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1. Functional Data

With the development of modern measurement techniques and storage
capacity, large and high-dimensional data sets have become commonplace.
Such data sets are encountered across all fields of science. A common
approach to handling such high-dimensional data is to assume that the
observations are random functions, instead of random vectors. Thus, the
observation sequences are seen as single entities, arising from sampling a
process of continuous nature. The continuum over which the observation
sequences are sampled can vary drastically, for example from spatial
location or wavelength to frequency or concentration, etc. However, as time
is the most prominently encountered such continuum, we henceforth refer
to the continuum over which the observations are sampled as time t. By
calling the data functional, we explicitly refer to the underlying continuous
structure of the observed units; in principle, the measured processes could
be observed at any arbitrary point in time, at any sampling frequency.

Due to the continuous nature of the sampled processes, the explicit
functional form of the observations is unattainable. In practice, in its
simplest (univariate) form, functional data consists of discrete sequences
of value-index pairs (yij , tij) with j = 1, 2, ..., ni, where yij gives a snapshot
of the value of the ith function at time tij ∈ T in the domain T . Note that,
in general, functional data can be multivariate with the components yij
and tij being given by vectors of possibly differing lengths, describing for
example high dimensional surfaces, high dimensional curves, or different
measurements of the same observation instance that are to be analysed
jointly. Furthermore, the observations in a set of functional data need not
to be recorded over the same set of measurement points ti. The number ni

of these measurement points, their placement, and their frequency over
the domain can freely vary from observation to observation. This often dis-
courages considering functional data simply as a set of high-dimensional
vectors and prevents the direct use of multivariate methods on data of
functional nature. Furthermore, the presence of noise in observation se-
quences, emerging from the measurement process, can limit the usefulness
of raw functional data in direct analysis.

9



Functional Data

Thus, a common first step to analysing data of functional nature is to
utilize the discrete measurement sequences in creating approximations of
the underlying functions. This initial function recreation step may have
a multitude of objectives on the resulting approximations, that we wish
to fulfill at the same time. One objective is to create approximated curves
that best match the known or assumed characteristics of the underlying
process. These proxy curves allow us to approximate the value of the
underlying continuous process at any arbitrary point t ∈ T , even outside
of the observed measurement grid {tij}ni

j=1. Often, when the underlying
processes are known to be sufficiently smooth, we wish to create functional
reconstructions that simultaneously allow us to approximate the derivative
curves (of various degrees) of the underlying process, that can be used to aid
the analysis. The goals of the functional recreation step may also include
smoothing out the effects of measurement error or noise that is known to
be present in the raw functional data. As this initial reconstruction step is
a unique and important feature of functional data, it is discussed in more
detail in Section 1.2.

One of the unique features of functional data is the immense amount
of information carried by the continuous structure of the functions. The
use of auxiliary curves such as derivatives of various degrees or time
registration curves to support the analysis of functional data is a common
approach. In many cases it is precisely the use of these auxiliary curves
that reveal the important variance in functional data. For a classical
example, consider the Berkeley growth data set from Tuddenham [1954],
that has been prominently featured in functional data literature, and has
been thoroughly analysed by numerous authors, including Ramsay et al.
[1995], Ramsay and Li [1998], Ramsay and Silverman [2005], Jacques
and Preda [2014] and Marron et al. [2015], just to name a few. The data
depicts the growth curves of several boys and girls, measured over a set
of 31 different ages. The growth curves of 15 randomly chosen girls are
illustrated in Figure 1.1. From a visual inspection, the curves seem very
similar and it is difficult to point out any characterizing features. However,
the variability hidden in the data becomes apparent from the approximated
growth acceleration curves (the second derivatives of the growth curves),
that reveal a great deal of variance between the girls in the timing and
intensity of the pubertal growth spurt. The growth acceleration curves of
the 15 girls are depicted in Figure 1.2.

As data of functional nature has become pervasive in many applications
across many different fields of science, development of methodology for
analysing such data has become an important topic in the literature. Many
of the originally multivariate statistical methods such as principal com-
ponent analysis, canonical correlation analysis, regression modeling and
statistical depth, have seen generalizations to the infinite-dimensional
context of functional data (see for example Bosq [2000], Ramsay and Sil-
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Figure 1.1. Growth curves of 15 randomly chosen girls from the Berkeley growth study.
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Figure 1.2. Growth acceleration curves of 15 randomly chosen girls from the Berkeley
growth study
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verman [2005], Ferraty and Vieu [2006], Horváth and Kokoszka [2012]
and Hsing and Eubank [2015] as well as the discussion in Section 2.2).

However, stepping into the functional realm of infinite dimensionality
brings with it a wide range of features in shape and structure, that need
to be incorporated into the existing methodology. Indeed, shape variability
and shape outlyingness have become integral topics in the FDA literature.
Not only are many functional methods developed and extended specifically
with considerations of shape variability in mind, but simply metrifying
these concepts has become an important topic of discussion. This has
turned out to be a difficult concept to approach, as measuring variance –or
even outlyingness– in shape are both notions without a finite-dimensional
analogue to expand upon. In Rm, outlyingness is determined by the relative
location of an observation (in some suitable metric) with respect to the
distribution. While this approach can be directly applied to the functional
context for example as the average pointwise (marginal) outlyingness
of a function across the domain, these direct pointwise approaches are
unable to detect the more subtle aspects of functional outlyingness such as
centrally placed functions with structural differences. With this in mind,
outlyingness in shape has received increasing attention in the literature,
and there have been some recent advances for methods that consider the
shape and structural variability of functional data. For more details, see
the discussion in Section 2.2 as well as Epifanio [2008], López-Pintado and
Romo [2009], Sun and Genton [2011], Claeskens et al. [2014], Nagy et al.
[2017], Helander et al. [2020], Nagy et al. [2021], Helander et al. [2021]
and Harris et al. [2021].

1.1 Theoretical framework for functional data

The theoretical framework commonly adopted in the functional data lit-
erature assumes that the observed functions are random realizations in
a Hilbert space H, defined on a compact support V often taken to be a
compact subset of Rm, and equipped with a suitable inner product. Often,
for univariate functions, the supporting compact set V is without loss of
generality taken to be the unit interval [0, 1] as functions defined on any
closed interval I ⊂ R can be identified with functions on [0, 1] through a
bijective linear mapping of the argument.

In fact, the observed functions are realizations of a random function
f : Ω× V → W, where (Ω,A, P ) denotes the underlying probability space.
In practical considerations, the Ω is often omitted for notational simplicity.
Thus, the random functions are associated with (randomly chosen) ele-
ments of the Hilbert space H. When not specified, we refer to the Hilbert
space of suitable W valued functions f : V → W by H(V,W), or simply by
H, when the context does not require the explicit examination of the sets V

12
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and W. Imposing the functions with suitable regularity conditions guides
the choice of the Hilbert space in question.

The most commonly encountered example of such space in the literature
is

H = L2(V,R) :=
{
f : V → R ;

∫
V
f(t)2λ(dt) < ∞

}
,

the set of real-valued square-integrable functions on a compact subset
V ⊂ Rm with respect to the Lebesgue measure λ, equipped with the inner
product

〈·, ·〉L2 : L2(V,R)× L2(V,R) → R : (f, g) �→ 〈f, g〉L2 :=

∫
V
f(t)g(t)λ(dt).

Another commonly studied space is the Sobolev space

W k,2(I,R) :=

{
f : I → R ;

k∑
i=0

∫
I
f (i)∗(t)2λ(dt) < ∞

}
,

the set of real-valued Lebesgue square-integrable functions on a closed
interval I ⊂ R, whose weak derivatives f (i)∗ up to order k are also Lebesgue
square-integrable. Recall that f ∈ L2(I,R) is said to have a weak derivative
f∗ ∈ L2(I,R) if ∫

I
f(t)ϕ′(t)dt = −

∫
I
f∗(t)ϕ(t)dt

holds for all infinitely differentiable functions ϕ ∈ C∞(I), vanishing on the
boundary of I. When equipped with the inner product

〈·, ·〉 : W k,2(I,R)×W k,2(I,R) → R : (f, g) �→ 〈f, g〉 =
k∑

i=0

〈f (i)∗, g(i)∗〉L2 ,

the Sobolev space W k,2(I,R) also becomes a Hilbert space.
Further examples of more complex Hilbert spaces that are encountered

in the literature include multivariate functional Hilbert spaces H(V,Rm)

(Claeskens et al. [2014]), as well as Reproducing Kernel Hilbert spaces
that are especially useful in the functional regression setting (Preda [2007],
Hsing and Eubank [2015]). Aside from just Hilbert spaces, certain non-
Hilbertian functional spaces are routinely considered. Examples of such
spaces include: the space of continuous functions C(V), commonly encoun-
tered in the literature as a simple example space, the space of k-times
continuously differentiable functions Ck(V) (Hsing and Eubank [2015]),
and functions between (separable) metric spaces (Nieto-Reyes and Battey
[2016], Helander et al. [2021]). However, in most cases, the functional
spaces considered in the literature are assumed complete and equipped
with an inner product (i.e. they are Hilbert spaces) to, at the very least,
ensure approximations of the underlying functions in practice through pro-
jections on suitable elements (basis functions) in the considered functional
space.
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In the formal framework, the random functions f are seen as H -valued
random variables. That is, f : Ω → H are measurable mappings from the
probability space (Ω,A, P ) to a measurable space (H,B), where B is the
σ-algebra generated by the open sets with respect to the norm induced
by the inner product 〈·, ·〉 on H. In this sense, for H(V,W) the random
functions can be seen as functions f(ω, t) of two variables t ∈ V and ω ∈ Ω,
such that, for any fixed t0, f(·, t0) : Ω → W is a random variable defined
on (Ω,A, P ) while for any fixed ω0, f(ω0, ·) : V → W is a (fixed) element of
H(V,W). Thus, the elements of H are in fact deterministic functions and
the randomness arises from the underlying probability space (Ω,A, P ).

In the theoretical framework of functional data, the sample of random
functions f1, . . . , fn (i.i.d.) is assumed to be fully observed. That is, we have
access to some known set of elements of H that we can measure exactly at
any arbitrary t ∈ V. However, in practice functional data is only ever dis-
cretely observed. The treatment of the discrete measurement sequences in
constructing continuous functional approximations is discussed in Section
1.2

1.1.1 Framework for Shape-sensitive metrics

In the following, we establish a simple theoretical framework for the
discussion of Hausdorff and Fréchet distances in Sections 3.1 and 3.2.
First, we recall the definition of a metric and a pseudometric.

Definition 1.1.1 (Metric). A metric on a set X is a function d : X ×X →
[0,∞) that satisfies the following conditions for all x, y, z ∈ X:

(i) (Non-negativity): d(x, y) ≥ 0

(ii) (Identifiability): d(x, y) = 0 ⇔ x = y

(iii) (Symmetry): d(x, y) = d(y, x)

(iv) (Triangle-inequality): d(x, y) ≤ d(x, z) + d(z, y).

Additionally, d is said to be a pseudometric if it fulfils items (i), (iii), and
(iv) of the above definition, but not item (ii).

Let ([0, 1], λ) be a measure space, where λ is the Lebesgue measure,
and let (Rm, dV) be a metric space with dV Euclidean distance on Rm.
Furthermore, endow ([0, 1], λ) with the metric induced by λ. Consider the
set of continuous functions

F = C([0, 1],Rm) := {f : [0, 1] → Rm ; f continuous}.

That is, functions f from the metric measure space ([0, 1], λ) to the metric
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space (Rm, dV), such that

lim
t→s

dV(f(t), f(s)) = 0.

The curve Cf , associated with the function f , is defined as

Cf : [0, 1] → [0, 1]× Rm : t �→ (t, f(t)).

The graph Gf of f is then given by the image Gf := Cf ([0, 1]) ⊂ [0, 1]× Rm.
The classical definition of Hausdorff distance defines a metric between
sets. On the other hand, the usual definition of Fréchet distance defines a
metric between curves. Thus, Hausdorff and Fréchet distances between
functions are naturally understood as the Hausdorff and Fréchet distances
between the Graphs or the Curves (respectively) of the functions.

As the mappings f �→ Cf and Cf �→ Gf are bijective, the metrics between
functions f ∈ F , between curves Cf , and between graphs Gf , can all
be interpreted interchangeably to produce metrics on suitable subsets of
[0, 1]× Rm. We endow the space [0, 1]× Rm with the usual q-metric:

dC((t, v), (s, w)) :=

⎧⎨
⎩
(|t− s|q + dV(v, w)q)

1
q for 1 ≤ q < ∞,

max {|t− s|, dV(v, w)} for q = ∞.
(1.1)

The natural choice q = 2 yields the metric induced by the L2 norm on Rm+1.

1.2 Treatment of functional data in practice

As functional data – data arising from measuring processes of continu-
ous nature – is inherently only partially observable, often the first step to
analysing such data is to recreate approximations of the observed functions
that best match the known (or assumed) characteristics of the underly-
ing process. These functional reconstructions allow us to approximate
the value of the underlying functions at any arbitrary point t over the
domain T , enabling us to examine the observed functions over a unified
measurement grid in cases where the individual sequences of measure-
ment points {tij}ni

j=1 differ from an observation to another. In many cases,
the reconstructed functions are also used to extract further information
of the underlying processes, such as derivative curves (of various degrees)
or time registration curves that can be leveraged in the analysis. In fact,
in some cases, it is precisely the use of such auxiliary curves that allow
us to access the key modes of shape and structural variation intrinsic to
functional data.

A common approach to the functional reconstruction process is to ap-
proximate the underlying functions f by a linear expansion in terms of a
suitable number K of known basis functions φk,

f(t) ≈
K∑
k=1

ckφk(t),
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where ck ∈ R, and the basis functions φk are chosen to be independent in
an affine sense (see for example Ramsay and Silverman [2005], Hastie et al.
[2009] and Horváth and Kokoszka [2012]). Furthermore, the chosen basis
system must have the ability to approximate any function in the target
class of functions arbitrarily well with a large enough number K of used
basis function. Many of the commonly utilized basis systems can achieve
satisfactory approximations of suitable classes of underlying functions
with relatively small collections of basis functions. The coefficients ck, for
a given collection of basis functions {φk}, can be approximated through
regression techniques such as weighted least squares error minimization
or roughness penalty error minimization. For a thorough overview on these
and various other approximation techniques, see Ramsay and Silverman
[2005] and Hastie et al. [2009].

The choice of a suitable basis has a crucial role in cases where approxi-
mation of the derivative curves is of interest. Due to the linear structure
of the basis expansion, derivatives of the approximated functions directly
translates to derivatives of the basis functions

f (m)(t) = Dmf(t) ≈
K∑
k=1

ckD
mφk(t),

where for m ≥ 1 we denote the differential operator Dmf(t) = dm

dtm f(t).
The functional reconstruction step is also commonly called smoothing

of the observation sequences, as, along with recreating approximations
of the true functional forms of the observations, its secondary objective is
to smooth out the effects of measurement error - noise - on the observed
sequences. The presence of noise in the raw data is commonly modeled
through an additive model, where the observed values are assumed to be a
sum of the true value of the underlying process fi(t) together with an error
term εi(t).

yij = fi(tij) + εi(tij).

The error terms εi(t) are often assumed to have some white noise proper-
ties, such as being independently distributed with mean zero and constant
variance, and to be the major contributor to the observed roughness of the
otherwise relatively smooth underlying process. Note that while smooth-
ness assumptions of the underlying process are often leveraged in the
reconstruction step to allow for non-parametric estimation of the approxi-
mating functions, the smoothness of the resulting approximations is not in
itself the goal of the functional reconstruction process. Indeed, there are
plenty of examples of very rough, even nowhere differentiable processes
such as fractional Brownian motion, various Gaussian processes used in
modeling, and processes governed by stochastic differential equations, that
can in principle be analysed through the means of functional data analysis.
Thus, smoothing of the observed sequences is in this context understood
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relative to the roughness imposed on the observations by the noise in the
measurement process.

It is worth noting that while the error process ε is routinely assumed to be
white noise -like or stationary, these assumptions are often too simple for
most functional data. For instance, it is common for the variance of the er-
ror to vary over the argument t, or for the errors to exhibit autocorrelations
on varying time scales or cycles. This suggests that the ε, often deemed
as erroneous noise, is itself a process we could model if we so choose. In
practice, we often elect to simply ignore the effects of the error process
and to focus on modeling the underlying functions fi as including variable
variance or autocorrelation structure of the residuals into the functional
model can make model estimation difficult, escalate the computational
load, and can still easily result in estimates that proved virtually no ad-
vantages over those achieved by assuming independence in the residuals.
Nevertheless, in practice, it is up to the analyst’s discretion to evaluate on
a case-by-case basis the need for the considered functional model to also
include modeling of the error process. In some cases, modeling the error
process can be necessary to produce accurate functional models.

In the theoretical framework of functional data analysis, the functions
are often assumed to be entirely observed, such that the true functional
form of the underlying process giving rise to the observed random paths
can be accessed. Thus, the underlying processes are often simply assumed
to be continuous or to belong to another class of sufficiently well-behaved
functions such as Lebesgue-integrable functions. However, in practice
due to the presence of noise in the measurement process and functional
data being only partially observable over a (relatively sparse) number of
discrete measurement points, the continuity and structural assumptions
are often supplemented with further smoothness assumptions to aid in
constructing functional approximations from the raw data.

Commonly, two different approaches are encountered in literature. In
the first approach, popularized by Ramsay and Silverman [2005], the
underlying process itself is assumed smooth, leading to the construction of
smooth approximations of the observed sample paths via a suitably chosen
system of basis functions. In the second approach, often encountered
in the context of functional principal components (see for exampleYao
et al. [2005], Hall et al. [2006] and Li and Hsing [2010]), the covariance
function of the underlying process (instead of the observations) is assumed
or constrained to be smooth. By utilizing Mercer’s Theorem and Karhunen-
Loève Theorem, this results in smooth approximations of the underlying
process via the eigenfunctions of the covariance function. Other approaches
to smoothing functional data include the use of kernels smoothers (see:
Wand and Jones [1994]) and local linear or polynomial regression (see: Fan
and Gijbels [1996]), to get rid of noisy variation in the raw observation
sequences. These methods are commonly used as supplementary pre-
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smoothing steps for especially noisy data, to allow for better functional
approximations as well as to obtain estimates of the mean and covariance
functions (see for instance Zhang and Wang [2016]).

In the first approach, it is directly assumed that the underlying pro-
cess is smooth and has some suitable number of continuous derivatives.
Consequently, the system of basis functions chosen for the function recon-
struction is directly influenced by this assumption such that the resulting
approximations exhibit the desired smoothness properties. Thus, we might
attempt to simultaneously approximate the underlying functions together
with a suitable number of derivative curves. Examples of such basis func-
tion systems that provide smooth functional approximations include the
commonly used B-spline basis functions for smooth continuous functions
with locally placed features (see: de Boor [2001]), the Fourier basis func-
tions suited for periodic data (based on the common Fourier series) and the
wavelet basis system for square-integrable functions that combine some
of the features of splines and Fourier bases (see: Daubechies [1992]). For
further examples of various other functional basis systems encountered in
the literature, see Ramsay and Silverman [2005] and Hastie et al. [2009].

The B-spline basis functions of order m are defined over a fixed sequence
of breakpoints τ as polynomials of order m that are positive over no more
than m subsequent breakpoint intervals, join together smoothly at the
breakpoint separating the non-zero regions of two B-spline functions, and
possess continuous derivatives of order m− 2 that also coincide at these
boundaries. Due to the B-spline basis functions having a compact support
of fewer than m subsequent breakpoint intervals, they have similar compu-
tational advantages as orthogonal basis systems in that the computational
complexity increases only linearly with respect to the number of basis
functions used. Furthermore, although B-splines generally provide smooth
and continuous functional approximations, they are capable of also approx-
imating abrupt structural changes or even local discontinuity points by
placing multiple congruent breakpoints at the same point in the domain.

Definition 1.2.1 (B-spline basis). Given a sequence of n breakpoints τ =

t0, t1, . . . , tn the kth B-spline Bm
k of order m over the breakpoint sequence

is defined recursively by

B1
k(t, τ) :=

{
1, if tk < t < tk+1

0, otherwise,

and

Bm+1
k (t, τ) :=

t− tk
tk+m − tk

Bm
k (t, τ) +

tk+m+1 − t

tk+m+1 − tk+1
Bm

k+1(t, τ).

Then, the B-spline basis functions φk of order m for the sequence of break-
points τ are given simply by φk(t) = Bm

k (t, τ).
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The well known Fourier basis system suitable for approximating periodic
data arises from the Fourier series:

f(t) = c0 + c1 sinωt+ c2 cosωt+ c3 sin 2ωt+ c4 cos 2ωt+ . . .

where the parameter ω determines the period 2π/ω of the series expansion.
The Fourier basis system can prove to be especially useful in representing
smooth functions that have stable behaviour and exhibit similar curvature
throughout the domain. However, for functions with pronounced local
features (such as abrupt changes in curvature that result in locally peaked
paths for example) or potentially discontinuous paths or derivatives, the
Fourier series may provide poor approximations.

Definition 1.2.2 (Fourier basis). Given a parameter ω, the Fourier basis
functions ϕk are given by

ϕk(t) =

⎧⎪⎪⎨
⎪⎪⎩
1, k = 0

sin rωt, k = 2r − 1

cos rωt, k = 2r.

The final functional basis example, the wavelet basis system, is suitable
for approximating square-integrable functions on R, especially when their
derivative curves are of no particular interest. Informally, a wavelet is a
wave-like function with an amplitude that starts from zero, increases or
decreases oscillating around zero one or more times, and finally returns
back to zero. The wavelet basis system consists of child wavelets ψjk(t)

that, for integers j and k, are formed as dilations and translations of a
mother wavelet ψ of the form

ψjk(t) = 2j/2ψ(2jt− k).

Within this basis system, for suitable J and K, the function f(t) can then
be approximated as

f(t) ≈
J∑

j=1

K∑
k=1

cjkψjk(t),

for some real coefficients cjk. The mother wavelet ψ is at the very least
required to belong to the subspace L1 ∩ L2 of functions that are both
absolutely integrable as well as square-integrable, to ensure that the
wavelet can be constrained to have zero mean and L2-norm one. The
simplest possible example of a mother wavelet is the well known Haar
mother wavelet introduced in Haar [1910]:

ψ(t) =

⎧⎪⎪⎨
⎪⎪⎩
1, 0 ≤ t < 1

2

−1, 1
2 ≤ t < 1

0, otherwise.

However, in practice, continuously differentiable functions with compact
support are preferred, of which many examples exist.
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Definition 1.2.3 (Wavelet basis). Given a mother wavelet ψ ∈ L1 ∩ L2

that is absolutely integrable as well as square-integrable, for j, k ∈ Z, the
wavelet basis functions ψjk are given by

ψjk(t) = 2j/2ψ(2jt− k).

In the second approach, commonly associated with the context of func-
tional principal component analysis, the smoothness is assumed on the
covariance process

K(s, t) = cov(f(s), f(t)),

instead of on the underlying processes themselves. Common methodol-
ogy for estimating the covariance function utilizes local linear curve and
surface smoothers (Fan and Gijbels [1996]) in estimating a smooth mean
function and subsequently a smoothed covariance function from the raw
functional data. For further details on the estimation process, see for ex-
ample Yao et al. [2005], Hall et al. [2006], Li and Hsing [2010] and Zhang
and Wang [2016].

By Mercer’s Theorem, for continuous K(s, t), the set of eigenfunctions
{ϕj}∞j=1 of

λjϕj(t) =

∫ b

a
K(s, t)ϕj(s)ds,

corresponding to a nonnegative sequence of eigenvalues {λj}∞j=1, defines
an orthonormal basis of L2([a, b],R). Furthermore, the eigenfunctions
corresponding to the non-zero eigenvalues are continuous over [a, b]. The
covariance function K admits to the representation

K(s, t) =
∞∑
j=1

λjϕj(s)ϕj(t).

Now, by utilizing the Karhunen-Loève theorem, random functions f on
L2([a, b],R) with a mean function μ can be expressed as

f(t) = μ(t) +
∞∑
j=1

zjϕj(t),

where the random variables zj =
∫ b
a (f(t) − μ(t))ϕj(t)dt are uncorrelated

and have zero-mean and variance λj . Thus, by estimating the eigenfunc-
tions ϕj from a smoothed covariance process, or by utilizing a penalty
on the roughness of the eigenfunction estimates, we obtain a system of
(sufficiently) smooth basis functions in terms of which we can smoothly
approximate square-integrable functions. Detailed discussion of smoothly
approximating the eigenfunctions can be found in for example Rice and
Silverman [1991] and Capra and Müller [1997].

While the smooth approximation of the underlying functions is a com-
mon approach in functional data analysis, it has been pointed out that
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these smoothness assumptions exclude many rough processes from FDA
and limit the scope of FDA to processes with smooth paths. As a remedy,
Jouzdani and Panaretos [2021] propose a modified version of the usual
covariance approximation procedure (discussed in Yao et al. [2005], Hall
et al. [2006] and Li and Hsing [2010]), that enables approximation of the
mean and covariance functions even under sparse and noisily observed
settings, without relying on smoothness assumptions. The key observation
of the approach is that rough but continuous sample curves may have a
covariance function that is smooth outside of the diagonal K(t, t). Thus,
restricting the covariance approximation to the (lower) triangular region
((s, t) ∈ [a, b]2|a ≤ t ≤ s ≤ b) and utilizing the symmetry over the diagonal,
produces an approximation of the covariance function without requiring
differentiability. Examples of processes encompassed by this approach, usu-
ally deemed too rough to be approached through the means of functional
data analysis, include the standard Brownian motion, the standard Brow-
nian bridge, the geometric Brownian motion, and the Ornstein-Uhlenbeck
process.
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2. Statistical Depth

In this section we explore the concept of statistical depth. First, we intro-
duce the notion of statistical depth in its original multivariate context and
discuss its applications. Then, we extend our understanding of depth to
the functional context and explore the various new features that emerge
from the infinite dimensional structure of functional data.

2.1 Multivariate Depth

Statistical depth is a nonparametric multivariate inferential tool that has
received a lot of attention in the literature due to its several desirable,
distributional feature revealing properties. In its original conception, the
goal of statistical depth was to provide a natural center-outward ordering
of multivariate data. That is, a depth function is any function D : Rm → R :

x �→ D(x, P ) that associates to each point x ∈ Rm a measure of its centrality
with respect to the distribution P on Rm. The values of the statistical
depths usually range between 0 and 1, where the depth values close to 1
are attained by central points. This depth-based ordering of Rm provides
a natural basis for expanding the univariate rank and order statistics to
the multivariate setting. Furthermore, statistical depth provides a useful
tool in exploring distributional features of P , such as asymmetry, spread
and shape, via nested depth-based contours. For further details, see for
example Tukey [1975], Liu et al. [1999] and Serfling [2010]. As statistical
depth coincides with the notion of quantiles in univariate settings, notions
of multivariate quantiles based on depth regions or equi-depth contours
have been studied in the literature. See for example Liu et al. [1999],
Serfling [2010] and Hallin et al. [2010].

To establish a center-outward ordering of Rm from a depth-based median
outwards, we first require a relevant notion of center. If the underlying
distribution P is symmetric, the concept of centrality is often tied to the
center of symmetry (with respect to the corresponding notion of symmetry).
Let X ∼ P be a random vector on Rm. Commonly considered notions
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of multivariate symmetry about θs ∈ Rm include (i) central symmetry:
(X − θs) ∼ (θs −X), (ii) angular symmetry: (X − θs)/||X − θs|| is centrally
symmetric about the origin (Liu [1990]), and (iii) halfspace symmetry:
P (X ∈ H) ≥ 1/2 for every halfspace H containing θs (Zuo and Serfling
[2000a]).

The notion of center outward ordering suggests that the points close to
the center should be assigned the highest depth values, with the depth
values decreasing as the distance to the depth-based center increases.
Thus, in order to provide a unique ordering of Rm and to preserve the
intuition of center-outward ordering, conventional approaches to statistical
depth definitions tend to ignore multimodality features of the underlying
distribution P . However, this is a deliberate choice that was made in the
general definition of statistical depth, that also comes with ramifications
on the suitability of depth in analysis of distributions that might be mul-
timodal or have non-convex support. While we shall return to this topic
later, let us first take a look at some classical depth approaches as well as
the axiomatic definition of statistical depth proposed by Zuo and Serfling
[2000a].

Let x ∈ Rm an arbitrary point, the depth of which we might wish to
measure. Let P ∈ P(Rm), the set of all Borel probability measures on Rm,
and let X ∼ P an Rm valued random variable. Tukey [1975] introduced
perhaps the most universally applied and studied notion of depth, the
halfspace depth HD, defined for a point x ∈ Rm with respect to a probability
measure P as the minimum probability mass contained by any closed
halfspace that also contains x. In the multivariate case m > 1, that is

HD(x, P ) := inf
u∈Rm, ||u||=1

P (uT (X − x) ≥ 0),

where u belongs to the unit hypersphere on Rm with respect to the usual
Euclidean norm || · || on Rm. Equivalently, in the univariate, case the
halfspace depth is expressed as

HD(x, P ) := min{P (X ≤ x), 1− lim
y→x−

P (X ≤ y)},

from which the connection of depth to univariate quantiles becomes imme-
diately apparent.

Liu [1990] introduced simplical depth SD, defined for x ∈ Rm with
respect to P as the probability of x belonging to a random simplex in Rm.
That is,

SD(x, P ) := P (x ∈ S[X1, . . . , Xm+1]),

where X1, . . . , Xm+1 are i.i.d. random variables with distribution P , and
S[x1, . . . , xm+1] denotes the m-dimensional simplex – the set of all convex
combinations of the vertices x1, . . . , xm+1 on Rm.

Liu and Singh [1993] considered these along with two more depth func-
tions, the Mahalanobis depth and the majority depth, in the formulation of
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a depth-based outlyingness measure. Mahalanobis depth MhD is defined
for x ∈ Rm with respect to P through the inverse of the Mahalanobis
distance of Mahalanobis [1936], from x to the distribution P . That is,

MhD(x, P ) :=
(
1 + (x− μP )

TΣ−1
P (x− μP )

)−1
,

where μP and ΣP denote the mean vector and covariance matrix of P

respectively.
Singh [1991] considered the Majority depth MjD, defined for x ∈ Rm

with respect to P as the probability of x being in a randomly chosen such
halfspace of Rm, that also contains at least 1/2 the probability mass of P .
That is,

MjD(x, P ) := P (x ∈ H[X1, . . . , Xm]),

where X1, . . . , Xm are i.i.d. random variables with distribution P and
H[x1, . . . , xm] denotes the halfspace on the side of the boundary, given by
the hyperplane containing the points x1, . . . , xm, with more probability
mass.

Serfling [2002] introduced the spatial depth SpD, defined for x ∈ Rm with
respect to P through the spatial quantiles of Chaudhuri [1996]. That is,

SpD := 1−
∣∣∣∣
∣∣∣∣E
[

x−X

||x−X||

]∣∣∣∣
∣∣∣∣ ,

where || · || denotes the usual Euclidean norm on Rm and E [(x−X)/||x−X||]
expresses the inverse of the spatial quantile function at x.

These and a plethora of other depth functions and their properties have
been studied by various authors in the literature. Donoho and Gasko
[1992] developed affine-equivariant multivariate location estimators based
on the halfspace depth, that remain robust in high dimensions. Using
halfspace depth, Yeh and Singh [1997] developed bootstrap confidence
regions for multivariate descriptive parameters. Nolan [1992], Donoho and
Gasko [1992] and Massé and Theodorescu [1994] (among others) studied
the depth contours induced by halfspace depth. Liu and Singh [1993]
developed a depth-based outlyingness measure, called the quality index,
for assessing the outlyingness of a population (or a set) with respect to
another. Rousseeuw and Ruts [1996], Ruts and Rousseeuw [1996] and
Rousseeuw and Struyf [1998] developed algorithms for computing depth
functions and depth based contours. Koshevoy and Mosler [1997] intro-
duced a zonoid depth based on a zonoid trimming procedure. Rousseeuw
and Hubert [1999] introduced the regression depth. Liu et al. [1999] devel-
oped several inferential and graphical tools for using depth in explorative
data analysis, and considered examples using several depth definitions
including the halfspace depth, the Mahalanobis depth, the convex hull
peeling depth (Barnett [1976]), the Oja depth (based on the location mea-
sures introduced by Oja [1983] for centrally symmetric distributions), the
simplical depth, the majority depth, and the likelihood depth (Fraiman
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and Meloche [1999]). Rousseeuw and Ruts [1999] provided insights to
the computation of depth for population distributions and studied contour
lines. Zuo and Serfling [2000b] studied depth-based multivariate scatter
measures. Zuo and Serfling [2000a] categorized many of the previously
proposed depth approaches to several depth classes, studied their proper-
ties, and proposed the first formal axiomatic approach to statistical depth.
Several authors including Liu et al. [1999], Ghosh and Chaudhuri [2005b],
Ghosh and Chaudhuri [2005a], Dutta and Ghosh [2012], Li et al. [2012]
and Paindaveine and Van Bever [2015] studied depth-based approaches
to supervised classification problems. Chen et al. [2009], Hlubinka et al.
[2010], Agostinelli and Romanazzi [2011], and Paindaveine and Van Bever
[2013] consider localized approaches to statistical depth that extend the
usability of depth in statistical inference to multimodal and non-convexly
supported distributions. In an extensive survey, Nagy et al. [2019] studied
the relation of halfspace depth in statistics to some measures of symmetry
considered in geometry and functional analysis. Motivated by these find-
ings, Nagy and Dvořák [2021] studied the connection between the concept
of illumination from convex geometry and the notion of statistical depth,
and introduced the illumination depth for multivariate data.

Drawing upon the previous ideas of Liu [1990], the first formal axiomatic
definition of statistical depth was formulated by Zuo and Serfling [2000a] as
a bounded and non-negative function fulfilling the following four desirable
properties: affine invariance, maximality at center, monotonicity relative to
the deepest point and vanishing at infinity. These properties are collected
together in the following definition.

Definition 2.1.1 (Zuo and Serfling [2000a]). Let P denote the class of
distributions on the Borel sets of Rm and let X ∼ PX be a Rm valued
random variable with PX ∈ P. The bounded and non-negative mapping
D(·, ·) : Rm × P → R is called a statistical depth function if it satisfies the
following properties:

P1 (Affine invariance) D(Ax+ b, PAX+b) = D(x, PX) holds for any nonsin-
gular matrix A ∈ Rm×m and vector b ∈ Rm.

P2 (Maximality at center) D(θ, P ) = supx∈Rm D(x, P ) holds for any P ∈ P
having a unique center of symmetry θ with respect to some notion of
symmetry.

P3 (Monotonicity relative to the deepest point) For any P ∈ P with a
deepest point θ, it holds for all λ ∈ [0, 1] that D(x, P ) ≤ D(θ+λ(x− θ), P ).

P4 (Vanishing at infinity) D(x, P ) → 0 as ||x|| → ∞ holds for every P ∈ P.

The corresponding sample depth, denoted by Dn(x, Pn), is attained by
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replacing P with its empirical measure Pn.

These properties collect precisely the requirements for a function to
provide a meaningful center-outward ordering of points in Rm relative to
a distribution P ∈ P. Property P1 ensures that the ordering provided by
any depth function is unaffected by affine transformations of the space or
the underlying measures, and truly considers the location of the points
of Rm in relation to the distribution P . For any distribution P with a
uniquely defined center of symmetry, property P2 establishes this center
of symmetry as the point of maximum depth with respect to which the
points of Rm are to be ordered. Property P3 maintains the center-outward
ordering interpretation of depth, preventing the "inner points" of the
distribution P from being assigned low depth values. Finally, P4 requires
that the depth of a point should decrease towards zero as the distance from
the center of the distribution increases without bounds.

In light of Definition 2.1.1, Zuo and Serfling [2000a] also studied a sig-
nificant number of previous depth approaches, including depth extensions
of some methods originally introduced in a non-depth context. Reportedly,
many of the studied depth functions fail to satisfy some of the required
properties P1–P4 and their use should therefore be carefully evaluated
based on the application and context. Furthermore, drawing from ideas
presented in the previous depth literature, Zuo and Serfling [2000a] iden-
tified several classes of general approaches to depth constructions and
studied their properties. These classes were: (i) approaches to depth based
on measuring the expected closeness of a point x to a random sample
X1, . . . , Xn of size n from P (example: simplical depth, majority depth);
(ii) approaches based on the inverse of the expected distance from x to
the random sample X1, . . . , Xn of size n from P (example: Lp depth1); (iii)
approaches based on the inverse of the outlyingness of x with respect to
P (example: Mahalanobis depth); and (iv) approaches based on the mini-
mum probability mass carried by a closed set C ∈ C containing x, in some
suitable class of closed subsets C of Rm (example: halfspace depth).

However, as the goal of Definition 2.1.1 is to establish the criterion
for a function to provide a meaningful center-outward ordering of Rm,
it becomes immediately apparent from examining the properties P1–P4
that such depth definitions are only suitable to describing the features of
distributions that are unimodal and have convex support. Indeed, property
P3 requires that the maximum depth with respect to any distribution
P ∈ P(Rm) is attained by at most a convex set of deepest points, with
the depth values decreasing monotonously along any ray originating from
any of the deepest points. Thus, depth is unimodal in the sense that the
contour lines of the depth regions describe a single global peak maximizing

1For p > 0, the Lp depth LpD of x ∈ Rm with respect to P was defined by Zuo
and Serfling [2000a] as LpD(x, P ) = (1 + E||x−X||p)−1, where X ∼ P and || · ||p
denotes the Lp-norm.
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the depth value with no local maxima. Consider the depth regions R(α),
introduced by Liu et al. [1999] as the set of points in Rm attaining the
depth value of at least α. That is, R(α) = {x ∈ Rm : D(x, P ) ≥ α},
for some implicit distribution P ∈ P(Rm). In suitable settings, these
depth regions, and various closely related notions, have been established
as useful tools in analysis of the features of the underlying distribution.
However, while the depth regions for any α < αmax = maxxD(x, P ) are
allowed to be non-convex, P3 requires them to still be fully connected
and that for any x ∈ R(α), any y ∈ R(αmax) and any λ ∈ [0, 1], it holds
that y + λ(x− y) ∈ R(α), where R(αmax) denotes the region of maximum
depth. This limits the usefulness of depth as defined in Definition 2.1.1
in cases where sensitivity to multimodality is essential, or the considered
distributions might have convex supports. As an example, consider the
widely applied halfspace depth that satisfies all of the properties P1–P4.
As the halfspace depth is established to be quasi-concave for any positive
measure on the Borel sets of Rm (see: Rousseeuw and Ruts [1999]), it,
in particular, is quasi-concave for any probability measure P ∈ P(Rm),
meaning that it induces contour lines that are unimodal (in the above
sense) and convex throughout, regardless of the underlying distribution.

To remedy these issues, there have been attempts in the literature at
extending the applicability of statistical depth to multimodal and non-
convexly supported distributions, while still retaining the desirable prop-
erties P1–P4 when considered with unimodal and convexly supported
distributions. These extensions are called local depths, as they aim to
bridge the gap between the global ordering of Rm and sensitivity to the
local features of the distribution. Chen et al. [2009] introduced the kernel-
ized spatial depth, that achieves localization through a suitably chosen
kernel function, by computing the spatial depth in a feature space induced
by the chosen kernel. Hlubinka et al. [2010] considered a weighted halfs-
pace depth, based on considering weighted probabilities in the halfspaces
rather than the probability of the halfspace. Agostinelli and Romanazzi
[2011] introduced localized versions of the halfspace depth and the sim-
plical depth, defined through replacing the halfspaces with finite-width
slabs and by restricting the maximum volume of the considered simplices,
respectively. Paindaveine and Van Bever [2013] introduced perhaps the
most universally applicable local depth construction, that can be used in
conjunction with any statistical depth function to provide a measure of
local centrality at any level of locality. To base the construction purely
on depth, the localization is achieved through the use of the depth-based
neighbourhoods of Paindaveine and Van Bever [2015].
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2.2 Functional Depth

As extremely high dimensional data has become prevalent across many
fields of science, extending methods of statistical inference for such data
has received a lot of attention in the literature. Due to its richness, para-
metric modeling of functional data that accurately captures its diverse
features is known to be difficult. Thus, due to its nonparametric nature
and versatility in exploration of the distributional characteristics of multi-
variate data, it is not surprising that statistical depth has been seen as a
potentially attractive tool in the functional context as well.

In the following, let x ∈ H(V) for some suitable Hilbert space H with a
compact support V. Let P ∈ P(H), the space of all probability measures
on H, let X ∼ P be a H valued random variable, and let PX(t) denote the
marginal distribution of X at time t ∈ V. For simplicity, let V ⊂ R.

The first instance of a functional depth was introduced by Fraiman and
Muniz [2001], who proposed an integrated approach to depth by measuring
the (often univariate) point-wise depth of x at t, D(x(t), PX(t)), across the
domain, and then taking the integral. That is, for a suitable statistical
depth D, the corresponding integrated functional depth FD of x ∈ H with
respect to P is given by

FD(x, P ) :=

∫
t∈V

D(x(t), PX(t))dt.

Following this idea, a wide variety of definitions and approaches to
functional depth have been introduced in the literature. Cuevas et al.
[2007] proposed the random projection depth and the h-mode depth. The
random projection depth of x considers the univariate depths of the pro-
jections 〈u, x〉, when projected on random elements u ∈ H through 〈u, x〉 =∫
V u(t)x(t)dt, with respect to the projected distribution, P〈u,X〉. To gain

a representative value for depth, an average is taken. In a double ran-
dom projection version of the method, the bivariate sample of random
projections of x and its derivative curve x′ were considered. In the h-mode
depth, the depth of x ∈ H with respect to P is determined as the expec-
tation of the kernel-weighted distance (in a norm suitable to H) from x

to X ∼ P . A fixed tuning parameter h is used in re-scaling of the chosen
kernel. Cuesta-Albertos and Nieto-Reyes [2008] considered the random
Tukey depth for functional data, a version of the random projection depth
where the averaging is replaced by taking a minimum over a set of ran-
domly chosen projections. Cuevas and Fraiman [2009] considered the
integrated dual depth, determined for x with respect to P through the
expected depth of f(x) with respect to Pf(X), where f ∈ H∗ are opera-
tors in the dual space H∗. The expectation is computed with respect to
a suitable distribution on H∗. In our setting with H a Hilbert space, the
operators f are simply inner products with fixed elements u ∈ H. In the
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paper, Cuevas and Fraiman [2009] also considered Banach valued func-
tions. López-Pintado and Romo [2009] introduced the band depth and
the modified band depth. For x ∈ H with respect to P , the band depths
consider the belonging of the graph Gx = {(t, x(t)) : t ∈ V} to the bands
B(X1, . . . , Xj) = {(t, y) : t ∈ V, y ∈ [mink=1,...,j Xk(t),maxk=1,...,j Xk(t)]} over
different values of j, where X1, . . . , Xj are i.i.d. random functions from
the distribution P . The band depth is given by the sum of the probabili-
ties of Gx being entirely contained within the band B(X1, . . . , Xj) over a
range of values j = 2, . . . , J . Instead of the probabilities, the more flexible
modified version considers the expected proportions of the domain over
which x is contained in such band of j random functions, and a sum is
taken over the range of values j = 2, . . . , J . López-Pintado and Romo
[2011] introduced the the half region depth and the modified half region
depth. For x ∈ H with respect to P , the half region depths consider the
belonging of Gx to the half regions A(X) = {(t, a) : t ∈ V, a ≥ X(t)} and
B(X) = {(t, b) : t ∈ V, b ≤ X(t)}, for some X ∼ P . The half region depth
is given by the minimum of the probabilities of Gx belonging entirely to
either A(X) or B(X). For the modified version, instead of the probabilities,
the minimum of the expected proportions of the domain over which Gx

belongs to A(X) or B(X) is considered. Mosler [2013] proposed the idea
of considering an infimum of the pointwise depths over the domain, in-
stead of an integral. Furthermore, Mosler [2013] introduced the Φ-depths,
a class of infimum-based depths with a close relation to the integrated
dual depth. For Φ-depth, for some suitable set Φ ⊂ H∗ in the dual space,
the univariate depths of f(x) with respect to Pf(X) are considered over
all f ∈ Φ, and the depth value is taken to be the infimum. Claeskens
et al. [2014] introduced the integrated multivariate functional depth, a
direct extension of the integrated functional depth FD. In the related
approach, the univariate function x ∈ H, for which the depth is evaluated,
is supplemented at each time point t ∈ V with additional information,
arising for example from its derivative or time-registration curves, to form
a J-dimensional vector. Then, the multivariate depth of the supplemented
vector is evaluated with respect to the joint distribution of the marginal
distributions of the supplementary curves (and x, of course). That is, let
xJ = (x(t), x∗1(t), . . . , x

∗
J(t))

T denote the joint vector of the values of x and
its J supplementary curves x∗1, . . . , x

∗
J at time t. Then, the depth of x ∈ H

with respect to P ∈ P(H) is attained by integrating the multivariate depth
of xJ with respect to P(X(t),X∗

1 (t),...,X
∗
J (t))

T ∈ P(RJ+1) over the domain, where
X ∼ P and X∗

1 , . . . , X
∗
J are supplemental curves derived from X. In appli-

cations, the use of an additional weight function (that integrates to one)
allows to control the sensitivity of the depth to the functional variations
over different regions of the domain. Chakraborty and Chaudhuri [2014a]
as well as Chakraborty and Chaudhuri [2014b] studied the functional spa-
tial depth, a straightforward extension of the multivariate spatial depth
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SpD to the functional context by replacing the Euclidean norm in Rm with
an appropriate norm in H. Sguera et al. [2014] and Sguera et al. [2016]
studied the kernelized functional spatial depth, a generalized version of
the kernelized spatial depth of Chen et al. [2009] that naturally extends
to the functional setting in a way similar to the functional spatial depth.
Nagy et al. [2017] introduced the classes of Jth order integrated and infi-
mal depths, shape sensitive approaches to functional depth that expand
upon the integrated functional depth of Fraiman and Muniz [2001] and its
corresponding infimal approach. For these classes of functional depths, for
a fixed J , the multivariate depth of the vector (x(t1), . . . , x(tJ))T of multiple
time margins t1, . . . , tJ is considered with respect to the joint distribution
P(X(t1),...,X(tJ ))T ∈ P(RJ), where X ∼ P . Then, either an integral or an
infimum is taken over all combinations of (t1, . . . , tJ)T ∈ VJ , where VJ is
the J-fold cartesian product of V . Helander et al. [2020] proposed a depth-
based application-driven inferential method for functional data called
Pareto-depth. In the approach, the observed curves x ∈ H are mapped
to a J-variate vector through several mappings fj : H → R, j = 1, . . . , J ,
that measure some characteristics or features of the observations that are
deemed of importance in the applied context. Then, the depth of the curve
x with respect to P is determined as the multivariate Pareto-depth of its
associated vector with respect to the joint distribution of the mappings,
P(f1(X),...,fJ (X))T ∈ P(RJ), where X ∼ P . Nagy et al. [2021] considered the
class of Jth order kth moment integrated depths, and studied their proper-
ties. The approach expands upon the Jth order integrated depths of Nagy
et al. [2017] by involving the depth distribution of the cross-sectional halfs-
pace depth in to the functional depth consideration. Harris et al. [2021]
introduced the elastic depths, based on separate analysis of the amplitude
and phase variability of the functions. First, outlyingness measures are
defined based on both the amplitude distance (difference in the function
value) and phase distance (difference in the timing of the structural fea-
tures) between the functions. The elastic depths are then defined through
the inverse of the outlyingness measures.

However, despite the rich body of literature that has developed around
functional statistical depth and its uses in functional data analysis, func-
tional depth still lacks a formal, agreed upon definition and a set of criteria
to fulfill. This problem has been discussed by several authors, including
Nieto-Reyes [2011], Nagy et al. [2016], Nieto-Reyes and Battey [2016] and
Gijbels and Nagy [2017], all of whom have made attempts at bringing
together a formal set if criterion for functional depth. Nieto-Reyes and
Battey [2016] proposed the first attempt at defining such a set of formal
properties for functional depth, collected under Definition 2.2.2. Further-
more, Nieto-Reyes and Battey [2016] provide an extensive analysis of the
most prominent functional depth examples in terms of the proposed prop-
erties.

31



Statistical Depth

Definition 2.2.1 (Convex hull (Nieto-Reyes and Battey [2016])). Let (H,A, P )

be a probability space where H is a Hilbert space with compact support
V, A is the σ-algebra on H generated by the open d-metric balls for some
suitable metric d, and P ∈ P(H), the space of all probability measures on H.
Define E to be the smallest set in the σ-algebra A such that P (E) = P (H).
Then the convex hull of H with respect to P is defined as

CH(H, P ) := {x ∈ H : x(v) = αL(v) + (1− α)U(v), v ∈ V, α ∈ [0, 1]},

where L := {infx∈E x(v) : v ∈ V} and U := {supx∈E x(v) : v ∈ V}.

Definition 2.2.2 (Nieto-Reyes and Battey [2016]). Let (H,A, P ) be a prob-
ability space as in Definition 2.2.1. The bounded and non-negative mapping
D(·, ·) : H×P → R is called a statistical functional depth if it satisfies the
following properties:

FP1 (Distance invariance) D(f(x), Pf(X)) = D(x, PX) holds for any x ∈ H
and f : H → H such that for any y ∈ H we have d(f(x), f(y)) = afd(x, y),
where af ∈ R \ {0}.

FP2 (Maximality at center) For any P ∈ P(H) with a unique center of
symmetry θ ∈ H with respect to some notion of functional symmetry, it
holds that D(θ, P ) = supx∈HD(x, P ).

FP3 (Strictly decreasing with respect to the deepest point) For any P ∈
P(H) for which D(z, P ) = maxx∈HD(x, P ) exists, D(x, P ) < D(y, P ) <

D(z, P ) holds for any x, y ∈ H such that min{d(y, z), d(y, x)} > 0 and
max{d(y, z), d(y, x)} < d(x, z).

FP4 (Upper semi-continuity in x) D(x, P ) is upper semi-continuous as a
function of x; i.e. for all x ∈ H and all ε > 0 there exists a δ > 0 such that
supy : d(x,y)<δ D(y, P ) ≤ D(x, P ) + ε.

FP5 (Receptivity to convex hull width across the domain) It holds that
D(x, PX) < D(f(x), Pf(X)) for any x ∈ CH(H, P ) for which D(x, P ) <

supy∈HD(y, P ) and f : H → H such that f(y(v)) = α(v)y(v) where α(v) ∈
(0, 1) for all v ∈ Lδ and α(v) = 1 for all v ∈ LC

δ , where

Lδ := arg sup
H⊂V

{
sup

x,y∈C(H,P )
d(x(H), y(H)) ≤ δ

}
,

for any δ ∈ [infv∈V d(L(v), U(v)), d(L,U)) such that λ(Lδ) > 0 and λ(LC
δ ) >

0.
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FP6 (Continuity in P ) For all x ∈ H, for all P ∈ P(H) and for every ε > 0,
there exists a δ > 0 such that |D(x,Q) − D(x, P )| < ε holds P -almost
surely for all Q ∈ P(H) for which dP(Q,P ) < δ P -almost surely, where
dP metricises the topology of weak convergence.

As there is no unique concept of symmetry for a distribution of functions
P ∈ P(H), Nieto-Reyes and Battey [2016] propose the following alternative
property as a replacement:

FP2G (Maximality at Gaussian process mean) For P a zero-mean, sta-
tionary, almost surely continuous Gaussian process on V, it holds that
D(θ, P ) = supx∈HD(x, P ) �= infx∈HD(x, P ), where θ is the zero mean
function.

In the paper, Nieto-Reyes and Battey [2016] provide the following intu-
itions for the proposed properties. The first three of the properties are
proposed as straightforward analogues of the corresponding multivariate
properties. Property FP1 requires for the functional depth to remain in-
variant under such transformations from H to H, that preserve the relative
distances between elements of H (in the metric d on H) up to some scaling
factor. In particular, FP1 ensures that functional depths remain unaffected
by re-centering of the space around some function θ ∈ H.

Together, properties FP2 and FP3 lead to functional depth defining a
center-outward ordering of H in the spirit of the multivariate definition.
The property FP2 requires that for any P ∈ P with a uniquely defined
center of symmetry θ ∈ H (with respect to a suitable definition of functional
symmetry), the notions of (maximum) depth and symmetry coincide at θ.
The alternative property FP2G extends to the functional context the notion
in the multivariate settings that for such distributions P ∈ P(Rm) for
which multiple notions of symmetry coincide at θ ∈ Rm, this point should
also attain the maximum depth value. As the most common example of
such distribution is the Gaussian distribution, for which the expected value,
the median and many notions of symmetry all coincide, the straightforward
extension of this notion to the functional context is stated with respect
to the functional counterpart of the Gaussian distribution - the Gaussian
process.

To achieve a center-outward ordering of H, the elements of H should be
prescribed lower depth values as the distance from the depth-based center
of P increases. Thus, property FP3 requires that the depth values assigned
to each of the functions are inversely related to the size of the d-metric
ball around the deepest point in which they belong to. This further implies
that as the distance (in metric d) of a point from the depth-based center
z ∈ H increases, the assigned depth values tend towards the infimum of
the depth in the distribution P ; limx:d(x,z)→∞D(x, P ) = infx∈HD(x, P ). In
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the functional case, however, this infimum of the depth is not required to
be 0.

Property FP4 aims to preserve the ability of depth functions of revealing
features of the underlying distribution. In the multivariate setting, sta-
tistical depth has been linked with a notion of multivariate quantiles and
has been shown to reveal properties of the underlying distribution. Thus,
in order for functional depth to similarly reveal features of the underlying
functional distribution, it should satisfy similar continuity properties as a
cumulative distribution function.

The goal of property FP5 is to reduce the possible effects of measurement
error in the functional observations on the resulting depth-based ordering
of the data. In some applications, the functional values exhibit little
variability and overlap significantly over some particular subset L ⊂ V of
the domain. It is argued that the depth should thus heed the functional
values over V \ L to a far greater extent than the values over L where, due
to the lack of variance and the frequent overlapping of the observations,
the ordering of the functions is of less relevance. As a particular example
for integrated depth approaches for achieving this property, Nieto-Reyes
and Battey [2016] propose the use of an additional weight function in the
integration, that allows placing less weight on the depth values over such
regions L.

Property FP6 seeks to achieve two essential goals. The first of the goals
is to allow the use of depth in statistical inference, by ensuring that the
sample depth, based on an empirical distribution Pn, converges almost
surely to its population counterpart. That is, D(·, Pn) → D(·, P ) almost
surely for all sequences Pn such that Pn → P as n → ∞. The secondary goal
is to address the subtle fact that due to the inherent partial observability
of functional data, even the empirical distribution Pn is inaccessible (in its
entirety) and needs to be approximated. An empirical distribution Pn on H
would consist of a collection of point masses at X1, . . . , Xn ∈ H. However, in
practice, the functional observations are obtained as sequences of discrete
measurements, from which an empirical distribution of reconstructed
observations Pn̂, approximating Pn, is constructed through the use of
functional approximation techniques (see Section 1.2). Thus, FP6 ensures
the validity of our statistical inference even when based on such empirical
distributions of reconstructed observations, given that the reconstruction
process yields Pn̂ → Pn almost surely (as the measurement frequency of the
individual observations, and thus the number of discrete points over which
the function values are recorded, increases). Furthermore, the property
FP6 plays a role in the robustness of functional depth in regards to the
existence of outlying observations in the data.

Based on these notions, Gijbels and Nagy [2017] provide a detailed
analysis of the proposed properties FP1-FP6 and their implications. In
particular, it is pointed out that while many of the proposed properties
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make intuitive sense, Definition 2.2.2 is not yet complete as a general
definition for functional depth, and great care needs to be taken in extend-
ing multivariate concepts to functional spaces. Below, we summarize the
findings of Gijbels and Nagy [2017] and the suggested alternatives to the
proposed properties FP1-FP6. For more details, see the thorough analysis
in Gijbels and Nagy [2017].

In the paper, it is found that the proposed property FP1 is very demanding
in functional spaces. While it might be justified to pursue such invariance
with respect to mappings that are multiples of an isometry, property FP1
is in fact not a direct generalization of the multivariate property P1. As
a substitute, Gijbels and Nagy [2017] propose two alternative properties;
invariance with respect to scalar-affine mappings2, or invariance with
respect to function-affine mappings3, both of which have been previously
considered in the literature (see for instance López-Pintado and Romo
[2009] and Claeskens et al. [2014]).

For the property FP2, Gijbels and Nagy [2017] provide further insights
into the extensions of the multivariate concepts of central symmetry and
halfspace symmetry into the functional context. In support of the intuition
of FP2, two additional alternative properties are suggested; maximality at
the center with respect to functional central symmetry, and maximality at
the center with respect to functional halfspace symmetry.

The formulation of the proposed property FP3 is found to be restrictive
in functional settings, and it is in fact much stronger than the multivariate
property P3. It is reported that none of the commonly considered examples
of functional depth satisfy this property. Thus, this property is proposed to
be amended to the following straightforward functional extension of P3:

FP3D (Decreasing with respect to the deepest point) For any P ∈ P(H)

such that D(z, P ) = supx∈HD(x, P ), it holds that D(z, P ) > infx∈HD(x, P )

and D(x, P ) ≤ D(z + λ(x− z), P ) for all λ ∈ [0, 1] and x ∈ H.

Furthermore, it was found that the property of vanishing at infinity (mul-
tivariate P4) is not necessarily guaranteed by FP3 or FP3D alone, and
should be established separately.

While the intuition behind property FP5 is sensible in some applications
where the presence of noise in the measurements is of concern, it might
not be well suited for a –general– definition of functional depth; Gijbels
and Nagy [2017] found that FP5 has negative implications on the arguably
more generally desirable properties of invariance with respect to function-

2A mapping f : F → F is called scalar-affine, if f(x) = ax + b, where F is a
suitable functional space, x, b ∈ F and a ∈ R \ {0}.
3A mapping f : F → F is called function-affine, if f(x) = ax + b, where F(V) is
a suitable functional space defined over the compact set V, x, a, b ∈ F , ax ∈ F ,
and a(t) �= 0 for all t ∈ V. The available functional spaces F are restricted among
those, for which the operation ax ∈ F makes sense.
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affine transformations or scalar-affine transformations, proposed as an
amendment to the property FP1.

Finally, it is agreed that a property such as FP6, ensuring the validity
of statistical inference based on empirical distributions Pn, is of extreme
importance. However, Gijbels and Nagy [2017] argue that the formulation
of FP6 is perhaps too weak, and stronger versions may be considered. In
practice, the depth values assigned to particular observations are usually
not the focus of interest, and it is more important that the whole surface
of depth values is well approximated by the finite sample version. Thus,
Gijbels and Nagy [2017] propose an alternative version of FP6 utilizing
the stronger, uniform continuity in P instead:

FP6U (Uniform continuity in P ) For every ε > 0, there exists δ > 0

such that for any P,Q ∈ P(H) for which dP(P,Q) < δ, it holds that
supx∈H |D(x, P )−D(x,Q)| < ε, where dP metricises the topology of weak
convergence in P(H).

The notions concerning shape and shape outlyingness of functions have
recently risen to the attention in the FDA literature. In particular, recent
contributions to functional depth have begun emphasizing sensitivity to
shape outlyingness as a desirable property for a general notion of func-
tional depth. See for instance the discussion in López-Pintado and Romo
[2009], Sun and Genton [2011], Claeskens et al. [2014], Nagy et al. [2017],
Helander et al. [2020], Nagy et al. [2021] and Harris et al. [2021]. Many of
the early approaches to functional depth focus on the pointwise centrality
of x ∈ H in P as a measure of its depth, for example through integrating
(or considering the infimum of) a pointwise measure of centrality (such
as multivariate depth) over the domain. As a result, such approaches
often ignore the more general structural features of x which can lead to
centrally placed shape-outliers – functions whose pointwise values x(t)

reside close to the center of PX(t) over (most) of the margins t ∈ V, yet
who differ from the other functions of P in their behaviour – being given
high depth values. Examples of such central shape-outliers are readily
available in the literature; see for example the simulated examples in Nagy
et al. [2017], Helander et al. [2020], Harris et al. [2021] and Helander et al.
[2021].

Although sensitivity to outlyingness in shape is a widely recognized
problem in functional depth literature, there have been remarkably few
attempts at formalizing the phenomenon outside of conceptual examples.
Perhaps the first formal definition of shape outlyingness was given by Nagy
et al. [2017]. This definition is built recursively as follows; Assume that
some notion of multivariate outlyingness –such as multivariate statistical
depth– is agreed upon. Let x ∈ H(V), P ∈ P(H) and X ∼ P . If there exists
any t ∈ V such that x(t) ∈ R is outlying with respect to the distribution
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PX(t) ∈ P(R), then x is considered a first-order outlier with respect to
P . Such functions exhibit at least a single (local) feature that is deemed
outlying with respect to values usually attained by X ∼ P at that point in
the domain. For J = 2, 3, . . . , x is called a Jth order outlier with respect
to P , if x is not a jth order outlier for any j < J , and there exists a set
of points (t1, . . . , tJ)

T ∈ VJ such that (x(t1), . . . , x(tJ))
T ∈ RJ is outlying

with respect to the distribution P(X(t1),...,X(tJ ))T ∈ P(RJ). For J ≥ 2, Jth
order outlyingness of x is related to a difference in shape compared to the
functions from P ; 2nd order outlyingness signifies a difference in linear
growth – the 1st derivative, 3rd order outlyingness signifies a difference
in convexity or concavity – the 2nd derivative, and so on. Based on this
definition of outlyingness, Nagy et al. [2017] introduce the shape-sensitive
classes of Jth order integrated and infimal depths, upon which the Jth
order kth moment integrated depths of Nagy et al. [2021] further expand.
Other examples of functional depth approaches, that explicitly emphasise
shape sensitivity in their construction, include the multivariate functional
halfspace depth of Claeskens et al. [2014], the functional Pareto depth of
Helander et al. [2021] and the elastic depth of Harris et al. [2021].
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3. Shape-sensitive metrics

Quantifying the similarity or dissimilarity in shape between functions has
attracted concurrent interest on many fields of research. For example, in
machine learning and computer vision, various shape and pattern match-
ing applications have become commonplace. A commonly used approach to
such problems is to employ the Hausdorff or Fréchet distances between
the graphs or the curves of the functions. See Huttenlocher et al. [1993],
Rucklidge [1997], Yi and Camps [1999], Veltkamp and Hagedoorn [2001],
De Carvalho et al. [2006], Alt and Godau [1992], Alt et al. [2003], Brakat-
soulas et al. [2005], Aronov et al. [2006] and Jiang et al. [2008], and the
discussion provided in Sections 3.1 and 3.2.

However, both of these distance definitions are based on a global supre-
mum, limiting the analysis to the most drastic feature difference between
the functions, instead of considering their overall likeness. Thus, in the lit-
erature, some attention has been devoted to developing integrated versions
of these metrics. In the following, we explore the concepts of the Hausdorff
and Fréchet distances, as well as various approaches to defining integrated
versions of these distances, that have been previously considered in the
literature. We highlight some of the difficulties that are encountered in
attempting to define these integrated alternatives, and discuss the caveats
that the previously considered approaches might have when applied to the
context of functional data.

3.1 Hausdorff distance

The Hausdorff distance dH has been established as a widely useful tool in
places where the concept of the proximity of different sets to one another
is crucial. In the case of functions, the Hausdorff distance dH between two
functions f, g ∈ F can be naturally understood as the Hausdorff distance
between their graphs Gf , Gg ⊂ [0, 1]× Rm.

Definition 3.1.1 (Hausdorff distance). Consider the functions f ∈ F and
g ∈ F . The Hausdorff distance dH between the functions is defined as the
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Hausdorff distance between their graphs:

dH(f, g) := max

{
sup
t∈[0,1]

inf
s∈[0,1]

dC(Cf (t), Cg(s)), sup
s∈[0,1]

inf
t∈[0,1]

dC(Cf (t), Cg(s))

}
.

(3.1)

This definition can be intuitively understood as a ball rolling along the
graph of either of the functions. Then, the Hausdorff distance between the
graphs is given as the radius of smallest such ball that, while rolling along
one of the graphs, paints every point on the other graph. Thus, Hausdorff
distance can be equivalently defined through

dH(f, g) = inf{ε ≥ 0 : Gf ⊂ Gε
g and Gg ⊂ Gε

f},

where
Gε

· :=
⋃
x∈G·

{z ∈ [0, 1]× Rm : dC(z, x) ≤ ε}.

In any metric space, the Hausdorff distance defines a proper metric for the
set of all non-empty compact subsets of the space, while still remaining as
a pseudometric even if the subsets are not compact. Since graphs Gf of
continuous functions f ∈ F with a compact support [0, 1] are compact sets
on [0, 1]×Rm, the Hausdorff distance defines a metric for the graphs. This,
in turn, can be interpreted as a metric for the functions.

The Hausdorff distance is readily used in a wide variety of different re-
search fields. Among others, dH has been applied in sample path analysis
for planar Brownian motion (Taylor [1964]), image matching, pattern recog-
nition and machine vision (Huttenlocher et al. [1993], Rucklidge [1997],
Yi and Camps [1999], Veltkamp and Hagedoorn [2001], De Carvalho et al.
[2006], to name just a few), the approximation of the global attractors in
dynamical systems (Dellnitz and Hohmann [1997], Aulbach et al. [2005]),
in fractal geometry (Falconer [2004]), and in convergence analysis to the
Pareto set in multi-objective optimization problems (Schütze [2004], Dell-
nitz et al. [2005], Schütze et al. [2008]).

3.1.1 Integrated Hausdorff distance

The Hausdorff distance is known to severely punish single outliers, which
can be a considerable drawback in some applications. For example, in
evaluation of the performance of stochastic search methods, known to
generate some outliers, the Hausdorff distance is of limited use.

As such, there have been some efforts in the literature in developing an
integrated version of the Hausdorff metric. Baddeley [1992] developed
one such integrated distance in both the discrete and the general case
(the Baddeley’s delta metric), and studied its use in image processing.
In the proposed approach, an alternative (yet equivalent) representation
of the usual Hausdorff distance is studied, in which the supremum is
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simply replaced with an integral. Marron and Tsybakov [1995] took a
more straightforward approach, by directly replacing the sup inf notion
of pointwise distances between sets with an integral. This approach was
applied as an error criterion in a nonparametric curve estimation setting. A
similar idea, albeit in a finite setting, was also considered by Schütze et al.
[2012], who proposed the p-averaged Hausdorff distance dpaH by replacing
the sup inf notion with an Lp mean.

Definition 3.1.2 (p-averaged Hausdorff (Schütze et al. [2012])). Let X and
Y be two non-empty finite subsets of a metric space (M, dM). For a given
p ≥ 1, define the p-averaged Hausdorff distance dpaH as

dpaH(X,Y ) := max

⎧⎪⎨
⎪⎩
(

1

|X|
∑
x∈X

D(x, Y )p

) 1
p

,

⎛
⎝ 1

|Y |
∑
y∈Y

D(y,X)p

⎞
⎠

1
p

⎫⎪⎬
⎪⎭ ,

where |X| denotes the cardinality of the set X (respectively for Y ) and
D(x, Y ) is some dM-based notion of distance from the point x ∈ X to the
set Y (respectively for y ∈ Y and X).

For p = ∞, the p-averaged Hausdorff distance d∞aH is interpreted as the
usual Hausdorff distance dH .

However, compared to the usual Hausdorff distance, dpaH is only defined
for finite sets and it only yields an inframetric1 instead of a metric.

Vargas and Bogoya [2018] introduced a modification to dpaH called the
(p, q)-averaged Hausdorff distance dp,qaH , that generalizes the p-averaged
Hausdorff distance and more importantly, is a proper metric (for finite
sets) for 1 ≤ p, q < ∞.

Definition 3.1.3 ((p, q)-averaged Hausdorff (Vargas and Bogoya [2018])).
Let X and Y be two non-empty finite subsets of a metric space (M, dM).
For given p, q ∈ R \ {0}, the (p, q)-averaged Hausdorff distance dp,qaH is
defined as

dp,qaH(X,Y ) := max {GDp,q(X,Y \X),GDp,q(Y,X \ Y )} ,

where

GDp,q(X,Y ) =

⎛
⎜⎝ 1

|X|
∑
x∈X

⎛
⎝ 1

|Y |
∑
y∈Y

dM(x, y)q

⎞
⎠

p
q

⎞
⎟⎠

1
p

.

1Given a parameter h ≥ 1, the h-inframetric on a set X is a function dh : X×X →
[0,∞) that, for all x, y, z ∈ X, satisfies the properties (i)–(iii) of Definition 1.1.1
together with the following weaker version of triangle inequality:

(iv)’ : dh(x, y) ≤ hmax{d(x, z), d(z, y)}.
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Here, dp,qaH generalizes dpaH in the sense that for disjoint subsets it holds
that lim

q→−∞
dp,qaH = dpaH .

Bogoya et al. [2018] further develop the idea for arbitrary measurable
sets by showing that the power means in GDp,q can be replaced with their
integrated counterparts. Let (Σ, dΣ, μ) be a metric measure space. Let
M(Σ) be the σ-algebra of all measurable subsets of Σ, and let M<∞(Σ)

denote those elements of M(Σ) with finite measure.

Definition 3.1.4 ((p, q)-averaged Hausdorff for measurable sets (Bogoya
et al. [2018])). Let X,Y ∈ M<∞(Σ). For given p, q ∈ R \ {0}, define the
(p, q)-averaged Hausdorff distance dp,qaH as

dp,qaH(X,Y ) := max {GDp,q(X,Y \X),GDp,q(Y,X \ Y )} ,

where

GDp,q(X,Y ) =

(
1

μ(X)

∫
X

(
1

μ(Y )

∫
Y
dΣ(x, y)

qdμ(y)

) p
q

dμ(x)

) 1
p

,

and where X and Y are assumed to be disjoint when p < 0 or q < 0.

Bogoya et al. [2018] show that this definition gives a semimetric2 on the
collection M<∞(Σ) of all measurable finite subsets of Σ, and is a proper
metric for 1 ≤ p, q < ∞ if the sets are disjoint.

3.2 Fréchet distance

The Fréchet distance is another well-established tool often used as a shape
similarity measure for curves in shape matching tasks. Whereas the
Hausdorff distance can give a good indication of the proximity of two point
sets, it may not always be a suitable choice for graphs or curves arising
from functions. Indeed, examples of curves that may be perceived as
dissimilar, yet have a small Hausdorff distance, are readily available.

Consider f(t) = cos(kt) and g(t) = cos(kt+π), defined on t ∈ [0, 2π]. Then,
dH(f, g) = π

k which becomes arbitrarily small as k increases. Yet, the two
curves are perceived to be rather dissimilar, always being on opposite
phases with opposite signs of derivatives. In such cases, the Fréchet
distance is a more suitable distance measure.

Intuitively, the Fréchet distance dF is often described through the dog
on a leash analogy. Imagine a person walking along a curve while holding
the leash of a dog walking along another curve. Both the person and the
dog can traverse their respective curves at varying speeds, but can never
move backwards. Then, the Fréchet distance is given as the length of

2The function d is said to be a semimetric if it fulfils items (i), (ii), and (iii) of
Definition 1.1.1, but not item (iv), the triangle inequality.
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the shortest possible such leash that still allows both the person and the
dog to complete the walk along the curves from the start to the end. To
return to the above example, the Fréchet distance between the two curves
dF (f, g) = 2 as, due to the opposite phases, the start points of the curves
are 1 and −1 respectively.

The use of the Fréchet distance instead of the Hausdorff distance in shape
and pattern matching applications for (polygonal) curves was proposed by
Alt and Godau [1992], who also propose an algorithm for the computation
of the exact Fréchet distance. A close discrete approximation of the Fréchet
distance, called the coupling distance, was developed by Eiter and Mannila
[1994], who showed that it can be computed efficiently using a very simple
algorithm. A more computationally efficient algorithm for the exact Fréchet
distance was developed by Alt and Godau [1995], and algorithms for the
computation of the exact Fréchet distance under transformations, such
as translation or translation with rotation, were developed by Alt et al.
[2001] and Wenk [2003] respectively. Among other curve shape matching
applications, the Fréchet distance has been successfully applied in vehicle
tracking and GPS systems (Alt et al. [2003], Brakatsoulas et al. [2005]) and
in molecular biology in protein structure alignment (Aronov et al. [2006],
Jiang et al. [2008]).

In the context of continuous functions F , the Fréchet distance between
two functions f, g ∈ F is defined as the Fréchet distance between their
curves Cf and Cg on [0, 1] × Rm. For the classical (supremum) Fréchet
distance, there are two definitions; reparametrization with respect to one
or both of the two curves. These are henceforth called the one-sided Fréchet
distance and the two-sided Fréchet distance.

Definition 3.2.1 (One-sided Fréchet distance). Let Φ be the space of all
continuous monotonically increasing functions φ : [0, 1] �→ [0, 1] with φ(0) =

0 and φ(1) = 1. Then the one-sided Fréchet distance doF between the
functions f, g ∈ F is defined as

doF (f, g) := inf
φ∈Φ

sup
t∈[0,1]

dC(Cf (t), Cg(φ(t))).

Definition 3.2.2 (Two-sided Fréchet distance). Let Φ be the space of all
continuous monotonically increasing functions φ : [0, 1] �→ [0, 1] with φ(0) =

0 and φ(1) = 1. Then the two-sided Fréchet distance dtF between the
functions f, g ∈ F is defined as

dtF (f, g) := inf
α,β∈Φ

sup
t∈[0,1]

dC(Cf (α(t)), Cg(β(t))).

A weaker version of the Fréchet distance, dwF , can be attained from the
two-sided definition by considering the infima over all continuous surjective
functions instead. As the Fréchet distance (in both of the above definitions)
defines a proper metric for general curves, it thus also defines a proper
metric for curves arising from functions.
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Note that in the classical supremum sense, the two definitions are equiv-
alent; For all θ ∈ Φ there exists some s, t ∈ [0, 1] such that

dC(Cf (α(s)), Cg(β(s))) = dC(Cf (α ◦ θ(t)), Cg(β ◦ θ(t))).

By choosing θ = α−1 and denoting φ = β ◦ α−1, we get

dC(Cf (t), Cg(β ◦ α−1(t))) = dC(Cf (t), Cg(φ(t))).

However, as we will later notice, these definitions are no longer equivalent
when embedded in to the integral context.

In the multivariate case, f : [0, 1]k �→ Rn where k ≤ n, the Fréchet
distance between surfaces is usually attained from the one-sided definition
by considering the infima over all orientation preserving homeomorphisms,
but definitions with general homeomorphisms have also been considered
in the literature. (See for example Fréchet [1924] and Radó [1948] for more
details.) While polynomial-time algorithms are known for computation of
the Fréchet distance between curves, the underlying decision problem for
surfaces is known to be NP-hard (Godau [1998]).

Remark 3.2.1. Naively, one may also define the Fréchet distance for func-
tions f, g ∈ F directly between the functions instead of their curves;

dnF (f, g) := inf
φ∈Φ

sup
t∈[0,1]

dV(f(t), g(φ(t))).

However, what is obtained in this case is only a pseudometric for the
functions in F , that becomes a proper metric when one considers the
reparametrizations of f with respect to all φ ∈ Φ as equivalence classes.

3.2.1 Integrated Fréchet distance

In the literature, there have been some attempts at developing an in-
tegrated version of the Fréchet distance. For instance, Buchin [2007]
considered numerous different approaches to a summed and integrated
Fréchet distance, and studied their properties in great detail. Efrat et al.
[2007] developed a notion of dynamic time warping, adapted to the con-
tinuous context of curves, that bears close resemblance to the notion of
integrated Fréchet distance. Buchin et al. [2009] considered a measure
for the partial similarity of curves, based on matching pieces of the curves
within a fixed Fréchet distance threshold.

Surprisingly, however, formulating a rigorous definition for an integrated
Fréchet distance has turned out to not be as straightforward as in the
Hausdorff case, and many of the intuitive approaches fail to satisfy some
of the key properties of a metric. Specifically, the triangle inequality
commonly fails to hold for many of the approaches considered previously
in the literature (see Buchin [2007]). In the following, we discuss some
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intuitive approaches and provide insight into the difficulties in developing
a rigorous definition. For further discussion, we refer the reader to the
excellent analysis provided by Buchin [2007] on the integrated Fréchet
distance.

We start with the naive definitions, derived directly from Definitions
3.2.1 and 3.2.2 of the one- and two-sided Fréchet distances by substituting
the supremum with an integral:

Definition 3.2.3 (Naive one-sided integrated Fréchet distance). Let Φ be
the space of all continuous monotonically increasing functions φ : [0, 1] �→
[0, 1] with φ(0) = 0 and φ(1) = 1. The naive one-sided integrated Fréchet
distance dnoIF between the functions f, g ∈ F is defined as

dnoIF (f, g) := inf
φ∈Φ

∫ 1

0
dC(Cf (t), Cg(φ(t)))dt.

Definition 3.2.4 (Naive two-sided integrated Fréchet distance). Let Φ be
the space of all continuous monotonically increasing functions φ : [0, 1] �→
[0, 1] with φ(0) = 0 and φ(1) = 1. The naive two-sided integrated Fréchet
distance dntIF between the functions f, g ∈ F is defined as

dntIF (f, g) := inf
α,β∈Φ

∫ 1

0
dC(Cf (α(t)), Cg(β(t)))dt.

Remark 3.2.2. While the one- and two-sided Fréchet distances are equiv-
alent in the classical sup-norm sense, as was discussed above in Section
3.2, this equivalence no longer holds true for the naive integrated versions
where the supremum is replaced with an integral. With a suitable change
of variables in the definitions, it is straightforward to see that the naive
two-sided definition corresponds to finding the infimum in a weighted
space with respect to a reparametrization and a weight function, whereas
the one-sided definition is only concerned with the infimum with respect
to a reparametrization.

Unfortunately, these naive definitions come with a range of glaring issues
and notably, neither of them defines a metric for curves or for functions;
The naive two-sided integrated Fréchet distance between the functions f

and g degenerates to the minimum distance between their curves, Cf and
Cg. Consider the Definition 3.2.4. For differentiable and strictly increasing
α, a change of variables z = α(t) gives∫ 1

0
dC(Cf (α(t)), Cg(β(t)))dt

=

∫ 1

0
dC(Cf (z), Cg(β ◦ α−1(z)))(α−1)′(z)dz

=

∫ 1

0
dC(Cf (z), Cg(φ(z)))ω(z)dz,

45



Shape-sensitive metrics

where we rewrite φ = β ◦ α−1 and ω = (α−1)′. Here φ is continuous
and monotonically increasing with φ(0) = 0 and φ(1) = 1, and ω is a
weight function on [0, 1], i.e. ω ≥ 0 and

∫ 1
0 ω(z)dz = 1. Hence, by a simple

approximation argument, we deduce that

dntIF (f, g) = inf
α,β∈Φ

∫ 1

0
dC(Cf (α(t)), Cg(β(t)))dt

= inf
ω∈Ω,φ∈Φ

∫ 1

0
dC(Cf (z), Cg(φ(z)))ω(z)dz,

where Ω denotes the set of weight functions on [0, 1]. Consider now a
sequence ωn → δt0 as n → ∞, that approximates the Dirac-delta function
δt0 at t0. Then, as n → ∞ we have

∫ 1

0
dC(Cf (z), Cg(φ(z)))ωn(z)dz → dC(Cf (t0), Cg(φ(t0))).

Thus, dntIF becomes the smallest point-wise distance between the two
curves:

dntIF (f, g) = inf
ω∈Ω,φ∈Φ

∫ 1

0
dC(Cf (z), Cg(φ(z)))ω(z)dz

≤ inf
t0∈[0,1],φ∈Φ

dC(Cf (t0), Cg(φ(t0))).

In particular, if the curves of the functions run through the same point
anywhere on [0, 1]× Rm, the distance dntIF between them is zero.

From this it is also straightforward to see that dntIF does not satisfy the
triangle inequality; Choose f , g and h such that Cf and Cg never intersect,
but Ch intersects with the curves of the other two functions at different
points. Then dntIF (f, g) > 0, but dntIF (f, h) = dntIF (h, g) = 0.

The naive one-sided Fréchet distance dnoIF , on the other hand, is not
symmetric and does not satisfy the triangle inequality either. Indeed, by
very similar arguments as for the naive two-sided version, we obtain

dnoIF (f, g) = inf
φ∈Φ

∫ 1

0
dC(Cf (t), Cg(φ(t)))dt

= inf
φ∈Φ

∫ 1

0
dC(Cf (φ

−1(z)), Cg(z))(φ
−1)′(z)dz

= inf
θ∈Φ

∫ 1

0
dC(Cf (θ(z)), Cg(z))θ

′(z)dz

which clearly, in general, differs from

dnoIF (g, f) = inf
φ∈Φ

∫ 1

0
dC(Cf (φ(t)), Cg(t))dt.
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We also see that the triangle inequality does not hold for dnoIF , by again
choosing a sequence θn such that θ′n → δt0 as n → ∞, the Dirac-delta func-
tion δt0 at t0. By denoting θ∞ = limn→∞ θn, the step function corresponding
to δt0 , we have∫ 1

0
dC(Cf (θn(z)), Cg(z))θ

′
n(z)dz → dC(Cf (θ∞(t0)), Cg(t0)).

Here, θ∞ can be approximated asymmetrically such that θ∞(t0) = t0 for
any point t0. Thus, if the curves of the functions intersect at any point t0,
the resulting dnoIF is zero. Choosing functions f , g, and h as previously
with the naive two-sided definition provides a counter-example for triangle
inequality in the naive one-sided case as well.

Buchin [2007] discusses two intuitive approaches to developing a general
integrated Fréchet distance. Namely, as the integral over a monotone path
either in the free space or in the image space. Recall that the path integral
of a curve F : R2 �→ R over a piecewise continuously differentiable path
γ : [0, 1] �→ R2 is ∫

γ
F (z)dz =

∫ 1

0
F (γ(t))|γ′(t)|dt,

where γ′ denotes the derivative of γ.
Consider the free space diagram; For ε > 0 the free space diagram of two

curves Cf and Cg is defined as

Fε(Cf , Cg) := {(s, t) ∈ [0, 1]2 : dC(Cf (s), Cg(t)) ≤ ε}.

The Fréchet distance between two curves is at most ε if there exists a
monotone path from (0, 0) to (1, 1), in the free space diagram of the curves.
Consider a path γ(t) = (t, φ(t)) in the free space, with |γ′(t)| =

√
1 + φ′2(t).

Let ‖ · ‖C denote the underlying norm on [0, 1]× Rm. Then, the integrated
Fréchet distance can be defined as the infimum of integrals over such paths
as follows:

Definition 3.2.5 (Free space integrated Fréchet distance). Let Φ be the
space of all continuous monotonically increasing functions φ : [0, 1] �→ [0, 1]

with φ(0) = 0 and φ(1) = 1. Then the free space integrated Fréchet distance
dfIF between the functions f, g ∈ F is defined as

dfIF (f, g) := inf
φ∈Φ

∫ 1

0
‖Cf (t)− Cg(φ(t))‖C

√
1 + φ′2(t)dt.

Alternatively, the integrated Fréchet distance can be defined by taking
a path integral over the curves in image space simultaneously. For this,
we must assume the curves Cf and Cg to be piecewise continuously dif-
ferentiable. However, the curves arising from the continuous functions F
satisfy this condition. Denote by C ′

f the derivative of the curve Cf . Then,
‖C ′

f (·)‖C gives a notion of the incremental arc length traversed along the
curve Cf . This leads to the following definition.
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Definition 3.2.6 (Image space integral Fréchet). Let Φ be the space of
all continuous monotonically increasing functions φ : [0, 1] �→ [0, 1] with
φ(0) = 0 and φ(1) = 1. Then the image space integrated Fréchet distance
diIF between the functions f, g ∈ F is defined as

diIF (f, g) := inf
φ∈Φ

∫ 1

0
‖Cf (t)− Cg(φ(t))‖C (||C ′

f (t)||C + ||(Cg ◦ φ)′(t)||C)dt.

Remark 3.2.3. While Buchin [2007] introduces the above two ideas in the
context of normed spaces, they generalize to metric spaces as well. In
both Definitions 3.2.5 and 3.2.6, replace the norm ‖Cf (t)−Cg(φ(t))‖C with
the metric dC(Cf (t), Cg(φ(t))), and in Definition 3.2.6 replace ‖C ′

f‖C by
some dC-based function L : [0, 1]× Rm �→ [0,∞) that gives a notion of the
incremental arc length traversed along the curve.

Note that in order to be formally correct in the above definitions, one
should take the infimum over piecewise continuously differentiable func-
tions φ ∈ Φ. This minor issue however does not play any fundamental
role. While the above definitions give summed Fréchet distances, Buchin
[2007] also develops several slight variations that yield averaged Fréchet
distances. Although these approaches seem intuitive, the detailed analy-
sis provided in Buchin [2007] shows that they do not satisfy the triangle
inequality for general curves in Rm. While the simple counterexamples pro-
vided by Buchin [2007] disproving the triangle inequality for Definitions
3.2.5 and 3.2.6 do not belong in the class of curves arising from functions,
they lead to suspect that such functions for which the triangle inequality
doesn’t hold can also be found.
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4. Summaries of the articles

The main scientific contribution of this thesis lies within the three publica-
tions that follow. Summaries of the key contributions are given below.

I. Pareto depth for functional data

Due to the richness of functional data, it is incredibly difficult to pro-
vide a notion of depth that simultaneously captures the features of all
of the important modes of variation (in location, shape, and structure)
of a functional distribution. Therefore, we take a data-driven approach
to functional depth that allows for great flexibility in the choice of the
incorporated features.

In the approach, the functional observations x ∈ H are mapped to J-
variate vectors through the use of several mappings sj : H → R, j =

1, . . . , J , called the statistics of interest (SOI), that quantify some inherent
features of the distribution P ∈ P(H). Then, the functional observations
are assigned depth values by computing a new multivariate depth, the
Pareto Depth, on the vectors of SOI. This approach allows for the analyst
to leverage their knowledge of the context of the data and application of
the method in choosing the set of SOI. In particular, the proposed method
makes no assumptions on the types of mappings used in capturing the
essential modes of variation in the data. Many other dimension-reduction
type methodologies in functional data analysis, based on replacing the
random function x with a (random) vector, often assume that the interest-
ing characteristics of P can be captured through linear projections of x on
to suitable elements of H. This, however, need not be the case, and the
methodology adopted in the article allows for greater creativity in choosing
the mappings appropriate to the context. The proposed multivariate depth
method, the Pareto depth, is then purposefully built on componentwise
comparison of the vectors of SOI, as the geometry of the underlying multi-
variate space is of no interest due to the potentially wildly differing types
of mappings (the individual SOI) the margins of the space describe.
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We provide results on the consistency of the proposed multivariate Pareto
depth method and explore the properties of the corresponding functional
depth approach. We discuss the choice of the statistics of interest and
study the application of the functional depth approach in practice. We
illustrate the advantages of such a flexible choice of features in several
simulated and real data examples. In particular, we demonstrate the
excellent performance of the proposed approach in applications such as
classification, where the performance of the applied method is directly tied
to its ability to capture the appropriate factors that discriminate between
the distributions of the compared classes.

II. Flexible integrated functional depths

We introduce a new class of functional depths, called the Jth order kth
moment integrated depths, and study their properties. The introduced
approach expands upon the ideas considered by Nagy et al. [2017].

For x ∈ H(V) and P ∈ P(H), consider the distribution of multivariate
depths of the joint vector of J time margins t1, . . . , tJ ∈ V, with respect
to the corresponding joint distribution of the margins. That is, consider
the distribution of D((x(t1), . . . , x(tJ))

T , P(X(t1),...,X(tJ ))T ) over t1, . . . , tJ ∈ V ,
where (x(t1), . . . , x(tJ))

T ∈ RJ , P(X(t1),...,X(tJ ))T ∈ P(RJ) and X ∼ P . The
Jth order kth moment integrated depth is then defined through the kth
moment of this multivariate depth distribution. Due to theoretical reasons,
in the paper, we restrict to considering the multivariate halfspace depth.
However, in principle, any multivariate depth could be utilized, and the
construction would provide a corresponding integrated functional version
of the depth.

We provide several interesting asymptotic properties of the proposed class
of depths. We show that the proposed depths are uniformly consistent,
and derive their limiting distributions under mild regularity conditions.
We study the properties of the proposed depth approach in practice in
several real data examples. In particular, we illustrate the versatility of
the approach in automatically capturing the important features of the
functional distributions in an application to supervised classification.

III. Integrated shape-sensitive functional metrics

Sensitivity of the methodology to variations in the shape of functions has
been a commonly discussed problem in many fields of research. Popular
approaches to metricising the shape similarity between functions include
considering shape-sensitive metrics, such as Hausdorff or Fréchet dis-
tances, between the graphs or the curves of the functions. However, as
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both of these distances are based on a global supremum of a pointwise
distance between the graphs, they do not consider the general shape sim-
ilarity of the functions. Thus, in the literature, some attention has been
devoted to the search of averaged (i.e. integrated) versions of these metrics,
that better reflect the overall local likeness of the graphs. Although some
integrated versions of these metrics have been proposed in the literature,
none of the previously considered approaches provide a metric suitable to
the context of functional data, without severe drawbacks or limitations (as
demonstrated in Section 3).

In the paper, we introduce a new metric construction, the integrated ball
(pseudo)metric dε,p, that provides an integrated version of any (pseudo)metric
d. In the construction, the distance d is computed locally, between the
pieces of the graphs when restricted to neighbourhoods of size ε. The local
neighbourhoods are then integrated over the domain within the Lp norm,
providing an overall measure of the local likeness (based on metric d) be-
tween the graphs. In particular, we apply the integrated ball construction
to the Hausdorff and Fréchet distances to provide their integrated ball
versions. To the best of our knowledge, the integrated ball Hausdorff and
Fréchet distances appear to be the first integrated versions of these dis-
tances, that provide continuous metrics suitable to the context of functional
data.

We show that under some very mild and natural assumptions, for any
metric d, the integrated ball construction dε,p produces a metric, and has
some very important continuity and consistency properties. Furthermore,
we show that the Hausdorff and Fréchet distances (when suitably adjusted
to the context of local restrictions of graphs) fulfill all of our assump-
tions, thus ensuring that their integrated ball counterparts enjoy all of
the desirable properties that are shown to hold for the integrated ball
metrics. Finally, we study the properties of the integrated ball Hausdorff
and Fréchet distances in practice, in several simulated outlier detection
problems based on a difference in shape. In the simulation study, we
demonstrate the benefits of assessing the overall local likeness of the
curves over a range of locality levels ε.
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