
Improving User Experience of a
Client Portal with User-Centered
Design and Agile Requirements
Engineering Practices

Sasu Saalasti

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 29.7.2022

Supervisor

Prof. Marjo Kauppinen

Advisor

M.Sc. (Tech.) Antti Niemi

Copyright © 2022 Sasu Saalasti

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Sasu Saalasti
Title Improving User Experience of a Client Portal with User-Centered Design and

Agile Requirements Engineering Practices
Degree programme Computer, Communication and Information Sciences
Major Security and Cloud Computing Code of major SCI3084
Supervisor Prof. Marjo Kauppinen
Advisor M.Sc. (Tech.) Antti Niemi
Date 29.7.2022 Number of pages 83+2 Language English
Abstract
Developing a product that responds to the user’s needs and expectations requires
continuous user participation and observation of user experience, which includes how
a user perceives a software system and responds to its use. User-centered design
and agile requirements engineering are methodologies that aim to acknowledge the
user’s context and perspective iteratively through the software development process.
Including users during different stages of the development process and focusing on
the context of users are essential principles while developing a software that answers
to the needs and expectations of users.

The goal of this thesis is to define on how user experience of a client portal can be
improved with user-centered design and agile requirements engineering practices. The
research problem was examined by conducting a literature review and performing
an empirical study that followed the process of design science research. The process
produced two artefacts, consisting of a group of applicable user-centered design and
agile requirements engineering practices, and a set of requirements that improved
user experience of the client portal.

The results of the study revealed that user-centered design and agile requirements
engineering practices can be utilised for improving user experience of a client portal.
The stakeholder analysis, use case diagram, document analysis, survey, workshop,
interview, and platform for managing requirements were efficient and applicable
practices in the context of the target company. During the continuous development
of the target company’s client portal, user experience of the client portal had been
observed and improved, though user involvement was concentrated in the early stages
of requirements engineering process. With the executed practices, a set of seven
requirements were elicited and analysed. The requirements improved the client
portal’s user experience, thus demonstrating that the practices could be utilised
during the continuous development of the client portal.
Keywords user experience, user-centered design, agile requirements engineering

Aalto-yliopisto, PL 11000, 00076 AALTO
www.aalto.fi

Diplomityön tiivistelmä

Tekijä Sasu Saalasti
Työn nimi Asiakasportaalin käyttäjäkokemuksen parantaminen käyttäjäkeskeisen

suunnittelun ja ketterän vaatimusmäärittelyn käytännöillä
Koulutusohjelma Computer, Communication and Information Sciences
Pääaine Security and Cloud Computing Pääaineen koodi SCI3084
Työn valvoja Prof. Marjo Kauppinen
Työn ohjaaja DI Antti Niemi
Päivämäärä 29.7.2022 Sivumäärä 83+2 Kieli Englanti
Tiivistelmä
Käyttäjän tarpeita ja odotuksia vastaavan tuotteen kehittäminen edellyttää jatkuvaa
käyttäjän osallistumista ja käyttäjäkokemuksen huomioimista, mikä sisältää sen,
miten käyttäjä havainnoi ohjelmistojärjestelmän ja reagoi sen käyttöön. Käyttäjäkes-
keinen suunnittelu ja ketterä vaatimusmäärittely ovat menetelmiä, joilla pyritään tun-
nistamaan käyttäjän konteksti ja näkökulma iteratiivisesti ohjelmistokehitysprosessin
aikana. Käyttäjien mukaan ottaminen kehitysprosessin eri vaiheissa ja käyttäjien
kontekstiin keskittyminen ovat olennaisia periaatteita kehitettäessä ohjelmistoa, joka
vastaa käyttäjien tarpeisiin ja odotuksiin.

Tämän diplomityön tavoitteena on määritellä, miten asiakasportaalin käyttäjäko-
kemusta voidaan parantaa käyttäjäkeskeisen suunnittelun ja ketterän vaatimusmää-
rittelyn käytännöillä. Tutkimusongelmaa tarkasteltiin tekemällä kirjallisuuskatsaus
ja empiirinen tutkimus, joka seurasi suunnittelutieteen tutkimusprosessia. Prosessi
tuotti kaksi artefaktia, jotka koostuivat joukosta soveltuvia käyttäjäkeskeisen suun-
nittelun ja ketterän vaatimusmäärittelyn käytäntöjä sekä joukosta vaatimuksia, jotka
paransivat asiakasportaalin käyttäjäkokemusta.

Tutkimuksen tulokset toivat ilmi, että käyttäjäkeskeistä suunnittelua ja ketterää
vaatimusmäärittelyä voidaan hyödyntää asiakasportaalin käyttäjäkokemuksen pa-
rantamiseksi. Sidosryhmäanalyysi, käyttötapauskaavio, dokumenttianalyysi, kysely,
työpaja, haastattelu ja sovellusalusta vaatimusten hallintaan olivat tehokkaita ja
soveltuvia käytäntöjä kohdeyrityksen yhteydessä. Kohdeyrityksen asiakasportaalin
jatkuvan kehittämisen aikana asiakasportaalin käyttökokemusta oli huomioitu ja
parannettu, vaikka käyttäjien osallistuminen keskittyi vaatimusmäärittelyprosessin
alkuvaiheisiin. Toteutetuilla käytännöillä tuotiin esiin ja analysoitiin seitsemän vaati-
muksen kokoelma. Vaatimukset paransivat asiakasportaalin käyttökokemusta, mikä
osoitti, että käytäntöjä voitiin hyödyntää asiakasportaalin jatkuvassa kehittämisessä.

Avainsanat käyttäjäkokemus, käyttäjäkeskeinen suunnittelu, ketterä
vaatimusmäärittely

5

Preface
Writing this thesis was a comfortable journey to unknown. Gaining knowledge and
providing value to science were my cardinal goals, and I could argue that I am pleased
and cheerful with the results. Of course, the process was a rollercoaster ride, but I
was confident that the ride would start and end at a certain spot. I would like to
thank my supervisor for providing excellent support and guidance on how to proceed
with my argumentation and scientific thinking. Not receiving direct answers, but
rather being given a direction for finding the answers was crucial for me to learn the
subjects and write meaningful text.

I would also like to thank my advisor and everyone else at the company. I consider
the company as a compact and diligent group of professionals who work as a team,
together contributing to projects, including this thesis. Finally, I want to sincerely
thank my family and friends, as well as others who have been around during the
thesis process. I was lucky to have superb counterbalance for my studies from the
hundredth anniversary of the Guild of Electrical Engineering, and from the soft
couches provided by JTK ry.

Otaniemi, 29.7.2022

Sasu Saalasti

6

Contents
Abstract 3

Abstract (in Finnish) 4

Preface 5

Contents 6

Abbreviations 8

1 Introduction 9
1.1 Background and Motivation . 9
1.2 Research Problem and Questions . 11
1.3 Scope of the Thesis . 11
1.4 Structure of the Thesis . 12

2 Research Methods 13
2.1 Literature Review . 13
2.2 Empirical Study . 14

3 Results of the Literature Review 19
3.1 User-Centered Design . 19

3.1.1 Relation to User Experience 19
3.1.2 Noticing the Context . 20
3.1.3 User Engagement During the Process 21
3.1.4 Assessments Focusing on the User 22
3.1.5 Iterative Design Process . 22
3.1.6 Addressing the Entire User Experience 23
3.1.7 Multidisciplinary Project Team 24

3.2 Agile Requirements Engineering . 24
3.2.1 Requirement Domain . 24
3.2.2 Agile Methodology . 25
3.2.3 Eliciting and Analysing Requirements 27
3.2.4 Prioritising Requirements . 33
3.2.5 Creating Specifications and Documenting Requirements . . . 34
3.2.6 Validating Requirements . 35
3.2.7 Tracing Requirements and Managing Changes 35

3.3 Improving UX with UCD and Agile RE Practices 36
3.3.1 Integrated UCD and Agile RE in Agile Software Development 36
3.3.2 Continuous Collaboration with Stakeholders 42
3.3.3 Summary of UCD and Agile RE Practices 43

7

4 Results of the Empirical Study 46
4.1 Problem Identification and Defining Objectives 46
4.2 Selecting Applicable Practices . 47
4.3 Demonstrating Selected Practices . 50

4.3.1 Stakeholder Analysis . 50
4.3.2 Use Case Diagram . 52
4.3.3 Analysing Existing Documentation 53
4.3.4 Survey and Requirement Workshop 58
4.3.5 Analysing Ongoing Customer Interviews 61
4.3.6 Documenting Requirements with Azure DevOps 63
4.3.7 Collected Set of Requirements 65

4.4 Evaluating the Practices and Sharing the Study 66

5 Discussion 71
5.1 User-Centered Design and Agile Requirements Engineering Practices 71
5.2 Analysing User Experience of a Client Portal 72
5.3 Improving User Experience of a Client Portal 72
5.4 Limitations of the Study . 73

6 Conclusions 75
6.1 User-Centered Design and Agile Requirements Engineering in the

Development of a Client Portal . 75
6.2 Needs for Further Research . 76

References 78

A Survey for the Customer Committee:
Online Service User Experience 84

8

Abbreviations
HCI Human-Computer Interaction
ISO International Organization of Standardization
IT Information Technology
ICT Information and Communications Technology
ISR Imbalance Settlement Responsible – Target Company
NBS Nordic Imbalance Settlement
ONLS Online Service – Target Company’s Client Portal
PoC Proof-of-Concept
RE Requirements Engineering
UCD User-Centered Design
UX User Experience

1 Introduction

1.1 Background and Motivation
Designing and developing a service that answers to the user’s needs and expectations
requires contemplating the user experience of the service, which has become a major
product development factor (Obrist, Roto, and Väänänen-Vainio-Mattila, 2009,
p. 2763). Canonically, user experience (UX) construes how a user perceives and
responds to the use or anticipated use of a system, product, or service (International
Organization for Standardization, 2019a, p. 4). When the information technology
(IT) field started to progressively notice that software design should also consider
the user’s experience, user-centered design (UCD) emerged as a methodology, which
focused on users instead of computers (Chammas, Quaresma, and Mont’Alvão, 2015,
p. 5398–5399).

In agile software development, the emphasis is on delivering business value in
short iterations by promising benefits, including on-time delivery and customer satis-
faction (Schön, Thomaschewski, and Escalona, 2017, p. 79). The agile approach has
also influenced the traditional requirements engineering (RE) process by introducing
iterative RE activities (Curcio, Navarro, Malucelli, and Reinehr, 2018, p. 32). When
traditionally requirements were elicited, analysed, and documented precisely before
any implementation, agile RE strived to reduce the upfront RE process and intro-
duce the collaborative and adaptable characteristics of agile software development
(De Lucia and Qusef, 2010, p. 214).

The Nordic Imbalance Settlement (NBS) model settles electricity market imbal-
ances that occur when electricity production and consumption are not in balance
(eSett, 2022, p. 8). The imbalance settlement process includes bilateral data reporting
between market participants and the Imbalance Settlement Responsible (ISR). The
target company of the study operates as an ISR and provides a client portal, Online
Service (ONLS), which enables market participants to view, change, and report data
responsible to them in a web application. Essentially, the client portal functions as
an interface with the imbalance settlement system provided by the ISR.

The target company conducts continuous operations, customer support, and
finance and risk management activities, utilising the client portal jointly with internal
software and applications. The ISR users can log in as a participant and view
and manage the participant’s data. For example, in customer support situations,
the target company’s users can provide direct guidance on how to use the client
portal. To same extent, various monitoring screens in the client portal support in
the target company’s monitoring operations, as well as in the corresponding market
participant’s operations.

The market participants use the client portal with their user accounts that have
designated roles depending on the affiliated company. When the user has logged in,
various components, including tables and graphs, present imbalance settlement data,
including structural, electricity volume, and currency data. The dashboards and data
tools in the client portal support the user’s operations by providing visualisations
and interactive elements for imbalance data and structure management.

10

UX of the client portal affects how the market participant and ISR users can
monitor, maintenance, and interpret the sent and received data. Thus, UX is
an important domain to recognise when designing and developing a client portal.
Including users in the initiation, implementation, as well as the follow-up phases of
system development enables continuous cooperation between developers and users
(Kropp and Koischwitz, 2014, p. 10).

The current system has been developed by an external system vendor, and the
software development process has followed an upfront waterfall software development
model where both the system architecture and the requirements had been defined and
validated in detailed documents before implementation. This type of development is
also associated with the Big Design Up Front approach where a significant amount
of effort is used in the design phase before implementation, which conflicts with agile
principles (da Silva, Martin, Maurer, and Silveira, 2011, p. 80–81).

Before implementation of the service, the target company had defined the original
requirements, which were constructed to detailed designs for signing contracts with
the system vendor. After launching the balance settlement system for production use,
the target company and the system vendor have continued to develop the system,
focusing on delivering reliable imbalance settlement services that adapt to changes
in the Nordic electricity markets. A typical system development process includes the
target company reporting an incident or proposing a change request, which initiates
the vendor to define detailed designs in cooperation with the target company. After
this, the detailed designs are implemented by the vendor and tested by both parties.
Depending on the magnitude of the deliveries, the new or upgraded features are
included in upcoming deployments.

The balance settlement system, along with the contemporary client portal, undergo
a renewal process in the following years. During the study, several open issues
concerned the system renewal, and one prominent concern was how the new balance
settlement system will be developed. Because the underlying software development
process is to be decided in the future, the empirical study approached the software
development process from its current state. Adapting practices to the current model
would provide a tangible research context in which agile methodology could be applied
to.

Regardless the development model of a new system, the target company perceives
that the development of the system could follow modern agile principles, such
as utilising Scrum and its ceremonies as a project management framework in the
development team. The target company had formed a compact development team,
which designed and developed a proof-of-concept (PoC) version of the new balance
settlement system. This PoC will be analysed during the decision process of deciding
whether to develop the new system in-house or with a system vendor. However,
UCD and agile RE practices are adaptable to both development approaches, and the
practices aim to provide value by improving how the service responds to the users’
needs and adapts to the development environment when sudden changes occur.

By following design science as a research methodology, this thesis examined
the state of UX in the current client portal, investigating both functional and non-
functional requirements that affect UX of the service. Furthermore, the thesis

11

suggested user-centered and agile practices that can be utilised during the renewal of
the portal. The chosen practices were executed to improve existing or eliciting new
requirements that were related to UX of the service. The practices were evaluated
based on their applicability in the target company’s domain.

1.2 Research Problem and Questions
The objective for this thesis is to define on how UX of a client portal can be improved
with UCD and agile RE practices. This problem comprises defining the current
state of UX and finding practices that facilitate RE in an agile and user-centered
environment. The research problem is diagnosed with design science methodology,
and it is specified in the research questions, which are listed below. By answering
the research questions, the thesis aims to recognise UCD and agile RE practices that
can be utilised during the future renewal of the client portal in the target company.
By selecting practices and executing them, the study evaluated the practices and
proposed requirements that affected UX of the client portal.

The research questions are:

RQ1 What UCD and agile RE practices can be used to improve
UX of a software?

RQ2 What is the state of UX in the current client portal?
RQ3 How can UCD and agile RE practices be applied in

the development of a client portal?

1.3 Scope of the Thesis
The scope of this thesis limits to analysing the state of UX in the current client
portal and conducting UCD and agile RE practices that can be executed during the
future renewal of the service. As the client portal affiliates with a wide range of
requirements, the scope limits to investigating requirements that affect UX of the
service. The empirical study applied design science research, identifying a problem,
defining objectives of a solution, and producing, demonstrating, and evaluating an
artefact that comprised of selected practices and requirements.

The activities performed during the study focused on UCD and agile RE processes
that transpire during the initiation phase of software development. The initiation
phase includes research on existing user groups and the service domain as well as
conducting the first iteration of UCD and RE activities. These activities elicited,
analysed, and documented the most relevant new or enhanced requirements that affect
UX. These requirements consisted of new requirements as well as improvements
on current requirements. Thus, the thesis presents requirements to an extent,
which is suitable for the scope. The scope of the thesis excludes iterative and
incremental software development, which would follow up the initial UCD and agile
RE activities. The thesis focuses on RE phases that occur at the start of a development
sprint. Additionally, the agile practices were adapted to Scrum methodology, which

12

was moderately utilised in the PoC development team as the project management
framework.

The two paradigms in the study contribute to the thesis from different standpoints.
While UCD provides principles and guidance on how to include users and their context
in software development, agile RE introduces iterative practices for requirement
lifecycle in agile software development. The thesis argues how UCD and agile RE
intertwine in several areas and presents selected practices and demonstrates how
these are beneficial and influential in software development, focusing on the UX
domain.

1.4 Structure of the Thesis
This thesis consists of six chapters that further divide into sections and subsections.
The thesis is structured as follows. Chapter 2 presents the research methods that
were executed during the literature review and the empirical study. The literature
review subsection describes how the scientific publications were searched, selected,
and analysed. The empirical study subsection introduces an overview on how the
research process was chosen and structured, and how it advanced. Chapter 3 presents
the results of the literature review, describing what is already known about the
research questions in existing literature. The literature review examined the concepts
of UX, UCD, as well as agile RE and summarised relevant UCD and agile RE
practices. Chapter 4 presents the results of the empirical study and observes the
research questions in the context of empirical study. The empirical study continued
the groundwork that was made with the literature review, selecting and conducting
the most applicable UCD and agile RE practices. Chapter 5 summarises the main
results related to each research question and analyses how the research questions
were answered in the thesis. Finally, Chapter 6 presents conclusions that describe
what can be said about the research problem based on the results.

This thesis provides the basic definitions of concepts in the context of this study
along with further background information. Furthermore, the thesis introduces the
target company and a real-life use case of the study, therefore arguing the necessity
of this study.

13

2 Research Methods

2.1 Literature Review
This thesis includes a literature review where the concepts of UX, UCD, agile, and
RE were defined according to scientific literature. The literature review summarised
practices that are related to UCD and agile RE and how these methodologies provide
value in software development. The literature review established a foundation for
the empirical study in Chapter 4.

The process of the literature review consisted of searching scientific articles,
journals, books, and conference papers from full-text databases that included ACM
Digital Library, IEEE Electronic Library, ScienceDirect, SpringerLink, and Wiley
Online Library. The review was conducted by defining search queries, which consisted
of keyword combinations where the keywords were joined with AND and OR operators
for achieving desired output. The following Table 1 presents the essential keywords
used in the search. During the search, keywords were input as such as well as with
their possible abbreviation.

Table 1: Keywords used in the literature review

Group Keywords

UCD

ISO 9241-210
Usability
User Experience
User-Centered Design
User-Centered Design Evaluation
User-Centered Design Practice

Agile RE

Agile
Agile Method
Agile Practice
Agile Requirements Engineering
Non-Functional Requirement
Requirement Documentation / Documenting
Requirement Elicitation / Eliciting
Requirement Specification / Specifying
Requirement Validation / Validating

In addition to search queries, the literature review surveyed relevant articles
utilising the snowballing method for literature reviews. Wohlin (2014, p. 4) presents
a thorough framework for this iterative procedure, which includes two essential
concepts: forward and backward snowballing. In forward snowballing, new papers
are identified based on those papers citing the examined paper, while backward
snowballing identifies new papers by inspecting the reference list of the examined
paper (Wohlin, 2014, p. 3). This thesis adapted the basic concepts of forward
and backward snowballing, but it did not confine to the guidelines for the iterative
procedure with inclusions and exclusions of papers.

14

2.2 Empirical Study
The thesis conducted an empirical study that followed a design science process, wich
was adapted to the scope of the thesis. The empirical study defined what was the
state of UX in the current client portal and how the evaluated practices presented in
the literature review could be utilised to improve UX during the renewal of the service.
During the study, requirements of the contemporary client portal were analysed, as
well as the stakeholders related to those requirements. Then, new requirements that
affected UX of the client portal were defined with the selected UCD and agile RE
practices. Because the focus was on generating new knowledge that support problem
solving, the paradigm of design science was a suitable and beneficial approach for
the study (Dresch, Lacerda, and Antunes, 2015, p. 58).

Intrinsically, design science is a problem-solving process, which has a fundamental
principle to derive knowledge and understanding of a design problem, acquiring them
in the building and application of an artefact (Hevner et al., 2004, p. 82). Additionally,
design science consolidates knowledge about the design and development of solutions,
as well as improving existing systems, creating new artefacts, and solving problems
(Dresch et al., 2015, p. 59). Design science does not direct the research in an opposite
way when comparing to traditional science. Instead, it complements the fundamental
objectives of traditional science, such as exploring, explaining, describing, and making
predictions about social and natural phenomena (Dresch et al., 2015, p. 58).

Hevner et al. (2004, p. 83) summarise the seven guidelines of design science
research, which assist researchers in their research processes while endorsing creative
and critical thinking whether the guidelines are applicable in a specific context. The
following Table 2 lists the guidelines and their descriptions.

15

Table 2: Design science research guidelines (Hevner et al.,
2004, p. 83)

Guideline Description

1: Design as an Artefact
Design science research produces a functioning
artefact in the form of a method, a model, a
construct, or an instantiation.

2: Problem Relevance
Design science has a goal of developing
technology-based solutions to influential busi-
ness problems.

3: Design Evaluation Effective evaluation methods demonstrate the
functionality and quality of a design artefact.

4: Research Contributions
Design science research produces satisfactory
contributions in the design artefact and design
methodology domains.

5: Research Rigor
Design science applies rigorous methods during
the construction and evaluation of a design arte-
fact.

6: Design as a Search Process
Available research measures satisfy problem en-
vironment laws during the search for an effective
artefact.

7: Communication of Research
Design science research communication effec-
tively reaches the technology-oriented as well
as business-oriented audiences.

Peffers et al. (2007, p. 49) underline that the most important guideline is that
design science produces an artefact to address a problem. Artefacts are rarely fully
functionable information systems qualified for use in practice. Instead, they are
innovations which define the practices, technical capabilities, and ideas that support
the analysis, design, and implementation of an information system (Hevner et al.,
2004, p. 83). The context where the design artefact operates is part of the framework
where the problem environment and knowledge base affect design science research
(Hevner et al., 2004, p. 80). Figure 1 presents the framework and illustrates how
design science contributes to the problem area and the knowledge base while receiving
the organisational resources and applicable knowledge in return.

16

Relevance RigorEnvironment IS Research Knowledge base

Business
Needs

Applicable
Knowledge

Application in the relevant
environment

Additions to the Knowledge
Base

People
- Roles
- Capabilities
- Characteristics

Organisations
- Strategies
- Structure and
Culture
- Processes

Technology
- Infrastructure
- Applications
- Communications
Architecture
- Development
Capabilities

Foundations
- Theories
- Frameworks
- Instruments
- Constructs
- Models
- Methods
- Instantiations

Methodologies
- Data Analysis
Techniques
- Formalisms
- Measures
- Validation Criteria

Develop / Build
- Theories
- Artifacts

Justify / Evaluate
- Analytical
- Case Study
- Experimental
- Field Study
- Simulation

Assess Refine

Figure 1: Framework of design science research (Hevner et al., 2004, p. 80)

In the framework, rigor denotes how design science research aims to reduce
the disparity between theory and practice while maintaining the necessary rigor to
establish the reliability of research results (Dresch et al., 2015, p. 71). Research rigor
does not theorise or prove anything about why an artefact functions. Instead, rigor
determines how well the artefact functions (Hevner et al., 2004, p. 88). In parallel
to research rigor, relevance denotes the design science research addressing how the
interaction of people, organisations, and IT affords the opportunities, and how the
research addresses the problems faced (Hevner et al., 2004, p. 85). Design science
seeks to construct innovative artefacts that aim to change the occurring phenomena
(Hevner et al., 2004, p. 84).

To utilise the framework in a tangible research study, Peffers et al. (2007, p. 54)
introduce a methodology that represents a consensus-building approach, which
ensures that the methodology is based on well-accepted elements. Figure 2 illustrates
the methodology process, which consists of six key activities in a sequence that
projects an iterative and dynamic research concept. Although, Peffers et al. (2007,
p. 56) argue that it is not expected that researchers proceed the activities starting
from the first and ending to the last activity. Instead, they may start from an entry
point during the process sequence and dynamically continue the remaining activities.
This thesis adapted the process of design science research presented in Figure 2. The
process is adapted to the research problem and questions of the thesis in Figure 3.

17

Identify Problem
and Motivate

Define problem

Show importance

Define Objectives
of a Solution

What would a
better artefact
accomplish?

Design and
Development

Artefact

Demonstration

Find suitable
context

Use artefact to
solve a problem

Evaluation

Observe the
effect and
efficiency

Iterate back to
design

Communication

Scholarly
publications

Professional
publications

Problem-
Centered
Initiation

Objective-
Centered
Solution

Design and
Development

Centered
Initiation

Client or
Context
Initiated

Possible Research Entry Points

Nominal
Process

Sequence

Process Iteration

In
fe

re
nc

e

Th
eo

ry

Ex
pe

rti
se

M
et

ric
s,

 A
na

ly
tic

s,
Kn

ow
le

dg
e

D
is

ci
pl

in
ar

y
Kn

ow
le

dg
e

Figure 2: Design science research process (Peffers et al., 2007, p. 54)

Identify Problem
and Motivate

Improving UX in
an agile and user-

centered
environment

Define Objectives
of a Solution

To find efficient
and suitable UCD

and agile RE
practices

Design and
Development

(1) UCD and agile
RE practices that
improve UX and

deliver (2) a set of
requirements

Demonstration

The UCD and
agile RE practices

(stakeholder
analysis, use
case diagram,

document
analysis, survey,

workshop,
interview, and
requirement
management

platform) were
applied to the

target company's
development

activities

Evaluation

The requirements
represent the first

iteration of
executing the

practices

Communication

Publishing the
thesis

Process Iteration

In
fe

re
nc

e

Th
eo

ry

Ex
pe

rti
se

M
et

ric
s,

 A
na

ly
tic

s,
Kn

ow
le

dg
e

D
is

ci
pl

in
ar

y
Kn

ow
le

dg
e

Figure 3: Design science research process applied to the thesis (Adapted from Peffers
et al. (2007, p. 54))

The process in Figure 3 followed the sequential order of problem-centered initiation,
where the idea for the research results from observation of the problem. In the
target company’s context, the UX domain has been a subsidiary concern, because
the development of the service was focused on securing the essential imbalance
settlement operations. The design process for a new balance settlement system
initiated examining what UX aspects currently were adequate in the client portal
and what aspects, or practices required further improvement. One tangible source
of motivation were the specifications and documentation of requirements, which
inspired the research to focus on requirements engineering. Shifting the development
activities from the upfront waterfall model towards the agile software development
model motivated to research agile RE practices and simultaneously to include the
UCD approach in the design process.

The applied design science process in Figure 3 started with problem identification
and motivation. The problem definition was used for examining the state of UX in the
client portal as well as developing an artefact that further provided a solution (Peffers
et al., 2007, p. 52–55). The problem was identified by investigating the context

18

of the target company. The contemporary service was developed and maintained
by an external system vendor based on requests the target company proposed for
development. The development of the balance settlement system had been following
an upfront waterfall software development model where detailed designs were created
before implementation.

Additionally, the target company and the system vendor had been focusing
on delivering working software, which followed the defined requirements that the
stakeholders had specified during the initial design of the system and after its
launch. The development of the contemporary system had included noticing the
user’s perspective, though there had not been significant principles or practices for
user-centeredness. Therefore, the motivation for the study was to improve UX in an
agile and user-centered environment.

The identification of a problem motivated defining objectives of a solution. The
thesis defined finding valuable UCD and agile RE practices as a quantitative objective
where the UCD and agile RE practices would provide improvements on UX of the
client portal. The inquiry of UCD and agile RE practices required finding strengths
and weaknesses in the practices. Relevant UCD and agile RE practices were collected
and analysed by conducting a literature review.

The third step of the process, Design and Development, creates an artefact.
Peffers et al. (2007, p. 55) state that a design research artefact can be any designed
object, which embeds the research contribution in its design. The thesis produced
two artefacts that comprised a group of UCD and agile RE practices adapted to the
target company’s software development environment, and a set of requirements that
represented the relevant functional and non-functional requirements that improved
UX of the client portal.

After creating the artefact, the thesis proceeded to demonstrate the artefact.
Demonstration requires effective knowledge of how to utilise the artefact to solve a
problem (Peffers et al., 2007, p. 55). Therefore, the thesis aimed to proof the validity
of the artefact by demonstrating that the artefact could be used for solving the
original problem. Each chosen UCD and agile RE practice was conducted during the
study, eliciting a set of requirements that improved UX of the client portal. In the
context of the study, the demonstration proofed that the selected practices could be
utilised in the requirement lifecycle and the users could be involved in some activities.

The demonstration proceeded to evaluation that determined how adequately
the artefacts supported a solution to the problem (Peffers et al., 2007, p. 56). The
efficiency and suitability of the executed UCD and agile RE practices as well the
improving effect on UX by the defined requirements were empirical evidence of
functionality of the artefacts. The artefacts represented the first iteration of practices
and elicited requirements, and the research process was concluded by communicating
the problem and its influence, and the utility and rigor of the artefact’s design. The
communication phase in the process included structuring and publishing the thesis
according to the disciplinary knowledge.

19

3 Results of the Literature Review

3.1 User-Centered Design
3.1.1 Relation to User Experience

Electronic interfaces in software provide tools for humans to complete tasks interac-
tively, recurrently, and systematically. In organisational environment, these tasks
often include creating, reading, and managing information in both business and
information technology (IT) domains. When human-computer interaction (HCI)
principals started to broaden in IT, different design approaches started emerging,
eventually affecting the design of these interfaces. One prominent approach con-
sidered software design to be focused on users instead of computers and it became
known as user-centered design (UCD) (Chammas et al., 2015, p. 5398–5399).

UCD is a broadly acknowledged methodology that HCI specialists utilise for
designing attractive and usable products that respond to users’ needs (Argumanis,
Moquillaza, and Paz, 2021, p. 16). In existing literature, the term human-centered
design is often used to emphasize the impact on stakeholders who might not be
commonly considered as users (Earthy, Jones, and Bevan, 2012, p. 267). However,
the term UCD is used in the thesis to include users and other stakeholders. To
understand the purpose and contents of UCD, the following paragraphs define user
experience (UX) and the relation of these two concepts.

UX is an ambiguous term when it is used outside of a specific domain of science.
For anthropologists, UX is related to user research, whereas in computer sciences UX
is often linked to HCI (Alves, Valente, and Nunes, 2014, p. 94; Mirnig et al., 2015,
p. 437). However, HCI literature has different approaches to UX, in some contexts
denoting user interfaces and interaction, while in other contexts being a synonym for
usability and even UCD (Alves et al., 2014, p. 94; Law et al., 2009, p. 719). Often,
the different approaches do not limit each other, instead they complement the broad
UX domain. Some researchers do not restrict UX to interaction with a product or
artefact, but they introduce terms. such as brand experience, product experience,
and service experience, to broaden the experience domain (Law et al., 2009, p. 726).
Therefore, this thesis focuses on the specification of UX provided by the International
Organization of Standardization (International Organization for Standardization,
2019a, p. 4): UX denotes “user’s perceptions and responses that result from the use
and/or anticipated use of a system, product or service”.

This thesis also introduces the term usability, which is defined in ISO 9241-
11:1998 and later the substitutive 2018 version of the standard. Usability is defined
as “extent to with a system, product or service can be used by specified users to
achieve specified goals with effectiveness, efficiency and satisfaction in a specified
context of use” (International Organization for Standardization, 2018, p. 6). Curcio
et al. (2019, p. 62) summarise that usability is generally considered as the user’s
ability to complete a task successfully by using and interacting with something,
whereas UX observes the user’s complete interaction, perceptions, thoughts, and
feelings that follow this interaction.

Law et al. (2009, p. 727) conclude their survey on UX, stating that the respondents

20

of the survey agreed on UX being dynamic, content-dependent, and subjective. The
researchers discuss that concept of UX must be part the HCI domain and be grounded
in UCD practices. UX and UCD practices, however, receive their basis from principles
that are fundamental concepts that practitioners should notice in their work (Kashfi,
Feldt, and Nilsson, 2019, p. 38). The UX principles reflect the understanding of UX
as a phenomenon. Furthermore, Kashfi et al. (2019, p. 38) present their definition
of practices, which are activities that practitioners should perform to satisfy the
principles.

ISO determines technical standards of UCD in the ISO 9241-210 (International
Organization for Standardization, 2019a, p. 6). Chammas et al. (2015, p. 5400)
summarise the principles that should be considered during the development of an
interactive system. These standards were originally introduced in ISO 9241-210:2010,
which was later replaced with 2019 version of the document. The later subsections
address and review the following UCD principles:

– Noticing the Context

– User Engagement During the Process

– Assessments Focusing on the User

– Iterative Design Process

– Addressing the Entire User Experience

– Multidisciplinary Project Team

However, ISO 9241-210 provides requirements and recommendations for UCD
principles and activities, but it does not constrain actual methods or solutions (Earthy
et al., 2012, p. 296). The later subsections aim to connect each principle to relevant
practices. More specifically, the thesis introduces practices that are convenient and
suitable for in the context of the target company. Thus, the strengths and weaknesses
of these practices are adapted to the environment of this thesis.

In addition to ISO 9241-210, this thesis also introduces ISO 9241-220, which
broadens the model of the former standard, elaborating the activities and principles
as structured processes. These processes have defined outcomes for the execution of
UCD within a project (International Organization for Standardization, 2019b, p. 6).
Considering both standards is relevant for this thesis, because it provides measures
for analysing the basic UCD capabilities within a project, as well as identify how
UCD processes can adjust and execute within that project.

3.1.2 Noticing the Context

User experience is context-dependent, which indicates that different scenarios induce
different outputs for the same design (Obrist et al., 2009, p. 2764). International
Organization for Standardization (2019a, p. 6) defines that the extent to which
products are accessible and usable depends on the context. This context comprises

21

the specified users who have goals that they are willing to achieve performing tasks
in a specified environment. The context of use denotes the characteristics of these
users, their goals and tasks, and environment. The specification of the context of
use provides decisive information for establishing requirements, which is a relevant
contribution for the design process.

UCD maintains a focus on stakeholders and user issues while also ensuring that
the UCD content is compatible with the organizational strategy (Earthy et al.,
2012, p. 271). This also includes identifying unsatisfactory system attributes and
unsatisfying needs to meet the user and stakeholder requirements. Furthermore,
Earthy et al. (2012, p. 270) discuss that addressing UCD within an organization or
project includes enabling and executing UCD across and within projects. To enable
UCD, organizations should ensure that UCD activities are resourced, conducted, and
matched to the complete enterprise and its lifecycle process. Then, executing UCD
within a project comprises processing UCD activities appropriately that the system
in consideration is safe, usable, and accessible.

A stakeholder is an actor who interacts directly or indirectly with the system by
deriving value, benefiting from, or influencing the service (Bhatti, Usman, and Jadi,
2015, p. 1; Heath, 2020, Identifying stakeholders, para. 1–2). These actors can be
described as primary and secondary actors. Primary actors interact with the system
directly and strive to achieve specific goals, while secondary actors assist the system
for primary actors to achieve their goals (Heath, 2020, Identifying stakeholders,
para. 3). The stakeholders who are not actors can be described as non-acting
stakeholders. They usually influence the systems by making decisions on a business
level (Heath, 2020, Identifying stakeholders, para. 2).

3.1.3 User Engagement During the Process

User involvement functions as a valuable source of knowledge about the context
of use, the tasks, and how the users are assumed to work with the service. Active
user involvement includes users participating in design, providing relevant data, and
evaluating solutions (International Organization for Standardization, 2019a, p. 6).
The standard also suggests that the characteristics, capabilities, and experience of
the people who are involved should portray the range of users for whom the service
is being designed.

Chammas et al. (2015, p. 5400) review how user involvement throughout the
project development can be disadvantageous if users with different levels of under-
standing or capabilities trigger incorrect interpretations of the real needs of users.
One solution is to measure the performance of the tasks performed by the users. User
involvement is an essential segment of UCD, and it supports, and benefits from, a
multidisciplinary project team, which is stated later in Subsection Multidisciplinary
Project Team.

Engaging users actively through the process mitigates the risk of user not accepting
the concept of UCD (Kropp and Koischwitz, 2014, p. 11). This also enables both the
UCD team and the user to comprehend the big picture without being lost in minor
details or features. Before actual development, UCD allows the user to participate in

22

the upfront design, understanding the upcoming project while the development team
also understands the user’s vision before delivering the actual product (McInerney
and Maurer, 2005, p. 21).

3.1.4 Assessments Focusing on the User

Users provide critical information via feedback and evaluating designs, and users’
needs and values are required to be understood and analysed before designing and
evaluating solutions (Alves et al., 2014, p. 94). This is an effective measure for
reducing risks of a service not meeting user or organizational needs and requirements
(International Organization for Standardization, 2019a, p. 7). Additionally, this
principle establishes and maintains awareness as well as sensitivity for risks that arise
from stakeholder needs, while keeping UX and usability an intrinsic element in the
business strategy of an organisation (Earthy et al., 2012, p. 270). The organisational
requirements could be difficult to explicitly specify, thus they can be identified with
user-centered evaluation. International Organization for Standardization (2019a,
p. 7) also expresses that this user-centered evaluation should take place as part of the
final acceptance of the service. This confirms that requirements have been met and
the focus can be shifted towards receiving feedback from users during operational
use. In operational feedback phase, users identify possible long-term issues, and they
provide input for future design of the service.

Law and Abrahão (2014, p. 524) discuss that different UX evaluation areas,
including textual, audio, visual, and physiological, contribute to the interplay between
UX and system development. The formats for these evaluation areas could be, for
example, a diary, an interview, a pictorial scale, and eye-tracking. The authors also
mention that one key issue of UX evaluation is to consider when it is conducted
during the product development lifecycle. Usability engineering evaluation benefits
from feedback during early stages of development lifecycle with low-fidelity prototypes
(Law and Abrahão, 2014, p. 524). However, it is important to ensure that capturing
feedback with low-fidelity prototypes for UX evaluation provides feasible results. In
practice, UX evaluation requires addressing the scope of the received feedback before
the assessment, in other words, how capable the user is to provide feedback in the
current state of the service (Law and Abrahão, 2014, p. 524).

Personas and scenarios are common practices in the UX domain. A persona is a
fictional character who operates with characteristics of a typical user who it represents,
while a scenario expresses a fictional sequence of events that a persona is likely to
encounter (Jurca, Hellmann, and Maurer, 2014, p. 25). These two practices orientate
the design process, illustrating the perceptions of UX designers and simultaneously
being accessible to stakeholders. Representing archetypal users, personas are also
a valuable utility for communicating user data to designers (Marshall et al., 2015,
p. 311).

3.1.5 Iterative Design Process

In the context of UCD, iteration denotes achieving a desired outcome by repeating a
sequence of steps. UCD promotes an iterative and incremental approach, thus intro-

23

ducing intermediate solutions to the target problem. These intermediate solutions
function as a pathway to finding a comprehensive solution that satisfies the customer
or other stakeholder (Brhel et al., 2015, p. 171).

International Organization for Standardization (2019a, p. 7) suggests that iteration
should be utilised to continuingly eliminate ambiguity during the development of
interactive services. When designers obtain new information, they revise and refine
descriptions, specifications, and prototypes to reduce the service failing to meet its
requirements. da Silva et al. (2011, p. 83) argue how it is important to maintain
the perspective of the big picture while performing iterative development activities.
Maintaining the big picture also affects the other characteristics of UCD as well as
agile methodologies, which is stated later in this thesis. The sharing of documents,
artefacts, and knowledge between teams supports understanding the big picture,
while it also endorses the collaborative nature of UCD (da Silva et al., 2011, p. 83).

Receiving feedback iteratively supports in receiving new information along the
design process, but it can introduce the novelty effect, where learnability differs over
time in case of usability (Law and Abrahão, 2014, p. 523–524). This issue is important
in the scope of the thesis, because the user groups of the target company comprise
users with different levels of knowledge regarding the service and its components.
The internal users, including the operations team, have reliable and proper knowledge
of the system. In the case of the thesis, learnability of the service affects user groups
that have a broader scale of knowledge about the client portal. When iterative
design is conducted, both usability and UX should be observed, regardless of the
user groups.

3.1.6 Addressing the Entire User Experience

International Organization for Standardization (2019a, p. 7–8) addresses that UX
is a broader concept than just making products easy to use. UX is a consequence
of factors from both the business and system viewpoint, as well as from the user
perspective. It comprises factors, such as functionality, system perspective, interactive
behaviour, and the user’s prior experiences and attitudes. When UX as a concept
is interpreted from the user’s perspective, it can include perceptual and emotional
aspects associated with UX (International Organization for Standardization, 2019a,
p. 8). Specifying which activities are carried out by the users and which are carried
out by the technology benefits from reviewing the users’ strengths, limitations,
expectations, and preferences. Essentially, UCD guides that emphasis is put not only
on the usability and usefulness of the service, but also on UX through the complete
design process (Alves et al., 2014, p. 94).

Kashfi et al. (2019, p. 38) discuss that UX and its integration in software develop-
ment should not only limit to the functional and usability issues but also emphasize
the hedonic aspect of software use. Without knowledge on various human emotional
needs, such as curiosity and connectedness, UCD practitioners easily focus only
on the usability aspect, though their initial object was to follow UCD practices
to identify the end user’s needs (Kashfi et al., 2019, p. 55). From a UCD team’s
standpoint, this requires understanding what the users want or need to achieve, and

24

who the users are and how the product should fit in their work (Earthy et al., 2012,
p. 269).

3.1.7 Multidisciplinary Project Team

As the previous subsections and principles suggest, a diverse and multidisciplinary
team contributes to utilising UCD in a project. Collaborating and sharing expertise in
different domains facilitate design and implementation decisions at appropriate times.
International Organization for Standardization (2019a, p. 8) addresses several different
skill areas and viewpoints, including human factors and ergonomics, stakeholder
groups who can represent their perspective, application domain expertise, marketing
and sales, visual design, technical writing, and service management.

The utilisation of multidisciplinary expertise in UCD provides benefits, such as
sharing creative and collaborative ideas, and providing different perspectives and
skills withing the project. Although, the approach highlights that the voice of the
project team should not replace the voice of the actual user of the service (Chammas
et al., 2015, p. 5401). Chammas et al. (2015, p. 5403) also argue that contrary ideas
and opinions not only can but must exist. UCD practices then identify and respond
to these conflicting ideas. Nevertheless, a mixture of different skills in design can
introduce noise during the collaborative work, and Chammas et al. (2015, p. 5403)
recommend that the skills of the team members should not conflict unwarrantedly.

3.2 Agile Requirements Engineering
3.2.1 Requirement Domain

A software requirement describes a stakeholder’s expression of a wish, desire, or
need regarding an IT system or software (Heath, 2020, The nature of requirements
and specifications, para. 4). Software requirements represent the functional and
non-functional capabilities that must be met or possessed by the system to satisfy
a formally imposed document, such as a specification (International Organization
for Standardization, 2019a, p. 12; Saeeda, Dong, Wang, and Abid, 2020, p. 2).
Functional requirements describe the actions that the system can perform, while
non-functional requirements describe how the system should behave, regarding, for
example, the accessibility, security, or reliability of the system (Melegati et al., 2019,
p. 93).

Requirements, as domain entities, together form the requirements domain, which
represents all the important entities and their relationships related to requirements. As
such, requirements do not provide direct answers or solutions in software engineering
and design, but giving them context and scope, they can be implemented and
delivered. This process creates specifications that are descriptions of the system
behaviour required to fulfil a requirement (Heath, 2020, The nature of requirements
and specifications, para. 5–6).

Traditional requirements engineering (RE) emerged as a relevant concept in soft-
ware engineering disciplines began started to emphasize the formalisation of software
specifications and their effect on system design (Saiedian and Dale, 2000, p. 419). RE

25

denotes a broad field of study covering both implicit and explicit requirements, includ-
ing quality, value-related knowledge, and sharing and coordination of functionality
(Kasauli et al., 2021, p. 2). These matters expand the scope of RE to cover more than
just answering to how the system should work. In addition to observing the services
that the customer requires from a system, RE covers the process of establishing the
constraints under which this system operates and is developed (De Lucia and Qusef,
2010, p. 212).

Saiedian and Dale (2000, p. 420) express that software requirements engineering
comprises identifying user requirements, documenting the requirements as a specifi-
cation, and validating the documented requirements against the actual user needs.
Furthermore, Curcio et al. (2018, p. 32) summarise that traditional RE contains five
specific and sequential phases: elicitation, analysis, documentation, validation, and
verification. These steps and phases contribute to specifying, analysing, and defining
product goals, functionalities, and limitations (Pacheco and Garcia, 2012, p. 2171).
The next subsection introduces agile methodology and how it can be integrated to RE
in the later subsections. Because the structure of RE varies depending on studies and
other literature, this thesis generalises the outline of RE as the requirement lifecycle,
which consists of the RE steps that include eliciting and analysing, prioritising,
documenting, validating, and tracing requirements.

3.2.2 Agile Methodology

Agile software development aims to deliver business value in short iterations by
promising benefits, including on-time delivery and customer satisfaction (Schön et al.,
2017, p. 79). The term agile is often considered as a superset of individual methods,
such as Extreme Programming, Scrum, Lean, Feature-Driven Development, and
crystal methodologies (da Silva et al., 2011, p. 77; Dingsøyr et al., 2012, p. 62; Kropp
and Koischwitz, 2014, p. 77), and this thesis uses the term similarly.

The thesis also introduces the term manifesto, referring to the agile concept, as
the initial agile principles and values were a result of the Manifesto for Agile Software
Development in early 2001 (Curcio et al., 2018, p. 62). The previously presented
methods generally address the core principles of the agile manifesto (Dingsøyr et al.,
2012, p. 62; Beck et al., 2001). In the manifesto, one of the principles states that
changes are welcome, even late in development (Beck et al., 2001). This is directly
related to requirements, as it assumes that RE continues through the system lifecycle
(Curcio et al., 2018, p. 33–34).

The agile approach differs from the traditional plan-driven development approach
by introducing iterative development activities in short cycles. Similarly, agile re-
quirements engineering introduces iterative development cycles for RE activities
(Curcio et al., 2018, p. 32; Schön et al., 2017, p. 79). These development cycles con-
tinually engage different stakeholders to work together collaboratively. Thus, the core
difference between traditional and agile RE is when and how RE is conducted during
development; traditional RE processes focus on gathering requirements and preparing
specifications before proceeding to the design phase, while agile RE processes enable
changing and managing requirements iteratively during the development lifecycle

26

(De Lucia and Qusef, 2010, p. 214).
Inayat et al. (2015, p. 916) discuss the adoption of agile methods might impact the

direction of how RE activities are conducted. This challenge has motivated various
papers to research the role of RE processes in agile environment (De Lucia and Qusef,
2010, p. 212; Inayat et al., 2015, p. 916; Kasauli et al., 2021, p. 1). Therefore, the
knowledge and practices are adopted to the thesis from relevant papers that aim to
connect traditional RE with dynamic and flexible agile approach.

As the different agile approaches provide varying project environments for RE
activities, the thesis focuses particularly on Scrum methodology, because it was
the active agile approach in the target company’s PoC development team during
the study. Surveying Scrum as a methodology for project management aims to
provide a background for functional solutions of different RE activities. The following
paragraphs present an outline of Scrum, providing insight into how the project
management for a new system is conducted in the target company. The iterative
nature of Scrum, as well as other agile methodologies, provides a foundation for the
agile RE activities that are later addressed in this subsection.

Scrum is a lightweight process framework, which utilises cross-functional teams,
and iterative and incremental techniques for achieving goals and creating value. Scrum
provides guidance and basis theory for teams and organisations to find adaptive
solutions for complex problems (Schwaber and Sutherland, 2020, p. 3). Schwaber and
Sutherland (2020, p. 3–4) introduce three empirical Scrum principles: transparency,
inspection, and adaption. Transparency determines the process and work that emerge
from Scrum activities must be visible for those who perform the work as well as those
who receive the work. Transparency enables inspection, which states the Scrum
artefacts and the progress toward pre-specified goals must be scrutinised periodically
to identify potentially unsatisfactory problems or divergences. The last of the three
principles, adaption, assesses that adjusting the applied process or the produced
materials is necessary if any aspect of the process diverge outside the acceptable limits
if the resulting product is inadmissible (Schwaber and Sutherland, 2020, p. 3–4).

Scrum is commonly used to administrate and control software development from
project management perspective by utilising iterative, and incremental practices
(Larusdottir et al., 2017, p. 215). Figure 4 illustrates these practices, the Scrum events,
that are usually connected to small iterations with frequent deliverables, keeping
the process dynamic. From the perspective of RE, requirements are initially defined
with the customer, specified as features in the product backlog, and reprioritised,
discussed, and defined in the scope of the next sprint (Curcio et al., 2018, p. 34). The
product backlog maintains the relevant requirements during each development cycle,
and it contains the finalised requirements, where functional requirements represent
their relative user stories (Saeeda et al., 2020, p. 3).

27

Product
Owner

Inputs

Product
Backlog

Sprint
Planning
Meeting

Sprint
Backlog
(Tasks)

Finished Work

1–4 Week
Sprint

Every 24
Hours

Burndown/up
Charts

Scrum
Master

Team

Daily Scrum
Meeting

Sprint
Retroperspective

Sprint Review

Figure 4: Scrum framework (Curcio et al., 2018, p. 34)

3.2.3 Eliciting and Analysing Requirements

Requirement elicitation aims to define what features a system should have by identi-
fying the stakeholders, their goals, capabilities, and relationships (Carrizo, Dieste,
and Juristo, 2014, p. 644; Pacheco and Garcia, 2012, p. 2171). Curcio et al. (2018,
p. 33) introduce requirement elicitation as a starting point of an RE process where
requirements and boundaries of a system are identified. Then, the RE process
continues to the analysis phase where the consistency and feasibility of requirements
is reviewed (Curcio et al., 2018, p. 33). However, the elicitation and analysis phases
of RE are combined in the thesis, because the presented practices are often applicable
for both phases. Pacheco and Garcia (2012, p. 2177–2178) suggest effective practices
for performing stakeholder identification. These practices include three different
approaches, listed below:

– Identifying and consulting all possible sources of requirements

– Identifying user classes and their characteristics

– Identifying and consulting with the system stakeholders

28

The first practice requires identifying and consulting all likely sources of require-
ments and conducting collaborative and effective teamwork where each stakeholder
can share their knowledge in the project domain and RE processes. Furthermore,
this approach requires the stakeholders meet the demands in terms of experience
and expertise. Adapting this practice to the requirement elicitation in the target
company could be difficult because the stakeholders with a customer role have varying
experience in the client portal domain. Although, the experience and expertise of the
company’s internal stakeholders are predictable, which argues that this practice would
be functional in internal requirement elicitation meetings and workshops (Pacheco
and Garcia, 2012, p. 2177).

The second practice presented by Pacheco and Garcia (2012, p. 2177) emphasises
that the users of the service combine into various groups, which can be classified
depending on the frequency of use, user characteristics, levels of privileges, and levels
of skills. Selecting the stakeholders requires assessing the risks and costs, as well as
considering the communication methods between users and developers. Additionally,
communicating directly without intermediaries is desirable, and it reduces the loss of
information in the process. In the target company’s context, this practice provides
detailed consideration of different user groups, their needs, and user characteristics.

In some situations, the RE process benefits from carefully specifying a list
of stakeholders. The third practice emphasises identifying and consulting with
stakeholders at an early stage of the RE process (Pacheco and Garcia, 2012, p. 2178).
The practice guides that only appropriate stakeholders should be identified within
each category of the proposed group or class of stakeholders. Practically, each
stakeholder can be linked to motivations why a certain requirement is important.
In the context of the target company, this practice is generally less viable than the
previous practices, because the identification of appropriate stakeholders from each
group can be difficult and derive imbalanced deductions of requirements. Although,
the scalability of the target company enables specifying a representative stakeholder
from each group.

Carrizo et al. (2014, p. 644) argue that requirement engineers often elicit require-
ments following a single guideline or practice on the grounds of history or familiarity,
although they are probably acquainted with several other practices. This may result
in an inefficient elicitation process, which affects the quality of the final product.
Connecting the elicitation process to the iterative agile approach requires under-
standing when to elicit requirements and what advantages as well as disadvantages
each method provides. The following paragraphs aim to observe the requirement
elicitation process from an agile perspective.

Kasauli et al. (2021, p. 3–5) conducted a multiple-case study to map challenges
related to requirements in large-scale agile system development. In their study, the
elicitation and validation processes were conducted in two rounds with interviews,
focus groups, and cross-company workshops. The iterative utilisation of workshops
enabled valuable feedback sessions from previous workshops, and the artefacts related
to RE, such as product backlogs and feature descriptions, could be connected to the
discovered challenges (Kasauli et al., 2021, p. 5).

Sosnowski, Bereza, and Ng (2021, p. 185–186) argue how requirements can be

29

elicited in a Scrum project with a business-oriented approach, which avoids intense
upfront activities and ensures that system requirements are derived from business
process needs. This enables that the system requirements meet real business needs
without concentrating on excessive or unnecessary requirements. When eliciting
requirements for improving UX in the target company’s client portal, business value
is a core component for establishing requirement collections, although it should not
directly outweigh the customer requirements. Collaborative data gathering techniques
with both internal and external users contribute to the overall requirement elicitation.

The following Tables 3, 4, 5, and 6 present requirement elicitation techniques and
map the strengths and challenges of each practice based on existing literature of the
elicitation techniques and their characteristics (Kausar et al., 2010, p. 266; Tiwari,
Rathore, and Gupta, 2012, p. 2–4). The strengths and weaknesses of each technique
are inspected from the perspective of UX while also observing how the techniques
would adapt to an agile environment.

Table 3: Traditional requirement elicitation techniques
(Adapted from Tiwari et al. (2012, p. 2–4), and modified
based on Kausar et al. (2010, p. 266))

Activity Strengths Challenges

Data gathering
from existing
system

– Collecting in-depth knowl-
edge of the system

– Over-analysing can induce
too many constraints

Interview

– Direct, face-to-face commu-
nication

– Can be carefully structured
while also being dynamic:
open and closed interviews

– More time-consuming per
viewpoint

– Interviewees often represent
their subjective experience,
which can lead to inconsis-
tencies in the same user
group

Survey

– Useful for large target
groups

– Can include open-ended or
closed-ended questions

– Effective data analysis often
requires a large number of
responses

– Open-ended questions re-
quire thorough analysis

30

Table 4: Collaborative requirement elicitation techniques
(Adapted from Tiwari et al. (2012, p. 2–4), and modified
based on Kausar et al. (2010, p. 266))

Activity Strengths Challenges

Brainstorming

– Open environment for dis-
cussion without demanding
pre-requisites

– Collecting each emerging
idea and then evaluating
them

– Without administration,
the focus can shift towards
irrelevant subjects

– Does not produce refined in-
formation on the spot

Focus Groups

– Multidisciplinary collabora-
tion in a compact group

– Allows focus on a selected
UX territory

– Relies heavily on a situation
where each stakeholder con-
tributes equally to the elici-
tation process

Joint Applica-
tion Develop-
ment (JAD)

– Focus on a specified busi-
ness problem with a de-
tailed guideline

– Continual sessions offer in-
depth focusing on the sub-
ject

– Requires active participa-
tion of stakeholders, devel-
opment team members, and
subject matter experts

Models
– Effective for resolving and il-

lustrating conflicts between
stakeholders

– Cannot be a primary or only
technique used

Prototyping

– Can either be a throw-away
prototype for resolving spe-
cific problems, or an evo-
lutionary prototype that is
utilised later during the life-
cycle

– Effective for discovering UX
design issues

– Could require more re-
sources with a risk of obvi-
ating the prototype

– Misunderstood user goals
can lead to a failed proto-
type

31

Storyboarding

– Utilises various visualisa-
tion and textual elements
that are easily shareable
with large groups

– Complex subjects should
be deliberately presented to
avoid misunderstanding

Use Cases,
Scenarios, User
Stories

– Describe interactions be-
tween users and the system
explicitly

– Represent functional re-
quirements of the software

– Scenarios offer description
of individual interaction
possibilities

– A complete set of use cases
and scenarios requires a con-
siderably amount of work,
although providing a de-
tailed requirement set with
workflows

Workshop

– Useful for eliciting require-
ments for a complex or large
system

– Provides a complete set of
requirements

– Requires active attention
from the organisers and
stakeholders

– UX workshops without pro-
totypes or other preliminary
solutions can be too intan-
gible for stakeholders

32

Table 5: Cognitive requirement elicitation techniques
(Adapted from Tiwari et al. (2012, p. 2–4), and modified
based on Kausar et al. (2010, p. 266))

Activity Strengths Challenges

Document
Analysis

– Efficient for discovering in-
depth knowledge about a
particular task or resource

– Benefits from up-to-date
documents

Card Sorting

– Allows collecting informa-
tion, grouping it to sets,
and organising these sets,
depending on their ranking,
characteristics, and themes

– Not quite efficient during
the later phases of an elici-
tation process

Laddering – Structured interview with a
pre-defined set of questions

– The success depends on
how well the UX require-
ment issues can be hierar-
chically arranged in a con-
versation

Protocol Analy-
sis

– Utilises rationale for defin-
ing actions that fulfil the
user requirements

– Requires detailed verbal
data analysis, and be-
haviour modelling and sim-
ulation

Repository
Grid

– Stakeholders can directly
assess attributes and values
in a requirement matrix

– Does not offer enough con-
text by itself

33

Table 6: Observational requirement elicitation techniques
(Adapted from Tiwari et al. (2012, p. 2–4), and modified
based on Kausar et al. (2010, p. 266))

Activity Strengths Challenges

Observation
– Allows observing what and

how the users perform in
the context

– Requires either on-site pres-
ence of analysts or utilities
for tracing UX in the service

Social analysis

– Allows observing the organ-
isational, working, and cul-
tural environments

– Provides general back-
ground information for new
projects

– Benefits from long-term
analysis, which can be dif-
ficult in an iterative elicita-
tion process

3.2.4 Prioritising Requirements

In agile RE methods, the requirements should be considered to resemble a prioritised
stack (De Lucia and Qusef, 2010, p. 216). Traditional RE suggests that prioritisation
is performed only once before development is initiated, whereas in agile RE methods,
the customers prioritise requirements continually in each development cycle, focusing
on business value (Inayat et al., 2015, p. 922). In their systematic review on agile RE
practices and challenges, Inayat et al. (2015, p. 922) also discuss that focusing only
on business value introduces a challenge. When an agile team allows the customer to
prioritise requirements, some factors, including scalability, may not be included in the
prioritisation process . Thus, risk is considered as the most important prioritisation
criterion other than business value, especially in large-scale agile projects (Daneva
et al., 2013, p. 1347).

De Lucia and Qusef (2010, p. 216) present a process chart for prioritisation process.
Figure 5 illustrates the process, displaying the iterative requirement prioritisation.
Generally, an important requirement is scheduled for the upcoming implementation,
while a “nice to have” or otherwise less important requirement is kept on hold. After
the following iteration, the requirements on hold are evaluated, and if they are
still valid, they proceed to the list of the candidate requirements along with new
requirements. Then, the prioritisation process is applied to the new list to identify
the features to be implemented. Furthermore, a requirement can stay on the list
indefinitely, depending on if it is recurrently less important than other requirements.

34

List of Candidate
Requirements

Valid?

Prioritised
Requirement Stack

Solve the Problem
(JAD, ...)

Development Phase

Add New
Requirement

YESNO

Figure 5: Requirement prioritisation process (De Lucia and Qusef, 2010, p. 216)

Saeeda et al. (2020, p. 2) suggest that focusing to the complete process of re-
quirements gathering should be the primary objective, rather than finding the most
suitable prioritised requirement stack. Therefore, the agile approach supports this
requirement prioritisation by introducing activities, such as product backlogs and
sprint iterations in the Scrum methodology (Saeeda et al., 2020, p. 2). Additionally,
the sprint planning meetings at the beginning of each cycle are often an applica-
ble situation for requirement prioritisation, where the requirements are prioritised
together with other development tasks, such as bug fixes (Cao and Ramesh, 2008,
p. 64).

3.2.5 Creating Specifications and Documenting Requirements

Requirement specifications are core artefacts of the RE process, and they function
as basis for requirement analysis, validation, prioritisation, and management (de la
Vara et al., 2012, p. 39). Traditional RE often associates with extended and thorough
specifications and documentation, which has directed the attention towards agile
methods for addressing specifications (Curcio et al., 2018, p. 38; Kasauli et al., 2021,
p. 20). Problems arise when documentation is excessively complex and rigid for
adapting to changes, as well as when no documentation exist at all. Agile practices
for requirement specification and documentation encounter these problems with
solutions that also assist in involving the stakeholders who can validate the specified
requirements. In their empirical study, Cao and Ramesh (2008, p. 65) introduce

35

prototypes as an alternative activity for creating formal documents for communicating
with customers and sharing developed software features.

Cao and Ramesh (2008, p. 63) argue how most organisations in their empirical
study avoided formal documentation of specification and instead they used elementary
approaches, such as user stories to define high-level requirements. User stories,
personas, and scenarios provide conceptualisations of stakeholder needs (Brhel et al.,
2015, p. 176). However, focusing heavily on the UCD principles while creating user
stories may seem excessively theoretical and solution oriented to the stakeholders
involved (Kropp and Koischwitz, 2014, p. 11).

From the perspective of agile RE, user stories and use cases represent the func-
tional requirements of the service, thus eliciting these requirements should include
the development team’s initial input, which is analysed in collaboration with the
stakeholders. Budwig et al. (2009, p. 3079) present a Scrum project model where the
business owner provides high-level use cases for the project. These use cases illustrate
how different users interact with a system while the actual system operation is not
being presented. The abstraction enables stakeholders to understand how the system
is being utilised without excessively focusing on technical details.

3.2.6 Validating Requirements

Requirement validation generally comprehends validating that the elicited require-
ments represent the features that the users or other stakeholders need (Melegati et al.,
2019, p. 101). Existing literature has proposed different models and frameworks for
this RE stage, such as automatic validation and correction of formalised and textual
requirements (Holtmann, Meyer, and von Detten, 2011, p. 486–495), requirements
validation with automatic prototyping (Yang, Ke, and Li, 2019, p. 484–485), and
a scalable operational framework for requirements validation using semantic and
functional models (Atoum, 2019, p. 1–6). These papers underline the importance
of careful validation of requirements early in the RE process, to maintain efficiency,
controllability, and lucidity while designing and developing a service.

Validating requirements continually and early considerably minimises the need for
major changes during later development (Cao and Ramesh, 2008, p. 65). However,
in their empirical study, Cao and Ramesh (2008, p. 65) argue that early validation
can also pose a challenge when requirement changes in conflict with the architecture
design, increasing the project cost when the inadequate architecture requires further
changes. Although, in certain situations these architecture changes can be crucial
for the future performance of the software.

3.2.7 Tracing Requirements and Managing Changes

Curcio et al. (2018, p. 38–39) argue that agile developers sometimes perceive trace-
ability as a heavy process that is difficult to initiate and maintain, though it directly
impacts to stakeholders’ satisfaction and software performance. Traceability relations
support other software development activities, including validation, reuse, and change
impact analysis (Curcio et al., 2018, p. 38). Kasauli et al. (2021, p. 22) argue how
developers commonly have little intrinsic motivation to update requirement models

36

after making updates in the related user stories. This behaviour can result to system
requirements being obsolete and misinformative. Therefore, big picture governance
for requirements is required for managing requirements, which supports traceability,
backwards compatibility, and long-term knowledge (Kasauli et al., 2021, p. 22).

Modern requirement management utilities enable different teams to achieve
consistent requirement specifications and documentation. Kasauli et al. (2021, p. 19)
argue that software engineers commonly are reluctant to stop using prevailing and
traditional utilities, such as Microsoft Excel, for managing requirements. Problems
also emerge, if some teams use modern requirements management utilities while
others rely on traditional utilities. Kasauli et al. (2021, p. 19) propose a potential
solution where requirements consistency could be managed by storing requirements
in the same repository as code. Consequently, the requirements can be consistently
updated and traced during iterations.

3.3 Improving UX with UCD and Agile RE Practices
3.3.1 Integrated UCD and Agile RE in Agile Software Development

Executing UCD and agile RE methodologies targets the goal of producing high-
quality software that satisfies and provides value for stakeholders. Fundamentally,
both methodologies focus on users and customers with a cyclical and human-centered
approach (Jurca, Hellmann, and Maurer, 2014, p. 25). Although, agile methodology
emphasises minimal upfront design work and it iteratively provides compact working
sets of features to the customer, thus responding to the UX designers’ objective
to provide and validate design before implementation (Jurca et al., 2014, p. 24).
Kropp and Koischwitz (2014, p. 10) arrange typical UCD activities in three phases,
presented in the following Table 7.

Table 7: UCD activities grouped in three phases (Kropp
and Koischwitz, 2014, p. 10)

Initiation Implementation Follow-up

– Research on users and
domain

– Visualisation by using
personas and user jour-
ney maps

– Scenarios
– User-centered concept

of design and interac-
tion

– Preliminary result re-
views

– Preliminary result
feedback

– Usability tests with
users

– Solution reviews
– Suggestions for im-

provements

In their literature review, Almeyda, Zapata Del Río, and Cohn (2021, p. 194)
examine the most commonly utilised practices in the integration of UX and agile

37

techniques for requirement analysis. The results of the study show that user stories,
low-fidelity prototypes, in-person interaction, use cases, high-fidelity prototypes, and
scenarios are the most common practices used in studies during the recent years
(Almeyda et al., 2021, p. 194). Jurca et al. (2014, p. 29) list workshops, low-fidelity
prototyping, interviews, meetings with users, and scenarios as some of the most fre-
quently used practices and artefacts in the agile UX industry. The presented methods
share the human-centered approach of UCD as well as the lightweight and iterative
nature of agile RE practices, thus efficiently connecting the two methodologies.

The previously listed high-fidelity prototyping approach indicates heavy upfront
design. However, the prototyping approach is generally considered as an agile
method that usually transitions from low-fidelity to high-fidelity prototypes during
the design iterations (Brhel et al., 2015, p. 175). The agile UX environment benefits
from lightweight artefacts and practices that are easily accessible to the involved
stakeholders (Jurca et al., 2014, p. 29). In their case study, McInerney and Maurer
(2005, p. 21) also noticed that a general difference between UCD and agile approaches
is how UCD highlights upfront product evaluating with low-fidelity designs while
agile emphasises evaluating production-ready code at the end of each sprint.

To connect Scrum and UCD activities, Argumanis, Moquillaza, and Paz (2021,
p. 25–31) propose their framework, which allows synchronous and incremental de-
velopment of functionalities and usability of a product. The proposed framework
addresses the problem where UCD does not define how software teams should work or
to be organised to achieve the software features that have been issued. The framework
closely in the thesis, because the framework includes relevant UCD activities in an
agile development environment. Moreover, the framework presents RE activities,
which are essential in the context of agile software development.

The following Figures 6, 7, and 8 illustrate the Scrum-UCD framework proposed
by Argumanis et al. (2021, p. 25–31). The framework divides into three phases,
initiation, planning, and implementation, which represent the workflow in a software
development project. The following flowcharts present the Scrum-UCD team focused
activities in red, administrative Scrum activities in blue, and development related
activities in yellow. However, these colours do not limit each other, instead they
emphasise where the focus is on during each process. The following paragraphs
define the general phases of the framework, highlighting how UCD is applied to the
process, and how RE is concurrently conducted.

Figure 6 presents the initiation phase of a software development project. This
starts with the product owner declaring the project vision, which represents the needs
and expectations of the stakeholders. The project vision is further improved after a
contextual research process, where the Scrum-UCD team analyses the needs of the
users and their context (Argumanis et al., 2021, p. 19). If the project is new, the
Scrum-UCD team proceeds to create personas, and if the project focuses on redesign,
the personas are updated, and the team also executes heuristic evaluation of the
previous design. The final step of the initiation phase includes creating the Product
Backlog, which is validated by users and improved iteratively, if required.

38

Contextual Research

Creating / updating
Personas

Design Evaluation

Developing and
refining Epics in the

Product Backlog

Is it a redesign
project?

YES

Validation and
improvement with

users of the Backlog

Is it a new
project?

YES

Was the Product
Backlog validated?

YES

UCD: Context

UCD: Requirements

UCD: Requirements

UCD: Evaluation

Project vision
statement

Stakeholder
Input

Improving the project
vision

NO

NO

To Planning
(Sprint 0)

Initiation (Sprint 0)
startsScrum-UCD

Administrative Scrum
(Product Owner)

Development

Figure 6: Scrum-UCD Framework: Initiation Phase (Argumanis et al., 2021, p. 26)

After the initiation phase, the framework proceeds to the planning of the project
where the information structure is created or updated, when necessary. The planning
phase of the framework in Figure 7 introduces card sorting as a practice, which
allows the UCD specialists to interact with users. After this, the Scrum-UCD
teams starts developing a customer journey map, which displays the workflow that
a user generally follows while using the software (Argumanis et al., 2021, p. 20).
The previous practices contribute to creating the user stories, which represent the

39

requirements of the software. Afterwards, the development team explains to the
UCD specialist the technical restrictions that the service limitations, time, and team
capacity generate. Then, the tasks are identified from the product backlog and placed
into the sprint backlog.

Development of the
information structure
using Card Sorting

with users

Does the project require
creating / updating the
information structure?

YES

Elaboration of a
Customer Journey

Map

Creating and refining
User Stories

UCD: Requirements

UCD: Requirements

NO

Explaining technical
restrictions to

designers

Identifying and
estimating Tasks

Sprint
Retroperspective

Design of the system
architecture and

configuration of tools

To Implementation

Planning (Sprint 0)
starts

Scrum-UCD

Administrative Scrum
(Product Owner)

Development

Figure 7: Scrum-UCD Framework: Planning Phase (Argumanis et al., 2021, p. 27)

The implementation phase in Figure 8 starts with the sprint planning ceremony,
which initiates during the beginning of each sprint. After the sprint planning, the
designers proceed to develop paper prototypes, which further expand to low-fidelity
prototypes. During the development of prototypes, the Scrum-UCD team validates
and improves these prototypes. Then, the prototypes are tested with user tests, and
the results are processed and presented to stakeholders. If valid, the prototypes
are used in high-fidelity prototyping, which delivers prototypes that are validated

40

by the Scrum-UCD team. When the designers work with the prototypes, the
development team simultaneously develops the software deliverables, depending on
the contemporary sprint. When the developers start developing the system backend
and database in the first sprint, the UCD specialists have started to produce initial
designs. In the second sprint, the developers proceed with these designs, and the
UCD specialists are always one iteration ahead (Argumanis et al., 2021, p. 20).

With the validated prototypes and developed deliverables, the teams collect in a
sprint review and a sprint retrospective. The stakeholders will validate the design
and development sprint in the sprint review. In the framework, each sprint lasts for
two weeks.

41

Implementation
starts

Sprint Planning Sprint Backlog

Developing paper
prototypes

Low-fidelity
Prototyping

User test and result
processing

Validating and
improving prototypes

with the Product
Owner

High-fidelity
Prototyping

Validating and
improving prototypes

using Pair Design

Paper Prototypes

UCD: Design

Low-fidelity
Prototypes

Are the
prototypes valid?

UCD: Evaluation

UCD: Evaluation

UCD: Design

UCD: Design

UCD: Evaluation

Validating and
improving prototypes

using Pair Design
UCD: Evaluation

Sprint Review (design
and development

sprints)

Sprint Retrospective

Is it Sprint 1?

Developing
deliverables

Developing the
backend and system

database

NO
YES

YESNO

Low-fidelity
Prototypes

High-fidelity
Prototypes

Stakeholder
input

Implementation
ends

Software
deliverables

Scrum-UCD

Administrative Scrum
(Product Owner)

Development

Figure 8: Scrum-UCD Framework: Implementation Phase (Argumanis et al., 2021,
p. 30–31)

da Silva et al. (2011, p. 81) conducted a systematic literature review to identify
practices and methodologies that connect UCD and agile approaches. Their study
highlights approaches, including Design Up Front, prototyping, user stories, user
testing, inspection evaluation, and One Sprint Ahead. da Silva et al. (2011, p. 83–
84) propose a high-level framework that combines the most common practices and
processes identified in the review and arranges them in an iterative sprint-based
approach. Figure 9 illustrates the synchronous design and development activities in

42

the framework, highlighting the continual coding and feedback interactions. These
interactions aim to maintain focus on the complete product, as well as to conduct
collaborative activities during the design and development.

Code User Stories
Iteration 0

Contextual Research,
Task Analysis,

Interviews

Iteration 0

Iteration 1

Iteration 1 Iteration 2

Iteration 2 Iteration n

Iteration n

Paper Prototypes,
Design Cards,
User Stories,

Feature Cards
...

Design Iteration 2,
Evaluate Iteration 1

Design Iteration n,
Evaluate Iteration 1,
Evaluate Iteration 2

Code User Stories
Iteration 1,
Incorporate

corrections Iteration 0

Code User Stories Iteration 2,
Incorporate corrections Iteration 1

and Iteration 2

Evaluate Iteration n,
Evaluate Iteration 1,
Evaluate Iteration 2

C
od

e

Fe
ed

ba
ck

C
od

e

Fe
ed

ba
ck

Fe
ed

ba
ck

C
od

e

C
or

re
ct

io
ns

C
or

re
ct

io
ns

...

...

Code

Des
ign

Code

Des
ign

Figure 9: Framework integrating UCD and agile development (da Silva et al., 2011,
p. 84)

The process in Figure 9 illustrates UCD activities in red, and development
activities in yellow. The iteration 0 initiates the contextual research, task analysis,
and interviews, which utilise the UCD artefacts, including paper prototypes, design
cards, user stories, and feature cards. When the development team proceeds with the
user stories from the iteration 0, the UCD team conducts continuous evaluation with
the methods from the UCD Iteration 0. The evaluation from the UCD iteration 1 is
shared with the development team, providing design artefacts in forms of user stories,
and corrections for the iteration 2 of the development team. Additionally, the UCD
team provides constant feedback for the development team during each iteration.
This framework illustrates the interaction between the UCD and development teams,
where concurrent knowledge sharing is essential.

3.3.2 Continuous Collaboration with Stakeholders

One of the main challenges of integrating UCD into agile development is synchronising
between UX design and software development and balancing the amount of upfront
work (Larusdottir et al., 2017, p. 216). Almeyda et al. (2021, p. 195–196) argued
similarly in their systematic review, stating that lack of user participation is a major
obstacle faced by RE professionals in an agile environment. Therefore, stakeholders
should be actively involved in user-centered agile approaches, starting from early on
and remaining through the development process (Brhel et al., 2015, p. 174).

In their study, Larusdottir et al. (2017, p. 218) present that workshop with the
development team and users is one of the most used methods for communication,

43

and other frequently executed methods are informal meetings and evaluations with
users. The reasons for required user input can derive from different motives, for
example, evaluations can be executed for receiving input on how to improve the
service rather than receiving an aggregated grade assessing the quality of the final
product (Larusdottir et al., 2017, p. 218).

Curcio et al. (2018, p. 42) argue that the lack of documentation is considered as
one of the major drawbacks of agile RE. User-centered agile approaches introduce
contemporary and tangible artefacts that enable documenting and communicating
design and product concepts, while being accessible to all stakeholders involved (Brhel
et al., 2015, p. 176). Brhel et al. (2015, p. 176) state that user-stories, personas,
wireframes, and prototypes are tangible examples of this abstraction of artefacts.

Prototyping provides a solution for presenting abstract ideas, concepts, and
requirements in a scalable and concrete format (Larusdottir et al., 2017, p. 218).
Creating prototypes during the development of a product supports in identifying
both capabilities and restrictions that could have otherwise been neglected before
the deployment of a complete product. Consequently, prototyping provides value for
developers, users, and other stakeholders. Barros and Melo (2011, p. 34) introduce
experience prototypes, which aim to bring UX to a more tangible state. These proto-
types comprise paper prototypes, and low-fidelity as well as high-fidelity prototypes
that focus on the UX of a product or its component.

Curcio et al. (2019, p. 72) introduce a problem related to traditional software
development where low-fidelity prototypes may be used for developing major features
of entire systems prior to development. For an agile environment, this is a contra-
dictory and incompatible practice, thus the prototyping should be integrated to the
agile framework and its practices. Traditional prototyping can also induce a scenario
where the development team has misunderstood the user’s objectives, leading to
increased project expenses and consumed development time (Saeeda et al., 2020,
p. 2). However, UCD provides solutions to these problems by receiving input from
the user during the complete design process.

Iterative prototyping comprises different phases, starting from low-fidelity and
paper prototypes and proceeding to high-fidelity and running prototypes that function
in their real activity settings (Ardito et al., 2014, p. 549; Brhel et al., 2015, p. 175).
Starting with paper prototypes offers economic and swift proposals that can be
iteratively developed and applied to the project’s context (Argumanis et al., 2021,
p. 17). Another approach for iterative prototyping is automatic prototyping, where
prototypes are generated from an RE model that contains relevant information for
prototyping, such as details of use cases and conceptual classes (Yang et al., 2019,
p. 484).

3.3.3 Summary of UCD and Agile RE Practices

This subsection summarises UCD and Agile RE practices that were observed in
the literature review. Essentially, the methodologies are connected following agile
principles, including frequent delivery of working software as well as collaborating
with customers in between the iterations. The requirement lifecycle, consisting of

44

elicitation, analysis, prioritisation, documentation, and validation, acts as an outline
for categorising the practices.

Figure 10 conflates UCD and Agile RE practices and displays them in a high-level
agile timeline. This figure focuses on how each step of requirement timeline comprises
both UCD and agile RE practices. Furthermore, the figure expresses how planning is
conducted before and during implementation. The emphasis is on minimal upfront
work, for example, the requirements that are prioritised highest are documented in
the most detail format, as well as validated by utilising different levels of prototypes.
The timeline and practices in Figure 10 create a foundation for choosing the most
suitable practices in the empirical study.

45

Business Inputs

Adaptive Planning

Finished Deliverables

Iterative and
Incremental

Development

Requirement Prioritisation and Documentation
- Customer Journey Map, Personas, Scenarios
- Use Cases
- User Stories

Requirement Validation
- Low-fidelity and High-fidelity Prototypes
- Continuous Communication
- Code Review and Verification

After Implementation
- Managing Changes and Tracing Requirements
- Usability Testing

Requirement Lifecycle and
Iterative UCD Process

Requirement Elicitation and Analysis
- Interview
- Survey
- Workshop, Focus Group, Brainstorming
- Stakeholder Analysis
- Contextual Research
- System and Document Analysis

Figure 10: UCD and Agile RE practices in an agile software development environment

46

4 Results of the Empirical Study

4.1 Problem Identification and Defining Objectives
The target company provided a client portal for NBS participants who used the client
portal in their operations. The client portal was delivered and maintained by an
external system vendor, which had a contract with the target company. The client
portal had been developed for a several years after its original launch, and from the
target company’s perspective, the development project has followed the waterfall
software development model. With this model, the project had initially begun by
defining requirements for the vendor for creating detailed designs in cooperation
with the target company. After this, the detailed designs were validated by the
target company. Then, the vendor started implementing the system, deployed it, and
maintained the deployed software. New functionalities, and improvements on existing
functionalities were delivered in deployments varying from hotfixes to complete
version updates. New functionalities were often treated as change requests, which
required detailed and validated designs in order to define the costs and required
resources for the changes.

Designing the architecture and functionalities for a large-scale system, including
the client portal, required upfront work, and contracts with an external system
vendor justified detailed designs of each component. The system development process
between the target company and the system vendor did not particularly execute user-
centered design, as the focus of the development areas often followed the changes in the
Nordic electricity markets and their regulations. However, during the development,
varying UX features of the client portal had been enhanced after initiation from
market participants or the ISR. Therefore, UX was observed by using the client
portal in internal operations as well as reacting to customer support tickets that
concerned issues related to UX.

Analysing the current state of UX in the client portal was conducted by examining
change requests that were delivered for the system vendor during the client portal’s
lifecycle. These change requests had initiated updating the detailed design of the
client portal, which described the implemented functionalities of the client portal. It
was evident that after the go-live of the client portal, UX was being concerned while
developing the client portal further. Updates, such as adjusting visual components
of a structure management screen or unifying behaviour of the internal and external
client portals had mostly been initiated by the target company. Therefore, the state
of UX in the current client portal represented how much attention was given to
UX during the implementation and continuous development of the client portal.
Qualitative measurement tools did not exist for analysing UX of the client portal.
Although, informal discussion as well as analysing the detailed design documentation
revealed that users’ needs and goals were included in the development, depending on
the relevance of updates, and required resources.

During the study, the target company’s ICT team comprised a small-scale de-
velopment team that was developing a proof-of-concept (PoC) product of the new
imbalance system, which included a database, a dataflow system, and a simple back-

47

office, excluding the development of a new client portal. This PoC software was a
preliminary prototype of a new product that was not fully dependent on a third-party
system vendor. The finished PoC was to be evaluated while deciding whether to
develop a complete balance settlement system within the target company, or to order
the system from a third-party vendor. Including the PoC team’s operations in the
study provided an insight into an agile environment. In contrast, the development
of the current system, including the client portal, was conducted by the vendor’s
development team. This team also operated following agile methodology, however
their development operations were not directly available to the target company, apart
from the resources and timeline of deployments. The target company participated
in sprint planning and review meetings when the vendor developed major system
updates that often comprised multiple new functionalities.

Introducing the contemporary software development model as well as possible
approaches for the future was essential for creating a frame of reference where the
target company’s software development environment existed. This thesis did not
explicitly focus on particular model that the target company was going to execute,
although the target company had expressed that effectuating more agile principles
could be valuable for the future development activities. However, UCD and agile RE
provided value for iterative and incremental software development, thus adopting
the elementary principles of agile was fundamental for approaching the objective. It
was distinct that analysing the current software development model was practical for
conducting practices that involved users and UX aspects of the contemporary client
portal. Concurrently, scoping the development of the PoC and its agile practices
enabled investigating practices that would otherwise have required examining the
system vendor’s development team and their agile methodology.

The objective of the study was to find UCD and agile RE practices that were
suitable in the target company’s environment and provided results efficiently and
reliably. Therefore, the objective was quantitative and inferred rationally from the
identified problem. The objective of a solution was based on what was feasible and
sufficient in the scope of the thesis. The literature review presented and analysed
practices, which was required for the empirical study to collect and execute the
practices. The next sections introduce each practice that was executed during the
study, arguing the necessity of the practices as well as how they adapted to the target
company’s environment.

4.2 Selecting Applicable Practices
By following the objective of finding relevant UCD and agile RE practices, the
empirical study focused on the environment of the target company and included
practices that were applicable to for the target company’s future development of the
client portal. While the actual development was conducted primarily by the vendor,
the target company’s persons responsible for each new functionality were involved
in the vendor’s agile ceremonies, including sprint planning and review meetings.
Consequently, the development of the PoC followed iterative and incremental agile
practices, but it also benefited from a moderate level of documentation. This

48

documentation comprised the core processes and requirements that were already
known from the current system.

The practices were selected based on how they would contribute to the overall
software development. This enabled that each RE lifecycle step was observed in the
study, concurrently introducing UCD principles. Therefore, the context of users was
examined with the stakeholder analysis and the use case diagram. Then, existing
documentation was analysed for defining how requirements were addressed regarding
the current client portal and how the context of users was included in the process.
Additionally, the analysis contributed to examining how upfront the current software
development model was.

After the initiative practices, the study proceeded to practices that involved
user participation. These practices included sending a survey for market participant
representatives who represented each market participant group, arranging a workshop
with these representatives, and analysing ongoing customer interviews as a subsidiary
practice. After these practices that primarily contributed in requirement elicitation
and analysis, the study examined a platform where requirements could be documented,
managed, and traced.

Figure 11 presents a framework consisting of the current software development
model combined with practices that were selected for the study and adapted to the
target company’s software development environment. The vertical process displays
the linear development activities between the target company (blue) and the system
vendor (yellow). A typical change request, such as an improvement to a functionality,
initiated creating a detailed design for the functionality, which the target company
validated. Then, the system vendor started developing the functionality, which was
planned to a specific deployment. Therefore, major changes could be assigned to
multiple sprints before the functionality was deployed. Commonly, each functionality
was tested by the system vendor in unit, integration, and system testing sessions, after
which the target company verified the deliverables during user-acceptance testing.

49

Service Request
(Description of Functionality)

Detailed Design Creation
(Vendor Introduces Solution,

Target Company Collaborates)

Quality Control for Delivered
Functionality

(Unit / System / Integration
Testing)

User Acceptance Testing

New or Improved
Functionality

Validation of Detailed
Design

Customer
Interview, Survey,

Workshop

Updated Use Case
Diagram(s)

Stakeholder Analysis

Sprint(s)

Sprint Planning Meeting
(Target Company Participates)

Sprint Review
(Target Company Participates)

Validation of Deliverables

Detailed Design

Functionality Deployed
in Production

Document Analysis

Figure 11: Proposed framework for improving UX in the client portal with UCD and
agile RE practices

50

Because majority of the upfront design work concerned the creation of detailed
designs, UCD and agile RE practices (red) were integrated to the development process,
forming a framework, which was suggested to improve UX of the client portal. The
stakeholder analysis, use case diagram, document analysis, customer interviews,
survey, and workshop were chosen as fundamental practices that analysed the context
of users, included users in the development process, supported iterative design and
analysis, and maintained a continuous flow of information. These practices affected
both the new and improved functionalities as well as the entire client portal by
eliciting, analysing, and documenting requirements actively during the development.
In Figure 11, a flow of information is marked with a dotted arrow, while a normal
arrow denotes a direct flow of events or items. This enabled that the practices were
not directly depended on each other, but they often collaborated with other practices
during early and stages of the development process.

4.3 Demonstrating Selected Practices
4.3.1 Stakeholder Analysis

The NBS model connected the ISR and different market participants. The respon-
sibilities and goals of these parties were related to the core processes of imbalance
settlement. To understand the problem environment, a stakeholder analysis was
conducted to define the stakeholders, denoting anyone who interacts directly or
indirectly with the system, and their high-level responsibilities, which represented
the most fundamental use cases of each stakeholder group. The stakeholder analysis
comprised the definitions of responsibilities and objectives of each stakeholder group.
The analysis separated the stakeholders into primary and secondary stakeholders
where primary actors denoted users who directly interacted with the client portal,
while secondary actors denoted stakeholders that affected the imbalance settlement
but did not directly interact with the service. This practice offered a viable outline
for mapping the stakeholder goals in a big picture with a use case diagram.

In addition to the ISR, other stakeholders associated with the client portal were
Balance Responsible Parties (BRP), Balance Service Providers (BSP), Retailers,
Distribution System Operators (DSO), Transmission System Operators (TSO), and
Metered Data Aggregators. Metered Data Aggregators acted as national hubs
between the ISR and selected DSOs. TSOs operated with the system with their BRP
and Retailer roles, and they also supervised the electricity balance and structures, for
example, by reporting necessary imbalance settlement data and structural information
to the ISR. Additionally, Metered Data Aggregators used the client portal with a
special DSO role which had access to DSOs’ information that was related to the
Metered Data Aggregator. In summary, the users of the client portal operated the
service with a role that their company had been assigned to, depending on in which
user groups the company belonged to in the NBS model.

The BRP, BSP, Retailer, and DSO denote market participant roles, and the
current client portal was designed to be accessed via these user roles. Metered Data
Aggregators used the DSO role in the system. Furthermore, after a login screen,

51

the current client portal divided into two activity groups: Market Activity and Grid
Activity. The BRP, BSP, and Retailer roles belonged to the Market Activity Group,
while the DSO role belonged to the Grid Activity Group. These activity groups
determined the layout of the client portal, including dashboards, tabs, and data
management options.

Table 8 presents the stakeholders who were affiliated with client portal and defines
the responsibilities these stakeholders had. Some responsibilities, such as providing
required collaterals, were not direct functionalities or activities that users conducted
through the service. However, the client portal presented data related to these
activities and notified the user about the activities. For example, a user could have
sent data via the Messaging Service to the ISR’s balance settlement system, and the
client portal served as an interface for viewing the status of the sent data and how it
affected the imbalance settlement.

Table 8: Stakeholders of the client portal

Stakeholder Roles Responsibilities related to the
client portal

Imbalance Settle-
ment Responsi-
ble (ISR)

Primary: Opera-
tions & Customers
team
Primary: Finance
& Risk Manage-
ment team

– Monitoring imbalances and assessing
whether they are in accordance with
published guidelines and regulations

– Monitoring collaterals and financial
settlement information

Balance Re-
sponsible Party
(BRP)

Primary: Market
Participant

– Providing required collaterals
– Submitting bilateral trade informa-

tion to the ISR and verifying the cor-
rectness of bilateral trades submitted
by its counterparts

– Keeping the imbalance settlement
structure information up to date

– Verifying all relevant data reported
by the ISR, and notifying deviations

– Monitoring data series for which the
BRP is responsible for

– Informing the ISR of which REs the
BRP is responsible for with RBR (Re-
tailer Balance Responsibility) struc-
tures

52

Balance Service
Provider (BSP)

Primary: Market
Participant

– Keeping the imbalance settlement
structure information up to date

– Verifying all relevant data reported
by ISR, and notifying deviations

– Monitoring data series for which the
BSP is responsible for

Retailer Primary: Market
Participant

– Having an agreement with a BRP
(inducing an RBR structure) in all
areas where the RE is operating

– Monitoring data series where the Re-
tailer is involved in

Distribution
System Operator
(DSO)

Primary: Market
Participant

– Registering Retailers’ data series
– Submitting required metering data

to the ISR
– Monitoring data series for which the

DSO is responsible for

Transmission
System Operator
(TSO)

Secondary: Physi-
cal balance supervi-
sor

– Submitting necessary information
per BRP and per BSP to the ISR
for imbalance settlement

– Reporting necessary structural infor-
mation to the ISR

Metered Data
Aggregator

Primary: National
hub

– Registering Retailers’ data series
– Reporting aggregated data series to

the ISR
– Monitoring data series and DSOs

that have a relation to the Meterad
Data Aggregator

4.3.2 Use Case Diagram

The use case analysis was selected for an executable practice, because it offered
displaying interactions between users and the system in a single diagram. This
practice offered examining the big picture and analysing the major use cases and
the stakeholders involved in those use cases. Figure 12 presents the different user

53

roles and their high-level use cases in the client portal. The Service Provider was
a generalised actor, which inherited the user roles of Balance Responsible Party,
Balance Service Provider, Retailer, and Distribution System Operator, depending
of which companies the Service Provider was responsible of. The use case diagram
illustrated the big picture of the client portal, its users and their use cases without
focusing on details.

Distribution System
Operator (DSO) Balance Responsible

Party (BRP)

Retailer
Metered Data
Aggregator

Balance Service
Provider (BSP)

Register Retailers' MECs

Imbalance Settlement
Responsible (ISR)

Monitor settlement
dataVerify data reported by the ISR,

counterparties (BRPs, DSOs, Metered
Data Aggregators), and TSOs

Monitor and inform the ISR
about RBRs and BITs

React to collateral
demand update

Report aggregated MECs

Monitor financial
settlement information

Monitor RBRs and MECs where
the party is involved in

Service Provider

Monitor MECs for which the party is
responsible for

&
Receive data packages

ONLS Client Portal

Monitor data
exchange

Receive invoices

Send data for imbalance settlement (via
Messaging Service or ONLS)

Figure 12: Use case diagram of ONLS

4.3.3 Analysing Existing Documentation

Data gathering from existing system is a traditional requirement elicitation technique,
which offers in-depth knowledge of the system (Tiwari et al., 2012, p. 2). The objective
for the document analysis was to analyse how the existing documentation regarding
the client portal defined functional and non-functional requirements and how UX
and the context of users was included in the documents. Furthermore, the analysis
examined the format and functionality of the documentation of the current balance

54

settlement system, focusing on the client portal and its UX. The analysis examined
what requirements concerning UX had been collected, how the requirements were
detailed, and how different user groups were included in the documentation.

Because the balance settlement system, along with the client portal, had been
operating for several years, the requirement and design documentation was an
influential data source. Analysing the documentation included examining several
Microsoft Word and Excel files that covered the original requirements, as well as the
updated detailed designs. The tendering process was a major incentive for detailed
requirements documentation. The NBS model had been formed and the next step was
to implement an IT system to run the processes introduced in the model. Therefore,
the specification and design had been upfront in the documents that were created
before the involvement of the system provider.

After the vendor had been confirmed, the requirements and use cases were utilised
as a model for detailed documents about the system, including the client portal. These
detailed designs were created collaboratively with the vendor and the target company,
which also validated the final documents. The study assumed original requirements
were elicited within the target company, therefore excluding the involvement of
market participants in the design process. Consequently, the client portal had been
designed to enable the core operations where users were involved in. After using the
client portal, the users, including ISR users as well as market participants, provided
ideas on how to improve the system. The following Table 9 presents an overview of
the documents that were included in the analysis.

Table 9: Analysed documents in the study

Document Purpose

Solution Use Cases Use case diagrams, use cases, and requirements for
the tendering process

Functional and Non-
functional Requirements

Overview of functional and non-functional require-
ments for the tendering process

Online Service Require-
ment Analysis Detailed
Desing

Continually updated document consisting of function-
alities available in the client portal

Solution Architecture
Document

Technical overview of the complete balance settlement
system and its architectural decisions

Online Service Technical
Design

Description of how the client portal was to be imple-
mented, how the use cases were realised, and how it
the service was integrated into the balance settlement
system

Online Service Prototype
Specification

Lightweight prototype proposal defining the key func-
tionalities for verifying the feasibility and reliability
of what was to be implemented

The document analysis began by examining the Solution Use Cases document,
which introduced the core processes by displaying a use case diagram and detailed use

55

cases for each process. The use case diagrams were concisely displayed, separating
each user role when necessary. For example, in the Receive Data use case diagram,
the BRP user was connected to the UC 2.12 – Check and correct bilateral trades,
whereas the DSO user was not connected to the same use case because they were not
involved in that business process. The utilisation of use case diagrams highlighted
how they supported the big picture and collected each use case in a coherent format.
After each use case diagram, the document listed the defined use cases associated
with the process. A use case definition consisted of the following fields:

– Use Case ID
– Use Case Name
– Process
– Actor
– Description
– Pre-conditions
– Trigger
– Post-conditions
– Dependency
– Remarks
– Open issues

The definition of a use case was followed with a use case flow, which introduced
the main success flow, and possible alternative flows as well as exception flows. These
flows presented the event sequences between the start and end of each use case. The
use case flows for use cases, such as Manual Input of Data via ONLS, were described
at a level where different user groups were generalised a user. However, the user
groups related to the use case were defined in the Actor field of each use case.

After use case flows, the document listed the functional requirements that were
related to each use case. The requirements were described concisely, usually with a
single sentence, such as Ability to filter lists with values to select from (e.g. "drop-down
lists") based on values that the User has already selected or entered. Each requirement
contained an ID, which was used for referring to the requirement in other documents.
The document also presented the tenderer’s response for each use case. The response
answered whether the use case could have been performed with the proposed solution,
would it have required modifying, or if it could not have been implemented.

The requirements from Solution Use Cases were also presented in a matrix in
an Excel file Functional and Non-functional Requirements. This document, along
with Solution Use Cases, was an essential appendix document for the contracts
that had been made with the vendor. The Excel file also included the vendor’s
response regarding the requirements and use cases that were included in the initial
implementation of the system. The document listed the following fields for each
requirement:

– Requirement ID
– Requirement Category

56

– Description / Definition
– Related Process(es)
– Use Case ID(s)
– Remark / Example
– Compliance Level 1–5
– Explanation for Requirement

The requirement matrix collected the vendor’s response for each requirement in
the Compliance Level and Explanation for Requirement fields. These fields described
whether the requirement was a base product functionality, it required configuration
or customisation, or it was fulfilled in an alternative way or could not be fulfilled at
all. The document listed functional and non-functional requirements regarding the
complete balance settlement system. The functional requirements included receiving,
entering, managing, viewing, sending, and publishing data. The non-functional
requirements included common system criteria, such as performance, reliability,
availability, security, usability, architecture, and data management.

In summary, the use case and requirement documents presented how the design
process was conducted before the implementation of the system, following the waterfall
software model. The tendering process required precise use case and requirement
descriptions, which yet offered practical traceability and outlook on the big picture
regardless of the upfront design. The users were separated into groups that were
related to specific use cases, which also linked the requirements to each user group.
UX was not mentioned in the documents as such but defining the client portal as
the related process and mentioning user in the use case or requirement implied that
the user was involved in the process. Solution Use Cases also demonstrated that the
use case diagram was an effective utility for presenting use cases.

After analysing the documents used in the tendering process, the document
analysis proceeded to the analysis of detailed design documents. These documents
defined what was to be produced and how it was to be implemented. The detailed
designs were a core artefact of the software development model between the target
company and the vendor: the target company presented the idea of what was to
be produced, the vendor created a detailed design in collaboration with the target
company, and then the target company validated the design.

Online Service Requirement Analysis Detailed Design was a central document
concerning functionalities of the client service. During the empirical study, it had been
recently updated with the latest designs of functionalities. The requirement analysis
document described the details of ONLS, including descriptions of functions available
to external users, specifications of procedures on how users utilise the system, and
details of the appearance of the system. The document presented the specifications
of procedures as use cases, which included a brief description, an overview on actors,
preconditions, a flow of events, post conditions, validation rules and error handling,
exporting information, and wireframes. The use cases described the full workflow
of an action or a procedure that was conducted in the client portal. In general, the
use cases and requirements in the detailed design document were adapted from the
documentation used in the tendering process.

57

While the requirement analysis document presented each functionality of the
client portal, it did not specify technical details about the system. These details were
described in Solution Architecture Document, which introduced several architectural
details, including major design decisions, technologies, and component as well as
high-level interaction regarding the balance settlement system. Additionally, the
document described architecturally significant requirements that were connected
to use-cases and non-functional requirements. The document described ONLS as
a lightweight web-based application that utilises server-side resources to a limited
extent, providing fast access to data tables and other data elements. Because the
architecturally significant decisions were made during the implementation phase,
it was important to take them into consideration when eliciting new requirements
during the service’s lifecycle. While non-functional requirements, such as performance,
affected UX of the service, technical limitations could have restricted making changes
into these non-functional requirements. As a result, UX should also be an important
domain to consider while creating architecturally significant decisions.

The requirement analysis and architecture documents were updated and com-
pleted during the implementation of the client portal and after its operational launch.
These documents were utilised in the lifecycle of requirements in the target company.
Although, the development model did not introduce new or improved functionalities
as requirements. Instead, the lifecycle of requirements consisted of a change request
that described a functionality, a detailed design that was created and validated, im-
plementation of deliverables, and testing the implemented functionalities. Generally,
market participant users were involved in the RE process by continuously delivering
information about how the service functioned. This information was often received
in the format of customer support tickets.

Lastly, the document analysis observed two documents that were used before the
implementation of the client portal. These documents included Service Technical
Design and Online Service Technical Prototype Specification, which were created by
the system vendor and validated by the target company before the implementation
of the client portal. Online Service Technical Design defined how the system was
to be produced, decomposing the client portal’s use cases and requirements into
implementation components, defining the internal architecture of the components,
and explaining how the components interacted with different use cases. The document
consisted of a high-level description of main solution components, a technical solution
of the components, a technical realisation of major use cases, integration of ONLS
with the balance settlement system, and the internal data model of ONLS.

In summary, the technical design document defined the frontend of the service
that was to be delivered for market participants. Structural and behavioural diagrams
were utilised to illustrate how the user interacted with the client portal and how the
client portal interacted with the balance settlement system. Regarding requirements,
the technical design summarised functional and non-functional requirements that were
relevant to the ONLS technical design. The document included various functional
and non-functional requirements that were connected to UX of the service, such as
Ability to allow User to access and view market party specific settlement information
via online service and Users must be able to use online service functionality without

58

end User trainings. While majority the document was technical information about
ONLS as a web application, UX related issues, such as the login system, were covered
in the document. Therefore, the technical description also concerned issues related
to UX.

The final document, Online Service Technical Prototype Specification, was essen-
tially a definition of which functions were to be implemented to verify feasibility
and reliability of drafted ONLS architecture. Practically, the specification described
details about a low-level prototype of the service. The prototype specification also
listed the allowed functional limitations in the prototype, which generally consisted of
user interface elements that were not necessary for the prototype. Additionally, the
document comprised a definition for prototype evaluation, which included verifying
that the prototype was fully functional according to the described requirements and
limitations.

Although, little to no prototyping had not existed during the implementation,
but the details about allowed limitations of the prototype indicated that the low-level
prototype could have been vertically expanded to high-level. The document derived
from the requirement analysis and technical design documents, and the prototype
specification inherited requirements and use cases that were the most significant
and crucial for delivering a working prototype. Overall, Online Service Technical
Prototype Specification acted as a lightweight artefact of prototyping, which was
relevant information for any future software development projects. Different levels of
prototype could be utilised for validating with users how requirements were adapted
to the software.

4.3.4 Survey and Requirement Workshop

The purpose for the requirement workshop was to present the concepts of UCD and
agile RE and to discuss UX of the client portal at a Customer Committee event,
which brought together 12 market participant representatives from different user
roles. These user roles included the Balance Responsible Party (BRP), Retailer, and
Distribution System Operator roles (DSO). The participant group also include target
company employees, and Transmission System Operator (TSO) representatives who
also used the client portal with their BRP role.

The workshop experimented brainstorming and face-to-face communication as
requirement elicitation techniques with users of the client portal. Because the
workshop was an introduction activity related to UCD and agile RE, the overall
structure was kept light, emphasising that questions, comments, and opinions were
appreciated. This activity model combined characteristics of a workshop and a
brainstorming session.

Before the workshop, the participants were asked to answer a survey, which
included questions regarding functionalities and characteristics of the current client
portal, and how these functionalities and characteristics affected the user’s operations.
The first half of the survey consisted of two open questions regarding relevant, and
missing or inadequate functionalities. The second half contained an evaluation as-
sessment of different functionalities and characteristics of the client portal. Appendix

59

A presents the contents of the survey. The purpose of the survey was to invoke
discussion regarding UX of the client portal. The survey was sent to the Customer
Committee participants a week before the workshop, and the answers received to
date were analysed and summarised before the event.

The workshop started with a presentation of the background of the thesis, stating
the purpose of the study, the objective of the workshop, and the relevance of user-
centered design and agile RE. Introducing the model of agile software development
demonstrated tangible agile principles, including early and frequent delivery, face-to-
face communication, and being able to approach changes. These principles supported
the importance of the chosen field of studies that included UCD and agile RE. The
background section of the presentation finished with stating three main points of the
importance of the study:
– Noticing the context during design and development and addressing the entire

user experience
– Iterative and continuous stakeholder participation with practices, such as proto-

typing and usability testing
– User-centered requirements engineering by eliciting, validating, and prioritising

requirements with users
After the background presentation, the workshop continued with an analysis

of the answers from the survey. The analysis started with the content and overall
remarks of the survey, which displayed that the BRP, RE, and DSO roles were
present in the answers, and the overall experience with ONLS was Satisfied, which
represented the number 4 in a scale from 1 to 5. The following paragraphs proceed
through the survey questions A–D and include possible discussion and questions that
raised during the presentation of the survey.
After the background presentation, the workshop continued with an analysis of the
answers from the survey. The analysis started with the content and overall remarks
of the survey, which displayed that the BRP, RE, and DSO roles were present in
the answers, and the overall experience with ONLS was Satisfied, which represented
the number 4 in a scale from 1 to 5. The following paragraphs proceed through
the survey questions A–D and include possible discussion and questions that raised
during the presentation of the survey.

A. If you can, name the most relevant functionalities (e.g., an imbalance view,
the data export tool, a data table, . . .) in ONLS.
The answers for this survey question were varying. One common answer was different
main views that were used during daily operations depending on the role of the
company.

B. If you can, name functionalities that are missing from ONLS, or name cur-
rent functionalities that require improvement.
The answers from the second open question revealed that navigation, buttons, and
different methods for sending data were missing or required improvement.

C. How would you evaluate the following functionalities of ONLS?

60

The evaluation questions highlighted if the functionalities and characteristics received
a remarkably high grade, had deviation in answers, or received a lower grade. The
highly rated functionalities included communication and exportability, while the
data packages and messaging received lower grades or had deviation in answers. One
participant commented that the client portal had small, irritating features that can
be adapted to during time. The participant also asked that whether those features
were included in the study. This comment further leaded the discussion towards what
the features were, which highlighted the efficiency of a workshop that endorsed free
discussion and commenting. The features concerned the navigation in the service
and how the filters reset when navigating backward in some views.

D. How would you evaluate the following characteristics of ONLS?
Performance and visualisation received remarkably high grades. These non-functional
requirements were essential for the usability of the service because a common use for
the client portal was to view and interpret data, thus the data was required to be
easily accessible and visualised clearly.

After the requirement workshop, one participant announced that they could
provide another list of ideas and comments regarding the services of the target
company, mainly concerning the client portal. This list was collected from a working
group consisting of representatives from BRP, DSO, and RE roles. Table 10 presents
the list of ideas and comments from the working group.

61

Table 10: Ideas from the working group

Subject Details

Authentication
– When the company has different roles, such

as BRP and DSO, the views and switching
between roles should be more distinct

Company contacts
information – DSO contact information is often obsolete

Dashboard – MGA Imbalance graph needs filtering by date,
or a more precise time interval

Data views and
Searchability

– Different views need filtering by national
codes in addition to the global codes

– Time series views need an updated default
time interval

Reports – A report that shows possible MGA Exchange
mismatches and their details

4.3.5 Analysing Ongoing Customer Interviews

During the study, the target company conducted a campaign titled Close to Customers,
which included visiting market participant companies and discussing with them
regarding imbalance settlement, the electricity markets, and the market participant’s
operations. The project was originally initiated to achieve closer dialogue among the
market participants. The Close to Customers campaign targeted Balance Responsible
Parties because the direct interaction with Distribution System Operator companies
had mainly shifted to Metered Data Aggregators.

At the time of the empirical study, the target company had visited three different
companies and collected notes from the meetings. The collaborative nature of the
campaign enabled that target company could collect comments also about the client
portal. As the interviews included face-to-face communication, the meeting notes
were also analysed as part of this thesis to include face-to-face interviews as a practice.
Table 11 summarises comments that included features regarding UX.

62

Table 11: Comments from Close to Customers campaign

Company Subject Details

BRP 1

Data Packages – Unclear Data Package solutions and contents

General comments – No wishes or requests for change regarding
ONLS

BRP 2

Application Pro-
gramming Interface
(API)

– A request for more accessible and flexible data
exporting tool

– Secondary method for sending Bilateral Trade
data

Authentication – Difficult to shift between BRP and DSO roles

Default views – Data views start loading data with default
time window, which slows the process

Navigation and
Data views – No total sum in Imbalance drilldown views

Notifications
– No notification when a Bilateral Trade series

changes due to the counterparty’s structural
change

BRP 3

General comments
– ONLS is the most user-friendly portal that

the interviewee has used
– Good performance

Authentication
– The interviewee did not know that a company

user with admin role could create more users
with admin role

In addition to the comments in Table 11, the interviewees described how they
operated in the Nordic electricity markets, for example, expressing their role in
electricity production, consumption, or trading. In the context of this study, the

63

details about the interviewed company’s operations were not included in Table 11.
However, when the number of interviewed market participant companies increases,
this data is relevant for requirements engineering principles, such as prioritising
requirements. Additionally, the details about how market participants operate
also influence non-functional requirements, including customisability. In the client
portal, customisability denotes how users can modify the interfaces to adapt to their
operations and needs.

4.3.6 Documenting Requirements with Azure DevOps

While Online Service Requirement Analysis Detailed Design was a core document in
the current development of the client portal, actual implementation of requirements
was processed within the Atlassian Jira platform. Jira allowed agile project tracking
in the vendor’s software development operations, thus analysing this platform in
the study was limited. However, the target company utilised Azure DevOps as the
platform for planning, building, and deploying the PoC. The platform provided
different processes and process templates, which defined the building blocks for
planning work and tracking work items.

The target company had chosen to execute the Azure DevOps agile process,
which followed agile planning methods, such as Scrum, for tracking development
and testing activities. The agile process defined a core backlog structure in the
portfolio backlog, which included epics, features, user stories, and tasks (Microsoft
Docs, 2022). Additionally, the agile process defined the work item type groups for
testing, feedback, and code review activities. Figure 13 presents the different work
item types and their hierarchy.

64

Epic

Feature

User Story

Task

Bug

Task

Issue

Feedback
Request

Feedback
Response

Test Plan

Test Suite

Test Case

Shared Steps

Shared
Parameters

Code ReviewRequest

Code ReviewResponse

Portfolio backlog Test

Issue tracking

Product backlog

Code reviewFeedback

Configurable

Figure 13: Agile process work item types (Microsoft, 2022)

Figure 13 introduces the different operation areas, including portfolio backlog,
product backlog, configurable, issue tracking, test, feedback, and code review. The
scope of the analysis did not include a thorough inquiry of these areas. However, the
thesis considered the portfolio backlog, and the product backlog operation areas as
agile methods for specifying, documenting, validating, and tracking requirements in
the form of user stories. During the analysis of the platform, the utilisation of the
presented work items was elementary, and the development team utilised only few
work item types during the development of the PoC.

In Azure DevOps, requirements were expressed as user stories, which were defined
in the product backlog and assigned to a specific development sprint. The workflow
followed agile RE principles, introducing validation measures with options for sharing
the work item, traceability measures with linking work items to iterations as well
as other work items, prioritisation measures with story points, priority, and risk
parameters, and lightweight specification and documentation measures.

Azure DevOps offered a scalable platform for documenting and tracing require-
ments. Although, the business and IT teams as well as the other stakeholders who
validated requirements needed to understand the concept of work items and their
hierarchy. For example, if a UCD specialist or a product owner shared a user story to
a user for validation, the user was required to understand where the actual function-
ality located in the big picture. Consistent communication and effective utilisation of
work item attributes were explicit concerns for utilising Azure DevOps functionally.

65

4.3.7 Collected Set of Requirements

A set of requirements was one of the two artefacts the design science process of
the empirical study delivered. The requirements were also a demonstration of the
practices that were chosen to be conducted. The most influential sources for the
requirements were practices that included direct communication with users. Therefore,
the workshop and interviews were effective practices for eliciting requirements and
analysing them.

Table 12 presents the set of requirements that were elicited and analysed with the
executed practices. The requirements represent different sizes of new or improved
functionalities that influenced UX of the client portal. The requirements were
described as abilities to interact with the client portal and to achieve a desired
outcome. Additionally, the set of requirements comprised information about the
user group, requirement type, and additional details that clarify the technical or
logical nature of each requirement. This format of requirements was lightweight and
supported further prioritisation, documentation, and validation practices.

66

Table 12: Collected set of functional (FR) and non-
functional (NFR) requirements that the executed practices
delivered

Requirement User Group Type Details

Ability to receive notifications
from Bilateral Trade series
changes

BRP FR

New notification
regarding Bilateral
Trade changes that
were not induced by
the user’s actions

Ability to access data in a sin-
gle interface via an API

BRP, BSP,
RE, DSO FR

A versatile REST
API that offers an
interface for data
queries

Ability to access Market and
Grid roles without re-login

BRP, BSP,
RE, DSO NFR

Login functionality
utilises an autho-
risation cookie
that allows chang-
ing roles without
re-authenticating

Ability to customise the Im-
balance per MBA (BRP) and
MGA Imbalance (DSO) graphs
in the dashboard

BRP, DSO FR Graphs allow chang-
ing time interval

Ability to find documentation
about different data views, re-
ports, and settings

BRP, BSP,
RE, DSO NFR

Documentation
is up-date and
describes each com-
ponent distinctly
and concisely

Ability to download a report
that displays possible MGA Ex-
change mismatches

DSO FR

Downloadable
report that is struc-
tured similarly as
other reports

Ability to disable automatic
data loading when opening
data views

BRP, BSP,
RE, DSO FR

Global setting for
disabling automatic
data loading

4.4 Evaluating the Practices and Sharing the Study
The empirical study inspected seven different practices that were suitable to execute
during different phases of the iterative requirement lifecycle. However, the practices
focused on eliciting new requirements or validating, and thus improving, existing
requirements. Table 13 presents a summary of each practice and lists the discovered
strengths and weaknesses of the practices. The selected practices offered divergent
approaches for different phases in requirements engineering. The diverse selection

67

of practices enabled to inspect both iterative and non-iterative activities, and some
practices were more user-centered while others were less collaborative and dependent
on users.

Table 13: Executed UCD and Agile RE Practices in the
empirical study

Practice Summary Strengths Weaknesses

Stakeholder
analysis

Preliminary activity
that listed the stake-
holders and their re-
sponsibilities

– Provided infor-
mation about
each user group
for later RE
activities

– Was based on
the ISR’s per-
spective, and the
user groups’ own
goals were not
present

Use Case Dia-
gram

Presented the stake-
holders and their
core activities in a
single diagram

– Illustrated the
big picture of
stakeholders and
their relation
with the system

– A large-scale
system required
high-level ab-
straction, which
could have ex-
cluded relevant
details

Analysing
existing docu-
mentation

Current knowledge
and documentation
presented the re-
quirements of the
current system

– Enabled
analysing how
RE had proceed
in the current
system and how
the requirements
included users
and their contex

– Collecting data
from various doc-
uments required
caution when de-
termining what
was relevant in-
formation

68

Survey

Elicited require-
ments and collected
data how the users
experienced the
service

– Was straightfor-
ward to perform
for a large group
and the results
were in a system-
atic format

– The conver-
sation was
one-sided with
open questions,
and closed ques-
tions could have
restricted the
answers

– Analysing open-
ended questions
required signifi-
cant effort when
comparing to
closed-ended
questions

Requirement
workshop

Presended selected
areas of interest and
provoked discussion
among market par-
ticipant representa-
tives

– Collaborative
discussion
encouraged
snowballing
ideas, which
introduced new
viewpoints on
issues

– Relied strongly
on how ac-
tively the
representatives
participated in
conversation

Analysing
ongoing
customer
interviews

Elicited require-
ments from in-
terview documen-
tation that was
primarily collected
for other purposes

– Lightweight and
subsidiary activ-
ity, which pro-
vided additional
viewpoints

– Indirect commu-
nication could
have resulted
in neglecting
relevant subjects
and arguments

Documenting
requirements
with Azure
DevOps

A platform that
was utilised for col-
lecting, managing,
and sharing require-
ments

– Offered interac-
tive requirement
management and
prioritisation

– Without correct
utilities, such
as use case dia-
grams, the list
of requirements
losed focus on
the big picture

69

A common issue with the practices that included user participation was how
difficult it was to actively communicate and receive feedback during the survey
and the workshop. The deviation in active participation was most distinct in the
workshop: while some participants commented, inquired, and provided ideas, others
attended the workshop without participating in conversation. Although, the ideas
from more active participants induced other participants to comment on the idea
and present their experiences and feelings about the subject. These comments may
not have been revealed without the stimulus the active participants created. This
phenomenon revealed that the users provided information about their user experience
diversely, and the discussion should have been directed towards a situation where
each representative participated equally.

The NBS model was structured around market participant roles, and their respon-
sibilities and relationships between each other. Therefore, the stakeholder analysis
was a compatible practice for the RE lifecycle in the target company’s context. The
practice was unambiguous instrument when examining the big picture of requirements
and it was an effective practice for initiating the RE process. Equivalently, the use
case diagram provided an elementary illustration of the users who interacted with
the system. The diagram comprised multiple business processes of the client portal
and did not offer a detailed picture of every interaction method.

Analysing existing documentation was a versatile practice. While the exist-
ing documentation represented the waterfall software development model with its
characteristics, the documentation introduced how requirements were elicited and
defined before the implementation of the service. The functional requirements as
well as architecturally significant requirements were documented in-depth, which
demonstrated that the business environment was stable and well-known. Although,
the NBS model was prone to prominent changes where major functionalities and
changes in the logical processes were adjusted after the go-live of the service. It was
notable that cooperation with an external vendor required signing contracts where
business processes and functionalities were carefully defined. Thus, the Big Design
Up Front approach and the waterfall software development model were justifiable
when designing the system architecture before initiating UCD and agile RE practices.

The survey and requirement workshop were functioning practices for directing
discussion towards certain subjects while keeping the environment open for ideas
and comments. Concurrently, the practices offered valuable information on how
they required active participation from the audience. If the participation of market
participant representatives was inadequate, the answers may have been one-sided
and focused on nonessential features that may not have been major concerns within
the user group. In conclusion, the survey and workshop could have been effective and
easily executable if the participants were more active. Nevertheless, these practices
could elicit both functional and non-functional requirements that were either new or
improved existing ones.

Utilising ongoing customer interviews was a remarkable practice, because majority
of the interviews thus far included comments regarding features that affiliated with
UX. As the interview agenda did not include a separate section for comments
regarding the client portal or its functionalities or characteristics, the interview

70

documentation included undetailed comments that the market participants provided.
The initiation of market participant interviews as part of a campaign had directed
the attention towards how users experienced the software.

The final practice, documenting requirements with Azure DevOps, introduced a
perspective of utilising a platform for documenting, prioritising, tracing, and sharing
requirements. The product and sprint backlogs had been utilised in the development
of the PoC system, and the user stories, epics, and features were included in the PoC
backlog. The development team had not utilised the platform thorough, but the
overall experience with the platform had been positive. A major concern regarding
Azure DevOps was how the big picture could be included while managing the backlog.
One solution for this could have been an interactive use case diagram that categorised
the requirements depending on the user group.

This empirical study followed the design science process presented by (Peffers
et al., 2007, p. 52–56). The thesis was structured to follow the process by introducing
the applicable knowledge as the rigor and determining the business needs as the
relevance. The literature review supported the former while the empirical study
executed the latter. The purpose of the thesis was to communicate the problem
and its importance, and to demonstrate the how the results were achieved with
design science. Therefore, sharing the thesis concluded the design science process
that was started with identifying the problem. The artefact, consisting of efficient
and applicable practices and the set of requirements, demonstrated that the problem
had been examined with the design science discipline.

71

5 Discussion

5.1 User-Centered Design and Agile Requirements Engineer-
ing Practices

Based on literature, user-centeredness is concept that has been adapted to agile
practices. Noticing the UX domain is an essential concern when companies compete
in engaging users with their software (Brhel et al., 2015, p. 171). International Orga-
nization for Standardization (2019a, p. 6) summarises principles of UCD, including
noticing the context, user engagement during the process, assessments focusing on
the user, iterative design process, addressing the entire UX, and utilising a multi-
disciplinary project team. The principles of UCD are present in practices, where
research is conducted on users and domain, and preliminary results as well as solu-
tions are reviewed (Kropp and Koischwitz, 2014, p. 10). Contextual research, paper
prototypes, and personas are tangible examples of practices where the principles
actualise. (Argumanis et al., 2021, p. 18–19).

Continuous and iterative collaboration with users is also essential in agile RE where
the lifecycle of requirements is integrated in agile methodology, such as Scrum (Curcio
et al., 2018, p.34). RE phases, including eliciting, analysing, documenting, validating,
and managing requirements, cover the process of establishing the constraints under
which this system operates and is developed (De Lucia and Qusef, 2010, p. 212-213).
Agile principles, such as customer collaboration and responding do changes, set a
direction for iterative and incremental RE activities (Inayat et al., 2015, p. 916).
Various RE practices, such as workshops for eliciting, use cases for documenting,
and prototyping for validating requirements are applicable to the agile development
environment .

Essentially, UCD and agile RE focuses on users and customers with a cyclical and
human-centered approach, aiming to produce high-quality software that satisfies the
needs of users and provides value for stakeholders (Jurca et al., 2014, p. 25). UCD and
agile RE can be connected in frameworks that introduce activities where preliminary
research and design, implemented code during sprints, and final deliverables are
evaluated, developed, demonstrated with an user-centric approach (Argumanis et al.,
2021, p. 27–32).

In practice, requirement elicitation and analysis can be supported with UCD
practices, such as contextual research (Alves et al., 2014, p. 100). Similarly, carefully
constructed user stories and personas support requirement documentation (da Silva
et al., 2011, p. 81–82). Prototyping is a valuable practice that connects UCD and
agile RE, enabling continuous collaboration with stakeholders during iterative and
incremental software development (Larusdottir et al., 2017, p. 218). UCD and agile
RE adapt to the agile software development environment by introducing practices
that focus on delivering highest possible value for developing a software with a
user-centered and adaptive approach.

72

5.2 Analysing User Experience of a Client Portal
The target company had provided its stakeholders a functioning client portal for
several years and simultaneously developed the service in cooperation with the system
vendor. This enabled that the client portal adapted to new and updated areas of
the business domain. During the years, the internal users of the company, market
participants, and the vendor had influenced the client portal to answer to the users’
needs. To understand how to improve UX of the client portal, the current state of
UX was analysed generally, thus identifying the problem for the empirical study.

The client portal had originally been developed following an upfront waterfall
software development model. The designs of different components and architecture
of the service were documented in detail, forming a comprehensive conception
between the target company and the vendor. This model followed an agreed timeline,
which ensured planning the size of deployments and securing that the projects were
completed on time. After the go-live of the client portal, new functionalities as well
as improvements on existing ones were introduced in different levels of deployments.
The features that affected UX of the service had not been specifically labelled as
such, but the detailed designs enabled examining that UX had been improved by
these changes.

The workshop, interviews, and discussions within the working group revealed that
the overall UX of the client portal satisfied the users and supported them in their
operations. The mentioned improvements mainly concerned functional requirements
that were related to secondary features which supported the users in their operations
but were not critical. Thus, the significant functional and non-functional requirements
that were described in the original requirements documentation functioned in a way
that satisfied the users’ needs and expectations.

The overall satisfaction with non-functional requirements that affected the client
portal’s UX suggested that the architecturally significant requirements were admin-
istred successfully, thus ensuring a satisfying performance, as well as sufficient and
usable navigation and visualisation. An authorisation process with more effortless
role changing emerged as an improvement regarding the existing authentication
requirement. Similarly, exportability as a non-functional requirement required im-
provements that affiliated with a functional requirement of providing an API that
allowed flexible and customisable data exporting.

5.3 Improving User Experience of a Client Portal
UCD and agile RE introduce various practices that can be adapted to agile software
development environments, and the empirical study revealed that the practices were
also applicable to a more upfront development environment. When UCD and agile RE
practices were adapted to the target company’s context, they provided value to the
development process by introducing a user-centered approach where the requirement
elicitation and analysis phases received input from different activities that could be
conducted continuously and continually during the development of the client portal.

In the empirical study, suitable UCD and agile practices were collected and

73

adapted to the target company’s software development model, introducing continuous
involvement of users in the design and validating processes. The practices focused on
requirement elicitation, analysis, and validation phases, and following UCD principles
before, during, and after implementation. Introducing user-centered practices in the
design phase of functionalities was relevant, because creating and validating detailed
designs was a fundamental phase of the software development model. The stakeholder
analysis, use case diagram, document analysis, survey, workshop, and analysis of
interviews were argued to be suitable for improving UX of a client portal. While the
utilisation of Azure DevOps platform benefitted the overall RE process, it was not
directly connected to improve UX of the service. However, it was included in the
study, because consistent and dynamic requirement documentation and management
indirectly affects the other RE phases as well as user-centeredness. When artefacts
from practices, such as use case diagrams and prototypes, are managed via one
platform, they can be effortlessly traced, shared, and validated.

The empirical study revealed the practices that included active user participation
or thorough analysis on each user group and their use cases contributed most to
the RE process. More explicitly, most of the elicited requirements resulted from
analysing and summarising notes from ongoing customer interviews, the requirement
workshop, and the notes from the working group. Several improvements on existing
functionalities were manifested with these practices, addressing different components
of the client portal. Therefore, active face-to-face communication was construed as
an important attribute for efficient UCD and agile RE practices.

5.4 Limitations of the Study
The literature review and the empirical study answered the research questions
sufficiently and provided arguments that supported the results. However, the timeline
and scope of the thesis limited the resources for some executed UCD and agile RE
practices. Particularly, the survey received only few answers from different user
groups, and the workshop was organised only once. Although, these practices, as well
as the others that were conducted, provided clear insight into what were the strengths
and weaknesses of each practice. Notably, the survey, workshop, and analysis of
interviews were efficient practices that improved the client portal’s UX by including
users more regularly and closer to the development of the service.

Another limitation concerned the evaluation of the artefact, which was the fifth
step of the utilised process of design science research. The artefact comprised a
group of practices as well as a set of requirements that were elicited and analysed
with those practices. The practices were evaluated, presenting the strengths and
weaknesses of each practice, but the evaluation of the requirements was eventually
out of the scope of the thesis.

From the perspective of requirement lifecycle, the evaluation of the requirements
could have been conducted when the requirements were validated. Thus, the collected
requirements were only elicited and lightly documented, and further requirement
lifecycle stages, such as validation, verification, and prioritisation were not performed
in the scope of the thesis. The requirements could be processed further by following

74

the requirement lifecycle, thus continuing to validate the requirements with practices,
such as paper prototypes and workshops.

75

6 Conclusions

6.1 User-Centered Design and Agile Requirements Engineer-
ing in the Development of a Client Portal

The thesis examined how UX of a client portal could be improved utilising UCD
and agile RE practices. As the client portal had been operating and developed for
several years, the UX domain had been acknowledged on a small scale, but continuous
user participation had not been a prevailing practice. The following paragraphs
summarise the main conclusions of the thesis and place arguments and observations
on each conclusion to support them.

UCD and Agile RE practices can be utilised for improving UX of
a client portal continuously and iteratively. Both methodologies emphasise
the importance of including users and observing their context and needs regarding
the software. UCD and Agile RE have a mutual goal of supporting in producing
high-quality software where UX has been properly scrutinised. Practices, such as
interviews, workshops, and prototypes, contribute to continuous user involvement,
which further supports observing how users perceive and react to a software.

UX does not only require consideration when designing functionalities and char-
acteristics of a software but also during the lifecycle of software and its continuous
development. Therefore, continuous and iterative observation on UX is one of the
core qualities of UCD and agile RE practices. Conducting these practices manifests
how the software is being developed for the users and considering their context of
use. Consequently, the practices aim to recognise how the users use the system as
well as how they intend to use it.

UCD and agile RE support each other and they can be integrated.
The principles of UCD mention focusing on the user and their context as well as
the entire UX, designing iteratively, engaging users during the development process,
and operating with a multidisciplinary team. In parallel, the highest priority of the
agile methodology is to satisfy the customer by delivering valuable software early
continuously. This suggests that to understand the customer’s needs before and
during implementation of software, the customer is required to be as close to the
RE process as possible. Face-to-face communication, different levels of prototyping,
workshops, and light but efficient documentation are tangible examples of practices
that deliver value by following both UCD and agile RE principles and frameworks.

The iterative and incremental nature of agile software development offers sepa-
rating UCD and agile RE activities within and around sprints. For example, UCD
specialists in a self-organising Scrum team can focus on requirements that affiliate
with UCD. Working with these requirements may include conducting contextual
research, creating personas, validating the backlog with users, and developing and
validating prototypes with the product owner. The product owner is responsible
for the requirements in the product backlogs and prioritises them for upcoming
springs. The RE activities are also incremental, thus requirement elicitation, analysis,
documentation, validation, and prioritising are conducted on the top of the previous
iteration. Therefore, UX is being continuously and iteratively considered during the

76

development process, and users are able to express their needs and expectations of
the software.

UX is an important domain to consider in RE. The collected set of
requirements illustrated how the users expressed their need for features that were
not included in the original requirement analysis or in any previous document after
the implementation of the service. If users and UX are not considered during the
lifecycle of requirements, the distance between original expectations of users and the
final product amplifies, and the result may differ from what the users were expecting.

Analysing the RE lifecycle demonstrated that each RE step can be connected to
practices that involve the user and their experience. These are, for example, market
participant interviews in requirement elicitation, prioritising requirements depending
on what brings most value to users, documenting requirements in a way that is
understandable and shareable to users, and validating requirements with prototyping
before final deliveries are developed. UX is also depended on the context of use,
which induces analysing the different user groups and their use cases separately but
in a format that retains the big picture. For example, use case diagrams are efficient
practices for displaying the interactions between each user group and the system.

An up-front software development process can be user-centered when collabo-
rative practices, such as workshops, interviews, and surveys are utilised during the
requirement elicitation and analysis. Then, the creation and validation of detailed
designs receive user input, which supports in confirming that the functionalities
actually represent what the users are expecting, thus affecting UX of the service.
Utilising different levels of prototypes provides value when UX is addressed during
different phases of RE. Therefore, UX needs to be considered during the whole
process of developing a software.

6.2 Needs for Further Research
The evolution of RE and utilisation of agile methodologies and user-centered design
have profoundly transformed the software development domain. Modern platforms
are utilised for orchestrating different development activities, such as managing
requirements, deployment, testing, and quality assurance. The waterfall software
development model often comprises creating and managing detailed documentation
of requirements, which are validated with the customer before implementation. These
lengthy and detailed documents are in contradiction with the agile principles, thus
furher research could be conducted to examine how to find a common ground where
requirements are documented as lightly as possible while acknowledging the big
picture in the process.

Conducting agile RE practices with an external system vendor introduces a gap
between the vendor, the users, and the company owning the software. This software
development model requires considering how the lifecycle of requirements is balanced
between these actors and how agile RE is applied in practice. Practices, such as
prototyping, often require technical resources and knowledge on how to utilise them
in a collaborative development environment. Therefore, further research could also
focus on constructing an extensive framework for finding practices that adapt to an

77

agile development environment where an external system vendor is responsible for
developing the software.

78

References
Silvana Almeyda, Claudia Zapata Del Río, and Dennis Cohn. Integration of User

Experience and Agile Techniques for Requirements Analysis: A Systematic Review.
In Marcelo M. Soares, Elizabeth Rosenzweig, and Aaron Marcus, editors, Design,
User Experience, and Usability: UX Research and Design, pages 187–203, Cham,
2021. Springer International Publishing. ISBN 978-3-030-78221-4.

Rui Alves, Pedro Valente, and Nuno Jardim Nunes. The State of User Experience
Evaluation Practice. In Proceedings of the 8th Nordic Conference on Human-
Computer Interaction: Fun, Fast, Foundational, NordiCHI ’14, pages 93–102, New
York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450325424.
doi: 10.1145/2639189.2641208. URL https://doi-org.libproxy.aalto.fi/10.
1145/2639189.2641208.

Carmelo Ardito, Paolo Buono, Danilo Caivano, Maria Francesca Costabile, and Rosa
Lanzilotti. Investigating and promoting UX practice in industry: An experimental
study. International Journal of Human-Computer Studies, 72(6):542–551, 6 2014.
ISSN 1071-5819. doi: 10.1016/J.IJHCS.2013.10.004.

Daniela Argumanis, Arturo Moquillaza, and Freddy Paz. A Framework Based
on UCD and Scrum for the Software Development Process. In Marcelo M.
Soares, Elizabeth Rosenzweig, and Aaron Marcus, editors, Design, User Experience,
and Usability: UX Research and Design, pages 15–33, Cham, 2021. Springer
International Publishing. ISBN 978-3-030-78221-4.

Issa Atoum. A Scalable Operational Framework for Requirements Validation
Using Semantic and Functional Models. In Proceedings of the 2nd International
Conference on Software Engineering and Information Management, ICSIM 2019,
pages 1–6, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450366427. doi: 10.1145/3305160.3305166. URL https://doi-org.
libproxy.aalto.fi/10.1145/3305160.3305166.

Tiago Barros and Paulo Melo. Prototyping as a Powerful Tool in a User Centered
Innovation Process. In Proceedings of the Companion Proceedings of the 10th
Brazilian Symposium on Human Factors in Computing Systems and the 5th Latin
American Conference on Human-Computer Interaction, IHC+CLIHC ’11, pages 33–
35, Porto Alegre, BRA, 2011. Brazilian Computer Society. ISBN 9788576692560.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon
Kern, and others. Manifesto for agile software development. linea], disponible en
http://www. agilemanifesto. org, 2001.

Shahid Nazir Bhatti, Maria Usman, and Amr A Jadi. Validation to the Requirement
Elicitation Framework via Metrics. SIGSOFT Softw. Eng. Notes, 40(5):1–
7, 9 2015. ISSN 0163-5948. doi: 10.1145/2815021.2815031. URL https:
//doi-org.libproxy.aalto.fi/10.1145/2815021.2815031.

https://doi-org.libproxy.aalto.fi/10.1145/2639189.2641208
https://doi-org.libproxy.aalto.fi/10.1145/2639189.2641208
https://doi-org.libproxy.aalto.fi/10.1145/3305160.3305166
https://doi-org.libproxy.aalto.fi/10.1145/3305160.3305166
https://doi-org.libproxy.aalto.fi/10.1145/2815021.2815031
https://doi-org.libproxy.aalto.fi/10.1145/2815021.2815031

79

Manuel Brhel, Hendrik Meth, Alexander Maedche, and Karl Werder. Exploring
principles of user-centered agile software development: A literature review. In-
formation and Software Technology, 61:163–181, 5 2015. ISSN 0950-5849. doi:
10.1016/J.INFSOF.2015.01.004.

Michael Budwig, Soojin Jeong, and Kuldeep Kelkar. When User Experience Met Ag-
ile: A Case Study. In CHI ’09 Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’09, pages 3075–3084, New York, NY, USA, 2009. Association
for Computing Machinery. ISBN 9781605582474. doi: 10.1145/1520340.1520434.
URL https://doi-org.libproxy.aalto.fi/10.1145/1520340.1520434.

Lan Cao and Balasubramaniam Ramesh. Agile Requirements Engineering Practices:
An Empirical Study. IEEE Software, 25(1):60–67, 2008. doi: 10.1109/MS.2008.1.

Dante Carrizo, Oscar Dieste, and Natalia Juristo. Systematizing requirements
elicitation technique selection. Information and Software Technology, 56(6):
644–669, 6 2014. ISSN 0950-5849. doi: 10.1016/J.INFSOF.2014.01.009.

Adriana Chammas, Manuela Quaresma, and Cláudia Mont’Alvão. A Closer Look
on the User Centred Design. Procedia Manufacturing, 3:5397–5404, 1 2015. ISSN
2351-9789. doi: 10.1016/J.PROMFG.2015.07.656.

Karina Curcio, Tiago Navarro, Andreia Malucelli, and Sheila Reinehr. Requirements
engineering: A systematic mapping study in agile software development. Journal
of Systems and Software, 139:32–50, 5 2018. ISSN 0164-1212. doi: 10.1016/J.JSS.
2018.01.036.

Karina Curcio, Rodolfo Santana, Sheila Reinehr, and Andreia Malucelli. Usability in
agile software development: A tertiary study. Computer Standards & Interfaces,
64:61–77, 5 2019. ISSN 0920-5489. doi: 10.1016/J.CSI.2018.12.003.

Tiago da Silva, Angela Martin, Frank Maurer, and Milene Silveira. User-Centered
Design and Agile Methods: A Systematic Review. In 2011 Agile Conference, pages
77–86, 2011. doi: 10.1109/AGILE.2011.24.

Maya Daneva, Egbert Van Der Veen, Chintan Amrit, Smita Ghaisas, Klaas Sikkel,
Ramesh Kumar, Nirav Ajmeri, Uday Ramteerthkar, and Roel Wieringa. Agile
requirements prioritization in large-scale outsourced system projects: An empirical
study. Journal of Systems and Software, 86(5):1333–1353, 5 2013. ISSN 0164-1212.
doi: 10.1016/J.JSS.2012.12.046.

Jose Luis de la Vara, Luis Hoyos, Enrique Collado, and Mehrdad Sabetzadeh.
Towards customer-based requirements engineering practices. In 2012 Second IEEE
International Workshop on Empirical Requirements Engineering (EmpiRE), pages
37–40, 2012. doi: 10.1109/EmpiRE.2012.6347680.

Andrea De Lucia and Abdallah Qusef. Requirements engineering in agile software
development. Journal of emerging technologies in web intelligence, 2(3):212–220,
2010.

https://doi-org.libproxy.aalto.fi/10.1145/1520340.1520434

80

Torgeir Dingsøyr, Sridhar Nerur, Venugopal Balijepally, and Nils Brede Moe. A
decade of agile methodologies: Towards explaining agile software development.
Journal of Systems and Software, 85(6):1213–1221, 6 2012. ISSN 0164-1212. doi:
10.1016/J.JSS.2012.02.033.

Aline Dresch, Daniel Pacheco Lacerda, and José Antônio Valle Antunes. Design
science research. In Design science research, pages 67–102. Springer, 2015.

Jonathan Earthy, Brian Sherwood Jones, and Nigel Bevan. ISO Standards for
User-Centered Design and the Specification of Usability. Usablity in Government
Systems User Experience Design for Citizens and Public Servants, pages 267–283,
1 2012. doi: 10.1016/B978-0-12-391063-9.00049-3.

eSett. Nordic Imbalance Settlement Handbook, 5 2022. URL https://www.esett.
com/app/uploads/2022/05/NBS-Handbook-v3.4.pdf.

Fred Heath. Managing Software Requirements the Agile Way: Bridge the gap between
software requirements and executable specifications to deliver successful projects.
Packt Publishing Ltd, 2020. ISBN 9781800206465.

Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design Science
in Information Systems Research. MIS Quarterly, 28(1):75–105, 2004. ISSN
02767783. doi: 10.2307/25148625. URL http://www.jstor.org.libproxy.
aalto.fi/stable/25148625.

Jörg Holtmann, Jan Meyer, and Markus von Detten. Automatic Validation and
Correction of Formalized, Textual Requirements. In 2011 IEEE Fourth Inter-
national Conference on Software Testing, Verification and Validation Workshops,
pages 486–495, 2011. doi: 10.1109/ICSTW.2011.17.

Irum Inayat, Siti Salwah Salim, Sabrina Marczak, Maya Daneva, and Shahaboddin
Shamshirband. A systematic literature review on agile requirements engineering
practices and challenges. Computers in Human Behavior, 51:915–929, 10 2015.
ISSN 0747-5632. doi: 10.1016/J.CHB.2014.10.046.

International Organization for Standardization. Usability: Definitions and concepts
(Standard No. 9241-11), 2018. URL https://www.iso.org/obp/ui/#iso:std:
iso:9241:-11:ed-2:v1:en.

International Organization for Standardization. Human-centered design for interac-
tive systems (Standard No. 9241-210), 2019a. URL https://www.iso.org/obp/
ui/#iso:std:iso:9241:-210:ed-2:v1:en.

International Organization for Standardization. Processes for enabling, executing
and assessing human-centred design within organizations (Standard No. 9241-220),
2019b. URL https://www.iso.org/obp/ui/#iso:std:iso:9241:-220:ed-1:
v1:en.

https://www.esett.com/app/uploads/2022/05/NBS-Handbook-v3.4.pdf
https://www.esett.com/app/uploads/2022/05/NBS-Handbook-v3.4.pdf
http://www.jstor.org.libproxy.aalto.fi/stable/25148625
http://www.jstor.org.libproxy.aalto.fi/stable/25148625
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-220:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-220:ed-1:v1:en

81

Gabriela Jurca, Theodore D Hellmann, and Frank Maurer. Integrating Agile and
User-Centered Design: A Systematic Mapping and Review of Evaluation and
Validation Studies of Agile-UX. In 2014 Agile Conference, pages 24–32, 2014. doi:
10.1109/AGILE.2014.17.

Rashidah Kasauli, Eric Knauss, Jennifer Horkoff, Grischa Liebel, and Francisco Gomes
de Oliveira Neto. Requirements engineering challenges and practices in large-scale
agile system development. Journal of Systems and Software, 172:110851, 2 2021.
ISSN 0164-1212. doi: 10.1016/J.JSS.2020.110851.

Pariya Kashfi, Robert Feldt, and Agneta Nilsson. Integrating UX principles and
practices into software development organizations: A case study of influencing
events. Journal of Systems and Software, 154:37–58, 8 2019. ISSN 0164-1212. doi:
10.1016/J.JSS.2019.03.066.

Sumaira Kausar, Saima Tariq, Saba Riaz, and Aasia Khanum. Guidelines for
the selection of elicitation techniques. In 2010 6th International Conference on
Emerging Technologies (ICET), pages 265–269, 2010. doi: 10.1109/ICET.2010.
5638476.

Edna Kropp and Kolja Koischwitz. User-centered-design in agile RE through an
On-site User Experience Consultant. In 2014 IEEE 2nd International Workshop
on Usability and Accessibility Focused Requirements Engineering (UsARE), pages
9–12, 2014. doi: 10.1109/UsARE.2014.6890994.

Marta Larusdottir, Jan Gulliksen, and Åsa Cajander. A license to kill – Improving
UCSD in Agile development. Journal of Systems and Software, 123:214–222, 1
2017. ISSN 0164-1212. doi: 10.1016/J.JSS.2016.01.024.

Effie Lai Chong Law and Silvia Abrahão. Interplay between User Experience (UX)
evaluation and system development. International Journal of Human-Computer
Studies, 72(6):523–525, 6 2014. ISSN 1071-5819. doi: 10.1016/J.IJHCS.2014.03.
003.

Effie Lai-Chong Law, Virpi Roto, Marc Hassenzahl, Arnold P O S Vermeeren, and
Joke Kort. Understanding, Scoping and Defining User Experience: A Survey
Approach. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’09, pages 719–728, New York, NY, USA, 2009. Association
for Computing Machinery. ISBN 9781605582467. doi: 10.1145/1518701.1518813.
URL https://doi-org.libproxy.aalto.fi/10.1145/1518701.1518813.

Russell Marshall, Sharon Cook, Val Mitchell, Steve Summerskill, Victoria Haines,
Martin Maguire, Ruth Sims, Diane Gyi, and Keith Case. Design and evaluation:
End users, user datasets and personas. Applied Ergonomics, 46(PB):311–317, 1
2015. ISSN 0003-6870. doi: 10.1016/J.APERGO.2013.03.008.

Paul McInerney and Frank Maurer. UCD in Agile Projects: Dream Team or
Odd Couple? Interactions, 12(6):19–23, 11 2005. ISSN 1072-5520. doi: 10.

https://doi-org.libproxy.aalto.fi/10.1145/1518701.1518813

82

1145/1096554.1096556. URL https://doi-org.libproxy.aalto.fi/10.1145/
1096554.1096556.

Jorge Melegati, Alfredo Goldman, Fabio Kon, and Xiaofeng Wang. A model
of requirements engineering in software startups. Information and Software
Technology, 109:92–107, 5 2019. ISSN 0950-5849. doi: 10.1016/J.INFSOF.2019.02.
001.

Microsoft. Agile process work item types, 4 2022. URL https:
//docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/
agile-process?view=azure-devops.

Alexander G Mirnig, Alexander Meschtscherjakov, Daniela Wurhofer, Thomas Me-
neweger, and Manfred Tscheligi. A Formal Analysis of the ISO 9241-210 Def-
inition of User Experience. In Proceedings of the 33rd Annual ACM Confer-
ence Extended Abstracts on Human Factors in Computing Systems, CHI EA
’15, pages 437–450, New York, NY, USA, 2015. Association for Computing
Machinery. ISBN 9781450331463. doi: 10.1145/2702613.2732511. URL
https://doi.org/10.1145/2702613.2732511.

Marianna Obrist, Virpi Roto, and Kaisa Väänänen-Vainio-Mattila. User Experience
Evaluation: Do You Know Which Method to Use? In CHI ’09 Extended Abstracts
on Human Factors in Computing Systems, CHI EA ’09, pages 2763–2766, New York,
NY, USA, 2009. Association for Computing Machinery. ISBN 9781605582474.
doi: 10.1145/1520340.1520401. URL https://doi-org.libproxy.aalto.fi/10.
1145/1520340.1520401.

Carla Pacheco and Ivan Garcia. A systematic literature review of stakeholder
identification methods in requirements elicitation. Journal of Systems and Software,
85(9):2171–2181, 9 2012. ISSN 0164-1212. doi: 10.1016/J.JSS.2012.04.075.

Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee. A
Design Science Research Methodology for Information Systems Research. Jour-
nal of Management Information Systems, 24(3):45–77, 2007. doi: 10.2753/
MIS0742-1222240302. URL https://doi.org/10.2753/MIS0742-1222240302.

Hina Saeeda, Junyu Dong, Yong Wang, and Muhammmad Adil Abid. A proposed
framework for improved software requirements elicitation process in SCRUM:
Implementation by a real-life Norway-based IT project. Journal of Software:
Evolution and Process, 32(7):e2247, 2020. doi: https://doi.org/10.1002/smr.2247.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2247.

H. Saiedian and R. Dale. Requirements engineering: making the connection between
the software developer and customer. Information and Software Technology, 42
(6):419–428, 4 2000. ISSN 0950-5849. doi: 10.1016/S0950-5849(99)00101-9.

Eva Maria Schön, Jörg Thomaschewski, and María José Escalona. Agile Requirements
Engineering: A systematic literature review. Computer Standards & Interfaces,
49:79–91, 1 2017. ISSN 0920-5489. doi: 10.1016/J.CSI.2016.08.011.

https://doi-org.libproxy.aalto.fi/10.1145/1096554.1096556
https://doi-org.libproxy.aalto.fi/10.1145/1096554.1096556
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/agile-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/agile-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/agile-process?view=azure-devops
https://doi.org/10.1145/2702613.2732511
https://doi-org.libproxy.aalto.fi/10.1145/1520340.1520401
https://doi-org.libproxy.aalto.fi/10.1145/1520340.1520401
https://doi.org/10.2753/MIS0742-1222240302
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2247

83

Ken Schwaber and Jeff Sutherland. The Scrum Guide, 11 2020.

Michałand Sosnowski, Michałand Bereza, and Yen Ying Ng. Business-Oriented
Approach to Requirements Elicitation in a Scrum Project. In Jakub Przybyłek
Adam
}and Miler, Poth Alexander, and Riel Andreas, editors, Lean and Agile Software
Development, pages 185–191, Cham, 2021. Springer International Publishing.
ISBN 978-3-030-67084-9.

Saurabh Tiwari, Santosh Singh Rathore, and Atul Gupta. Selecting requirement
elicitation techniques for software projects. In 2012 CSI Sixth International
Conference on Software Engineering (CONSEG), pages 1–10, 2012. doi: 10.1109/
CONSEG.2012.6349486.

Claes Wohlin. Guidelines for Snowballing in Systematic Literature Studies and a
Replication in Software Engineering. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, EASE ’14, New
York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450324762.
doi: 10.1145/2601248.2601268. URL https://doi-org.libproxy.aalto.fi/10.
1145/2601248.2601268.

Yilong Yang, Wei Ke, and Xiaoshan Li. RM2PT: Requirements Validation through
Automatic Prototyping. In 2019 IEEE 27th International Requirements Engineer-
ing Conference (RE), pages 484–485, 2019. doi: 10.1109/RE.2019.00067.

https://doi-org.libproxy.aalto.fi/10.1145/2601248.2601268
https://doi-org.libproxy.aalto.fi/10.1145/2601248.2601268

84

A Survey for the Customer Committee:
Online Service User Experience

The purpose for this survey is to collect data related to the user experience of ONLS
from the perspectives of different ONLS users.

I use ONSL with following role(s):
You can choose multiple answers.
Options: BRP / DSO / RE / Service Provider

Please answer the following sections considering your operations that involve the use
of ONLS.

A. If you can, name the most relevant functionalities (e.g., an imbalance
view, the data export tool, a data table, . . .) in ONLS.

B. If you can, name functionalities that are missing from ONLS, or name
current functionalities that need improvement. You may also specify why the
missing functionality is needed or why the current functionality requires improvement.

C. How would you evaluate the following functionalities of ONLS?
Choose "Skip", if the functionality does not affect your operations, or you cannot
answer.
Options: Poor / Fair / Good / Very good / Excellent / Skip

– Authentication (How the user logs in to ONLS)
– Communication (How the user can contact the customer support using the contact

information available in ONLS)
– Dashboard (How convenient and useful the default page of ONLS is)
– Data Packages (How convenient, efficient, and usable Data Packages Management

is)
– Exportability (How the user can export data, and how adequate the data format

and contents are, e.g., using the “Export to Excel” command for a time series)
– Market Reports (How convenient the reports are, regarding the format and contents

of the reports)
– Messaging (How ONLS presents messaging data and expresses the status of

messages, e.g., displaying a reason for message rejection)
– Notifications (How clear and convenient the notifications are, e.g., “Imbalance

Retailer has been assigned to MGA”)
– Other data views (How, in general, the Input Data, Settlement, Structure, and

Finances views perform in presenting data)

D. How would you evaluate the following characteristics of ONLS?
Choose "Skip", if the characteristic does not affect your operations, or you cannot
answer.

85

Options: Poor / Fair / Good / Very good / Excellent / Skip

– Customisation (How modifiable ONLS is in general, e.g., filtering data, saving
settings, changing the layout of views)

– Documentation (How the attributes and procedures in ONLS are described,
explained, and instructed, e.g., the usefulness of the ONLS User Guide)

– Navigation (How intuitively the user navigates and finds data in ONLS, e.g.,
drilldowns, tabs)

– Performance (How accurately, efficiently, and fast ONLS executes tasks, such as
responding to the “Load next day” command in Time Series Detail views)

– Visualisation (How ONLS visualises and displays data, e.g., imbalance graphs,
notifications of missing data or updated series information)

If you have any other comments relating to your experience with ONLS, please add
them below.

How would you describe your overall experience with ONLS?
Options: Very dissatisfied / Dissatisfied / Neutral / Satisfied / Very satisfied

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Abbreviations
	1 Introduction
	1.1 Background and Motivation
	1.2 Research Problem and Questions
	1.3 Scope of the Thesis
	1.4 Structure of the Thesis

	2 Research Methods
	2.1 Literature Review
	2.2 Empirical Study

	3 Results of the Literature Review
	3.1 User-Centered Design
	3.1.1 Relation to User Experience
	3.1.2 Noticing the Context
	3.1.3 User Engagement During the Process
	3.1.4 Assessments Focusing on the User
	3.1.5 Iterative Design Process
	3.1.6 Addressing the Entire User Experience
	3.1.7 Multidisciplinary Project Team

	3.2 Agile Requirements Engineering
	3.2.1 Requirement Domain
	3.2.2 Agile Methodology
	3.2.3 Eliciting and Analysing Requirements
	3.2.4 Prioritising Requirements
	3.2.5 Creating Specifications and Documenting Requirements
	3.2.6 Validating Requirements
	3.2.7 Tracing Requirements and Managing Changes

	3.3 Improving UX with UCD and Agile RE Practices
	3.3.1 Integrated UCD and Agile RE in Agile Software Development
	3.3.2 Continuous Collaboration with Stakeholders
	3.3.3 Summary of UCD and Agile RE Practices

	4 Results of the Empirical Study
	4.1 Problem Identification and Defining Objectives
	4.2 Selecting Applicable Practices
	4.3 Demonstrating Selected Practices
	4.3.1 Stakeholder Analysis
	4.3.2 Use Case Diagram
	4.3.3 Analysing Existing Documentation
	4.3.4 Survey and Requirement Workshop
	4.3.5 Analysing Ongoing Customer Interviews
	4.3.6 Documenting Requirements with Azure DevOps
	4.3.7 Collected Set of Requirements

	4.4 Evaluating the Practices and Sharing the Study

	5 Discussion
	5.1 User-Centered Design and Agile Requirements Engineering Practices
	5.2 Analysing User Experience of a Client Portal
	5.3 Improving User Experience of a Client Portal
	5.4 Limitations of the Study

	6 Conclusions
	6.1 User-Centered Design and Agile Requirements Engineering in the Development of a Client Portal
	6.2 Needs for Further Research

	References
	A Survey for the Customer Committee: Online Service User Experience

