Secure microservice
communication between
heterogeneous service meshes

Zara Wajid Butt

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 29.07.2022

Supervisor

Prof. Tuomas Aura (Aalto) and
Prof. Panos Padadimitratos (KTH)

Advisor

Cihan Eryonucu (M.Sc.) and
Gabriela Limonta (M.Sc. Tech.)

,, Aalto University
School of Science

Copyright © 2022 Zara Wajid Butt

School of Science www.aalto.fi

A’ , Aalto University Aalto University, P.O. BOX 11000, 00076 AALTO
Abstract of the master’s thesis

Author Zara Wajid Butt

Title Secure microservice communication between heterogeneous service meshes

Degree programme SECCLO

Major Security and Cloud Computing Code of major SCI3113

Supervisor Prof. Tuomas Aura (Aalto) and Prof. Panos Padadimitratos (KTH)

Advisor Cihan Eryonucu (M.Sc.) and Gabriela Limonta (M.Sc. Tech.)

Date 29.07.2022 Number of pages 62+6 Language English

Abstract

Microservice architecture is an emerging paradigm that has been unceasingly adopted
by large organizations to develop flexible, agile, and distributed applications. This
architecture involves breaking a large monolithic application into multiple services
that can be deployed and scaled autonomously. Moreover, it helps to improve
the resiliency and fault tolerance of a large-scale distributed application. However,
this architecture is not without challenges. It increases the number of services
communicating with each other, leading to an increased surface of attack. To
overcome the security vulnerabilities, it is important that the communication between
the services must be secured.

Service Mesh is increasingly embraced to resolve the security challenges of microser-
vices and facilitate secure and reliable communication. It is a dedicated infrastructure
layer on top of microservices responsible for their networking logic. It uses sidecar
proxies to ensure secure and encrypted communication between the services. This
thesis studies different deployment models of service meshes, identifies the reasons
for federating heterogeneous service meshes, investigates the existing problems faced
during the federation process, and proposes a solution to achieve a secure federation
between heterogeneous service meshes, i.e., Istio and Consul. The security of the
proposed solution was evaluated against the basic security requirements, such as Au-
thenticity, Confidentiality, and Integrity. The evaluation results proved the solution
to be secure and feasible for implementation.

Keywords Service Mesh, Istio , Consul , Federation , Kubernetes , PKI , mTLS

Acknowledgements

First and foremost, I thank almighty Allah (SWT) for his countless blessings, support,
help, and generosity. He has always given me strength and encouragement throughout
the challenging moments of my life.

I would express my sincere thanks to Professor Tuomas Aura from Aalto University
for his valuable feedback and guidance that helped me complete the thesis. From
KTH University, I would like to thank Professor Panos Papadimitratos and Cihan
Eryonucu for their support. I express my deepest gratitude to manager Yoan Miche
and advisor Gabriela Limonta for giving me a great opportunity to become a part of
the Network Security team at Nokia Bell Labs. Gabriela has been a great support
throughout the thesis process. Her constant support, feedback, guidance, and
motivation kept me going. I sincerely thank all my colleagues at Nokia Bell Labs for
their encouragement.

Special thanks to the SECCLO faculty and Erasmus Mundus for turning my dream
of studying at the best European universities into reality. I would like to express
my sincere gratitude to Dr. Hamza for encouraging me to apply for SECCLO and
guiding me throughout the Erasmus journey. I am forever indebted to my wonderful
parents, Wajid and Sughra, for their unconditional love, prayers, and support. I
am grateful to my siblings, Sara, Shaheer, and Zoha, whose love and support kept
me motivated and confident. Last but not least, a big thanks to all my friends for
always being there for me in every situation and always encouraging me to do my
best.

Espoo, 29.07.2022

Zara Wajid Butt

With the support of the
Erasmus+ Programme
of the European Union

Contents

Abstract

Acknowledgements

Contents

List of Figures
Abbreviations and Acronyms

1 Introduction

1.1 Problem Statement
1.2 Main Goals
1.3 Methodology
1.4 Delimitations
1.5 Sustainability and Ethics o000
1.6 Thesis Outline
2 Background
2.1 Microservice Architecture
2.2 Kubernetes
2.3 Secure Communication Using: PKI and mTLS
24 Service Mesh
2.4.1 Service Mesh Fundamental Features
2.4.2 Service Mesh Implementations
2.4.3 Service Identity oo
2.5 Istio
2.5.1 Core Components
2.5.2 Istio Workflow oo
2.5.3 Traffic Management oo
2.5.4 Security Management Lo
2.6 Consul
2.6.1 Main Entities Lo
2.6.2 Main Protocols
2.6.3 Consul Service Discovery
2.6.4 Configuration Management
2.6.5 Certificate Management
2.6.6 Consul Workflow
2.7 Related Work o
2.8 Summaryo

3 Service Mesh Federation
3.1 Homogeneous Service Mesh integration
3.1.1 Owned by the same organization

10
11
12
12
13
13

15
15
17
18
20
21
21
21
23
23
24
25
26
27
27
28
29
29
30
31
32
34

3.1.2 Owned by different organizations
3.2 Heterogeneous Service Mesh Integration
3.2.1 Owned by the same organization
3.2.2 Owned by different organizations
3.3 Problem Areas of Service Mesh Federation
34 Summary
Analyzing Existing Solutions
4.1 Cross Signingo
4.2 APl Gateway
4.3 SPIFFE
4.4 Summary
Proposed Solution Security Requirements
5.1 Authentication
5.2 Confidentiality
5.3 Limited exposure
0.4 Integrity oL
5.5 SUmMmAary
Proposed Solution
6.1 Solution Infrastructure on AWS
6.2 Exchanging Trust Bundles
6.3 Automation Scripts
6.4 Further Advancements For The Proposed Solution
6.5 Summary
Solution Security Evaluation
7.1 Summary e e
Discussion
8.1 Unified Access Control
8.2 Localrouting
8.3 Debugging support
84 Summary
Conclusion
Solution Infrastructure as Code
A.1 Baseline Infrastructure
A2 Install Istio

A3 Install Consul

41
41
41
42
44

45
45
46
46
46
46

47
47
49
20
50
o1

52
25

56
26
27
57
o8

59

List of Figures

Figure 1 — Limitation of Existing Service Meshes. 11
Figure 2 — Weather Application Microservice Architecture 15
Figure 3 — Public Key Infrastructure 18
Figure 4 — mTLS Connection 19
Figure 5 — Service Mesh Basic Architecture. 20
Figure 6 — SPIFFE Identity 22
Figure 7 — Istio Single Cluster Workflow. 24
Figure 8 — Consul Architecture for Kubernetes Cluster. 28
Figure 9 — Consul Single Cluster Workflow. 31
Figure 10 — Istio-Istio federation. 36
Figure 11 — Consul-Consul federation. 36
Figure 12 — Istio-Consul federation. 38
Figure 13 — Cross Signing 41
Figure 14 — API Gateway [54] 42
Figure 15 — SPIFFE Federation [24] 43
Figure 16 — Proposed Solution Architecture 47
Figure 17 — Heterogeneous service mesh integration 48
Figure 18 — Trust bundle exchange 50

Abbreviations and Acronyms

CA
PKI
mTLS
UN
SDGs
REST
API
RPC
HPC
CSR
CNCF
SAN
OSM
SPIFFE
RAFT
IoT
AR
VR
VNF
SPIRE
VPC
EKS
[aC
OPA
NIST
CRL
OCSP

Certificate Authority

Public Key Infrastructure

Mutual Transport Layer Security

United Nations

Sustainable Development Goals
Representational state transfer

Application programming interface

Remote Procedure Call

High Performance Computing

Certificate Signing Request

cloud Native Computing Foundation

Subject Alternate Name

Open Service Mesh

Secure Production Identity Framework for Everyone
Reliable, Replicated, Redundant, And Fault-Tolerant
Internet of Things

Augmented Reality

Virtual Reality

Virtual Network Functions

SPIFFE Runtime Environment

Virtual Private Cloud

Amazon Elastic Kubernetes Service
Infrastructure as Code

Open Policy Agent

National Institute of Standards and Technology
Certificate Revocation List

The Online Certificate Status Protocol

1 Introduction

In today’s rapidly advancing world, many large-scale organizations are widely adopt-
ing cloud-based technologies [6]. With this broad acceptance of cloud-based tech-
nologies, microservices have also gained significant traction. Microservices allow an
application to be loosely decoupled as multiple services that can be deployed and
managed independently on different cloud platforms.

The microservice architecture is embraced by large enterprises, such as Amazon,
Netflix, eBay, and LinkedIn [37]. This architecture enables these organizations to
deploy their large-scale applications in the form of independently testable, scalable,
deployable, and upgradable services on different cloud platforms [44, 33]. This
architecture is an established approach for building enterprise and cloud-based
applications as it permits a large-scale monolithic application to be divided into
multiple services or modules, each responsible for accomplishing an independent
task. This architecture offers a variety of benefits, such as streamlining the software
development and delivery process as well as introducing more scalability. However, in
comparison to the monolithic architecture, it is complex in terms of deployment and
management. It requires multiple small-scale services to coordinate with each other
constantly. Following this approach also increases the surface of attack because it
leads toward more interconnections and communication links between microservices
that always need to be protected [16, 14]. Furthermore, it increases the potential
vulnerabilities an attacker can exploit. This architecture does provide the flexibility
to implement each service using a different language or framework. However, that
prompts additional issues. In a real-world scenario, hundreds of services communicate
with each other, and it becomes a tedious process to implement the networking logic
of each service using a different language or framework. Additionally, the networking
logic requires different libraries that must be compatible with the business logic.

In recent years, there has been an incline toward the utilization of service meshes to
provide secure and reliable communication and address some of the existing problems
with the microservices architecture [42]. A service mesh is a dedicated infrastructure
layer on top of the microservices to facilitate networking functionalities without
changing the underlying implementation of the service. The fundamental features
of a service mesh include service discovery, load balancing, fault tolerance, circuit
breaking, traffic monitoring, authentication, authorization, and traffic management.
A service mesh architecture isolates the business logic of a microservice from the
networking logic by injecting intelligent sidecar proxies with the service. These proxies
intercept the incoming and outgoing traffic of the service to provide a mechanism for
establishing secure communication with other services [15].

A service mesh can help to solve the operational and development problems that
come along with the microservice architecture. However, it may introduce a higher
level of complexity when the deployment model shifts from a single mesh to multiple
meshes.

10

1.1 Problem Statement

Service meshes (e.g., Istio!, Consul?, OSM? and Linkerd*) have been adopted as a
solution to enable secure communication between microservices, both running in
single or multi-cloud environments [15, 42]. However, establishing secure microservice
communication between two services owned by separate entities that use different
service mesh still remains an unsolved problem [35].

Current service meshes, such as Istio and Consul, offer some degree of federation
between different clouds. However, they require using the same service mesh solution
by both entities that want to expose services to each other. With the increased
adoption of cloud-native technologies, DevOps, and hybrid cloud deployments, each
company chooses the networking tools and cloud platform best aligned with their
needs and requirements [9, 34, 45]. This may result in a very diverse deployment
model, which is not fully supported by the current service meshes.

One real-world example of this complex model can be services owned by different
organizations that must be securely exposed. Consider a scenario in which one
service collects data and then shares it with a third-party service for analysis. As a
result of the freedom offered by DevOps and the microservices architecture, there
is a high possibility that each organization is using a different service mesh. The
current service meshes fail to provide an efficient federation mechanism between
heterogeneous service meshes.

Different service meshes have a built-in Certificate Authority (CA) component respon-
sible for generating and rotating the certificates assigned to different workloads [19,
50, 48]. These implementations also support custom CA integration and using
existing Public Key Infrastructure (PKI). Each service part of a service mesh has a
unique identity, verified using X.509 certificates assigned by the CA to the service.
The services use these certificates to verify each other’s identity and start a secure
Mutual Transport Layer Security (mTLS) communication. One problem arises when
different service meshes having different root CAs need to be federated together.
This introduces the need to establish a trusting relationship between the meshes to
verify the identity of the services across the mesh.

The main problem with service mesh federation is establishing a trust anchor between
the different service meshes that want to expose their services to each other. Especially
when the two entities do not share a common root CA. In addition, there is a lack of
compatibility between different service meshes due to the lack of a common interface
between them and the use of different conventions for identifying and authenticating
their services. Therefore, a mechanism is required for assigning consistent identities
across any type of service mesh that can assist in achieving integration between
different meshes. The thesis aims to solve the problems that are encountered when

Thttps://istio.io/latest /docs/
Zhttps://www.consul.io/docs
3https://release-v1-1.docs.openservicemesh.io/
4https://linkerd.io/2.11 /overview/

11

federating heterogeneous service meshes to ensure secure and reliable communication
between cross-mesh services.

F_ederatior!

CA1 ° cA2

mTLS

Control G Control

L Plane * _ Plane

Istio Service Mesh Consul Service Mesh
Team A Team B

Figure 1: Limitation of Existing Service Meshes.

1.2 Main Goals

The main objective of this thesis is to propose an efficient and secure solution that
resolves the problems experienced during the federation process of heterogeneous
service meshes.

The goals of the thesis are as follows:
o Study the existing service meshes and their federation mechanisms
« Identity the challenges faced when federating heterogeneous service meshes

o Recognise the security properties required for establishing secure and reliable
communication between heterogeneous service meshes

e Propose a solution that overcomes the problem of achieving federation be-
tween heterogeneous meshes and evaluate it against the identified security
requirements.

Research questions are as follows:

o What are the primary reasons that encourage the integration of heterogeneous
service meshes.

» How to achieve federation between heterogeneous service meshes so that dif-
ferent meshes having different trust roots expose services to each other and
establish a secure mTLS connection.

12

o What are the drawbacks of the existing solutions, which make them inefficient
for accomplishing the federation between meshes.

o What are the limitations of the proposed solution that can be explored in the
future

No scientific papers describe the problems faced during the federation process of
heterogeneous service meshes. Additionally, the official documentation of the service
meshes does not provide sufficient information to conduct this process in an automated
process. Considering the information mentioned above, it can be stated that the
problem has not been extensively explored earlier.

1.3 Methodology

The research methodology of this thesis was to conduct a comprehensive literature
review. The service mesh technology is novel; therefore, information was collected
from different sources, such as scientific papers, official documentation, white papers,
conference talks, blogs, and discussion forums. The information was useful in
understanding the working of a service mesh. After the literature review was
completed, it was confirmed that the problem under consideration is a novel idea,
and no significant research efforts have been carried out in this direction. The precise
literature review provided more profound insights into the service mesh technology
and the problems encountered during the federation of heterogeneous service meshes.
It helped to propose a solution to resolve the federation problem. The research
methodology included the security analysis of the proposed solution. The proposed
solution’s limitations were also identified. The limitations can be considered as the
future direction of advancements related to the thesis topic.

1.4 Delimitations

The current work can be continued in the future to implement a fully automated
mechanism for conducting the trust bundle exchange between service meshes without
the initial bootstrapping of trust, as discussed in Section 8. As of now, there is
no significant academic research being carried out related to heterogeneous service
mesh federation, Therefore, different areas were identified during the thesis that
requires future research efforts. The service mesh implementations investigated
in the thesis are new in the industry and lack the debugging support required for
the federation scenarios. Due to this reason and the time frame, only the basic
infrastructure of the proposed solution was deployed and tested on AWS. Furthermore,
the microservice architecture used in the thesis as a case study is not a real-world
microservice example. It is a small-scale application that consists of 3 microservices
only. However, in a real-world scenario, a large-scale application consists of hundreds
of services communicating with each other.

13

1.5 Sustainability and Ethics

United Nations (UN) presents its 17 Sustainable Development goals (SDGs) °. The
thesis contributes toward achieving the Decent Work, and Economic Growth goal as
the proposed solution aims to improve and modernize the current IT infrastructures.
It incorporates advanced technologies, such as service mesh, into the existing cloud
infrastructures. It also resolves the existing problem encountered while federating
heterogeneous service meshes. This enhances the acceptance of this technology by
diverse industries and companies. In the upcoming sections, we will explore that large-
scale organizations are already migrating towards the cloud and embracing cutting-
edge technologies, such as service mesh, containerized applications, microservice
architecture, and Kubernetes. This adoption, together with the proposed solution,
assists organizations in developing efficient and interoperable applications with a
large profit margin. It also results in increased IT services export. Thus, eventually
leading to higher economic growth.

The thesis aims to propose an innovative solution for the federation problem that
can benefit the IT industry. Industry, Innovation, and Infrastructure is one of SDG’s
goals, which can also be achieved with the proposed solution. The solution proposed
in the thesis resolves the microservice architecture problems and facilitates secure
and reliable communication between services deployed on heterogeneous service mesh.
Consequently, it discourages crime and protects the network infrastructure of various
organizations using the service mesh technology. In this way, it helps to achieve the
Peace, Justice, and Strong Institution goal presented by the UN. Concerning ethics,
this thesis does not expose any sensitive data. Moreover, open-source service mesh
implementations, such as Istio and Consul, are used in the thesis.

1.6 Thesis Outline

This thesis is structured as follows:

o Chapter 1 presents the motivation behind the research and an overview of the
problem this thesis aims to solve

o Chapter 2 explains the main concepts related to the service mesh architecture.
It describes the microservices architecture and compares different service meshes.
Additionally, it discusses related work.

o Chapter 3 investigates the federation models of different service meshes
o Chapter 4 analyses the limitations and drawbacks of the existing solutions.

o Chapter 5 presents the security requirements for secure microservice communi-
cation between heterogeneous service meshes.

o Chapter 6 examines the proposed solution and deliberates about further areas
of improvement.

Shttps://sdgs.un.org/goals

14

o Chapter 7 evaluates the security of the proposed solution against the require-
ments identified in chapter 4

o Chapter 8 outlines the future work directions related to service mesh federation

o Finally, chapter 9 concludes the thesis

15

2 Background

This chapter provides the background information related to the microservices
architecture, Kubernetes, and PKI that are important to understand the service
mesh architecture and its main concepts. Additionally, we discuss the workflow and
entities of the two most popular service meshes, i.e., Consul and Istio. Finally, we
review previous work done on the integration problem under investigation.

2.1 Microservice Architecture

The microservice architecture is an established approach to build large-scale cloud-
based applications [21]. It allows a large monolithic application to be decoupled into
multiple services that can be developed by different teams or organizations using
different languages and frameworks. Moreover, the services can be deployed and
managed separately on different cloud environments based on the use case.

Frontend Backend Info
service service service
Business Business Business
Logic :: Logic ':> Logic
Networking <::| Networking ill Networking
Logic Logic Logic

Current
Gateway Weather

D

Information

Forecasted
Weather

Severe Thunderstorm Warning

Figure 2: Weather Application Microservice Architecture

Microservices offer a plethora of advantages that lead towards faster software devel-
opment and delivery [21]. The main benefits are as follows:

16

o Development and deployment agility: The decoupling of the application
into multiple services enables them to be modified and deployed individu-
ally without affecting the state of the other service. Hence, the application
development and deployment process become more agile.

o Scalability: The architecture facilitates scalability as each service can be
scaled up or down independently of the others depending on the workload it
receives. This helps to make the application more cost and resource-efficient.

» Usability: The microservices support representational state transfer (REST)
application programming interface (API) and remote procedure call (RPC)
for communicating with other services. Therefore, they are easy to use and
integrate with other solutions.

o Flexibility and Availability of tools: Microservices offer flexibility to use any
language or technology, and there are wide-ranging tools available to configure
and deploy microservices on cloud platforms.

Microservice architecture is an efficient approach to divide a large-scale monolithic
application into a suite of smaller services. Fig. 2 shows the microservice architecture
that will be used as the case study in this thesis. It divides a monolithic weather
application into a set of smaller services: frontend, backend, and info service. The
backend service sends a request to the OpenWeather API [53] to get the current
and forecasted weather in Helsinki. The backend service also connects with the
info service to get additional remarks about the weather. The React-based frontend
application sends a request to the backend to get the information and renders it on
the browser when the client visits the URL of the application. The final outcome of
the application can be reviewed in Fig. 2.

Driven by the advantages mentioned above, microservices have been adopted in
different areas, e.g., big data processing [25], [oT backend[5], and high-performance
computing (HPC) [17]. However, similar to any other solution, microservices also
have some challenges and drawbacks listed below:

e Communication and security overhead: More microservices result in
more interconnections between the services and more communication links
to be protected. Therefore, it increases the communication and secure data
transmission overhead.

o Service discovery overhead: Services can come and go dynamically; therefore,
a mechanism is needed to discover the new services so that other services can
communicate easily.

o Monitoring overhead: With a large number of services forming a single
application, it becomes difficult to debug the errors and enable monitoring
features for each service separately.

¢ Authentication overhead: All microservices must be treated as unauthenti-
cated. A mechanism is needed to provide and verify their identities so that two

17

services communicating with each other know they are talking to the legitimate
service. This will also help to prevent service impersonation attacks.

e Authorization overhead: The fine-grain nature of microservices requires
fine-grained authorization at each microservice. However, this may require
the security policies to be defined centrally and then distributed to different
microservices to have a uniform and consistent configuration.

2.2 Kubernetes

Kubernetes is an open-source orchestration platform developed by Google [51]. It is
the most used technology to orchestrate, i.e., deploy, manage and scale container-
based applications. The widespread adoption of Kubernetes has made it the de-facto
standard for container orchestration [41]. Tt makes it possible to create a cluster of
servers and provide a fully automatic control to deploy a containerized application
on that cluster.

The weather application presented in Fig. 2 is deployed on a Kubernetes cluster.
A Kubernetes cluster is a set of nodes that run the containerized application. The
cluster follows a master and worker node architecture. The master nodes combine to
act as a control plane to configure the worker nodes. It is responsible for controlling
the overall state of the cluster. The master coordinates the scheduling and scaling of
the application on different worker nodes. It maintains the overall state of the cluster
by ensuring that there are no unhealthy nodes inside the cluster. It also ensures that
all the worker nodes are up-to-date. On the other hand, the worker nodes actually
run the application and perform the tasks assigned by the master.

After the application is deployed to the worker nodes, it will run inside a pod. A
pod is the smallest and most basic deployable object in Kubernetes. It is a single
or a group of containers with shared storage and network resources. It is where an
instance of an application actually runs inside containers.

The pods running in Kubernetes are ephemeral, and their IP address is inconsistent.
Therefore, Kubernetes offers a service resource that is an abstraction defining a
logical set of pods. It allows assigning a group of pods a specific name and a fixed
IP address in the cluster network. A service resource exposes an interface to access
the pods from within the cluster. An external IP is assigned to a service of type
load-balancer, which can be accessed by external clients. The selector field of the
service is matched with the labels of pods deployed on the cluster. A pod with a
matching label as the selector of service becomes part of the service and can be
accessed using the service name or IP address.

In the case-study application used in this thesis, we deploy the different parts
of our weather application (frontend, backend, info) on a Kubernetes cluster and
define Kubernetes service resource for each of them to be accessed. Afterward, we
deploy Istio or Consul on the top of the cluster to take responsibility for secure
service-to-service communication.

18

2.3 Secure Communication Using: PKI and mTLS

The PKI is the set of software, policies, and procedures used to assign identities
to different entities over the internet in the form of digital certificates and public
keys [1].

In a traditional PKI, a CA is responsible for issuing certificates to all the entities [1].
It is a common trusted third party for all the entities. For example, to receive a
signed certificate from a CA, Alice first generates a private key and a public key, as
illustrated in Fig. 3. Next, it sends its public key and certificate signing request
(CSR) to the CA. After verification of Alice, the CA will issue a certificate by signing
Alice’s name and public key with its own private key. Now, when Alice receives the
certificate from the CA, Alice is ready to initiate an authenticated connection with
all entities on the network. Bob will follow the same process as Alice to get a signed
certificate from the CA. Using the signed certificates, Alice and Bob can prove their
identity to each other.

When Alice sends a request to Bob. Bob will present Alice with its certificate. Alice
will verify the certificate with the CA’s public key because the CA acts as a common
trust for both Bob and Alice. Once the certificate is verified, Alice knows that the
entity at the other end of the network is Bob and not someone impersonating to be
Bob. Bob can also request Alice for the signed certificate and verify it using the CA’s
public key. By following this process, Alice and Bob are sure they are communicating
with each other. This not only helps to achieve authentication but also assists in

avoiding impersonation attacks.
!i'@

Certificate
Authority(CA)

Dess e
V Certificate

e

. ©)

Alice | > Bob

Signed Message +
Certificate
R=

Figure 3: Public Key Infrastructure

The mTLS protocol is often used to secure and encrypt the traffic between users,
devices, servers, and services. It is a common industry practice for microservice
security. mTLS, along with PKI, is a method used to secure service-to-service

19

communication [11]. Different components of the PKI, such as CA, digital certificates,

and public keys, assist in verifying the identity of the parties at each end of a network.
It works in the following way.

Backend
Service

mTLS handshake started

Hello
Info cert
Backend cert request
Info Hello done

Backend cert
Backend Key exchange
Certificate verify
Change Cipher Spec
Finished

. Change Cipher .
Spec

mTLS handshake completed

Info
Service

Figure 4: mTLS Connection

As illustrated in Fig. 4, the backend service sends a Hello message to the info service.
In response to the Hello message, the info service sends Hello and its certificate. The
backend service will verify the certificate using the CA’s public key. In addition,
the backend service will send its certificate to the info service. If both parties verify

each other’s certificate correctly, then a secure and encrypted mTLS connection is

established between the services [48].

20

2.4 Service Mesh

A service mesh is a dedicated infrastructure layer for handling service-to-service
communication without modifying the existing service implementation [15]. It handles
the networking functionality using intelligent sidecar proxies that intercept all the
traffic reaching a service. As shown in Fig. 5, the service mesh consists of two main
components: the data plane and the control plane.

The data plane consists of sidecar proxies that mediate and control all network
communication between the different services [15]. After each sidecar proxy gets
injected into a service, it sits in front of the service and takes control of the traffic
reaching the service.

The control plane is also referred to as the brain of the mesh. It is responsible
for configuring and controlling the data plane (proxies) behavior across the mesh.
Additionally, it enforces security and traffic policies as well as collects telemetry

data [15].
I

o O

Service A Service B
T h
o :_) Y o« > v — —
Sidecar [= Sidecar = I
Inaress Prox F Prox F
g Egress
Agent/init Agent/init
X Ly
Data Plane
]

)
[Service] {Policies} [Configs] CA
Discovery

J

Control Plane

Figure 5: Service Mesh Basic Architecture.

21

2.4.1 Service Mesh Fundamental Features

Service meshes are widely adopted because they offer secure communication between
different services and observability. Every service mesh must provide the following
features:

o Authentication and Authorization: Facilitate certificate management, key
generation, authorization policies, and token-based authentication

o Service Discovery: Allow the discovery of the endpoints of the services and
register them to a centralized registry

« Secure service communication: Provide support for mutual Transport Layer
Security (mTLS)

» Resilience and Stability features: Support features such as circuit breaking,
retries, rate-limiting, fault injections, fail-overs, and timeouts

e Observability and monitoring: Support logging, metrics, and distributed
tracing

o Load balancing: The ability to distribute the load between different running
instances of a service for scaling and better performance

2.4.2 Service Mesh Implementations

The service mesh technology is getting widely embraced in the technology industry.
There are many service meshes in the industry, such as Istio, Consul, Linkerd, and
Open Service Mesh (OSM). In Table 2, we can observe that OSM is the least
mature out of all four popular service meshes since it is not ready for a production
environment. According to the number of Github stars, Consul and Istio are the most
popular service meshes. They provide many features and functionality that allow
the services to function properly. Moreover, these two service meshes support the
Secure Production Identity Framework for Everyone (SPIFFE) standard for service
identity [56] that is discussed in the Section 2.4.3. The SPIFFE identity can be helpful
when trying to get the meshes to interoperate. Linkerd is also production-ready and
supported by Cloud Native Computing Foundation (CNCF). However, its limitation
is that it does not support the SPIFFE standard as the identity.

2.4.3 Service Identity

As discussed earlier in Section 2.3, PKI uses certificates to assign an identity to
different entities. They act as the credentials to verify the identities of a pair of
services in a transaction. Similarly, Istio and Consul provide each service a strong
identity and an X.509 certificate. The identity is specified in the Subject Alternate
Name (SAN) field of a certificate. The certificate is then used by services to initialize
a secure and encrypted communication with another service.

The identity provided by Istio and Consul is based on the SPIFFE standard [48, 56].
According to the standard, each service is assigned a unique SPIFFE Identity. This

22

Istio Consul Linkerd OSM
Envoy Envoy Rust Envoy
Data Plane Proxy Proxy Proxy Proxy
Advantage Strong community servi]j)eug;lcr(l)very Stable and CNCF
and CNCF supported mechanism CNCF supported supported
Limation No service Complex No SPIFFE No multi-cluster
discovery mechanism architecture identity support | federation support
Maturity Production ready Production ready | Production ready Not Przz(cil;lctlon
Popularity 30.5k 24.9k 8.5k 2.4k

Table 2: Service Mesh Implementation

identity is a string that represents the logical purpose of the service [24]. It has a
specific and uniform format for all the services. For example, a backend service will
have the identity shown in Figure 6. Both Istio and Consul support identity based
on SPIFFE. This could be leveraged as the potential building block for the federated

solution.

Figure 6: SPIFFE Identity

23

2.5 Istio

In this section, we will discuss the main components and workflow of Istio. It is
apparent from the comparison drawn in Table 2 that Istio is currently the leading
service mesh implementation.

2.5.1 Core Components

Istio is an open-source service mesh that adds a dedicated infrastructure layer under-
neath existing cloud-based distributed applications. With few or no code changes,
Istio allows a developer to add vital features to the existing implementation. These
features include secure service-to-service communication using mTLS, automatic
load balancing, fine-grained authorization and authentication policies, metrics, logs,
and telemetry data of all the traffic that enters the service mesh. Istio is designed to
introduce visibility and extensibility for the service mesh. It also supports platforms
such as Kubernetes, Openshift, and traditional deployment environments like VMs
and bare metal servers [19].

As mentioned in Section 2.4, Istio is composed of two main components: the data
plane and the control plane. The data plane consists of intelligent Envoy sidecar
proxies that secure service-to-service communication. Envoy proxy® is a modern,
high-performance, and lightweight service proxy based on C++ and is widely adopted
for different service meshes [19]. The control plane is also referred to as Istiod, where
d stands for daemon, and it manages and configures the data plane to ensure secure
communication between microservices [28, 39]. Istiod has three main responsibilities:
service discovery, certificate management, and configuration management [38, 39,
50].

Pilot is the component responsible for configuration management and service dis-
covery. It is mainly responsible for the configuration of the proxies. It handles
the responsibility of translating the Istio-defined APIs into Envoy proxy-specific
configurations.

Citadel is the component that is responsible for certificate management. It acts as a
CA and assigns certificates to all the entities of the service mesh in order to support
mTLS. It also offers identity management of the services. This component plays a
major role in secure service communication.

Galley handles the Istio-specific configurations. It is the interface for the underlying
API with which the control plane needs to interact. It is responsible for interpreting
and validating user-specified configuration into a format Istio can understand.

Shttps://www.envoyproxy.io/

2.5.2 Istio Workflow

24

Discover the

service using
k8 adapter and
create service

entry objects

Proxy Agent Citadel Pilot
— 3] o
Proxy Agent is
injected to started when xDS APls used to <
the service | proxy injected ; push policies and
P configs
xDS API used to < .
; push configs,
M policies, Node ID + '
< Agent gRPC port
CSR + Private 5 Validate the
> Key n CSR and sign T
Use xDS API > certificate
to request
certificate <
Signed
Certificate L
Signed L 1

H Certificate

Figure 7: Istio Single Cluster Workflow.

When a service is deployed on a Kubernetes cluster, Pilot will be responsible for
discovering this service. The discovery process is accomplished using the Kubernetes
adapter that watches the Kubernetes API Server to obtain service information. The
information is then used to create a service entry object in the internal service registry,
which Istio maintains containing the set of all the discovered services. Pilot will then
inject a sidecar proxy into the service. Before initiating a connection, the proxy
uses the service registry to determine the endpoints of the other services [19]. Pilot
implements a discovery service called xDS, which is used to configure the sidecar
proxies [30].

The information for the service discovery from the internal registry, along with
configuration information, is sent to the proxies with the xDS APIs”. These APIs are
a set of aggregated discovery APIs for the proxies to discover different resources, such
as Envoy Routes, Clusters, Secrets, Listeners, and Endpoints. Pilot is also responsible
for propagating the changes in configuration across the service mesh. It does so
by generating a model by combining Istio configurations from Galley and service
information from the service registry. This model is used to generate configurations
for the data plane. The model also changes when the configuration changes, which is
conveyed to the relevant services via an active gRPC channel [19].

Along with the sidecar proxy, a local agent is also started. It acts as an intermediate

"https://www.envoyproxy.io/docs/envoy /latest /api-docs /xds_ protocol

25

control relay between the sidecar proxies and Istiod. All communication related to
secrets and configurations between the proxy, Istiod, and agent happens using the
xDS APIs. The agent handles sending a CSR to Istiod and then sending the signed
certificate back to the proxy. When a proxy gets injected, Pilot will use the xDS APIs
to push the policies and configurations to the agent. The agent will then push the
cached policies, configurations, NodelD, and gRPC port to the proxy. The NodelD
and gPRC port will be used by the proxy to connect to the agent and request an
X.509 certificate [19]. The envoy proxy requests the certificate from an agent using
the xDS API. In response to this request, the agent will generate a private key and
CSR to the Istiod (Citadel Component acts as the default CA). Istiod will verify
the CSR and issue a signed certificate to the proxy [50]. The signed certificate has
the identity encoded in the certificate as SAN. This identity is based on SPIFFE.
The signed certificate is then passed from the agent to the proxy. In this way, the
proxy gets all the relevant configurations and policies to start mTLS connections
with other proxies [19].

2.5.3 Traffic Management

Istio offers several routing options to control the traffic flow between services that are
part of a service mesh. The traffic management process relies on the sidecar proxies
that intercept all the incoming and outgoing traffic to the service; thus, making it
easy to control the traffic around the service mesh without changing the state of any
service.

Before controlling and directing the traffic to the correct service, Istio needs to
populate its service registry by connecting with the underlying service discovery
system. Once the services have been discovered, this information is propagated to
all the other services.

Virtual Service: One of the most important traffic management API resources is
the virtual service. It is used to define the traffic routing rules for services. It allows
you to define routing rules that tell the envoy proxy how and where to direct the
traffic. It can be used for canary roll-outs where the traffic reaching a specific version
of a service gradually increases [28]. A virtual service can be used to redirect a
certain percentage of the traffic to different versions of a service. Virtual services can
also be used in the configuration of the traffic rules in combination with the gateway
to handle ingress and egress traffic associated with the service mesh [50].

Destination Rule: Another core resource is the destination rule which grants
control over what happens with the traffic that reaches a specific proxy. It provides
the control of dividing a service into subsets based on version labels. Virtual services
are then used to direct traffic to these different subsets. Moreover, this resource also
allows setting load-balancing options and TLS settings [50].

26

Gateways: Gateways handle the traffic entering and leaving a service mesh. A
gateway configuration can be added to a standalone Envoy proxy deployed at the edge
of a mesh. Istio ingress and egress gateway deployments are configured along with the
Istio basic installation. To handle routing, virtual services can be linked and deployed
with the gateway to control the flow of traffic instead of adding application-layer
(L7) traffic routing. This resource also lets you configure layer 4-6 load-balancing
properties [50].

2.5.4 Security Management

Secure communication in a service mesh is accomplished with the following compo-
nents and policies.

Istio Identity: Service identity plays a major role in initializing a secure connection
between services. A pair of services that want to communicate with each other need
to exchange their identity information encoded in a X.509 certificate SAN. In the
case of Kubernetes, the identity is usually the service account of the service [50].
Kubernetes uses service accounts to assign an identity to services deployed inside a
cluster. Along with the service, a service account is also linked and deployed with it
[51]. Moreover, Istio and Consul both support SPIFFE Identity format mentioned
in Section 2.4.3.

Alongside each Envoy proxy, Istio also provisions an agent with the service. This
agent and istiod work together to automatically assign the proxy a certificate to
prove its identity to other proxies [19)].

Secure Naming: Istio secure naming maps the service account and server identity
to a particular service name. It checks whether a server or service account is allowed
to run the service. The control plane of Istio will watch the Kubernetes API Server
and generate the secure naming information. Later the information is propagated to
the proxies. The secure naming information is used during the mTLS connection
between different services.

When a client service sends a request to a server service, it presents the client service
with its certificate. The client service uses the service account name encoded in the
certificate and secure naming information to determine whether the service account is
authorized to run the service. If the verification is successful, only then the client and
server services can establish a mTLS connection. The secure naming check prevents
service impersonation attack. If a forged service with a different service account
attempts to establish a connection with the client, the secure naming check will fail.
This prevents establishing a connection with a forged service; thus, improving the
overall security of the service mesh,

Authorization Policies: The authorization policies supported by Istio provide
mesh, namespace, and workload-wide access control for different services. These
policies can be used to control which namespace, service, or service account can

27

access another service. These policies dictate the behavior of proxies across the mesh.
It provides options like ALLOW and DENY to control what happens to a request
that reaches a service from a specific source [50, 19]. We will see examples of these
policies later in Section 7.

Authentication Policies: Istio supports two types of authentication: peer authen-
tication and request authentication. Peer authentication is used for service-to-service
authentication and provides each service a strong identity in the form of a certificate.
Istio distributes and updates the certificates across the mesh. The authentication
policies can be used to enforce mTLS on the communication between service mesh
workloads.

Request authentication is used for end-user authentication with JWT [50] The
credentials attached to the request are verified before the requests are allowed to enter
the mesh. In this thesis, we focus on inter-service communication in microservices
which can be accomplished with peer authentication policies.

2.6 Consul

Consul is an open-source service mesh solution developed by HashiCorp [48]. Consul
Connect is used interchangeably with Consul service mesh. It offers multiple features,
including service discovery, L7 traffic management, health checking, and a key-value
store. It provides the authentication and authorization features to ensure secure
service-to-service communication with mTLS. It has a built-in proxy and also
supports third-party proxy integration, such as Envoy. Envoy proxy is recommended
for production environments. Consul connects automatically injects Envoy proxy to
the services running in a Kubernetes cluster.

2.6.1 Main Entities

Consul has a complex architecture that consists of multiple components. Fig. 8 shows
the main components of a Consul cluster. The cluster has multiple agents: clients
and servers. The agents form the control plane of the service mesh. A single cluster
must have 3-5 servers for fault tolerance and availability, and every node of a cluster
has one client automatically running inside it [48].

28

k8 Cluster
Replication ﬁ? Replication
Server » Server N Server
Foll Lead d Foll
(Follower) 5 (Leader) (Follower)
gRPC
Node1 Node2 Node3
Service Q@ Service @ Service @
[J [J []
Client Client Client

Figure 8: Consul Architecture for Kubernetes Cluster.

Consul Client: The Consul client agent runs on each node of the cluster and is
responsible for generating the private key for the sidecar proxy. After the generation
of the key material, it also sends a CSR to the Consul server. The server provides the
client with certificates for the running services. After 75% of the current certificate
lifetime elapses, the client will send a fresh CSR to the server. It also performs
the health checking of the pods running on the node and configures sidecar proxy
instances with the services running on the node [22].

Consul Servers: The Consul server agent handles the task of collecting information
about the health of the services, service location, and availability. Furthermore,
it performs the service discovery and certificate signing process. The servers are
the central configuration point for policies and rules that define the behavior of the
proxies in the data plane [22]. Consul uses intentions to define access-control policies
across the mesh, which control which services may establish a connection [48].

2.6.2 Main Protocols
This section discusses the main protocols used in a Consul deployment.
Consensus Protocol: The Consul deployment must have at least 3-5 servers for

availability in case of a failure. One of the servers is elected as the leader using the
RAFT (Reliable, Replicated, Redundant, And Fault-Tolerant) consensus protocol [4]

29

and the others are selected as the followers. All the RPC requests and transactions
are handled by the leader, and the results are replicated to the followers [48].

Gossip Protocol: It is used to manage membership and broadcast important
messages to the cluster. All the agents in the data center must participate in the
gossip pools [48].

LAN Gossip Pool: Each data center has a LAN gossip pool that contains all
the members of the data center. The membership information provided by the LAN
gossip pool helps the client automatically discover the servers.

WAN Gossip Pool: Regardless of the data center, all servers participate in the
WAN gossip pool. It allows servers to initiate cross-data-center requests.

2.6.3 Consul Service Discovery

The services that are deployed on a Kubernetes node are registered to the server
by a lightweight client agent running on each node. The agent is also responsible
for initiating a sidecar proxy with the service. When a service is registered by the
client agent, the central service registry is populated, which is a catalog of all the
services that are part of the mesh. The agents also ensure consistent health-checking
of the service to ensure the traffic is not redirected to an unhealthy instance of the
service [22].

In a Kubernetes cluster, the services are automatically discovered and registered in
the central service registry by the client agent. However, to configure an external
service that is not part of the Kubernetes cluster, a manual service definition has
to be provided to the agent. The upstream services with which the proxy needs to
communicate can also be configured using the service definition.

2.6.4 Configuration Management

Along with other responsibilities, the client also bootstraps the proxy configurations
that consist of an ID of the node the proxy is running on and the RPC port of
the client agent. After starting up, the proxy will initiate a connection to the local
Consul client to receive the remaining configurations.

The configurations sent from the Consul client agent to the sidecar proxy with xDS
APIs include the X.509 certificate for the service identity, private key, Consul CA
root certificate, L7 route configurations, and upstream services.

The Consul agent is also watching the server for any changes to the configurations.
This is accomplished with the help of a streaming mechanism that ensures that all
the proxies have the latest configurations and rules. The clients subscribe to a topic,
and the servers publish a change to the topic that gets propagated to the relevant
client agents. The updates are then passed to the proxies with xDS APIs and open
RPC channels [22].

30

2.6.5 Certificate Management

When connect-inject is enabled for a service, Consul injects an init container to the
service. The init container uses the service account token of the service to log in to the
Consul server via the Kubernetes authorization method. As follows, the Consul server
will validate the service account token by connecting to the Kubernetes API server.
After the verification is successful, the Consul server returns a Consul ACL token
that has the service identity and permissions to register the proxy and the service to
the service registry. The proxy then uses the acquired token to authenticate to the
client and request a certificate. The client validates the token and then sends a CSR
to the Consul Server. The token and CSR are validated by the server before issuing
the proxy a X.509 certificate with the SPIFFE identity encoded as the SAN of the
certificate. This certificate is passed back to the client agent. Afterward, the client
agent passes the certificate and the configuration bundle back to the proxy. This
bundle contains the CA root certificate, intentions, and L7 route configurations [48].
Using the configurations and X.509 certificate, a proxy can initiate a secure mTLS
connection with other proxies.

2.6.6 Consul Workflow

Node

S

Service
Deployed

31

Validates CSR

Figure 9: Consul Single Cluster Workflow.

Proxy Client Server
Discovers the
! services on the
< node
Registers the "
service to the
' service registry
< initialize a side-car
) proxy
Bootsrap Configs
M (NodelD, client gPRC)
port, etc.) . Private key
< Private key + CSR
Signed certificate
'J‘ ‘
Request intensions
and service discovery
results R
request remaining ”
configs using xDS API <
intensions + service
discovery results
h intensions + service =
discovery results +))
certificate

32

2.7 Related Work

In this section, we explore whether there are any existing research efforts being
carried out related to heterogeneous service mesh federation. This section will
study the use of service mesh in different domains, such as Mobile Edge Computing,
telecommunication, and the IoT. We discuss the need for heterogeneous service mesh
federation in the context of these domains and investigate if there is any active work
being done in this direction. Furthermore, we discuss state of the art in federation
models and their limitations related to heterogeneous service mesh federation.

Service meshes are predominantly popular for cloud-native microservice applications.
They have particularly gained traction for developing web-based applications hosted
in a centralized cloud environment [42]. As a result of the high-level digitization
of the IT business, the need for performance-driven decentralized applications has
also surged. These applications mainly focus on automotive, industrial control,
Augmented Reality/Virtual Reality (AR/VR), and Internet of Things (IoT) use cases
with strict requirements regarding latency, bandwidth, and reliability. The high
performance and low latency requirements encourage the adoption of Edge Cloud to
distribute and decentralize the computational resources.

A systematic analysis was conducted to evaluate the suitability of a service mesh for
a performance-demanding application hosted in a mobile edge cloud environment.
The results of the experiments revealed that service meshes fail to fulfill the needs
of performance-demanding mobile edge cloud workloads. Hence, more research
activities are required to design a performance-efficient architecture that is able
to satisfy the arising requirements [42]. It was concluded in the research [42] that
the current state-of-art service meshes are only suitable for centralized cloud-native
applications.

The telecommunication industry does not consider service mesh performance satis-
factory because they provide less support for decentralized mobile edge computing
and respond inefficiently to the diverse service requirements of 5G. The deployment
model of a mobile edge cloud consists of multiple sites and tenants. It includes a hier-
archically structural model comprising multiple sites, such as edge sites, distributed
sites, and central sites. These sites have heterogeneous hardware and software setups
and different geographical locations. Thus, making it very complex to migrate the
sites towards a service mesh architecture [15]. High expertise is needed to integrate
service meshes into this architecture. The level of complexity will drastically increase
if different hierarchies use different service meshes. The existing scientific work does
not discuss this problem of federating heterogeneous meshes. Therefore, the thesis
aims to propose a solution for integrating heterogeneous meshes.

Contrarily, in another research, service mesh showed promising results when used
in the deployment of an IoT platform [26]. After extensively testing the platform
based on the Istio service mesh against different parameters, such as response speed,
availability, transmission delay, concurrency, and throughput, it was concluded that
the architectural design with the Istio service mesh had a satisfactory performance [26].

33

Today, there is an apparent increase in the demand for cross-domain IoT applications.
This can lead to the adoption of collaborative and interoperable IoT solutions to
introduce improvements in the future IoT ecosystem [12]. If the cross-domain IoT
platforms are deployed with different service mesh implementations, it is important
to have a smooth federation process. However, the existing research efforts do not
discuss the collaboration mechanism needed to federate different IoT platforms that
have heterogeneous service meshes.

Multi-tenancy is another popular deployment model in the telecommunication indus-
try. This industry requires deploying virtual network functions (VNFs) owned by
data-center tenants to incorporate the latest technologies, such as service meshes.
However, achieving isolation among the tenants is a difficult task when considering
a multi-tenancy model. A solution is proposed in [31] that uses multiple CAs to
achieve isolation between tenants in a single Istio service mesh. The solution is also
tested and proved to satisfy the performance and security requirements described
in the work. However, this research does not discuss the federation process of the
service mesh hosting services for multiple tenants with an external heterogeneous
service mesh.

Ingress and Egress traffic of the service mesh is handled using gateways supported
by service meshes. For example, Istio has in-built support for Istio ingress and egress
gateways. Similarly, Consul supports several gateways, such as mesh gateway and
ingress gateway, to take care of external traffic outside the service mesh. These
in-built gateways allow secure access to services from outside the cluster. They
support many functionalities at the edge of the service mesh that includes load
balancing, authentication, authorization, rate limiting, traffic splitting, and telemetry
collection. These functionalities offered by the in-built service mesh gateways overlap
with the ones provided by an API gateway. The API gateway also acts as an entry
point to the service mesh. An API gateway abstracts and encapsulates the internal
implementation and workings of the system [13]. It acts as a mediator between the
external clients and the microservices and assists in making the services lightweight
by supporting different authentication options [18].

API gateways are predominantly adopted by the industry to design microservice
applications [7]. Instead of service mesh gateways, they can be used to achieve
federation with other meshes. However, most of the important features offered by
an API gateway are already adopted by service meshes (Istio and Consul) in-built
gateways. Therefore, using the in-built gateways instead of an API gateway along
with the service mesh reduces the overhead of getting into a more complicated design
pattern that comprises different technologies. Service mesh gateways provide most of
the functionality that an API gateway provides. Thus, instead of integrating an API
gateway with a service mesh, the default gateways can prove to be a more practical
approach. The debugging process will be easy if a single technology is adopted.
Moreover, additional expertise will not be required to develop and implement the
API gateways along with the service mesh technology. Therefore, this thesis uses the
in-built gateways to achieve federation between heterogeneous service meshes.

34

Federation between instances of the same service mesh (Istio and Istio) has been
discussed [20]. Different models are discussed, such as two Istio clusters sharing the
same control plane or having a dedicated control plane. Moreover, implementation
details of deploying multiple Kubernetes clusters on AWS, integrated with a shared
Istio control plane over OpenVPN;, are discussed comprehensively [20]. The Istio
documentation also explains various federation deployment models, such as deploying
Istio on a single cluster, multiple clusters having the same control plane, and multiple
clusters with different control planes [50]. However, these current state-of-the-art
federation solutions are only limited to homogeneous service meshes.

Gloo Mesh is a service mesh and control plane that federates the configuration, oper-
ation, and visibility of different services deployed in distributed environments [55]. It
supports multi-tenancy and multi-platform federation management. It also supports
the federation of the trust domains to facilitate an easier and more secure multi-
cluster federation. However, Gloo Mesh is specifically designed to support the Istio
service mesh and does not support the federation of heterogeneous service meshes,
such as Istio and Consul. The federation of two service meshes with different CAs
and trust domains is challenging. The services residing in one mesh should be able to
verify the identity of other mesh services to establish a secure connection. According
to the Istio documentation, to start communication with two different service meshes,
their trust bundles need to be exchanged, which can either be done manually or using
SPIFFE [50, 56]. However, there is no concrete information available to accomplish
this trust bundle exchange. Similarly, Consul documentation provides information
about federating Consul meshes that are deployed on different cloud platforms(AWS
and Azure) with the support of mesh gateways [48]. However, there is not sufficient
information available for the federation of clusters with different root CAs. Thus,
this is still an open research area that this thesis aims to explore.

2.8 Summary

In this chapter, we discussed important concepts that laid the basis for understanding
the service mesh architecture and workflow. After comparing different service mesh
implementations, Istio and Consul were concluded to be the most popular. Further-
more, this chapter gave us a detailed overview of the main entities and working of
Consul and Istio. Lastly, we investigated the exiting research work being carried out
related to heterogeneous service mesh federation.

35

3 Service Mesh Federation

Nowadays, many organizations prefer migrating to the cloud to deploy and manage
their applications [2]. The use of multi-cloud platforms is likewise acquiring a
foothold [23]. It offers several benefits, such as flexibility in using the best feature of
a platform on a per-instance basis leading toward cost optimization. It also reduces
the risk of failure of a single cloud platform by eliminating a single point of failure.
Moreover, it allows coping with privacy issues [29].

DevOps is an emerging software development and delivery practice that is widely
embraced by many technological organizations [36] . It not only accelerates the
software delivery and development process but also provides the freedom to choose
any language, framework, or technology stack. In addition to choosing different pro-
gramming languages and software frameworks for microservices, teams can use diverse
virtual networking technologies, including service meshes, for secure microservice
communication.

Heterogeneous technology choices can also originate from corporate mergers and
acquisitions. In a merger situation, organizations that use different technology stacks
and deployment options may need to integrate their applications to communicate
with each other securely. One approach for achieving this could be to make tools and
technologies of the acquired organization consistent with the acquirer organization,
e.g., make the acquiree shift to the same service mesh infrastructure as the acquirer.
However, this is a lengthy process as it requires the developers to learn new skills and
change the established ways of working. An alternative to quickly integrating these
two services would be the ability for their service mesh infrastructures to federate
easily.

Today, interoperability has become a pressing need for information systems [3]. A
microservice deployed on service mesh A might request some data from an external
service deployed on service mesh B to make the whole application work efficiently.
This increasing demand for interoperable services has driven the need for federating
different technologies.

The federation of service meshes across different clouds is a complex topic. Integrating
different technologies and platforms to achieve a smooth workflow requires a simplified
solution [10].

In the following sections, we will discuss scenarios in which service meshes can be
deployed and federated. We consider use cases where different microservices that
need to communicate are deployed on different Kubernetes clusters with their own
service mesh on the top.

3.1 Homogeneous Service Mesh integration

Here we discuss service mesh federation in the situation where the service mesh
layer is homogeneous, i.e., one service mesh implementation is used by a pair of
entities.

36

Service A Service B

Proxy mTLS Proxy
\ Control) Expose
A\ Piane Services
Istio Service Mesh Istio Service Mesh

Figure 10: Istio-Istio federation.

Service B

Service A

mTLS Proxy

Proxy >

Expose
Services

G,-, Control
“ Plane

G Control
* Plane

Consul Service

Mesh Istio Service Mesh

Figure 11: Consul-Consul federation.

3.1.1 Owned by the same organization

A practical example of this use case is that Company 1 has two teams (A and B)
taking care of different solutions. Suppose team A service wants to consume the data
produced by the service of team B. Take into account another consideration that
both the teams use the same service mesh, either Istio or Consul, on both ends, as
shown in Figures 10 and 11.

In this use case, achieving federation would require both teams to decide if they
would prefer a shared control plane or a separate control plane. The choice will
merely depend on the level of security the companies want to achieve. In the case of
a shared control plane, the primary control plane will connect with the Kubernetes
API server of the other service mesh. This will enable automatic service discovery.
However, for a separate control plane, the Kubernetes API Server secret will be
shared to connect the two control planes and discover the services [50].

37

The control plane of the service mesh act as the CA. Once the services are discovered
by the control plane, it assigns each service an X.509 certificate as an identity. The
service later uses this certificate to initiate a secure mTLS connection with other
services.

3.1.2 Owned by different organizations

An example of this use case is two companies (Company 1 and Company 2), that
have collaborated together. Company 2 has to expose specific services for Company
1 to consume useful data. In this example, we consider that both the companies use
the same service mesh, either Istio or Consul.

In the case of different organizations, the same root CA cannot be used, and the
control plane cannot be shared. Each cluster will be configured with a separate
control plane and a different root CA. The services can be manually added to the
service registry for discovery because sharing Kubernetes API secrets with another
organization is not a recommended security practice. It leads towards an external
organization gaining complete access to the local services in a mesh.

Once the service registry is populated, and services are assigned identity in the form
of X.509 certificates, the service of Company 1 can initiate requests to service of
Company 2. When the services are trying to establish a mTLS connection, they
exchange the X.509 certificates to prove their identities to each other. However, the
mTLS connection will fail as both clusters will be unable to verify the certificates
signed by different CAs. To achieve federation in this use case, both the clusters
require the public certificates of the other cluster to be imported to verify each other
correctly and start a secure mTLS connection.

3.2 Heterogeneous Service Mesh Integration

Here we discuss service mesh federation scenarios in which the service mesh layer
is heterogeneous, i.e., different service mesh implementation is used by a pair of
entities.

3.2.1 Owned by the same organization

A practical example of this use case is that Company 1 has two teams (A and B)
developing different solutions. Suppose a service of team A, which is using Istio
service mesh, wants to consume the data produced by the service of team B, which
uses Consul service mesh.

In this case, both the teams will have separate control planes specific to their service
mesh. However, the root CA can be the same for both teams. If team A uses Istio and
team B uses Consul, they both can be configured to use the same root CA to sign the
certificates generated for each service. Also, if the service in the Consul service mesh
needs to be exposed to the service in the Istio service mesh, it can be accomplished
by sharing the Kubernetes secret [50]. It will allow each mesh to connect with the

38

Federation

9

CA1 © CA2

Service B

Service A

mTLS Proxy

Proxy

Control
Plane

C.: Control
: Plane

Istio Service Mesh Consul Service Mesh
Team A Team B

Figure 12: Istio-Consul federation.

Kubernetes API Server of the other mesh and discover the services automatically. If
the same root certificates are plugged inside the control plane of both the clusters,
then the service inside each cluster can verify each other’s identity.

3.2.2 Owned by different organizations

An example of this use case is two large companies (Company 1 and Company 2)
that have collaborated. Now, Company 2 has to expose specific services for Company
1 to consume useful data. We can see from the Fig. 12 that both the companies use
a different service mesh, either Istio or Consul.

Considering the common security practices, there will be a separate control plane and
different root CA configured for each service mesh. To achieve federation between
these heterogeneous meshes having different root CAs, a common trust need to be
established between the meshes to start a secure mTLS connection to the external
service sitting in another service mesh. Establishing trust between heterogeneous
service meshes is a complex and manual process with very limited help available
online on the official documentation and discussion forums of Istio and Consul.
This thesis aims to provide an efficient and secure solution to implement federated
deployments.

3.3 Problem Areas of Service Mesh Federation

Different organizations have started adopting the service mesh technology as a next
step to modernize their I'T infrastructure. The service mesh technology is continuously
evolving and maturing over time [47]. Homogeneous service mesh integration is

39

becoming a common use case, and sufficient help is available on the existing official
documentation of Istio and Consul to federate the same service meshes. However, a
developer faces multiple challenges while federating heterogeneous meshes.

Istio and Consul both support different access control policies. For example, Istio
has authorization policies to control access [50]. On the other hand, Consul provides
access control in the form of intentions [48]. Currently, there is no mechanism to
unify these access control policies when distinct meshes are getting federated.

Service discovery between heterogeneous service meshes is also a difficult task.
Organizations do not prefer to share Kubernetes secrets with others because they can
provide complete access to the services. Istio and Consul support manual addition
of services. This feature can add an external service in the mesh which is not part of
the local Kubernetes cluster. However, integrating the control planes of two separate
service meshes to automatically discover the service is not a straightforward task.
Furthermore, integrating two service meshes, either homogeneous or heterogeneous,
can result in the conflict of private IP addresses. This problem can be resolved with
the inbuilt gateways supported by both Istio and Consul.

The services exposed to the external service mesh should also have a unified naming
convention. For example, both Istio and Consul have the identity as the SPIFFE URL,
as discussed in Section 2.4.3. However, the template of the identity can vary among
deployments. If the identity naming is not unified, this can result in unsuccessful
mTLS connections between services across the service meshes. Therefore, prior
to exposing services, the organizations need to agree on having a unified naming
convention for the services they plan on exposing.

Establishing trust between the different service meshes when the root CAs differ is
still a complex problem. According to Istio’s official documentation, to establish trust
between meshes with different CAs, the trust bundles can be manually exchanged
between the control planes. SPIFFE Trust domain federation, discussed in the next
chapter, can also be utilized to automatically carry out the exchange [50]. On the
other hand, Consul documentation does not provide any guidelines related to this
problem. Therefore, it can be cumbersome for a new developer to resolve this problem
with the limited support provided by the existing documentation.

The problem of exchanging trust bundles when having heterogeneous service meshes
with incompatible control planes remains unsolved. Both service meshes, Istio and
Consul, have different and incompatible control planes. Istio has Istiod as its control
plane, and Consul has different servers acting as the control plane of the mesh.
However, the features and functionalities offered by the control plane are almost the
same. Exchanging the trust bundles between these conflicting control planes can be
a time-consuming task. Therefore, an automated approach is required to establish,
update and revoke trust between meshes to accomplish successful integration.

40

3.4 Summary

This chapter described the reasons for integrating different service mesh and utilizing
the multi-cloud approach. Different use cases for federating the service meshes are
explained in this chapter. These use cases assist us in understanding the ongoing
problems better that are encountered when homogeneous and heterogeneous service
meshes having a different foundation of trust are being federated.

41

4 Analyzing Existing Solutions

This chapter discusses the existing solutions that can resolve the challenges associated
with heterogeneous service mesh federation. The drawbacks and limitations of the
existing solutions are analyzed in this chapter. Furthermore, we discuss the need for
an efficient solution that can overcome the problems of the existing solutions while
meeting all the security requirements.

4.1 Cross Signing

Cross signing can be a possible solution to solve the lack of common CA problem.
The root certificate of each mesh can be cross signed manually by the root certificate
of the other mesh. As illustrated in Fig. 13, the root CA1 and root CA2 cross sign
each other to generate cross signed certificates for CA1 and CA2, respectively. These
cross signed certificates are then used to generate certificates for the services. As
illustrated in Fig. 17, the services present each other certificates during the mTLS
handshake. These certificates are successfully verified as they are generated with
cross signed certificates. This allows the trusted root CA to extend its trust to the
other CA [27]. The dynamic number of clusters in a large-scale application makes this
solution non-scalable. Usually, it consists of a large number of clusters. If the number
of clusters is n, then the complexity of cross signing the certificates is O(n?). The
cross signing of the certificates is hard to automate. The revocation of certificates is
also challenging in case of CA misbehavior or stolen keys [8, 27]. The cross signing
also makes it difficult to track the revocation of a certificate, especially in the case of
non-browser applications [27].

Root cert for CA1

Root CA1 Root CA2

Root cert for CA2

cross-signed cert for CA1

cross-signed cert for CA2

Service A Service B

cert for Service A

cert for service B

o O)) Xk X

Figure 13: Cross Signing

4.2 API Gateway

API Gateway is often considered an alternative approach to service meshes for
accessing external services deployed in a separate cluster [13]. As seen in Fig. 14,
it acts as a reverse proxy. The gateway receives the request from the client and

42

forwards the request to different microservices for the response. Afterward, it sends
the response received from the microservices back to the client. In this way, the
client is abstracted from the details of the underlying microservice architecture and
only has a single point of entry to the services.

MICROSERVICE 1

MOBILE \ |

MICROSERVICE 2

AN

WEB I R MICROSERVICE 3
|
DEVELOPER / | DATABASE
APlI GATEWAY SYSTEM OF RECORD

Figure 14: API Gateway [54]

An API gateway sits at the edge of a cluster and is only responsible for handling
external traffic reaching the cluster. It does not take care of securing the east-west
traffic between the services. The zero trust model is becoming the need of today’s
digitalized world. It follows the principle of never trusting and verifying all the
network entities [32]. The concept of a service mesh is based on this model. Thus,
the service mesh provides more security because they also ensure secure and reliable
service-to-service communication along with securing external traffic. API Gateways
are preferred in the case when the consumer-provider relationship is clear and when
service-to-service security is not a critical requirement. Service mesh implementations,
such as Istio and Consul, already support inbuilt gateways to take care of north-south
traffic entering the mesh. Thus, using an API Gateway along with the service mesh
technology will be an extra overhead. Additional skill sets would be required to
develop and maintain an API Gateway. Due to the various benefits the service mesh
technology offers, it is becoming progressively popular every passing day and is an
optimal choice when considering microservices security [21].

4.3 SPIFFE

SPIFFE is an open-source set of standards for software identity [24]. SPIFFE aims
to have interoperable service identities that can consistent across organizations. It
automatically delivers identities to services while managing the lifecycle of the issued
identity. The SPIFFE ID has a specific format as mentioned in Section 2.4.3.

The concept of having a separate trust domain is also introduced by SPIFFE specifi-
cations that can be used to manage security boundaries within and between different

43

organizations [24]. The trust domain is part of the SPIFFE ID and where a set
of public keys is considered authoritative. Every trust domain has a trust bundle
associated with it, which contains the set of public keys that are used to verify the
services that claim to reside in the said trust domain.

Federation

SPIRE Server SPIRE Server

)
e

(Servers constantly

L/‘ ‘_‘ exchange trust bundles) ‘L/?‘ \

SPIRE SPIRE SPIRE SPIRE
Agent Agent Agent Agent

Figure 15: SPIFFE Federation [24]

To achieve federation and allow services in a local trust domain to access services in a
foreign trust domain, each local service must possess the trust bundle associated with
the trust domain of the foreign service. As illustrated in Fig. 15, SPIFFE supports a
bundle endpoint mechanism to exchange the trust bundles. Consequently, allowing
the services in the local trust domain to validate the identity of the services in a
foreign trust domain. The exposed bundle endpoint, HT'TPS endpoints, are used to
exchange the trust bundles with the foreign trust domains that might be owned by a
different team or organization.

SPIRE (SPIFFE Runtime Environment) is a production-ready implementation of
SPIFFE. As shown in Fig. 15, it has two major components: server and agent. The
server is responsible for generating and managing the identities, and the agent is
responsible for requesting the identities for different services that run on a node
where the agent is deployed. This solution does make the overall federation process
easy. However, it is expensive in terms of resources. When SPIRE is integrated
with a service mesh, the SPIRE agent and server must be deployed along with the
service mesh resources. Thus, increasing the overall cost of deploying and managing
extra resources. Moreover, the two service meshes under consideration in this thesis
already support SPIFFE identity. Thus, deploying a SPIRE Server to issue and
manage identities would be an additional overhead, as the service mesh control plane
already takes care of this task. This integration of SPIFFE with the service mesh
will introduce more complexity and complicate the debugging process.

44

4.4 Summary

The three existing solutions discussed in this chapter come with operational complexity
and increased cost of deployment. Therefore, a new solution is needed that provides
the existing solutions’ benefits and overcomes their limitations and drawbacks.

45

5 Proposed Solution Security Requirements

Service meshes aim to simplify the microservices security by shifting the authenti-
cation and authorization functionality to a common infrastructure layer [21]. They
allow you to achieve zero-trust by following the principle of trusting nothing and
verifying everything. Different features offered by service mesh, such as mTLS, au-
thorization policies, and certificate rotation, make it possible to achieve a zero-trust
network.

When it comes to federating service meshes, the primary concern is security. The
federation of multi-cloud homogeneous and heterogeneous service mesh can have
multiple use cases and implementation techniques; however, secure communication
between different services must be prioritized in all use cases. The following security
properties must be fulfilled when implementing a secure and efficient federation
solution.

5.1 Authentication

A service that is part of a service mesh must prove its identity to other services [21] in
order to prevent an attacker from impersonating any service over the network. The
services part of the service mesh must exchange X.509 certificates to authenticate
and then exchange encrypted information. If this security property is not met, then
any malicious service can talk to the legitimate services and break the security of
the federated system. Moreover, the certificates assigned to the services registered to
a mesh must have a short lifetime. Also, they should be refreshed frequently to help
limit service impersonation attacks.

Service mesh intends to provide a zero-trust network that allows building secure
solutions on distrusted networks. In a zero-trust network, nothing is trusted, and
every entity must prove its identity [32]. Consider a scenario where an attacker has
managed to bypass the mesh and added a forged service with a certificate signed
by a different CA. The legitimate services establishing a mTLS connection will fail
to verify the certificate of this malicious service as it will be signed by a different
CA. Consequently, the legitimate service drops the connection, thus, protecting from
service impersonation attacks. Moreover, a service mesh, such as Istio, conducts a
secure naming check before establishing a connection with any service. As explained
in section 2.5.4, the secure naming process ensures that the client service extracts the
identity of the server service and verifies if it is allowed to run a particular service.
This also helps to limit the impersonation attack as a legitimate service will not be
able to establish a connection with a malicious service.

When service meshes owned by different organizations are federated, there is always
a need to exchange the trust bundles. The concept of trust bundles was already
explained in Section 4.3. This exchange is done by establishing a connection between
the control planes of the clusters and initiating an exchange. Thus, the connection
between the control planes should be secured before exchanging the bundles.

46

5.2 Confidentiality

An attacker should not be able to access the information it is not meant to see, i.e.,
an attacker should not be able to decrypt encrypted network traffic being exchanged
between a pair of services. A secure connection must be established between services
to ensure authenticated and encrypted data exchange. An unauthorized party should
never be able to access the data. The data should always be fully encrypted [43]. In
the case of the federation, both service meshes that are being federated must have
an encrypted exchange of data.

5.3 Limited exposure

The concept of the trust domain discussed in Section 4.3 can be used to achieve
limited exposure to the services. The services that must be exposed should be part
of a separate trust domain, and only the trust bundle associated with that separate
domain should be shared with any external organization. This allows to only provide
an external organization with access to the services that are part of the dedicated
trust domain. Thus, protecting the mesh by providing limited access to an external
third party. Other confidential services should be part of another trusted domain,
and the external organization should not be able to access or authenticate with them
until the trust bundle is explicitly exchanged. Thus, facilitating better separation
of concern and limiting external access. Moreover, even in a single mesh, all the
services should not have implicit access to each other. Only the required services
should be able to access each other with the help of different rules and access control
policies.

5.4 Integrity

The data being exchanged should not be illegally tampered with and must remain in
its original form [43]. An attacker should not be able to modify a message sent over
the network. Whether in a single mesh or cross-mesh, the data must remain in its
original structure throughout its life cycle. When the data is successfully received by
a service, it should always check if the data has not been altered in transit by an
adversary sitting on the network.

5.5 Summary

In this chapter, we discussed the main security properties recommended by the
National Institute of Standards and Technology (NIST) [21]. These properties
must be considered before developing a solution that can resolve the challenges of
the heterogeneous service mesh federation. Even minor security breaches during
the federation process of meshes can lead to the whole mesh and system getting
compromised. Thus, for the proposed solution to be acknowledged as secure and
reliable, it is important that it fulfills all these security requirements. In Section 6,
the proposed solution is evaluated against the main properties discussed in this
section to examine the level of security it offers.

47

6 Proposed Solution

The service mesh technology is widely accepted by large organizations [42] due to
several benefits, such as observability, security, reliability, and traffic management.
Similar to every other new technology, service meshes also have some limitations.
However, with the support of the open-source community, this technology has evolved
over the years. When the security of microservices is a primary concern, the service
mesh technology can be considered an efficient solution. This section proposes a
potential solution that can help to resolve the lack of common CA problem discussed
in Section 3.3.

6.1 Solution Infrastructure on AWS

Team A Team B
Av\ Istio o (.,::: O
Backend Proxy l7 1 Proxy Info
LL B
Consul Server
Istiod (Leader)
A A

—>
Backend can
access Info

configs configs

Figure 16: Proposed Solution Architecture

The infrastructure shown in Fig. 16 is deployed on Amazon Web Services (AWS)
cloud platform. First, a Virtual Private Cloud (VPC) is created for the Istio service
mesh. The VPC provides full access to a virtual networking environment. Different
resources, such as EC2 instances, security groups, load balancers, and gateways can
be launched in this logically isolated virtual network.

The next step is to create a Kubernetes cluster and attach the VPC created for
Istio with it. Kubernetes is an open-source orchestration platform for managing
containerized workloads and services. The main components of a Kubernetes cluster
were already discussed in Section 2.2. Amazon Elastic Kubernetes Service (EKS)
was used to create a Kubernetes cluster. This is a managed Kubernetes service
to run and scale Kubernetes applications on AWS. EKS removes the overhead of
manually deploying the Kubernetes control plane and worker nodes. EKS handles
managing the Kubernetes control plane across multiple AWS availability zones. It
automatically scales them based on the load. Moreover, it always runs the updated

48

Node group configurations
Kubernetes version | 1.20

AMI type AL2 x86_64
AMI release version | 1.20.15-20220629
Instance types t3.medium

Disk size 100 GiB

Container runtime | docker://20.10.13
OS (Architecture) | linux (amd64)

Kubelet version v1.20.15-eks-99076b2
OS image Amazon Linux 2
Minimum size 2 nodes

Maximum size 3 nodes

Desired size 2 nodes

Capacity type On-Demand

Table 3: Node group configurations

version of open-source Kubernetes software so that a developer can use all the latest
tools and plugins from the Kubernetes community. The EKS control plane has
a minimum of two instances of the Kubernetes API server exposed via the EKS
endpoint associated with the cluster. The control plane can be accessed using kubectl
tool to get information about the cluster.

Team A Team B

Astio o G 0

mTLS

Consul Server
(Leader)

—>
Backend can
access
Admin/operator Admin/operator

Confugures the rules + Confugures the rules +
configs configs

Figure 17: Heterogeneous service mesh integration

Once the cluster is successfully created, we add node groups to the cluster on which
the application will be deployed. The node group contains EC2 instances on which the
application will run. Table 3 describes the configurations of the node groups. Finally,
when the cluster is ready, Istio is installed, and the backend service is deployed to the
Istio EKS cluster. Using the same procedure discussed above, another VPC and EKS

49

cluster is created for the Consul service mesh. That is followed by installing Consul
and deploying the info service. Later in Section 6.3, we discuss how the process of
installing Istio and Consul was automated.

At the Consul side, an ingress gateway is additionally deployed to receive external
requests from the backend proxy and forward them to the info proxy. When the
backend service wants to request additional weather information from the info service,
the proxy of the backend service will intercept the traffic. Then using the certificate
assigned by the CA, it will send a mTLS request to the Consul ingress gateway.
To directly send a request from the backend proxy to the gateway, a service entry
must be created in the Istio service mesh. While configuring the service entry, the
external IP of the Consul gateway must be specified to correctly direct the traffic to
the gateway. As the control planes of Istio and Consul are not compatible, it is not
possible to automatically expose the services to each other. Therefore, the service
entry has to be manually configured at the Istio side to route the mTLS traffic to the
external IP address of the Consul ingress gateway. The gateway must be configured
with the TLS passthrough mode. This mode means the gateway will not decrypt
the traffic and will simply pass it to the info service proxy. As seen in Fig. 17 the
info service proxy will verify the certificate of the backend proxy and provide its
own certificate to the backend proxy. If Istio and Consul mesh are configured with
the same root CA, then a secure mTLS connection can be established between the
services, and the certificates can be successfully verified as they are signed by the
same root CA. However, if both the clusters have different root CA, then the mTLS
connection will fail. A solution is needed to establish a common trust between these
heterogeneous service meshes.

6.2 Exchanging Trust Bundles

Direct exchange of trust bundles is one possible solution to alleviate the problem of
establishing trust between meshes with different CAs. As illustrated in Fig. 18, the
direct exchange can be established by exposing HTTPS endpoints on the control
planes of both Consul and Istio. Once Istio and Consul service mesh have exported
the trust bundles of each other, their control planes will propagate the trust bundle
to all the proxies using an active Remote Procedure Call (RPC) channel and xDS
APIs. Finally, when the backend proxy sends a request to the info proxy, they will
present their certificates to each other. After the trust bundle exchange process
is complete, the verification of the certificates will be successful as the proxies are
configured with each other’s root CA certificate.

The trust bundle exchange frequency depends on the expiry time of the root CA
certificates. Istio and Consul root CA usually have a long expiry time. However,
it is recommended to have a short-lived certificate; in that case, the trust bundle
exchange will happen more frequently depending on the expiration time.

This exchange of trust bundles allows these heterogeneous service meshes to integrate
and make it possible for the backend service to request additional information from

50

Team A Team B

A stio O G O

o2
o
25
up
.

mTLS

Consul Server
(Leader)

Exchange Trust Bundles
and Expose Services

—>
Backend can
access
Admin/operator Admin/operator

Confugures the rules + Confugures the rules +
configs configs

Figure 18: Trust bundle exchange

the info service. Thus, enabling access to cross-service-mesh services.

6.3 Automation Scripts

Setting up the EKS cluster and deploying worker nodes requires many manual steps.
Since AWS bills the EKS service hourly, the clusters must be regularly destroyed
and recreated. This work followed the infrastructure as a code (IaC) process to save
time and cost.

Terraform, an open-source infrastructure as a code tool was used to create the EKS
clusters and worker node groups automatically. Using tools like Terraform to achieve
[aC offers the benefits of automating infrastructure management. The same resources
can be created multiple times consistently without any errors caused by human
intervention. Moreover, it allows recreating the same infrastructure on different cloud
platforms, thus, improving multi-cloud infrastructure deployment. Using [aC also
reduces the development cost as you can provision on-demand testing environments
and resources.

6.4 Further Advancements For The Proposed Solution

The solution presented in the Section 6.1 still has some room for improvement and
future work. Exposing the HT'TPS endpoints on the control plane of Istio and Consul
to exchange the trust bundle requires initial trust bootstrapping. HTTPS connection
between the control planes would require them to initially prove their identity to each
other with the help of certificates. First, you have to manually configure the trust
bundle of the other mesh to have an initial connection. Once the initial connection
is set up, the trust bundles can be updated using the exposed endpoints. Thus,
this solution does not provide full automation of the trust bundle exchange process.
Moreover, this leads to a bottom turtle problem where we need an additional secret

ol

to protect an existing secret. Hence, a more automated solution is needed to resolve
the bottom turtle problem that would not require the initial trust bootstrapping
to exchange the trust bundles and to have a smooth and secure mTLS connection
between services existing on different services meshes.

6.5 Summary

This chapter discusses the architecture of the proposed solution on AWS. The
process of establishing a secure trust bundle exchange is explained. This chapter also
highlights why Terraform is used to create the initial infrastructure of the proposed
solution. Lastly, we discuss the limitations of the proposed solution and how they
can be solved in the future to have a more efficient federation solution.

52

7 Solution Security Evaluation

This chapter performs the security evaluation of the solution described in the Section 6
that can help resolve the trust issues between heterogeneous service meshes. We
analyze whether the solution proposed in the previous chapter fulfills the security
requirements described in chapter 5. Furthermore, we discuss how the service
mesh architecture can become vulnerable to different attacks when the security
requirements are not met properly.

Despite the service mesh being a new technology, it is still widely adopted as a cloud-
native mechanism for minimizing the operational complexity of the microservice
architecture. In March 2020, the Cloud Native Computing Foundation report
indicated that 42% of respondents are testing the use of service mesh on different
cloud platforms, and 27% are using it for production environments [40]. The service
mesh architecture is based on the zero trust model that follows the principle of
never implicitly trusting any entity on the network. It recommends considering the
network untrustworthy and as an adversary itself. Following this network security
approach helps to achieve higher security than the traditional solutions [32]. This
means that every entity on the network - whether internal or external - should always
be authenticated. Without using a service mesh, it is difficult to achieve zero trust
because it requires separate tools to manage certificates for the services, as well as
for authentication and authorization. However, a service mesh removes this overhead
by providing a component that acts as a CA and assigns identities across the mesh
[49].

The service mesh provides an identity to each service that is part of the mesh. This
identity is in the form of X.509 certificates assigned to the sidecar proxy injected
with each service. The services utilize the certificates to authenticate with each other
and prove their identity before initializing a connection. NIST strongly recommends
establishing a mTLS connection for secure service-to-service communication that
ensures every service proves its identity using the X.509 certificate assigned by the
CA [21]. However, this exchange of certificates during the mTLS connection fails
when two heterogeneous service meshes with different roots of trust are federated.
Lack of common trust and different root CAs cause the certificate verification failure.
The solution proposed in chapter 6 provides a mechanism to mitigate this problem
by exchanging the trust bundles so that the services can verify the identity of the
external services. After the service meshes export the trust bundles of the external
service meshes they aim to integrate with, all the required services can communicate
with each other securely by establishing a mTLS connection described in Fig. 4.

Enforcing mTLS across the meshes provides reliable and secure communication. It
also offers confidentiality as the traffic between the services is always encrypted [21].
This pair of services trying to establish a connection exchange a symmetric shared
key during the mTLS handshake, which is used to encrypt and decrypt the traffic.
This encryption of traffic helps to prevent a man-in-middle attack. Any adversary
eavesdropping between the two services will not be able to understand the encrypted

93

communication between the services. The adversary does not possess secret keys
that can be used to decrypt the traffic. As discussed earlier, when the service
mesh is deployed on a Kubernetes cluster, the control plane of the mesh takes away
the responsibility of distributing certificates to the services and enforcing mTLS
that encrypts all the requests and responses. Thus, preventing the services from
eavesdropping attacks. It also helps to prevent attacks when a malicious service
tries to impersonate a legitimate service. Since the malicious service spawned by an
attacker does not have the correct X.509 certificate; therefore, it will not be able
to authenticate to other legitimate services. Another strong recommendation by
NIST is to have a short lifetime of the X.509 certificates assigned to services. It is
preferable to have them on the order of hours. This also prevents impersonation
attacks as the expired certificates can not be used by a malicious third party to
impersonate a service. Moreover, when the certificates are short-lived, the overhead
of checking the revocation status of the certificate using Certificate Revocation List
(CRL) and Online Certificate Status Protocol (OCSP) can be avoided [19].

An infrastructure based on microservices and service mesh means an increased surface
of attack and more opportunities for malicious parties to exploit; therefore, it is
important to ensure that the workload only communicates using mTLS. It helps
encrypt all the data exchange between the services distributed in the mesh. The use
of mTLS to secure the traffic also helps to maintain the integrity of the data. During
the mTLS handshake between the services, the two services decide the hashing
algorithm that will be used to maintain the consistency and integrity of the data.
Thus, this hash calculation that takes place during the handshake ensures that the
data is not tampered with by an attacker or man-in-the-middle.

The proposed solution will solve the problems of establishing a secure mTLS con-
nection when different service meshes, having different root CA, are federated. This
ensures that services communicate securely even if they belong to another mesh. The
enforcement of mTLS inside and across the mesh makes the services less vulnerable
to different attacks, such as man-in-the-middle and service impersonation attacks.
As a result, it makes service-to-service communication secure and reliable.

The proposed solution also ensures to utilize of the access control policies, Intentions
for Consul, and Authorization policies for Istio, to provide limited exposure to the
internal services of the service mesh. Meaning that only the service that has to be
accessed by a third-party mesh should be exposed instead of providing full access
to all the local services. By using authorization policies in Istio and Intentions in
Consul, the implicit access to a service from any source can be denied, and only
access from a specific source can be allowed. The developer or maintainer of the
mesh should explicitly define these access control policies.

In the thesis, we consider a Backend service deployed in Istio and an Info service
deployed in the Consul service mesh. We can limit the default access to these
services by other services and only allow these two services to access each other in
the following way:

54

Istio Authorization Policy:

This policy allows the info service to access the backend service only. The control
plane of Istio is used to configure and propagate this authorization policy to the
proxy. After the backend proxy has initialized a mTLS connection with the info
proxy, the proxy will check whether it is authorized to communicate with the info
proxy. In Istio, each proxy has an authorization engine that authorizes the requests
at runtime [50]. The following policy will allow the backend proxy to only receive
requests from the info proxy, any other request will be automatically declined.

apiVersion: "security.istio.io/vibetal"
kind: "AuthorizationPolicy"
metadata:

name: "allow-info"
namespace: default
spec:
selector:
matchLabels:
app: backend
rules:
- from:
- source:

principals: ["cluster.local/ns/default/sa/info"]

Consul Intention:

The Intension configured in the Consul mesh will allow the info service to only receive
a GET request from the backend proxy. All requests from any other service will be
declined automatically. The consul control plane propagates these intentions to all

the service proxies. When a request is received by a proxy, it will first verify these
intentions.

apiVersion: consul.hashicorp.com/vlalphal
kind: Servicelntentions

metadata:
name: allow —backend
spec:

destination:
name: info
sources:
- name: backend
permissions:
- action: allow
http:
pathPrefix: /
methods: [’GET’ |

95

The access to the services can be further limited by having multiple trust domains in
the mesh, as discussed in 4.3. Each trust domain will have a different trust bundle,
which contains the public keys to verify the service that belongs to that specific trust
domain. There should be a different trust domain for the exposed services, and only
the trust bundle associated with that trust domain should be exchanged. Currently,
Istio and Consul do not support multiple trust domains [48, 50]. However, other
tools like SPIFFE can be used to achieve a separation of the trust bundles during
the federation process.

7.1 Summary

Overall, the proposed solution meets most of the security requirements needed
for achieving a secure and reliable solution. However, the proposed solution is
accompanied by some drawbacks. It has the limitation of trust bootstrapping and
does not support the multi-trust domain solution to limit the exposure to the services.
However, it satisfies the main requirements, such as Authenticity, Confidentiality,
Integrity and traffic-flow control between services.

o6

8 Discussion

Microservice technology has revolutionized how cloud-native applications are designed
and developed [37]. However, microservice technology is not without some drawbacks
and limitations. Because the use of microservices fueled by DevOps increases the
number of communication links to be protected and also the development complexity
of the networking logic. This has led to the emergence of the service mesh, which
is widely embraced as the de-facto standard for secure microservice communication
and traffic management [42].

Recently, a shift has been witnessed towards using service mesh in production
environments [40]. However, this emerging technology has some limitations that
were discovered while working on the thesis. In this chapter, we will discuss how the
limitations can be transformed into open areas for future research efforts related to
heterogeneous service mesh federation.

8.1 Unified Access Control

While studying the concepts and workflows of the most popular service meshes, i,e.,
Istio and Consul, it was examined that these two service meshes support different
methods to implement fine-grained access controls across the service mesh to limit the
access to the services. Istio has authorization policies, and Consul uses Intentions to
limit access to the services. However, these policies are not compatible when we talk
about the integration of these meshes. The authorization policy configured for Istio
is different from the Consul Intentions. Hence, unifying these access control policies
for cross-mesh access and federation is necessary. Instead of manually configuring the
same policies in distinct ways on the diverse meshes, there is a need for a common
platform or an agent to unify these access control policies across meshes. This
unification will help to achieve a more automated and efficient heterogeneous service
mesh integration process that is turning out to be the need of today.

A policy engine similar to Open Policy Agent (OPA) can be evaluated as one of the
approaches to achieving this unification of access controls regardless of the underlying
technology. OPA is specifically designed for cloud-native environments. It acts as a
unified tool-set and framework for policy across the cloud-native stack [46]. Instead of
using different languages, models, and APIs to enforce access control policies across
a service mesh, OPA can be used as an alternative way to unify fine-grained access
policies across heterogeneous service meshes. This unification can be useful when
service meshes get integrated, and access controls are needed to limit the full access
to the services from different sources. As future work, it can be further researched
whether OPA is compatible with the service meshes under consideration, i.e., Istio
and Consul.

57

8.2 Local routing

When heterogeneous service meshes are deployed on the same cluster, the services
deployed on separate meshes should be able to have direct connectivity with each
other. They should not require an additional round trip to the gateway of the other
service mesh. The workflow should be similar to a single cluster deployment model
where a round trip to the gateway is unnecessary, and all the services have direct
connectivity. This can help reduce the latency and make the service mesh more
optimal for high-performance-driven distributed computing, where low latency can
be quite beneficial. When two homogeneous service meshes deployed on the same
cluster are integrated, they do not require an additional gateway to have cross-mesh
access between services [50]. Therefore, more research can be conducted in the future
to accomplish a similar mechanism that can enable local routing for heterogeneous
service meshes deployed on the same network. This interesting area is still open for
future research and advancements.

8.3 Debugging support

Debugging across service meshes becomes quite complicated when organizational
boundaries exist between different service meshes. The boundary can also occur due
to the freedom offered by DevOps, which may leads to DevOps team boundaries.
In these cases, if any networking problem occurs, the developers or maintainers of
the local mesh can not access the logs of the foreign mesh to debug and resolve
the communication errors. They can only access the logs of the local mesh, and
that information is inadequate to find the root cause of a problem. Therefore, a
mechanism is needed to access the logs of the external meshes for easier debugging
purposes. The service meshes support various telemetry and observability tools,
such as Prometheus, Graffana, and inbuilt dashboards, to troubleshoot the errors.
However, they are only confined to a single service mesh or homogeneous meshes
owned by the same organization. We can not observe the logs of the heterogeneous
meshes integrated on the dashboards supported by service meshes.

To have an efficient and smooth integration process between meshes, there is a great
need for a solution that can act as a common tool or dashboard for accessing the logs
of all the federated service meshes. Further research and development are needed to
achieve easier access to the logs of any external service mesh. This can be achieved
in several ways. For example, the external service mesh can expose a secure endpoint
to access the logs, and some documentation can be provided to the developers of the
local mesh, which can help them during the endpoint configuration. This endpoint
configuration will allow the developers to have real-time access to the logs of the
external mesh. However, it can lead to serious security concerns like leakage of
confidential information from the logs. In that case, it will be important to ensure
that only a specific category of logs are accessed by the other party that does not
contain any sensitive information.

o8

8.4 Summary

The service mesh is the most emerging and extensively adopted technology in today’s
technologically advancing world. However, it is still getting mature over time. The
majority of the service meshes are open-source. This is one main reason the technology
keeps evolving daily with cutting-edge features needed to implement diverse use cases,
such as heterogeneous service mesh federation. Like any other emerging technology,
this technology also has more room for improvement and research that can make it
more optimal for implementing wide-ranging use-cases for diverse industries, such as
telecommunication, finance, healthcare and education.

99

9 Conclusion

Even though the service mesh technology is young, it has been adopted by advanced
organizations to help solve the problems of microservice architecture. According to
the survey Voice of the Enterprise; DevOps, Workloads and Key projects 2022, it was
observed that 16% of the companies have already shifted to service mesh technology
across their entire I'T infrastructure. 20% of the respondents have adopted it in their
team internally, and 38% reported that they are planning to modernize their IT
infrastructure by adopting the service mesh technology in the future [52]. The factors
that drive this widespread adoption include secure microservices communication
without making any changes in the application code and the level of observability
offered by the meshes that result in improved performance. Together with the
adoption of the service mesh, the technology itself is expanding quickly. As various
organizations become familiar with this emerging technology, the requirements and
feature requests to handle diverse use cases also escalate. An example of one intriguing
yet complex use case is a heterogeneous service mesh federation.

As discussed in the thesis, integrating service meshes is not a simple task. Many
challenges are faced when two organizations plan on integrating meshes to achieve
interoperability between services. We proposed a solution to resolve one of the major
hurdles faced while federating heterogeneous service meshes, i.e., lack of common trust
between meshes. The solution was analyzed against different security parameters
and was acknowledged to be secure. However, it is discussed in the thesis that the
proposed solution is not 100% efficient in terms of scalability and automation because
it still has the limitation of initial trust bootstrapping. Moreover, the thesis evaluates
the drawbacks of the existing solutions that can be used alternatively to resolve the
integration obstacles. We discussed that the drawbacks of the existing solutions are
more computationally and operationally expensive than the proposed solution. Thus,
performing an initial bootstrapping of trust is still a better choice than dealing with
the expensive hitches of the existing solutions, such as cross signing, SPIFFE, and
API gateways.

The thesis aimed to study the popular service meshes and propose a solution to make
the overall federation process of heterogeneous service meshes more convenient and
automated. The goal of the thesis has been reached as a secure solution is proposed
that can facilitate the direct exchange of trust bundles between meshes. The solution
was evaluated in terms of security. It was evaluated that it satisfies the security
requirements for a secure and robust solution. As stressed several times, the service
mesh technology offers many features and functionalities. However, after working
on this thesis, it can be concluded that there is still more scope for improvement
in debugging support and achieving a more automated federation process between
heterogeneous service meshes.

60

References

1]
2]

[10]

[11]

[12]

R. Perlman. “An overview of PKI trust models”. In: IEEE Network 13.6
(1999). DOI: 10.1109/65.806987.

Muhammad Ali Babar and Muhammad Aufeef Chauhan. “A Tale of Migra-
tion to Cloud Computing for Sharing Experiences and Observations”. In:
SECLOUD ’11. Waikiki, Honolulu, HI, USA: Association for Computing
Machinery, 2011. DOI: 10.1145/1985500.1985509.

Laura White et al. “Understanding Interoperable Systems: Challenges for
the Maintenance of SOA Applications”. In: 2012 45th Hawaii International
Conference on System Sciences. 2012. DOI: 10.1109/HICSS.2012.614.
Diego Ongaro and John Ousterhout. “In search of an understandable consensus
algorithm”. In: 2014 USENIX Annual Technical Conference (Useniz ATC 14).
2014.

Alexandr Krylovskiy, Marco Jahn, and Edoardo Patti. “Designing a Smart
City Internet of Things Platform with Microservice Architecture”. In: IEEE,
Aug. 2015. por: 10.1109/FiCloud.2015.55.

Rashmi Rai, Gadadhar Sahoo, and Shabana Mehfuz. “Exploring the factors
influencing the cloud computing adoption: a systematic study on cloud migra-
tion”. In: SpringerPlus 4 (1 Dec. 2015). DOI: 10.1186/s40064-015-0962-2.
Fabrizio Montesi and Janine Weber. Circuit Breakers, Discovery, and API
Gateways in Microservices. 2016. DOI: 10.48550/ARXIV.1609.05830.

Chris Williams. How a chunk of the web disappeared this week: GlobalSign’s
global HTTPS snafu explained. Oct. 2016. URL: https://www.theregister.
com/2016/10/15/globalsign_incident_report/.

Dennis Gannon, Roger Barga, and Neel Sundaresan. “Cloud-Native Appli-
cations”. In: IEEE Cloud Computing 4 (5 Sept. 2017), pp. 16-21. DOIL:
10.1109/MCC.2017.4250939.

Uchechukwu Awada. “Hybrid Cloud Federation: A Case of Better Cloud
Resource Efficiency”. In: IEEE International Conference on Cloud Computing
At: San Francisco, USA. July 2018.

Tetiana Yarygina and Anya Helene Bagge. “Overcoming Security Challenges in
Microservice Architectures”. In: IEEE Symposium on Service-Oriented System
Engineering (SOSE). 2018. por: 10.1109/S0SE.2018.00011.

Ivana Podnar Zarko et al. “Collaboration mechanisms for IoT platform federa-
tions fostering organizational interoperability”. In: Global Internet of Things
Summit (GIoTS). IEEE. 2018.

J T Zhao, SY Jing, and L. Z Jiang. “Management of API Gateway Based on
Micro-service Architecture”. In: Journal of Physics: Conference Series 1087
(Sept. 2018). ISSN: 1742-6588. DOI: 10.1088/1742-6596/1087/3/032032.
Chien-An Chen. “With Great Abstraction Comes Great Responsibility: Sealing
the Microservices Attack Surface”. In: IEEE Cybersecurity Development
(SecDev). 2019. DOIL: 10.1109/SecDev.2019.00027.

https://doi.org/10.1109/65.806987
https://doi.org/10.1145/1985500.1985509
https://doi.org/10.1109/HICSS.2012.614
https://doi.org/10.1109/FiCloud.2015.55
https://doi.org/10.1186/s40064-015-0962-2
https://doi.org/10.48550/ARXIV.1609.05830
https://www.theregister.com/2016/10/15/globalsign_incident_report/
https://www.theregister.com/2016/10/15/globalsign_incident_report/
https://doi.org/10.1109/MCC.2017.4250939
https://doi.org/10.1109/SOSE.2018.00011
https://doi.org/10.1088/1742-6596/1087/3/032032
https://doi.org/10.1109/SecDev.2019.00027

[18]

[19]
[20]

[21]

[24]

[25]

[27]

[28]

61

Wubin Li et al. “Service Mesh: Challenges, State of the Art, and Future
Research Opportunities”. In: IEEE International Conference on Service-
Oriented System Engineering (SOSE). 2019. por: 10.1109/S0SE.2019.00026.
Xing Li, Yan Chen, and Zhigiang Lin. “Towards automated inter-service
authorization for microservice applications”. In: Proceedings of the ACM
SIGCOMM 2019 Conference Posters and Demos. 2019.

Nikita Yu Samokhin, Anatoly A Oreshkin, and Anton S Suprun. “Implementa-
tion of agent interaction protocol within cloud infrastructure in geographically
distributed data centers”. In: Journal Scientific and Technical Of Information
Technologies, Mechanics and Optics 124.6 (2019).

Rongxu Xu, Wenquan Jin, and Dohyeun Kim. “Microservice Security Agent
Based On API Gateway in Edge Computing”. In: Sensors 19.22 (2019). ISSN:
1424-8220. DOI: 10.3390/519224905. URL: https://www.mdpi.com/1424-
8220/19/22/4905.

Calcote Lee Butcher ZACK. ISTIO: Up and running. O’REILLY Media, INC,
USA, 2019.

Amir Boroufar. “Software Delivery in Multi-Cloud Architecture”. Master’s
Thesis. Politecnico di Torino, 2020.

Ramaswamy Chandramouli, Zack Butcher, et al. “Building secure microservices-
based applications using service-mesh architecture”. In: NIST Special Publica-
tion 800 (2020).

Consul. The Life of a Packet Through Consul Service Mesh. May 2020. URL:
https://www.hashicorp.com/blog/the-1life-of -a-packet-through-
consul-service-mesh.

Jie Cui et al. “Extensible Conditional Privacy Protection Authentication
Scheme for Secure Vehicular Networks in a Multi-Cloud Environment”. In:
IEEE Transactions on Information Forensics and Security 15 (2020). DOI:
10.1109/TIFS.2019.2946933.

D Feldman et al. “Solving the Bottom Turtle: a SPIFFE way to establish trust
in your infrastructure via universal identity”. In: Sprint Lab, Nova Zelandia
(2020).

Jing Gao et al. “Provisioning big data applications as services on containerised
cloud: a microservices-based approach”. In: International Journal of Services
Technology and Management 26.2-3 (2020). DOI: 10.1504/IJSTM. 2020 .
106744.

Xiliu He and Fang Deng. “Research on Architecture of Internet of Things
Platform Based on Service Mesh”. 1In: 12th International Conference on
Measuring Technology and Mechatronics Automation (ICMTMA). 2020. DOT:
10.1109/ICMTMA50254.2020.00164.

Jens Hiller, Johanna Amann, and Oliver Hohlfeld. The Boon and Bane of Cross-
Signing: Shedding Light on a Common Practice in Public Key Infrastructures.
2020. por: 10.48550/ARXIV.2009.08772.

Anjali Khatri and Vikram Khatri. Mastering Service Mesh: Enhance, secure,
and observe cloud-native applications with Istio, Linkerd, and Consul. Packt
Publishing Ltd, 2020.

https://doi.org/10.1109/SOSE.2019.00026
https://doi.org/10.3390/s19224905
https://www.mdpi.com/1424-8220/19/22/4905
https://www.mdpi.com/1424-8220/19/22/4905
https://www.hashicorp.com/blog/the-life-of-a-packet-through-consul-service-mesh
https://www.hashicorp.com/blog/the-life-of-a-packet-through-consul-service-mesh
https://doi.org/10.1109/TIFS.2019.2946933
https://doi.org/10.1504/IJSTM.2020.106744
https://doi.org/10.1504/IJSTM.2020.106744
https://doi.org/10.1109/ICMTMA50254.2020.00164
https://doi.org/10.48550/ARXIV.2009.08772

[31]

[32]

[33]

62

Orazio Tomarchio, Domenico Calcaterra, and Giuseppe Di Modica. “Cloud
resource orchestration in the multi-cloud landscape: a systematic review of
existing frameworks”. In: Journal of Cloud Computing 9 (1 Dec. 2020). 1SSN:
2192-113X. por: 10.1186/s13677-020-00194-7.

Xi Ning Wang. Architecture Analysis of Istio: The Most Popular Service
Mesh Project. Dec. 16, 2020. URL: https://www.alibabacloud.com/blog/
architecture-analysis-of-istio-the-most-popular-service-mesh-
project_597010.

Oksana Baranova. “Multi-Tenant Isolation in a Service Mesh”. Master’s Thesis.
Aalto University, 2021.

Christoph Buck et al. “Never trust, always verify: A multivocal literature
review on current knowledge and research gaps of zero-trust”. In: Computers &
Security 110 (2021). DOI: https://doi.org/10.1016/j.cose.2021.102436.
Byungkwon Choi et al. “PHPA: A Proactive Autoscaling Framework for
Microservice Chain”. In: 5th Asia-Pacific Workshop on Networking (APNet
2021). Shenzhen, China, China: Association for Computing Machinery, 2021.
DOI: 10.1145/3469393.3469401.

SR Dileepkumar and Juby Mathew. “Optimize Continuous Integration and
Continuous Deployment in Azure DevOps for a controlled Microsoft. NET
environment using different techniques and practices”. In: IOP Conference
Series: Materials Science and Engineering. Vol. 1085. IOP Publishing. 2021.
Farina Giandonato. “Enabling Service Mesh in a Multi-Cloud Environment”.
Master’s Thesis. Politecnico di Torino, 2021.

Mayank Gokarna and Raju Singh. “DevOps: A Historical Review and Future
Works”. In: 2021 International Conference on Computing, Communication,
and Intelligent Systems (ICCCIS). 2021. DOI: 10.1109/ICCCIS51004.2021.
9397235.

Isil Karabey Aksakalli et al. “Deployment and communication patterns in
microservice architectures: A systematic literature review”. In: Journal of
Systems and Software 180 (2021). DOI: https://doi.org/10.1016/j.jss.
2021.111014.

Arne Koschel et al. “A Look at Service Meshes”. In: 2021 12th International
Conference on Information, Intelligence, Systems and Applications (IISA).
2021. por: 10.1109/I1ISA52424.2021.9555536.

N. C. Mendonca et al. “The Monolith Strikes Back: Why Istio Migrated From
Microservices to a Monolithic Architecture”. In: IEEE Software 38.05 (Sept.
2021). 1sSN: 1937-4194. por: 10.1109/MS.2021.3080335.

Sagar Nangare. Why the Service Mesh Will Be Essential for 5G Telecom
Networks. Mar. 2021. URL: https://thenewstack.io/why-the-service-
mesh-will-be-essential-for-5g-telecom-networks/.

Wojciechowski; ukasz et al. “NetMARKS: Network Metrics-AwaRe Kubernetes
Scheduler Powered by Service Mesh”. In: IEEE INFOCOM 2021 - IEEE Con-
ference on Computer Communications. 2021. DOI: 10.1109/INFOCOM42981.
2021.9488670.

https://doi.org/10.1186/s13677-020-00194-7
https://www.alibabacloud.com/blog/architecture-analysis-of-istio-the-most-popular-service-mesh-project_597010
https://www.alibabacloud.com/blog/architecture-analysis-of-istio-the-most-popular-service-mesh-project_597010
https://www.alibabacloud.com/blog/architecture-analysis-of-istio-the-most-popular-service-mesh-project_597010
https://doi.org/https://doi.org/10.1016/j.cose.2021.102436
https://doi.org/10.1145/3469393.3469401
https://doi.org/10.1109/ICCCIS51004.2021.9397235
https://doi.org/10.1109/ICCCIS51004.2021.9397235
https://doi.org/https://doi.org/10.1016/j.jss.2021.111014
https://doi.org/https://doi.org/10.1016/j.jss.2021.111014
https://doi.org/10.1109/IISA52424.2021.9555536
https://doi.org/10.1109/MS.2021.3080335
https://thenewstack.io/why-the-service-mesh-will-be-essential-for-5g-telecom-networks/
https://thenewstack.io/why-the-service-mesh-will-be-essential-for-5g-telecom-networks/
https://doi.org/10.1109/INFOCOM42981.2021.9488670
https://doi.org/10.1109/INFOCOM42981.2021.9488670

63

Aleksandra Obeso Duque et al. A Qualitative Fvaluation of Service Mesh-based
Traffic Management for Mobile Edge Cloud. 2022. DOI: 10.48550/ARXIV.
2205.06057.

Prateek Mishra et al. “Novel lightweight interactive IoT end device architec-
ture with tight security intelligence confidentiality, integrity, authenticity and
availability”. In: International Journal of System Assurance Engineering and
Management 13 (S1 Mar. 2022). pOI: 10.1007/s13198-021-01369-4.
Guilherme Vale et al. “Designing Microservice Systems Using Patterns: An
Empirical Study on Quality Trade-Offs”. In: 2022 IEEE 19th International
Conference on Software Architecture (ICSA). 2022. DOI: 10.1109/ICSA53651.
2022.00015.

Monica Vitali. Towards Greener Applications: Enabling Sustainable Cloud
Native Applications Design. 2022. DOI: 10.48550/ARXIV.2201.11631.

Open Policy Agent. Policy-based control for cloud native environments. URL:
openpolicyagent.org.

Vanson Bourne. Annual APIs and Integration Report 2021. URL: https:
//www.vansonbourne . com/work/14072001tc.

Consul. Consul Documentation. URL: https://www.consul.io/docs.
Google. Service meshes in a microservices architecture. URL: https://
cloud. google.com/architecture/service-meshes-in-microservices-
architecture.

Istio. Istio Documentation. URL: https://istio.io/latest/docs/.
Kubernetes. Kubernetes Documentation. URL: https://kubernetes.io/
docs/concepts/.

Aspen Mesh. What Are Companies Using Service Mesh For? URL: https:
//aspenmesh.io/what-are-companies-using-service-mesh-for/.
OpenWeather. Weather API. URL: https://openweathermap.org/api/.
Oryx. Oryz API Gateway. URL: http://www.oryx - gateway . net /
OryxAPIGateway.html.

solo.io. GlooMesh Enterprise. URL: https://docs.solo.io/gloo-mesh-
enterprise/latest/.

SPIFFE. Secure Production Identity Framework for Everyone. URL: https:
//spiffe.io/.

https://doi.org/10.48550/ARXIV.2205.06057
https://doi.org/10.48550/ARXIV.2205.06057
https://doi.org/10.1007/s13198-021-01369-4
https://doi.org/10.1109/ICSA53651.2022.00015
https://doi.org/10.1109/ICSA53651.2022.00015
https://doi.org/10.48550/ARXIV.2201.11631
openpolicyagent.org
https://www.vansonbourne.com/work/14072001tc
https://www.vansonbourne.com/work/14072001tc
https://www.consul.io/docs
https://cloud.google.com/architecture/service-meshes-in-microservices-architecture
https://cloud.google.com/architecture/service-meshes-in-microservices-architecture
https://cloud.google.com/architecture/service-meshes-in-microservices-architecture
https://istio.io/latest/docs/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://aspenmesh.io/what-are-companies-using-service-mesh-for/
https://aspenmesh.io/what-are-companies-using-service-mesh-for/
https://openweathermap.org/api/
http://www.oryx-gateway.net/OryxAPIGateway.html
http://www.oryx-gateway.net/OryxAPIGateway.html
https://docs.solo.io/gloo-mesh-enterprise/latest/
https://docs.solo.io/gloo-mesh-enterprise/latest/
https://spiffe.io/
https://spiffe.io/

64

A Solution Infrastructure as Code

A.1 Baseline Infrastructure

The Istio EKS cluster on AWS can be created using Terraform. The following code
is part of the eks-cluster-istio.tf file, which will create a separate cluster to deploy
Istio service mesh.

Before applying this Terraform configuration, a VPC must be created with three
subnets in three different availability zones. The ID of the newly created VPC and
subnets has to be updated in the elk-cluster.tf file.

module "eks" {

source = "terraform—aws—modules/eks /aws"
version = "17.24.0"
cluster name = "terraform—istio"
cluster version = "1.20"
vpce_id = "vpel'
subnets = ["subnetl', "subnet2"', "subnet3"]
node_groups = {
terraform ng = {
min_ capacity =2
max_capacity =3
desired capacity = 2
instance_types = ["t3.medium"]

}
}
manage aws_auth = false

}

data "aws_eks_cluster" "cluster" {
name = module. eks.cluster id

}

data "aws_eks_ cluster _auth" "cluster' {
name = module. eks.cluster id

}

To deploy the Consul EKS cluster on AWS, first create a new VPC with three
different subnets in three different availability zones. Following code is part of eks-
cluster-consul.tf file, which will create a separate cluster to deploy the Consul service
mesh.

65

module "eks2"' {

source = "terraform—aws—modules/eks /aws"
version = "17.24.0"
cluster name = "terraform—consul'
cluster version = "1.20"
vpe id = "vpe2'
subnets = ["subnetl', "subnet2"', "subnet3"]
node_groups = {
terraform_ng = {
min_ capacity = 2
max_ capacity =3
desired_capacity = 2
instance_types = ["t3.medium"]

}
}
manage aws_auth = false

}

data "aws_eks_ cluster" "clusterl"' {
name = module.eks.cluster id

}

data "aws_eks_cluster_auth" "clusterl"' {
name — module. eks.cluster id

A.2 Install Istio

Once the Istio EKS cluster is successfully created, run the following command to
update the kube-config and interact with the cluster.

aws eks --region region update-kubeconfig --name istio-cluster-name

The next step is to install Istio on the cluster. The following script named istio-
install.sh can be run to achieve this.

66

#Install Istio

cd /

curl -L https://istio.io/downloadIstio | sh -

cd /istio-1.14.1

export PATH=$PWD/bin : $PATH

istioctl install -y

FEnable side-car proxy in the default namespace
kubectl label namespace default istio-injection=enabled

Run the script using the following commands

Make the script executable
chmod +x istio-install.sh

Run the script

./ istio .sh

A.3 Install Consul

To install Consul on the Consul EKS cluster. Use the following consul-install.sh
script. The script has the following commands

helm repo add hashicorp https://helm.releases.hashicorp.com
cd /

use helm to install consul

helm install -f helm-consul-values.yaml consul hashicorp/consul \
--version "0.40.0"

Following is the content of the helm-consul-values.yaml file that will deploy the
Consul client and servers in the cluster. It will also deploy an Ingress Gateway.

global:

name:

consul

datacenter: dcl
server:
replicas:

ui:

enabled:

service:

type:

1

true

’NodePort’

connectlnject:

enabled:

controller:

enabled:

true

true

ingressGateways:

enabled:

gateways:

name:

true

ingress —gateway

service:
type: LoadBalancer
ports:

port: 80
port: 443
port: 8080

67

	Abstract
	Acknowledgements
	Contents
	List of Figures
	Abbreviations and Acronyms
	1 Introduction
	1.1 Problem Statement
	1.2 Main Goals
	1.3 Methodology
	1.4 Delimitations
	1.5 Sustainability and Ethics
	1.6 Thesis Outline

	2 Background
	2.1 Microservice Architecture
	2.2 Kubernetes
	2.3 Secure Communication Using: PKI and mTLS
	2.4 Service Mesh
	2.4.1 Service Mesh Fundamental Features
	2.4.2 Service Mesh Implementations
	2.4.3 Service Identity

	2.5 Istio
	2.5.1 Core Components
	2.5.2 Istio Workflow
	2.5.3 Traffic Management
	2.5.4 Security Management

	2.6 Consul
	2.6.1 Main Entities
	2.6.2 Main Protocols
	2.6.3 Consul Service Discovery
	2.6.4 Configuration Management
	2.6.5 Certificate Management
	2.6.6 Consul Workflow

	2.7 Related Work
	2.8 Summary

	3 Service Mesh Federation
	3.1 Homogeneous Service Mesh integration
	3.1.1 Owned by the same organization
	3.1.2 Owned by different organizations

	3.2 Heterogeneous Service Mesh Integration
	3.2.1 Owned by the same organization
	3.2.2 Owned by different organizations

	3.3 Problem Areas of Service Mesh Federation
	3.4 Summary

	4 Analyzing Existing Solutions
	4.1 Cross Signing
	4.2 API Gateway
	4.3 SPIFFE
	4.4 Summary

	5 Proposed Solution Security Requirements
	5.1 Authentication
	5.2 Confidentiality
	5.3 Limited exposure
	5.4 Integrity
	5.5 Summary

	6 Proposed Solution
	6.1 Solution Infrastructure on AWS
	6.2 Exchanging Trust Bundles
	6.3 Automation Scripts
	6.4 Further Advancements For The Proposed Solution
	6.5 Summary

	7 Solution Security Evaluation
	7.1 Summary

	8 Discussion
	8.1 Unified Access Control
	8.2 Local routing
	8.3 Debugging support
	8.4 Summary

	9 Conclusion
	A Solution Infrastructure as Code
	A.1 Baseline Infrastructure
	A.2 Install Istio
	A.3 Install Consul

