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1. Introduction

1.1 Background and research environment

Model assessment is an integral part of statistical modelling and analysis
workflow (Gelman et al., 2020). Workflow is a concept that encompasses
not only statistical methods, but many aspects needed in the practical use
of statistics, such as decision making, programming, and subject matter
knowledge. Understanding good workflow practices is essential to be
able to efficiently use statistical methods for solving real-world problems.
Recognition of the importance of good workflow has increased in recent
years in the statistical literature and other fields that rely on statistical
methods (Turner & Lambert, 2015; Lee et al., 2019; Gabry et al., 2019;
Gelman et al., 2020; Schad et al., 2021).

Importance sampling is a commonly used tool in Bayesian statistics. In
model assessment, it is extensively used for computing out-of-sample pre-
dictive performance estimates of models with leave-one-out cross-validation
(Gelfand et al., 1992; Vehtari et al., 2016; Vehtari et al., 2017; Bürkner
et al., 2020, 2021). A notable recent advancement has been the ability
to easily yet dependably diagnose the reliability of importance sampling
leave-one-out cross-validation after its computation (Vehtari et al., 2017;
Vehtari et al., 2020; Vehtari et al., 2021). If the diagnostics indicate inade-
quate accuracy, reliable and computationally efficient alternative methods
to compute cross-validation have been lacking. For example, as alternative
to importance sampling leave-one-out cross-validation, Vehtari et al. (2017)
recommend sampling directly from the leave-one-out posterior distribu-
tions for unreliable cases, or resorting to K-fold cross-validation. However,
both of these alternatives can be inaccurate similarly to importance sam-
pling, and do not have diagnostics as readily available. Publication I
addresses this research gap by studying adaptive importance sampling
methods that can be used to improve results for those leave-one-out folds
that are diagnosed as unreliable.
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In Bayesian model checking, assessing the effect of the prior and like-
lihood on the posterior distribution of a model is a topic that has been
studied for many decades (Canavos, 1975; Skene et al., 1986; Hill & Spall,
1994; Lopes & Tobias, 2011; Depaoli et al., 2020). However, recently, this
model checking step has not been routinely seen in empirical studies that
use Bayesian methods (van de Schoot et al., 2017). One of the possible rea-
sons for its infrequent use is the lack of tools that can be used with modern
modelling workflows. Many existing methods are specific to certain model
types (Hunanyan et al., 2021; Roos et al., 2021), or require a substantial
amount of manual tuning (Jacobi et al., 2018; McCartan, 2021). This
thesis addresses the need for general purpose tools for prior and likelihood
sensitivity analysis. The methods developed in Publication II are readily
usable with modern probabilistic programming and Bayesian modelling
tools such as the packages posterior (Bürkner et al., 2022), rstan (Stan
Development Team, 2021), and brms (Bürkner, 2017) for the R language (R
Core Team, 2021).

The latter part of this thesis studies model assessment in supervised
learning, where the statistical relationship between predictors x= (x1, ..., xD)
and a target variable y is inferred given a set of observation pairs D =
{x(i), y(i)}N

i=1. In many cases, some of the predictor variables are unimpor-
tant for predicting the target variable, which means that ignoring some of
the unimportant predictors may be beneficial. Even if none of the predic-
tors are completely trivial, knowing their relative importance can improve
understanding of the used model and data. Thus, variable importance
assessment is an important part of the Bayesian statistical workflow for
supervised learning models.

Variable importance can be assessed by analyzing the derivatives of a
model’s predictions (Ruck et al., 1990; Refenes & Zapranis, 1999; Leray
& Gallinari, 1999; Simonyan et al., 2014; Sundararajan et al., 2017; Cui
et al., 2020). This approach is attractive because of its flexibility, as it can
be used with a variety of different supervised learning models, as opposed
to methods that rely on certain properties of the model for evaluating
variable importance. While variable selection has been studied extensively
in the Bayesian context (see e.g. O’Hara & Sillanpää, 2009; Piironen &
Vehtari, 2017), research into using derivatives of probabilistic predictions
for variable importance has been lacking, and existing methods ordinarily
rely on the derivatives of singular prediction values. Publications III and
IV of this thesis focus on this research gap, and study methods for incor-
porating predictive uncertainty in the evaluation of variable importance
with derivatives.
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1.2 Objectives and scope

The statistical analysis workflow typically includes multiple steps, includ-
ing model fitting, model checking, and model re-evaluation. Each step
may depend on multiple algorithms or computational tools that perform
computations to help the modeller. These tools exist on various levels
of specificity and abstraction. The most basic tools, such as importance
sampling, are simply mathematical operations that perform a specific
computation. More advanced algorithms combine multiple low-level op-
erations in order to perform the same task better. For example, adaptive
importance sampling tools combine multiple importance sampling steps
with other operations with the goal of computing an importance sampling
task with better accuracy. Algorithms with different levels of complexity
can be combined into modelling tools that hide some of the complexity by
providing intuitive user interfaces and guidance for the user.

To make the complete statistical analysis workflow effective and enjoy-
able, the used tools need to be reliable, computationally efficient, and
intuitive to use. With these objectives in mind, the high-level goal of this
thesis is to study computational tools for different steps of the Bayesian
modelling workflow. This thesis addresses three research questions, which
are presented in this section. The section also describes how the research
questions are connected to the publications that constitute this thesis.
Next, the research questions are presented together with a summary of
the extent to which this thesis addresses each research question. The
contributions of the thesis are described in more detail in the subsequent
chapters.

Research Question 1: The posterior distribution of a Bayesian model is
often a good proposal distribution for importance sampling leave-one-out
cross-validation. For observations for which this is not the case, can accu-
rate results be achieved without model refits by utilizing adaptive impor-
tance sampling?

Research question 1 is addressed by Publication I, which studies adaptive
importance sampling for leave-one-out cross-validation. The publication
studies ways to make adaptive importance sampling easy and effective for
Bayesian modelling where model posteriors are often approximated with
Markov chain Monte Carlo methods. Publication I presents an importance
weighted moment matching algorithm that uses an existing Monte Carlo
sample as the starting point as opposed to the common approach of explic-
itly adapting parametric proposal distributions. The paper also compares
these two approaches in multiple scenarios with different models. Pub-
lication I studies the properties of self-normalized importance sampling,
and introduces a novel double adaptation procedure and a multiple impor-
tance sampling proposal distribution specifically suited for self-normalized
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importance sampling. Self-normalized importance sampling is used of-
ten in Bayesian modelling, because it can be used without knowing the
normalization constants of the distributions used.

Research Question 2: Probabilistic programming tools offer an easy in-
terface for Bayesian inference by generating Monte Carlo samples based
on user-specified models. Can prior and likelihood sensitivity analysis be
easily and reliably carried out without model refits, based on a probabilistic
programming model and its result?

Research question 2 is addressed by Publication II, which studies easily
usable methods for prior and likelihood sensitivity analysis. In a similar
fashion as in Publication I, Publication II uses importance sampling, and a
Monte Carlo sample from the model posterior as the starting point for the
analysis. The paper proposes a power-scaling sensitivity analysis method
that requires only the ability to evaluate the densities of the model prior
and likelihood, which are readily available with many probabilistic pro-
gramming tools. The paper examines several alternative sensitivity mea-
sures for power-scaling, and compares their accuracy and interpretability.
Publication II also considers adaptive importance sampling for improving
the reliability of the sensitivity analysis results.

Research Question 3: Derivatives of the predictions of a supervised learning
model can be used as measures for the relative importance of predictor
variables. Can variable importance be identified more accurately by taking
into account the uncertainty of the predictions? Is such a measure useful for
identifying important predictor variables from Gaussian process models?

Research question 3 is addressed by Publications III and IV. Publica-
tion III introduces a novel framework for uncertainty-aware sensitivity
analysis called R-sens. The framework generalizes derivative-based vari-
able importance analysis to Bayesian models by differentiating the Rényi
divergence of predictive distributions. Publication III demonstrates that
this framework is extensible to discovering second-order interaction ef-
fects of variables. The uncertainty-aware sensitivity method is derived
analytically for Gaussian process models with various observation models
as well as some generalized linear models. Publication III compares the
uncertainty-aware sensitivity to naive sensitivity methods in their ability
to identify important variables and interactions in both simulated and
real scenarios. Publication IV presents a simpler numerical approximation
of the uncertainty-aware sensitivity method, which does not require dif-
ferentiating predictive equations by hand. Publications III and IV both
study the usefulness of uncertainty-aware sensitivity for ranking variables
in Gaussian process models. Publication IV compares uncertainty-aware
sensitivity to ranking based on the parameters of the Gaussian process
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model, whereas Publication III compares it to several existing variable
importance methods.

1.3 Thesis structure

This introductory part of the thesis is organized into the following chapters.
Chapter 2 discusses the use of importance sampling for Bayesian model
assessment, providing the theoretical background for research questions 1
& 2, and presenting the contributions of Publications I and II. In Chapter 3,
the discussion shifts to variable importance assessment for supervised
learning models. The chapter also discusses Gaussian process models,
and summarizes the methodological and experimental contributions of
Publications III and IV, both of which address research question 3. Finally,
Chapter 4 concludes the introductory part of the thesis by discussing the
significance of the results as well as limitations and directions for future
research.
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2. Importance sampling for model
assessment

Importance sampling (IS) is a useful computational tool for many tasks
in Bayesian modelling. This chapter discusses methods that utilize impor-
tance sampling for Bayesian model assessment. First, sections 2.1 and 2.2
discuss importance sampling and adaptive importance sampling to give
the necessary background for Publications I and II. Section 2.3 introduces
Bayesian leave-one-out cross-validation, and Section 2.4 discusses the
results and contributions of Publication I towards research question 1.
Finally, Section 2.5 discusses the use of importance sampling for prior and
likelihood sensitivity analysis, which is the topic of Publication II. Sec-
tion 2.6 then analyses research question 2, and presents the contributions
of Publication II.

2.1 Importance sampling

After model inference, many quantities computed from a posterior dis-
tribution are expectations. The expectation of a function h(θ) over the
probability density function p(θ) is

μ= Ep[h(θ)]=
∫

h(θ)p(θ)dθ. (2.1)

Here we assume that h(θ) is integrable with respect to p(θ). Using a sample
of independent draws {θ(1),θ(2), ...,θ(S)} from p(θ), the simple Monte Carlo
estimator of μ is

μ̂MC = ̂Ep[h(θ)]= 1
S

S∑
s=1

h(θ(s)) , when θ(s) ∼ p(θ).

After approximating the posterior distribution p(θ) by generating a sam-
ple of Monte Carlo draws, many model assessment steps require compu-
tation of expectations over multiple distributions {g1(θ), g2(θ), ...} that are
somehow similar to the posterior p(θ). For example, in leave-one-out cross-
validation, one repeatedly computes expectations over posteriors with a
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single observation left out (Gelfand et al., 1992; Peruggia, 1997; Epifani
et al., 2008; Vehtari et al., 2017). A similar situation is encountered in
both classical (Efron, 1979) and Bayesian Bootstrap (Rubin, 1981), and as
we shall see in Section 2.5, also prior sensitivity analysis.

The computation of multiple expectations can be made faster with im-
portance sampling by using the same sample of draws for multiple ex-
pectations (Owen, 2013; Elvira & Martino, 2021). There exist variations
of importance sampling estimators. This thesis focuses mostly on self-
normalized importance sampling, but Publication I briefly discusses the
properties of different estimators. Self-normalized importance sampling is
useful in most practical situations, because it can be used without know-
ing the normalization constants of the distributions used. Situations like
this are commonplace in Bayesian modelling, for example when using
probabilistic programming tools or Markov chain Monte Carlo sampling
algorithms.

The self-normalized importance sampling (SNIS) estimator of the expec-
tation of a function h(θ) over the distribution gk(θ) is

μ̂SNIS = ̂Egk [h(θ)]=
∑S

s=1
gk(θ(s))
p(θ(s)) h(θ(s))∑S

s=1
gk(θ(s))
p(θ(s))

=
∑S

s=1 w(s)h(θ(s))∑S
s=1 w(s)

, when θ(s) ∼ p(θ). (2.2)

Here, gk(θ) is often called the target distribution, and p(θ) is the proposal
distribution. w(s) are importance weights, which represent the density ratio
of the target gk(θ) and the proposal p(θ). Importance sampling is widely
used also outside Bayesian modelling, with applications ranging from rare
event estimation (Rubino & Tuffin, 2009) to optimal control (Kappen &
Ruiz, 2016).

The performance of importance sampling depends critically on the choice
of the proposal distribution. In self-normalized importance sampling, there
are two criteria that define performance. First, the proposal must be a
good match to the target distribution. Second, the proposal must match the
function whose expectation is being computed. While the former criterion
only concerns importance sampling, the latter is important for any Monte
Carlo estimator. This issue is sometimes overlooked, even though it can be
a significant source of error, as discussed in Publication I.

Many strategies have been proposed to reduce the variance of importance
sampling by performing transformations, such as truncation or smooth-
ing, to the importance weights (Ionides, 2008; Koblents & Míguez, 2015;
Miguez et al., 2018; Vehtari et al., 2021). In many situations, these tech-
niques are beneficial even though they introduce bias in the estimate. In
addition to stabilizing the estimate, Vehtari et al. (2021) propose a diag-
nostic for the practical pre-asymptotic convergence rate. By estimating
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the pre-asymptotic convergence rate, the diagnostic can identify whether
sampling can be made accurate with reasonable computational cost. The
Pareto k̂ diagnostic of Vehtari et al. (2021) is an essential tool for the
methods discussed in Publications I and II. There are also a variety of
other importance sampling diagnostics, such as the effective sample size
and its variations (Martino et al., 2017; Agarwal et al., 2021).

2.2 Adaptive importance sampling

As discussed in Section 2.1, choosing a good proposal distribution is critical
for the feasibility of importance sampling. In Bayesian model assessment,
if a sample of Monte Carlo draws has been generated from the model poste-
rior as part of inference, it is a natural first choice as the proposal. To make
this proposal better for a specific computational task, it can be adapted for
the task at hand. The procedure of improving the proposal distribution in
importance sampling is called adaptive importance sampling (AIS) (Cappé
et al., 2004; Cornuet et al., 2012; Martino et al., 2015; Bugallo et al., 2017).
As discussed in Publication I, the principles of many AIS algorithms can
be summarized to three steps:

1. generating draws from the proposal distribution(s)

2. computing importance weights for each draw

3. adapting the proposal distribution(s) based on the importance weights.

These three steps are typically repeated until a pre-defined convergence or
stopping criterion is reached. Importance sampling diagnostics (Martino
et al., 2017; Vehtari et al., 2021; Agarwal et al., 2021) can be valuable for
determining the progress of AIS methods, which is also demonstrated in
Publications I and II.

To enable resampling (step 1) in every iteration, many AIS methods use
proposal distributions with an analytical representation that are easy to
sample from, for example Gaussian or Student-t distributions. One of the
conclusions of Publication I is that such standard distributions are not
always good enough when posterior distributions are high-dimensional
or have non-standard form. Publication I uses an implicitly adaptive
importance sampling algorithm that does not resample between iterations,
and can therefore be used with more generic proposal distributions. For
example, draws from a posterior obtained with Markov chain Monte Carlo
methods can be used as long as the posterior density is computable up
to an unknown normalization constant. The implicit adaptation means
only transforming the Monte Carlo draws, which is implicitly equal to
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adapting the proposal distribution. Publication I uses the probabilistic
programming tool Stan (Stan Development Team, 2022) to demonstrate
that implicitly adaptive importance sampling can be easily coupled with
probabilistic programming tools.

Publication I presents an implicitly adaptive importance sampling al-
gorithm called importance weighted moment matching (IWMM). The al-
gorithm uses a combination of affine transformations which match the
standard moments of a proposal sample to its importance weighted mo-
ments, approximately matching the proposal distribution to the target
distribution. Analogous implicit matching transformations have been dis-
cussed in different contexts, for example by Voter (1985) and Meng and
Schilling (2002). The main benefit of the moment matching affine transfor-
mations is their simplicity, as the procedure can be automated and used
similarly for a wide variety of models. On the other hand, as the target
moments are computed using importance sampling, it is possible that they
are not accurate enough for successful moment matching. Moreover, even
if moment matching is successful, there is no guarantee that it will result
in a better proposal distribution. The IWMM algorithm uses the Pareto k̂
diagnostic (Vehtari et al., 2021) to measure the progress and determine a
stopping criterion for the adaptation. For a more detailed description, see
Publication I.

2.2.1 Double adaptation

Typically, the goal of adaptive importance sampling is to find a proposal
which is close to the distribution over which the expectation is defined,
hence also the name target distribution. Therefore, many AIS methods
set this distribution as the target of adaptation by using the importance
ratios (as defined in equation (2.2)) to guide the adaptation. Publication
I discusses the optimal proposal distributions for different Monte Carlo
estimators (Kahn & Marshall, 1953; Hesterberg, 1988), and emphasizes
that the distribution over which the expectation is defined is not always
a good target for AIS. Based on this remark, Publication I proposes to
use the expectation-specific optimal proposal distribution as the target of
adaptation.

For the expectation Ep[h(θ)], the optimal proposal for self-normalized
importance sampling is proportional to

gopt
SNIS(θ)∝ p(θ) |h(θ)−Ep[h(θ)] |. (2.3)

This optimal density can be significantly more complex than for other
estimators because of the requirement to simultaneously estimate both the
numerator and denominator of equation (2.2). Publication I discusses this
in detail and proposes a double adaptation procedure for SNIS that com-
bines two implicitly adapted proposal distributions into a single proposal.
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This is called the split proposal, because it is based on an approximation
of the piecewise defined density of equation (2.3) that is split into two
separate components:

gsplit
SNIS(θ)∝ p(θ)|h(θ)|+ p(θ)Ep[h(θ)]. (2.4)

The split proposal is based on a technique called multiple importance
sampling, which allows combining multiple distributions into a single
proposal distribution (see e.g. Elvira et al., 2019). Publication I also shows
that the double adaptation can be a valuable improvement to standard AIS
methods that use parametric proposal distributions. Adaptive importance
sampling specifically for self-normalized importance sampling has been
recently studied also by Lamberti et al. (2018) and Rainforth et al. (2020).

2.3 Bayesian leave-one-out cross-validation

An important part of the Bayesian modelling workflow is the assessment
of predictive performance. It is often useful by itself, but it can also be
used for model comparison or improvement (see for example Vehtari and
Lampinen (2002), Vehtari and Ojanen (2012), Gelman et al. (2013), Vehtari
et al. (2017)) or model averaging (Geisser & Eddy, 1979; Ando & Tsay,
2010; Yao et al., 2018). Predictive performance is typically measured using
a utility or cost, and there exist a wide range of possible measures. One
generally applicable utility measure is the log predictive density (also
known as the log-score) (Good, 1952). It is widely used because of its
desirable properties such as strict propriety (Bernardo, 1979; Geisser &
Eddy, 1979; Bernardo & Smith, 1994; Gneiting & Raftery, 2007; Vehtari &
Ojanen, 2012; Krüger et al., 2021).

Consider we have an observed data set yobs which is used to fit a model.
Consider also a true data generating mechanism with probability distri-
bution ptrue(y), and N observations y = (y(1), ..., y(N)) from the true data
generating mechanism. Using the log-score, the out-of-sample predictive
performance measure for a model fitted on yobs for a new possible data
set can be evaluated with the expected log pointwise predictive density
(ELPD)

ELPD=
N∑

i=1

∫
ptrue(y(i)) log p(y(i) | yobs)dy(i), (2.5)

where p(y(i) | yobs) is the posterior predictive density of the evaluated model
that is fitted on the data yobs.

The ELPD measure defined in equation (2.5) includes the true data
generating mechanism which is generally unknown. In practice, ELPD is
very often approximated with the observed data set yobs. To avoid using

19



Importance sampling for model assessment

the same data for inference and evaluation, procedures such as cross-
validation (CV) that partition the data are commonly used. In CV, the data
is partitioned into subsets, and one set is left out of inference to be used
as an out-of-sample validation set. The inference and validation is then
repeated using the different subsets for evaluation in turn. When the data
is split into K parts, the procedure is called K-fold CV. In leave-one-out
cross-validation (LOO-CV), K = N, meaning that only one observation is
left out for evaluation at a time, and model fitting is repeated N times. The
ELPD estimator based on LOO-CV is

ÊLPDLOO =
N∑

i=1

log
∫

p(y(i)
obs | θ)p(θ | y(−i)

obs )dθ =
N∑

i=1

log p(y(i)
obs | y(−i)

obs ), (2.6)

where y(i)
obs refers to observation i, and y(−i)

obs to all other observations.

2.3.1 Importance sampling leave-one-out cross-validation

Naively evaluating the LOO-CV estimator of equation (2.6) with Monte
Carlo methods requires generating samples from each of the N LOO pos-
teriors separately. This can be very costly when N is large and when
the model fitting is expensive. Fortunately, this cost can be significantly
reduced with importance sampling.

With observations that are independent conditionally on the model pa-
rameters θ, it is straightforward to compute leave-one-out cross-validation
with importance sampling by using draws {θ(1),θ(2), ...,θ(S)} from the model
posterior with all observations included, p(θ | yobs) (Gelfand et al., 1992). In
this case, the self-normalized importance sampling estimator of the ELPD
of observation i is

ÊLPDLOO,i = p(y(i)
obs | y(−i)

obs )≈
1
S
∑S

s=1 w(s)
loo,i p(y(i)

obs | θ(s))
1
S
∑S

s=1 w(s)
loo,i

= 1
1
S
∑S

s=1 w(s)
loo,i

. (2.7)

Here, p(y(i)
obs | θ(s)) is the likelihood, and w(s)

loo,i are the unnormalized impor-
tance weights, which are simply

w(s)
loo,i =

1

p(y(i)
obs | θ(s))

(
∝ p(θ(s) | y(−i)

obs )
p(θ(s) | yobs)

)
. (2.8)

Typically the normalization constants of the posterior distributions are
unknown, and the importance weights are thus the ratio of the target
distribution (LOO posterior) and the proposal distribution (full data pos-
terior) up to an unknown constant. IS LOO-CV can also be used in many
situations where the likelihood does not fully factorize, such as Gaussian
latent variable models (Vehtari et al., 2016), time-series models (Bürkner
et al., 2020), and non-factorized normal or Student-t models (Bürkner
et al., 2021).
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2.4 Research question 1 results

While IS can make LOO-CV faster by re-using the full data posterior draws
for multiple expectations, it is not always accurate. It is traditionally
thought that instability of IS LOO-CV estimators is the result of the fact
that the full data posterior likely has a smaller variance than the LOO
posterior. Publication I studies the causes of the instability in detail and
concludes that similar stability issues can arise also in naive LOO-CV
when using draws from LOO posteriors, a phenomenon that often tends to
get overlooked. Publication I presents multiple situations where both IS
LOO-CV and naive LOO-CV are extremely unstable. A typical example
is a situation where one observation is an outlier that is very unexpected
from the perspective of the model. In these cases, the double adaptation
scheme proposed in Publication I (see Section 2.2.1) is crucial for accurate
model assessment.

Publication I discusses the special structure of the LOO-CV expectation
when using the log-score utility. It is special because the posterior con-
ditioned on all observations is an optimal proposal distribution for the
numerator of the self-normalized importance sampling estimator, which
is also seen in equation (2.7) where the numerator simplifies to 1. This
property makes it especially favourable to use the full data posterior distri-
bution as the initial proposal in adaptive importance sampling. Moreover,
the double adaptation can be avoided and a single adaptation targeting the
LOO posterior distribution is enough. However, using the split proposal
discussed in Section 2.2.1 is still important, because the full data posterior
adapted towards the LOO posterior is no longer optimal for the numerator.

Consider the following illustrative example data from Publication I. We
generate 29 observations from a standard normal distribution, and set the
value for a 30’th observation to represent an outlier observation. The data
is modelled with a normal distribution with unknown mean and variance.
We generate draws from the posterior distribution and evaluate the model
with leave-one-out cross-validation and logarithmic score. We evaluate the
ELPD score using both naive LOO-CV (sampling from the LOO posterior)
and IS LOO-CV (sampling from the full data posterior). The experiment
is repeated with outlier values from 3 to 14. The key question to consider
is: can either of these proposals be relied on for accurately estimating the
model’s ability to predict the outlier, i.e. computing ÊLPDLOO,30?

Figure 2.1 shows the results of the example. The left plot shows the
ÊLPDLOO,30 as a function of the value of the outlier observation. For
this simple model, the ELPDLOO,30 can be computed analytically, and it
is depicted with a cross symbol. PSIS refers to Pareto smoothed impor-
tance sampling using the full data posterior (Vehtari et al., 2017), and
PSIS+IWMM refers to using the importance weighted moment matching
algorithm from Publication I in addition to PSIS. Naive means sampling
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Figure 2.1. Illustration of the accuracy of LOO-CV computation for an outlier observation
(adapted from Publication I). The data has 29 random observations generated
from a standard normal distribution, and the value of y30 is varied. The data
is modelled as normally distributed. The left plot shows the ÊLPDLOO,30
estimates and the right plot the Pareto k̂ diagnostic value as a function of
the outlier observation y30. The black crosses depict the true analytical
ELPDLOO,30 values. The sampling results are averaged from 50 independent
repetitions. Error bars representing 95% intervals of the mean over the
repetitions are almost indistinguishable. The dashed line at k̂ = 0.7 represents
the diagnostic threshold, below which the results can be considered practically
useful.

from the LOO posterior and computing ELPD with simple Monte Carlo
sampling. The plot illustrates that as the outlier observation becomes
more unexpected for the model, both the naive and PSIS estimates become
biased in opposite directions. PSIS+IWMM estimate using the split pro-
posal can correct the bias and give accurate results. Publication I shows
that the same can be achieved with naive+IWMM, but PSIS+IWMM is
typically cheaper to evaluate. The right plot of Figure 2.1 presents the
Pareto k̂ diagnostic (Vehtari et al., 2021) value for each estimator, which
correctly indicates when the sampling is unreliable. The dashed line at
k̂ = 0.7 represents the diagnostic threshold, below which the results can be
considered practically useful (Vehtari et al., 2017). In this example, a more
conservative value k̂ = 0.5 was used as the threshold for stopping IWMM.

To give a better illustration of the root cause of the biased results, we
can compare the different proposal distributions to the theoretical optimal
proposal given by equation (2.3). Figure 2.2 shows the discrepancy between
the optimal proposal and three candidate proposal distributions: the full
data posterior (used by PSIS), the LOO posterior (used by naive), and a split
proposal constructed from the full data and LOO posteriors (approximated
by PSIS+IWMM). In this figure, the model is simplified so that the data
variance is fixed to 1, and the model posterior contains only a single
parameter, the mean of the data. From the figure, it is evident that
as the outlier becomes more exceptional to the model, neither the full
data posterior nor the LOO posterior can match both tails of the optimal
proposal, which would be essential for reliable sampling. On the contrary,
the behaviour of the split proposal is the opposite, and it matches the
optimal proposal better as the outlier becomes more exceptional.

Publication I shows with several additional data sets and models that
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Figure 2.2. Illustration of the discrepancy between the theoretically optimal proposal dis-
tribution for self-normalized importance sampling, and three possible proposal
distributions, when the data has an outlier observation (adapted from Publi-
cation I). The model is a Gaussian model with unknown mean and variance 1.
The data has 29 observations generated from a standard normal distribution,
and a 30’th observation y30 with three different values represented by the
three columns. The top row shows the full data posterior distribution, the
middle row the LOO posterior, and the bottom row the split proposal distri-
bution constructed from the full data and LOO posteriors. The shaded areas
represent the overlapping probability densities of the optimal proposal and
each proposal candidate.

the sampling instability is an issue for both naive LOO-CV and IS LOO-CV.
In many cases, more reliable cross-validation estimates are obtained with
IWMM. Thus, adaptive importance sampling is not only a computationally
cheap alternative to sampling directly from the leave-one-out posterior of
each unreliable case, but also often more accurate. In order to be easily
usable, the IWMM algorithm is implemented as part of the R-package
loo (Vehtari et al., 2020).

Publication I also compares IWMM, that uses the full data posterior as
the initial proposal distribution, to similar adaptive importance sampling
with Gaussian or Student-t proposal distributions. Especially with high-
dimensional posteriors, IWMM performs significantly better than the
parametric proposals. Thus, one of the conclusions is that the full data
posterior is a good initial proposal distribution for adaptive importance
sampling in leave-one-out cross-validation.

23



Importance sampling for model assessment

2.5 Prior and likelihood sensitivity

Choosing the prior and likelihood for a model are some of the cornerstones
of Bayesian inference. Analyzing the sensitivity of the posterior to changes
in both of these components is thus an important part of model assess-
ment (Lopes & Tobias, 2011; Depaoli et al., 2020). This type of sensitivity
analysis can uncover issues such as prior-data conflict (Evans & Moshonov,
2006; Al Labadi & Evans, 2017; Reimherr et al., 2021) and likelihood
noninformativity (Gelman et al., 2017).

The sensitivity of the posterior to changes in the likelihood and prior
can be analyzed by perturbing the prior or likelihood, and quantifying
the change inflicted on the posterior distribution. An abnormally high
sensitivity can be further analyzed to evaluate its cause and determine
whether it is acceptable or if a change in the model is required.

Prior-data conflict can be caused by informative priors that disagree with
the observed data, but are not completely dominated by the likelihood.
Such priors can be intentional, but if not, this can be a reason to recon-
sider the choice of priors. Prior-data conflict typically makes the posterior
sensitive to changes in both the prior and likelihood. Likelihood noninfor-
mativity, on the other hand, can be caused by the likelihood exhibiting less
information than the prior, for example because of imbalanced data. This
is seen as the posterior being sensitive to changes in the prior, but insen-
sitive to likelihood perturbations. Such difference in sensitivity can also
be caused by the formulation of the model and not the data. For example,
a model with a Student-t likelihood and Gaussian prior can exhibit likeli-
hood noninformativity just because of their different shape. Publication
II presents a comprehensive explanation of the different combinations of
prior and likelihood sensitivity.

2.5.1 Power-scaling

Publication II presents a widely applicable procedure for assessing prior
and likelihood sensitivity, which is based on perturbing both components
separately by raising them to some power α> 0. This can be interpreted
as a distribution agnostic way to strengthen (α> 1) or weaken (α< 1) the
power-scaled term relative to the other, while keeping the support of the
scaled component unchanged.

The main benefit of power-scaling is its simplicity – it is quick to com-
pute and easy to use with a large variety of different models without
model-specific tuning. However, even though power-scaling is in principle
distribution agnostic, the way it is used for the prior and likelihood may
differ depending on the structure of the model. Publication II discusses
this aspect in more detail especially related to hierarchical models. Power-
scaling is also intuitive – for many standard probability distributions, it
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simply alters the parameters of the distribution, but keeps the functional
form the same. For examples of the results of power-scaling on some
common distributions, see Publication II.

2.5.2 Importance sampling for sensitivity analysis

Like Publication I, Publication II also focuses on the setting where the
model posterior is approximated using Monte Carlo methods. Typically, to
understand the implications of power-scaling, a range of α values needs to
be analyzed. For example, power-scaled priors ranging from α= 0.5 to α= 2
represent a range of alternative priors that could be considered instead
of the specific prior (α= 1) that the model uses, which is always more or
less subjective. If the cost of sampling from the posterior is high, sampling
from a range of power-scaled posteriors can be costly. Importance sampling
is a suitable tool to avoid this cost by re-using the Monte Carlo sample
generated from the original model.

With the posterior distribution of the original model as the proposal, and
considering a posterior with power-scaled prior as the target distribution,
the importance ratios are given as

w(s)
α,prior =

pprior(θ(s))αp(y | θ(s))
pprior(θ(s))p(y | θ(s))

= pprior(θ(s))α−1. (2.9)

When scaling the likelihood, the importance weights are

w(s)
α,likelihood = p(y | θ(s))α−1. (2.10)

Importance sampling enables quick computation of various sensitivity
measures. For example, the mean and standard deviation of the power-
scaled posteriors are easy-to-understand quantities for analysing the effect
of power-scaling. More elaborate measures, such as the cumulative Jensen-
Shannon divergence can be used as well. See Publication II for a more
in-depth discussion on the benefits of different approaches. In addition to
analyzing a range of power-scaled posteriors, Publication II also presents
a method for assessing the general sensitivity of the current model (α= 1)
with importance sampling. This is achieved by computing the derivative of
a sensitivity measure at α= 1 for a specific summary of the posterior.

2.6 Research question 2 results

Publication II demonstrates that the power-scaling method is a viable
solution to Research question 2. Power-scaling is utilized in multiple
case studies and compared to alternative prior and likelihood sensitivity
analysis methods. The conclusion of Publication II is that power-scaling
can identify prior and likelihood sensitivity from different models and data
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where sensitivity is known to exist. The ease of use is demonstrated by
using the methods in combination with modern probabilistic programming
and Bayesian modelling tools such as the packages posterior (Bürkner et
al., 2022) and brms (Bürkner, 2017) for the R language (R Core Team, 2021).
The method itself is also implemented in a freely available R-package
priorsense.

Section 2.4 discussed the instability of importance sampling, which can
be diagnosed for example with the Pareto k̂ diagnostic (Vehtari et al.,
2021). Instability can hinder the use of importance sampling also for
power-scaling. Publication II utilizes the Pareto diagnostic, and uses the
IWMM adaptive importance sampling method from Publication I if the
diagnostic indicates inadequate accuracy. The IWMM framework is very
generic, and thus the basic principles apply to power-scaled posteriors
similarly as to leave-one-out cross-validation, although some nuances are
different. In LOO-CV, the ELPD estimator can be very difficult to compute
even naively, i.e. using the LOO posterior as the proposal distribution, as
demonstrated in Section 2.4. This is because the function whose expec-
tation is computed, the likelihood of the left-out observation, can attain
very high values in the tails of the LOO posterior. In power-scaling, we
typically compute expectations of simpler functions, such as the first few
moments to summarize the power-scaled distributions. In power-scaling,
the difficulties arise typically simply due to the mismatch of the proposal
distribution (original model posterior) and the power-scaled posteriors.

To illustrate why this may happen, let us revisit the simulation example
from Section 2.4 and Figure 2.2. Instead of setting a single observation
as an outlier, let us simply generate all 30 observations randomly from
a standard normal distribution. Let us again model the data with a
Gaussian likelihood with unknown mean and variance of 1. The only
unknown parameter is the data mean, for which we set a Normal(0,10)
prior.

We could formulate the power-scaled model using e.g. probabilistic pro-
gramming, and generate separately draws from power-scaled posteriors
with different values of α. However, simply re-using the draws from the
original posterior and using importance sampling is much faster to com-
pute. Therefore, let us now consider the question: how good is the original
model posterior distribution as a proposal distribution for power-scaling,
specifically for computing the mean of the distribution whose likelihood is
power-scaled? We then scale the likelihood by raising it to different powers
of α, and attempt to compute the mean of the power-scaled posteriors.

Figure 2.3 shows the comparison of the optimal proposal distribution
from equation (2.3) along with the original posterior and the power-scaled
posterior for three different α values. The figure shows that when α< 1, the
power-scaled posterior becomes wider than the original posterior, making
importance sampling less reliable. The power-scaled posterior in the
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bottom row widens similarly to the optimal proposal, and remains a good
proposal distribution with different values of α. This means that the use
of double adaptation and the split proposal (see Section 2.2.1) is rarely
necessary, and it is enough to use the power-scaled posterior as the target
of adaptive importance sampling.

α= 1.0

original
posterior
optimal
proposal

α= 0.5 α= 0.1

−2 0 2

power-
scaled
posterior

−2 0 2 −2 0 2
θ

Figure 2.3. Illustration of the discrepancy between the theoretically optimal proposal
distribution for SNIS, and two possible proposal distributions: the original
posterior and the power-scaled posterior. The model is a Gaussian model with
unknown mean and known variance. The data consists of 30 observations from
a standard normal distribution. The columns correspond to three different
values for the power-scaling parameter α, and the dashed line is the optimal
proposal for computing the mean of the power-scaled posterior. The shaded
areas represent the probability density difference of the optimal proposal and
the proposal candidates.
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3. Variable importance sensitivity
analysis

In supervised learning, it is often interesting to study how important each
predictor variable is for predicting the target variable. Such a task is
called variable importance assessment, although it can also be framed
as variable selection where the goal is to explicitly choose a subset of the
most important variables. Variable importance assessment is often an
important part of the Bayesian statistical workflow for supervised learning
models. This chapter introduces the concepts of Publications III and IV,
which study variable importance from a Bayesian perspective, such that
the predictive uncertainty of the model is taken into account.

First, Section 3.1 gives a brief introduction to derivative based variable
importance. Section 3.2 then introduces the methods presented in Publi-
cations III and IV. Section 3.3 introduces the basic concepts of Gaussian
process models, and presents the implementation of uncertainty-aware
sensitivity method for Gaussian processes. Finally, Section 3.4 discusses
the contributions of Publications III and IV towards research question 3.

3.1 Variable importance

The term variable importance is often used to refer to generic methods
that use the predictions of a model to assess the importance of predictors
in supervised learning models. Consequently, they are also called model-
agnostic methods. There exist a myriad different approaches to assessing
variable importance (Wei et al., 2015; Molnar, 2019), but they can be
loosely categorized into global and local methods. Global methods attempt
to describe the average contribution of variables, whereas local methods
describe the contribution in a specific observation or prediction. The
methods of Publications III and IV fall in the category of local methods.
However, the distinction of local and global methods is not restrictive, since
local methods are often used to also evaluate the average contribution of
variables, also in Publications III and IV.

One sub-category of local variable importance methods are derivative
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based sensitivity analysis methods (Ruck et al., 1990; Refenes & Zapranis,
1999; Leray & Gallinari, 1999; Simonyan et al., 2014; Sundararajan et al.,
2017; Cui et al., 2020). Consider a supervised learning model trained on
a set of observation pairs D = {x(i), y(i)}N

i=1. Let us denote the prediction
function of the model for the target variable ỹ at test point x̃ as f (x̃).
Derivative based methods assess the sensitivity of f to changes in the
predictors, which is quantified by the partial derivative with respect to
a single predictor x̃d, ∂ f (x̃)

∂x̃d
. The absolute value, or square, is typically

used to give equal importance to positive and negative derivatives. The
local importance values can also be summed over the observed x values
to compute an estimate of the global importance of xd. This is called the
expected absolute derivative (EAD) (see for example Cui et al. (2020))

EAD(xd)=Ep(x)

[∣∣∣∣∂ f (x)
∂xd

∣∣∣∣] . (3.1)

3.2 Uncertainty-aware sensitivity

From a Bayesian perspective, the derivative-based methods have a major
shortcoming as they only use a single prediction value, and ignore the
uncertainty of the prediction. The aim of the uncertainty-aware sensitivity
analysis discussed in Publications III and IV is to solve this shortcoming.
This is achieved by selecting a statistical divergence measure, and dif-
ferentiating this measure computed from the predictive distribution. An
example of a spectrum of suitable divergences that measure the dissim-
ilarity of two probability distributions are the Rényi divergences, which
are studied in Publication III. Rényi divergences are parameterized by
an order parameter α which defines the properties of the divergence. In
practice, both Publications III and IV use the Kullback-Leibler divergence
(KLD), which is the Rényi divergence obtained when the order parameter
α approaches 1 (Kullback & Leibler, 1951).

To illustrate the uncertainty-aware sensitivity, let us define a predictive
distribution p( ỹ |λ(x̃)), where ỹ is the target variable, and λ = (λ1, ...,λM)
are parameters that are conditioned on predictor values x̃. The goal is
to evaluate how sensitive the predictive distribution is to infinitesimal
variations in x̃, which is achieved by differentiating the Rényi divergence
between two predictive distributions in the limit where they coincide:

∂2D
p
α [x̃′]

(∂x̃′d)2

∣∣∣∣
x̃′=x̃

=
(
∂λ(x̃)
∂x̃d

)T

Hλ(x̃′)(D
p
α [x̃′])

(
∂λ(x̃′)
∂x̃′d

)∣∣∣∣
x̃′=x̃

. (3.2)

Here, D
p
α [x̃′] ≡ Dα[ p( ỹ | λ(x̃))||p( ỹ | λ(x̃′))] is the Rényi divergence of order

α from one predictive distribution to another, and Hλ(x̃′)(D
p
α [x̃′]) is the

Hessian of the Rényi divergence. The Hessian can be approximated with
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the Fisher information matrix I(λ(x̃)) of the predictive distribution p( ỹ |
λ(x̃)) (Kullback, 1959; Haussler & Opper, 1997; van Erven & Harremos,
2014). Based on this derivative, Publication III introduces the uncertainty-
aware sensitivity measure called R-sens. Based on equation (3.2), the
measure for predictor xd evaluated at x̃ is defined as

R-sens(x̃, xd,α)≡
√

α

(
∂λ(x̃)
∂x̃d

)T

I(λ(x̃))
(
∂λ(x̃)
∂x̃d

)
. (3.3)

Here α is the order of Rényi divergence used.
The connection of equation (3.3) to the standard derivative based vari-

able importance
∣∣∣∂ f (x̃)

∂x̃d

∣∣∣ is not immediately obvious. However, for certain
distribution types, equation (3.3) is easily interpretable and the two for-
mulas are comparable. For example, consider a predictive distribution in
the location-scale family (for example Gaussian or Student-t), where λ

contains a location parameter λ1 (comparable to a single prediction f (x̃)),
a scale parameter λ2 (representing predictive uncertainty), and possibly
some auxiliary parameters. In this case, the product inside the square root
of equation (3.3) contains two easily interpretable terms. First, it contains
a term proportional to the square of ∂λ1

∂xd
that is multiplied by a factor de-

pending on the scale parameter λ2. After taking the square root, this term
is comparable to

∣∣∣∂ f (x̃)
∂x̃d

∣∣∣ that is scaled by the predictive uncertainty. Second,

it contains a term proportional to the square of ∂λ2
∂xd

, which influences the
sensitivity independently of ∂λ1

∂xd
, even if ∂λ1

∂xd
= 0.

Figure 3.1 illustrates the contributions of the two components for a
model with location-scale predictive distribution. The top plot represents
20 observation pairs D = {x(i), y(i)}N

i=1, and the predictive distribution of
a Gaussian process model with an exponentiated quadratic covariance
function (equation (3.9)). The dashed line represents the mean prediction,
and the shaded areas 1-3 standard deviations of the Gaussian predictive
distribution. The middle part of Figure 3.1 shows the standard sensitivity,∣∣∣∂ f (x̃)

∂x̃d

∣∣∣, and the R-sens uncertainty-aware sensitivity. In the domain with
many observations, the two sensitivity measures are almost equal, but they
begin to deviate when the predictive uncertainty increases. The bottom
plot shows separately the two components of uncertainty-aware sensitivity
(defined as R-sens with the other component set to zero). Component
1 is proportional to the standard sensitivity, but scaled by the inverse
standard deviation (see equation (3.14)). Component 2, on the other hand,
is proportional to the derivative of the predictive variance with respect to
x.

Publication III illustrates the components of R-sens in more detail, using
a linear model as a simple example. For the linear model, the uncertainty-
aware sensitivities of the variables are interpretable, and approach values
proportional to the absolute regression coefficients as the number of obser-
vations increases.
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Figure 3.1. Top: Example of input and output data, and the predictive distribution p(y | x)
of a Gaussian process model. Middle: standard sensitivity

∣
∣
∣
∂E[y|x]

∂x

∣
∣
∣ of the

model’s mean prediction to perturbations in x (black), and uncertainty-aware
sensitivity (red), which is adjusted based on uncertainty about y. Bottom:
The uncertainty-aware sensitivity consists of multiple components – one for
each parameter in the predictive distribution. Here, component 1 depends on
∂E[y|x]

∂x but component 2 does not.

The uncertainty-aware sensitivity framework can be used equally well
with different types of distributions, making the method applicable to both
continuous and discrete target variables. The formulation of uncertainty-
aware sensitivity in Publication III has two obvious restrictions. First,
it assumes an analytical form for the predictive distribution. The exact
distribution does not have to be available in closed form, but it can be
an approximation or density estimate for example. However, because
the methods rely on uncertainty, the results can be unexpected if the
predictive distribution is a poor description of the true uncertainty. Second,
the formulation requires the derivatives of the predictive distribution’s
parameters with respect to predictors. This restriction can be somewhat
alleviated with automatic differentiation methods (see e.g. Baydin et al.,
2018), which is touched on in Publication III.

Publication IV (published before Publication III) presents a finite differ-
ence based approximation, called KL, of the R-sens sensitivity measure.
Instead of differentiating predictive distributions analytically, the KL
method computes the divergence between fixed and perturbed predictive
distributions. In variable importance assessment, a perturbed predictive
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distribution is evaluated in a point with slightly different value for a sin-
gle predictor variable. Publication III shows that the KL measure can
be obtained as a Taylor approximation of R-sens. In practise, both KL
and R-sens give practically equivalent results for single variable sensi-
tivities. The idea of the KL method is very simple both computationally
and conceptually as it only requires being able to evaluate a divergence
based on the predictive distribution. It is easy to implement for arbitrary
supervised learning models, and would also be straightforward to evaluate
with arbitrary statistical divergences or distances.

Publication III develops the idea of the KL method further into the
uncertainty-aware sensitivity framework, which has several benefits. First,
it avoids possible errors resulting from too small or too large perturbation.
Second, framing the problem as the derivative of a statistical divergence
allows better interpretability and enables more theoretical understanding
of the procedure. Publication III touches on interpretability, but more
research is needed to understand the theoretical properties of uncertainty-
aware sensitivity more deeply. Third, using analytical derivatives allows
evaluating variable interaction effects by using higher order derivatives.

3.2.1 Variable interactions

In many supervised learning tasks, it is important to take into account the
interaction effects of the predictor variables. A variable interaction simply
means that the joint effect of two variables is different than the sum of
their individual effects. The idea of derivative based importance is directly
extendable to second-order variable interactions by introducing second
derivatives (Wei et al., 2015; Cui et al., 2020). Analogously to

∣∣∣∂ f (x̃)
∂x̃d

∣∣∣, the

absolute values of the derivatives with respect to both xd and xe,
∣∣∣ ∂2 f (x̃)
∂x̃d∂x̃e

∣∣∣,
quantify the sensitivity of f (x̃) to the second-order interaction effect of xd

and xe.
The uncertainty-aware sensitivity idea can be extended to second-order

interactions by differentiating a statistical divergence with respect to
two variables. However, Publication III shows that at least when using
Rényi divergences and Gaussian process models, the full fourth derivative
contains cross-derivative terms which may not be useful for discovering
variable interactions. Dropping some of these terms leads to a useful
measure with formulation analogous to R-sens:

R-sens2 (x̃, {xd, xe},α)≡
√

α

(
∂2λ(x̃)
∂x̃d∂x̃e

)T

I(λ(x̃))
(

∂2λ(x̃)
∂x̃d∂x̃e

)
. (3.4)
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3.3 Gaussian processes

Gaussian processes are a class of stochastic processes which are suitable for
defining flexible prior distributions for functions in a Bayesian approach to
supervised learning (Rasmussen & Williams, 2006). This section reviews
the basics of Gaussian process modelling from a Bayesian viewpoint and
how the importance of variables can be assessed for Gaussian process
models, which is studied in Publications III and IV.

A Gaussian process (GP) defines a distribution over a function space,
where a finite subset of evaluation points form a joint Gaussian distribution.
A GP is fully defined by its mean and covariance functions:

m(x)= E[ f (x)] (3.5)

k(x,x′)=Cov[ f (x), f (x′)]. (3.6)

These define the prior assumptions about the function to be inferred. Very
often the mean function is set to zero, and only the covariance function is
used to determine the a priori assumptions. The GP framework can be uti-
lized to set a prior directly on functions mapping from the input variable(s)
to the output variable(s). Inference is thus carried out without explic-
itly parameterizing the model. As the GP prior is infinite dimensional,
Gaussian processes can be considered nonparametric models.

In supervised learning, observations are typically assumed to be noisy
realisations of an underlying process. This is the standard approach also in
Gaussian process inference, where the prior is combined with a likelihood
to get a posterior for the values of the latent process. If the observation
model is Gaussian, the posterior for a finite collection of latent values
remains Gaussian. Moreover, at any new point, the latent values have a
Gaussian predictive distribution with mean and variance given by

E[ f (x̃)]= k̃T(K+σ2I)−1y, (3.7)

Var[ f (x̃)]= k(x̃, x̃)+ k̃T(K+σ2I)−1k̃. (3.8)

Here, Ki, j = k(x(i),x( j)), k̃ = {k(x̃,x(1)), ...,k(x̃,x(N))}, {x(1), ...,x(N)} represent
training data, and σ2 is the noise variance.

Gaussian process models are very flexible due to the myriad possibil-
ities for covariance functions. One common choice is the exponentiated
quadratic (EQ) covariance function

kEQ(x,x′)=σ2
f exp

(
−1

2

D∑
d=1

(xd − x′d)2

l2
d

)
. (3.9)

Here σ f determines the overall magnitude of variation for the latent
function, whereas the length-scale parameters ld determine how rapidly
the covariance decays in different input directions. Varying functions can
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be constructed for example by adding and multiplying different covariance
functions together.

The key property of the EQ covariance function is that it is infinitely
differentiable, producing smooth nonlinear functions. For the uncertainty-
aware sensitivity methods described in Section 3.3.1, infinite differentiabil-
ity is not necessary, but the covariance function must be differentiable at
least once. The EQ covariance function is used throughout Publications III
and IV.

The parameters of the Gaussian process kernel and the used likelihood
are typically called hyperparameters. In Publications III and IV, the hy-
perparameters are estimated from data via optimization by finding the
maximum of the posterior distribution of hyperparameters. In order to
make the optimization more stable, the publications use inverse-gamma
prior distributions on the length-scale parameters, as described in Publica-
tion IV.

3.3.1 Uncertainty-aware sensitivity for Gaussian processes

One of the main attractions of Gaussian process models is their ability to
represent uncertainty. For example, Wilson et al. (2020) describe them
as the gold standard for many modelling scenarios when the trustwor-
thy representation of uncertainty is important. Because of this property,
Gaussian process models are a suitable use case for the uncertainty-aware
sensitivity analysis. Both Publications III and IV use these methods for
assessing variable importance of Gaussian process models.

If we take the Gaussian process with Gaussian observation model, pre-
sented in Section 3.3, as an example, the noisy target variable at a new
test point has an equivalent predictive distribution as the latent values,
but with added noise variance σ2

p( ỹ | x̃,y)=Normal( ỹ |E[ ỹ],Var[ ỹ])

=Normal( ỹ |E[ f (x̃)],Var[ f (x̃)]+σ2). (3.10)

The derivatives of these parameters with respect to the predictors are
needed to compute the R-sens uncertainty-aware sensitivity measure. Be-
cause of the equivalence of equation (3.10), the derivatives of E[ ỹ] and
Var[ ỹ] can be represented as

∂E[ ỹ]
∂x̃d

= ∂E[ f (x̃)]
∂x̃d

(3.11)

∂Var[ ỹ]
∂x̃d

= ∂Var[ f (x̃)]
∂x̃d

. (3.12)

These are obtained by differentiating equations (3.7) and (3.8), respectively.
The Fisher information matrix of the distribution Normal( ỹ |E[ ỹ],Var[ ỹ])
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is

IN(E[ ỹ],Var[ ỹ])=
(

1
Var[ ỹ] 0

0 1
2(Var[ ỹ])2

)
. (3.13)

Putting these components together, the R-sens measure (for α= 1) becomes

R-sens(x̃, xd)=
√

1
Var[ ỹ]

(
∂E[ f (x̃)]

∂x̃d

)2

+ 1
2(Var[ ỹ])2

(
∂Var[ f (x̃)]

∂x̃d

)2

. (3.14)

Publication III shows that similar closed form equations can be derived
also for Bernoulli and Poisson observations models. The uncertainty-aware
sensitivity is thus applicable to discrete distributions as well.

For Gaussian process models, the cost of computing the variance of the
predictive distribution is of order O (N2), whereas computing the mean
is only O (N). These are reasonably cheap compared to the O (N3) cost of
inference, but if predictions are needed for many observations and predictor
variables, the cost can exceed the inference cost. Publication III briefly
discusses the costs if approximation methods are used for Gaussian process
inference. For many of these methods, the prediction cost is scaled down
equally to the cost of inference, which means that the uncertainty-aware
sensitivity methods can scale to larger data sets to some extent.

Publication III discusses the use of automatic differentiation for imple-
menting R-sens. While the implementation for individual variables is
relatively straightforward, for variable interactions it is not. Publication
III demonstrates that computing the fourth derivative directly with auto-
matic differentiation is not very useful for identifying interactions, unless
some cross-derivative terms are dropped. Despite this, automatic differen-
tiation can be a useful tool for extending the uncertainty-aware methods
to various models.

3.3.2 Evaluating variable importance

The separate length-scale parameters of the EQ covariance function in
equation (3.9) describe the length-scale of variations for each variable. The
parameter values can also be used as indicators of variable importance,
which is called automatic relevance determination (ARD) (MacKay, 1994;
Neal, 1996). ARD simply means using the inverses of the length-scale
parameters as estimates of variable importance. Due to its simplicity,
this is a relatively commonly used procedure for Gaussian processes and
other models with analogous parameters (Williams & Rasmussen, 1996;
Hensman et al., 2013).

Despite its popularity, using ARD to determine variable importance with
Gaussian process models has two drawbacks. The length-scale parameters
by themselves are poorly identifiable, meaning that the parameter values
may vary significantly depending on the other parameters of the model (H.
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Zhang, 2004). Moreover, ARD is biased towards variables with a nonlinear
effect over equally important linear or near-linear variables (Piironen &
Vehtari, 2016).

3.4 Research question 3 results

Publication III compares uncertainty-aware sensitivity to standard derivative-
based sensitivity in both simulated and real scenarios. The paper concludes
that in many practical situations, the difference of the two is small in terms
of their ability to find important variables. However, when predictions are
very uncertain, uncertainty-aware sensitivity can outperform standard
derivative based sensitivity. This difference may be even greater if the
predictions are evaluated outside the training observations, for example if
some predictor values are permuted. Permutations are not studied in this
thesis, but it would be an interesting topic for future research.

Publication IV compares the uncertainty-aware sensitivity to ARD in
several different scenarios. One of the conclusions of Publication IV is that
also R-sens is biased towards predictors with a nonlinear effect, but this
bias is smaller than for ARD. R-sens also typically selects predictors with
better predictive performance compared to ARD. While the benefit of ARD
is that is requires no extra evaluation after fitting the Gaussian process
model, the improved identification of important variables with R-sens may
make it worth the extra cost.

Publication III compares the derivative based methods to multiple other
variable importance methods. Overall, derivative based methods perform
well for discovering both individual variables and second-order interactions.
For interaction discovery, derivative based methods treat an interaction
effect equally important regardless of whether the variables contain indi-
vidual main effects or not, which is not the case for all variable importance
methods. In many cases, this property is beneficial as it allows better
separation of main effects and interaction effects.
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4. Discussion

4.1 Scientific and practical impact of the work

One of the research gaps presented in Section 1.1 was the lack of efficient
methods for improving the accuracy of leave-one-out cross-validation of
difficult observations. If some cases are diagnosed as unreliable, sampling
directly from the leave-one-out posteriors is a generally used alternative
to importance sampling (Vehtari et al., 2017). In addition to being com-
putationally costly, this thesis shows that it can suffer from the same
inaccuracy as importance sampling. This thesis not only sheds light on the
issues of this generally used alternative, but also is the first work to utilize
adaptive importance sampling to provide a better alternative solution.

The thesis also demonstrates that using the model posterior as the
initial proposal distribution is sometimes much better than using standard
parametric proposal distributions (Bugallo et al., 2017). In a broader
sense, this thesis has shown that adaptive importance sampling can be
both accurate and computationally efficient when using a Bayesian model
posterior as the initial proposal distribution. This may be found useful in
other applications as well, such as Bootstrap.

The results of this thesis align with the long history of research about
the importance of prior and likelihood sensitivity analysis (Canavos, 1975;
Skene et al., 1986; Hill & Spall, 1994; Lopes & Tobias, 2011; Depaoli et al.,
2020). What this thesis shows is that quick and simple procedures may
be just as efficient as more complex or model-specific sensitivity analysis
methods. The presented power-scaling method is novel, and may inspire
more research in generic prior and likelihood sensitivity methods.

In variable importance assessment, this thesis introduces a concept of
uncertainty-aware sensitivity. Derivatives of predictions have been used
extensively as measures of variable importance (Ruck et al., 1990; Refenes
& Zapranis, 1999; Leray & Gallinari, 1999; Simonyan et al., 2014; Sun-
dararajan et al., 2017; Cui et al., 2020). To the best of our knowledge, this
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work is the first to evaluate variable importance by differentiating statisti-
cal divergences of predictive distributions. This thesis has demonstrated
that such an approach is possible analytically, laying the foundation for
possible further research, both theoretical and empirical.

Overall, this thesis focuses on making Bayesian statistical modelling
workflow easier and more effective. A significant factor in the relevance
of this work lies in its applicability to practitioners of Bayesian statis-
tics, especially those using the Stan statistical modelling platform (Stan
Development Team, 2022). Bayesian statistics is used widely across differ-
ent fields of science, ranging from ecology and social sciences to medicine
and genetics. Model assessment is an important part of the Bayesian
statistical workflow, and implementation of the methods of this thesis
in openly available software packages has made them easy to use for all
practitioners.

4.2 Limitations and recommendations for future research

This thesis studies importance sampling solutions for Bayesian cross-
validation as well as prior and likelihood sensitivity analysis. While the
methods were demonstrated with multiple different types of models, it is
possible that there are some settings where the methods are not useful.
For example, more detailed research might be needed to get the most out of
these methods with hierarchical models. In the domain of cross-validation,
an interesting area to study would be the use of adaptive importance sam-
pling for other cross-validation settings. For example, leave-one-cluster-out
cross-validation (Merkle et al., 2019) may be even more difficult for im-
portance sampling, and more elaborate solutions may be needed. With
power-scaling, understanding how the model’s parameterization affects
the power-scaling results is an interesting direction of future research. In
addition, the practical interpretation of the results of power-scaling might
need further study.

Publication I identified the need for special treatment of self-normalized
importance sampling in leave-one-out cross-validation. While a viable
solution was introduced in the form of the split proposal distribution, more
research in its properties would be valuable, in addition to comparison to
other related approaches (Lamberti et al., 2018; Rainforth et al., 2020).

This thesis demonstrates that in many practical situations, the uncertainty-
aware sensitivity does not significantly differ from standard sensitivity
analysis that uses singular prediction values. In simulated scenarios, it is
seen that when the model has significant predictive uncertainty, taking it
into account can lead to more accurate identification of variable importance.
However, more research would be needed to identify practical situations
where the uncertainty-aware sensitivity would be beneficial. While this

40



Discussion

method has potential to be a useful variable importance method, at this
point it can be considered a proof of concept. More research would be
needed to also understand its theoretical properties more deeply, such as
the effect of the choice of divergence, and its applicability to different prob-
abilistic models. It is also possible that the uncertainty-aware sensitivity
concept is found even more beneficial in other fields of research, such as
deep learning (e.g. Maddox et al., 2019) or computer vision (e.g. J. Zhang
et al., 2021).
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