
such as linearity. To be precise, consider the sum of two functions, u and v.
The sum of their individual weak upper gradients is indeed a weak upper
gradient of u+v. On the other hand, if g and h are weak upper gradients of
u and v, respectively, the difference g−h may not be a weak upper gradient
of u−v. Nevertheless, some properties of a weak upper gradient are very
useful. Indeed, it has good local properties. For example, a weak upper
gradient of a function can be chosen to be zero almost everywhere the
function is constant, see [3, 59].

2.1.1 Newtonian spaces

We define, for 1≤ p <∞, the space Ñ1,p(X ) to be the set of all p-integrable
functions u on X that have a p-integrable p-weak upper gradient g on X .
The space is equipped with the seminorm

‖u‖
˜N1,p(X ) = ‖u‖Lp(X ) + inf‖g‖Lp(X ),

where the infimum is taken over all p–weak upper gradients of u. Note that
the norm in Ñ1,p(X ) is precisely the sum of the Lp–norm of the function
and of the Lp–norm of the minimal weak upper gradient.

We define an equivalence relation in Ñ1,p(X ) by saying that u ∼ v if

‖u−v‖
˜N1,p(X ) = 0.

The Newtonian space N1,p(X ) is then defined as the quotient space
Ñ1,p(X )/∼ with the norm

‖u‖N1,p(X ) = ‖u‖
˜N1,p(X ).

14
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The normed space
(
N1,p(X ),‖ ·‖N1,p(X )

)
is a Banach space.

Let Ω ⊂ X open. We can naturally consider Ω as a metric space in its
own right (with the restrictions of d and μ). Therefore, we can define the
Newtonian space N1,p(Ω) by substituting X with Ω in N1,p(X ).

The corresponding local Newtonian space is defined by u ∈ N1,p
loc (Ω) if

u ∈ N1,p(Ω′) for all Ω′ �Ω, see [3]. Here Ω′ �Ω means that Ω′ is a compact
subset of Ω.

As already anticipated, in Rn, equipped with the n–dimensional Lebesgue
measure and the Euclidean metric, this definition coincides with the clas-
sical definition of Sobolev spaces. We note that, the concept of an upper
gradient and thus of Newtonian spaces can be defined in any metric space.
For more information regarding Newtonian spaces, we refer the reader to
[59, 36, 3, 29].

2.2 Parabolic function spaces

Since the papers [II] and [III] deal with a time dependent (parabolic)
problem, we need suitable function spaces in which such objects can be
properly defined. More specifically, the spaces we consider rely on Bochner’s
theory for Banach space-valued functions.

Let T > 0 and B be a Banach space equipped with the norm ‖ · ‖B. A
function ρ : (0,T) → B is called a simple function if there exist vectors
v1, . . . ,vn ∈ B and a partition E1, . . . ,En of measurable and pairwise disjoint
subsets of (0,T) such that

ρ =
n∑

i=1

vi1Ei . (2.2)

A function u : (0,T) → B is called strongly measurable (in the sense of
Bochner) if there is a sequence (ρk)k∈N of simple functions, such that u(t) is
the limit of ρk(t) as k →∞ for a.e. t ∈ (0,T).

Let 〈·, ·〉 denote the pairing between B and its dual space B∗. A function
u : (0,T) → B is called weakly measurable (in the sense of Pettis) if the
mapping t �→ 〈v∗,u(t)〉 is Lebesgue measurable for all v∗ ∈ B∗. Furthermore,
u is called essentially separably valued if there exists a subset N ⊂ (0,T)
such that u((0,T) \ N) is a separable subset of B and μ(N) = 0. By Pettis’
measurability theorem [32], a function u : (0,T)→ B is strongly measurable
if and only if it is essentially separably valued and weakly measurable.
Therefore, we see that if B is a separable Banach space, then the strong
and weak measurability are equivalent.

For a simple function ρ : (0,T) → B as in (2.2), we define the Bochner
integral by ∫ T

0
ρ(t) dt =

n∑
i=1

viμ(Ei).
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Notice that, the Bochner integral of a simple function is well defined in B
since we have ∥∥∥∥∫ T

0
ρ(t) dt

∥∥∥∥≤
n∑

i=1

‖vi‖μ(Ei)<∞.

A strongly measurable function u : (0,T)→ B is called Bochner integrable if
for the sequence (ρk)k∈N in the definition of the strong measurability of u
there holds

lim
k→∞

∫ T

0
‖ρk(t)−u(t)‖B dt = 0.

The Bochner integral of a Bochner integrable function u is then defined as∫ T

0
u(t) dt = lim

k→∞

∫ T

0
ρk(t) dt ∈ B.

In [32], it is shown that a function u : (0,T) → B is Bochner integrable if
and only if its norm ‖u‖B : (0,T)→ [0,∞) is Lebesgue integrable.

The next step is to define function spaces for Banach space-valued func-
tions. A Bochner-measurable function u : (0,T) → B belongs to the space
Lp(0,T;B), for 1≤ p <∞, if

‖u‖Lp(0,T;B) =
(∫ T

0
‖u(t)‖p

B dt
) 1

p

<∞.

If p =∞, we say the function u belongs to the space L∞(0,T;B) if

‖u‖Lp(0,T;B) = esssup
t∈(0,T)

‖u(t)‖B <∞.

The space C0([0,T];B) consists of continuous functions u : [0,T] → B for
which there holds

‖u‖C0([0,T];B) = max
t∈[0,T]

‖u(t)‖B <∞.

For α ∈ (0,1), the space C0,α([0,T];B) consists of functions u in C0([0,T];B)
for which there additionally holds

sup
s,t∈[0,T]

‖u(s)−u(t)‖B

|s− t|α <∞.

In our work, we mainly choose B = N1,p(Ω) and similar spaces for a bounded
and open subset Ω⊂ X . We study functions u that depend on the spatial
variable x but also on a time variable t. In this Bochner’s theory, we have
that the functions depend only on the time variable and their values are
functions that depend on the spatial variable. Therefore, we need to make
sure that these different perspectives are consistent.

With this in mind, let 1≤ p <∞ and consider a function u ∈ Lp(ΩT ), where
ΩT =Ω× (0,T) is a space-time cylinder with Ω⊂ X open and bounded. By
Fubini’s theorem, for a.e. t ∈ (0,T) the mapping

u(t) :Ω→R, x �→ u(x, t),

16



Basic concepts and preliminary results

belongs to Lp(Ω) and we have

‖u‖p
Lp(ΩT ) =

∫
ΩT

|u|p d(μ⊗L1)=
∫ T

0

∫
Ω
|u(x, t)|p dμdt

=
∫ T

0
‖u(t)‖p

Lp(Ω) dt = ‖u‖p
Lp(0,T;Lp(Ω)),

where L1 denotes the Lebesgue measure on R. To be able to show that
u ∈ Lp(0,T;Lp(Ω)), we need to establish strong measurability (in the sense
of Bochner). Since Lp(Ω) is a separable Banach space, by Pettis’ theorem it
is enough to prove that the mapping t �→ 〈u(t),v〉 is Lebesgue measurable
for any v ∈ Lq(Ω), where q is the Hölder-conjugate of p. Therefore, consider
v ∈ Lq(Ω) and extend it to v ∈ Lq(ΩT ) independently of the time variable.
Then, by Hölder’s inequality, uv ∈ L1(ΩT ) and by Fubini’s theorem we get

∞>
∫
ΩT

|uv| d(μ⊗L1)=
∫ T

0

∫
Ω
|u(t) ·v| dμdt

≥
∫ T

0

∣∣∣∣∫
Ω

u(t) ·v dμ
∣∣∣∣ dt =

∫ T

0
|〈u(t),v〉| dt.

Thus, the mapping t �→ 〈u(t),v〉 is Lebesgue integrable, and therefore,
Lebesgue measurable. Since v ∈ Lq(Ω) was arbitrary, this means that
u is weakly measurable, as wanted. Lastly, Pettis’ theorem implies that u
is strongly measurable. Hence, u ∈ Lp(0,T;Lp(Ω)).

We now show the opposite direction. Let u ∈ Lp(0,T;Lp(Ω)). Then there is
a sequence (ρk)k∈N of simple functions

ρk(t)=
nk∑
i=1

v(k)
i 1E(k)

i
(t),

with some nk ∈ N, v(k)
i ∈ Lp(Ω) for i = 1, . . . , nk and a partition E(k)

1 , . . . ,E(k)
nk

of measurable subsets of (0,T), such that ρk → u pointwise a.e. on (0,T)
and in Lp(0,T;Lp(Ω)), respectively, as k →∞. The functions ρk are (μ⊗L1)-
measurable and belong to Lp(ΩT ). Because of the equality of the norms in
Lp(ΩT ) and Lp(0,T;Lp(Ω)) and the convergence of ρk to u in Lp(0,T;Lp(Ω)),
the sequence (ρk)k∈N is a Cauchy-sequence in Lp(ΩT ). Since Lp(ΩT ) is a
complete space, there is a ũ ∈ Lp(ΩT ) such that ρk → ũ ∈ Lp(ΩT ) as k →
∞. Since Lp(ΩT ) ⊂ Lp(0,T;Lp(Ω)), we have that u and ũ coincide, which
gives us, Lp(0,T;Lp(Ω))⊂ Lp(ΩT ). This concludes the proof that these two
function spaces and the different concepts of measurability are equivalent.
This in turn, allows us to consider functions in Lp(0,T;Lp(Ω)) as functions
in space and time, depending on two variables.

2.2.1 Parabolic upper gradients and parabolic Newtonian spaces

Let us now consider the space Lp(0,T; N1,p(Ω)), for 1≤ p <∞. It is easy to
see that Lp(0,T; N1,p(Ω)) is contained in the space Lp(0,T;Lp(Ω)). Functions
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u in this so-called parabolic Newtonian space take values in N1,p(Ω) for a.e.
t ∈ (0,T), so on these time slices we can find the minimal upper gradient
gu(t). We now know that u can be seen as a function of two variables,
therefore is it natural to ask if the same applies to the mapping t �→ gu(t).

Since u ∈ Lp(0,T; N1,p(Ω)), there is a sequence (ρk)k∈N of simple functions

ρk(t)=
nk∑
i=1

v(k)
i 1E(k)

i
(t),

with some nk ∈N, v(k)
i ∈ N1,p(Ω) for i = 1, . . . ,nk and a partition E(k)

1 , . . . ,E(k)
nk

of measurable subsets of (0,T), such that ρk → u pointwise a.e. on (0,T)
and in Lp(0,T; N1,p(Ω)), respectively, as k →∞. Since the E(k)

i are pairwise
disjoint, we find that

gρk(t) =
nk∑
i=1

gv(k)
i
1E(k)

i
(t),

The mappings (0,T) � t �→ gρk(t) are simple functions with values in Lp(Ω).
Furthermore, we have

‖gρk(t) − gu(t)‖Lp(Ω) ≤ ‖g(ρk(t)−u(t))‖Lp(Ω) ≤ ‖ρk(t)−u(t)‖N1,p(Ω) → 0,

consequently,∫ T

0
‖gρk(t) − gu(t)‖p

Lp(Ω) dt ≤
∫ T

0
‖g(ρk(t)−u(t))‖p

Lp(Ω) dt

≤
∫ T

0
‖ρk(t)−u(t)‖p

N1,p(Ω) dt → 0,

as k → ∞. Thus, we have that the mapping t �→ gu(t) is in the space
Lp(0,T;Lp(Ω)), as expected.

Thanks to the equivalence between Lp(0,T;Lp(Ω)) and Lp(ΩT ), we can
give a well posed definition of the parabolic upper gradient gu of functions
u ∈ Lp(0,T; N1,p(Ω)), that is

gu(x, t)= gu(·,t)(x),

for (μ⊗L1)-a.e. (x, t) ∈ΩT .

2.3 Poincaré inequalities and Sobolev embeddings

Throughout our work, we make two rather standard, yet nontrivial, as-
sumptions. We require that the metric space X supports a doubling mea-
sure μ and a weak (1, p)–Poincaré inequality. In this section we discuss
with detail these different notions.
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2.3.1 Doubling measures

A positive Borel regular measure is said to be doubling if there exists a
constant Cd > 0, called the doubling constant, such that

μ(B(x,2r))≤ Cdμ(B(x, r)),

for every x ∈ X and for all r > 0. The doubling condition implies the following
growth condition. For all x, y ∈ X and R ≥ r we have

μ(B(y, r))
μ(B(x,R))

≥ C
( r

R

)Q
, (2.3)

where Q = log2 Cd and C = C−2
d . The Euclidean space RN is doubling with

the doubling constant 2N and the best exponent in (2.3) is Q = N. Therefore,
the constant Q is sometimes called the doubling dimension. It serves as a
counterpart of dimension for our space, it implies that a metric space with
a doubling measure is in some sense finite-dimensional.

A metric space equipped with a doubling measure has many useful prop-
erties. For example, such a space is always locally compact. In addition,
if the space is complete, then it is proper, meaning that its closed and
bounded subsets are compact. Furthermore, in a space with a doubling
measure we have Vitali-type covering theorems, see [29]. Vitali’s theorem
then implies Lebesgue’s differentiation theorem, i.e. for every non-negative
locally integrable function u of X and μ-almost every x ∈ X there holds

lim
r↘0

−
∫

B(x,r)
udμ= u(x).

2.3.2 Weak Poincaré inequality

Since we need a connection between the upper gradient and the function
itself, we also assume that (X ,d,μ) is a metric measure space supporting a
weak (1, p)-Poincaré inequality. A metric measure space is said to support
a weak (1, p)-Poincaré inequality if there exist a constant CP > 0 and a
dilation factor λ> 1, such that

−
∫

B(x,r)
|u−uB(x,r)| dμ≤ CP r

(
−
∫

B(x,λr)
gp

u dμ
) 1

p

,

for every u ∈ N1,p(X ) and B(x, r)⊂ X . Here,

uB(x,r) =−
∫

B(x,r)
u dμ= 1

μ(B(x, r))

∫
B(x,r)

u dμ.

In the literature, the case when λ = 1 is only called Poincaré inequality.
For our results, λ > 1 is sufficient and therefore, we sometimes call it a
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Poincaré inequality and omit “weak”. A point worth mentioning is that,
the property of supporting a weak Poincaré inequality is preserved under
biLipschitz transformations of X . On the contrary, Poincaré inequalities
need not be preserved, see [3].

Supporting a Poincaré inequality entails many geometric properties for a
metric space. Some of these implications are fundamental in our work. An
immediate consequence is that a space supporting a Poincaré inequality
has to be connected, [3]. Moreover, with the Poincaré inequality, we get
a relation between the oscillation of u and its minimal p-weak upper
gradient, via the underlying measure μ. As we know, when working in the
usual Euclidean space Rn, a (1, p)-Poincaré inequality is always available
for any 1< p <∞.

2.3.3 Sobolev embeddings

One essential implication of working with a doubling measure μ and a weak
(1, p)-Poincaré inequality, is that together they imply a Sobolev embedding.
More specifically, if X is a metric measure space equipped with a doubling
measure μ and supporting a weak (1, p)-Poincaré inequality, then there
exist positive constants C > 0 and λ≥ 1 such that(

−
∫

B(x,r)
|u−uB(x,r)|t dμ

) 1
t

≤ Cr
(
−
∫

B(x,λr)
gp

u dμ
) 1

p

, (2.4)

where t > p. For more details, see [27].
Let 1< p <∞. The smaller the exponent p, the stronger the (1, p)-Poincaré

inequality. Indeed, if X supports a weak (1, p)-Poincaré, then, by Hölder
inequality, it supports a weak (1, p′)-Poincaré for all p′ > p. Another impor-
tant result we use, is a self-improving property for the Poincaré-inequality,
established by Keith and Zhong in 2008 [35]. This principle says that if
a complete metric space X is equipped with a doubling measure μ and
supports a weak (1, p)-Poincaré inequality, then there exists ε> 0 for which
X supports a (1, s)-Poincaré inequality for all p−ε < s < p. This plays an
important role in the higher integrability results in [IV].

2.3.4 Newtonian spaces with zero boundary values

The p-capacity of a set E ⊂ X is the number

Cp(E)= inf
u
‖u‖p

N1,p(X ),

where the infimum is taken over all u ∈ N1,p(X ), such that u ≥ 1 on E. This
capacity is sometimes referred to as the Sobolev capacity. We say that a
property holds p-quasieverywhere (p-q.e.) if the set of points for which it
does not hold has p-capacity zero.
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In articles [I] and [IV] we work with boundary value problems. To be
able to compare boundary values of Newtonian functions and solve the
associated Dirichlet problem we need the concept of Newtonian spaces with
zero boundary values.

Let Ω be an open and bounded subset of X . We define N1,p
0 (Ω) to be the

set of functions u ∈ N1,p(X ) that are zero on X \Ω p-q.e. The space N1,p
0 (Ω)

is equipped with the norm ‖ · ‖N1,p . Note also that if Cp(X \Ω) = 0, then
N1,p

0 (Ω)= N1,p(X ). We shall therefore always assume that Cp(X \Ω)> 0. We
state relevant results regarding these spaces with more detail in Section
2.5 of [IV].

2.3.5 Variational capacity

For a measurable set E ⊂Ω, the variational capacity is defined as

capp(E,Ω)= inf
u

∫
Ω

gp
u dμ,

where the infimum is taken over all u ∈ N1,p
0 (Ω) such that u ≥ 1 on E. The

variational capacity is sometimes referred to as the relative capacity. One
can show that if the space X is equipped with a doubling measure and
supports a weak p-Poincaré inequality, then there exists a positive constant
C such that

μ(E)
Crp ≤ capp(E,B(x,2r))≤ Cμ(B(x, r))

rp , (2.5)

when E ⊂ B(x, r). The last inequality allows us to estimate the variational
capacity of a set, see [4]. Furthermore, it is possible to compare the
capacities, capp and Cp, and show that they are in many cases equivalent,
see [6].

The variational capacity can be used to give some sort of regularity
condition for the boundary of a set without actually having to define
the boundary as a curve. This is done by defining a so called thickness
condition, we say that a set E is uniformly p-fat if there exist positive
constants C0 and r0 such that for all x in E and 0< r < r0 we have

capp(E∩B(x.r),B(x,2r))≥ C0capp(B(x, r),B(x,2r)).

As with the weak Poincaré inequality, the uniform p-fatness also satisfies
a self-improving property. Namely, let X be proper, linearly locally convex
and equipped with a doubling measure. If a set E ⊂ X is uniformly p-fat
with p > 1, and X supports a weak (1, p)-Poincaré inequality, then E is also
uniformly p0-fat for some 1< p0 < p, see [6].

A space X is called linearly locally convex if there exists constants C1 > 0
and r1 > 0 such that for all balls B(x, r) in X with radius at most r1, every
pair of distinct points in the annulus B(x,2r)\ B(x, r) can be connected by a
curve lying in the annulus B(x,2C1r)\ B(x,C−1

1 r).
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The following proposition is a capacity version of the Sobolev-Poincaré
inequality (2.4), also referred as Maz’ya type estimate. The proof is a
straightforward generalization of the Euclidean case and it can be found
in [4].

Let X be a doubling metric measure space supporting a weak (1, p)-
Poincaré inequality. Then there exists C and λ≥ 1 such that for all balls B
in X , u ∈ N1,p(X ) and S = {x ∈ 1

2 B : u(x)= 0}, then(
−
∫

B
|u|t dμ

) 1
t

≤
(

C
capp(S,B)

∫
λB

gp dμ
) 1

p

, (2.6)

for C depending on CPI and t > p.
The concepts presented in this subsection are mainly used in article [IV],

where we prove higher integrability up to the boundary. For more details
we refer the reader to [3, 6] and the references therein.

Next we move on to discuss in more detail the results established in
articles [I]-[IV].
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3. Total variation flow on metric
measure spaces

In the Euclidean case, the total variation flow (TVF) corresponds to the
partial differential equation

∂u
∂t

−div
(

Du
|Du|

)
= 0 on ΩT =Ω× (0,T),

where Ω ⊂ RN is an open set and T > 0. This can be seen as the limiting
case of the evolution (parabolic) p-Laplace equation

∂u
∂t

−div
(
Du|p−2Du

)= 0 1< p <∞,

as p → 1. The investigation of parabolic problems on metric measure
spaces started not long ago with the work of Kinnunen, Marola, Miranda
and Paronetto [38], concerning regularity problems. Since then, most
contributions in this field of research have been made to stability theory
[23], and regularity problems [54].

The motivation for the TVF arises from the image processing problems,
[2]. Therefore, it is natural that the main interest has been directed
towards questions such as the asymptotic behavior of solutions to the
TVF or numerical aspects. As far as we know, this is the first time when
existence and regularity questions are discussed for parabolic problems
with linear growth on metric measure spaces. Our intention is to prove
existence and regularity of the solutions. To this end, we take a purely
variational approach to the study of the TVF. The advantages of this
approach include better convergence and stability properties. This is an
essential advantage as the solutions naturally lie in the space of bounded
variation (BV functions), [1].

Before we discuss the results and preliminaries of papers [II] and [III],
let us first have a look at the space BV and its associated parabolic spaces.
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3.1 Functions of bounded variation and parabolic spaces

The total variation flow does not have any regularizing effects, therefore
it is natural to expect that the existence of solutions is related to the
class of functions of bounded variation (BV functions), see [1]. We are
mainly interested in local properties such as existence and regularity of
the solutions. In order to reach these goals, there is a need to develop a
new theory for the study of TVF based on a variational definition for the
solution.

Functions of bounded variation, abbreviated as BV functions, are a some-
what more general class than Sobolev functions, in the sense that they may
have discontinuities and even “jumps”, but are nontheless differentiable
in a very weak sense. The class has many applications, for example, as
generalized solutions to partial differential equations with linear growth
conditions, which often arise in calculus of variations, physics and image
processing.

For an open and bounded set Ω⊂Rn and u ∈ L1
loc(Ω) the total variation is

defined as

‖Du‖(Ω)= sup
{∫

Ω
udiv(ϕ) dx : ϕ ∈ C1

c (Ω;Rn), ‖ϕ‖L∞(Ω) ≤ 1
}

. (3.1)

We have as well that, in the Euclidean setting, functions of bounded vari-
ation are defined as integrable functions whose weak partial derivatives
are Radon measures of finite mass. In the metric setting, we again need a
somewhat different definition, which at the end turns out equivalent to the
one we already have in Euclidean spaces. Therefore, for an open subset
Ω of the metric measure space (X ,d,μ), the total variation of u ∈ L1

loc(Ω) is
defined as

‖Du‖(Ω)= inf
{

liminf
i→∞

∫
Ω

gui dμ
}

,

where the infimum is taken over all sequences (ui)i∈N with ui ∈ Liploc(Ω)
for every i ∈N and ui → u in L1

loc(Ω) as i →∞. Here gui is a 1-weak upper
gradient of ui and Liploc(Ω) denotes the class of functions that are Lipschitz
continuous on compact subsets of Ω. We say that a function u ∈ L1(Ω) is
of bounded variation, and denote u ∈ BV (Ω), if ‖Du‖(Ω) <∞. We refer to
this definition of the total variation as the relaxation approach. For more
details, see [10, 57] and the references therein.

3.1.1 BV space via derivations

When working with the total variation flow, one cannot simply set p = 1 in
the parabolic function space Lp(0,T; N1,p(Ω)), since the Newtonian space
N1,1 lacks important properties such as reflexivity. Therefore, it is replaced
by BV , the space of functions with bounded variation. Unfortunately,
choosing the space L1(0,T;BV (Ω)) still is not appropriate for our tasks,
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since Bochner measurability is too restrictive to ask, see Section 2.2. To
this end, we consider a weak version of this parabolic space, denoted
by L1

w(0,T;BV (Ω)). The Bochner measurability for Banach space valued
functions is replaced by a weaker measurability condition that makes use
of the so called derivation approach for BV . In this short section we see
what the concept of derivation entails.

In paper [II], we focus on how to overcome certain difficulties given by
working in the setting of metric measure spaces. The main difficulty is
given by the fact that the standard definition (relaxation approach) of the
space BV on a metric measure space does not rely on an integration by
parts formula, like (3.1), and therefore it is unsure if BV can be charac-
terized as the dual space of a separable Banach space, as suggested by
[1]. This complicates finding a weak measurability condition similar to the
one posed in [8], and other works concerning the total variation flow and
functionals with linear growth. To overcome this obstacle, and to be able
to give a suitable definition of a parabolic function space, we make use of
an alternative approach.

In [19], Di Marino introduced a concept that allows a characterization of
BV via an integration by parts formula. It is based on so-called derivations,
i.e. mappings on the space of Lipschitz functions with bounded support.
Since the space X is proper, we consider Lipc (set of Lipschitz functions
with compact support) instead. Let L0(X ) denote the space of measurable
functions on X . By a (Lipschitz) derivation we denote a linear map d :
Lipc(X )→ L0(X ) such that the Leibniz rule

d( f g)= f d(g)+ gd( f )

holds true for all f , g ∈ Lipc(X ), and for which there exists a function
h ∈ L0(X ) such that for μ-a.e. x ∈ X and all f ∈Lipc(X ) there holds

|d( f )|(x)≤ h(x) ·Lipa( f )(x), (3.2)

where Lipa( f )(x) denotes the asymptotic Lipschitz constant of f at x. The
set of all such derivations is be denoted by Der(X ). The smallest function
h satisfying (3.2) is denoted by |d|, and we write d ∈ Lp(X ) when we mean
to say |d| ∈ Lp(X ).

For given d ∈Der(X ) with d ∈ L1
loc(X ) we define the divergence operator as

div(d) :Lipc(X )→R

f �→ −
∫

X
d( f ) dμ.

We say that div(d) ∈ Lp(X ), if this operator admits an integral representa-
tion via a unique Lp-function h̃, i.e.∫

X
d( f )dμ=−

∫
X

h̃ f dμ.
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For all p, q ∈ [1,∞], we set

Derp(X )={d ∈Der(X ) : d ∈ Lp(X )
}

,

and
Derp,q(X )={d ∈Der(X ) : d ∈ Lp(X ), div(d) ∈ Lq(X )

}
.

When p =∞= q we write Derb(X ) instead of Der∞,∞(X ). For u ∈ L1(X ) we
say that u is of bounded variation (in the sense of derivations) in X , denoted
u ∈ BVd(X ), if there is a linear and continuous map Lu : Derb(X ) → M(X )
such that ∫

X
dLu(d)=−

∫
X

udiv(d) dμ, (3.3)

for all d ∈Derb(X ) and satisfying Lu(hd)= hLu(d) for any bounded h ∈Lip(X ),
where M(X ) denotes the space of finite signed Radon measures on X . This
characterization of BV , in the sense of derivations, is well-posed, see
[19]. If we take any two maps Lu, L̃u as in (3.3), the Lipschitz-linearity
of derivations ensures that Lu(d) = L̃u(d) μ-a.e. for all d ∈ Derb(X ). The
common value is then denoted by Du(d).

An important result is that for a complete and separable metric mea-
sure space (X ,d,μ) with a locally finite measure μ (as in our case) the
spaces BV (X ) and BVd(X ) are equivalent. Hence, we obtain the following
representation formula

‖Du‖(Ω)= sup
{∫

Ω
udiv(d) dμ : d ∈Derb(X ), supp(d)�Ω, |d| ≤ 1

}
,

as a generalization of (3.1). For further details, see [12, 28, 57].
The derivation approach allows us now to give a suitable definition of our

weak parabolic function space. More specifically, the space L1
w(0,T;BV (Ω))

consists of those v in L1(ΩT ), for which there holds:

1. v(·, t) ∈ BV (Ω) for a.e. t ∈ (0,T),

2.
∫ t

0 ‖Dv(t)‖(Ω)dt <∞,

3. the mapping t �→ v(·, t) is weakly measurable, i.e. the mapping

(0,T) � t �→
∫
Ω

v(t)div(d)dμ, (3.4)

is measurable for all d ∈Derb(Ω) with supp(d)�Ω.

3.2 Existence of parabolic minimizers to the total variation flow

This section is devoted to a joint work [II] with Buffa and Collins on
the existence of parabolic minimizers to the total variation flow on metric
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measure spaces, see [12]. More precisely, we consider minimizers of integral
functionals that are related to scalar functions u :Ω×(0,T)→R which satisfy
the inequality∫∫

ΩT

u∂tϕ dμdt+
∫ T

0
‖Du(t)‖(Ω) dt ≤

∫ T

0
‖D(u+ϕ)(t)‖(Ω) dt, (3.5)

for all test functions ϕ ∈Lipc(ΩT ) where ‖Du(t)‖(Ω) denotes the total vari-
ation of u(·, t) on Ω. Here, Ω ⊂ X is a bounded domain, where (X ,d,μ) is
a complete, separable and connected metric space with a metric d and
endowed with a Borel doubling measure μ. In addition to the doubling
property, we demand that the metric measure space (X ,d,μ) supports a
weak (1,1)-Poincaré inequality.

This project generalizes the results given in [8], while considering the
case where the functional depends only on the total variation.

Existence for parabolic problems on metric measure spaces has already
been dealt with in [15], this paper treats time-dependent boundary data,
the author considered integral functionals with p-growth for p > 1. We
recall that the total variation flow corresponds to the case p = 1. In the
elliptic case, existence for functions of least gradient has been considered
by Korte, Lahti, Li and Shanmugalingam in [43].

Once having a reasonable definition of the parabolic function space where
our concept of solution lies, see Section 3.1, our method of proof is aligned
to the one proposed in the work of Bögelein, Duzaar and Marcellini [8].

3.2.1 Assumptions and definitions

Since traces of BV -functions are a delicate issue, we have to be careful on
how to formulate the Cauchy-Dirichlet problem. We follow an approach
that is well known in the Euclidean case and can also be applied in the
metric setting.

We consider an open and bounded domain Ω∗ that is slightly larger than
Ω, i.e. Ω�Ω∗. For given u0 ∈ BV (Ω∗), we denote u ∈ BVu0 (Ω) if and only
if u ∈ BV (Ω∗) and u = u0 μ-a.e. in Ω∗ \Ω. The condition on the lateral
boundary can then be understood in the sense that u(·, t) ∈ BVu0 (Ω) for a.e.
t ∈ (0,T). Furthermore, we consider an initial datum

u0 ∈ BV (Ω∗)∩L2(Ω∗). (3.6)

Based on this, a map u : Ω∗
T → R, T ∈ (0,∞) in the class L1

w(0,T;BVu0 (Ω))∩
C0

(
[0,T];L2(Ω∗)

)
is a variational solution on ΩT to the Cauchy-Dirichlet

problem for the total variation flow if and only if the variational inequality∫ T

0
‖Du(t)‖(Ω∗) dt ≤

∫ T

0

[∫
Ω∗

∂tv(v−u)dμ+‖Dv(t)‖(Ω∗)
]

dt

− 1
2
‖(v−u)(T)‖2

L2(Ω∗) +
1
2
‖v(0)−u0‖2

L2(Ω∗) (3.7)
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holds for any v ∈ L1
w(0,T;BVu0 (Ω)) with ∂tv ∈ L2(Ω∗

T ) and v(0) ∈ L2(Ω∗). More-
over, a map u : Ω∗∞ → R is termed a global variational solution if u ∈
L1

w(0,T;BVu0 (Ω))∩C0
(
[0,T];L2(Ω∗)

)
for any T > 0, and u is a variational

solution on ΩT for any T ∈ (0,∞).
On the other hand, we say that a measurable function u : Ω∗∞ → R is a

parabolic minimizer to the total variation flow if and only if for any T > 0
one has u ∈ L1

w(0,T;BVu0 (Ω)) together with the following condition∫ T

0

(∫
Ω∗

u ·∂tϕdμ+‖Du(t)‖(Ω∗)
)

dt ≤
∫ T

0
‖D(u+ϕ)(t)‖(Ω∗) dt (3.8)

for all ϕ ∈Lipc(Ω∗
T ).

3.2.2 Main results

The main results in paper [II] concern the existence, uniqueness and regu-
larity of variational solutions, see Theorem 2.8 and Theorem 2.9 in [12].
More specifically, we show the existence of a unique global variational
solution. In addition, we prove that any variational solution on ΩT with
T ∈ (0,∞] satisfies

∂tu ∈ L2(Ω∗) and u ∈ C0, 1
2
(
[0,τ];L2(Ω∗)

)
for all τ ∈R∩ (0,T]. (3.9)

Furthermore, for the time derivative ∂tu there holds the quantitative
bound ∫ T

0

∫
Ω∗

|∂tu|2 dμdt ≤ ‖Du0‖(Ω∗). (3.10)

Finally, for any t1, t2 ∈R with 0≤ t1 < t2 ≤ T one has the energy estimate

1
t2 − t1

∫ t2

t1

‖Du(t)‖(Ω∗)dt ≤ ‖Du0‖(Ω∗). (3.11)

Moreover, it is shown that variational solutions are also parabolic mini-
mizers, which implies the existence of the latter, see Prop. 6.2 in [12]. In
the overall context, this last result is of high importance for the author of
this dissertation, since it ties the existence theory of paper [II] with the
regularity theory of paper [III], as we will see ahead.

3.2.3 Remarks on the method of proof

As already mentioned, our method of proof is based on the approach in
[8]. Before we explain the actual existence proof, we talk about a few
preliminary results and tools that helped us achieve it.

Smoothing procedures in time
As variational solutions lack the appropriate time-regularity, they are
in general not admissible as comparison maps in (3.7). This is why a
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mollification procedure with respect to time (also known as time-smoothing)
has to be performed. Let X be a Banach space, and v0 ∈ X . Consider some
v ∈ Lr(0,T; X ) for some 1 ≤ r ≤∞, and define for h ∈ (0,T] and t ∈ [0,T] the
mollification in time by

[v]v0
h (t)= e−

t
h v0 + 1

h

∫ t

0
e−

s−t
h v(s) ds.

Regarding the basic properties of the mollification [·]v0
h , we refer the

reader to [7, 16].
In [12], we first show that the space L1

w(0,T;BV (Ω)) is closed under time-
smoothing. This mollification technique makes it possible to show that the
time derivative of a variational solution exists and belongs to L2.

Localization on subcylinders
Next, we show that a variational solution on Ω∗

T is also a variational
solution on any subcylinder Ω∗

t1,t2
, with 0≤ t1 < t2 ≤ T.

To obtain this, we consider a comparison function for the subcylinder, i.e.
v ∈ L1

w(t1, t2;BVu0 (Ω)) with ∂tv ∈ L2(Ω∗
t1,t2

) and v(t1) ∈ L2(Ω∗). We consider a
specific cutoff function ζθ(t), for a fixed θ in the interval (0, 1

2 (t2 − t1)). We
then use ṽ = ζθv+(1−ζθ)[u]u0

h as a comparison function in (3.7). By rewriting
terms, using the convexity of the total variation and exploiting properties
of the mollification in time, we then find that the variational inequality
holds on the subcylinder.

The initial condition
We now make use of the localization described above to show that varia-
tional solutions attend the initial datum u0 in the L2-sense, meaning

lim
t↘0

‖u(t)−u0‖2
L2(Ω∗) = 0.

Since u0, as in (3.6), is admissible as a comparison function in the varia-
tional inequality on any subcylinder Ω∗

τ for τ ∈ (0,T). We have∫ τ

0
‖Du(t)(Ω)‖ dt+ 1

2
‖u(τ)−u0‖2

L2(Ω∗) ≤ τ‖Du0‖(Ω)<∞.

By discarding the first term on the left-hand side and then letting τ↘ 0 we
obtain the assertion.

Regularity of variational solutions
Our next aim is to prove the regularity properties (3.9), (3.10) and (3.11)
for a variational solution. To this end, let ũ(s) = u(s+ t1) for 0 ≤ t1 < t2 ≤
T and s ∈ (0, t2 − t1). Then, ũ fulfills the variational inequality (3.7) on
the subcylinder Ω∗

t2−t1
with initial datum u(t1). We test this variational
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inequality with v = [ũ]u(t1)
h . We then arrive at∫ t2−t1

0

∫
Ω∗

|∂t[ũ]u(t1)
h |2 dμdt ≤ ‖Dũ(0)‖(Ω∗)−[‖Dũ(t)‖(Ω∗)

]‖Dũ(0)‖(Ω∗)
h (t2 − t1)

≤ ‖Dũ(0)‖(Ω∗).

By letting h � 0, we infer the existence of ∂tu ∈ L2(Ω∗
t2−t1

). Furthermore,
the previous inequality yields∫ t2−t1

0

∫
Ω∗

|∂t ũ|2 dμdt ≤ ‖Dũ(0)‖(Ω∗)−‖Dũ(t2 − t1)‖(Ω∗),

and ∫ t2

t1

∫
Ω∗

|∂tu|2 dμdt ≤ ‖Du(t1)‖(Ω∗)−‖Du(t2)‖(Ω∗),

respectively. The latter estimate holds true for a.e. 0 ≤ t1 < t2 ≤ T and in
particular for t1 = 0 and t2 = T. In the case T =∞, we simply let t2 →∞.
This estimate also implies

‖u(t2)−u(t1)‖2
L2(Ω∗) ≤ |t1 − t2|‖Du0‖(Ω∗),

and ∫
Ω∗

|u(T)|2 dμ≤ 2t‖Du0‖(Ω∗),

from which we infer u ∈ C0, 1
2 ([0,τ];L2(Ω∗)) for any τ ∈R∩ (0,T].

To establish the estimate (3.11), we use the just established fact that
∂tu ∈ L2(Ω∗

T ), to apply an integration by parts to the variational inequality
(3.7) which yields∫ τ

0
‖Du(t)‖(Ω∗) dt ≤

∫ τ

0

[∫
Ω∗

∂tu(v−u)dμ+‖Dv(t)‖(Ω∗)
]

dt,

for any τ ∈R∩ (0,T]. Now, for t1, t2 ∈R with 0≤ t1 < t2 ≤ τ we define a specific
ζt1,t2 (t) and let v = u+ ζt1,t2 ([u]u0

h − u). We see that v is indeed admissible
as a comparison function in the minimality condition on Ω∗

τ . Using the
convexity of the total variation and rearranging terms, then leads to

0≤−h
∫ t2

0

∫
Ω∗

ζt1,t2∂tu∂t[u]u0
h dμdt

+h
∫ t2

0
ζ′t1,t2

[‖Du(t)‖(Ω∗)]‖Du(0)‖(Ω∗)
h dt+h‖Du0‖(Ω∗).

Dividing both sides by h > 0 and letting h� 0 finally lets us obtain (3.11).

Uniqueness
To show the uniqueness of the variational solution, we use a comparison
principle, see Lemma 4.1 in [12]. The precise statement of the lemma is, if
one considers two variational solutions u and ũ, with initial data u0 and
ũ0, respectively, then u0 ≤ ũ0 μ-a.e on Ω∗ implies u ≤ ũ (μ⊗L 1)-a.e. on ΩT ,
see [12] for the complete proof. Applying this to two variational solutions
u, ũ with the same initial datum, we obtain uniqueness.
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The existence proof
Finally, we briefly explain the proof of the existence of variational solutions.
We consider the relaxed convex functionals

Fε[v]=
∫ T

0
e−

t
ε

[
1
2

∫
Ω∗

|∂tv|2 dμ+ 1
ε
‖Dv(t)‖(Ω∗)

]
dt,

for ε ∈ (0,1]. The properties of the total variation allow the application of
standard methods in the calculus of variations to ensure the existence of
minimizers uε of Fε. To prove the existence of these minimizers in our
setting, we apply a compactness result by Simon, see Theorem 1 in [61].

Energy estimates
Now, the sequence of minimizers (uε) are expected to converge to a varia-
tional solution (an therefore to a parabolic minimizer), based on an idea
in the Euclidean case. For this, we first establish the following energy
estimate∫ T

0
ζ(t)‖Duε(t)‖(Ω∗)dt ≤

∫ T

0
ζ(t)‖D(uε+ϕ)(t)‖(Ω∗)dt+

∫ T

0

∫
Ω∗

ζ∂tuεϕdμdt

+ε

∫ T

0

∫
Ω∗

[
ζ′∂tuεϕ+ζ∂tuε∂tϕ

]
dμdt,

for any Lipschitz map ζ : (0,T)→ [0,1] and any test function ϕ ∈ L1
w(0,T;BV0(Ω))

with ∂tϕ ∈ L2(Ω∗
T ) satisfying∫ T

0
‖D(uε+ϕ)(t)‖(Ω∗)dt <∞,

and such that either ζ(0)= 0 and ϕ(0) ∈ L2(Ω∗) or ϕ(0)= 0.
With this energy estimate we are able to get the next inequalities∫ T

0

∫
Ω∗

|∂tuε|2 dμdt ≤ ‖Du0‖(Ω∗),

and ∫ t2

t1

‖Duε(t)‖(Ω∗)dt ≤
(

t2 − t1 + ε

2

)
‖Du0‖(Ω∗).

These last estimates allow us to obtain uniform bounds for uε in L2(Ω∗
T )

and C0, 1
2 ([0,T];L2(Ω∗)), as well as establish uniform bounds for ∂uε.

The limit procedure
Again, using Simon’s compactness result [61], the previous uniform bounds
for (uε) allow us to extract a subsequence, that we shall still denote by (uε),
and find a measurable function u :Ω∗

T →R such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
uε → u strongly in L1(Ω∗

T ),

uε → u a.e on Ω∗
T ,

uε � u weakly in L2(Ω∗
T ),

∂tuε � ∂tu weakly in L2(Ω∗
T ).
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We then show that u ∈ L1
w(0, t : BVu0 (Ω)).

Finally, all that is left to prove is that u is indeed a variational solution.
Meaning, we prove that u satisfies the variational inequality (3.7).

3.3 Regularity of variational solutions

Once having existence of solutions to the total variation flow, our inter-
est turned into studying regularity theory to the TVF in general metric
measure spaces.

The regularity theory of nonlinear parabolic problems in the metric space
context has been developed and studied in [33, 34, 38, 51, 52, 53, 54]. All
of these results consider variational inequalities with p-growth for p > 1.
In paper [III], a joint work with Buffa and Kinnunen [13], our main goal is
to extend the results of DiBenedetto, Gianazza and Klaus [21] to a metric
measure space. Throughout the work, we assume that (X ,d,μ) is a complete
metric measure space endowed with a Borel measure μ. Furthermore, we
ask for the measure μ to be doubling and that the metric measure space
(X ,d,μ) supports a weak (1,1)-Poincaré inequality. Our assumption on the
time regularity of a variational solution is initially weaker than in [21]
and thus our results may be interesting also in the Euclidean case.

3.3.1 Variational solutions in metric measure spaces

As previously mentioned, the last important result in article [II] is that
any variational solution to the TVF is a parabolic minimizer. This is why,
in the context of paper [III], we say that a function u ∈ L1

loc(0,T;BVloc(Ω))
is a variational solution to the total variation flow in ΩT , with with Ω⊂ X
and 0< T <∞, if∫ T

0

(∫
Ω
−u(t)

∂ϕ

∂t
(t) dμ+‖Du(t)‖(Ω)

)
dt ≤

∫ T

0
‖D(u+ϕ)(t)‖(Ω) dt, (3.12)

for every ϕ ∈Lip(ΩT ) with suppϕ�ΩT .
It is worth mention that, if we take any test function ϕ̃ ∈ Lip(ΩT ) with

suppϕ̃�ΩT and define Φ(x, t)= ϕ̃(x,T − t), then testing (3.8) gives us (3.12),
but with ϕ̃ evaluated in (T − t). Since the resulting inequality holds for
any test function ϕ̃, we can infer that (3.8) implies (3.12). This is why, for
paper [III], we kept and worked with the definition given by DiBenedetto,
Gianazza and Klaus in [21].

Next we move on to discuss in more detail the results established in
article [III].
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3.3.2 Main results

In paper [III], we discuss a purely variational approach to the total vari-
ation flow on metric measure spaces with a doubling measure and sup-
porting a Poincaré inequality. We apply the concept of parabolic De Giorgi
classes, to prove a necessary and sufficient condition for a variational so-
lution to be continuous at a given point, in terms of sufficient fast decay
of the total variation of the function about the point. More specifically, if
u ∈ L1

loc(0,T;BVloc(Ω)) is a variational solution to the total variation flow in
ΩT . Then u is continuous at some (x0, t0) ∈ΩT if and only if

limsup
ρ→0+

ρ

(μ⊗L 1)(Q−
ρ,1(x0, t0))

∫ t0

t0−ρ
‖Du(t)‖(Bρ(x0)) dt = 0.

3.3.3 Remarks on the method of proof

Before we explain the actual continuity proof, we talk about a few prelimi-
nary results and tools that helped us achieve it.

Parabolic De Giorgi Class.
The first and, in many ways, most important step in the proofs of the regu-
larity results presented in this section, is to establish an energy estimate
for the variational solution. The regularity results (namely, continuity at
a given point), are then proved based only on this estimate, and on the
assumptions made on the underlying metric measure space.

In our case, the energy estimate comes in terms of belonging to a De
Giorgi class. Indeed, we say that a function u ∈ L1

loc(0,T;BVloc(Ω)) belongs
to the parabolic De Giorgi class DG±(ΩT ;γ), with γ> 0, if

esssup
t0−θρ≤t≤t0

∫
Bρ(x0)

ϕ(t)(u(t)−k)2
± dμ+

∫ t0

t0−θρ
‖D(ϕ(u−k)+)(t)‖(Bρ(x0)) dt

≤ γ

∫∫
Q−

ρ,θ(x0,t0)

∣∣∣∣∂ϕ∂t
(t)
∣∣∣∣ (u(t)−k)2

± dμ dt+γ

∫∫
Q−

ρ,θ(x0,t0)
gϕ(t)(u(t)−k)+ dμ dt

−
[∫

Bρ(x0)
ϕ(t)(u(t)−k)2

± dμ
]t0

t=t0−θρ
,

(3.13)

for every Q−
ρ,θ(x0, t0) = Bρ(x0)× (t0 −θρ, t0] �ΩT , k ∈ R and ϕ ∈ Lip(ΩT ) with

suppϕ�Bρ(x0)× (0,T) and 0≤ϕ≤ 1.
The parabolic De Giorgi class DG(ΩT ;γ) is then defined as

DG(ΩT ;γ)= DG+(ΩT ;γ)∩DG−(ΩT ;γ).

The motive behind defining the De Giorgi class is that, it enables us
to extend the study of parabolic partial differential equations to metric
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measure spaces. This in turn helps us to better understand those aspects
of the theory which are independent of the geometry of the space, where
the partial differential equation is originally defined.

Establishing the energy estimate
As already anticipated, the proof of the necessary and sufficient conditions
for continuity of a variational solution to the TVF, only uses the local
integral inequalities in (3.13) and the assumptions made on the underlying
metric measure space. Therefore, we need to establish the energy estimate
for the variational solution, in other words we show that a variational
solution u to the total variation flow in ΩT belongs to the parabolic De
Giorgi class DG(ΩT ;γ).

There is a technical difficulty present when establishing these energy
estimates, it is not clear that the time regularity of a variational solution
is a priori sufficient for placing it as the test function and performing the
usual techniques used for obtaining an energy estimate. We treat this
issue by using a mollification technique. For u ∈ Lp

loc(0,T; N1,p
loc (Ω)), 1≤ p <∞,

we consider the time mollification

uε(t)=
∫ ε

−ε
ηε(s)u(t− s) ds,

where ηε(s)= 1
sη( s

ε
), ε> 0, is a standard mollifier. The idea of this technique

is to deduce the energy estimate for the mollification and finally to establish
the same estimate at the limit.

In the metric space setting, one runs into unexpected difficulties when
taking the limit. To establish convergence of the estimate, one needs
that the weak upper gradient of the difference also tends to zero. In the
Euclidean case this poses no difficulties as we can use the linearity of the
gradients. In the general metric setting the situation is not that simple, as
taking an upper gradient does not preserve linearity. Nonetheless, it turns
out to be problematic, but not impossible, to establish the convergence by
using only the theory of upper gradients.

Indeed, assume that u ∈ Lp
loc(0,T; N1,p

loc (Ω)), 1 ≤ p < ∞. Then uε → u in
Lp

loc(0,T; N1,p
loc (Ω)) as ε→ 0. In particular, we have guε−u → 0 in Lp

loc(ΩT ) as
ε→ 0. Moreover, as s → 0, we have gu(·,t−s)−u(·,t) → 0 in Lp

loc(ΩT ) uniformly in
t. This important approximation is proved in more generality in [11].

De Giorgi Lemma
After establishing the energy estimates, we focus on proving that functions
in a parabolic De Giorgi class are bounded from below. More specifically,
let ρ,θ > 0 be such that Q−

ρ,θ(x0, t0)⊂ΩT and let

m+ ≥ esssup
Q−

ρ,θ(x0,t0)
u, m− ≤ essinf

Q−
ρ,θ(x0,t0)

u and ω≥ m+−m−.

Assume that u ∈ DG−(ΩT ;γ), for γ> 0. Then

34



Total variation flow on metric measure spaces

(i) For a,ξ ∈ (0,1) and θ ∈ (0,θ), there exists a constant ν− > 0 such that if

(μ⊗L 1)(Q−
ρ,θ(x0, t0)∩ {u ≤ m−+ξω})≤ ν−(μ⊗L 1)(Q−

ρ,θ(x0, t0)),

then u ≥ m−+aξω (μ⊗L 1)-almost everywhere in B ρ

2
(x0)× (t0 −θρ, t0].

(ii) For a,ξ ∈ (0,1) and θ ∈ (0,θ), there exists a constant ν+ > 0 such that if

(μ⊗L 1)(Q−
ρ,θ(x0, t0)∩ {u ≥ m+−ξω})≤ ν+(μ⊗L 1)(Q−

ρ,θ(x0, t0)),

then u ≤ m+−aξω (μ⊗L 1)-almost everywhere in B ρ

2
(x0)× (t0 −θρ, t0].

The proof of these bounds is relatively straightforward, it uses the esti-
mates from the De Giorgi class definition, an standard iteration lemma,
see Lemma 5.1 in [22], as well as an isoperimetric inequality for functions
of bounded variation, see Lemma 2.6 in [13].

Time expansion of positivity
The last key ingredient for the proof of the continuity result is the proof of
the expansion of positivity, see Lemma 7.1 in [21]. Roughly speaking, it
asserts that information on the measure of the positivity set of u, at time
level t0, over the ball Bρ(x0), translates into an expansion of positivity set
in time (from t0 to t0 +θρ, for some suitable θ). For a cylinder Q+

2ρ,θ(x0, t0)=
B2ρ(x0)× (t0, t0 +θρ)⊂ΩT , let

m+ ≥ esssup
Q+

2ρ,θ(x0,t0)
u, m− ≤ essinf

Q+
2ρ,θ(x0,t0)

u and ω≥ m+−m−.

The parameter θ is actually determined in the proof. Let ξ ∈ (0,1) be a fixed
parameter. For u ∈ DG−(ΩT ;γ) with γ> 0, assume that

μ({x ∈ Bρ(x0) : u(x, t0)≥ m−+ξω})≥ 1
2
μ(Bρ(x0)),

for some (x0, t0) ∈ΩT and some ρ > 0. Then there exist δ ∈ (0,1) and ε ∈ (0,1)
such that

μ({x ∈ Bρ(x0) : u(x, t)≥ m−+εξω})≥ 1
4
μ(Bρ(x0)),

for every t ∈ (t0, t0 +δξωρ).
As in the previous section, the proof of the time expansion of positivity is

straighforward, most of the arguments are based on the energy estimates
and the boundedness from below of functions in the De Giorgi class.

Characterization of continuity
Finally, we are ready to prove the main result of paper [III], the character-
ization of continuity.

We begin with the necessary part, assuming that u is continuous at
(x0, t0) ∈ΩT . We define ζ, a Lipschitz cutoff function with 0≤ ζ≤ 1, ζ= 0 on
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(X ×R)\Q−
2ρ,1(x0, t0), ζ= 1 on Q−

3
2ρ,1(x0, t0), ζ(·, t0−2ρ)= 0, ζt ≥ 0 and gζ+ζt ≤ 3

ρ
.

Applying (3.13) with θ = 1, k = 0, neglecting the supremum term of the
left-hand side and using the definition of ζ, we obtain

ρ

(μ⊗L 1)(Q−
ρ,1(x0, t0))

∫ t0

t0−2ρ
‖Du(t)‖(Bρ(x0)) dt

≤ 6Cμγ−−
∫∫

Q−
2ρ,1(x0,t0)

(|u(t)|+u(t)2) dμ dt.

The right-hand side tends to zero as ρ→ 0, implying the necessary condi-
tion.

For the sufficient part, we proceed by contradiction. Namely, we as-
sume that u is not continuous at (x0, t0). For ρ > 0 small enough, so that
Q−

ρ,1(x0, t0)= Bρ(x0)× (t0 −ρ, t0]⊂ΩT , we set

m+ = esssup
Q−

ρ,1(x0,t0)
u, m− = essinf

Q−
ρ,1(x0,t0)

u and ω= m+−m− = essosc
Q−

ρ,1(x0,t0)
u.

Without loss of generality, we assume that ω≤ 1 so that

Q−
ρ,ω(x0, t0)= Bρ(x0)× (t0 −ωρ, t0]⊂Q−

ρ,1(x0, t0)⊂ΩT .

Therefore,

essinf
Q−

ρ,ω(x0,t0)
u ≥ m−, esssup

Q−
ρ,ω(x0,t0)

u ≤ m+ and ω≥ essosc
Q−

ρ,ω(x0,t0)
u.

Since, we are assuming that u is not continuous at (x0, t0), there exists
ρ0 > 0 and ω0 > 0 such that

ωρ̃ = essosc
Q−

ρ̃,1(x0,t0)
u ≥ω0 > 0,

for all 0< ρ̃ ≤ ρ0. By the time expansion of positivity, there is a δ> 0, and
ε= 1

32 > 0 such that

μ
({

x ∈ Bρ(x0) : u(x, t)≥ m−+ ω

64

})
≥ 1

4
μ(Bρ(x0)),

for every t ∈ (t0 − δ̃ωρ
2 , t0], where δ̃= 1

28γQ . By using again the isoperimetric
inequality, see Lemma 2.6 in [13], we obtain

ξ̃ωμ({x ∈ Bρ(x0) : u(x, t)< m−+ ξ̃ω})≤ Cρ‖Du(t)‖({x ∈ Bρ(x0) : u(x, t)> m−+ ξ̃ω},

with 2ξ̃= 1
64 δ̃.

Integrating over the time interval (t0 − ξ̃ωρ, t0] gives

(μ⊗L 1)(Q−
ρ,ξ̃ω(x0, t0)∩ {u < m−+ ξ̃ω})

(μ⊗L 1)(Q−
ρ,ξ̃ω(x0, t0))

≤ ρ

(μ⊗L 1)(Q−
ρ,1(x0, t0))

· C
(ξ̃ω0)2

∫ t0

t0−ξ̃ωρ
‖Du(·, t)‖(Bρ(x0)) dt.
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By assumption, the right-hand side tends to zero as ρ→ 0+. Hence, there
exits ρ > 0 small enough such that

(μ⊗L 1)(Q−
ρ,ξ̃ω(x0, t0)∩ {u < m−+ ξ̃ω})

(μ⊗L 1)(Q−
ρ,ξ̃ω(x0, t0))

≤ ν−,

where, ν− is given by the De Giorgi lemma. Furtheremore, this lemma
implies u ≥ m−+ 1

2 ξ̃ω (μ⊗L 1)-almost everywhere in Q−
1
2ρ,ξ̃ω(x0, t0) and conse-

quently

essinf
Q−

1
2 ρ,ξ̃ω

(x0,t0)
u ≥ m−+ ξ̃ω

2
.

This, in turn, implies

ωρ1 = essosc
Q−

ρ1,1(x0,t0)
u = esssup

Q−
ρ1,1(x0,t0)

u− essinf
Q−

ρ1,1(x0,t0)
u

≤ esssup
Q−

1
2 ρ,ξ̃ω

(x0,t0)
u− essinf

Q−
1
2 ρ,ξ̃ω

(x0,t0)
u = essosc

Q−
1
2 ρ,ξ̃ω

(x0,t0)
≤ ηω.

By repeating the same argument, starting from the cylinder Q−
ρ1,1(x0, t0)

and proceeding recursively, we generate a decreasing sequence of radii
ρn → 0 such that

ω0 ≤ essosc
Q−

ρn ,1(x0,t0)
u ≤ ηnω,

for every n ∈N. This is a contradiction to the assumption u is not continuous
at (x0, t0).
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4. (p, q)-Dirichlet integral on metric
measure spaces

This chapter is dedicated to papers [I] and [IV]. Here, we focus on the
study of quasiminimizers of the following anisotropic energy (p, q)-Dirichlet
integral ∫

Ω
(agp

u +bgq
u)dμ, (4.1)

in metric measure spaces, with gu the minimal q-weak upper gradient of
u. Where, Ω ⊂ X is an open bounded set and 1 < p < q. Throughout this
chapter, we consider a complete, metric measure space (X ,d,μ) with metric
d and a doubling Borel regular measure μ. Moreover, we assume that X
supports a weak (1, p)-Poincaré inequality and we ask for the coefficient
functions a and b to be measurable and to satisfy 0<α≤ a,b ≤β, for some
positive constants α, β.

4.1 Quasiminimizers on metric measure spaces

In [24], Giaquinta and Giusti introduced the notion of quasiminimizers
in RN . They proved several of their fundamental properties, such as
local Hölder continuity and the strong maximum principle. Since, in a
metric measure space, it is possible to define (quasi)minimizers of Dirichlet
integrals, this approach is particularly useful.

We say that a function u ∈ N1,q(Ω) is a (p, q)-quasiminimizer on Ω if
there exists K > 0, called quasiminimizing constant, such that for every
open Ω′ �Ω and every test function v ∈ N1,q(Ω′) with u− v ∈ N1,q

0 (Ω′) the
inequality ∫

Ω′
(agp

u +bgq
u) dμ≤K

∫
Ω′

(agp
v +bgq

v) dμ (4.2)

holds, where gu, gv are the minimal q-weak upper gradients of u and v
in Ω, respectively. Furthermore, a function u ∈ N1,q(Ω) is a global (p, q)-
quasiminimizer on Ω if (4.2) is satisfied with Ω instead of Ω′, for all v ∈
N1,q(Ω), with u−v ∈ N1,q

0 (Ω).
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Since their introduction, elliptic quasiminimizers have been extensively
studied, both in the Euclidean case and more recently in metric measure
spaces. Moreover, many authors have explored different generalizations of
classical elliptic and parabolic partial differential equations, such as the
nonlinear p and (p, q)-Laplace equations, see [7, 17, 55]. However, there
are still new and interesting open mathematical questions in the setting of
anisotropic nonlinear elliptic and parabolic partial differential equations
driven by (p, q)-Laplace operators.

4.2 Regularity for (p, q)-quasiminimizers

This section is devoted to paper [I], a joint work with Nastasi [58]. Our
first goal is to answer questions regarding regularity for quasiminimizers
of the anisotropic energy (p, q)-Dirichlet integral (4.1).

Local properties of quasiminimizers of the p-energy integral on metric
spaces were studied by Kinnunen and Shanmugalingam in [42]. More
precisely, they used the De Giorgi method [18], to prove that, if the metric
measure space is equipped with a doubling measure and it supports a
Poincaré inequality, quasiminimizers of the p-energy functional are locally
Hölder continuous, they satisfy the Harnack inequality and the maximum
principle. Paper [I] generalizes the results in [42, 4, 6], since, one of the
new features is that we include both p-Laplace and q-Laplace operators.

There exists a rich literature concerning regularity results for solutions
to partial differential equations, both elliptic and parabolic, under p and
(p, q)-growth conditions in the Euclidean setting. In this study, we focus
on the anisotropic energy integral as presented by Marcellini in [49, 50],
but the new feature is that, we worked in metric measure spaces. We
have considered this setting to prove that the (p, q)-growth condition (4.1)
can be treated also in a general context, thus obtaining several relevant
properties for (quasi)minimizers even in a metric framework.

Furthermore, there are also some regularity results concerning the
boundary behaviour for (quasi)minimizers, both in the Euclidean, see
[20, 62, 64], and in the metric setting see [4, 5]. More specifically, Ziemer
[64] proved a Wiener type condition for the continuity of a quasiminimum
at a boundary point of a bounded open subset of Rn. On the other hand,
Björn [4], extended these results to the general metric setting and also
gave sufficient condition for Hölder continuity. Another important con-
tribution concerning boundary behaviour was by Björn, MacManus and
Shanmugalingam in [6]. They obtained an estimate for the oscillation
of p-harmonic functions and p-energy minimizers near a boundary point.
However, the study of boundary behavior for the (p, q)-problems can be
considered mostly still open, at least in its full generality.

Throughout paper [I], we consider a complete metric measure space
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(X ,d,μ) with metric d and a doubling Borel regular measure μ. Moreover,
we assume that X supports a weak (1, p)-Poincaré inequality with 1< p <
q < p∗. We also fix 1< s < p for which X also admits a weak (1, s)-Poincaré
inequality. Such s is given by the theorem of Keith and Zhong in [35], and
is used in various of our results. As before, we consider a non empty open
subset Ω⊂ X such that μ(X \Ω)> 0.

4.2.1 Main results

The first important results in [I] concern interior regularity for (p, q)-
quasiminizers. By adapting the approach in [42], we establish the local
boundedness for quasiminimizers of the convex integral (4.1). We do this
by proving a weak Harnack inequality. More specifically, we prove that if
a function u is a (p, q)-quasiminimizer, then there exists a constant C > 0
such that

esssup
B(y, R

2 )
u ≤ k0 +C

(
−
∫

B(y,R)
(u−k0)q

+ dμ
) 1

q

, (4.3)

for any k0 ∈R.
After proving local boundedness for quasiminimizers, we move to proving

local Hölder continuity. If u is a (p, q)-quasiminimizer, and 0< ρ < R with
B(y,2λ′R)⊂Ω. Then, there exists 0< η< 1 such that

osc(ũ,B(y,λ′ρ))≤ 4η
( ρ

R

)η

osc(ũ,B(y,λ′R)),

where osc(ũ,B(y, ·))= supB(y,·) ũ− infB(y,·) ũ is the oscillation of ũ, and

ũ(x)= limsup
ρ→0

−
∫

B(x,ρ)
u dμ, (4.4)

is given by Lebesgue’s differentiation theorem, see Section 2.3.1. In partic-
ular, ũ is locally Hölder continuous on Ω, and therefore u can be modified
on a set of capacity zero so that it becomes locally Hölder continuous on Ω.

The last important result, regarding interior regularity, is Harnack’s
inequality. Assume that u > 0, u and −u are (p, q)-quasiminimizers. Then
there exists a constant C ≥ 1 so that

esssup
B(y,R)

u ≤ C essinf
B(y,R)

u

for every ball B(y,R) for which B(y,6R)⊂Ω and R > 0.
Furthermore, we study regularity results up to the boundary. We first

give a pointwise estimate near a boundary point. For u ∈ N1,q(X ) a (p, q)-
quasiminimizer on Ω and w ∈ N1,q(X ) with u−w ∈ N1,q

0 (Ω). We prove that
there exist constants C0,C1 > 0 such that

M(ρ, r0)≤ C1M(r0, r0)exp
(
−1

4

∫ r0

ρ

exp
(
−C0γ(s, r)

p
p−s

) dr
r

)
, (4.5)
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where
M(r, r0)=

(
esssup
B(x0,r)

u−esssup
B(x0,r0)

w
)
+

,

with 0< r ≤ r0.
This result implies a sufficient condition for the Hölder continuity of

(p, q)-quasiminimizers at a boundary point. More specifically, if u ∈ N1,q(X )
is a (p, q)-quasiminimizer on Ω and w ∈ N1,q(X ) is a Hölder continuous
function at x0 ∈ ∂Ω, with u−w ∈ N1,q

0 (Ω). Then there exists a constant C0 > 0
such that

liminf
ρ→0

1
| logρ|

∫ 1

ρ

exp
(
−C0γ(s, r)

p
p−s

) dr
r

> 0.

Thus u is Hölder continuous at x0.
Moreover, if we assume that w ∈ N1,q(X ) is continuous at x0 ∈ ∂Ω, we get

a Wiener type regularity condition. Namely, there exists t > 0 such that∫ 1

0

(
caps(B(x0, r)\Ω,B(x0,2r))

r−
qs
p μ(B(x0, r))

)t
dr
r

=+∞,

and therefore, u is continuous at x0.
Lastly, we consider (p, q)-minimizers and we give an estimate for their

oscillation at boundary points. More clearly, let w ∈ N1,q(X )∩C(Ω). Consider
a (p, q)-minimizer u on Ω such that w−u ∈ N1,q

0 (Ω). If x0 ∈ ∂Ω and 0< ρ ≤ r,
then

osc(u,Ω∩B(x0,ρ))≤osc(w,∂Ω∩B(x0,5r))

+osc(w,∂Ω)exp
(
−C

∫ r

ρ

ϕ(x0, X \Ω, t)
1

q−1
dt
t

)
, (4.6)

for some constant C > 0 and ϕ(x,E, r)= capq(B(x, r)∩E,B(x,2r))
capq(B(x, r),B(x,2r))

.

4.2.2 Remarks on the method of proof

In this section, we talk in detail about the methods that helped us achieve
the results previously described.

Energy estimates
As in paper [III], the first and possibly most important step in the proofs
of the regularity results presented in paper [I], is to establish an energy
estimate for the (p, q)-quasiminimizers. Most of the regularity results are
then proved using this energy estimate, which comes in the form of the
following De Giorgi type inequality∫

B(y,ρ)
(agp

u +bgq
u)dμ≤ C

(
1

(R−ρ)p

∫
B(y,R)

a(u−k)p
+dμ

+ 1
(R−ρ)q

∫
B(y,R)

b(u−k)q
+dμ

)
, (4.7)
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where k ∈R and a+ =max{a,0}.
Therefore, we first show that if u ∈ N1,q

loc (Ω) is a (p, q)-quasiminimizer and
0< ρ < R, then there exists a constant C > 0 such that u satisfies (4.7).

Note that, (4.7) can be rewritten as∫
Sk,ρ

(agp
u +bgq

u)dμ≤ C
(

1
(R−ρ)p

∫
Sk,R

a(u−k)pdμ

+ 1
(R−ρ)q

∫
Sk,R

b(u−k)qdμ
)

, (4.8)

where Sk,r = {x ∈ B(y, r)∩Ω : u(x)> k}, with k ∈R and r > 0.
To prove (4.8), we use the definition of a (p, q)-quasiminimizer, define a

specific test function w, and use Lemma 6.1 in [25].
After obtaining (4.8), we use the (1, p)-Poincaré inequality, together with

Hölder inequality and the Sobolev-Poincaré inequality, see Section 2.3.3,
to obtain

(
−
∫

B(y,ρ)
(u−k)l

+dμ
) 1

l

≤ CR
R−ρ

(k−h)−θ
(
−
∫

B(y,R)
(u−h)l

+dμ
) 1+θ

l

, (4.9)

for either l = p or l = q, with 0< θ < 1 and 0< h < k.

Local boundedness
The key step into proving the weak Harnack inequality, is by proving(

−
∫

B(y, R
2 )

(u− (k0 +d))p
+dμ

) 1
p

= 0,

for all k0 ∈ R and for a specific d > 0 (defined later). The proof of this
equality is by induction.

We first define two sequences, one of radii ρn, and the other one of levels
kn. Using inequality (4.9), independently of the case, we are able to obtain

0≤
(
−
∫

B(y, R
2 )

(u− (k0 +d))p
+dμ

) 1
p

≤
(
−
∫

B(y, R
2 )

(u− (k0 +d))l
+dμ

) 1
l

≤
(
−
∫

B(y,ρn)
(u−kn)l

+dμ
) 1

l

≤ 2−τn
(
−
∫

B(y,R)
(u−k0)q

+dμ
) 1

q

→ 0,

as n →+∞, where τ> 1. Therefore,(
−
∫

B(y, R
2 )

(u− (k0 +d))p
+dμ

) 1
p

= 0,

as wanted.
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The proof of the local boundedness for (p, q)-quasiminimizers can be
easily deduced from the previous result. Indeed, this equality implies that
u ≤ k0 +d almost everywhere in B(y, R

2 ), meaning

esssup
B(y, R

2 )
u ≤ k0 +d = k0 +C

(
−
∫

B(y,R)
(u−k0)q

+ dμ
) 1

q

.

Local Hölder continuity
In order to prove the local Hölder continuity, we first prove that for u, a
(p, q)-quasiminimizer, there exists a constant C > 0 such that

(k−h)μ(Sk,R)≤ Cμ(B(y,R))1−
1
s

(
μ(Sh,λ′R)−μ(Sk,λ′R)

) 1
s − 1

q

·
(∫

Sh,2λ′R
(u−h)q dμ

) 1
q

, (4.10)

is satisfied for either l = p or l = q, and λ′ ≥ 1 is given by the weak Poincaré
inequality. We recall, s is such that 1 < s < p < q and our space X also
supports a (1, s)-Poincaré inequality. The proof of (4.10) relies heavily on
the De Giorgi type inequality (4.8) and the Poincaré inequality.

Now, for B(y,ρ) ⊂ Ω, let m(ρ) = essinfB(y,ρ) u and M(ρ) = esssupB(y,ρ) u.
We define M = M(2λ′R), m = m(2λ′R) and k0 = M+m

2 . Since u is a (p, q)-
quasiminimizer, we know that it satisfies (4.8). Assume, in addition, that
μ(Sk0,R)≤ γμ(B(y,R)) for some 0< γ< 1.

Let k j = M −2−( j+1)(M −m), j ∈N∪ {0}. By (4.10), for either l = p or l = q,
we deduce that

2−( j+1)(M−m)μ(Sk j ,R)≤ Cμ(B(y,R))1−
1
s + 1

l

(
μ(Sk j−1,λ′R)−μ(Sk j ,λ′R)

) 1
s − 1

l

·2− j(M−m).

If n > j, then μ(Skn,R)≤μ(Sk j ,R), and so

μ(Skn,R)≤ Cμ(B(y,R))1−
1
s + 1

l

(
μ(Sk j−1,λ′R)−μ(Sk j ,λ′R)

) 1
s − 1

l
.

By summing the above inequality over j, up until n, we get (independently
if l = p or l = q) limn→+∞μ(SknR)= 0. Since μ(Sk,R) is a monotonic decreasing
function of k, we conclude that limk→M μ(Sk,R)= 0.

We can finally discuss the proof of the local Hölder continuity. Firstly, we
observe that u and −u satisfy (4.8) (if u is a (p, q)-quasiminimizer, then −u
is a (p, q)-quasiminimizer). We consider k0 = M+m

2 , where M and m are as
before. Furthermore, we can assume that

μ(Sk0,R)≤ μ(B(y,R))
2

. (4.11)
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By the weak Harnack inequality (4.3), replacing k0 with kn = M−2−n−1(M−
m), n ∈N∪ {0}, we have

M
(
λ′R

2

)
≤ kn +C(M(2λ′R)−kn)

(
μ(Skn,R)
μ(B(y,R))

) 1
q

. (4.12)

Inequality (4.11) ensures that it is possible to choose an integer n, inde-
pendent from B(y,R) and u, large enough such that

C
(

μ(Skn,R)
μ(B(y,R))

) 1
q

< 1
2

.

Thanks to this choice, from (4.12) we deduce

M
(
λ′R

2

)
−m

(
λ′R

2

)
≤ M

(
λ′R

2

)
−m(2λ′R)

≤ (M(2λ′R)−m(2λ′R))(1−2−(n+2)).

As a consequence of the previous inequality, we can write

osc
(

ũ,B
(

y,
λ′R

2

))
< τosc(ũ,B(y,2λ′R)), (4.13)

where τ= 1−2−(n+2) < 1. Now, we consider an index j ≥ 1 such that

4 j−1 ≤ R
ρ

< 4 j.

Then, from inequality (4.13), at the end, we obtain

osc(ũ,B(y,λ′ρ))≤ 4η

(
R
ρ

)−η
osc(ũ,B(y,λ′R)),

which completes the proof.

Harnack inequality
We define Dτ,R = {x ∈ B(y,R) : u(x) < τ}. Let R > 0 be such that B(y,R) ⊂Ω.
Using the weak Harnack inequality (4.3) and inequality (4.10), we first
prove that for τ> 0, if u ≥ 0 and −u satisfy (4.8), then there exists γ0 ∈ (0,1),
independent of the ball B(y,R), such that if

μ(Dτ,R)≤ γ0μ(B(y,R)), (4.14)

then
essinf
B(y, R

2 )
u ≥ τ

2
.

After getting this last inequality, we then prove that for every γ with
0< γ< 1 there is a constant λ> 0 such that if μ(Dτ,R)≤ γμ(B(y,R)), then

essinf
B(y, R

2 )
u ≥λτ.
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By Krylov-Safonov covering Theorem [42], we show the existence of two
constants C > 0 and σ> 0 such that

essinf
B(y,3R)

u ≥ C
(
−
∫

B(y,R)
uσ dμ

) 1
σ

, (4.15)

for every B(y,R) with B(y,6R)⊂Ω and R > 0.
The proof of Harnack’s inequality follows from the previous results.
One thing worth mentioning is that, we have two important consequences

of Harnack’s inequality. These involve the so-called (p, q)-harmonic func-
tions. Let u ∈ N1,q

loc (Ω) be a (p, q)-minimizer on Ω. If u is a continuous
function, then we say that u is a (p, q)-harmonic function.

With this in mind, we first obtain the strong maximum principle. If Ω is
connected, u is a (p, q)-harmonic function in Ω and u attains its maximum
in Ω, then u is constant in Ω. The second corollary of Harnack’s inequality
is the Liouville’s Theorem. If u is a (p, q)-harmonic function bounded from
below in Ω, then u is constant.

Continuity up to the boundary
Until now, we have been interested in local properties, now we focus in
boundary value problems.

We first prove that for u ∈ N1,q(X ), a (p, q)-quasiminimizer on Ω, and
w ∈ N1,q(X ) with u−w ∈ N1,q

0 (Ω), there exist C > 0 and λ≥ 1 such that, for
all x0 ∈ ∂Ω and 0< 2λr ≤ r0, the next inequality holds

M
( r

2
, r0

)
≤ (1−2−n(r)−1)M(2λr, r0),

where
n(r)= Cγ

(
s,

r
2

) p
p−s

.

and
γ (s, r)= r−sμ(B(x0, r))

caps(B(x0, r)\Ω,B(x0,2r))

with x0 fixed.
This result is used in the proof of the pointwise estimate near a boundary

point (4.5). Afterwards, both Hölder continuity at the boundary and the
Wiener type regularity condition follow from (4.5).

Boundary regularity for (p, q)-minimizers
In this section, we focus on (p, q)-minimizers and give control over the
oscillation of (p, q)-minimizer functions at boundary points (4.6). The key
role in the proof is played by the comparison principle, which unfortunately
fails for quasiminimizers. However, we are able to prove a comparison
principle for (p, q)-minimizers.

More specifically, we consider V ⊂Ω′ ⊂Ω′ ⊂Ω and u1,u2 ∈ N1,q(Ω) (p, q)-
minimizers. We show that, if v ≤ u1 q-q.e. in Ω′ \V , then u2 ≤ u1 q-q.e. in
V .
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4.3 Higher integrability and stability

Article [IV] is another joint work with Nastasi. It is motivated by the
work of Maasalo and Zatorska-Goldstein [48] and is a continuation of [58].
The novelty is that, we include both p-Laplace and q-Laplace operators,
involving also some measurable coefficient functions a and b, assuming
only they are bounded away from zero and infinity.

Throughout this paper, we assume that (X ,d,μ) is a complete, locally
linearly connected (LLC) metric measure space with metric d and a dou-
bling Borel regular measure μ. We work on Ω⊂ X , an open and bounded
subset such that X \Ω is of positive q-capacity and uniformly p-fat, with
1< p < q, see Section 2.3.5. Moreover, we assume that X supports a weak
(1, p)-Poincaré inequality. As in paper [I], we fix 1< s < p < q < s∗ for which
X also admits a weak (1, s)-Poincaré inequality. We recall that, such s is
given by a result in [35].

Using purely variational methods, we prove local and global higher
integrability results for upper gradients of (p, q)-quasiminimizers of (4.1),
with fixed boundary data w, assuming the latter belongs to a slightly better
Newtonian space. We also obtain a stability property with respect to the
varying exponents p and q.

Quasiminimizers have been an active research topic for various years in
the setting of a doubling metric measure space with a Poincaré inequality.
In the elliptic setting, one of the first higher integrability results were by
Bojarski [9]. Later, Elcrat and Meyers proved local higher integrability
for nonlinear elliptic systems [56]. In [26], Granlund showed that an
elliptic minimizer has the higher integrability property if the complement
of the domain satisfies a certain measure density condition. Kilpeläinen
and Koskela [37] generalized this result to a uniform capacity density
condition.

Regarding stability results, Li and Martio [45] examined a quasilinear
elliptic operator and proved a convergence result for solutions of an obstacle
problem in a bounded subset of Rn. In [41], Kinnunen and Parviainen
showed that, if the complement of a cylindrical domain satisfies a uniform
capacity density condition, then an initial and boundary value problem
related to the parabolic p-Laplace equation is stable with respect to p.
Another important reference concerning stability results in the Euclidean
setting is [46].

4.3.1 Main results

As already anticipated, we first show a global higher integrability for
upper gradients of (p, q)-quasiminimizers of the Dirichlet integral (4.1)
with fixed boundary data. To be precise, we prove that for w ∈ N1,q̄(Ω),
with q̄ > q. If u ∈ N1,q(Ω) is a (p, q)-quasiminimizer with boundary data w
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(meaning w−u ∈ N1,q
0 (Ω)), then there exists δ0 > 0 such that gu ∈ Lq+δ(Ω)

for all 0< δ< δ0 and(
−
∫
Ω

gq+δ
u dμ

) 1
q+δ

≤ C

((
−
∫
Ω

gq
u dμ

) 1
q

+
(
−
∫
Ω

gq+δ
w dμ

) 1
q+δ

+1

)
.

Our second main theorem is a stability result. We consider a sequence (ui)
where ui ∈ N1,qi (Ω) is a (pi, qi)-quasiminimizer in an open bounded subset
Ω of X . We assume that all functions ui have the same boundary data w
and same quasiminimizing constant K . We prove that if p = limi→∞ pi, q =
limi→∞ qi, with 1< s < pi < qi < s∗ and ui → u μ-a.e. in Ω, then u ∈ N1,q(Ω) is
a (p, q)-quasiminimizer with boundary data w.

As previously stated, we require a regularity condition for the comple-
ment of the domain. We recall that, X \Ω is assumed to be uniformly
p-fat.

4.3.2 Remarks on the method of proof

In this section, we talk about some of the details on the proofs of the higher
integrability and stability results.

Higher integrability
We first note that, global higher integrability of the upper gradient is
essential when proving the stability theorem. With this in mind, the
general idea of our higher integrability proof is to show that the minimal
upper gradients satisfy a weak reverse Hölder inequality, apply Gehring
lemma [47, 63], and generalize the resulting local higher integrability to
the whole Ω. To this end, we need a suitable covering argument.

Since we are considering quasiminimizers with boundary data, we are
able to work near and on the boundary. This gives us the opportunity to
cover Ω by balls B that are inside the set, together with those that intersect
the complement.

Inside Ω, the De Giorgi inequality (4.8), implies immediately that the
minimal upper gradient satisfies a reverse Hölder inequality.

Near the boundary, we have to be careful. Here the p-fatness of the
complement X \Ω plays a big role. Furthermore, we use two self-improving
properties, that of the weak Poincaré inequality and that of the p-fatness
condition, see Section 2.3.3 and Section 2.3.5, respectively. In addition
to the De Giorgi type inequality (4.8), we use the capacity version of a
Sobolev-Poincaré-type inequality (Maz’ya estimate), see [4], and obtain as
well a reverse Hölder inequality in this case.

Overall, we get that if 4λB ⊂ 2B0, with B0 a ball in X such that Ω⊂ B0,
then

−
∫

B
gσdμ≤C

((
−
∫

4λB
gdμ

)σ

+−
∫

4λB
f σdμ

)
,
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where σ= q
p0

> 1,

g =
{

gp0
u in Ω,

0 otherwise,

and

f =
{

gp0
w χ4λB∩Ω+1 in Ω,

0 otherwise.

Here, 1 < s ≤ p0 < p < q is given by the self-improving property of the p-
fatness condition for X \Ω, and λ comes from the dilation factor from the
Poincaré inequalities.

By applying Gehring lemma, we obtain the existence of a δ0>0, such that
the following inequality(

−
∫

B
gq+δ

u dμ
) 1

q+δ
≤ C

((
−
∫

4λB
gq

u dμ
) 1

q

+
(
−
∫

4λB
gq+δ

w dμ
) 1

q+δ
+1

)
,

holds for all δ ∈ [0,δ0].
Finally, since Ω is bounded, we find a finite number balls covering it.

Therefore, obtaining the desired inequality in the whole Ω.

Stability result
As a first step into proving the stability property, we use the metric version
of Rellich-Kondrachov Theorem, see [48], and prove that there exists ε0 > 0
such that {

u, ui ∈ Lq+ε0 (Ω),

gui , g ∈ Lq+ε0 (Ω),

and there is a subsequence (ui) such that{
ui → u in Lq+ε0 (Ω),

gui → g in Lq+ε0 (Ω),

where g is a q-weak upper gradient of u.
Notice that in the previous result, we have convergence to some q-weak

upper gradient of u and not necessarily to the minimal q-weak upper
gradient gu.

Now, we consider a compact set D ⊂Ω and define D(t)= {x ∈Ω : dist(x,D)<
t}, for every t > 0. We then obtain a local uniform integrability estimate for
the minimal upper gradients. To be precise, we get

limsup
i→∞

∫
D(t)

(gpi
ui
+ gqi

ui
)dμ≤ C

∫
D(t)

(gp
u + gq

u)dμ,

for almost every 0< t < t0.
At this point, we are left to show that u is indeed a (p, q)-quasiminimizer

with boundary data w. In order to do that, we begin by proving that
u−w ∈ N1,q

0 (Ω). Afterwards, we move on to showing a lower semicontinuity
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result in the varying exponent case, meaning that we prove the following
two inequalities ∫

E
gq

u dμ≤ liminf
i→∞

∫
E

gqi
ui

dμ, (4.16)

and ∫
E

gp
u dμ≤ liminf

i→∞

∫
E

gpi
ui

dμ, (4.17)

for every μ-measurable subset E of Ω.
Finally, we show that u satisfies the quasiminimizing inequality∫

Ω′
(agp

u +bgq
u)dμ≤ C

∫
Ω′

(agp
u+ϕ+bgq

u+ϕ)dμ.

for every bounded open subset Ω′ of Ω with Ω′ �Ω and for all functions
ϕ ∈ N1,q

0 (Ω′), where C > 0.
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