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Abstract
Information revolution provides us with unforeseen opportunities for improving the
productivity of services via the optimized planning of production, distribution and delivery.
Now companies and clients alike can track and trace mobile resources not only inside their
own  factories  and  warehouses  but  also  in  all  other  service  facilities  and  in  transit  between.
Tracking in real time covers all products, vehicles, people and equipment. With ever
shortening response times and planning periods, however, the concerns of rescheduling,
rerouting, splitting and joining of production batches, product deliveries and value-added
service activities will be overwhelming, especially, if realistically counting for the
ramifications in time and cost of capacity each activity consumes, including all transfers and
set-ups required. To be effective, this kind of time capacitated resource allocation planning
also presupposes two properties from production and service resources: mobility and
flexibility.
In this dissertation, we provide new views and computational methods for the real time
planning of production, distribution and service delivery. The new approaches improve
capacity utilization simultaneously with more flexible customer service vital for competing in
the environment with increasing outsourcing and networking. Efficient capacity utilization,
mobility and flexibility are achieved by the simultaneous planning of all required activities
and resources by mathematical optimization applied to reliable time-based data.
Our approach to capacitated timing balances resource time used for actual production and for
capacity consuming set-ups between different production batches or service activities. The
explicit consideration of the capacity time consumed by all activities is critical for the realistic
planning of high capacity utilization. Mobility of resources in production concerns availability
in different time periods, involving costs of setting up and moving back resources through
inventory build-up, work-in-process buffers and reserve machines.  In service networks,
mobility of resources means availability in different locations achieved by moving products,
vehicles, containers and service resources, such as cleaning crews or maintenance people, and
equipment, among clients, sites and geographical locations. Flexibility of resources is
included by allowing production batches or service tasks to be split, joined, rescheduled and
reallocated to be performed by any efficient combination of one or more different service
resources, such as machines or crews.
This dissertation consists of two articles and two essays considering mobile and flexible
resource allocation in time-capacitated settings. The first article deals with production
planning involving shared resources and the explicit time requirements of the set-ups. The
introduction  of  set-up  carry-overs  is  shown  to  generate  substantial  savings  in  the  three  key
factors of production costs: the number of set-ups, utilization of production capacity and level
of inventory. In the second article, vehicle routing problems are solved by minimizing the
sum of the traveling cost and the total cost of vehicles actually employed when transportation
technology offers scale economies. New methods are introduced for efficiently solving very
large problems featuring heterogenous vehicles and time windows of deliveries to as many as
1000 customers, ten times more than in earlier studies.
The two essays combine the allocation of shared resources, split tasks and variable set-ups in
mobile service operations. The first essay presents a flexible service resource allocation model
with  a  new  kind  of  time-based  splitting  of  work  in  tasks  among  available  resources.  The
potential for capacity time savings achievable via this kind of modeling approach is also
demonstrated  by  examples.  In  the  second  essay,  two  different  time  capacitated  resource
allocation models for service applications, one with and the other without task splitting, are
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tested and compared. The tests with a set of synthetic problems indicate up to 33% savings in
the number of identical resources needed when the average length of tasks to split is just over
half of resource capacity and the distance between task sites is short. The results imply high
capacity savings potential for practical service applications by task splitting.
Despite the growing economic importance of time dependent service allocations with mobile
and flexible resources, these problems have eluded the traditional modelers due to the
technical and conceptual complexities involved. The new modeling and solution approaches
suggested here provide some eye opening insights to the general theory while the planning
methods with clearly documented results are ready for managerial applications and further
development.

Key words: production planning, scheduling, service, vehicle routing, capacitated planning,
resource allocation, Mixed Integer Linear Programming, optimization, heuristics, flexibility,
mobility.
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1. Introduction
The information revolution provides us with unforeseen opportunities for the real time
planning of production, distribution and other services. As response times and planning
periods become shorter, production batches, deliveries and services have to be rescheduled,
rerouted, split and joined when simultaneously considering the capacity time each activity
consumes. This kind of time capacitated resource allocation planning requires two things from
production and service resources: mobility and flexibility.

This dissertation provides new views and planning methods for real time production,
distribution and service planning. The new approaches improve capacity utilization
simultaneously with more flexible customer service vital for surviving in ever increasing
competition. Efficient capacity utilization, mobility and flexibility are achieved by the
simultaneous planning of all requirements and resources by mathematical optimization
applied to reliable time based data.

In production, just in time management has decreased the amount of inventories earlier used
as buffers. While the ordering cycle in the seventies was weeks, the time from order to
delivery in many industries has now decreased to hours. The time to respond to customer
requirements has become so short that planning and changes to plans have to happen in real
time. The simultaneous need for high capacity utilization and flexibility has forced companies
to squeeze efficiency from their systems by advanced and more sophisticated planning
methods.

In distribution, the time windows for deliveries have become very short. Deliveries have to
happen  on  time,  and  often  they  can  change  at  a  short  notice.  Customers  may  expect  fast
deliveries in emergency situations but they are also often willing to pay for that additional
responsiveness of service providers. A car accident may block a route and a new delivery plan
has to be created in real time. Original delivery routes and even customers served by vehicles
may need  to  be  changed.  The  real  time optimization  of  the  routing  of  hundreds  of  vehicles
serving thousands of customers in a day can only be managed with highly efficient
computational methods.

In services, the interest to use advanced quantitative planning methods has started to grow
slowly. The low standardization of services has made data collection and efficient planning
difficult when the duration and resource consumption of tasks has been difficult to forecast.
Inefficient use of capacity often stays hidden due to low standardization and the lack of
systematic planning based on reliable data. Only recently the pressure for more efficiency has
woken interest in the modeling and standardization of service processes. As more reliable data
on service times becomes available, planning can be made more accurately, flexibly and
timewise closer to the actual provision of the service. Optimizing the flexible, time
capacitated allocation of service resources is then likely to become a valuable tool and
approach in intensifying service capacity utilization.

In this dissertation, time capacitated modeling balances resource time used for actual
production and for capacity consuming set-up times between different production batches or
service activities. The explicit consideration of time related capacity consumption is critical
for realistic planning with high capacity utilization. Mobility concerns inventories, work-in-
process, products, vehicles and service resources, such as cleaning or maintenance staff,
moving between tasks. Flexibility is included by allowing production batches or service tasks
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to be split, joined, rescheduled and reallocated to be performed by one or more different
production resources.
This doctoral dissertation consists of four essays. The first essay on production planning
extends the work of Trigeiro (1989) on capacitated lot sizing with set-up costs and the work
of Sox and Gao (1999) on capacitated lot sizing with set-up costs and set-up carry-overs by
including set-up time with its critical capacity consuming effects on production planning.
Optimizing with set-up times and set-up carry-overs decreases the number of set-ups needed
saving a substantial amount of capacity time and inventory costs compared with models not
including set-up carry-overs.

The  second  essay  on  vehicle  routing  extends  the  basic  Vehicle  Routing  Problem  (VRP)  to
Fleet Size and Mix Vehicle Routing Problem with Time Windows (FSMVRPTW). For a
general treatment of the VRP see the textbook by Toth and Vigo (2001). For a literature
survey of VRP extensions see Bräysy et al. (2007a, 2007b). The Fleet Size and Mix Vehicle
Routing  Problem  (FSMVRP)  is  a  VRP  where  the  homogeneous  fleet  assumption  of  the
traditional  VRP  has  been  lifted.  For  reviews  on  the  FSMVRP,  see  Salhi  and  Rand  (1993),
Osman and Salhi (1996), and Lee et al. (2008). The FSMVRPTW is a natural extension of the
recently much studied Vehicle Routing Problem with Time Windows (VRPTW) surveyed by
Bräysy and Gendreau (2005a, 2005b). The FSMVRPTW has been researched by Dell’Amico
et al. (2007), Dondo and Cerdá (2007), Li et al. (2007), Paraskevopoulos et al. (2008). A
survey on the FSMVRPTW was made by Bräysy et al. (2008). The essay in this doctoral
thesis on the FSMVRPTW introduces new methods of solving very big vehicle routing
problems faster and better than ever before. Another new feature with the essay problem is the
vehicles cost structures exhibiting scale economies.

The third and the fourth essay extend the approach of the Split Delivery Vehicle Routing
Problem (SDVRP), introduced by Dror & Trudeau (1987), where a client’s demand can be
served by one or more vehicles, to a time capacitated service resource allocation problem
where time capacitated tasks can be worked on by one or more time capacitated multi-task
resources. This kind of time capacitated routing and allocation with split tasks has not been
researched in the SDVRP literature before a SDVRP survey by Archetti and Speranza (2008)
or  after.  The  third  essay  on  time  capacitated  resource  allocation  in  services  presents  a  new
one-period resource allocation model that allows split tasks between resources. The savings
potential of that kind of modeling is also demonstrated. In the fourth essay two different time
capacitated resource allocation models in a service application are tested and compared.
Again, promising savings potential from allowing time capacitated task splitting is
discovered.

Further extending this kind of time capacitated service resource allocation modeling to
modeling with multiple planning periods makes it necessary to include set-up carry-overs,
which will close the circle by coming back to the issues researched in the first essay.

1.1. Why Capacitated Timing of Mobile and Flexible Service Resources?

Capacitated Timing
Time is money, but much more, too. Everything happens in time and time is our most limited
resource. Time once lost never comes back. Time once consumed can not be consumed again.
The production of products and services consumes time. Production capacity is constrained
by time and thus inseparably linked with time. Consequently, the production rate is typically
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measured timewise and stated as the production of products or services per time unit. We
want to use that limited time efficiently to maximize return on investment. If we can not find
the most efficient way to use time, we incur an opportunity cost which is the cost difference
between the most efficient resource utilization and the realized utilization.
Capacity utilization as actualized utilization divided by maximum utilization can be measured
using either the amount of production or utilization time. Utilization time is the time when a
production resource produces something. Often the unavoidable preparation time, set-up time,
is also included in the utilization time.
In a market economy, the amount of capacity usage for production depends on demand. If the
demand is less than the capacity in the long run, it is economical to produce under capacity.
As the demand increases over the capacity, it may be economical to produce the most
profitable product or service with full capacity. Typically, however, the capacity is not fully
utilized and is used to produce different products or services. Even then, however, high
capacity utilization is a goal that can be achieved either by producing more or by disposing of
overcapacity.

Setting up consumes capacity time and in order to save in total set-up time, long production
runs have traditionally been preferred especially in process industries where setting up may
take long and cost much.
Intensified competition and customer requirements have forced companies from traditional
mass production with long production runs towards more flexible production planning and
shorter production runs. Doing that efficiently requires decreased set-up cost and shorter set-
up  times.  The  total  time  used  for  setting  up  may  still  have  stayed  the  same  as  before.  The
increased number of set-ups can thus make planning for set-ups more difficult without
decreasing the economic impact of set-ups on total cost and capacity utilization.
Balancing between flexibility, customer satisfaction and high capacity utilization is
challenging and often requires sophisticated planning. If the planning is done efficiently, we
can simultaneously increase flexibility and the increased amount of capacity by reducing the
number of capacity consuming set-ups.
The capacity time consists of productive time, set-up time, possible set down time and slack.
A set-up in this context is any preparation effort that is needed between two productive
resource utilization periods in the production of products or services. In vehicle routing, for
example, all routes between customers can be understood as unproductive set-ups. A set down
is an unproductive activity that is not direct preparation for the next productive period. A set-
down is, for example, a vehicle returning to a distribution center without plans considering the
next tour or customers. Another example of set-down is a maintenance person who returns his
van and equipment to the employer after a work day instead of driving home and starting the
next day’s tour directly from home with the employer’s van and equipment.

In set-ups, productive time, and set-down often overlap. In vehicle routing, the traveling
between clients is both setting up and actual production. The capacity time of a vehicle can be
considered as fixed and the load distance cost as a variable cost. In just-in-time production,
set-ups are often made off-line at the same time with the production. A manager preparing for
the next day’s meeting in a train on the way home combines setting up for the meeting with
productive work when setting down from work. Part of setting up can also be separate from a
productive resource. A worker may use equipment brought to him by another worker.
Productive time depends on the amount of produced products because the production rate is
typically constant. Full capacity utilization does not create slack. The amount of slack
increases as the amount of production decreases, unless the time freed from production is
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wasted in unnecessary set-ups. The time wasted in set-up times can be decreased by careful
production planning.
As the capacity cost increases, even a small increase in available production capacity can
generate a considerable increase in income. Moreover, as the utilization increases the more
difficult it becomes to schedule the capacity to fulfill all requirements. As a result, the higher
the capacity utilization and capacity costs, the more beneficial it is to use optimization in
planning.

Time Capacitated planning and modeling are key concepts in this doctoral dissertation, and
one of the most general and relevant issues in the world we live in. Actually, everything in our
life is  time capacitated.  We think in terms of time: in terms of the present,  the past  and the
future. All that we do is time capacitated.

The focus of time capacitated planning in this doctoral dissertation is in the planning of set-up
times. In production of products or services, the use of time based modeling with focus on set-
up time is justified when capacity utilization is high and it is either difficult or expensive to
get additional capacity. In that case, we have to utilize the existing capacity time as efficiently
as possible. By time based modeling, we can maximize the throughput that resources can
produce.

When capacity utilization is high and capacity costs are low, it may be easier and less
expensive to buy additional capacity when needed instead of highly optimizing the usage of
existing capacity. However, if it is difficult to get additional capacity from the market,
optimization can become an important way to increase the throughput of existing capacity.

When both capacity utilization and capacity cost are high, it is probably profitable to invest in
optimization based planning because even a small percentage saved can mean a lot of money.
On the other hand, when capacity utilization is low and the capacity cost is high, optimization
may help us to identify the amount of capacity we actually need.

Low High

Set-up time

Short/Low

 and cost

Long/High

Capacity utilization

Optimizing
set-up time

highly relevant!

Modeling
set-up time

less relevant!

Figure 1. Optimizing set-up time is highly relevant when capacity utilization is high
and set-up time is long
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If set-ups are very short, we can often ignore set-up times by including set-up costs only.
However, the longer the set-up times are in comparison to the production time, the more
important it  becomes to model set-up times,  too.  Figure 1 summarizes the discussion on the
importance of optimizing expensive set-up time when the utilization of expensive capacity is
high.

As capacity utilization is high and set-up times are long, optimizing set-up times is critical for
all capacity planning because set-up time consumes capacity time and ignoring set-up times
can result in plans that can not be put into practice. In those plans, production is allocated on
capacity time that should be used for setting up. Figure 2 illustrates the importance of set-up
optimization in relation to capacity utilization and set-up time.

Low High

Set-up time can be ignored and

Capacity utilization

Ignorance of set-up time may create
unrealistic solutions.

Optimizing set-up time may be
relevant.

set-ups modeled as costs only.

Set-up
time Optimizing set-up time highly

relevant.
Long

Optimizing set-up time is not
critical but creates more realistic
solutions than inclusion of set-up Ignorance of set-up time probably

creates unrealistic solutions.

Short

Figure 2. Optimization of set-up time is critical when set-up times are long and
capacity utilization is high.

Time is modeled in all of the four essays presented in this dissertation. The first essay models
in a new, and more efficient, way a production planning problem where the allocation of set-
up times determines the timing, frequency and size of production batches. The second essay
models a distribution problem where traveling times between customers determine timing of
customer service and the capacity of vehicles is shared between goods delivered to different
customers on a delivery route. The third and the fourth essay model moving service resources
whose capacity and tasks are measured as time and tasks can be flexibly worked on by one or
several resources.
Time Capacitated planning assumes that capacity and efficiencies can be reliably measured
and predicted as time. In production planning, production rates and set-up times are
standardized. In vehicle routing traveling speed may vary to some extend because of varying
traffic conditions. In services, time based planning requires the predictability of task durations
meaning high standardization for service tasks.

Mobile Resources
Many resources in production and services are mobile. At a factory, the facility and the
machine used for production have fixed locations, but raw materials, work-in-progress and
products  seldom  stay  long  at  the  same  place.  Operators  also  move.  In  services,  service
resources, such as cleaning or maintenance staff, can move between customers and service
tasks.
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In this dissertation, the modeling of moving resources includes raw materials, work-in-
progress, delivery vehicles and task performing service resources.

Flexible Resources
Resources in production and service are also flexible. A planner can decide when and where
resources are used. In production planning, capacity timing for different production batches is
flexible. A production batch can be split into several batches or it can be joined with other
batches of the same product. Splitting, joining affects production timing that also has to be
flexible.
In services, allocation of service resource time between different tasks is flexible. A performer
of a task can be selected from different alternative resources, or a task can be shared by
several resources either simultaneously or in a sequenced way.

1.2. The Structure of the Dissertation
This dissertation consists of four essays all considering flexible and mobile resource
allocation in a time capacitated setting. Starting in production planning and dealing with
shared resources and set-up carry-overs, they solve large-scale flexible distribution problems
and finally combine the allocation of shared resources, split tasks and variable set-ups in
mobile service operations.

The production planning essay models set-up carry-overs with set-up time instead of using
set-up cost only and shows this new way of modeling improving three key production cost
factors: set-ups, production capacity and inventory. The essay on vehicle routing introduces
new methods of solving very big vehicle routing problems faster and better than ever before.
The method simultaneously minimizes the traveling cost and the total cost of differently sized
vehicles whose cost structures exhibit scale economies. The third essay presents a flexible
service  resource  allocation  model  with  a  new  kind  of  time  based  splitting  of  work  in  tasks
between  resources.  The  capacity  time  savings  potential  of  that  kind  of  modeling  is  also
demonstrated by examples. In the fourth essay two different time capacitated resource
allocation models in service applications are tested and compared. Tests indicate data
structures with promising capacity time savings potential from allowing time capacitated task
splitting.

All four essays bring valuable modeling and solution approaches as well as eye opening
analysis to the very general and actual problem of time capacitated resource allocation. Time
considerations, mobility and flexibility, which all are ever more important, have traditionally
eluded modelers due to the complexities they create in models and in solving the models. In
this research, they are all included in planning models with successful and clearly documented
results ready for managerial applications and further research.

Chapter 2 of this introductory part of the dissertation first presents the research approach,
objective and methodology of the dissertation. Then short descriptions of production lot
sizing  and  vehicle  routing  are  provided  for  readers  who  are  not  yet  familiar  with  those
concepts. Chapter 3 presents motivation and problem description, used methods, results, and
contributions of authors for all four essays. Chapter 4 presents conclusions, discussion and
suggestions for further research.
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2. Research Approach, Objective, Methodology, and
Background

This doctoral dissertation is based on four essays. The first two have already been published
in refereed journals. The essays are:

Porkka, Pasi & Vepsäläinen, Ari & Kuula, Markku (2003) “Multiperiod
Production Planning Carrying Over Set-up Time”, International Journal of
Production Research, Vol. 41, No. 6, pp. 1133–1148.
Bräysy, Olli & Porkka, Pasi P. & Dullaert, Wout & Repoussis, Panagiotis P. &
Tarantilise, Christos D. (2009) “A Well-Scalable Metaheuristic For The Fleet
Size And Mix Vehicle Routing Problem With Time Windows”, Expert
Systems with Applications, Volume 36, Issue 4, May 2009, pp. 8460–8475.
Porkka (2009), “Modeling Time Capacitated Resource Allocation In Services
Allowing For Split Tasks — Vehicle Routing Problem Approach”,
Unpublished Working Paper in the Doctoral Dissertation of Pasi P. Porkka,
Helsinki School of Economics, Helsinki, Finland.
Porkka (2009) “Testing Of Different Time Capacitated Resource Allocation
Models In Service Applications”, Unpublished Working Paper in the Doctoral
Dissertation of Pasi P. Porkka, Helsinki School of Economics, Helsinki,
Finland.

2.1. Objective
The main objective of this doctoral dissertation is to demonstrate how time capacitated
modeling can provide us with more realistic and more cost efficient plans.

2.2. Research Approach and Methodology
Different methods were used in essays included in this doctoral dissertation. A common
approach in all essays was that time capacitated problems were modeled, or could be
modeled, as Mixed Integer Linear Programming (MILP) models. Every essay presents a new
model or a new use of an existing model. Time was an important and common constraint for
each model. The amount of production or services is limited by the production rate or service
time, set-up time between production batches, or time spent traveling between customers.
Essays (1) and (4) compare different MILP model solutions to simulated problems using a
commercial MILP solver to prove that a new modeling approach can generate more cost
efficient plans than an old one. Essays (1) and (2) also provide solution heuristics. Heuristics
in Essay (2) are aimed at solving large scale vehicle routing problems. Post-optimization
heuristics in Essay (1) are introduced to improve solutions generated by a commercial solver.
In  Essays  (1),  (2),  and  (4)  simulated  test  problems  are  solved  by  new  and  old  solution
approaches. Then solutions are compared. Essay (3) uses examples to describe and prove the
savings potential of a new modeling approach. Table 1 summarizes research methodologies
used in Essays (1), (2), (3), and (4).
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Table 1. Research methodologies used in Essays (1), (2), (3), and (4).

1 2 3 4
New MILP model or use of an MILP model x x x x
New heuristic solution method x x
Comparison of CPLEX solutions to simulated benchmark problems x x
Comparison of heuristics to simulated benchmark problems x
Description and proving with examples x

Essay

2.3. Background of Essays
This subsection presents some background to the essays. First, a short introduction to lot
sizing models maps the models of the first Essay (1) with other kinds of lot sizing models.
Then a short overview of the Vehicle Routing Problem (VRP) is presented to give a
background to Essays (2), (3), and (4). In Essay (2) the VRP is extended and solved. Essays
(3) and (4) include a model quite similar to another extension of the VRP, namely the Vehicle
Routing Problem with Split Deliveries (VRPSD).

A Classification of Lot Sizing Models in Production
The new models introduced in Essay (1) are extensions of the so called Capacitated Lot
Sizing Problem (CLSP). Lot sizing is a wide area of research and capacitated lot sizing is only
a part of it. Kuik et al. (1994) relate Capacitated Lot Sizing Problem's position to other lot
sizing models by categorizing the models into two dimensions: capacity and demand. The
capacity axis categorizes the lot-sizing models into capacitated and uncapacitated models. The
other  axis  relates  to  the  way  demand  is  modeled:  models  can  be  distinguished  on  assumed
knowledge of future demand. Is demand modeled as a stationary stochastic (or even constant)
parameter or as a dynamic (time-depended but known) parameter? Two axes lead to the
typology of lot-sizing models presented in Table 2. The models in Essay (1) assume dynamic
demand and finite capacity.

Table 2. Typology of lot-sizing models (Modified from Kuik et al., 1994)

DEMAND Infinite Finite
Stationary   Economic Order Quantity (EOQ)   Economic Lot Scheduling Problem (ELSP)
(and constant)   Statistical Inventory Control (SIC)   Models based on queuing theory/Batching

  (Multilevel) Capacitated Lot Sizing Problem
= NON-carry-over problem (NCO) in essay (1)

  Discrete Lot Sizing and Scheduling Problems (DLSP)
  Continuous Set-up Lot sizing Problem (CSLP).
  Batching / Scheduling

CAPACITY

  Multilevel Wagner-Whitin type of modelsDynamic

In the models with infinite capacity, lead-times do not depend on the operations schedule. In
other words, the model's behavior concerning lead-times is independent of the level of
activity, i.e., independent of the decisions taken. As lead times are considered exogenously,
capacity does not play a role in decision making. In finite capacity models, on the other hand,
lead-times are always considered endogenously. Capacity, be it given or to be determined, is
considered as an active factor that affects lead times' length.

In a constant demand and constant capacity setting Silver et al. (1998, 443) propose the use of
Economic Lot Scheduling Problem (ELSP) which creates a sequence of production that will
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be followed periodically. The ELSP is to find a cycle length, a production sequence,
production times, and idle times, so that the production sequence can be completed in the
chosen cycle, the cycle can be repeated over time, demand can be fully met, and annual
inventory and set-up costs can be minimized.
Kuik et al. (1994) consider models from queuing theory, (stochastic) dynamic programming,
and mixed integer linear programming as the most prominent in the area of lot-sizing.
Batching analysis that makes use of models with stochastic elements, such as queuing theory,
as  a  rule  builds  on  the  assumption  of  stationarity  of  the  conditions  under  which  the  system
operates: although actual conditions at time instances may vary, conditions are statistically
time-invariant. Only statistical information (e.g. averages and variances) is assumed known
and can be used in decision making. Regularly, the analysis yields stationary timing and
sizing of batches as the best solution. For these reasons, queuing models foremost relate to
analysis at the level of process choice/design in which decisions on batching (e.g. the unit
size) are made on the basis of hands-off planning and control. Queuing models are capacitated
models and the finiteness of processing (service) times limits the output rate of the models.
Limited capacity effects become distinct when the utilization of a system approaches 100%:
inventory (work-in-process) rises sharply as utilization nears 100% and the cost per unit of
output rises sharply accordingly.
Deterministic models can be uncapacitated or capacitated. In contrast with queuing models,
one frequently finds economies scale in uncapacitated models as the cost per unit of output
decreases  with  the  volume  of  output  (demand).  In  the  Capacitated  Lot  Sizing  Problem,  the
scale economies of producing long batches are traded off with inventory costs. Being
deterministic, mixed integer linear models are based on knowledge of values (realizations or
statistics based estimations) for model parameters, such as capacity and demand, in order to
determine lot sizes. These models are suitable in situations in which the state of and
requirements on the system can be expressed as specific numerical values.
When  demand,  set-up  times,  or  processing  rates  are  not  deterministic  (or  stationary),
production may not follow the production plan developed by deterministic approaches
considered above. If variability is high, there may be significant disruptions from using the
deterministic solution in a probabilistic environment. Thus adjustments to models must be
made. The Stochastic Economic Lot Scheduling Problem (SELSP) exactly parallels the ELSP
with  the  added  complexity  of  probabilistic  (i.e.  stochastic)  demand,  set-up  times,  or
processing rates. Silver et al. (1998, 451 – 452) list two basic approaches to handle this
problem. One is to develop a regular cyclic schedule using a solution to the deterministic
problem, and then to develop a control rule that attempts to track or follow this schedule. The
other is to develop a heuristic that directly and dynamically decides which product to produce
next and its production quantity. The Capacitated Lot-sizing Problem is an example of such
models. The dynamic models are usually finite-horizon deterministic planning models and
solution procedures are implemented on a rolling horizon to take advantage of feedback on
the actual inventory levels. In other words, only the first time period results of the model are
implemented. At the end of every time period, new information becomes available that is used
to update the model.
Capacitated Lot Sizing Problems can be subcategorized according to the way they treat set-up
carry-over and set-ups. Set-up carry-overs are allowed or not allowed. Set-ups can include
time,  cost  or  both.  All  of  the  three  MILP  formulations  studied  in  Essay  (1)  have  explicitly
stated set-up times. Two of them also allow set-up carry-over. Figure 3 shows the Capacitated
Lot Sizing Problem categorization. The ellipses symbolize different models and the broken
line is used to symbolize the models and formulations still undetected in the year 2002. The
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gray color highlights the model classes that had not received much attention in literature in the
year 2002.

Set-up time Set-up time and cost Set-up cost

Set-up carry-over

No set-up carry-
over

CARRY-OVER
problem

COMPRESSING
carry-over
problem

NON-carry-over
problem

Generalized Lot
Sizing Problem

Figure 3. Classification for Capacitated Lot Sizing Problems

Vehicle Routing Problems
Transport and logistics are essential to modern Western societies. Not only do they empower
individuals with unprecedented mobility, they also offer a wide variety of products and
services  which  influence  the  perception  of  the  world  and  even  the  portrayal  of  mankind.  In
general, products are either directly shipped from the supplier or manufacturer to customers or
are distributed from intermediate storage points (e.g. warehouses and/or distribution centers).
The latter option is highly common and gives rise to a wide variety of distribution strategies
balancing risk pooling effects on inventory, inventory holding costs and transportation and
distribution costs (for more information on distribution strategies see e.g. Simchi-Levi et al.
2007).

Essays (2), (3), and (4) are all associated with the Vehicle Routing Problem (VRP). The VRP
concerns the distribution of goods between depots and final users. The VRP lies at the heart
of these distribution problems as it addresses how the demand of customers can be satisfied at
minimal cost by homogeneous vehicles located at intermediate storage facilities. The basic
VRP consists of a number of geographically scattered customers, each requiring a specific
weight (or volume) of goods to be delivered (or picked up). A fleet of identical vehicles
dispatched from a single depot is used to deliver the goods required and once the delivery
routes have been completed, the vehicles must return to the depot. Each vehicle can carry a
limited weight and only one vehicle is allowed to visit each customer. It is assumed that all
problem  parameters,  such  as  customer  demands  and  travel  times  between  customers  are
known with certainty.
Customers and typically one depot form a network usually modeled as a graph which can be
either directed or non-directed. Typically, the transportation capacity or route length is limited
leading to a situation when all customers can not be served by one route and one vehicle only.
Other constraints can include periods of the day (time windows) during which customers have
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to be served, unloading or loading times, vehicle type, different priorities, and penalties
associated with partial or total lack of service associated with customers. Routes can include
deliveries, pick-ups or both. The objective is to minimize transportation costs that consist of
the number of vehicles needed and actual traveling costs typically consisting of the total
distance traveled.

A VRP problem is a Split Delivery Vehicle Routing Problem (SDVRP) if a client can be
served by using more than one vehicle. The SDVRP is a relaxation of the classical VRP, but it
still remains NP-hard. Using SDVRP instead of VRP can save in both the total distance
traveled and in the number of vehicles to be used.

If every client must be serviced by exactly one vehicle, the problem is known as the
Capacitated Vehicle Routing Problem (CVRP) which has been the focus of intensive research
in the past 25 years.
According to Toth and Vigo (2001, 11), literature provides three different modeling
approaches for VRP. In vehicle flow formulations, integer variables associate with each arc or
edge of the graph and count the number of times the arc or edge is traversed by a vehicle.
These are the frequently used models for the basic versions of VRP when the cost of the
solution can be expressed as the sum of the costs associated with the arcs, and when the most
relevant constraints concern the direct transition between the customers within the route, so
they can be effectively modeled through an appropriate definition of the arc set and of the arc
costs.
In the second form of formulations, the so-called commodity flow formulations, additional
integer variables are associated with the arcs or edges and represent the flow of the
commodities along the paths traveled by the vehicles.

In the third model type there is an exponential number of binary variables, each associated
with  a  different  feasible  circuit.  This  VRP  type  is  then  formulated  as  a Set-Partitioning
Problem (SPP)  where  the  minimum  cost  collection  of  circuits  is  determined  to  serve  each
customer once and, possibly, to satisfy additional constraints.

For a general overview of the VRP, Toth and Vigo (2001) wrote a comprehensive book on
Vehicle Routing Problem models and algorithms to solve them. For a literature survey of
various extensions of the VRP occurring in practice, see Bräysy, Gendreau, Hasle, and
Løkketangen (2007a, 2007b). A literature review on the SDVRP is presented in Essay (3).

3. Summary of Essays

3.1. ESSAY 1: Multiperiod Production Planning Carrying Over Set-Up Time

Motivation and Problem Description
Porkka (2003) is based on Porkka’s Master’s Thesis (2000) and was motivated by a
production planning problem tackled in a company producing special papers requiring
relatively long set-up times and optimal operating rates to avoid inferior quality. The
company wanted to optimize production over a planning horizon consisting of 8-hours
production planning periods. In this environment counting for set-up times is essential. The
models found in literature in the year 2002, as the article was accepted for publication,
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performed unsatisfactory for the problem because they either included set-ups as fixed fees
only or wasted production capacity by allocating unnecessary set-ups.
Drastic reduction in set-up times and costs in many discrete parts manufacturing processes has
cut batch sizes and work in process inventories making production planning more flexible
than ever. However, further research on lot sizing was still justified: Firstly, although set-up
times have been reduced, they have not been eliminated. At a bottleneck facility, time wasted
on set-ups always reduces the throughput of the whole system. Secondly, at the same time
when  shorter  set-up  times  allow  firms  to  reduce  the  manufacturing  cycle  at  non  bottleneck
resources,  the  number  of  set-ups  increases  and  the  total  time  used  for  set-ups  may  stay  the
same as before. In multilevel production systems, minimizing delays and inventories between
consecutive production stages may require the parallel shortening of production planning
periods and set-up times which, paradoxically, may keep the time ratio between set-up times
and the planning periods unchanged. For example, if we have 6-h set-ups and a 5-day (120h)
production planning period or 1.2-h set-ups and a 1-day (24h) production planning period, the
relative length of the set-up (5%) and thus the production planning problem remains the same.
Finally,  even  though  very  small  batch  sizes  can  be  reached  in  assembly  type  of
manufacturing, in process industry, such as in paper production, the time and costs of frequent
set-ups still force production batching and inventory holding. Because setting up does not
only waste time but also consumes a lot of energy and raw materials, shortening the set-up
times and the production cycles may sometimes increase the number of set-ups to the extent
that the fixed fees not related to set-up time offset the yield from the increased production
capacity. Thus, in systems where set-ups are of paramount importance, it is essential that they
be managed explicitly.

Capacitated Lot Sizing Problems (CLSPs) are production planning models that—in a
multiperiod setting—take into account the capacity constraints of a facility when determining
the quantity and timing of several products over a planning horizon with known demands.
The objective of CLSPs is to minimize the sum of production and inventory costs. In a single
stage problem, no item can be a predecessor of another item. Costs and demand can vary over
a finite horizon of discrete time periods. Backlogging is not permitted. CLSPs do not
sequence or schedule jobs within a period.
Set-ups in CLSPs can be expressed as fixed fees and/or as set-up times with related costs
attached. Set-ups stated as fixed fees implicitly include labor, wastage, the cost of lost
production etc. Set-up times can be fixed and product specific or depend on production
sequence.
In CLSP models, the inclusion of a carry-over of a set-up of a product to the next period in a
case a product can be produced in subsequent periods increases solution times drastically and
questions the practicality of the carry-over possibility. — In any event, no more than one
production batch can be carried over between two planning periods. — Still, because setting
up includes fixed costs, wastes capacity and affects inventories, manual insertion of set-up
carry-overs in production plans is a common practice in many industries.
In deciding whether to include set-up carry-over possibility directly in a planning model, a
production planner has to consider factors such as the average capacity utilization of a facility,
the robustness of the desired production plan, the relative length of set-ups compared with the
length of planning periods, and the average number of produced products during a planning
period. The shorter the production planning periods and the less the average number of
products produced during a planning period the bigger is the proportion of production batches
with set-up carry-over potential. When set-up times are relatively short, it may be reasonable
to ignore their capacity effects because the efficiency of solving CLSPs depends on the way
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set-ups are stated. However, during times of high capacity utilization, even the feasibility of a
production planning problem may depend on the possibility to include set-up carry-overs.
Proper counting for the set-up times is crucial when the capacity consumed relative to the
length of planning periods is significant. The relation often remains unchanged when
production flexibility is searched by shortening both set-up times and planning periods. To
efficiently decrease the number of set-ups in practice, different planning methods are applied
to allow production batches, once set up, to continue over to the next planning periods.

In earlier CLSP models, the requirements of set-ups have usually been expressed in terms of
cost only; the capacity consuming effect of a set-up time has been ignored. Earlier CLSP
formulations  also  usually  assume that  a  single  set-up  must  be  performed for  an  item in  any
period in which it is produced. However, when set-up times are considerable, setting up for a
product produced last in the period t – 1 and first in the period t increases the total set-up cost,
wastes production capacity and, especially under high capacity utilization rates, may turn a
production planning problem infeasible. Even though unnecessary set-ups can be removed
post-optimally and without a change in the production plan, the experiments indicate that
production plans created by this method are still much more expensive than those created by
models where set-up carry-overs are allowed. Figure 4 illustrates how production plans
become more realistic when carry-overs and set-up time are included in a CLSP model.

Period t Period t + 1Period  t – 1

Set-up
Unnecessary

set-up

 duplicate set-up cost
 ignorance of capacity

   needed by set-up

MODEL TYPE

 no set-up time
 no carry-over

 set-up time
 no carry-over

 set-up time
 carry-over

RESULTING SITUATIONS

 realistic allocation

 work overflow and extra
  cost  due to duplicate
  set-up time

Ignored
set-up time

Set-upOther
orders

Other
orders

Other
orders Set-up Set-up ?

Figure 4. Three ways to allocate an order for production before the period t + 1
(Porkka, 2003)

The focus of this essay is on reducing the number of production capacity consuming set-ups
in a continuous production environment when a product can be produced in two or more
subsequent planning periods. This kind of set-up carry-over to the next period has posed
problems in Mixed Integer Linear Programming (MILP) algorithms. Two different
formulations of a cost minimizing carry-over model are presented and the models are
compared with an earlier benchmark model without set-up carry-over. In this study set-ups
are stated as set-up times with related cost to emphasize their capacity consumption effects.
To avoid the complexity of separate set-up fees and costs of, possibly sequence dependent,
set-up times, explicit set-up fees are excluded and set-ups costs are assumed to be directly
related to the length of set-ups. Fixed and equal cost is assumed for machine time whether it is
used for setting up or production.

The objective of this study is to show that, with set-up times that are relatively long in
comparison to planning periods, the two new modifications of set-up carry-over models
generate better production plans than the best non-carry-over benchmark model found in the



14

literature.  The  study  does  not  attempt  to  develop  new and  faster  optimization  algorithms to
solve the carry-over problem.

Method
In  the  article  solutions  of  two new set-up  carry-over  modeling  approaches  are  compared  to
solutions generated by an existing model that does not include set-up carry-over. The
non-carry-over model (NCO) is a Capacitated Lot Sizing Problem presented in Trigeiro et al.
(1989). The NCO is used as a benchmark for the two new modified set-up carry-over models
formulated in this study.
The first new carry-over model (CO) was formulated by adding the carry-over constraints to
the NCO. CO usually schedules carry-overs between all production planning periods and
allows production batches to continue over several under utilized production planning periods
before a set-up for another product. In practice, this kind of under utilization pattern can either
occur when a machine is run continuously, but below its capacity, or when it can be stopped
and started again without a new set-up. In processes like paper production, however, the best
quality may only be reached by producing batches at full or constant production rate.

The second new model, the compressing-carry-over model (CCO), forces a constant
production rate of batches and allocates production stoppages between batches when capacity
is underutilized. These features facilitate the production planning of certain products and give
people in production planning, sales or maintenance better insight into the exact timing of
planned production stoppages and unallocated capacity.
Small-scale experimental production planning problems were generated to study the effects of
set-up carry-over. In addition to comparing the three optimizing models, the solutions to the
NCO and the CO were post-optimally modified to imitate solutions to the CO and the CCO,
in respective order. A production plan difference indicator was used to compare the allocation
of production in production plans generated by different models.

Results
Solutions of an MILP based set-up carry-over models with set-up times were compared with
solutions of a benchmark model without the carry-over. It was found out that the explicit
counting for set-up times and carry-overs cuts down the number of set-ups and also frees a
significant amount of production capacity decreasing the set-up related costs and, somewhat
unexpectedly, also the inventory costs. Furthermore, experiments with heuristics that post
optimally  allocate  carry-overs  proved  to  capture  less  than  one  third  of  the  cost  savings
generated by the MILP formulation.

Constant production rates are required in a variety of process industries. They also facilitate
the planning of free capacity and production stoppages. We forced constant production rate of
batches in our exact set-up carry-over model and compared the results with heuristic post
optimal modification of the carry-over solutions. Again, the MILP formulation was superior
to the heuristics solutions.
The significant cost savings demonstrated in our experimental results encourage the explicit
inclusion of set-up carry-overs into the MILP based capacitated lot sizing models, hence
motivating further research. Faster methods of solution should be developed to make
carry-over models with set-up times more suitable for medium to large-scale problems with
multiple machines. The future extensions of the models could include sequence dependent
set-ups as well as set-up times starting at the end of one period and ending at the beginning of
the  next.  We  believe  that  competitive  pressure  to  efficiently  exploit  production  capacity
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motivates management to consider the carry-over of set-ups —especially the time required —
as an essential feature of practical production planning.

Capacitated Lot Sizing with Set-up Carry Overs in Literature since 2003
Since the year 2002 numerous articles on capacitated lot sizing with set-up carry-over have
been published including both new formulations and new solution techniques. For recent
reviews on that subject see Quadt & Kuhn (2009), Jans & Degraeve (2008),  Gicquel et al.
(2008), Quadt & Kuhn (2008), Suerie (2006), Briskorn, D. (2006), and Suerie & Stadtler
(2003).

3.2. ESSAY 2: A Well-scalable Metaheuristic for the Fleet Size and Mix
Vehicle Routing Problem With Time Windows

Motivation and Problem Description
This paper addresses two of the most common extensions of the VRP occurring in practice:
the presence of service time windows for customers and the use of heterogeneous vehicles.
Customers often restrict the time in which they want to be serviced to a specific time interval.
The resulting vehicle routing problem with time windows is probably the most studied routing
problem in the literature (Bräysy & Gendreau 2005a, Bräysy & Gendreau 2005b). Because of
its intrinsic complexity and practical relevance, it has been the subject of research on
innovative heuristic search strategies and on solving large-scale routing problems. Extending
the VRP to heterogeneous vehicles is also highly relevant because a vehicle fleet is rarely
homogeneous in real-life: a fleet manager typically controls vehicles that differ in terms of
equipment, carrying capacity, speed, and cost structure to better service his customers. The
objective of the so-called fleet size and mix vehicle routing problem (FSMVRP) is therefore
to find a fleet composition and a corresponding routing plan that minimizes the sum of
routing and vehicle costs. Practical applications of FSMVRP with time windows
(FSMVRPTW) are abundant and have enjoyed recent scientific attention (see e.g. Dell’Amico
et al. (2007), Dondo and Cerdá (2007), Li et al. (2007), and Paraskevopoulos et al.
(2008)).They are surveyed in Bräysy et al. (2008).

In spite of the large number of real customers involved, academic research on heterogeneous
routing problems has been limited to relatively small problem instances. Solution approaches
have often been tested on the 100-customer benchmarks of Liu and Shen (1999), derived from
the  well-known  Solomon  (1987)  instances  for  the  VRPTW.  This  paper  focuses  on  the  new
distance-based objective variant for the FSMVRPTW, suggested in Bräysy et al. (2008)1 and

1 Refers to article Bräysy, Olli & Dullaert, Wout & Hasle, Geir & Mester, David & Gendreau, Michel (2008)
“An Effective Multirestart Deterministic Annealing Metaheuristic for the Fleet Size and Mix Vehicle-Routing
Problem with Time Windows”, Transportation Science, Aug. 2008, Vol. 42 Issue 3, p371-386, 16p. The article
was  referred  in  Bräysy,  Olli  &  Porkka,  Pasi  P.  &  Dullaert,  Wout  &  Repoussis,  Panagiotis  P.  &  Tarantilise,
Christos D. (2009), “A Well-Scalable Metaheuristic For The Fleet Size And Mix Vehicle Routing Problem With
Time Windows”, Expert Systems with Applications on page 8466 as Bräysy et al. (2008), but was mistakenly left
out from article’s list of references.
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derive 600 new large-scale problem instances from the Gehring and Homberger (1999)
problem instances for the VRPTW, using real-life data on the available vehicle types and
costs. A new hybrid metaheuristic approach is described which combines the well-known
Threshold Accepting and Guided Local Search metaheuristics with several search limitation
strategies for a set of four local search heuristics.

Method
The proposed solution approach consists of three phases. In Phase 1 high quality initial
solutions are generated by means of a limited savings heuristic. In Phase 2, the focus is on
reducing the number of vehicles with a simple route elimination heuristic and in Phase 3, the
Threshold Accepting (TA) (Dueck and Scheurer, 1990) and Guided Local Search (GLS)
(Voudouris and Tsang, 1999) metaheuristics are used to guide a set of four local search
operators to further improve the solution from Phase 2. Although the overall structure of the
algorithm is similar, there are a number of major differences compared to the previous study
aimed at solving large scale heterogeneous routing problems by Bräysy et al. (2008): (1) a
number of algorithmic simplifications, (2) several strategies for efficiently restricting the local
search and threshold accepting strategy, and (3) the introduction of a novel two-directed GLS
and a simple diversification procedure.

Computational experiments were performed to examine the performance of the proposed
algorithm. The computational experiments were performed using the benchmark instances
proposed by Liu and Shen (1999) and 600 new benchmark instances suggested in this paper.
In contrast to Liu and Shen, the sum of all vehicle costs and total distance is considered as the
optimization  objective,  as  opposed  to  the  sum  of  vehicle  costs  and  en  route  time.  The  new
objective was first introduced in Bräysy et al. (2008) and it is believed to be of a higher
practical value than the former objective function. The Liu and Shen benchmarks are derived
from the well-known VRPTW instances of Solomon (1987). Solomon’s problem sets for the
VRPTW consist of 56 instances of 100 customers with randomly generated coordinates (set
R), clustered coordinates (set C) or both (semiclustered RC set). The difference between
Subsets R1, C1 and RC1 and R2, C2 and RC2 lie in the vehicle capacities and scheduling
horizon. For each six subsets Liu and Shen introduced several vehicle types with different
capacities  and  costs.  In  addition,  three  different  vehicle  cost  structures  A,  B  and  C  were
suggested so that cost structure A refers to the largest vehicle costs and C to the smallest. To
limit the computational tests, cost structure B was omitted, resulting in 112 test problems of
100 customers each. The suggested new test problems are based on the large-scale VRPTW
benchmark instances of Gehring and Homberger (1999). Similar to Solomon (1987), Gehring
and Homberger constructed random, clustered and semi-clustered problem sets, consisting of
200, 400, 600, 800 and 1000 customers, so that there are 60 problems of each size and 10
problems in each of the above groups. In total there are 300 problems. For the Gehring and
Homberger instances, a set of vehicle types and costs were suggested. The same 8 vehicle
types and costs are used for every problem size. The vehicle capacities and costs differ only
between the six problem sets, as detailed in Table 3.
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Table 3. Vehicle costs and capacities used for each problem set

Capacity Cost Capacity Cost Capacity Cost
40 200 120 575 40 140
70 335 240 1100 70 230

100 460 350 1540 100 310
140 615 470 1975 140 405
170 715 580 2320 170 460
200 800 700 2700 200 500
240 910 820 2955 240 550
270 975 930 3160 270 565

Capacity Cost Capacity Cost Capacity Cost
170 590 40 125 170 590
340 1115 70 205 340 1115
500 1550 100 275 500 1550
670 1945 140 355 670 1945
840 2270 170 420 840 2270
1000 2500 200 450 1000 2500
1170 2690 240 495 1170 2690
1330 2795 270 500 1330 2795

C1 C2 R1

R2 RC1 RC2

The vehicle capacities and costs in Table 3 were defined as follows. As in Liu and Shen
(1999), we have used the maximum capacity in the corresponding VRPTW instance, VB as the
starting point. The cost of the vehicle with a carrying capacity VB is  the  same  as  for  the
corresponding Liu and Shen (1999) 100-customer problem set. The other vehicle capacities
and costs are based on real-life information collected from Finland. More precisely, we first
surveyed the most typical truck types available and fixed costs related to them. Excluding
vans, we found out that there are eight common vehicle types available. Liu and Shen (1999)
defined only vehicle capacities smaller than the original VRPTW maximum capacity, making
the problems somewhat easier to solve (optimizing the capacity utilization of larger vehicles
is often harder). Here we decided also to enable vehicles with larger capacity than in the
original VRPTW problem, so that we set the sixth largest vehicle carrying capacity (9 tons) to
equal the VB.

As a result, there are two truck types larger than VB and five that are smaller in each problem.
The other capacities were defined using direct relation with regard to VB so that e.g. the
capacity equaling 12 tons is obtained by multiplying VB by 12/9 and rounding up or down
with an accuracy of 5 units.  The costs of other vehicle types apart  from VB were defined by
first analyzing the cost relations with regard to the 9-ton vehicle. We noticed in the analysis of
the  real-life  capacity  and  cost  data  that  apart  from the  smallest  2–3  vehicle  types,  there  are
linear economies of scale in the cost per capacity unit. The real-life costs of the smallest
vehicle types were clearly relatively more expensive than the larger ones. Therefore, they
were hardly ever used in the tests done with the preliminary data. Based on this information,
we decided to apply the same linear economies of scale structure over all 8 vehicle types to
improve the quality of the benchmarks, by using the scaling factor defined with the three
largest vehicle types. The obtained costs were then rounded to the nearest 10. This
corresponds to cost structure A. As in Liu and Shen (1999), we obtained cost structure C by
dividing the vehicle costs by 10, resulting in 600 test instances. Here the relationship between
fixed  costs  and  vehicle  capacity  is  more  realistic  than  the  cost  structure  by  Liu  and
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Shen (1999), where fixed costs in some cases are obviously too small in comparison to
vehicle capacity.
We tested the performance of the algorithm with two different parameter settings that we
denote here as Quick and Normal. The major difference between Quick and Normal was the
size of the searched neighborhood and the number of improving iterations made.

Results
Test  results  show  that  strategies  used  in  this  paper  are  capable  of  significantly  limiting
computation time and of increasing solution quality, making them useful for solving large
routing problems in general.

This paper presents a new hybrid Threshold Accepting and Guided Local Search
metaheuristic that is specifically designed for solving large-scale fleet size and mix routing
problems with time windows. The central part of the described algorithm consists of different
strategies for balancing a limitation and intensification of the search. The computational tests
were done with the benchmarks of Liu and Shen (1999) and on 600 new large-scale real-life
based benchmarks suggested in this paper. A comprehensive computational study, including
detailed sensitivity analysis showed that the suggested method is competitive with the
previous best approach and scales almost linearly for problems up to 1000 customers.

3.3. ESSAY 3: Modeling Time Capacitated Resource Allocation in Services
Allowing for Split Tasks — Vehicle Routing Problem Approach

Motivation and Problem Description
In traditional production, machines typically have fixed locations and tasks are brought to the
machines as work-in-progress or raw materials. The objective in scheduling is often to
maximize the utilization of the machine by feeding tasks to the machines in well-planned
production batches. The machines are typically the production limiting bottleneck that is
planned and scheduled carefully in order to use that bottleneck capacity as efficiently as
possible.
In the modern production of products and services, a bottleneck resource may be moving
instead of having a fixed location. The bottleneck resource may be moved from task to task
requiring routing in addition to batching and scheduling of traditional production.

In flexible production, multi-skilled work force capable of running many different machines
may be the bottleneck. Machines can have overcapacity and the production is actually limited
by the working time of the workers. In many services, such as home health care, facility
cleaning, waste collection and machine leasing business for construction sites, tasks may have
different durations and locations, but the location of each task is fixed. Now, the moving
resources are the bottleneck, and especially the available time of those resources. When
planning is based on moving resources, the capacity time consists of moving between tasks,
preparation for starting a task, performing the task, doing the necessary steps before leaving
the task, and possibly some idle time.
Moving and allocation of moving resources is a common planning problem in many services,
construction, personnel rostering and transportation planning. When planning this kind of
problems on the operational level, time is an important constraint. In reality, the planned time
consists  of  two  components  that  are  the  time  between  tasks  and  the  actual  time  needed  for
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performing tasks. When capacity is measured as time, both of these components consume
resource capacity.
In literature, however, one or both production components, production and set-ups, are
typically modeled as costs only. In addition, problems are often reduced from routing AND
scheduling problems into routing OR scheduling problems by fixing either of the components
already in the preprocessing of the problem.
This essay studies a resource allocation problem where the time between tasks and the actual
time needed for performing tasks are explicitly modeled and simultaneously solved as
variables. Time is considered as key in both constraints and variables. The length of the time
that a resource spends in a task is modeled as a continuous variable which allows the splitting
of tasks to be performed by one or several resources. The time that each resource can work is
constrained. For that kind of modeling, there is a clear gap in literature. However, it is not
difficult to show that there is substantial potential for savings if flexible and time capacitated
splitting of work resources between tasks is allowed. Sometimes even the feasibility of a
problem may depend on whether task splitting is allowed or not.

The modeling approach in TCRAPST is very similar to the Split Delivery Vehicle Routing
Problem (SDVRP). Therefore, description of the SDVRP and savings generated by split
deliveries is justified. A literature research on the SDVRP is also provided to show that time
capacitated task spitting has not yet been studied in SDVRP literature.

This essay has three objectives: The first objective of this essay is to get a better
understanding of the capacity time saving effects of task splitting by presenting comparative
examples of problems with, and without, task splitting. The second objective is to prove, by
simple examples, that by task splitting between resources, up to 50% capacity time savings
can be reached when compared to a situation when task splitting is not allowed. The third
objective is to present a Mixed Integer Linear Programming (MILP) problem model on the
Time Capacitated Resource Allocation Problem with Split Tasks (TCRAPST) and to discuss
its potential applications.

Method
This  essay  uses  small  examples  to  demonstrate  the  savings  potential  of  time  capacitated
modeling with flexible task splitting between resources used. Mixed Integer Linear
Programming modeling is used to construct a model and to demonstrate some features of
solutions. Examples of the potential business applications of the TCRAPST type of modeling
are also discussed.

Results
Time Capacitated resource allocation can be applied in services where tasks are similar and
resources, such as cleaning personnel, have similar and standardized skills and efficiencies.
Standardization of tasks and skills makes it possible to make reliable forecasts about the
capacity consumption of tasks as well as efficiencies of resources. If tasks, skills and
efficiencies can not be forecast accurately enough, time capacitated resource allocation should
not be used.
The essay described a resource allocation model that can be used when both capacity and
requirements are expressed as time. That MILP model helps to allocate resources to perform
tasks so that the number of resources gets minimized. In minimization of the number of
resources needed, the routing of resources is a key because both working in tasks and moving
between tasks consume capacity.
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In addition to routing, task splitting was taken into account. As resources and tasks are very
similar, it is often practical to let more than one resource to work in a task, especially, if a task
takes a long time to complete. The MILP model presented in this essay also does that splitting
of tasks between resources while simultaneously minimizing the number of resources needed
in the whole system.

The focus on this essay was on the savings potential of task splitting in time capacitated
modeling. Firstly, examples on that savings potential were given by comparing solutions that
do not allow task splitting to solutions that include task splitting. Secondly, it was proven that
task splitting can, in a theoretical case, bring up to 50% savings in comparison to a solution
that does not allow task splitting. Thirdly, a Mixed Integer Linear Programming (MILP)
problem model on Time Capacitated Resource Allocation Problem with Split Tasks
(TCRAPST) was presented. Finally, the extensions and potential applications of the
TCRAPST were discussed.

This essay concentrated on describing and proving a model that can potentially generate more
efficient operational plans than the existing models. The focus was on the savings effect and,
therefore, many important practical aspects, such as time windows or minimum working time
constraints, were ignored. If split tasks are to be applied in practice, the model has to be
extended.
Another subject for further research would be to test the savings effect with data by
comparing solutions generated by the TCRAPST with solutions generated by a similar model
that  does  not  allow  task  splitting.  Data  could  also  be  used  to  test  the  optimality  of  the
TCRAPST solutions.  Does  the  TCRAPST always  allocate  complete  resource  work  shifts  to
tasks when the task length exceeds the capacity of the resource’s work shift?

As an MILP formulation, the TCRAPST could only solve very small problems. If the idea of
task splitting in time capacitated problems is to be put in practice, more efficient solution
methods have to be developed. When developing those methods, the TCRAPST solutions, or
solutions to its extensions, can be used as reference solutions to compare the quality of
solutions generated by other techniques than branch-and-bound based optimization. The
TCRAPST model can serve as a starting point in analyzing the implications of task splitting,
set-ups, reallocations and set-downs in different industries.
Second routing application area where resource capacity can be measured in time is human
resource or robot allocation and routing for different tasks.
Then a short survey is made on transportable resource allocation, routing and scheduling in
cases where requirements can be measured as capacity time. Based on these surveys it
becomes quite obvious that a research gap exists when it comes to modeling the flexible
splitting of resource time between tasks.

3.4. ESSAY 4: Testing of Different Time Capacitated Resource Allocation
Models in Service Applications

Motivation and Problem Description
In many planning and scheduling situations time is an important constraint. Time can measure
the length of work in a task as well as the switching time between tasks. In production,
machines with fixed locations are the resources and tasks are allocated to them. In many
services, however, tasks have fixed locations and resources are allocated to tasks. For
example, in house cleaning, houses have a fixed location and cleaning personnel move from
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house to house. The time of resources can be divided into three components that are working
time, moving time and slack. If the time needed for performing a task and moving between
tasks is predictable, we can route and schedule resources based on time. A typical goal in such
situations is to minimize the resources needed.
In Porkka (2009a) it was shown that the time capacitated splitting of tasks to be performed by
more than one resource can generate more efficient plans than when splits are not allowed. In
this essay 50 simulated problems are solved to study the effects of splits in real planning
situations. Problems are divided into 10 sets with task lengths and distances being generated
from different probability distributions. Each problem includes 12 tasks and the purpose of
the problem sets is to simulate a cluster of tasks.
Problems are first solved using the Time Capacitated Resource Allocation Problem with Split
Tasks (TCRAPST) model formulated in Porkka (2009a) and then by the Time Capacitated
Resource Allocation Problem (TCRAP) that solves the same problems but without splits. The
TCRAP is a basic routing and allocation problem and similar models are likely to be found in
literature. For this essay, the TCRAP was modeled to be a reference model to the TCRAPST
when  testing  with  simulated  problems  the  savings  effects  of  time  capacitated  task  splitting.
The use of the TCRAP for that purpose is new because, according to the author’s knowledge,
the TCRAPST was first modeled in Porkka (2009a) and this essay is the first research where
its performance is compared with a reference model.

Most  test  problems  were  solved  to  optimality  by  the  TCRAP  but  with  the  TCRAPST  they
could be solved to optimality in some cases only. Near optimal solutions were seen sufficient
to demonstrate the savings generated by split tasks and to describe some interesting
characteristics of solutions.

In the test problems, the resource capacity is set to be the same as the length of the planning
period which makes the analysis of solutions easier. In the examples, the length of a planning
period and the capacities of each resource are 8 hours which can be interpreted as the length
of a working day. An easy example for a reader to keep in mind is a set of cleaning tasks in
different locations and a set of workers that have to be allocated to do those tasks. The main
cost in test problems is the resource time which is different for each resource. In this way, the
utilization of the least expensive resources gets maximized and the utilization of the most
expensive resources gets minimized.

Method
Different MILP models were compared by solving sets of simulated test problems using
commercial optimization software.

Results
Two  models,  the  TCRAPST  and  the  TCRAP,  were  used  to  solve  10  sets  of  problems  that
simulate a service environment where task requirements are measured as capacity time
needed to perform a task. Each resource had the same amount of capacity that was measured
as  time.  Capacity  is  used  to  perform  tasks,  to  move  between  tasks  and  to  stay  idle.  The
number of resources needed to perform tasks was minimized by simultaneously maximizing
the utilization of the least expensive resources and minimizing the utilization of the most
expensive resources. The TCRAPST and the TCRAP were used to generate plans that route
and allocate resources for each task. When the TCRAP required each task to be completed by
one resource, the TCRAPST allowed more resources to work on the same task by splitting the
work load between the resources.
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The  study  showed  that  the  TCRAPST  can  generate  more  efficient  plans  than  the  TCRAP.
Most  savings  appear  when  the  average  length  of  the  tasks  is  just  over  half  of  the  resource
capacity and the average distance between the tasks is short. In such conditions the TCRAP
can allocate only one resource per task and almost half of the capacity of that resource stays
unused. The TCRAPST, on the other hand, can generate solutions where most resources are
either fully used or completely idle.
As further research more efficient solution methods should be developed. Tests with
simulated problems showed that it is impossible to find solutions to problems with realistic
size by using optimization. A more efficient way to find solutions would thus be heuristic
methods.

4. Discussion and Conclusions

Summary of the Results
This doctoral dissertation researched time capacitated modeling with mobile and flexible
service resources in three different areas: production planning, vehicle routing and service
resource allocation. In all areas, significant results were found.
The production planning Essay (1) showed that modeling with set-up times and set-up carry-
overs improves three significant production cost factors: set-ups, production capacity and
inventory. The results suggest the inclusion of set-up times and set-up carry-overs in real life
production planning software. After the publication of Essay (1) in the year 2003, modeling
with set-up carry-overs has received much attention in literature. Several new models and
solution methods for practical scale problems have been published.

The vehicle routing Essay (2) introduced new methods of solving very big vehicle routing
problems faster and better than ever before. Another new feature with the essay problem was
the vehicles cost structures exhibiting scale economies.
Essay (3) on time capacitated resource allocation in services presented a new resource
allocation  model  that  allows  split  tasks  between resources.  Savings  potential  of  that  kind  of
modeling was also demonstrated.

Essay (4) tested and compared two different time capacitated resource allocation models in
service application and discovered promising savings potential from allowing time
capacitated task splitting.
The  dissertation  started  with  splits,  continued  with  splits  and  ended  with  splits.  Production
batches were split (or joined) into batches produced at different times by the same machine.
Vehicle loads were split between different customers on a distribution tour. Finally, service
tasks were split between several service resources.

Limitations and Further Research
The significant cost savings demonstrated in our experimental results encourage the explicit
inclusion of set-up carry-overs into the MILP based capacitated lot sizing models, hence
motivating further research. Since the year 2003, extensive research on set-up times with set-
up carry-overs has been published in production lot sizing, but applications of set-up carry-
overs are not limited to production planning only. Set-up carry-over is a part of all capacitated
resource allocation with consecutive planning periods and can be included in vehicle routing
related service resource allocation. As a planning horizon is split into shorter planning
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periods, both set-up time and the actual production of production batches or the work on tasks
can start in one period being continued in the next period. Competitive pressure to efficiently
exploit  production  capacity  motivates  management  to  consider  the  carry-over  of  set-ups  —
especially the time required — as an essential feature of practical production planning and
service resource allocation.

The service capacity allocation models were presented with small applications and strongly
simplified to point out the significance and savings potential of flexible task splitting. To
apply the approach in practice, models need to be extended to include more realistic
constraints such as minimum working times, specialization, sequencing, synchronization and
time windows. Some of these extensions can, in fact, simplify the problem, for example, by
removing the possibility of subtours. Problem size can be decreased by decision rules in the
problem generation stage but the difficulty of solving MILP formulations suggests for
developing heuristic solution methods. A real case example on an organization applying task
splitting should be written, too.
This doctoral dissertation focused on the planning of set-ups. A natural extension would be
the inclusion of set-downs which can be defined as any unproductive activity not directly
preparing for the next productive period. A set-down is, for example, a vehicle, pallet or
container returning to a distribution center without plans considering the next load. Set-down
in multi-period setting is also a maintenance person returning his van and equipment to the
employer  after  a  work  day  instead  of  driving  home and  starting  the  next  day’s  tour  directly
from home with the employer’s van and equipment.

The number, duration and costs of set-downs can be decreased by process and policy changes,
but  also  by  real  time  optimization  and  efficient  rules  supporting  the  optimization.  For
example, after a delivery, an empty vehicle can follow a rule to move in a direction where the
next loading is most probably taking place. As demand emerges, the optimization model
makes a new routing and allocation plan in real time.
As planning for splitting and joining of production batches is quite simple and mechanical to
manage, there are many more decisions to make when splitting time capacitated tasks in
services. Many questions should be answered: Should we optimize flexible splits or discretize
the problem when pre-prosessing the data? Which tasks can be aggregated into one bigger
task with subtasks sufficiently general to be worked on by many workers? Can all subtasks be
allocated to any worker? Should there be a sequencing of subtasks? Which workers can work
on a task at the same time? Should we have many workers working on a task simultaneously
to expedite its completion? When do we know a task is ready if many workers work on it? Do
workers need some additional task specific equipment? Is there some equipment that the first
worker should bring and the last worker should bring back? Do resources incur any set-down
costs or times after completing their work in tasks? How to handle multiple planning periods?
Do we have to extend task splitting from splitting among workers to splitting among workers
and planning periods? Should we split also traveling between time periods? Finding models
and solutions to these problems and their combinations offers a great number of challenging
questions for future research.
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This paper presents an efficient and well-scalable metaheuristic for fleet size and mix vehicle routing
with time windows. The suggested solution method combines the strengths of well-known threshold
accepting and guided local search metaheuristics to guide a set of four local search heuristics. The com-
putational tests were done using the benchmarks of [Liu, F.-H., & Shen, S.-Y. (1999). The fleet size and mix
vehicle routing problem with time windows. Journal of the Operational Research Society, 50(7), 721–732]
and 600 new benchmark problems suggested in this paper. The results indicate that the suggested
method is competitive and scales almost linearly up to instances with 1000 customers.
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1. Introduction

Transport and logistics are essential to modern Western socie-
ties. Not only do they empower individuals with unprecedented
mobility, they also offer a wide variety of products and services
which influence perception of the world and even portrayal of
mankind. In general, products are either directly shipped from
the supplier or manufacturer to customers or are distributed from
intermediate storage points (e.g. warehouses and/or distribution
centers). The latter option is highly common and gives rise to a
wide variety of distribution strategies balancing risk pooling ef-
fects in inventory, inventory holding costs and transportation
and distribution costs (for more information on distribution strat-
egies see e.g. Simchi-Levi, Kaminsky, & Simchi-Levi, 2008).

The vehicle routing problem (VRP) lies at the heart of these dis-
tribution problems as it addresses how the demand of customers
can be satisfied at minimal cost by homogeneous vehicles located
at intermediate storage facilities. The basic VRP consists of a num-
ber of geographically scattered customers, each requiring a speci-
fied weight (or volume) of goods to be delivered (or picked up).
A fleet of identical vehicles dispatched from a single depot is used
to deliver the goods required and once the delivery routes have
been completed, the vehicles must return to the depot. Each vehi-

cle can carry a limited weight and only one vehicle is allowed to
visit each customer. It is assumed that all problem parameters,
such as customer demands and travel times between customers
are known with certainty. For a general overview of the VRP, we re-
fer to the textbook by Toth and Vigo (2001). For a literature survey
of various extensions of the VRP occurring in practice, we refer to
Bräysy, Gendreau, Hasle, and Løkketangen (2007a, 2007b).

This paper addresses two of the most common extensions of the
VRP occurring in practice: the presence of service time windows for
customers and the use of heterogeneous vehicles. Customers often
restrict the time in which they want to be serviced to a specific time
interval. The resulting vehicle routing problem with time windows
is probably the most studied routing problem in the literature
(Bräysy & Gendreau, 2005a, 2005b). Because of its intrinsic com-
plexity and practical relevance, it has been the subject of research
on innovative heuristic search strategies and on solving large-scale
routing problems. Extending the VRP to heterogeneous vehicles is
also highly relevant because a vehicle fleet is rarely homogeneous
in real-life: a fleet manager typically controls vehicles that differ
in terms of equipment, carrying capacity, speed, and cost structure
to better service his customers. The objective of the so-called fleet
size and mix vehicle routing problem (FSMVRP) is therefore to find
a fleet composition and a corresponding routing plan that mini-
mizes the sum of routing and vehicle costs. Practical applications
of FSMVRP with time windows (FSMVRPTW) are abundant and
have enjoyed recent scientific attention (Dell’Amico, Monaci, Paga-
ni, & Vigo, 2006; Dondo & Cerdá, 2007; Li, Golden, & Wasil, 2007;
Paraskevopoulos, Repoussis, Tarantilis, Ioannou, & Prastacos,
2007). They are surveyed in Bräysy et al. (2007).
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In spite of the large number of real customers involved, aca-
demic research on heterogeneous routing problems has been lim-
ited to relatively small problem instances. Solution approaches
have often been tested on the 100-customer benchmarks of Liu
and Shen (1999), derived from the well-known Solomon (1987) in-
stances for the VRPTW. In this paper we focus on the new distance-
based objective variant for the FSMVRPTW, suggested in Bräysy
et al. (2007) and derive 600 new large-scale problem instances
from the Gehring and Homberger (1999) problem instances for
the VRPTW, using real-life data on the available vehicle types
and costs. A new hybrid metaheuristic approach is described which
combines the well-known threshold accepting and guided local
search metaheuristics with several search limitation strategies
for a set of four local search heuristics.

The remainder of the paper is structured as follows: In Section
2, we describe the algorithm that is a modification of the method
of Bräysy et al. (2007), specifically designed for solving large-scale
problems. The results of the computational experiments are given
in Section 3, including both comprehensive sensitivity analysis and
comparison to previous work. Section 4 concludes the paper.

2. The algorithm description

The proposed solution approach consists of three phases. In
Phase 1 high quality initial solutions are generated by means of a
limited savings heuristic. (see sub Section 2.1.). In Phase 2 the focus
is on reducing the number of vehicles with a simple route elimina-
tion heuristic (see sub Section 2.2) and in Phase 3, the threshold
accepting (TA) (Dueck & Scheurer, 1990) and guided local search
(GLS) (Voudouris & Tsang, 1998) metaheuristics are used to guide
a set of four local search operators to further improve the solution
from Phase 2 (see Section 2.3.). Although the overall structure of
the algorithm is similar, there are a number of major differences
compared to the previous study aimed at solving large scale heter-
ogeneous routing problems by Bräysy et al. (2007): a number of
algorithmic simplifications, several strategies for efficiently
restricting the local search and threshold accepting strategy, and
the introduction of a novel two-directed GLS and a simple diversi-
fication procedure. It will be shown that these strategies are capa-
ble of significantly limiting computation time and of increasing
solution quality, making them useful for solving large routing
problems in general.

2.1. Phase 1: constructing initial solutions

At the beginning of the search, a single initial solution is created
by a modification of the savings heuristic (Clarke & Wright (1964)).
As in the original savings heuristic, the search is started by serving
each customer individually. There are three differences in compar-
ison to the original savings heuristic. First, as in Liu and Shen
(1999), the heuristic is implemented from an insertion point of
view, i.e., when merging two routes R1 and R2, the search is not
limited to inserting R1 either before or after R2, but in addition
positions between consecutive customers within route R2 are con-
sidered. Second, the calculated savings take into account both vehi-
cle costs and total distance. Vehicle sizes are updated whenever
needed and always set to the smallest vehicle available capable
of serving the customers on the route. Third, the mergers are lim-
ited to the p closest routes only. The geographical proximity is
based on the Euclidean distance of the average X and Y coordinates
of the customers on the routes. Each time m route mergers have
been executed, the information on the geographically close routes
is updated. Moreover, after selecting two geographically close
routes, R1 and R2, only the c customers from R2 which are closest
to the endpoints of R1 are considered. The limit distance for the

cth closest customer is determined at the beginning of the search
for all customers and maintained in memory. During the search
only a comparison to the limit value is used to determine whether
a given customer v is among the c closest. Here p, m and c are user-
defined parameters. To save time, the calculated savings are stored
in a matrix, which is updated during the search based on the merg-
ers performed. Mergers are attempted until no further improve-
ment can be found.

2.2. Phase 2: route elimination

The second phase focuses on minimizing the number of routes
in the created initial solution. The applied procedure is called ELIM
and is based on simple customer reinsertions. In ELIM, all routes of
the current solution are considered for depletion in random order
and eliminations are attempted until no more improvements can
be found. For a given route, ELIM removes all customers in the or-
der they are currently served, and tries to insert them in the p geo-
graphically closest neighboring routes, in the same way as in the
initial solution heuristic. The geographical closeness of the routes
is calculated both before and after Phase 2. For a given customer
v and geographically close route R2, only insertion positions adja-
cent to one of the c closest customers with regard to v are consid-
ered and the best feasible insertion according to the total cost
objective is selected. If all the removed customers have been in-
serted in other routes at a lower cost, the route is eliminated;
otherwise the executed insertions are backtracked.

2.3. Phase 3: local search improvement

2.3.1. Local searches
The solution from Phase 2 is further improved in Phase 3 by four

local search heuristics that are guided by the TA and GLS metaheu-
ristics. In addition to the above described ELIM procedure, the four
local search operators include a route splitting operator called
SPLIT, and ICROSS and IOPT operators suggested in Bräysy
(2003). ICROSS and IOPT are extended here with the adjustment
of vehicle types and costs.

The SPLIT neighborhood consists of all solutions that result from
splitting a single route in the current solution into two parts at any
point. We employ it in a ‘greedy’, first-accept fashion, simply by
looping through all routes (in the order of the given fixed route
numbers) and all customers in them, splitting the selected route
into two parts at the position of the current customer. The move
is made if the split reduces total cost. After a successful split, the
information on the geographically close routes is updated. Here
SPLIT is applied only every third iteration.

ICROSS is a generalization of CROSS exchanges (Taillard,
Badeau, Gendreau, Guertin, & Potvin, 1997) and works by relocat-
ing or exchanging segments of consecutive customers from two
different routes. The maximum segment length is limited to ls cus-
tomers. Compared to previous work, ICROSS is modified here so
that only geographically close routes and only segments that in-
volve the geographically closest customer pairs in the two routes
are considered. To be more precise, the geographically close routes
are defined in the same way as in Phases 1 and 2, but for a given
route R1, its p geographically closest routes are considered in ran-
dom order to better diversify the search. For a given customer v,
currently served by R1, ICROSS first checks all customers w in R2

that are among c closest from v and whose time window matches
v. The time windows match if Ev + Sv + TIME(v,w) 6 Lw where Ev is
the earliest possible service time of v, Sv is the service time of v,
TIME(v,w) is the travel time between v and w, and Lw is the latest
possible service time of w. Then, the resulting (v,w) pairs are sorted
in ascending order according to their Euclidean distance, and
ICROSS moves are attempted only for segments that start from v
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or w and only for insertion positions adjacent to v or w and only for
q closest (v,w) pairs, starting from the closest pair.

The IOPT intra-tour operator is a generalization of Or-opt (Or,
1976). It considers segments up to a given maximum length ls
and also includes moves where the segment is reversed before it
is relocated (Bräysy, 2003). Here the search is limited so that only
insertion positions adjacent to c closest customers with regard to
the segment endpoints are considered. Moreover, in our imple-
mentation, IOPT is applied only every second iteration to further
limit the search.

The four local search operators are employed with the first-ac-
cept strategy in the following order: ICROSS, IOPT, ELIM, and SPLIT
and are repeated for a given number of iterations nimprove. Note that
as in Bräysy et al. (2007), ELIM is applied only every second itera-
tion. To increase the efficiency of the improvement phase, the local
searches do not consider a route pair or a single route if no
improvement was found last time and the routes have not changed
since.

2.3.2. Metaheuristic frameworks
The above described local searches are embedded in the TA and

GLS metaheuristic frameworks that are used simultaneously. The
basic idea of TA is to allow also local search moves that worsen
the objective value, as long as the worsening is within the current
value of the threshold limit. The threshold limit T, is adjusted dur-
ing the search. For more details, see Dueck and Scheurer (1990).

The algorithm starts with threshold T = 0 (no worsening al-
lowed) and is repeated with that value until a local minimum is
reached. Then, T is set to a new maximum value, T = r � Tmax where
r is a random number in the range [0,1] and Tmax is a user-defined
parameter. At each iteration, the T is reduced by DT units until
T = 0. Here DT = r � DTmax and DTmax is a parameter. Note that, to
diversify the search, DT is random as opposed to standard deter-
ministic reduction. When T = 0, the search is repeated with zero
threshold until no more improvements can be found. After that, T
is set to T = r � Tmax again and so on until nimprove iterations are tried.
If no more improvements have been found for a given number of
iterations nrestart, the search is restarted from the current best solu-
tion and the threshold is set to T = r � Tmax. The threshold is also set
to zero each time a new best solution is found to intensify the
search.

By further analyzing the algorithm proposed by Bräysy et al.
(2007), we noticed that when the value of T was above zero, i.e.,
when worsening was allowed, repeating ICROSS operator for all
route pairs resulted in significant overall worsening of solution
quality and even a disruption of the structure of the current solu-
tion. Moreover, many local moves were required to restore the cur-
rent solution back to a ‘‘good” level. Therefore, it was decided to
limit the number of worsening ICROSS moves. To be more precise,
when T > 0 only k routes are randomly selected as route R1 and
ICROSS is applied to p closest routes to R1 in random order. Here
the random order for the closest routes is critical to maintain the
diversity of the search. As a result, a significantly smaller and more
locally restricted worsening is allowed. Moreover, for SPLIT, the
worsening is not allowed as it was discovered that it resulted in
too a large diversification.

On the other hand, it was noted that the new locally restricted
search strategy ended up intensifying the search too strongly and
lacked systematic diversification. To deal with this issue, we in-
cluded a new two-directed GLS metaheuristic.

GLS operates by augmenting the objective function with a pen-
alty term based on particular solution features (long edges) not
considered to be part of a near-optimal solution (see Voudouris
& Tsang (1998) for more details). In our case the GLS is used to
guide the local search procedures by defining a modified distance
matrix that is used to evaluate the moves. In the beginning the

modified distance matrix equals the original Euclidean distance
matrix. Each time when T = 0 and no more improvements have
been found and with each restart from the current best solution,
two arc distances are adjusted and stored in the modified distance
matrix. As is in the standard GLS, the first arc is penalized by
increasing its length. In our implementation, however, the second
arc is favored by reducing its length. More precisely, the penalized
arc is selected according to maximum utility function

U ¼ DISTði; jÞ
ð1þ pijÞ

ð1Þ

and the favored arc is defined as the shortest arc that has not been
selected before. The distances of the chosen arcs are modified as

DISTNew
P ði; jÞ ¼ DISTði; jÞ � ð1þ kÞ ð2Þ

DISTNew
F ði; jÞ ¼ DISTði; jÞ � ð1� kÞ ð3Þ

where k is a parameter value whose value is reset to k = r � kmax at
each restart from the current best solution. Moreover, with the re-
start, the modified distance matrix is initialized to original values
with 70% probability. Finally, to further diversify the search efforts,
we reset the ls to a larger value every dth iterations.

We used here the same general search limitation strategies as in
Bräysy et al. (2007), i.e., the double-linked list in an array data
structure (Kytöjoki, Nuortio, Bräysy, & Gendreau, 2007), standard
time window feasibility check techniques (Campbell & Savelsberg,
2004), and the opportunistic constraint feasibility check strategy.
The latter means that features that are easiest or quickest to calcu-
late or that are most likely to violate a feasibility condition are
checked first. For more details, we refer to Bräysy et al. (2007).

3. Computational results

Computational experiments were performed to examine the
performance of the proposed algorithm. We first describe the in-
stances considered in these experiments, as well as the parameter
values used. This is followed by a presentation and a discussion of
the results obtained with our metaheuristic.

3.1. Experimental setting and parameter values

The computational experiments were performed using the
benchmark instances proposed by Liu and Shen (1999) and 600
new benchmark instances suggested in this paper. In contrast to
Liu and Shen, the sum of all vehicle costs and total distance is con-
sidered as the optimization objective, as opposed to the sum of
vehicle costs and en route time. The new objective was first intro-
duced in Bräysy et al. (2007) and it is believed to be of a higher
practical value than the former objective function. The Liu and
Shen benchmarks are derived from the well-known VRPTW in-
stances of Solomon (1987). Solomon’s problem sets for the VRPTW
consist of 56 instances of 100 customers with randomly generated
coordinates (set R), clustered coordinates (set C) or both (semi-
clustered RC set). The difference between Subsets R1, C1 and RC1
and R2, C2 and RC2 lie in the vehicle capacities and scheduling
horizon. For each six subsets Liu and Shen introduced several vehi-
cle types with different capacities and costs. In addition, three dif-
ferent vehicle cost structures A, B and C were suggested so that cost
structure A refers to the largest vehicle costs and C to the smallest.
To limit the computational tests, we omitted here the cost struc-
ture B, resulting in 112 test problems of 100 customers each.

The suggested new test problems are based on the large-scale
VRPTW benchmark instances of Gehring and Homberger (1999).
Similar to Solomon, Gehring and Homberger constructed (1987)
random, clustered and semi-clustered problem sets, consisting of
200, 400, 600, 800 and 1000 customers, so that there are 60

8462 O. Bräysy et al. / Expert Systems with Applications 36 (2009) 8460–8475



problems of each size and 10 problems in each of the above groups.
In total there are 300 problems. For the Gehring and Homberger in-
stances, we suggest a set of vehicle types and costs. The same 8
vehicle types and costs are used for every problem size. The vehicle
capacities and costs differ only between the six problem sets, as
detailed in Table 1. The vehicle capacities and costs in Table 1 were
defined as follows. As in Liu and Shen (1999), we have used the
maximum capacity in the corresponding VRPTW instance, VB as
the starting point. The cost of the vehicle with a carrying capacity
VB is the same as for the corresponding Liu and Shen (1999) 100-
customer problem set. The other vehicle capacities and costs are
based on real-life information collected from Finland. More pre-
cisely, we first surveyed the most typical truck types available
and fixed costs related to them. Excluding vans, we found out that
there are eight common vehicle types available. Liu and Shen
(1999) defined only vehicle capacities smaller than the original
VRPTW maximum capacity, making the problems somewhat easier
to solve (optimizing the capacity utilization of larger vehicles is of-
ten harder). Here we decided also to enable vehicles with larger
capacity than in the original VRPTW problem, so that we set the
sixth largest vehicle carrying capacity (9 tons) to equal the VB. As

a result, there are two truck types larger than VB and five that
are smaller in each problem. The other capacities were defined
using direct relation wrt. VB so that e.g. the capacity equaling 12
tons is obtained by multiplying VB by 12/9 and rounding up or
down with accuracy of 5 units. The costs of other vehicle types
apart from VB were defined by first analyzing the cost relations
wrt. the 9 ton vehicle. We noticed in the analysis of the real-life
capacity and cost data that apart from the 2–3 smallest vehicle
types, there are linear economies of scale in the cost per capacity
unit. The real-life costs of the smallest vehicle types were clearly
relatively more expensive than the larger ones. Therefore, they
were hardly ever used in the tests done with the preliminary data.
Based on this information, we decided to apply the same linear
economies of scale structure over all 8 vehicle types to improve
the quality of the benchmarks, by using the scaling factor defined
with the three largest vehicle types. The obtained costs were then
rounded to the nearest 10. This corresponds to cost structure A. As
in Liu and Shen (1999), we obtained cost structure C by dividing
the vehicle costs by 10, resulting in 600 test instances. Here the
relationship between fixed costs and vehicle capacity is more real-
istic than the cost structure by Liu and Shen (1999), where fixed
costs in some cases are obviously too small in comparison to vehi-
cle capacity.

We tested the performance of the algorithm with two different
parameter settings that we denote here as Quick and Normal. In the
Normal setting the above described parameter values were set as
follows: p = 10, c = 55, q = 25, nimprove = 4000, nrestart = 40, Tmax =
0.06, DTmax = 0.009, ls = 3, kmax = 0.03, k = 3, m = 30 and after each
d = 65 iterations, ls is set to ls = 5. Moreover, the GLS is not applied
during the last 1000 iterations. For the Quick setting only three
parameter values are different: p = 5, q = 15 and nimprove = 1000.
The computational testing was executed on Intel Core Duo T7700
(2.4 GHz) laptop computer with 2 GB memory.

3.2. Sensitivity analysis

In this section, we analyze the performance and sensitivity of
the algorithm w.r.t. different parameter values. All results in this
section are based on the average output over all 100-customer
benchmarks with cost structure A and Normal setting.

The formatting of Figs. 1–5 is the same. The CPU time is plotted
by a dotted line on the leftmost vertical axis, whereas the solution

Table 1
Vehicle costs and capacities used for each problem set.

Capacity Cost Capacity Cost Capacity Cost

C1 C2 R1
40 200 120 575 40 140
70 335 240 1100 70 230
100 460 350 1540 100 310
140 615 470 1975 140 405
170 715 580 2320 170 460
200 800 700 2700 200 500
240 910 820 2955 240 550
270 975 930 3160 270 565

R2 RC1 RC2
170 590 40 125 170 590
340 1115 70 205 340 1115
500 1550 100 275 500 1550
670 1945 140 355 670 1945
840 2270 170 420 840 2270
1000 2500 200 450 1000 2500
1170 2690 240 495 1170 2690
1330 2795 270 500 1330 2795
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Fig. 1. The effect of close routes (p) with respect to relative CPU time and total cost excess in %.
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quality is shown by the continuous line plotted on the rightmost
vertical axis, for the different parameter values listed in on the hor-
izontal axis. Both CPU time and solution quality are measured
against respectively the largest CPU time and the lowest total cost.

In Fig. 1 we illustrate the impact of the number of geographi-
cally close routes p considered in the local searches. Based on the
figure, it appears that at least 5 routes should be considered and
that 10 is the best value. In some cases increasing the value above
10 may worsen the objective function value by as much as 2%. This
is probably due to a too large diversification, caused by accepting
more worsening moves. As can be expected, the CPU time grows
steadily when increasing the value of p.

Fig. 2 depicts the effect of parameter c, i.e., the number of close
customers considered in the search. As can be seen from the Figure,
values 50-55 appear to be the best. Too small values (less than 30)
clearly reduce the solution quality, but increasing the value over 55
does not affect the solution quality much. Surprisingly, the param-

eter values do not have much effect on the CPU time, probably be-
cause of other, more restrictive search limitations.

In Fig. 3, we illustrate the sensitivity of the output w.r.t. the
number of closest customer pairs q, considered by the ICROSS local
search. As one can expect, the higher the value of q, the longer the
CPU time and the higher the solution quality. However, it appears
that the solution quality does not improve much beyond q = 25. It
is also interesting to note that sometimes a higher value can result
in a slightly worse output.

Fig. 4 shows the impact of the maximum threshold value, Tmax,
specifying an upper boundary for the actually used threshold val-
ues. It seems that values in range 0.04–0.06 are the best and values
smaller and higher than this result in clearly worse output. It is
also interesting and surprising to note that the CPU time becomes
smaller with the higher Tmax values even though this results in
accepting more worsening moves. This is probably caused by the
limitation whereby the algorithm ignores routes and route pairs
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that have not improved in the last iteration. As a result, the
improvement process ends prematurely.

In Fig. 5 we consider the impact of parameter k on the results.
The parameter k affects mainly how much the distances of the
penalized and favoured arcs are modified. It appears that the dif-
ferences between the different values are very small and 0.03 is
the best value. Based on the figure, it can also be concluded that
khas little impact on CPU time.

In Fig. 6 we illustrate the convergence of the algorithm as a
function of the iterations. As expected, the largest gains are ob-
tained at the beginning. After the first 1000 iterations, on the
average about 1% improvement appears possible. On the other
hand, the fact that improvements are obtained up to 19,000 iter-
ations also illustrates the power of the algorithm. It can also be
said that the quality of the initial solutions is probably rather
good as with 19,000 iterations only an 1.8% improvement proves
possible.

Table 2 shows the impact of the applied TA and GLS metaheu-
ristics. The values in the table correspond to the excess of total cost
w.r.t. the best solutions found, over all 100-customer problems. We
list in the table the minimum, average and worst output over 5 test
runs for 4 different settings. TA and GLS means that both TA and
GLS are applied, column TA refers to using only TA without GLS
and column GLS using only GLS. Finally the rightmost column re-
fers to ignoring both TA and GLS. It appears that the best results
are obtained when both TA and GLS are applied. The difference
in the best results compared to using TA is however just 0.17%.
The best output of GLS appears to be 0.61% above the best value.
Surprisingly, when neither TA nor GLS are used, the results are only
1.14% above the best output. The differences in the average and
worst outputs appear, however, more significant, indicating the
importance of the metaheuristic frameworks.

In addition to the different combinations of metaheuristics, we
also tested the impact of resetting the threshold to T = 0 immedi-

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0.
02

0.
04

0.
06

0.
08 0.

1
0.

12
0.

14
0.

16
0.

18 0.
2

0.
22

0.
24

0.
26

0.
28 0.

3
0.

32
0.

34
0.

36
0.

38 0.
4

0.
42

0.
44

0.
46

0.
48 0.

5

Threshold Value

C
PU

 T
im

e 
%

 w
ith

 R
es

pe
ct

 to
 M

ax
im

um

0

0.5

1

1.5

2

2.5

%
 a

bo
ve

 M
in

im
um

Average CPU in Seconds % above Minimum

Fig. 4. The impact of the Tmaxvalue on the relative CPU time and total cost excess.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

0.
03

0.
06

0.
09 0.
3

0.
6

0.
9

1.
2

1.
5

1.
8

2.
1

2.
4

2.
7 3

3.
3

3.
6

3.
9

4.
2

4.
5

4.
8

Lamda

C
PU

 T
im

e 
%

 w
ith

 R
es

pe
ct

 to
 M

ax
im

um

0.00 %

0.10 %

0.20 %

0.30 %

0.40 %

0.50 %

0.60 %

0.70 %

0.80 %

%
 a

bo
ve

 M
in

im
um

Average CPU in Seconds % above Minimum

Fig. 5. The effect of parameter kto relative CPU time and total cost excess.

O. Bräysy et al. / Expert Systems with Applications 36 (2009) 8460–8475 8465



ately a new best-known solution is found, and noticed that it im-
proved the total cost 0.6% on the average.

In Fig. 7 we describe the scaling of the suggested Normal and
Quick variants over the tested problem sizes. It appears that both
variants scale very well and are therefore well-suited to solving
large-scale problems. The differences between the cost structures
also appear very small. For Quick setting we present here the aver-
age of the cost structures A and C as they were almost identical and
hard to plot separately.

In Table 3 we compare the best, worst and average outputs and
CPU times of the Normal and Quick variants over the different prob-

lem sizes and cost structures. In general, it appears that the vari-
ance of the results over the five test runs is quite moderate, for
both settings, given the significant number of random components
in the algorithm.

3.3. Comparison of results

In this section we compare and analyze the actual results of the
Quick and Normal settings to the tested 712 benchmark problems,
and compare the results with the previous method of Bräysy et al.
(2007). The method of Bräysy et al. (2007) reported 167 best-
known solutions to the 168 benchmarks of Liu and Shen (1999),
thus giving a good comparison point for the performance. Here
we resolved all the problems with the algorithm of Bräysy et al.
(2007), denoted here by MSDA using the same computer as for
the new Normal and Quick settings to enable direct comparison.
As the CPU times of MSDA are considerably higher, we also created
a new limited variant of the method of Bräysy et al. (2007), de-
noted by MSDAL where the local search algorithms are limited to
consider only customers among 50 closest or less, depending on
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Table 2
The impact of TA and GLS metaheuristics on the results.

% Above minimum

TA & GLS TA GLS Local search

Minimum 0.00 0.17 0.61 1.14
Average 0.87 1.53 1.99 3.76
Maximum 3.15 4.50 5.43 6.99
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the dynamically adjusted parameter value of MSDA that limits the
search to only closest customers that have been part of improving
moves (for more details, see Bräysy et al., 2007). For both MSDA
and MSDAL 1000 iterations 3 runs were executed.

The results to the 100-customer instances are presented in Ta-
ble 4. The table is divided in four parts. On the left the total cost
for the Normal and Quick variants and for MSDA and MSDAL for
the six problem groups are described. Here the described values
are the best over 5 and 3 runs, respectively. The top part of the
table gives results related to cost structure A, whereas the results
for cost structure C are given in the lower part. On the right the
perceptual differences between the methods pair wise are com-
pared. Here a negative value means that the method listed first
is better and a positive indicates the opposite. At the bottom we
list the number of runs and the CPU time in seconds for a single
run.

Based on the table, the new Normal and Quick methods are con-
siderably (10–100 times) faster than the previous MSDA and
MSDAL methods. It can also be concluded that Quick variant is
about 10 times faster than Normal. At the same time Normal is con-
sistently better in each problem group wrt. MSDA and MSDAL.
Even the Quick variant is better than MSDA in each case. Surpris-
ingly, the MSDAL reports significantly better solutions than MSDA
of Bräysy et al. (2007). In sum there appears to be a clear benefit in
limiting the solution space: Quickfinds better solutions in a shorter
period of computation time. This is also confirmed by the fact that
Quick appears slightly better than Normal for group C2 and cost
structure A.

The results for the 600 new benchmarks are summarized in
Table 5. The table is divided by horizontal lines according to
the problems sizes and used cost structures. Within each prob-
lem size and cost structure the results are averaged over the
six problem groups and total cost value is reported. The compar-
ison with the previous method of Bräysy et al. (2007) is done
using the MSDAL variant because of its better performance and
lower computational effort. The CPU times in seconds per prob-
lem group for each method are reported in the middle of the ta-
ble. The detailed results to each individual problem are given in
Appendixes I and II, with new best-known solutions marked in
bold.

Based on Table 5, the Normal variant appears clearly the best,
and on average about 4% better than the Quick variant and almost
2% better than the MSDAL. The differences also seem to increase
with the problem size. From the computational viewpoint, the rel-
ative difference, Quick appears to be on average about 7 times fas-
ter than Normal and, as illustrated above, both new variants appear
to scale well. However, the scaling of MSDAL appears a lot worse.
With the 1000-customer problems it is as much as about 50 times
slower than Normal.

4. Conclusions

In this paper, we have presented a new hybrid threshold-
accepting and guided local search metaheuristic that is specifically
designed for solving large-scale fleet size and mix routing prob-

Table 3
The best, worst and average output of the normal and quick variants.

Size Cost Normal Quick

Best Average Worst CPU Best Average Worst CPU

100 A 4756.08 4773.39 4788.56 3.27 4771.83 4800.91 4827.81 0.34
100 C 1430.76 1448.35 1460.02 3.32 1447.91 1464.41 1477.23 0.35
200 A 13588.70 13851.36 14049.24 6.71 13923.96 14214.91 14431.91 0.75
200 C 3829.72 3866.98 3896.91 7.36 3888.61 3952.11 3994.44 0.73
400 A 28337.82 28873.42 29309.20 12.94 29195.41 29736.83 30127.16 1.66
400 C 8502.17 8582.99 8644.00 13.73 8751.84 8894.66 8997.85 1.63
600 A 46498.11 47283.38 47824.59 20.56 48197.18 49044.98 49630.11 2.76
600 C 16036.31 16188.07 16297.23 18.91 16748.80 17036.71 17243.14 2.71
800 A 66312.86 66970.33 67492.85 27.97 69182.82 70255.45 70962.00 4.15
800 C 25994.01 26183.24 26335.71 28.22 27518.43 27932.01 28202.94 4.05
1000 A 89165.95 90175.14 90935.15 38.25 93994.43 95174.56 96057.13 6.35
1000 C 38552.68 38860.24 39128.94 37.82 41250.37 41893.74 42362.48 6.29

Table 4
Results for the 100-customer problems.

Data set Size Cost Normal Quick MSDAL MSDA Normal quick
(%)

Normal MSDA
(%)

Normal MSDA
(%)

Quick-MSDA
(%)

Quick-MSDA
(%)

MSDA–MSDA
(%)

C1 100 A 7085.91 7090.23 7087.20 7141.15 �0.06 �0.02 �0.77 0.04 �0.71 0.76
C2 100 A 5689.40 5688.60 5719.98 5797.38 0.01 �0.53 �1.86 �0.55 �1.88 1.35
R1 100 A 4060.96 4080.65 4074.73 4131.31 �0.48 �0.34 �1.70 0.15 �1.23 1.39
R2 100 A 3180.58 3205.98 3194.50 3310.70 �0.79 �0.44 �3.93 0.36 �3.16 3.64
RC1 100 A 4935.52 4975.33 4958.93 4948.53 �0.80 �0.47 �0.26 0.33 0.54 �0.21
RC2 100 A 4231.25 4233.13 4241.72 4399.12 �0.04 �0.25 �3.82 �0.20 �3.77 3.71
C1 100 C 1615.40 1617.97 1616.99 1622.03 �0.16 �0.10 �0.41 0.06 �0.25 0.31
C2 100 C 1185.69 1187.23 1186.33 1223.86 �0.13 �0.05 �3.12 0.08 �2.99 3.16
R1 100 C 1539.90 1559.07 1538.90 1579.17 �1.23 0.06 �2.49 1.31 �1.27 2.62
R2 100 C 1149.06 1168.47 1158.71 1257.65 �1.66 �0.83 �8.63 0.84 �7.09 8.54
RC1 100 C 1749.66 1790.99 1749.37 1758.29 �2.31 0.02 �0.49 2.38 1.86 0.51
RC2 100 C 1372.82 1391.67 1381.71 1566.01 �1.35 �0.64 �12.34 0.72 �11.13 13.34

Average 3149.68 3165.78 3159.09 3227.93 �0.75 �0.30 �3.32 0.46 �2.59 3.26
% above minimum 0.01 0.77 0.31 3.59
Runs 5 5 3 3
Average CPU seconds

per instance
3.30 0.35 24.87 50.03
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lems with time windows. The central part of the described algo-
rithm consists of different strategies for balancing a limitation

and intensification of the search. The computational tests were
done with the benchmarks of Liu and Shen (1999) and on 600

Table 5
The results for the new extended benchmark problems.

Data set Size Cost Normal Quick MSDAL Normal-quick (%) Normal-MSDAL (%) Quick-MSDAL (%)

C1 200 A 17129.92 17361.03 17173.12 �1.33 �0.25 1.09
C2 200 A 17385.39 17495.07 17433.42 �0.63 �0.28 0.35
R1 200 A 11471.04 11748.31 11593.77 �2.36 �1.06 1.33
R2 200 A 12611.59 13307.42 12149.44 �5.23 3.80 9.53
RC1 200 A 10004.18 10212.95 10143.88 �2.04 �1.38 0.68
RC2 200 A 12930.10 13419.01 12475.09 �3.64 3.65 7.57

C1 200 C 4136.96 4161.14 4143.60 �0.58 �0.16 0.42
C2 200 C 3444.10 3510.08 3450.99 �1.88 �0.20 1.71
R1 200 C 4311.74 4365.76 4349.61 �1.24 �0.87 0.37
R2 200 C 3869.59 3921.21 3964.24 �1.32 �2.39 �1.09
RC1 200 C 3692.49 3747.80 3724.67 �1.48 �0.86 0.62
RC2 200 C 3523.42 3625.64 3590.36 �2.82 �1.86 0.98

C1 400 A 36490.01 36994.17 36543.15 �1.36 �0.15 1.23
C2 400 A 35737.00 35988.11 35943.01 �0.70 �0.57 0.13
R1 400 A 23804.33 24553.23 24033.19 �3.05 �0.95 2.16
R2 400 A 26468.35 28271.49 25013.81 �6.38 5.81 13.02
RC1 400 A 21278.46 21995.29 21489.04 �3.26 �0.98 2.36
RC2 400 A 26248.74 27370.15 25704.74 �4.10 2.12 6.48

C1 400 C 9980.16 10107.31 9937.46 �1.26 0.43 1.71
C2 400 C 7236.69 7408.02 7373.82 �2.31 �1.86 0.46
R1 400 C 9469.58 9765.34 9553.84 �3.03 �0.88 2.21
R2 400 C 8288.01 8589.69 8651.97 �3.51 �4.21 �0.72
RC1 400 C 8612.17 8898.96 8674.91 �3.22 �0.72 2.58
RC2 400 C 7426.39 7741.69 7756.08 �4.07 �4.25 �0.19

C1 600 A 58717.06 59726.60 58917.90 �1.69 �0.34 1.37
C2 600 A 56406.58 56868.07 56969.27 �0.81 �0.99 �0.18
R1 600 A 40400.51 42462.11 41167.05 �4.86 �1.86 3.15
R2 600 A 44832.54 47179.45 43512.70 �4.97 3.03 8.43
RC1 600 A 35583.46 37173.45 36205.54 �4.28 �1.72 2.67
RC2 600 A 43048.52 45773.39 43120.29 �5.95 �0.17 6.15

C1 600 C 18322.81 18661.65 18263.58 �1.82 0.32 2.18
C2 600 C 12910.40 13328.83 13129.29 �3.14 �1.67 1.52
R1 600 C 18951.98 19938.79 19329.31 �4.95 �1.95 3.15
R2 600 C 15466.30 16282.71 17116.21 �5.01 �9.64 �4.87
RC1 600 C 16534.05 17393.78 16878.11 �4.94 �2.04 3.06
RC2 600 C 14032.34 14887.04 14840.67 �5.74 �5.45 0.31

C1 800 A 83616.82 85376.59 84031.98 �2.06 �0.49 1.60
C2 800 A 76440.60 76906.34 78659.84 �0.61 �2.82 �2.23
R1 800 A 60417.24 64141.29 61776.80 �5.81 �2.20 3.83
R2 800 A 64267.07 67610.64 63441.08 �4.95 1.30 6.57
RC1 800 A 53505.16 56458.45 54658.17 �5.23 �2.11 3.29
RC2 800 A 59630.30 64603.59 61382.78 �7.70 �2.86 5.25

C1 800 C 30516.92 31182.73 30628.48 �2.14 �0.36 1.81
C2 800 C 18945.96 19642.02 19359.69 �3.54 �2.14 1.46
R1 800 C 31845.44 34141.85 32541.16 �6.73 �2.14 4.92
R2 800 C 25010.18 26567.91 27241.67 �5.86 �8.19 �2.47
RC1 800 C 28122.31 30080.51 28856.23 �6.51 �2.54 4.24
RC2 800 C 21523.29 23495.57 23015.30 �8.39 �6.48 2.09

C1 1000 A 115023.57 117816.15 116020.70 �2.37 �0.86 1.55
C2 1000 A 98576.46 99600.16 102138.68 �1.03 �3.49 �2.49
R1 1000 A 82919.62 88660.99 85609.66 �6.48 �3.14 3.56
R2 1000 A 86196.78 92323.20 89037.40 �6.64 �3.19 3.69
RC1 1000 A 73488.49 78563.27 76032.60 �6.46 �3.35 3.33
RC2 1000 A 78790.75 87002.82 82336.65 �9.44 �4.31 5.67

C1 1000 C 48902.05 49809.27 48866.57 �1.82 0.07 1.93
C2 1000 C 26442.64 27222.84 27378.82 �2.87 �3.42 �0.57
R1 1000 C 46936.79 50599.96 48358.16 �7.24 �2.94 4.64
R2 1000 C 35683.24 38901.54 40139.08 �8.27 �11.10 �3.08
RC1 1000 C 42260.22 45919.04 44174.03 �7.97 �4.33 3.95
RC2 1000 C 31091.16 35049.55 34425.39 �11.29 �9.69 1.81

Average 33681.83 35265.18 34407.13 �4.01 �1.86 2.27
% above minimum 0.34 4.60 2.32
Runs 5 5 5
Average CPU seconds per instance 21.25 3.11 839.1
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new large-scale real-life based benchmarks suggested in this pa-
per. A comprehensive computational study, including detailed sen-
sitivity analysis showed that the suggested method is competitive
with the previous best approach and scales almost linearly for
problems up to 1000 customers.
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Abstract
In traditional production, production resources are typically machines and workers with fixed
locations. Tasks are brought to these locations as raw materials or components in well-
planned production batches. Because a production resource with fixed location is often the
bottleneck that limits company turnover, a typical objective in production scheduling is the
maximization of capacity utilization of that bottleneck. Also services, such as hairdresser or a
dentist, can have fixed locations where customers come to be served. Often all tasks go
through the same production line or service and the effect of routing within a production
facility can be ignored.
Besides resources with fixed locations, there are mobile resources to be moved between tasks
with fixed locations. Examples of tasks of this kind can be services, such as delivery, cleaning
or maintenance, or production such as the construction of a building. In the moving and
allocation of production or service resources, time is an important constraint. The time of
mobile resources consists of moving between tasks, working on tasks, and slack. Working
time in tasks often being constant, the traveling time related routing becomes critical in the
minimization of resource consumption.

In current mathematical modeling literature movements and task performance are typically
modeled as costs only. In addition, for easier solution, problems are often reduced from
routing AND scheduling problems into routing OR scheduling problems. This essay studies a
resource allocation problem where traveling times between tasks and times needed to perform
tasks are explicitly modeled. Traveling time between tasks is modeled as parameters and
routes are selected by using binary variables. Working time and slack of resources are
modeled as continuous variables. For that kind of modeling, there is a clear gap in literature.
The focus of this essay is on the savings effect of allowing more than one resource to work on
a task instead of one. The resource time allocated for tasks is modeled by continuous variables
which let the model decide how the time needed to perform tasks is allocated between
different resources. Flexible splitting logic assigns each task to one, two or even more
resources.

There are three main objectives in this essay. First, a reader is given an understanding about
the capacity saving effects of task splitting by describing how delivery splitting affects costs
in vehicle routing. Second, it is shown that, by allowing the time capacitated task splitting
between resources, up to 50% capacity time savings can be reached compared with a model
which does not allow task splitting. Third, a Mixed Integer Linear Programming (MILP)
problem model on Time Capacitated Resource Allocation Problem with Split Tasks
(TCRAPST) is presented and discussed. Applicability of the TCRAPST in real-world
situations is also discussed.

Key Words: service resource allocation, set-up time, time capacitated planning, scheduling,
services, MILP
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1

1. Introduction
In traditional production at a factory, a production schedule feeds tasks to machines with fixed
locations in well-planned production batches. In many services, such as hair cutting, mobile
customers come to production resources with fixed locations. In these cases, the production
planning problem is to allocate mobile input, such as raw material or customers, to be
processed by immobile production capacity. Products, like routes or houses, and services,
such as home health care, facility cleaning, waste collection and machine leasing, can also be
created by mobile people and equipment whose routing between production sites and tasks
with fixed locations, but different durations, has to be considered simultaneously with
batching and scheduling. In the most complicated case both production resources and tasks
are mobile and their location, routing and scheduling has to be matched and optimized.
Production capacity being the limiting factor of throughput, maximizing the utilization of
capacity by efficient scheduling becomes top priority. Demand being fixed, minimizing the
capacity needed is a typical objective. This essay describes and models a capacity requirement
minimization problem with mobile resource time allocated for performing tasks having fixed
locations and different durations. The total resource time for working in tasks being
predetermined, the objective is achieved by minimizing the total traveling time
simultaneously allowing flexible time based task splitting among resources.
The time capacitated allocation of mobile people and equipment is a general problem not only
in production or services but also in our every day life. In flexible production, machines
typically have overcapacity and the bottleneck is the working time of multi-skilled work force
capable of running many different machines. In many services, capacity time consists of
moving between tasks as well as preparation for and working on tasks, after-task-steps before
leaving tasks, set-downs, and possibly some idle time. In our personal life, we have numerous
possible time consuming activities to select from. Besides allocation and scheduling of our
own limited time, we often have to consider shared time capacitated equipment such as a car
used by different family members.

In capacity planning, time capacitated modeling is often equivocated or unrealistically
simplified. The production and/or set-ups of products or services are typically modeled as
costs only. Their time capacity consumption is deliberately ignored. In addition, problems are
often reduced from routing and scheduling problems into routing or scheduling problems by
fixing either of the components already in the problem preprocessing stage.
This essay studies a Time Capacitated Resource Allocation Problem with Split Tasks
(TCRAPST) where moving time and productive time are explicitly modeled in constraints
and variables. Tasks can be completed by one or more resources by modeling the working
time in tasks as a continuous variable that allows the splitting of work in tasks between
several resources. This kind of flexible time capacitated task splitting exhibits substantial
capacity time savings potential, and therefore increased feasibility, compared with a modeling
approach where each task is allocated to one resource only.

The TCRAPST with its savings effects resembles the Split Delivery Vehicle Routing Problem
(SDVRP) introduced by Dror and Trudeau (1987) and surveyed by Archetti and Speranza
(2008). The SDVRP, however, typically minimizes the distance traveled instead of capacity
time needed. Therefore, the literature research later in this essay concentrating on the SDVRP
shows a clear research gap in modeling time capacitated task splitting in vehicle routing.
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This essay has three objectives. First, examples with and without task splitting are presented
to demonstrate and to better understand the capacity time saving effects. Second, simple
examples are used to prove up to 50% capacity time savings potential of task splitting
compared with a situation when task splitting is not allowed. Third, the TCRAPST is modeled
as a Mixed Integer Linear Programming (MILP) model.

This essay is structured as follows. Chapter 2 presents a simple example of the task splitting
related capacity time savings often critical to the feasibility of a time capacitated resource
allocation  problem.  Chapter  3  first  presents  a  literature  research  on  the  benefits  of  split
deliveries in vehicle routing. It also shows that, in vehicle routing with time considerations,
time capacitated splits have not been applied on uploading at clients’ facilities. Finally, the
modeling approach of the TCRAPST is compared with a Vehicle Routing Problem. Chapter 4
shows that even up to 50% capacity time savings are, in theory, possible in time capacitated
planning when time capacitated task splitting between different resources is allowed. In
Chapter 5, the TCRAPST is modeled as a Mixed Integer Linear Program. Chapter 6 describes
a TCRAPST solution by example. Chapter 7 discusses the potential business applications of
time capacitated resource allocation with splits. Chapter 8 concludes this essay.

2. Why Time Capacitated Task Splitting?
Working and traveling consume capacity which can be measured as time and wasted by
inefficient scheduling. Because the total working time in tasks is often fixed, the savings from
more efficient scheduling comes from the better routing of working resources and better
allocation of working capacity between tasks. Sometimes the feasibility of a problem depends
on whether  tasks  can  be  worked  on  by  more  than  one  resource.  The  savings  and  feasibility
effects of time capacitated modeling with this task splitting can be illustrated by example.

Let’s consider an example where there are three tasks that should be completed within an 8
hour long planning period. Working capacities (Cp)  of  workers  [p  (1,…, P)] and capacity
requirements (Ri) for the tasks [i  (1,…,I), j  (1,…, I), j] are expressed in hours. There are
three tasks I = {A, B, C} with traveling times (Di, j) between tasks being DA,B = DB,A = 0,25h,
DB,C = DC,B = 0,5h, and DA,C = DC,A = 0,6h. Capacity requirements in tasks are RA = 13h,
RB = 20h, and RC = 27h. Working capacity (Cp) is 8 hours for each worker. Figure 1 illustrates
the initial stage in the example. Diameters of circles demonstrate the capacity requirements of
tasks. Arrow labels mark traveling times between tasks.
An initial solution for the problem can be found by dividing task requirements by worker
capacities (Ri /Cp = Ri/8) and then rounding up to the next integer, which indicates the initial
capacity allocation for each task:

RA/C = 13/8 rounds up to 2 workers and 2*8 = 16 capacity hours
RB/C = 20/8 rounds up to 3 workers and 3*8 = 24 capacity hours

RC/C = 27/8 rounds up to 4 workers and 4*8 = 32 capacity hours
This initial feasible solution satisfies customer requirements but includes a considerable
amount of slack (hp) indicated as unallocated working hours of workers. On the other hand,
none of the allocated workers needs to travel between tasks during his work shift.
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Figure 1. Initial stage of time capacitated split task example with three tasks
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We can also calculate the amount of slack per task as a difference between working capacity
requirements in tasks and allocated worker capacities:

SlackA + SlackB + SlackC = (16 – 13) + (24 – 20) + (32 – 27) = 3 + 4 + 5 = 12

As  we  now  can  see,  working  capacity  is  required  to  perform  work  for  just
(13 + 20 + 27)/8 = 59,5/8 = 7,5 working days, but our initial solution allocates 9 workers to
work for 9 working days!
The initial solution can, however, be improved by allowing workers to be reassigned during a
planning period. Before the reallocation, we can simplify the problem by assuming for each
task that only workers with slack capacity can be reallocated. In that way, we can reduce the
problem by assuming the maximum of only one worker with slack for each task and by
removing the same number of required working hours in each task as there are capacity hours
allocated for full-time workers. Workers without slack are thus assumed to use their whole
working capacity working for one task only. As full-time workers are removed, there remains
a maximum of one worker with slack capacity in each task. By making these assumptions, we
can reduce the problem and concentrate on reassigning only workers with slack capacity.

Figure 2 illustrates the original problem and the reduced problem where required working

hours are R´A = 5h, R´B = 4h, and R´C = 3h. Because the total slack (
1

3 4 5 8
P

p
p

h ) of

workers exceeds the capacity of one worker, we can try to reduce the number of needed
workers by reallocating workers during a work shift.

Figure 3. Reallocation combinations of two workers with slack capacity
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Figure 3 illustrates our options to reallocate workers in our example. We either do not
reallocate at all or we can reallocate one or two workers. Reallocating all three workers would
not make sense. If we reallocate one worker, that worker is supposed to complete two tasks. If
we reallocate two workers, we have to decide how to divide work between workers in one of
the tasks.

When we reallocate workers, we should take into account time needed to travel between
tasks. If we do not include this set-up time into our calculations, we can get solutions that can
not be applied in practice.
Table 1 and Table 2 demonstrate the importance of set-up time. In both tables, parentheses are
used to indicate work performed by one worker. In Table 1 traveling times are not included,
but in Table 2 they are.

In Table 1, where traveling time is not included, we see two feasible solutions that decrease
the number of workers by one. In the first row the solution is not feasible because one worker
should work for 9 hours which is more than his capacity. In second row the solution is
feasible as one of the workers distributes his whole working time between tasks A and C. The
other worker working in task B incurs 4 hours of slack. In third row the solution is feasible as
one of the workers distributes his working time between tasks B and C incurring 1 hour of
slack. The other worker working in task A incurs 3 hours of slack.

Table 1. Worker reallocation when traveling times are not included

Work
Assignments Work

Traveling
Time

Used
Capacity Feasibility

(A B ); (C ) (5,0 + 4,0); (3,0) - (9,0); (3,0) Infeasible
(A C ); (B ) (5,0 + 3,0); (4,0) - (8,0); (4,0) Feasible
(B C ); (A ) (4,0 + 3,0); (5,0) - (7,0); (5,0) Feasible

In  Table  2,  where  traveling  time  (or  set-up  time)  is  included,  we  get  only  one  feasible
solution. The solution on the first row would be infeasible without the inclusion of traveling
time, but now also the solution on the second row becomes infeasible because working time
added with traveling time is more than 8 hours for one of the workers. Only the solution on
the third row is feasible because neither of the workers work or travel over their capacity and
both of the workers have slack even after the transportation of one worker between two tasks.

Table 2. Worker reallocation with traveling times

Work
Assignments Work

Traveling
Time

Used
Capacity Feasibility

(A B ); (C ) (5,0 + 4,0); (3,0) 0,25 (9,25); (3,0) Infeasible
(A C ); (B ) (5,0 + 3,0); (4,0) 0,60 (8,60); (4,0) Infeasible
(B C ); (A ) (4,0 + 3,0); (5,0) 0,50 (7,50); (5,0) Feasible

Let’s now modify the example by changing the capacity requirement RC = 27h to RC = 27,75h
and the reduced capacity requirement R´C = 3h to R´´C = 3,75h. The new reduced example is
illustrated in Figure 4. Because the total of reduced required work time in B and C plus
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traveling time between those tasks now exceeds the capacity of one worker
(R´B + R´´C + DB,C =  8,25  >  8),  we  can  no  more  find  a  feasible  8  worker  solution  for  the
unreduced problem by moving just one worker. To find a feasible solution, we have to move
two workers instead, as in the last three possible combinations in Figure 3.

Figure 4. Reduced problem with working time requirement R´´C = 3,75h

We still need to find a criterion to select between alternative feasible solutions. One criterion
could be to minimize the total traveling time of the transferred workers because in this way
we can identify the maximum amount of slack that could be allocated for other tasks.

In Table 3 capacity consumptions of different reallocations are calculated. The optimal
solution (*) that maximizes slack appears to be on the first row where the task B is shared by
two reallocated workers. In each of the solutions in Table 3, there is still slack to be allocated
to perform other tasks.

Table 3. Worker reallocation alternatives with two reallocations

Assignments Work Traveling Time
Used

Capacity Slack
(A  B); (B C) 5,0 + 4,0 + 3,5 = 12,5 0,25 + 0,50 = 0,75 13,25  2,75*
(B  A); (A  C) 4,0 + 5,0 + 3,5 = 12,5 0,25 + 0,60 = 0,85 13,35  2,65
(A  C); (C  B) 5,0 + 3,5 + 4,0 = 12,5 0,60 + 0,50 = 1,10 13,60  2,40

This little example demonstrated that savings can be reached by the reallocation of resources
between tasks and by splitting work in tasks among more than one resource. In this case,
finding an optimal solution was easy. However, when the number of tasks and workers
increases, finding an optimal solution without mathematical modeling gets impossible.

3. Vehicle Routing Problems
The time capacitated allocation of workers to tasks is a routing problem and the modeling
approach taken in this essay is very similar to the well-known Split Delivery Vehicle Routing
Problem (SDVRP). This chapter describes the Vehicle Routing Problem (VRP) and gives a
literature research on the SDVRP to show a research gap.
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The VRP concerns the distribution of goods between depots and final users. Customers and
typically one depot form a network usually modeled as a graph which can be either directed
or  non-directed.  Typically  transportation  capacity  or  route  length  is  limited  leading  to  a
situation when all customers can not be served by one route and one vehicle only. Other
constraints can include periods of the day (time windows) during which customers have to be
served, unloading or loading times, vehicle type, different priorities, and penalties associated
with partial or total lack of service associated with customers. Routes can include deliveries,
pick-ups or both. The objective is to minimize transportation costs that consist of the number
of vehicles needed and actual traveling costs typically consisting of the total distance traveled.

If every client must be serviced by exactly one vehicle, the problem is known as the
Capacitated Vehicle Routing Problem (CVRP) which has been the focus of intensive research
in the last 25 years. Toth and Vigo (2001) wrote a comprehensive book on Vehicle Routing
Problem models and algorithms to solve them. A VRP problem allowing a client to be served
using more than one vehicle is  a SDVRP. The SDVRP is a relaxation of the classical  VRP,
but it still remains NP-hard.

The SDVRP is quite similar to the problem of allocation of moving resources to services. In
the SDVRP a customer requiring products can be served by one or more vehicles whereas in
service resource allocation a task can be completed by one or more service resources. In both
cases routing and split decisions are required and the objective is to minimize resource costs.
Considering vehicle routing problems, the following literature research clearly shows that by
allowing split deliveries savings can be reached in both the total distance traveled and in the
number of vehicles to be used.
The time spent at customer’s site, as products are picked up or delivered, could be considered
as a constraint on vehicle routing too. In that case, the delivery splits could be based on the
time that it takes to pick up and to unload products to and from a vehicle.

Sometimes both the delivery amount and service time may be constraints. For example,
pumping oil from or into big tankers can take a long time and may not always be completed in
one dock because the dock may need to be freed for another tanker loading or unloading
another type of oil. One tanker may be able to satisfy loading or unloading requirements only
partially before it has to leave. Loading and unloading of oil in tankers takes a long time and
sometimes time at a dock can become a constraint.

The splitting of deliveries is not exactly the same as the splitting of time capacitated tasks, but
they both have the same kind of savings potential. Therefore, understanding split deliveries in
vehicle routing creates intuition of using split tasks in time capacitated service resource
allocation. The next subchapter provides a literature research on the SDVRP to give that
understanding. It also shows a clear research gap in time capacitated resource allocation with
split tasks.

3.1. Literature Research on Split Delivery Vehicle Routing Problems
In this literature research the focus is on the SDVRP which is not covered by Toth and Vigo
(2001) in their book on the VRP. The purpose is to better understand split deliveries and to
find out whether time spent with clients has been used as the basis of splitting decision.

VRP problems typically assume that customers are served by one vehicle only. If customer’s
requirement exceeds the capacity of a vehicle, the problem can be reduced by assigning routes
that travel from depot to one customer with a full load and then directly back to the depot.
Then, only the routing for customer demands exceeding an integer number of vehicle capacity
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is modeled and solved. After solving the reduced problem, one-customer-routes are added to
the plan.
A more recent approach has been to allow the splitting of the deliveries or pick-ups of a
customer between one or more vehicles. Dror and Trudeau (1987) introduced the concept of
Split Delivery Routing. Dror and Trudeau (1989) presented a Split Delivery Vehicle Routing
Problem (SDVRP), developed a solution scheme and demonstrated the potential for cost
savings through split deliveries by using generated problems. Their solution scheme is a two-
stage algorithm, where the first stage constructs a VRP solution using node interchanges, and
the second stage improves the VRP solution by introducing and eliminating splits. Their
algorithm found almost 14% cost reductions when costs for a set of randomly generated
problem instances were solved as both a VRP and an SDVRP, with computational times
under 30 minutes for the largest problems with 150 customers. In their approach split loads
were selected by determining the cost savings found by removing a load from a route and
servicing portions of the load on at least two other routes. The loads were divided based on
the available vehicle capacity on other routes. They also show that no two routes can have
more than one split in common, which greatly limits the number of splits that have to be
analyzed.

Dror and Trudeau (1990) further elaborate their study and prove that two points whose
demand is supplied by a number of routes do not have more than one route in common when
the distance matrix satisfies the triangular inequality.  They also show that the SDVRP is an
NP -hard problem. Dror et al. (1994) presented an integer formulation of the SDVRP and
developed different classes of valid inequalities and used these constraints in a cutting plane
algorithm to solve small instances with ten clients to optimality. They also developed an exact
constraint relaxation Branch-and-Bound algorithm for the SDVRP.

Besides Dror and Trudeau, Brenniger-Göthe (1989) made early research on the SDVRP. She
presented the SDVRP in her doctoral dissertation and applied it to a distribution planning
case.
Federgruen and Simchi-Levi (1995) split the demand d of  a  client  into d clients  with  unit
demand and same location. Then they solve the problem with different heuristics whose
performance is compared.

Sierksma and Tijssen (1998) apply split demands in determining a flight schedule for
helicopters to off-shore platform locations for exchanging crew people employed on these
platforms. They propose a Cluster-and-Route Heuristic algorithm for short term planning as
well as an exact long-term planning LP model and solve it by column generation techniques.
Exact solutions are found with up to 50 platforms. However, some rounding is needed to
obtain an integer solution.

Important properties in their model are that the demanded crew exchanges of a platform need
not be carried out by one helicopter and crew exchanges can not be fractional. So, the
problem is a discrete split delivery routing problem. Two major constraints on their problem
are  the  capacity  of  the  vehicles  and  the  range  that  helicopters  can  fly.  By  an  appropriate
splitting strategy, a range limited infeasible plan can be changed into feasible.
In their example in Figure 5, there are three platforms (P1, P2, and P3) with demands (1, 18
and 1) and the capacity of a helicopter is 10. If the helicopter first flies to P2 and exchanges 10
crew members (Airport – P2(10) – Airport), then the second route consisting of exchanges at
all three platforms (Airport – P3(1) – P2(8) – P1(1) – Airport) may exceed the range making
the solution infeasible. The other schedule with (Airport – P2(9)  – P1(1) – Airport) and
(Airport – P2(9) – P3(1) – Airport) has a shorter longest route that may be acceptable.
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Figure 5. The limited range of the helicopters

Belenguer et al. (2000) define a solution of the SDVRP and show that the convex hull of the
associated incidence vectors is a polyhedron, whose dimension depends on whether a vehicle
visiting  a  client  must  service,  or  not,  at  least  one  unit  of  the  client  demand.  They  present  a
new family of valid inequalities and lower bounds that are used to get the optimal resolutions
of some known instances with up to 50 clients.
Archetti et al. (2001) studied a split delivery problem with discrete capacities 2 and 3,
possibly greater integer demands than 2 and 3, and general distances. They show that if some
specific conditions on the distances are satisfied, the problem with a capacity of 2 is solvable
in polynomial time. When the distances are symmetrical and satisfy the triangle inequality,
this problem is reducible, by making direct trips to the depot, to a problem where each
customer demand is strictly lower than 2. They also show that the problem with vehicle
capacity k >  3  is NP -hard. When the capacity is equal to 3 the problem is reducible only
when the distances satisfy the sharpened triangle inequality with  = 2/3.

Archetti et al. (2005) studied a Skip Delivery Problem (SDP) where a fleet of vehicles must
deliver skips to a set of customers. In their problem, each vehicle has a maximum capacity of
two skips.  Tours have to start  and end at  a central  depot,  and the demand of each customer
can be greater than the capacity of the vehicles. They show that the SDP is solvable in
polynomial time, while its generalization to the case where all vehicles have a capacity greater
than two, known as the SDVRP, is shown to be NP -hard, even under restricted conditions on
the costs. The demands in this SDP being integers, costs symmetrical and satisfying the
triangle inequality, it can be shown that the SDP can be reduced in polynomial time into a
problem of possibly smaller size, where each customer has unitary demand. This property
allows a remarkable simplification of the problem.
Bompadre et al. (2006) presented improved lower bounds for the SDVRP and solved the
problem using a quadratic iterated tour partitioning (QITP) heuristic. They solve the SDVRP
by transforming it into a unit-demand problem, where each customer i with demand di is
replaced by a clique of qi customers with unit demand each and zero interdistance.
Archetti, Speranza and Hertz (2006) use a tabu search procedure for the SDVRP. They
consider a k-SDVRP where a direct trip is a tour where a vehicle starts from the depot, goes
directly to a customer, where it delivers k units, and then turns back directly to a depot. Given
an instance I of the k-SDVRP, one can build a reduced instance, denoted IR, by modifying the
demand di of each customer to di – k[di/k]. A solution SR for IR can then be transformed into a
solution s for I by adding [di/k] direct trips for each customer i. Now, given an instance I of
the k-SDVRP, consider the algorithm that first determines an optimal solution *

Rs  for  the
reduced instance IR and then builds the associated solution *s  for I.

Their tabu search algorithm overcomes the typical problem of the tabu search algorithms: the
tuning  of  the  parameters.  Actually,  only  two  parameters,  the  length  of  the  tabu  list  and  the
maximum number of iterations the algorithm can run without improvement of the best
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solution found, have to be set. At each iteration, they obtain a neighbor solution by removing
a customer from a set of routes where it is currently visited and inserting it either into a new
route or into an existing route that has enough residual capacity. The insertion of a customer
into a route is done by means of the cheapest insertion method. Their approach performs well
against Dror and Trudeau (1989) and almost always provides better solutions on the tested
instances even with very short computation times.
Lee et al. (2006) considered a multiple-vehicle routing problem with split pick-ups
(mVRPSP). Their problem involves multiple suppliers, a single depot, and a fleet of identical
capacity trucks responsible for delivering supplies from suppliers to the depot. The problem is
basically  the  same  as  the  SDVRP,  but  the  solution  approach  is  new.  Lee  et  al.  develop  a
deterministic dynamic (DP) program to solve their problem exactly and use an optimality-
invariance condition to find formulations that lead to equivalent DP with finite state and
action spaces. Solving these DP formulations is based on a shortest path search algorithm,
which is conceptually simple and easy to implement.
Chen et al. (2007) reviewed the applications of the SDVRP and developed a heuristic that
combines a mixed integer program and a record-to-record travel algorithm. Their heuristic
generally performs much better than the tabu search heuristics from Archetti et al. (2006).
Chen et al. (2007) also give an example of split pick-ups in commercial sanitation collection
where clients often place their trash in large containers or bins. A building may have several
bins which are lifted and their contents are emptied into the trash truck. Several trucks may be
required to pick up all the trash at a particular office building. However, because a bin’s load
can not be split, each bin either has to be considered as a separate demand or the building is
handled  as  a  single  demand.  In  the  latter  case,  a  discrete  number  of  splitting  options  is
allowed.
Mota et al. (2007) presented a scatter search base methodology constructed for the SDVRP.
They do not refer to Chen et al. (2007), but consider in their tests the same set of instances
used by Archetti et al. (2005). With some instances, they manage to get better solutions than
Archetti et al. (2005) in reasonable computing time.
Jin et al. (2007) proposed a two-stage (TS) algorithm with valid inequalities (TSVI) to
optimally solve the SDVRP. The first stage in the TSVI creates clusters covering all demand
and establishes a lower bound. The second stage calculates the minimal distance traveled for
each cluster by solving the corresponding traveling salesman problem (TSP). The sum of the
minimal distance traveled over all clusters yields an upper bound. Their numerical
experiments show that TSVI significantly outperforms other exact solution approaches
provided in the literature for the SDVRP. The paper does not refer to the heuristics in Chen et
al. (2007).
Mizrak Özfirat and Özkarahan (2007) formulated the Heterogenous fleet VRP (HVRP) with
and without split deliveries for fresh food distribution of a retail chain store. They proposed
algorithm that decomposes the main problem into subproblems and simultaneously allocates
vehicles to a number of NP -complete subproblems. Then they employed integer
programming to solve subproblems. In their case company, the improvement achieved by
split delivery strategy compared to non-split delivery was only 0.1%.

Tavakkoli-Moghaddam et al. (2007) present a mixed integer linear model of a CVRP with
split services and heterogenous fleet. Then they solve it by using a simulated annealing
method.
Campos et al. (2007) developed a scatter search method based algorithm that produces
feasible solutions using the minimum number of vehicles. Compared with the algorithm from
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Archetti et al. (2006), their algorithm performs well when demands are well below half the
capacity, but not so good when demands are over half the capacity.
Jin et al. (2008) developed a column generation approach to the SDVRP with large demand.
Their columns include route and delivery amount information. Pricing sub-problems are
solved by a limited-search-with-bound algorithm. Feasible solutions are obtained iteratively
by fixing one route once. Their numerical experiments show better solutions than in the
literature.

Jin et al. (2008) generated an approach resembling the work of Sierksma and Tijssen (1998)
for helicopter routing. Their approach, however, differs in three ways. Firstly, they require the
solutions to use a fixed number of vehicles but do not have a restriction on the longest
distance of each trip. Secondly, their decision variables in the master problem are defined as
binary variables rather than general integer variables in order to improve the lower bound.
Thirdly, their algorithm to obtain the feasible solution fixes one route with the largest product
of variable value and its total delivery guaranteeing feasibility over iterations. They conduct
numerical experiments on the instances published in Belenguer et al. (2000) and show that the
column generation approach provides good results for instances with large average demand.
Mitra (2005) formulate a Vehicle Routing Problem with Split Deliveries and Pickups
(VRPSPDP) as a MILP and develop a route construction heuristic. In their model, the linehaul
and backhaul customers are allowed to be the same which leads to simultaneous delivery and
pickup  at  a  customer  location.  Their  model  either  did  not  include  any  restriction  on  the
quantity demanded at (to be returned from) a customer location. A customer may be visited
by more than one truck and more than once by the same truck. In Mitra (2008) they use the
same problem sets given in Mitra (2005), give an alternative MILP formulation and develop a
parallel clustering technique to arrive at an initial solution to the problem.
Nowak et al. (2008) applied split loads for Pickup and Delivery Problem (PDP) calling their
problem a Pickup and Delivery Problem with Split Loads (PDPSL). They solved the problem
by using a heuristic to quantify the benefits of using split load for some large-scale random
instances. In a real-world trucking industry problem, these benefits of the heuristic were,
however, reduced.

According to Nowak et al. (2008) the PDPSL is a more complex problem than the SDVRP
primarily because the available capacity of the vehicle changes each time a load is picked up
or delivered for the PDPSL, without the vehicle ever returning to a depot. With the SDVRP
load planning is done with the same fixed capacity prior to a vehicle leaving the depot. With
the PDPSL available capacity during a route changes depending on deliveries and pickups
which  makes  it  difficult  to  determine  where  to  insert  a  split  load.  Some  of  the  SDVRP
techniques are, however, still applicable to PDPSL. For a PDP literature review see Nowak et
al. (2008).

In 3PL case study Nowak et al. (2008) used an additional monetary cost associated to the time
needed for vehicle loading or unloading at a facility. They didn’t, however, use actual time as
a resource.
Archetti, Speranza and Savelsbergh (2008) use an optimization based heuristic to solve the
SDVRP. As the solution approach by Chen et al. (Chen, Golden et al. 2007), their solution
approach also integrates heuristic search with optimization by using an integer program to
explore promising parts of the search space identified by a tabu search heuristic.
Computational results show that the method improves the solution of the tabu search in all but
one instance of a large test set.
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A comprehensive description of applications and solution approaches to the SDVRP can be
found in Chen et al. (2007). Recently, the basic SDVRP has been extended to include also
pick-ups (see Lee et al. (2006), Nowak et al. (2008)) and time windows (see Feillet et al.
(2003), Ho & Haugland (2004), Gendreau et al. (2008)).

3.2. Split Delivery Vehicle Routing Problem with Time Considerations
In models reviewed in the last subsection time is ignored as a resource that is consumed when
service is provided. Because in the TCRAPTS both movements between tasks as well as work
in tasks are modeled as time that they consume, it is important to know how time has been
taken into account in literature.

Gendreau et al. (2008) determine the Vehicle Routing Problem with Time Windows
(VRPTW) as a problem consisting of determining a least cost set of vehicle routes such that
every route starts and ends at the depot and such that every customer is served exactly once by
one vehicle, the vehicle capacity being respected and the service of customers beginning
inside their time windows. A vehicle might arrive at a customer location before the beginning
of its time window and wait. A variant problem of the VRPTW is when the requirement that
each customer is served exactly once is relaxed. The demand di of  a  customer  can  then  be
divided arbitrarily among the vehicles visiting him. This problem is known as the Split
Delivery Vehicle Problem with Time Windows (SDVRPTW).
Frizzell and Griffin (1992) consider the problem on a grid network and in Frizzell and Griffin
(1995) they add time window constraints to the problem creating the Split Delivery Vehicle
Routing and Scheduling Problem with Time Windows (SDVRSPTW). In both cases, they
propose heuristics to solve the problems. Their proposed heuristics are especially tailored for
the problems and this kind of grid network structure. They also include an explicit splitting
cost which is typically ignored in other split delivery papers.
Frizzell and Griffin (1992) consider the problem on a grid network and in (1995) they add
time window constraints to the problem creating the Split Delivery Vehicle Routing and
Scheduling Problem with Time Windows (SDVRSPTW). In both cases, they propose
heuristics to solve the problems. They also define delivery time as a non-linear function of the
delivered amount exhibiting the economies of scale. The extra costs of allowing any split
deliveries are also considered. The time required to unload a vehicle is considered within the
delivery time, while the time to load a vehicle is arbitrarily chosen to be 30 min.

Frizzell and Griffin (1995) use five performance measures: drive time, which is the total time
a vehicle is utilized (this includes travel time, loading and unloading); route number, which is
the  number  of  vehicles  used;  split  deliveries,  which  is  the  number  of  customers  whose
demand is split; waiting time, which is the time a vehicle spends at customer location while
not in the process of making a delivery; and lag time, which is the remaining time in the day
which is neither drive time nor waiting time.

Mullaseril et al. (1997) develop a heuristic algorithm for a cattle feeding problem in a ranch.
Cattle are kept in large pens that are connected by a road network. Six trucks deliver feed to
the pens within a specific time window each day. Because of feed weighing and loading
inaccuracies, the last pen on a route may not receive its full load and would need to have the
rest of its load delivered by a second truck on a different route. They model the problem as a
Capacitated Arc Routing Problem with time window constraints, where the demand of an arc
may be split. The problem is a split delivery capacitated rural postman problem with time
windows on arcs. Their heuristic is similar to the one proposed by Dror and Trudeau (1989)
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and (1990). The computational tests show that allowing split deliveries significantly reduce
the total distance traveled by the fleet in most of the cases.
Mullaseril et al. (1997) included time windows in their cattle feeding model. However, their
article does not clearly indicate whether the reduced discharging time in split deliveries was
taken into account.

Feillet et al. (2003) present a Branch and Price approach for solving the SDVRPTW without
imposing restrictions on the split delivery options. In their model, a time window and a
service time, not dependent on the quantity delivered, is defined for every customer. The
problem is presented as a set covering formulation without any assumption on the way in
which demands are split. In other words, the proportion of demand delivered by each vehicle
by each customer is a continuous linear variable. They solve problems of moderate size to
optimality by using column generation and valid inequalities with an adapted classical
branching scheme.

Song et al. (2002) considered the distribution of newspapers from printing plants to agents.
They included in their model the possibility to split deliveries for agents located close to
printing plants so that the split delivery spreads out agents’ work of inserting supplements and
allows home delivery to start earlier. Agents far from the printing plants and agents with small
demands are not considered for split deliveries.
Song et al. (2002) used a two-phase solution procedure. In Phase I, they allocated agents to
plants by solving a 0–1 integer programming problem. In Phase II, the authors determined the
split deliveries, generated the vehicle routes using a modified savings rule and a weighted
savings rule, and scheduled the vehicles for dispatch. Their method brought an average of
15% savings in delivery costs and reduced the delay time by 40% in comparison to the
method used in their case company.
Song et al. (2002) use in their model both production time and traveling time. However, they
do not consider the time spend at client’s location when uploading.
Ho and Haugland (2004) use tabu search heuristic for the Vehicle Routing Problem with Time
Windows and Split Deliveries (VRPTWSD). They apply four common move operators while
simultaneously generating split loads. The split loads are created based on the amount of
available capacity on a route when a load is to be placed on the route. This heuristic was used
to solve the Solomon (1987) test problems with 100 customers in less than 35 minutes. The
model used by Ho and Haugland (2004) includes traveling times but does not include service
time for uploading by clients.

Gendreau et al. (2008) present a column generation approach for solving the Vehicle Routing
Problem with Time Windows and Split Deliveries (SDVRPTW). Typically, only a limited
number of splitting possibilities has been exploited in the modeling of the SDVRP problem
and in most of the formulations the proportion of the demand of a customer served by a
vehicle has been determined to be an integer number. Gendreau et al. (2008) propose a new
set covering formulation for the SDVRPTW and describe a complete algorithm that solves
instances of moderate size to optimality, without making any assumption of the fashion way
in which demands are split. However, considering the service time, they make an assumption
that the service time of customers does not depend upon the quantity delivered. This
assumption can be done when “paper work” associated with each delivery is done in parallel
to the unloading operation and dominates the unloading time.
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3.3. Time Based Allocation of Service Resources with Split Tasks in
Literature

Study of the current literature in Vehicle Routing Problems with Split Delivery indicates that
time has not yet been considered as a resource or capacity in the similar way as it has been
considered in TCRAPTS formulated later in this essay. Time has been considered as traveling
time, but the time spent at client’s location, except in Frizzell and Giffin (1992, 1995), is
always fixed and does not depend on the amount of uploaded products. If working time is
considered as a resource, the current SDVRP models do not model it realistically enough for
resource allocation planning with time considerations and split tasks.

In most of the SDVRP models only some predefined discrete proportions of splits are allowed
(For example, Sierksma and Tijssen (1998), Archetti et al. (2001), Archetti et al. (2005),
Bompadre et al. (2006), and Tavakkoli-Moghaddam et al. (2007).). Some model
documentations (Mullaseril et al. (1997) and Belenguer et al. (2000)) leave it unclear whether
the splitting variable is discrete or continuous. The only articles using continuous or
practically continuous split variables were from Feillet et al. (2003), Mitra (2005), Mitra
(2008) and Gendreau et al. (2008).
In literature, modeling services with capacity consuming set ups and flexible works sharing
has not yet received much attention in operations research community. According to author’s
knowledge, the most similar research to the TCRAPST outside the VRP literature is the work
by Eveborn et al. (2006) where they plan home care staff reallocation between tasks within
work shifts. The efficiency of the plan is judged by the amount of travel time it requires and
how well it has succeeded in allocating all visits to staff members. The quality is judged by
how well continuity is kept with staff member visits to each client. The model of Eveborn et
al. (2006) is for planning a sequence of task allocations several days before the tasks are to be
completed. Still, they do not include time capacitated splits of tasks between workers.

3.4. Benefits of Split Deliveries in the VRP
A typical savings of allowing splits could be a problem with 20 customers where a VPR
solution suggests 8 routes but a solution with splits reduces the number of routes to 7 by
including a split delivery for 2 customers. Figure 6 illustrates the difference between the VPR
and the SDVRP. Nowak (2005), Lee et al. (2006), and Nowak et al. (2008) have applied the
idea of splits  for pick-ups too. On the other hand, in some cases it  can also be beneficial  to
remove a split, and use more routes instead.

Figure 6. The VRP and the SDVRP solution

Splitting  deliveries  in  the  SDVRP can  save  in  routing  costs  in  comparison  to  the  VRP that
does not allow split deliveries. Archetti, Savelsbergh and Speranza (2006) show that the
reduction in delivery costs from allowing split deliveries is at most 50%. In their analysis,
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they use discrete demand. They also demonstrated a strong relationship between the reduction
in delivery costs and the reduction in number of delivery routes resulting from allowing split
deliveries.

According to Archetti, Savelsbergh and Speranza (2008), the major benefit of allowing split
deliveries is a possible reduction in number of vehicles. A substantial reduction in distance
traveled when allowing split deliveries is typically the result of a reduction in the number of
delivery routes and thus vehicles needed.

In their overview of the SDVRP Archetti and Speranza (2006) state that the benefits from
allowing split deliveries mainly depend on the relation between mean demand and vehicle
capacity and on demand variance; there does not appear to be a dependence on customer
locations.

Arghetti, Savelsbergh and Speranze (2008) show that

When demands are large relative to the vehicle capacity, then there is little
advantage to splitting deliveries;

When  demands  are  small  relative  to  the  vehicle  capacity,  then  there  is  little
advantage to splitting deliveries;

When demands are little over half the vehicle capacity, then there may be
substantial advantages to splitting deliveries.

In Pickup and Delivery Problem with Split Loads (PDPSL) Nowak et al. (2008) found the
benefit of split loads being most closely tied to three characteristics: load size, cost associated
with a pickup or delivery, and the frequency with which loads have origins or destinations in
common. Most benefit can occur with load sizes just above one half of vehicle capacity when
loads with size close to vehicle capacity or below 10% of capacity showed almost no benefit.
The benefit of load splitting was also often reduced by additional stops at origins or
destinations, which increased the cost of making a pickup or delivery. However, splitting a
load does not necessarily result in the addition of stops to a route if several loads share a
common origin or destination. Sometimes cost savings may be reduced but other benefit may
come from reduction in the number of routes. In PDPSL, the most benefit with split loads is
found through route length reduction. Authors conclude that the benefit of split loads depends
on conditions  and  rules  in  their  3PL case  company,  where  almost  all  the  cost  savings  were
eliminated even, when there was a reduction in the number of routes used for service. Because
of limited real benefits and because split deliveries can also lead to higher customer
inconvenience due to more complex administration and accounting, companies need to
carefully evaluate trade-offs of including split deliveries in their schedules.

3.5. Justification of Vehicle Routing Approach
Vehicle routing modeling can be associated with moving resources and the sharing of
capacity within tasks. The vehicle routing problems typically include delivery requirements
that can be served by one or more vehicles. Considering vehicle routing problems, the
literature clearly shows that the splitting of deliveries can bring up to 50% savings in vehicle
routing.  Even  though  the  splitting  of  deliveries  is  not  the  same  as  the  splitting  of  time,
understanding split deliveries in vehicle routing helps to see the potential of savings that could
also be reached when splitting resource time between tasks. In addition, the time spent at
customer’s site as products are picked or delivered could be considered as a constraint on
vehicle routing too. In that case, the delivery splits could be based on the time that it takes to
pick up and to upload products to and from a vehicle. Besides vehicle routing we could also
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observe resource capacity allocation in many other allocations including human resource or
robot allocation and routing for different tasks. Comparison of time capacitated splits to other
approaches than vehicle routing is left for further research.

Virtual
depot

Worker 1

Worker 3
Worker 4

Worker 2

Figure 7. Illustration of paths generated by the TCRAPST

Figure 7 illustrates a modeling approach used in this essay. The approach is similar to vehicle
routing modeling where routes start and end in a depot. We can, namely, use paths that
resources travel and the paths start and end with a virtual depot with zero traveling times for
entering and leaving the depot. User of the solution does not see the virtual depot. Instead, for
a  user  the  solution  is  shown as  paths  that  start  from a  task,  go  via  tasks  and  end  in  a  task.
Paths are not directed which means that either end of a path can be a starting point. A path can
also consist of one task only. If a real-world application requires a base where resources are
located when they are not working, the base (or depot) and routes leaving and entering it can
be made visible and given actual transportation times.
Figure 7 illustrates the paths of four workers. One task is shared by Worker 1 and Worker 2.
One task of Worker 3 is big enough to consume the whole capacity of that worker. Worker 4
has three tasks and does not have any shared tasks with other workers.

4. Savings from Flexible Task Splitting in the TCRAPST
For their PDPSL Nowak et al. (2008) define a split route as follows:

If load is partitioned into more than the minimum number of divisions for full
service, it is considered to be split. For example, if a load is 3.6 truckloads and
vehicle capacity is 1, a minimum of four trips are required to fully service the
load. If the load is serviced in five or more trips, then it is considered to be
split.

The TCRAPST either does not limit the number of resources serving in a task. However, if
there is more than one resource serving in a task, the task is considered to be split.
In the same way, as load splitting in the SDVRP can result in considerable savings, we can
also show the potential of savings that can be achieved when split is allowed in performing
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time capacitated tasks. When time capacitated tasks are considered, there are, however clear
differences in the type of savings.  As in VRP setting,  the major objective is  to decrease the
number of vehicles and the length of total distance, in time capacitated resource allocation the
major objective can be to minimize the number of resource time needed to complete all tasks.
As in transportation business, it may be possible to lease a vehicle for a half a day only, in
service  setting  the  regulations  or  company  policy  may  rule  hiring  workers  for  complete
working days only. A worker’s slack time may depend on whether he is paid also for the time
when he is idle or only for the time he is working. Consequently, savings achieved by the
time capacitated task splitting can not be determined without considering different aspects of
business. By small and simple examples, we can, however, find examples that show high
“relevant” savings potential.

4.1. 40% Savings in Capacity Time Shown by an Easy Example
Let’s assume three tasks with one hour requirement, zero distances and three workers whose
capacities are C1 = ]1, 2[, C2 = ]1, 2[, C3 = 2 –  , and C1 + C2 = 3. In this case, not allowing
splits requires each worker to be allocated to one task only. None of the workers has enough
capacity to complete two tasks. Because there are only 3 hours of work but 5 –  hours of
capacity, we have 1 – 3/(5 – )  40% slack. If we allow task splitting, we can avoid slack
completely because two workers with the total capacity of three hours can complete all three
tasks. 40% savings in capacity can be reached. This example is illustrated in Figure 8.

Figure 8. 40% savings by task splitting

4.2. Two Ways of Showing 50% Savings in Capacity Time

The First Way
The possibility to achieve up to 50% savings by task splitting can be easily seen by observing
different solution cases for a problem with two tasks and two workers. A worker has slack is
its capacity is not completely used and the worker can not be, in practice, removed from the
solution.
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Let’s have
two tasks i  {1, 2}
zero distance d12 = 0 between tasks
one hour of work required by both tasks R1 = R2 = 1
two workers whose capacities are C1 = C2 = 2h – , C1 + C2 = 4 – 2  , and  is a small
number

Let hp,i be the slack of resource p  {1, 2} in task i  {1, 2} and H be the total slack of
resources p  {1, 2}.

Assume that  is too big to be rounded to zero by a computer but small enough to have any
significance in real life. This example is illustrated in Figure 9.

Figure 9. Savings potential example

Figure 10. Work allocation when splits are allowed and when they are not

For this example we have two solutions that are illustrated in Figure 10. If we do not accept
split, both workers work one hour and they have 1 –  hours of slack. Altogether there is 1 –
 2/(4 – 2  )  50% of slack as long as   can  not  be  rounded  to  zero.  Only,  if  = 0, one
worker can be removed from the solution because the other worker can do the both tasks.

As
11 12 2
lim

h h
 or

21 22 2
lim

h h
, the work load of one worker increases and the work load of the other

worker decreases as in Figure 11. Because there are only two tasks, we can not efficiently use
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the excess capacity of the two allocated workers. If also
0

lim   then the final stage, in practice,

is that the other worker is no more needed and we get rid of 50% the original capacity.

WITH SPLIT

? ?

? ?

Slack
1 –

Slack
1 –

? ?

?

BUT IN PRACTISE!

0
limAs        and        one worker gets

removed from the solution.
22 2
lim
h

Figure 11. As splits are allowed, the slack per worker vary between 0 and 2 – 2 .

The Second Way
We can also use the previous example to strictly prove the 50% savings potential of task
splitting by adding a third worker whose capacity C3 = . If we have C1 = C2 = 2h – , C3 = ,
and C1 + C2 + C3 = 4, the solution without splits requires C1 + C2=4 – 2  when  the  solution
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with splits can be achieved by C1 + C3 = 2 or C2 + C3 = 2. With this approach the saving in
capacity is, 2 – 2  which again is practically 50% of the original capacity if  is small.

5. Time capacitated Resource Allocation Problem with
Split Tasks (TCRAPST)

This chapter describes the modeling of Time Capacitated Resource Allocation Problem with
Split  Tasks  (TCRAPST).  In  the  TCRAPST,  all  tasks  are  defined  by  their  location  and  time
required to perform the tasks. Also resource capacity is measured as time. Resources can be
moved between different tasks and this transportation time consumes resource capacity. Let
us call this moving time set-up time. (Unproductive time between tasks actually consists of at
least four components: (1) set-down time, (2) time spent on moving, (3) potential slack and
(4) the actual set-up time.) As we measure resource capacity as time, we get an answer to the
question how that capacity time is allocated between tasks, set-ups and slack.
All resources are assumed to be equally efficient and their capacities predefined. An hour task
performed by anyone of the resources will thus consume one hour of resource’s time. Based
on these assumptions, the total time spent on performing all tasks is known. The length of a
task can exceed the length of a planning period leading to a need for task splitting because the
task exceeding the length of a planning period can not be completed by one resource only.
However, also tasks shorter than a planning period can be split between resources. The
TCRAPST can handle both cases.

The objective of the TCRAPST is to minimize the total set-up time between tasks. At the
same time, slack time gets maximized. By maximizing slack, we can learn how much
overcapacity we have. As we know our overcapacity, we can make decisions either to use less
capacity or to find new tasks where overcapacity can be used.

In the TCRAPST, resources are modeled separately but interconnected by capacity constraints
and resource time required by customers. So, if one resource is not enough for completing a
task, the TCRAPST automatically allocates more resources for that task.
In the TCRAPST traveling time from task i to task j is assumed to be the same as from task j
to i allowing the use of undirected set-up time variables between tasks.
Figure 12 illustrates how a modeler sees a TCRAPST solution as paths. The paths start and
end with a virtual depot with zero set-up times for set-ups entering and leaving the depot.
User of the solution does not see the virtual depot. Instead, for a user the solution is shown as
paths that start from a task, go via tasks and end in tasks. Paths are not directed which means
that either end of a path can be a starting point. A path can also be one task long which means
that a resource is employed in one task only. If there is a real base in real-world application
where resources are located when they are not working, the base (or depot) and routes leaving
and entering it can be made visible and given actual transportation times.
In Figure 12, a working shift of four resources is modeled as paths. One task is shared by two
resources, so two paths (Path 1 and Path 2) have one common task. One task on Path 3 is big
enough to consume the whole capacity of the third resource. Path 4 has three tasks and does
not have any shared tasks with other paths.
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Figure 12. Illustration of paths generated by the TCRAPST

Drawn as figures, the TCRAPST solutions, especially if set-up times are traveling times
between differently located tasks, resemble solutions to Vehicle Routing Problems with Split
Deliveries (SDVRP). In Vehicle Routing Problems (VRP) vehicle capacity is used to deliver
products or people. In the TCRAPST, we deliver service or production capacity measured as
time. Personnel rostering and scheduling problems also have much in common with the
TCRAPST but they are not considered here.

5.1. MILP formulation of the TCRAPST
Notations

Sets
P = set of resources
I = ordered set of tasks

Parameters
Di, j = Dj, i = set-up time between tasks i and j, i I, j I
Ri = capacity required by task i, i I
Cp = capacity of resource p, p P
Kp = cost of using resource p, p P
M = big number

Binary variables
sp, i = 1, if resource p visits task i; 0 otherwise, p P, i I
dp, i ,  j = dp,  j , i = 1, if resource p moves between tasks i and j; 0 otherwise, p P, i I, j I
bp, i = 1, if resource p starts the period in task i; 0 otherwise, p P, i I
ep, i = 1, if resource p ends the period in task i; 0 otherwise, p P, i I

Continuous variables
wp, i = capacity time (or work) of resource p used in task i, p P, i I
hp = slack time of resource p, p P.

Objective function

, , , ,min
i j

p i j i j p p i p
p P i I j I p P i I

d D K w K (1)
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The objective function attempts to minimize the number of active resources and the total set-
up time simultaneously. The most important objective is to minimize the number of active
resources. An active resource here refers to a resource that is used for work.

The TCRAPST allocates all resources to at least one task. However, an allocation to just one
task  does  not  require  either  traveling  or  work.  So,  a  resource  allocated  to  just  one  task  can
either be an active or a non-active resource.
When all resources are allocated, but all allocated resources do not necessarily either work or
travel,  the  cost  of  using  resources  for  work  (wp,iKp) or traveling with different Kp for each
resource minimizes the number of active resources needed to perform tasks. We can, for
example, use costs Kp+1 = 10Kp which uses cheapest resources first and forces more expensive
resources on paths with no traveling or allocated work. Simultaneously, we maximize the
slack of the most expensive resource that is actually used.
The constraints of this model can be grouped into capacity constraints and set-up constraints.
Capacity constraints regulate the distribution of resource capacity time between work, set-ups
and slack. Set-up constraints define the possible routes that can exist for each resource
between tasks.
Capacity constraints

,p i i
p P

w R , i. (2)

, , , ,

i j

p i p p i j i j p
i I i I j I

w h d D C , p. (3)

, ,p i p iw s M , p and i. (4)

Constraint (2) requires that all work in tasks gets done. According to constraint (3) time spent
on work, set-ups, and slack has to equal the capacity of a resource. Because a resource has to
be physically available to do its task, in constraint (4) sp, i is 1 for each resource p working in a
task i during a period and 0 otherwise. This formulation allows a resource to be routed via one
task only and without any working on its path. Resources without any allocated work can be
considered as inactivated, and thus unneeded, resources.

Set-up constraints

, 1p i
i I

b , p. (5)

, 1p i
i I

e , p. (6)

, , , ,

, ,
, 0

2 2
i j j i

p i j p j i
j I j I

p i p i
p i

d d
b e

s , p and i. (7)
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wp, i , hp  0 , p, and i,

bp, i , dp, i , j , ep, i , sp, i , p, i, and j.

Constraints (5) and (6) forces there to be one first and one last task for each resource p.
Constraint (7) lets set-ups or movements only take place between tasks where the decision of
working has been made.
Constraint (7) also requires for each resource at least one allocation in any task even when we
do not actually need that resource.
If we want, we can add a clarifying, but redundant, constraint (8).

, , ,0 1p i p i j
i I i I j I

i j

s d , p. (8)

which forces that a resource p can arrive only once and depart only once from a task i. If
resource p works in more than one task during a planning period, there has to be a set-up
between the tasks. Constraint (8) also forces these set-ups: A worker working in two tasks has
to travel once; a worker with three tasks travels twice etc.
As the model was tested with generated data the solution did not always behave as we would
expect of the objective function (1). Strange solutions are probably caused by scaling and
rounding that CPLEX 9.0 does during the solution process because the difference in objective
function value between strange solution and intuitively optimal solution is typically very
small.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 1 1 1

2 (1, 2) 2 (1, 2) 2 (1, 2) 2 (1, 2)

3 (1, 3) (2, 3) 3 (1, 3) (2, 3) 3 (1, 3) (2, 3) 3 (1, 3) (2, 3)

4 (1, 4) (2, 4) (3, 4) 4 (1, 4) (2, 4) (3, 4) 4 (1, 4) (2, 4) (3, 4) 4 (1, 4) (2, 4) (3, 4)

i = 3

j

i = 4

jj

i = 1 i = 2

j

Figure 13. Possible combinations for each i  (1, 2, 3, 4)

To illustrate the logic of constraint (7), let’s assume 4 tasks in a system and tasks presented as
an ordered set. Numbers in both axes are tasks. Combinations i = j are not allowed. The upper
right hand side of the matrix is not needed because the set is ordered.

Let the darkened cells in Figure 13 show the possible combinations for each i  (1, 2, 3, 4). If
we further assume that the decision of working in task 3 has been made for resource p,
constraint (7) allows dp, 1, 3 + dp, 2 ,3 + dp, 3, 4  2. The (i, j)-combinations allowed for variables
dp, i, j = dp, j, i (i  j) and sp,3 = 1  are listed in Figure 14. The combinations in the first row of 3
are possible when the task i = 3 is not the first or the last task on resource’s path. The
combinations in the second row of 3 are possible when the task i = 3 is either the first or the
last task allocated for a resource on its path.
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Constraint (7) allows the maximum of one arrival to and one departure from a task i for an
allocated resource p,  but  no  arrivals  or  departures  when sp,i =  0.  For I = 4 and i = 3 or j = 3
Table 4 shows the existing possible transfer combinations.

1 2 3 4 1 2 3 4 1 2 3 4
1 1 1
2 0 2 0 2 0

3 1 1 3 1 0 3 0 1
4 0 0 0 4 0 0 1 4 0 0 1

1 2 3 4 1 2 3 4 1 2 3 4
1 1 1
2 0 2 0 2 0

3 1 0 3 0 1 3 0 0
4 0 0 0 4 0 0 0 4 0 0 1

or

or or

or or

Figure 14. Allowed binary combinations for I = 4, i < j and i = 3

Table 4. Possible binary combinations for I = 4, i < j and i = 3

s p , 3 d p , 1, 3 d p , 2 ,3 d p , 3, 4

1 1 1 0
1 1 0 1
1 1 1 0
1 0 1 1
1 1 0 1
1 0 1 1
0 0 0 0

5.2. Subtour Considerations
Subtour is a closed route that does not have a beginning or end. In the MILP formulation of
The  TCRAPST unwanted  subtours  can  exist  if  resources  are  allowed to  work  in  more  than
three tasks within a planning period. This feature seriously limits the applicability of the
formulation because the elimination of subtours by additional constraints makes the model
even more difficult to solve and construct.
Lines in Figure 15 illustrate the paths of a potential solution for a system with two resources
and six tasks (P = 2 and I = 6). Resource 2 has a desired path that starts from outside the
system and exists to outside of the system. However, resource 1 has two paths of which one is
an undesired subtour.
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Figure 15. Subtours can exist in MILP formulation of the TCRAPST if a resource is
allowed to work in more than 3 tasks within a planning period

We can completely avoid subtours by limiting the number of allowed tasks for a resource
within a planning period to the maximum of three. If we add constraints (9) and (10), a
resource can work in up to four tasks within a planning period without subtours. Because
constraint (9) determines for a resource that it can not start and end its path in the same task,
we automatically select out one-task-paths. With the maximum of 4 tasks per path this also
forces out three-task-subtours because at least two tasks out of four have to have a movement
in or out of the system.

, , 1p i p ib e , p and i (9)

, 4p i
i I

s  , p (10)

Constraints (5), (9) and (10), together require for each resource p that , , 1p i jd  which
means that each resource has be allocated to at least two tasks even when one task would be
big enough to consume all capacity of a resource. Constraints (5) and (6) also require that all
available  resources  have  to  be  allocated  to  paths  even  when  some  resources  have  zero
capacity. Together with constraint (9) they actually require each resource to go through two
tasks.
If constraints (9) and (10) are not used, another way to avoid subtours is to add constraints to
specifically exclude each possible subtour. For example, a subtour consisting of three tasks a,
b, and c can be excluded by constraint (11). Similarly, a 4-task subtour consisting of tasks a,
b, c, d can be avoided by constraint (12). The number of subtours constraints increases very
fast as bigger and bigger subtours are to be avoided making the enumeration of all possible
subtour constraints an impractical approach.
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, , , , , , 2p a b p a c p b cd d d , a, b, c I and a<b<c. (11)

, , , , , , , , , , , , 3p a b p a c p a d p b c p b d p c dd d d d d d ,
a, b, c, d I and a<b<c<d. (12)

Limiting a problem to include the maximum of four tasks on a path can be a good strategy for
example in allocating cleaning personnel. If it shows up that tasks are shorter than 1/4 or 1/3
of a planning period, we can try to preprocess and simplify a problem by combining short
tasks with nearby tasks before we send the problem to a solver.

Probably the easiest way to avoid subtours is to combine tasks in a preprocessing stage and
present them to the model as one bigger task. By this way the number of tasks presented for
the optimization model can be decreased and their length increased up to the point where the
number of tasks a resource can visit within a planning period becomes automatically limited.

We can also use an approach where we first start solving a problem without subtour
constraints and then add those constraints one by one to avoid only those subtours that
emerge. Because after adding new constraints the problem has to be solved again, this
approach is also inefficient. However, in that way we can generate optimal reference solutions
that can be compared with solutions generated by other methods.

Salkin (1989, 17) describes a subtour prevention constraint , ,1i j p i ja a n d n  used in
the Traveling Salesman Problem (TSP). In that TSP-constraint ai is a real number associated
with task i and n is the number of tasks allowed for a round. Unfortunately, this subtour
prevention constraint can not be used here because we do not know it in advance, how many
tasks a resource is allocated to within a planning period.

Subtours in the TCRAPST could possibly also be avoided by using directed arcs and suitable
constraints.

5.3. Fixed Resource Activation Cost
Objective function (1) does not charge any fixed cost on the allocation of a resource to just
one  task  without  any  allocated  working  time  on  that  resource.  All  resources  are  routed
through at least one task. Inactivated resources just go through one task but they do not work.
A path of an inactivated resource includes one task but no work because entering a path (bp,i)
and leaving a path (ep,i) are not charged with any cost.
We can introduce a fixed cost of activating a resource by including two sets of tasks, active
tasks and passive tasks. Active tasks include all real tasks where work hast to be done. The set
of passive tasks includes only one task  ( I and R  = 0) without a working requirement.

Now we can allocate a fixed cost on starting a path in an active task (bp,i, i ) and leave a path
starting in a passive task (bp, ) uncharged. If a resource is not activated, it will now be routed
through the task only because all other paths incur costs.
Unfortunately, experiments with the fixed cost formulation were not promising. The
TCRAPST formulation allows subtours, and subtour prevention constraints are only added
after analyzing each solution. The TCRAPST also allows solutions where a resource works
only a very short time in just one task without moving anywhere. The reason for using
strongly different capacity usage time costs between resources is that they help to minimize
the number of resources working just a very small fraction of their time and being idle the rest
of the planning period. As capacity usage time costs are very different between resources, the
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cheap resources tend to work with their full capacity and the very expensive resources do not
work at all. There are not many active resources having substantial slack.
The  introduction  of  a  high  fixed  cost  of  activating  a  resource  leads  to  a  situation  where  the
TCRAPST first tries a large number subtours before activating an additional resource. As the
number of subtour constraints increases, the problem often finally becomes so constrained
that CPLEX fails to find a new feasible initial solution. Even when a feasible and reasonably
good solution could finally be found, the creation of numerous subtour constraints after each
resolving makes the solution process to last impractically long.

5.4. Lower Bound
The TCRAPST solves to optimality only with very small problems having about 10 tasks and
10 resources. In a case of a bigger problem, one would be interested in knowing how far away
from the optimal solution the found non-optimal solution is. The optimal solution is
somewhere between the existing feasible non-optimal solution and a lower bound which is a
solution to a relaxed problem. Loosening or removing a constraint and dropping a binary
requirement are typical relaxations. A good lower bound is computed fast and it does not
deviate much from the optimal solution to the original problem.
When  solving  the  TCRAPST,  we  want  to  find  information  on  the  amount  of  time  each
resource spends on working and traveling. The binary logic of the TCRAPS determines
traveling times based on working time allocations. Changing anyone of the binary variables
into a continuous variable destroys the logic resulting in lower bound solutions without
allocated traveling time.

The tightness of this lower bound depends on the relative distances of tasks compared with
task lengths. If task lengths are long compared with distances between tasks, the lower bound
solution is tighter than when the relative distances between tasks are longer.
When relaxing the TCRAPST, we may want to preserve as much of the problem structure as
possible. We could, for example, remove subtour constraints and get lower bounds quite close
to the optimal solutions of the original problems. However, removing subtour constraints does
not make the problem much easier and faster to solve because the number of binary
combinations to consider still stays high.

Another very fast solving lower bound retaining the binary logic can be found by changing
constraints  (5)  and  (6)  to ,p ib M  and ,p ie M  with M I. This relaxation allows
every resource to take as many as I paths. By this relaxation, we get a lower bound consisting
of just working time. There is no traveling because all paths consist of one task only. We can
tighten this lower bound, with the penalty of longer solution time, by decreasing the M, which
will incrementally introduce more and more traveling between tasks.

6. TCRAPST Solution Example
To illustrate a TCRAPST solution we could provide a solution to the question below:

How to allocate 25 cleaning people within an 8 hour work shift to 25 tasks
with different durations so that the number of people actually needed is
minimized?

Figure 16 illustrates the problem with the centers of circles corresponding to task locations,
the diameters of circles to task lengths, and euclidean distances between the centers of circles
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to traveling times between tasks. Distances between the centers of circles correspond to the
distance hour scales of the axes. The diameters of circles do not directly relate to axes. A big
circle is a long task and a small circle is a short task. For this example, the lengths of tasks are
randomly generated from the normal distribution N[1,8]. Horizontal and vertical coordinates
are randomly generated from the normal distribution N[0,5]. The resulting task lengths and
coordinates are listed in Table 5.

Table 5. Task lengths and coordinates for the example problem
Task number 1 2 3 4 5 6 7 8 9 10 11 12 13
Horizontal 0.01 4.04 1.75 3.73 3.55 0.07 0.74 2.23 0.04 2.86 0.83 1.76 3.92
Vertical 2.82 2.93 4.48 0.87 2.57 0.46 0.83 0.60 1.89 3.01 3.32 0.29 4.01
Task length 2.35 4.36 6.76 7.01 3.13 3.55 7.92 1.03 4.72 5.25 4.16 5.25 4.64

Task number 14 15 16 17 18 19 20 21 22 23 24 25
Horizontal 1.51 4.78 0.71 4.31 4.22 3.06 1.49 1.88 0.28 1.38 3.46 2.42
Vertical 4.38 4.63 2.31 1.05 4.98 1.96 4.20 0.46 0.04 1.36 4.19 1.03
Task length 6.09 4.78 2.65 6.46 8.00 2.86 1.17 5.74 7.43 5.12 6.09 6.21
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Figure 16. Tasks scattered on a “map”

The cost of time spent on traveling was the same cost for each worker, but, for each worker,
the working time in tasks was given a different cost so that the working time of a worker, or
the time spend in tasks, increases as workers’ ordinal number increases, i.e. worker number
one is the cheapest to use and worker number 25 is the most expensive to use. As the capacity
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cost  of  different  workers  varies,  the  solver  tries  to  find  solutions  where  least  expensive
workers are used and the use of most expensive workers is avoided.
Figure 17 and Figure 18 illustrate solutions generated by the TCRAPST. In Figure 17, the
diameters of circles illustrate the length of tasks. In Figure 18, all tasks are illustrated with
same-sized small circles to highlight the paths allocated to workers. Circles filled with black
point out the tasks that are split between different workers.
Due to problem complexity, these solutions are only indicative, not optimal. This can also be
seen in Table 5 where working time of workers does not always decrease as worker’s ordinal
number increases. In an optimal solution, the utilization of cheaper workers in tasks should be
higher than the utilization of more expensive workers. For example, by exchanging the work
loads of the worker 13 and the worker 14  we could manually improve the objective function
value. Still, even this non-optimal solution is useful because it illustrates typical solution
features.
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Figure 17. Solution generated by the TCRAPST
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Figure 18. Workers allocated to tasks in solutions generated by the TCRAPST

In Figure 18, only the locations of tasks are shown but the length of tasks is ignored. In the
TCRAPST solution shared tasks are colored with black. The numbers indicate workers
working in each task. Table 5 shows the capacity time usage of each worker. Altogether 19
workers are needed to complete 25 tasks. Workers 1 – 15 all spend at least 79% of their time
in actual work. Then proportional time of workers in tasks starts decreasing rapidly. The last
activated worker has the largest slack of all activated workers. Table 6 and Table 7 indicate
workers allocated for each task. In the TCRAPST solution, 19 workers are needed as 10 tasks
are shared by more than one worker.
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Table 5. Working times, traveling times, utilization for tasks and slack

Worker

Working

time

Traveling

time

Working +

Traveling

Utilization

for tasks

Slack

1 8.00 8.00 100 %
2 6.94 1.06 8.00 87 %
3 7.45 0.55 8.00 93 %
4 7.92 7.92 99 % 1 %
5 6.93 1.07 8.00 87 %
6 6.82 1.18 8.00 85 %
7 7.41 0.59 8.00 93 %
8 7.43 7.43 93 % 7 %
9 6.67 1.33 8.00 83 %
10 7.13 0.87 8.00 89 %
11 7.20 0.80 8.00 90 %
12 6.87 1.05 7.92 86 % 1 %
13 6.34 6.34 79 % 21 %
14 6.78 1.22 8.00 85 %
15 6.60 1.40 8.00 83 %
16 5.90 1.56 7.46 74 % 7 %
17 4.46 2.87 7.33 56 % 8 %
18 3.60 2.87 6.47 45 % 19 %
19 2.28 1.72 4.00 28 % 50 %

Average capacity used in tasks 81 %
Average capacity spent on traveling 13 %
Average slack per worker 6 %

Table 6. Tasks allocated per worker

Task number 1 2 3 6 7 8
Worker 16 15 7 10 13 5 18 16 4 17
Working time per task 2.35 4.36 6.76 0.67 6.34 1.68 1.45 3.55 7.92 1.03
Total work in task 2.35 4.36 6.76 3.55 7.92 1.03

Task number 9 10 12
Worker 12 5 9 17 3 11 14 7 9
Working time per task 4.72 5.25 1.23 2.93 5.25 1.11 3.53 0.65 5.44
Total work in task 4.72 5.25 5.25

Task number 17 18 20
Worker 14 18 12 17 10 1 15 18 19
Working time per task 3.25 1.53 2.15 0.5 6.46 8.00 2.24 0.62 1.17
Total work in task 6.46 8.00 1.17

Task number 22 24
Worker 2 3 8 6 19 11 2 6
Working time per task 3.54 2.20 7.43 4.01 1.11 6.09 3.40 2.81
Total work in task 7.43 6.095.74
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Table 7. Workers allocated per task

Worker 1 4
Task number 18 21 25 12 21 7 5 10 23 25
Working time per task 8.00 3.54 3.40 5.25 2.20 7.92 1.68 5.25 4.01 2.81
Total working time 8.00 7.92

Worker 8
Task number 3 14 22 11 14 4 17 13 24
Working time per task 6.76 0.65 7.43 1.23 5.44 0.67 6.46 1.11 6.09
Total working time 7.43

Worker 13
Task number 9 16 4 13 15 2 19 1 6
Working time per task 4.72 2.15 6.34 3.53 3.25 4.36 2.24 2.35 3.55
Total working time 6.34

Worker
Task number 8 11 16 5 15 19 20 23
Working time per task 1.03 2.93 0.5 1.45 1.53 0.62 1.17 1.11
Total working time

17 18 19

12 14 15 16

6.67 7.13 7.20

6.94 7.45 6.93 6.82

117 9 10

2.284.46 3.6

6.87 6.78 6.60 5.90

7.41

2 3 5 6

7. Extensions of the TCRAPST and Discussion on
Business Applications

7.1. Extensions of the TCRAPST
Many important aspects were ignored in the previous example to keep it simple. Can we
really assume that all workers, for example, are similar and equally efficient? Will there be
congestion in shared tasks that decreases the efficiency of workers? Can savings from the
decreased number of workers be lost by the increased costs of traveling? Is it economical to
allocate  workers  for  very  short  periods  in  tasks?  For  example,  in  Table  6  we  see  that  four
workers [7, 10, 17, and 18] were allocated to work less than one hour in a one of their tasks.
In real life that would probably not make sense.
Luckily, the TCRAPST assumptions can easily be relaxed. Excessive traveling and very short
working times in tasks can be discouraged by additional constraints. Different efficiencies and
different travelling speeds of workers can be handled by parameters. Traveling times can also
be expressed as set-up times not directly dependent on actual distances. In that way, the model
can be applied to a production environment where workers capable of working in several
tasks do not actually move long distances but there is still a considerable delay between
ending  one  task  and  starting  another  task.  Different  skills  can  be  taken  into  account  by
limiting workers’ allocation to tasks. We can also replace the undirected transfer network with
a directed one to include time windows and interconnected time periods.

In the TCRAPST, a virtual depot was used, but we can also use a real depot or a base where
people start their work shift and where they come back after a work shift. More than one base
can be included, as in Figure 19, and the model can be used to allocate workers to tasks and
customers to bases.
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Figure 19. Example of a problem with two bases

More detailed modeling is not the biggest problem with the TCRAPST. The real problem is
the computational complexity of the problem. Therefore, more efficient solution methods are
needed to put the TCRAPST in practice.

7.2. Business Application
Time capacitated resource allocation can be applied in services where tasks are similar and
resources, such as cleaning personnel, have similar and standardized skills and efficiencies.
Standardization of tasks and skills makes it possible to make reliable forecasts about the
capacity consumption of tasks as well as efficiencies of resources. If tasks, skills and
efficiencies can not be forecast accurately enough, time capacitated resource allocation should
not be used.

One application of the TCRAPST is to use it as a decision support tool when analyzing
company’s customer base. Figure 20 illustrates a cluster, a suburb for example, with four
people serving 13 customers. The current optimal paths of each service person are marked
with colors. Based on our current capacity usage and costs, we consider a potential new
customer A.
We can use the TCRAPST together with cost accounting to assist us in answering different
questions. If there is only additional customer A to be considered, we could ask: Should
customer A be included in our customer base? Do we have enough capacity to serve customer
A? Which one of our service people should serve customer A? How much, and on what cost,
should we increase our capacity that it is profitable for us to serve customer A? Instead of
hiring a new worker, could we handle the additional capacity need by applying overtime?
Should our competitor serve customer A instead of us? What price should customer A be
served  for?  Can  and  should  we  use  price  differentiation?  Does  a  plan  suggested  by  the
TCRAPST make common sense?

?
?

?

?

Base 2

Base 1

Area supplied by
Base 1

Area supplied by
Base 2
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Figure 20. Example with 13 existing customers, service paths and potential new
customers

If there are other potential customers nearby customer A, we can ask additional questions.
Should we now be interested in customer A? Should we increase our capacity to serve
customer A and customers nearby? What reallocations of our workers would that require?
Should we make a special offer to get customer A and its nearby customers into our customer
base? How many new customers do we want?
Rostering and scheduling of staff is a typical problem and it has been studied extensively in
nurse scheduling, air craft scheduling etc. Typically, the problem is to solve a matching
problem where one person is matched with each task. The splitting of tasks between more
than one person is seldom considered and having that split as a decision variable hardly never.
However, there are tasks where considering the splitting of tasks time between different
resources as a decision variable can be beneficial. A typical example is the staff allocation of
a cleaning company having a set of buildings to be cleaned. I such a case, the cleaning of a
building, the cleaning of different floors, and time needed to move between different tasks can
be considered as tasks for which duration can be forecast. Based on the time forecast, the
tasks can be allocated for cleaning staff. Some people may work the whole day with the same
task. Other people may have to move between several tasks that may be completed by one
person or be split to be completed by more than one person. The objective for a planner in that
kind of a case is to allocate and schedule personnel in such a way that traveling and other kind
of time not adding value is minimized.
Other examples where splitting can be beneficial are the allocation of expensive leased
equipment,  staff  planning  on  the  factory  floor  with  flexible  and  multi-skilled  work  force  as
well as in many services such as home health care, facility maintenance, and private security
services. Despite modeling and optimizing the simultaneous movements of several people
taking different time consuming activities (working, set-up, set-down, transfer, and idle time)
and flexible job splitting into account offers potential for substantial savings, the subject has
not received much attention in literature. To my knowledge, the only relevant research closely
related can be found in vehicle routing literature.
As time is used as constraint, the ability to measure and forecast durations is a key.
Forecasting is easier as tasks are standardized and repetitive. If the duration of tasks and
traveling can not be measured, time capacitated optimization becomes meaningless.

?
A

Suburb x
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In practice, however, experienced people and machines typically have quite stable production
rates that can be measured. As people get more experienced, they typically become faster.
Experience increases as similar tasks are repeated again and again. Learning can continue in
different locations if tasks are similar. So, if we allocate an experienced person to a typical
task, we can quite accurately estimate how long it takes to complete the task. The same
applies for many other resources.

8. Conclusions
Time capacitated resource allocation can be applied in services where tasks are similar and
resources, such as cleaning personnel, have similar and standardized skills and efficiencies.
Standardization of tasks and skills makes it possible to make reliable forecasts about the
capacity consumption of tasks as well as efficiencies of resources. If tasks, skills and
efficiencies can not be forecast accurately enough, time capacitated resource allocation should
not be used.
This  essay  described  a  resource  allocation  model  that  can  be  used  when  both  capacity  and
requirements are expressed as time. That MILP model helps to allocate resources to perform
tasks so that the number of resources gets minimized. In minimization of the number of
resources needed, the routing of resources is a key because both working in tasks and moving
between tasks also consume capacity.
In addition to routing, task splitting was taken into account. As resources and tasks are very
similar, it is often practical to let more than one resource to work in a task, especially, if a task
takes a long time complete. The MILP model presented in this essay also does that splitting of
tasks between resources when simultaneously minimizing the number of resources needed in
the whole system.

The focus on this essay was on savings potential of task splitting in time capacitated
modeling. Firstly, examples on that savings potential was given by comparing solutions that
do not allow task splitting to solutions that include task splitting. Secondly, I was proven that
task splitting can, in a theoretical case, bring up to 50% savings in comparison to a solution
that does not allow task splitting. Thirdly, a Mixed Integer Linear Programming (MILP)
problem model on Time Capacitated Resource Allocation Problem with Split Tasks
(TCRAPST) was presented. Finally, the extensions and potential applications of the
TCRAPST were discussed.

This essay concentrated on describing and proving a model that can potentially generate more
efficient operational plans than existing models. The focus was on savings effect and,
therefore, many important practical aspects, such as time windows or minimum working time
constraints, were ignored. If split tasks are to be applied in practice, the model has to be
extended.
Another subject for further research would be to test the savings effect with data by
comparing solutions generated by the TCRAPST with solutions generated by a similar model
that  does  not  allow  task  splitting.  Data  could  also  be  used  to  test  whether  reduced  the
TCRAPST solutions really are optimal. Does the TCRAPST always allocate complete
resource work shifts to tasks when task length exceeds the capacity of resource’s work shift?

As a MILP formulation, the TCRAPST could only solve very small problems. If the idea of
task splitting in time capacitated problems is to be put in practice, more efficient solution
methods have to be developed. When developing those methods, the TCRAPST solutions, or
solutions to its extensions, can be used as reference solutions to compare the quality of
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solutions generated by other techniques than branch-and-bound based optimization. The
TCRAPST model can serve as a starting point in analyzing the implications of task splitting,
set-ups, reallocations and set-downs in different industries.

Second routing application area where resource capacity can be measured in time is human
resource or robot allocation and routing for different tasks.

Then a short survey is made on transportable resource allocation, routing and scheduling in
cases where requirements can be measured as capacity time. Based on these surveys it
becomes quite obvious that a research gap exists when it comes to modeling the flexible
splitting of resource time between tasks.
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APPENDIX: The TCRAPST as an AMPL Model
# SETS AND PARAMETERS

# ------------------------------------------------------------------------------------

set TASK ordered; # ordered set of tasks

set WORKER  ; # set of resources

set TRANSF = {i in TASK, j in TASK: ord(i) < ord(j)}; # allowed transfers between

# customer facilities

param capacity {WORKER} = 8; # capacity of resource (here 8 assumed)

param distance {TASK, TASK} >= 0; # set-up time between tasks

param requirement {TASK}; # capacity required by task

param workercost {WORKER}; # cost of using resource

# VARIABLES

# ------------------------------------------------------------------------------------

var Place {WORKER, TASK} binary; # 1, if resource visits task; 0 otherwise

var Route {WORKER, TRANSF} binary; # 1, if resource moves between two tasks; 1

otherwise

var Beginning {WORKER, TASK} binary; # determines the first task of a resource

var End {WORKER, TASK} binary; # determines the last task of a worker

var WorkTime {WORKER, TASK}; # capacity time of resource used in task

# OBJECTIVE FUNCTION

# ------------------------------------------------------------------------------------

minimize Worker_Time_Needed:

sum{w in WORKER}(

sum{(i,j) in TRANSF}Route[w,i,j]*distance[i,j]

+ sum{f in TASK}WorkTime[w,f])*workercost[w];

# CAPACITY CONSTRAINTS

# -------------------------------------------------------------------------------------

# ALL WORK HAS TO BE DONE

subject to WorkDemand {i in TASK}:

sum {w in WORKER} WorkTime[w,i] = requirement[i];

# WORK, TRAVELING AND SLACK CAN NOT EXCEED CAPACITY

subject to WorkSupply {w in WORKER}:

sum {i in TASK} WorkTime[w,i]

+ sum {(i,j) in TRANSF} Route[w,i,j] * distance[i,j] <= capacity[w];

# FOR WORK, A WORK ASSIGNMENT DECISION HAS TO BE MADE

subject to Assignment {w in WORKER, i in TASK}:

WorkTime[w,i] <= Place[w,i]*8 ;
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# INTRAPERIOD SET-UP/TRAVELING CONSTRAINTS

# -------------------------------------------------------------------------------------

# 1) MOVEMENTS CAN ONLY TAKE PLACE IF ALLOCATION DECISION HAS BEEN MADE

# 2) A RESOURCE HAS TO BE ALLOCATED TO AT LEAST ONE TASK

subject to Work_For_Traveling {w in WORKER, f in TASK}:

Place[w,f]

- (sum{j in TASK: ord(j)<ord(f)} Route[w,j,f] + sum{j in TASK:

ord(j)>ord(f)}Route[w,f,j]

+ Beginning[w,f] + End[w,f])/2 = 0 ;

# IN AND OUT OF THE SYSTEM

# -------------------------------------------------------------------------------------

subject to Worker_Has_To_Come_From_Somewhere {w in WORKER} :

sum{f in TASK} Beginning[w,f] = 1 ;

subject to Worker_Has_To_Go_Somewhere {w in WORKER} :

sum{f in TASK} End[w,f] = 1 ;

# SUBTOUR CONSTRAINTS

# -------------------------------------------------------------------------------------
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Abstract

Porkka (2009) modeled a Time Capacitated Resource Allocation Problem with Split Tasks
(TCRAPST) and showed a theoretical 50% capacity time savings potential of allowing time
capacitated task splitting in a service resource allocation problem where both work and
traveling between tasks consume, and are measured as, capacity time. The TCRAPST allows
more than one resource working in each task when a Time Capacitated Resource Allocation
Problem (TCRAP) modeled in this essay requires one worker per task. Both MILP models
minimize the number of resources needed. In this essay, the TCRAPST is modeled and tested
for  capacity  time  savings  against  the  TCRAP.  Test  problem  sets  differ  from  each  other  by
average task lengths and average distances between tasks.

The TCRAP is a basic routing and allocation problem and similar models are likely to be
found  in  literature.  The  contribution  of  this  essay  lies  on  using  the  TCRAP  as  a  reference
model to the TCRAPST. The new test problems sets may also be useful in evaluating related
models emerging in the future.

Capacity time savings varied substantially between problem sets. Even 33% savings are
reported in the average number of workers needed when average task lengths were just above
half of the capacity of resources, task length variation was small and the distances relatively
short. Test results suggest that task splitting should be considered as an integral part in time
capacitated planning models.

Key Words: service resource allocation, set-up time, time capacitated planning, scheduling,
services, MILP
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1. Introduction
In many planning and scheduling situations time is an important constraint. Time can measure
the length of work in a task as well as the switching time between tasks. In production,
machines with fixed locations are the resources and tasks are allocated to them. In many
services, however, tasks have fixed locations and resources are allocated to tasks. For
example, in house cleaning, houses have a fixed location and cleaning people move from
house to house. The time of resources can be divided into three components that are working
time, moving time and slack. If the time needed for performing tasks and moving between
tasks is predictable, time capacitated routing and scheduling can be applied to minimize the
amount of resources needed.

In Porkka (2009) it was shown that the time capacitated splitting of tasks to be performed by
more than one resource can generate more efficient plans than when splits are not allowed. In
this essay 50 simulated problems are solved to study the effects of splits in real planning
situations. Problems are divided into 10 sets with task lengths and distances being generated
from different probability distributions. Each problem includes 12 tasks and the purpose of
the problem sets is to simulate a cluster of tasks.

Problems are first solved using the Time Capacitated Resource Allocation Problem with Split
Tasks (TCRAPST) model formulated in Porkka (2009) and then by the Time Capacitated
Resource Allocation Problem (TCRAP) that solves the same problems but without splits. The
TCRAP is a basic routing and allocation problem and similar models are likely to be found in
literature. For this essay, the TCRAP was modeled to be a reference model to the TCRAPST
when  testing  with  simulated  problems  the  savings  effects  of  time  capacitated  task  splitting.
The use of the TCRAP for that purpose is new because, according to author’s knowledge, the
TCRAPST was first modeled in Porkka (2009) and this essay is the first research where its
performance is compared with a reference model.

Most  test  problems  were  solved  to  optimality  by  the  TCRAP  but  with  the  TCRAPST  they
could be solved to optimality in some cases only. Near optimal solutions were seen sufficient
to demonstrate the savings generated by split tasks and to describe some interesting
characteristics of solutions.

In test problems, the resource capacity is set to be the same as the length of the planning
period which makes the analysis of solutions easier. In examples the length of a planning
period and the capacities of each resource are 8 hours which can be interpreted as the length
of a working day. An easy example for a reader to keep in mind is a set of cleaning tasks in
different locations and a set of workers that have to be allocated to do those tasks. The main
cost in test problems is the resource time which is different for each resource. In this way, the
utilization of least expensive resources gets maximized and the utilization of most expensive
resources gets minimized.

Chapter 2 gives a short literature research on Split Delivery Vehicle Routing Problem
(SDVRP). Chapter 3 restates the TCRAPST from Porkka (2009) and presents the TCRAP
formulation. In Chapter 4 gives an example of a time capacitated service allocation problem
with 25 tasks solved by the TCRAPST and the TCRAP. The typical features of solutions are
described and discussed. Chapter 5 describes the problem sets and test results. Chapter 6
concludes the essay.
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2. Literature Research
The  TCRAPST  is  closely  related  to  Vehicle  Routing  Problem  (VRP)  and,  especially,  to  its
variant Split Delivery Vehicle Routing Problem (SDVRP). The VRP concerns the distribution
of goods between depots and final users. Customers and typically one depot form a network
usually modeled as a graph which can be either directed or non-directed. Typically
transportation capacity or route length is limited leading to a situation when all customers can
not be served by one route and one vehicle only. Other constraints can include periods of the
day (time windows) during which customers have to be served, unloading or loading times,
vehicle type, different priorities, and penalties associated with partial or total lack of service
associated with customers. Routes can include deliveries, pick-ups or both. The objective is to
minimize transportation costs that consist of the number of vehicles needed and actual
traveling costs typically consisting of the total distance traveled. Toth and Vigo (2001) wrote
a comprehensive book on Vehicle Routing Problem models and algorithms to solve them.
A VRP problem allowing a client to be served using more than one vehicle is a SDVRP. The
SDVRP is a relaxation of the classical VRP, but it still remains NP-hard. The SDVRP is quite
similar  to  the  problem  of  allocation  of  moving  resources  to  services.  In  the  SDVRP  a
customer requiring products can be served by one or more vehicles whereas in service
resource allocation a task can be completed by one or more service resources. In both cases
routing and split decisions are required and the objective is to minimize resource costs.

The time spent at customer’s site, as products are picked up or delivered, could be considered
as a constraint on vehicle routing too. In that case, the delivery splits could be based on the
time that it takes to pick up and to unload products to and from a vehicle.
Sometimes both the delivery amount and service time may be constraints. For example,
pumping oil from or into big tankers can take a long time and may not always be completed in
one dock because the dock may need to be freed for another tanker loading or unloading
another type of oil. One tanker may be able to satisfy loading or unloading requirements only
partially before it has to leave. Loading and unloading of oil in tankers takes a long time and
sometimes time at a dock can become a constraint.
The splitting of deliveries is not exactly the same as the splitting of time capacitated tasks, but
they both have the same kind of savings potential. Therefore, understanding split deliveries in
vehicle routing creates intuition of using split tasks in time capacitated service resource
allocation. In vehicle routing, allowing split deliveries generates savings in both the total
distance traveled and in the number of vehicles to be used.

Dror and Trudeau (1987) introduced the concept of Split Delivery Routing. Dror and Trudeau
(1989) presented a Split Delivery Vehicle Routing Problem (SDVRP), developed a solution
scheme and demonstrated the potential for cost savings through split deliveries by using
generated problems. Archetti et al. (2008) and Porkka (2009) present comprehensive literature
reviews on Split Delivery Vehicle Routing Problem. According to Porkka, in SDVRP
literature the time capacitated modeling with explicit consideration on time capacitated task
splitting had not been studied in literature before.
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3. TCRAPST and TCRAP Model Formulations

3.1. TCRAPST Formulation
For reference and comparison, the formulation of the Time Capacitated Resource Allocation
Problem with Split Tasks (TCRAPST) from Porkka (2009) is restated below.
Notations

Sets
P = set of resources
I = ordered set of tasks

Parameters
Di, j = Dj, i = set-up time between tasks i and j, i I, j I
Ri = capacity required by task i, i I
Cp = capacity of resource p, p P
Kp = cost of using resource p, p P
M = big number

Binary variables
sp, i = 1, if resource p visits task i; 0 otherwise, p P, i I
dp, i ,  j = dp,  j , i = 1, if resource p moves between tasks i and j; 0 otherwise, p P, i I, j I
bp, i = 1, if resource p starts the period in task i; 0 otherwise, p P, i I
ep, i = 1, if resource p ends the period in task i; 0 otherwise, p P, i I

Continuous variables
wp, i = capacity time (or work) of resource p used in task i, p P, i I
hp = slack time of resource p, p P.

Objective function

, , , ,min
i j

p i j i j p p i p
p P i I j I p P i I

d D K w K (1)

The objective function attempts to minimize the number of active resources and the total set-
up time simultaneously. The most important objective is to minimize the number of active
resources. An active resource here refers to a resource that is used for work.
The TCRAPST allocates all resources to at least one task. However, an allocation to just one
task  does  not  require  either  traveling  or  work.  So,  a  resource  allocated  to  just  one  task  can
either be an active or a inactive resource.

When all resources are allocated, but all allocated resources do not necessarily either work or
travel,  the  cost  of  using  resources  for  work  (wp,iKp) or traveling with different Kp for each
resource minimizes the number of active resources needed to perform tasks. We can, for
example, use costs Kp+1 = 10Kp which  uses  the  cheapest  resources  first  and  forces  more
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expensive resources on paths with no traveling or allocated work. Simultaneously, the slack
of the most expensive activated resource is maximized.
The constraints of this model can be grouped into capacity constraints and set-up constraints.
Capacity constraints regulate the distribution of resource capacity time between work, set-ups
and slack. Set-up constraints define the possible routes that can exist for each resource
between tasks.
Capacity constraints

,p i i
p P

w R , i. (2)

, , , ,

i j

p i p p i j i j p
i I i I j I

w h d D C , p. (3)

, ,p i p iw s M , p and i. (4)

Constraint (2) requires that all work in tasks gets done. According to constraint (3) time spent
on work, set-ups, and slack has to equal the capacity of a resource. Because a resource has to
be physically available to do its task, in constraint (4) sp, i is 1 for each resource p working in a
task i during a period and 0 otherwise. This formulation allows a resource to be routed via one
task only and without any working on its path. Resources without any allocated work can be
considered as inactivated, and thus unneeded, resources.

Set-up constraints

, 1p i
i I

b , p. (5)

, 1p i
i I

e , p. (6)

, , , ,

, ,
, 0

2 2
i j j i

p i j p j i
j I j I

p i p i
p i

d d
b e

s , p and i. (7)

wp, i , hp  0 , p, and i,

bp, i , dp, i , j , ep, i , sp, i , p, i, and j.

Constraints (5) and (6) forces there to be one first and one last task for each resource p.
Constraint  (7)  lets  set-ups  or  movements  take  place  only  to  and  from  tasks i with working
assignment sp, i =  1.  Constraint  (7)  requires  at  least  one  assigned  task  for  each  resource.  To
find  a  realistic  solution  to  the  TCRAPST,  we  typically  have  to  generate  additional  subtour
constraints during the solution process. More detailed description of the TCRAPS can be
found in Porkka (2009).
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3.2. TCRAP Formulation
The  TCRAP  is  a  modification  of  the  TCRAPST.  The  TCRAP  requires  each  task  to  be
completed by one resource only. However, the formulation allows more than one resource to
be routed via tasks that do not require any work to do. This feature can be used to route
inactive resources. Inactive workers may exist because initially the actually number of needed
resources is not know. Therefore, to guarantee the feasibility of a problem it is wise to start
with  extra  capacity  and  let  the  model  determine  the  real  capacity  needed.  To  solve  the
TCRAP using this strategy, one needs a task with a zero requirement to allocate the
potentially inactive resources. As inactive resources are routed through that dummy task only,
they follow a one-task-path where their capacity is neither used for either traveling nor
working. As no one of the resources allocated to that dummy task is working, task splitting
does not need to be done within that task.

If the distance from to the dummy task ( I and R  = 0) to other tasks is long, only active
workers get allocated to real tasks as all inactive workers are routed via the dummy task only.
The dummy task without requirements can be generated simultaneously with the normal
tasks, i.e. i I => i  {I, } = I’.
The TCRAP formulation and differences with regard to the TCRAPST are stated below:

Objective function

, , , ,
' ' '

min
i j

p i j i j p p i i p
p P i I j I p P i I

d D K s R K (8)

Objective function (8) states that the whole cost of work in a task is charged to one resource.
It minimizes the same thing as the objective function (1) in the TCRAPST formulation.

Capacity constraints

, 1p i
p P

s , i (9)

, , , ,

i j

p i p p i j i j p
i I i I j I

w h d D C , p. (10)

, ,p i p i iw s R , p and i. (11)

Capacity constraint (9) states that all real tasks have to be visited. Constraint (10) is the same
as (3) in the TCRAPST. Constraint (11) requires all work in a task to be performed by one
resource. This constraint also allows many workers to be allocated to a dummy task. Set-up
and subtour constraints in the TCRAP are the same as in the TCRAPST.
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4. Example Problem Solved by the TCRAPST and the
TCRAP

In  the  TCRAPST  and  the  TCRAP  both  capacity  and  tasks  are  measured  as  time.  Resource
capacity is used for work, travelling or staying idle. A time capacitated resource can be a
person, an animal, a machine, a vehicle, a transportable stage for an activity etc. The key is
that time required by different tasks and the production rate of different resources can be
estimated. (Sometimes, when only presence is needed, as in many security services, we do not
even need the production rate. Then both requirements and the provided service is measured
as time, but presence time is constrained by time windows not included in the TCRAPST or
the TCRAP.) Resources are allocated to tasks and one resource may work in more than one
task. The TCRAP model requires each resource allocated to a task to complete that task. The
TCRAPST  model  allows  the  work  in  a  task  to  be  split  between  several  resources.  The
objective  in  the  TCRAPST  and  the  TCRAP  is  to  minimize  the  number  of  active  resources
needed. Simultaneously, the slacks of the last, and most expensive, active resources are
maximized.
The TCRAP and the TCRAPST could, for example, answer a question:

How to allocate 25 cleaning people within an 8 hour work shift to 25 tasks
with different durations so that the number of people actually needed is
minimized?
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Figure 1. Tasks scattered on a “map”
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Figure 1 illustrates the problem with the centers of circles corresponding to task locations, the
diameters of circles to task lengths, and euclidean distances between the centers of circles to
traveling times between tasks. Distances between the centers of circles correspond to the
distance hour scale of the axes. The diameters of circles do not directly relate to axes. A big
circle  is  a  long  task  and  a  small  circle  is  a  short  task.  Initially  25  workers  with  8  hours  of
capacity are made available. The TCRAPST and the TCRAP solutions give estimates for how
many workers are actually needed.

For  this  example,  the  lengths  of  tasks  are  randomly  generated  from  the  normal  distribution
N[1,8]. Horizontal and vertical coordinates are randomly generated from the normal
distribution N[0,5]. No minimum working time in tasks is set for split tasks. The simulated
task lengths and coordinates are listed in Table 1.

The cost of time spent on traveling was the same cost for each worker, but, for each worker,
the working time in tasks was given a different cost so that the working time of a worker, or
the time spend in tasks, increases as worker’s ordinal number increases, i.e. worker number
one is the cheapest to use and worker number 25 is the most expensive. As working time in
tasks varies, but the cost of traveling is the same for each worker, the solver tries to find
solutions where least expensive workers are used and the use of most expensive workers is
avoided.

Table 1. Task lengths and coordinates for the example problem

Task number 1 2 3 4 5 6 7 8 9 10 11 12 13
Horizontal 0.01 4.04 1.75 3.73 3.55 0.07 0.74 2.23 0.04 2.86 0.83 1.76 3.92
Vertical 2.82 2.93 4.48 0.87 2.57 0.46 0.83 0.60 1.89 3.01 3.32 0.29 4.01
Task length 2.35 4.36 6.76 7.01 3.13 3.55 7.92 1.03 4.72 5.25 4.16 5.25 4.64

Task number 14 15 16 17 18 19 20 21 22 23 24 25
Horizontal 1.51 4.78 0.71 4.31 4.22 3.06 1.49 1.88 0.28 1.38 3.46 2.42
Vertical 4.38 4.63 2.31 1.05 4.98 1.96 4.20 0.46 0.04 1.36 4.19 1.03
Task length 6.09 4.78 2.65 6.46 8.00 2.86 1.17 5.74 7.43 5.12 6.09 6.21

Distances (or set-up time) between tasks are calculated as a euclidean distance between task
coordinates. Based on task lengths and distances between tasks, each cleaning person can, on
average, be estimated to work in less than 2 tasks.

Figure 2 illustrates solutions to the example generated by the TCRAP and the TCRAPST. The
TCRAP requires that a task should be completed by one worker only. This leaves a
considerable  amount  of  slack  for  almost  all  workers.  The  TCRAPST  allows  tasks  to  be
shared. In the TCRAP solution workers move less between tasks than in the TCRAPST
solution. There are only 5 TCRAP movements as there are 17 movements in the TCRAPST
solution.

Due to problem complexity, these solutions are only indicative, not optimal. This can be also
seen  in  Table  2  where  working  time  of  workers  does  not  always  decrease  as  the  worker
number increases. In an optimal solution, the utilization of cheaper workers in tasks should be
higher than the utilization of more expensive workers. Still, even these non-optimal solutions
are useful because they illustrate the typical solution features of each of two models.
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TCRAP solution
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Figure 2. Solutions generated by the TCRAP and the TCRAPST

As the solutions in Table 2 indicate, fewer workers are needed if task splitting is allowed,
even, when more time is spent on traveling. In the TCRAP solution, 77% of active workers’
capacity is spent on working, 3% is spent on traveling and 20% is spent on doing nothing. In
the TCRAPST solution, 81% of used workers’ capacity is spent on working, 13% is spent on
traveling and 6% is spent on doing nothing. Workers that were not allocated either work or
traveling were not considered as active workers. Typically, the active worker with the highest
ordinal number is the most expensive one and has bigger slack than other active workers.
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TCRAPST solution

7

15

8
2

2
3

3

5

5

66

7

9

9

1010

11

11

12
12

14

14

15

16

16

17

17

17

18

18

18

19

19

1

4
13

-1

0

1

2

3

4

5

6

-1 0 1 2 3 4 5 6

Figure 3. Workers allocated to tasks in solutions generated by the TCRAP and the
TCRAPST

In  Figure  3,  only  the  locations  of  tasks  are  shown but  the  length  of  tasks  is  ignored.  In  the
TCRAPST solution, shared tasks are colored with black. The numbers indicate the ordinal
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number of workers working in each task. In the TCRAP solution, only 5 workers move
between  tasks  when  in  the  TCRAPST  solution  workers  change  place  17  times  during  their
work shift. The TCRAP solution in Table 3 requires 20 workers to complete 25 tasks when
the TCRAPST solution in Table 5 needs only 19 workers by sharing 10 tasks between more
than one worker. The TCRAPST solution in Table 3 shows very short working times
indicating the need for introducing minimum working time constraints in practical
applications.

Table 2. Working times, traveling times, utilization for tasks and slack

Worker

Working

time

Traveling

time

Working +

Traveling

Utilization

for tasks

Slack

1 8.00 8.00 100 %
2 7.92 7.92 99 % 1 %
3 7.43 7.43 93 % 7 %
4 7.26 0.45 7.71 91 % 4 %
5 7.01 7.01 88 % 12 %
6 6.77 0.70 7.47 85 % 7 %
7 6.76 6.76 85 % 16 %
8 6.81 1.07 7.88 85 % 2 %
9 6.46 6.46 81 % 19 %
10 6.21 6.21 78 % 22 %
11 6.09 6.09 76 % 24 %
12 5.99 1.05 7.04 75 % 12 %
13 5.90 1.56 7.46 74 % 7 %
14 5.25 5.25 66 % 34 %
15 5.25 5.25 66 % 34 %
16 5.12 5.12 64 % 36 %
17 4.72 4.72 59 % 41 %
18 4.64 4.64 58 % 42 %
19 4.78 4.78 60 % 40 %
20 4.36 4.36 55 % 46 %

Average capacity used in tasks 77 %
Average capacity spent on traveling 3 %
Average slack per worker 20 %

TCRAP solution

Worker

Working

time

Traveling

time

Working +

Traveling

Utilization

for tasks

Slack

1 8.00 8.00 100 %
2 6.94 1.06 8.00 87 %
3 7.45 0.55 8.00 93 %
4 7.92 7.92 99 % 1 %
5 6.93 1.07 8.00 87 %
6 6.82 1.18 8.00 85 %
7 7.41 0.59 8.00 93 %
8 7.43 7.43 93 % 7 %
9 6.67 1.33 8.00 83 %
10 7.13 0.87 8.00 89 %
11 7.20 0.80 8.00 90 %
12 6.87 1.05 7.92 86 % 1 %
13 6.34 6.34 79 % 21 %
14 6.78 1.22 8.00 85 %
15 6.60 1.40 8.00 83 %
16 5.90 1.56 7.46 74 % 7 %
17 4.46 2.87 7.33 56 % 8 %
18 3.60 2.87 6.47 45 % 19 %
19 2.28 1.72 4.00 28 % 50 %

Average capacity used in tasks 81 %
Average capacity spent on traveling 13 %
Average slack per worker 6 %

TCRAPST solution

Table 3. Tasks allocated per worker by the TCRAP

Worker 1 2 3 5 7
Task number 18 7 22 14 20 4 8 21 3
Working time per task 8,00 7,92 7,43 6,09 1,17 7,01 1,03 5,74 6,76
Total working time 8,00 7,92 7,43 7,01 6,76

Worker 9 10 11
Task number 11 16 17 25 24 5 19 1 6
Working time per task 4,16 2,65 6,46 6,21 6,09 3,13 2,86 2,35 3,55
Total working time 6,46 6,21 6,09

Worker 14 15 16 17 18 19 20
Task number 12 10 23 9 13 15 2
Working time per task 5,25 5,25 5,12 4,72 4,64 4,78 4,36
Total working time 5,25 5,25 5,12 4,72 4,64 4,78 4,36

7,26 6,77

6,81 5,99 5,90

8 1312

4 6
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Table 4. Tasks allocated per worker by the TCRAPST

Worker 1 4
Task number 18 21 25 12 21 7 5 10 23 25
Working time per task 8,00 3,54 3,40 5,25 2,20 7,92 1,68 5,25 4,01 2,81
Total working time 8,00 7,92

Worker 8
Task number 3 14 22 11 14 4 17 13 24
Working time per task 6,76 0,65 7,43 1,23 5,44 0,67 6,46 1,11 6,09
Total working time 7,43

Worker 13
Task number 9 16 4 13 15 2 19 1 6
Working time per task 4,72 2,15 6,34 3,53 3,25 4,36 2,24 2,35 3,55
Total working time 6,34

Worker
Task number 8 11 16 5 15 19 20 23
Working time per task 1,03 2,93 0,5 1,45 1,53 0,62 1,17 1,11
Total working time

17 18 19

12 14 15 16

6

7,20

6,94 7,45 6,93 6,82

11

6,67 7,13

7 9 10

2 3 5

2,284,46 3,6

6,87 6,78 6,60 5,90

7,41

Table 5. Workers allocated per task

TCRAPST solution
Task number 1 2 3 6 7 8
Worker 16 15 7 10 13 5 18 16 4 17
Working time per task 2.35 4.36 6.76 0.67 6.34 1.68 1.45 3.55 7.92 1.03
Total work in task 2.35 4.36 6.76 3.55 7.92 1.03

Task number 9 10 12
Worker 12 5 9 17 3 11 14 7 9
Working time per task 4.72 5.25 1.23 2.93 5.25 1.11 3.53 0.65 5.44
Total work in task 4.72 5.25 5.25

Task number 17 18 20
Worker 14 18 12 17 10 1 15 18 19
Working time per task 3.25 1.53 2.15 0.5 6.46 8.00 2.24 0.62 1.17
Total work in task 6.46 8.00 1.17

Task number 22 24
Worker 2 3 8 6 19 11 2 6
Working time per task 3.54 2.20 7.43 4.01 1.11 6.09 3.40 2.81
Total work in task 7.43 6.09

13

6.21

25

15

23

5.12

19

6.09

4.78 2.65 2.86

4.64

5.74

4.16

14

4 5

11

7.01 3.13

21

16

In  this  example,  the  TCRAPST  needed  one  worker  less  than  the  TCRAPS  making  a  5%
saving in work force. The test problems in the following chapters show that, depending on
task lengths and task distances, the savings from splitting tasks can be bigger or smaller than
5%.
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5. Testing the Savings Potential with Simulated Problems

5.1. Test Plan
To demonstrate the savings potential of task splitting, ten sets of test problems were generated
and solved by the TCRAP and the TCRAPST. The main purpose of tests was to compare the
number of resources needed in TCRAP and TCRAPST solutions. Other solution features,
such as (1) total work time + traveling, (2) last worker work + traveling, (3) last worker slack,
and (4) the number of splits were also compared. When analysing the test solutions words
resource and worker are used interchangeably with the same meaning.

I the test problems, the 8-hours planning period, 8 hours of capacity of each resource, the less
than 8 hours long tasks and the less than 1 hour distances between tasks simulate an 8-hour
working day. Locations of tasks mimic a city center or a suburb where the average minimum
distance from each task to the closest neighboring task takes about 0,2 – 1 hours to travel.
Task lengths and locations were generated from uniform distributions. One resource with 8
hours capacity was made available per each task.

Each problem consisted of 12 tasks only because bigger TCRAP problems could not be
solved to optimality with our multiprocessor desktop computer (4*Intel(R)Xeon(R)
CPU E5420@2.50GHZ and 2.49GHZ, 3.00 GB of RAM) and CPLEX 9.1. The branch-and-
bound  tree  (CPLEX  option treememlim) was  limited  to  500  MB  to  get  TCRAPST
solutions in reasonable solution time. Even though most of the TCRAPST solutions generated
in this way were not optimal, they still were able to demonstrate the substantial savings
potential of time capacitated task splitting.

5.2. Objective Function
Savings potential of the TCRAPST in comparison to the TCRAP was tested by using
objective functions (1) and (8). Three other objective function formulations were also
experimented with but objective functions (1) and (8) were more efficient in “pushing”
inactive resources out.

, , , , ,min
i j

p i j i j p i p p
p P i I j I p P i I

d D w s K (12)

, , , , , ,min
ii j

p i j i j p i p p p i p
p P i I j I p P i I p P i I

d D w s K Qb K  (13)

, , , ,min
i j

p i j i j p p i p
p P i I j I p P i I

d D K w K (14)

Objective  function  (12)  in  TCRAPST  reached  the  same  solutions  as  objective  function  (1),
but solution time was longer because this formulation required more subtour constraints than
objective function (1). The purpose of the negative allocation cost sp, Kp ( I and R  = 0) in
objective function (12) was to intensify the search for solutions where the most expensive
resources are not used for work.

Objective function (13) used the same negative allocation cost sp, Kp as objective function
(12) but also added a cost Qbp,iKp to all paths not starting at a non-requirement task  ( I
and R  = 0). (Q has to be less than M because otherwise all paths would start from .) This
formulation  was  also  aimed  to  intensify  the  search  for  solutions  where  the  most  expensive
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resources are not used for work. However, the approach did not work because it continued
creating new subtour constraints until all memory on the desktop computer was used.
An objective function where both traveling time and working time had cost was more
efficient in getting compressed solutions than objective function (14) where only working
time was charged. In addition to that, the latter objective function needed many more subtour
prevention constraints than the first one and the generation of those subtour prevention
constraints made the solution process much longer than with the first objective function.

We could also use an objective function that minimizes the number of resources needed
without any incremental costing of resources. After finding out the minimum number of
workers  we  could  then  fix  the  number  of  workers  to  that  minimum  and  then  apply  an
objective function that squeezes out the maximum slack from the last resource that is used.

The parametrization of objective function affects the efficiency of the solution process.
Because the goal was to minimize the number of resources, usage of incremental costing of
resources was found useful. By using incremental costs, sufficient amount of resources can be
made available to guarantee the feasibility of problems. The more difference there is between
the costs of different resources the more compressed are  the  solutions.  Table  6  shows three
different  resource  costing  schemes  and  Table  7  shows  three  examples  of  solutions  that  the
TCRAPST might generate. In Table 7, more compression thus means a solution with fewer
activated resources needed.

Table 6. Different resource costs

Table 7. Different levels of compression in solutions depend on resource costs

Resource
Resource cost

K n + 1  = 2K n

Resource cost
K n + 1  = 10K n

Resource cost
K n + 1  = 100K n

1 8.00 8.00 8.00
2 8.00 8.00 8.00
3 8.00 8.00 8.00
4 7.40 8.00 8.00
5 8.00 8.00 8.00
6 6.70 7.50 7.87
7 3.00 2,00
8 0.25

Working + Traveling Hours per Resource

Low Compression           High Compression

So,  why not  to  use  the  highest  resource  cost  differences?  The  reason  for  that  is  the  scaling
problems of CPLEX emerging from a very large variety of resource costs. As parameters have

Resource K n  + 1 = 2K n K n  + 1 = 10K n K n  + 1 = 100K n

1 1 1 1
2 2 10 100
3 4 100 10000. . . .. . . .. . . .
12 2048 1E+11 1E+22

Resource Cost
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very different dimensions, CPLEX has difficulties in finding feasible solutions and soon gets
completely stuck.
Resource cost scheme Kn + 1 = 10Kn was  used  in  test  problems.  The  scaling  for  CPLEX was
made easier by setting the first resource cost to 0.000001. In that way, we got for 12 resources
a cost scale that reached from 0.000001 to 100 000. Scheme Kn + 1 = 2Kn was rejected because
it produced too low compression. Scheme Kn + 1 = 100Kn, on the other hand, worked well with
some  problem  sets  but  jammed  the  solver  with  most  of  the  problem  sets.  Therefore  it  was
rejected, too.
As bp, i and ep, i do not incur costs, visiting a task in the TCRAPST model without working
does not cost anything. So, all workers visit at least one task, but only part of workers are
allocated to work.

In the TCRAP however, a worker allocated to a task has to do the whole task. Therefore, to
route workers not actually working, we need an additional dummy task ( I) with no
requirement. Visiting such a task does not cost anything. As we also set the distance between
the dummy task and other tasks very long, allocates the TCRAP all inactive workers to that
dummy task.
The same problems have to be stated slightly differently to the TCRAP and the TCRAPST.
As the generation of just 12 tasks was enough for the TCRAPST, 13 tasks were needed to the
TCRAP one of those tasks being a dummy task.

5.3. Subtour Constraints
With each problem, after running the solver for some time solutions were tested for subtours
and subtour constraints were added if needed. After adding subtour constraints, the solution
process of the now subtour constrained problem was started from the beginning. If new
subtours did not exist in a test, the solver was allowed to continue from the current solution.
The incremental addition of subtours was necessary because even with small problems the
initial creation of all possible subtour constraints would make problems too constrained for
the CPLEX.

5.4. Problem Sets
Table 8 lists the different problem settings used to demonstrate that savings from task splitting
highly depend on task lengths and the relationship between task lengths and distances. 5
problems were generated for each of the 10 test  series.  Then all  50 different problems were
solved by the TCRAP and the TCRAPST models. Finally, the solutions were compared to
better understand the different solutions generated by two different models.
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Table 8. Task lengths and locations

Test
series

number

Average
task

length

Variation
in task
length

Distances Task length

distribution

Horizontal
coordinate
distribution

Vertical
coordinate
distribution

1 Short Small Short U[0,5 , 1,5] U[0 , 1] U[0 , 1]
2 Short Small Long U[0,5 , 1,5] U[0 , 5] U[0 , 5]
3 1/2*day Big Short U[0,5 , 7,5] U[0 , 1] U[0 , 1]
4 1/2*day Big Long U[0,5 , 7,5] U[0 , 5] U[0 , 5]
5 Long Small Short U[6,5 , 7,5] U[0 , 1] U[0 , 1]
6 Long Small Long U[6,5 , 7,5] U[0 , 5] U[0 , 5]
7 >1/2*day Small Short U[4,0 , 5,0] U[0 , 1] U[0 , 1]
8 >1/2*day Small Long U[4,0 , 5,0] U[0 , 5] U[0 , 5]
9 <1/2*day Small Short U[3,0 , 4,0] U[0 , 1] U[0 , 1]
10 <1/2*day Small Long U[3,0 , 4,0] U[0 , 5] U[0 , 5]

5.5. Test Results
Table  9  presents  a  summary  of  test  problem  solutions.  Numerical  values  except  for  the
counting of optimal solutions are averages of 5 problems. As problems were solved, CPLEX
option treememlim was set to 1500 for the TCRAP and 500 for the TCRAPST. If CPLEX
option treememlim for the TCRAPST had been set higher, higher compression in
solutions could possibly have been achieved. On the other hand, the difference between
TCRAPST solutions with treememlim 100 and treememlim 500  was  so  small  that
substantial improvements in TCRAPST solutions with treememlim bigger than 500 are not
likely.

The column Objective Function in Table 9 presents objective function values but they are not
really relevant because resource costs were artificial and the big cost differences between
resources were only generated to manipulate the solver to find the minimum number of
workers needed.

The column Number Of Optimal Solutions in Table 9 indicates that it was very difficult to
find an optimal solution to the TCRAPST problems. However, for the TCRAP problems
optimal solutions were looked for to have a solid base for comparison. There was only one
TCRAP problem where CPLEX could only find an objective function value
0.000000005015576% from the optimum (Solution: 279 069.602428;
Optimum: 279 069.602414) the gap being so small that the problem can be considered as
solved in practice.
The column Number Of Workers in Table 9, Figure 4 and Figure 5 show the average number
of workers used by the two models. In 4 problem sets of 10, the TCRAP and the TCRAPST
used  an  equal  number  of  workers.  In  6  of  10  problem sets  the  TCRAPST was  able  to  find
solutions with fewer workers than the TCRAP.
The biggest difference in the number of activated resources needed can be seen in problem
sets 7 and 8 where the TCRAP allocates only one task per worker leaving much slack as the
TCRAPST through task splitting can leave most expensive resources unused.
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Figure 5. Average number of workers needed in test problems
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Table 9. Summary of test problem solutions
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In problem sets 3 and 4, savings in the number of activated resources occurred with a wide
variation of task lengths. In the TCRAP solutions, resources working in more than one task
typically had one longer and one shorter task. Still in many cases, workers in the TCRAP
solutions worked in only one task, when the TCRAPST was able to allocate workers for many
shared tasks.

The problem set 10 also shows savings in the number of activated resources, but the problem
set  9  does  not  even  though  their  tasks  lengths  are  generated  from  the  same  distribution.  In
problem set 10 tasks and distances are too long for the TCRAP assign two tasks on a worker
and only one 3 – 4 hours task per activated worker leaves much slack. The TCRAPS, on the
other hand, routes workers through several split tasks bringing substantial savings in the
number of activated resources needed. Figure 6 shows two examples of TCRAP solutions for
problem set 10 and Figure 7 shows two TCRAPST solutions for the same problems. In
problem set 10, traveling distances are to long for the TCRAP to assign more than one worker
per task.
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Figure 6. Two examples of the TCRAP solutions from the problem set 10

By splitting tasks between more workers, the TCRAPST can create savings in the number of
active workers needed. In the two examples of TCRAPST solutions to problem set 10 in
Figure 7 , all workers are assigned to work in more than one task.
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Figure 7. Two examples of the TCRAPST solutions from the problem set 10

In  problem  set  9,  tasks  are  just  below  half  of  the  capacity  and  distances  between  tasks  are
short. This allows the TCRAP to allocate practically all workers to work in two tasks because
traveling between tasks does not consume much capacity. With short distances and task
length distribution U[3.0, 4.0], working in two tasks leaves enough capacity for traveling
between two tasks. On the other hand, there is not much savings potential in using split tasks
because, on average, only a little proportion of the capacity of activated workers is left idle
after they have worked in two tasks. As a result, with only 12 tasks, problem set 9 exhibited
no split task generated saving in the number of activated resources. When distances become
longer, as in problem set 10, one worker that could complete two tasks in TCRAP solution
does not have enough total capacity for the traveling between those two tasks.
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Figure 8. Two examples of the TCRAP solutions from the problem set 9

Figure 8 illustrates two TCRAP solutions in the problem set 9. Six path lines indicate, that in
these cases all resources move once and only six resources are needed. Figure 6 and Figure 8
highligth the effect of increased average distance between tasks when task splitting is not
allowed. In problem set 9 in Figure 8, task lengths are the same as in problem set 10 but the
distance between tasks is five times longer in problem set 10 than in problem set 9.
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Figure 9. Savings in the average number of workers when the TCRAPST is used
instead of the TCRAP

In interpreting the test problem solutions, the assumption is that every activated worker has to
be paid for paid for an 8-hour workday. According to Figure 9, task splitting based capacity
time savings of up to 50% are not reached in test problems, but the 33% savings in the
number of activated workers in problem set 7 are still significant.

Figure 10 draws the average slack hours in problem sets. In this calculation, all idle time left
from activated workers is considered as slack. For example, if 10 workers of 12 are activated,
slack = 10 * 8 – (work + traveling). TCRAP solutions in problem sets 7 and 8 indicate a high
number of slack hours because working days are 8 hours and all 12 workers are assigned to
only one 4–5 hours long task per 8 hour day. So, every worker is left with 3–4 hours of slack.
TCRAP solutions in the problem set 10 inlcude a lot of slack because the long distances
between tasks make it difficult to allocate two 3–4 hour long tasks to every active worker.
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Figure 10. Average slack hours in test problems

As we compare Figure 5 and Figure 10, we can see that the biggest savings from splits
correlate with the biggest TCRAP solution slacks. Figure 11 compares the number of slack
hours as percentages. Using the TCRAPST seems to be efficient in removing slack in
problem sets 3, 4, 5, 7, 8, and 10 where savings in slack hours is about 50%–80%. As we
consider savings in slack hours, however, we should remember that the bigger absolute
savings in slack hours also generate bigger monetary savings. Percentage savings in two
problem sets can be the same but there can be a big difference in absolute savings. That
becomes evident when we compare problem sets 5 and 6 with problem sets 7 and 8 in Figure
10 and Figure 11.

Figure 11. Savings in slack hours when the TCRAPST is used instead of the TCRAP
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Figure 12. Average number of the TCRAPST splits in test problems

Figure 12 highlights the number of splits in the problems sets indicating that the number of
splits does not always have clear correlation with the savings. For example, problem set 5
having only minor savings in the number of activated workers had the highest number of
splits.  Table  10  the  number  of  workers  in  all  60  tasks  of  each  problem  set.  The  maximum
number of workers per task in test problem solutions was 3, but in 4 sets of all 10 sets task
splits were between two workers only. Problem sets with short distances between tasks seem
to have more splits than problem sets with long distances between tasks. These observations
may be of interest when developing heuristic solution methods for the TCRAPST in future.

Table 10. Number of workers in 60 tasks in each of the 10 problem sets

Number of Dist. Dist.
Workers U[0, 1] U[0, 5]
per Task Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 sets sets

1 57 59 35 37 21 38 31 35 36 47 180 216
2 2 1 22 22 31 18 25 25 24 13 104 79
3 1 0 3 1 8 4 4 0 0 0 16 5

1 95 % 98 % 58 % 62 % 35 % 63 % 52 % 58 % 60 % 78 % 60 % 72 %
2 3 % 2 % 37 % 37 % 52 % 30 % 42 % 42 % 40 % 22 % 35 % 26 %
3 2 % 0 % 5 % 2 % 13 % 7 % 7 % 0 % 0 % 0 % 5 % 2 %

Total

Frequency

5.6. Notions on Test Results
Two interesting solution features deserve more attention: First, the compression of solutions
seems sometimes surprisingly weak. Second, CPLEX sometimes determines a solution as
optimal even when it is not.
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Weak Compression
Solutions tend to become more compresses with more solving time. Table 11 shows two
TCRAPST solutions and one optimal TCRAP solution for the same problem in the problem
set 9. To get the less compressed TCRAPST solution, a CPLEX option treememlim = 100
MB was used. For the other TCRAPST solution, treememlim = 500 MB was used. With a
bigger treememlim value CPLEX searches through more solutions than with a smaller
value. In both cases, the objective function value in the TCRAPST solution was lower than in
the TCRAP solution. However, the less compressed TCRAPST solution uses one more
resource than the TCRAP.

Running CPLEX with the option treememlim = 500 MB takes hours. A more practical
approach may be to use the TCRAPST with a smaller treememlim value to get a pretty
good solution and then do some manual adjustments if needed. For example, with the problem
in Table 11 the small 0.07 hours of work of resource 7 can possibly be passed to resources
1,2,3 or 4 as overtime work.
Should we then add a fixed cost of activating an additional worker to improve the TCRAPST
solution compression? In the test problems, different and variable working time based costs
for different workers were used and there was no step-wise jump in objective function value
when an additional worker was activated. Therefore, for example, adding 0.07 hours of work
to be performed by the worker number 7 in Table 11 can be justified by savings in traveling
costs by one of the other activated workers. Interestingly, some experiments with fixed costs
included less compressed solutions than the current modeling approach without fixed costs.
Other experiment with fixed costs constrained the solutions space too much by requiring so
many subtour constraints that CPLEX finally failed in finding new feasible initial solutions
after adding those constraints.
In split task modeling it is difficult to find a reasonable way to include fixed worker costs into
the model. Instead of using fixed costs to avoid very short working days, we can add a
constraint  that  sets a minimum duration of work for each worker in each task.  That kind of
minimum  work  time  constraint  requires  an  introduction  of  a  dummy  task  with  zero
requirements into the TCRAPST problem formulation. Non-activated workers are then routed
through the dummy task without minimum working time constraint.

Table 11. TCRAPST and TCRAP solutions with different branch-and-bound tree sizes

Resource TCRAP
b&b tree

100
b&b tree

500 Optimal
1 8.00 8.00 8.00
2 8.00 8.00 7.98
3 8.00 8.00 7.77
4 8.00 8.00 7.55
5 7.77 8.00 7.05
6 4.80 5.31 6.61
7 0.07

TCRAPST

Working + Traveling Hours per
Resource
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Wrong Optimality
When resources are equal except for their cost, the cheaper resources should do more work
than more expensive resources. If a resource with a smaller cost has smaller capacity
utilization than a worker with a higher cost, we can easily improve the solution, even
manually, by exchanging the working paths between resources with equal capacity.

In Table 12 there is one non-optimal TCRAPST solution and one TCRAP solution reported as
optimal by CPLEX. Still, we can immediately see that they can not be optimal because more
expensive resources are allocated more work than less expensive resources. Both solutions in
Table 12 can be improved by manually exchanging the working paths of different resources
so that cheaper resources always have higher utilization than more expensive resources.
The main reason for strange solution in TCRAPST is that the problem is not solved to
optimality. The wrong utilizations of resources 1, 2 and 3 in TCRAP solution probably
happens because CPLEX accepts a slight difference between the absolute optimum and a near
optimum solution. If  the near optimum solution is within that tolerance,  it  is  accepted as an
optimal solution by CPLEX. With the test problems, the smallest CPLEX 9.1 tolerance 1.0-e9
was applied. As in test problems an hour of worker 12 costs 100 000 and an hour of worker 1
costs 0.000001, the total effect of the “wrong” work loads of workers 1, 2, and 3 in TCRAP
solution in Table 12 has practically no effect on the objective function value.

Table 12. Typical error in a solution: more expensive resources are allocated more
work than less expensive resources.

Resource TCRAPST TCRAP
1 8.00 4.83
2 8.00 4.85
3 8.00 4.86
4 7.94 4.83
5 8.00 4.72
6 7.93 4.69
7 8.00 4.66
8 7.86 4.53
9 2.39 4.49

10 4.43
11 4.30
12 4.28

Working + Traveling
Hours per Resource

6. Conclusions
Two  models,  the  TCRAPST  and  the  TCRAP,  were  used  to  solve  10  sets  of  problems  that
simulate a service environment where task requirements are measured as capacity time
needed to perform a task. Each resource had the same amount of capacity that was measured
as  time.  Capacity  is  used  to  perform  tasks,  to  move  between  tasks  and  to  stay  idle.  The
number of resources needed to perform tasks was minimized by simultaneously maximizing
the utilization of least expensive resources and minimizing the utilization of most expensive
resources. The TCRAPST and the TCRAP were used to generate plans that route and allocate
resources for each task. When the TCRAP required each task to be completed by one
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resource,  the  TCRAPST  allowed  more  resources  to  work  on  the  same  task  by  splitting  the
work loads between resources.
The  study  showed  that  the  TCRAPST  can  generate  more  efficient  plans  than  the  TCRAP.
Most savings appear when the average length of tasks is just over half of resource capacity
and the average distance between tasks is short. In such conditions, the TCRAP can allocate
only one resource per task and almost half of the capacity of that resource stays unused. The
TCRAPST, on the other hand, can generate solutions where most resources are either fully
used or completely idle.
Tests with synthetic problems showed the difficulty of finding optimal solutions to realistic
sized problems. As further research, more efficient solution methods should be developed and
realistic applications should be found.
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APPENDIX: The TCRAP as an AMPL Model
# SETS AND PARAMETERS

# ------------------------------------------------------------------------------------

set TASK ordered; # ordered set of tasks

set WORKER  ; # set of resources

set TRANSF = {i in TASK, j in TASK: ord(i) < ord(j)}; # allowed transfers between

# customer facilities

param capacity {WORKER} = 8; # capacity of resource (here 8 assumed)

param distance {TASK, TASK} >= 0; # set-up time between tasks

param requirement {TASK}; # capacity required by task

param workercost {WORKER}; # cost of using resource

# VARIABLES

# ------------------------------------------------------------------------------------

var Place {WORKER, TASK} binary; # 1, if resource visits task; 0 otherwise

var Route {WORKER, TRANSF} binary; # 1, if resource moves between two tasks; 1

otherwise

var Beginning {WORKER, TASK} binary; # determines the first task of a resource

var End {WORKER, TASK} binary; # determines the last task of a worker

var WorkTime {WORKER, TASK}; # capacity time of resource used in task

# OBJECTIVE FUNCTION

# ------------------------------------------------------------------------------------

minimize Worker_Time_Needed:

sum{w in WORKER}(

sum{(i,j) in TRANSF}Route[w,i,j]*distance[i,j]

+ sum{f in TASK}Place[w,f]*requirement[f])*workercost[w];

# CAPACITY CONSTRAINTS

# -------------------------------------------------------------------------------------

# ALL WORK HAS TO BE DONE

subject to WorkDemand {i in TASK: i<>"DRAIN"}:

sum {w in WORKER} Place[w,i] = 1;

# WORK, TRAVELING AND SLACK CAN NOT EXCEED CAPACITY

subject to WorkSupply {w in WORKER}:

sum {i in TASK} WorkTime[w,i]

+ sum {(i,j) in TRANSF} Route[w,i,j] * distance[i,j] <= capacity[w];

# FOR WORK, A WORK ASSIGNMENT DECISION HAS TO BE MADE

subject to Worker_Time {w in WORKER, i in TASK} :

WorkTime[w,i] = Place[w,i]*requirement[i] ;
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# INTRAPERIOD SET-UP/TRAVELING CONSTRAINTS

# -------------------------------------------------------------------------------------

# 1) MOVEMENTS CAN ONLY TAKE PLACE IF ALLOCATION DECISION HAS BEEN MADE

# 2) A RESOURCE HAS TO BE ALLOCATED TO AT LEAST ONE TASK

subject to Work_For_Traveling {w in WORKER, f in TASK}:

Place[w,f]

- (sum{j in TASK: ord(j)<ord(f)} Route[w,j,f] + sum{j in TASK:

ord(j)>ord(f)}Route[w,f,j]

+ Beginning[w,f] + End[w,f])/2 = 0 ;

# IN AND OUT OF THE SYSTEM

# -------------------------------------------------------------------------------------

subject to Worker_Has_To_Come_From_Somewhere {w in WORKER} :

sum{f in TASK} Beginning[w,f] = 1 ;

subject to Worker_Has_To_Go_Somewhere {w in WORKER} :

sum{f in TASK} End[w,f] = 1 ;

# SUBTOUR CONSTRAINTS

# -------------------------------------------------------------------------------------
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