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Abstract
Since mid 1980s, influence diagrams have been used widely in decision analysis.
Traditionally, influence diagrams have a predetermined structure and the no-forgetting
property, which means that earlier decisions can be recalled when making later
decisions. The main focus in the literature on influence diagrams has been on
determining the optimal decision strategy for an influence diagram with a given
structure. However, the information structure of an influence diagram, i.e. what
information should be acquired to support decisions, has attracted far less attention.

In this thesis, we examine what information should be available to the decision
maker. We present optimization models for the information structure and the decision
strategy of an influence diagram. The first optimization model enforces constraints
on path probabilities, the second on local decisions and the third is based on the
formulation of an extended state space. All models are tested with a variety of
modified oil wildcatter problems and N-M-monitoring problem. The constraints on
local decisions are clearly the fastest with all problem sizes. The constraints on path
probabilities and the constraints on extended state space are also applicable to similar
problems but they are clearly slower than the constraints on local decisions. The
approaches worked for relatively large instances but the limitations of the methods
become apparent when the size of a problem is grown.
Keywords influence diagrams, information structure, optimization models, desicion

analysis
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Tiivistelmä
Vaikutuskaavioita on jo 80-luvulta asti laajasti käytetty päätösanalyysissä. Ne tar-
joavat hyvän työkalun monivaiheisten epävarmuuksia sisältävien päätösongelmien
jäsentämiseen ja ratkaisemiseen. Aiemmassa tutkimuksessa on erityisesti tarkas-
teltu päätösstrategian optimointia. Tässä diplomityössä keskitytään sen sijaan vai-
kutuskaavion informaatiorakenteen optimointiin. Pyrkimyksenä on optimaalisen
päätösstrategian lisäksi optimoida tieto, jota tarjotaan päätöksen tueksi.

Vaikutuskaavion informaatiorakenteen optimointiin esitetään tässä työssä kol-
me optimointimallia. Yksi optimointimalleista asettaa rajoituksia polkutodennäköi-
syyksille päätöksen tueksi valitun tiedon mukaan. Toinen optimointimalli asettaa
rajoituksia paikallisille päätöksille valitun tiedon mukaan. Kolmas optimointimalli
hyödyntää laajennettua tilajoukkoa solmuille, jotka eivät välttämättä ole käytössä
päätöksiä tehdessä.

Kaikkia malleja on testattu erinäisillä esimerkkiongelmilla. Malleilla ratkaistiin
perinteinen öljynetsintäongelma useilla raporttivaihtoehdoilla, sekä niin kutsuttu N-
M-monitorointiongelma. Testeissä havaittiin yhden mallin toimivan muita paremmin.
Rajoitukset paikallisille päätöksille ratkaisivat lähes kaikki ongelmat nopeiten. Ra-
joitukset polkutodennäköisyyksille ja rajoitukset laajennetulle tilajoukolle toimivat
vaihtelevasti. Kaikkia malleja pystyttiin soveltamaan useita päätöksiä ja raportteja
sisältäviä ongelmiin.
Avainsanat Vaikutuskaavio, informaatiorakenne, optimointimallit, päätösanalyysi
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1 Introduction

Influence diagrams were developed in mid 70s as a tool to visually present a decision
problem [1; 2]. Since then, influence diagrams have been used widely in decision
analysis [3]. Their combination of visual interpretability and sound mathematical
theory makes them useful for presenting decision problems for non-mathematically
oriented decision makers as well as for modellers and mathematicians as vehicle
for capturing the key aspects of the problem. Many real life problems have been
modelled with the help of influence diagrams from environmental management [4] to
fighter pilot’s maneuvering decisions [5]

Influence diagrams represent problems with a known structure. An important
assumption has been the no-forgetting assumption of influence diagrams, which states
that at the time of a decision, a decision maker remembers the earlier decisions as
well as the information on which the decisions were based. This assumption does
not hold in limited memory influence diagrams, shorthanded as LIMIDs [6]. Still,
an important assumption with LIMIDs is that it is known what information can be
utilized when making decisions. This makes it difficult to model situations where the
availability of information depends on uncertain events or earlier decisions. These
types of endogenous and exogenous uncertainties have not attracted much research.

The goal of this thesis is to build and analyse optimization models for the
information structure of an influence diagram. The question that our optimization
models addresses is what information should the decision maker have at various
decisions to achieve maximum expected utility.

The change to the structure of the decision problem that we consider is the
addition of edges to decision nodes. These edges represent the information structure
of a decision problem. The addition of an edge to a decision node indicates that more
information is available to the decision maker. In real-life it may not be known what
information will be available when making a decision. The availability of information
to support a certain decision can thus be viewed as a decision in its own right with
related costs. In this situation, it is of interest to determine the optimal information
such that the expected utility can be maximized. For example, a decision maker
that is responsible of building a bridge can order tests that indicate if the bridge sits
on solid ground or if reinforcements are needed to stabilize the bridge or not. If the
decision maker has to make a decision to reinforce the ground, he can either order
the test and base the decision on the result of the test; or he can avert the costs
of the test and reinforce the ground anyway. Thus the information on which the
decision maker bases the decision is conditional on the decision to run the test.
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The availability of information to support a decision may also depend on random
events. Consider for example the nuclear plant safety system where different sensors
indicate the need for certain safety measures [7]. Safety measures may have to be
taken instantly when sensors go off for various purposes. The information that is
available to the decision maker to do a given action is given by a single sensor.
However, it may be the case that some actions contain overlapping fixes. If multiple
sensors go off in a short period of time, the decision maker may know what actions
have been already been taken and if some expensive actions can be consequently
averted. Thus the set of available information on which the decision maker bases the
decisions can differ in various situations. This thesis concentrates on the deterministic
modification of the information sets of decision nodes.

This thesis is constructed as follows: Chapter 2 discusses the necessary preliminary
information, Chapter 3 presents and analyses three different methods for solving the
optimal information structure, Chapter 4 presents some computational experiments
for the analysed methods, Chapter 5 discusses potential applications and extensions
for the developed frameworks and Chapter 6 concludes.
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2 Background

2.1 Influence diagrams

An influence diagram is an acyclic graph G = (N, A) containing nodes and directed
edges [1]. A node represents an event that takes place in the decision problem. For
example in the bridge example that was alluded to in the introduction, the report
indicating if the ground is solid or not can be represented by a node. Nodes are
divided into chance nodes C, decision nodes D and utility nodes V . Each node
i ∈ N = C ∪ D ∪ V in the diagram has a finite collection of possible states Si,
with the realized state being denoted as si. For example the possible states of the
mentioned report could be Si = {solid, not solid}, with the realized state being the
result of the report. Only one state from the set of possible states can be the realized
state. States can also be represented by numbers, such that Si = {1, ..., n}, where n

denotes the number of possible states. Chance nodes represent nodes such that the
node c ∈ C corresponds to a random variable Xc. Decision nodes d ∈ D represent
nodes in which a decision maker selects an alternative, which is one of states of
the node. Value nodes represent the consequences of the decision problem and are
typically evaluated with a utility function.

The nodes are connected via directed edges. The edges represent different
relationships depending on the type of the node that sits at the end of the edge. For
chance nodes, the edges represent conditional probability distribution. For decision
nodes, the edges represent the information which is available for the decision maker
when selecting the state from the given alternatives. For value nodes the edges
represent arguments to the utility function. The set of nodes from which there is an
edge to node j ∈ D ∪ C is called the information set of j (Denoted as I(j)) [8]. An
information state sI(j) is then the collection of states of all nodes in the information
set. Thus, the conditional probability distribution at a chance node c is given by
P(Xc = sc|SI(c) = sI(c)). At decision nodes j ∈ D the decision maker must select a
decision alternative based on sI(j).

An influence diagram represents a decision problem in which a decision maker
selects a decision alternative at each decision node based on the information state
of the node. These decisions affect the probability distributions of chance nodes
and the overall value of the system. A local decision strategy Zj : SI(j) ↦→ Sj is
a function from the information state to the domain of the possible states of the
decision variable. A binary function Zj : SI(j) ↦→ Sj ⇔ z(sj|sI(j)) ↦→ {0, 1} can also
be used when using linear inequalities to find the optimal decision strategy [8]. The
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local decision strategy is injective, since there must be a decision alternative for
each possible combination of states sI(j) ∈ SI(j). A global decision strategy Z is a
collection of local decision strategies for all decision nodes.

As an illustrative example, the influence diagram of the classic oil wildcatter
problem is given in Figure 1. The diagram is a simplification of the classic problem
where an oil wildcatter must decide wether to drill oil from a potential drilling site.
[9] In the influence diagram decision nodes are presented as rectangles, chance nodes
are presented as circles and value nodes are presented as diamonds. The edges are
shown as arrows pointing from a node to another in the influence diagram. Thus, in
Figure 1, the information set of the chance node Test result is {Test, Amount of oil},
which means that the probability distribution of the test result is conditional to the
realization of Amount of oil (i.e. the state of the well) and the decision to run the test.
Similarly, the information set of the node Drill is the node Test result. This means
that the decision maker knows the realization of the node Test result, when making
the drilling decision. The information state of the node profit is {Drill, Amount of
oil}, which means that the utility of the decision problem depends on the drilling
decision and on the amount of oil in the drilling site. The node Test result has states
ST est result = {Na, No, Y es} and the node Drill has states SDrill = {No, Y es}. An
example local decision strategy for the drilling decision is given in Table 1. We select
a decision alternative sDrill = Y es if the state in node Test result is Na or Y es and
we select a decision alternative sDrill = No if the state Test result is No.

Table 1: A local decision strategy ZDrill

sT est result sDrill

Na Y es

Y es Y es

No No

In Decision Programming [8], a path is a sequence of states s = (s1, s2, ..sn) of
both decision and chance nodes. Path probabilities π(s) depend on the decision
strategy so that

π(s) := P(s|Z) =
∏︂
j∈C

P(Xj = sj|XI(j) = sI(j))
∏︂
i∈D

z(si|sI(i)). (1)

The upper bound for the probability of path s is given by the probability of the
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Figure 1: Influence diagram of the oil wildcatter decision problem

chance nodes along the path s, i.e.,

p(s) :=
∏︂
j∈C

P(Xj = sj|XI(j) = sI(j)) (2)

The lower bound of a path is zero, which is obtained if the path is incompatible with
the decision strategy, i.e. a path contains a decision alternative that would not be
selected with the decision strategy, or the probability of a random event stated in
the path is zero.

The expected utility of the decision consequences can be expressed with the path
probabilities given a decision strategy Z

EU(Z) =
∑︂
s∈S

π(s)U(s), (3)

where U(s) denotes the utility of the consequences for the path s.
In many influence diagrams, no-forgetting is typically assumed. This means

that earlier decisions are known when making later decisions. However, there are
situations where this assumption does not hold and thus a concept of limited memory
influence diagram has been introduced [10]. LIMID is a formulation of an influence
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diagram where the no-forgetting assumption does not hold. An example of this type
of situation is a system where multiple decision makers are responsible of decisions.

2.2 Optimal decision strategy

An optimal decision strategy is a decision alternative for each decision node such
that the expected utility of decision consequences is maximized.

Definition 2.1. Optimal decision strategy Z∗ is such that EU(Z∗) ≥ EU(Z), for
all feasible strategies Z [11]

The optimal decision strategy is a decision alternative sj for all j ∈ D and for
all information sets of the decision nodes, which maximizes the expected utility of
decision consequences.

There are many ways to find the optimal decision strategy when the no-forgetting
and acyclicity requirements are fulfilled. For example, one can evaluate an influence
diagram by performing a series of node removals by removing barren nodes, replacing
chance nodes by a conditional expectation and replacing decision nodes by maximizing
the utility function. These actions may require arc reversals but in the end there is
only the utility node, which contains the optimal decision strategy [12; 13]. Another
well-known method is to transform the influence diagram to a decision tree and
to solve the optimum with dynamic programming. This gives the possibility to
introduce multiple value nodes to the influence diagram by combining them to a
so-called super value node [14]. Influence diagrams can also be solved with techniques
of Bayesian nets with the help of a framing function [15] and with multistage Monte
Carlo methods [16], among others. A good overview of different solving methods is
collected by Shachter and Bhattacharjya in [17].

LIMIDs are more challengeing for finding a global optimal decision strategy. It
has been shown to be NP-hard to find the optimal decision strategy [18; 19]. However,
there are viable methods for this as well. There are many good methods for finding
the optimal decision strategy in decision problems which can be solved by applying a
series of local utility maximizations. Lauritzen and Nilsson present the single policy
updating algorithm, which is an iterative local utility maximization algorithm. With
this algorithm, the influence diagram is first transformed to a junction tree and
then the local policies are updated iteratively with a message passing algorithm.[6].
Parmentier et. al. use a mixed-integer-linear-programming (MILP) approach in a
variant of a strong junction tree for the expected utility maximization [20]. Mauá
and Cozman develop approximation algorithms with the help of k-neighbour search
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[21]. Yuan et. al. apply a branch-and-bound search algorithm [22]. However, these
approaches do not work for problems with global constraints, for example budget
constraints that make some local decision strategies incompatible with some local
decision strategies at other decision nodes are difficult to account for with only local
computations.

These kind of problems can be solved to optimality with a Decision Programming
framework consisting of a set of equality and inequality constraints [8].

max
z∈Z

∑︂
s∈S

π(s)U(s) (4)

s.t.
∑︂

si∈Si

z(si|sI(i)) = 1, ∀i ∈ D, ∀sI(i) ∈ SI(i) (5)

0 ≤ π(s) ≤ p(s), ∀s ∈ S (6)

π(s) ≤ z(si|sI(i)), ∀s ∈ S, ∀i ∈ D (7)

z(si|sI(i)) ∈ {0, 1}, ∀i ∈ D, ∀s ∈ S, ∀sI(i) ∈ SI(i) (8)

2.3 Information structure

The information structure of an influence diagram G = (N, A) is the set of edges
A that connect the nodes. In this thesis we ask the question what is the optimal
structure of an influence diagram, i.e., what information the decision maker should
obtain to support decisions when the availability and accuracy of this information
may be associated with costs or other decisions. Thus, the information set I(j) of a
decision node j ∈ D is consequently also subject to the decision makers discretion
subject to some constraints and impacts on the objective function. The edges
connect nodes in the way that was presented in section 2.1. The changes that can be
considered to the information structure are additions of edges and removals of edges.
The addition of an edge (depending on the type of relationship that it describes)
either expands the information set of a decision maker or affects the probability
distribution of a random event. The removal of an edge has the reverse effect.

In this thesis, we only consider the addition of edges to decision nodes to establish
a clear focus. The removal of edges is analogous and could be applicable with a
similar approach. The revised information structure must be acyclic, meaning that
arbitrary edges between two nodes of an influence diagram cannot be added. In
this thesis the acyclicity requirement is accounted for by predetermining the set of
available edges in a way that any combination from the set can be added to the
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information structure without creating a cycle into the influence diagram. It is also
possible to consider information links between all nodes in the influence diagram
but then the acyclicity requirement must be accounted for in a different way. One
example could be to first filter out information structures which introduce a cycle to
the graph. There are well established methods for detecting cycles within a directed
graph. [23; 24; 25]

Previously, research on information structures has concentrated on the type
2 endogenous uncertainties, which corresponds problems where the information
structure is affected by decisions [26]. Jonsbråten et al. study the so-called decision
dependent uncertainties in a stochastic programming framework [27]. Xhang et
al. present a robust optimization method that can deal with type 2 endogenous
uncertainties and use it to solve a plant redesign problem [28]. Herrala et al. present
an extension for the Decision Programming framework that is general enough to
deal with endogenous uncertainties of types 1 and 2 [29], where type 1 endogenous
uncertainties refer to uncertainties in decision dependent probabilities [26]. A good
literature review of the endogenous uncertainties is presented in [30].

We present a complementary solution approach to Herrala et al. [29]. Their
solution is to introduce decision nodes Di,j that correspond decisions to add edges
between nodes i ∈ C ∪ D. and j ∈ D. Thus, you can calculate an optimal decision
strategy where you optimize the edges and the decisions. However, introducing
new decision nodes increases the number of paths significantly. In this thesis, we
present optimization formulations that do not add any decision nodes to the influence
diagram. As Salo et al. note, the solution time grows exponentially when growing
the number of paths [8]. Thus it is meaningful to come up with a solution that
does not increase the number of paths. Our optimization models add constraints to
situations where unavailable information is used, instead of introducing new nodes
to the influence diagram and consequently increasing the number of paths.

Another solution method is to augment the states in the nodes in the information
set I(j). For example, in the oil wildcatter problem the realization of the test result
can be set to Na (not known), when the decision maker decides not to run the
test. The augmentation increases the number of possible paths, thus requiring more
computations. However, if the number of added constraints stays quite low, the
augmentation of states is also an option worth considering. The problem in the oil
wildcatter problem is that the possible states of node Test result are augmented and
a decision node is introduced for the test result. Ideally, we would either augment
the states in node Test result or add a decision wether to run a test or not.
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Figure 2: Influence diagram of the oil wildcatter problem with a conditional edge

In this thesis, we examine conditional edges that are represented by dashed edges
in the influence diagram. Conditional edge describes a decision to include a node
to the information set of a decision node j ∈ D. Thus, the oil wildcatter problem
introduced above is reduced to three nodes plus the utility node. The influence
diagram is presented in Figure 2, where the dashed arrow replaces the decision wether
or not to run the test.
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3 Methodological development

We present three different optimizing models for the information structure and the
decision strategy. These are the constraints on path probabilities, the constraints on
local decisions and the constraint on extended state space. Here, we present concepts
that support the optimization models in addition to the optimization models.

3.1 2-monitoring

Figure 3: Influence diagram of 2-monitoring problem

N-monitoring problem [8], with N = 2 demonstrates how the developed optimiza-
tion models work. Assume a random load L on a structure. In the N-monitoring
problem we get N independent reports RN on the load on the structure. Then based
on those reports we have the ability to do N fortification actions. However, each
fortification action is decided based on a single report. The failure F of the structure
is conditional on the load and on the fortification actions that have been taken. The
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utility U of the system depends on the failure event and the cost of the fortification
actions.

Instead of settling for deciding the fortification decisions based on only a single
report, we consider making the information given by the other reports available
for other decisions as well. We ask what additional information the decision maker
should acquire when making a fortification decision. In the influence diagram the
possible changes to the information structure are indicated with dashed edges. The
influence diagram of the problem is in Figure 3.

For example decision D2 has the report R2 at its disposal and the additional
information that is considered is R1. Table 2 presents the possible values that
each node can attain. There are 6 nodes with 2 states each. Thus, the number
of different paths is 26 = 64 and the number of possible decision strategies is
4 ∗ 4 = 16. Since we are using the problem as an example for calculating the models,
we present probability tables to calculate the optimal information structure and
decision strategies. Tables 3 through 4 present the probabilities of sF , sR1 and sR2

given their information states. The probabilities of sL are uniformly distributed,
meaning P (sL = big) = 0.5 and P (sL = small) = 0.5. The inputs of the utility
function are the states of nodes F , D1 and D2. The utility of the system is calculated
as U(sF , sD1 , sD2) = t(sF ) + t(sD1) + t(sD2), where t(.) is the value given in Table 5
for the given state. The utilities are normalized so that the minimum utility of the
system is 0.

Table 2: Possible values of nodes
Node values
L big, small

Rn big, small

Dn yes, no

F yes, no
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Table 3: Probability table for failure given load and each decision P(F |L, D1, D2)
sI(F ) P (sF = no) P (sF = yes)
sL = small, sD1 = no, sD2 = no 0.9 0.1
sL = small, sD1 = no, sD2 = yes 0.96 0.04
sL = small, sD1 = yes, sD2 = no 0.92 0.08
sL = small, sD1 = yes, sD2 = yes 0.90 0.01
sL = big, sD1 = no, sD2 = no 0.5 0.5
sL = big, sD1 = no, sD2 = yes 0.8 0.2
sL = big, sD1 = yes, sD2 = no 0.7 0.3
sL = big, sD1 = yes, sD2 = yes 0.9 0.1

Table 4: Probability table for load given decisions and load P(sRn|sL)
sL small big

sR1 small = 0.7
big = 0.3

small = 0.3
big = 0.7

sR2 small = 0.9
big = 0.1

small = 0.1
big = 0.9

Table 5: Utility function values
sF , sD1 , sD2 yes no

t(sF ) 0 200
t(sD1) 0 10
t(sD2) 0 20

3.2 Constraints on path probabilities

Let K(j) be a set of candidates from which we can extend the current information
set I(j) to create an augmented information set Ī(j) = I(j) ∪ {k}, k ∈ K(j) for the
decision node j ∈ D. In this thesis K(j) is a predefined set of nodes from which
one or more can be added to the influence diagram in combination of other nodes in
K(j) without creating a cycle. Specifically we can define a binary mapping x(k, j).

x(k, j) =

⎧⎪⎨⎪⎩1, if sk is known at j ∈ D

0, otherwise.
(9)

If x(k, j) = 1, ∀k ∈ K(j), the decision maker can utilize the information given by
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sĪ(j), when selecting the decision alternative sj ∈ Sj. If x(k, j) = 0, ∀k ∈ K(j), the
decision maker does not know sk and the decision alternative has to be made based
only on sI(j).

The availability of information leads to a decision which is equally good or better
than the decision without the additional information. This inequality is characterized
by Theorem 3.1.

Theorem 3.1. Let j ∈ D be a decision node with initial information set I(j) and a
local decision strategy Zj. If Ī(j) = I(j) ∪ k, k ∈ K(j) and the addition of k does not
involve costs, then there exists a local decision strategy Z ′

j such that EU(Z ′) ≥ EU(Z)

Proof. The expected utility for the decision strategy Z is:

EU(Z ′) = ∑︁
s∈S π(s)U(s)

= ∑︁
s∈S

∏︁
l∈C P(Xl = sl|XI(l) = sI(l))z′(sj|sI(j), sk) ∏︁

i∈D/j z(si|sI(i))U(s)

≥ ∑︁
s∈S

∏︁
l∈C P(Xl = sl|XI(l) = sI(l))z(sj|sI(j))

∏︁
i∈D/j z(si|sI(i))U(s)

= EU(Z),

The inequality follows from the fact that we can select a different decision alternative
z(sj|sI(j), sk) ̸= z′(sj|sI(j), s′

k), s′
k ̸= sk. However, we also have the option to select

a similar decision alternative z(sj|sI(j), sk) = z′(sj|sI(j), s′
k), s′

k ̸= sk as without the
additional information sk. Selecting a similar decision alternative does not change
the expected utility of the system. Thus there must exist a decision strategy Z ′ such
that EU(Z ′) ≥ EU(Z)

Let I ⊊ N, I ≠ ∅. For a given path segment sI , defined by states si, i ∈ I we
can define an extension operator E(sI),

E(sI) = {s′ ∈ S|s′
i = si, ∀i ∈ I}. (10)

A complement of an extension is derived with the help of the extension operator.

E(sI) = {s′ ∈ S|∃i ∈ I, s′
i ̸= si} = ∪i∈IE(Si\si) = S\E(sI). (11)

Apart from path segments, we can also consider extensions of sets S ′
i ⊆ Si, ∀i ∈
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1, ..., n.

E(S ′
1 × S ′

2 × ... × S ′
n) = {s′ ∈ S|si ∈ S ′

i, For any i ∈ {1, ..., n} such that S ′
i ̸= ∅}

(12)
Now, consider a decision node j ∈ D with an information set I(j) and a local

decision strategy Zj : SI(j) ↦→ Sj . Then a partial decision strategy Zj,Ĩ(j) is a mapping
from SĨ(j) to Sj, where Ĩ(j) ⊊ I(j) s.t.

sj ∈ Zj,Ĩ(j)(sĨ(j)) ⇐⇒ ∃sI(j) ∈ SI(j) such that Zj(sĨ(j), sI(j)\Ĩ(j)) = sj. (13)

With information structures, we are interested in the situation where the decision
maker may not have access to all possible information. Specifically, the partial
decision strategy Zj,Ĩ(j)(sĨ(j)) describes a situation where the decision maker only has
access to the information defined in sĨ(j), whereas the information given by sI(j)\Ĩ(j)

remains unknown.
Next, consider the expansion of the information set through a new constraint.

Consider a decision node j ∈ D with an information set I(j) and a set K(j).
Consider the most simple case, where |K(j)| = 1. Thus, the information with which
the decision in node j has to be made can either be I(j) or Ī(j) = I(j) ∪ k , where
k ∈ K(j). The local decision strategy Zj at node j attains values for each realization
of its information state.

We thus have two possibilities for a decision strategy. A decision strategy which
maps the larger information state to the decision alternatives Zj(sĪ(j)) and a partial
decision strategy Zj,I(j) which maps a smaller information state to the decision
alternatives. If the arc between node k ∈ K(j) and j is not added, meaning that
x(k, j) = 0, then the partial decision strategy Zj,I(j)(sI(j)) is a function in the
sense that it has to map all information states to decision alternatives such that
Zj(sĪ(j)) = Zj,I(j)(sI(j)). This means that the local decision strategy at j must give
the same decision alternative sj, for each sI(j) ∈ SI(j). The information state sI(j)

differs from sĪ(j) by not having the state sk. Thus, no matter what value of sk we
have, the decision alternative z(sj|sI(j), sk) must stay the same. The only possibility
for choosing a different decision alternative is to have a different sI(j). If k is is known
when making a decision at j (i.e. x(k, j) = 1), then we allow the decision strategy to
attain different values with different sk and a similar information state sI(j). This
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can be enforced with a constraint.

π(s′) ≤ 1 + x(k, j) − z(sj|sI(j), sk),

∀sj, sI(j), sk, ∀s′ ∈ E(sI(j)) ∩ E(sj) ∩ E(sk)
(14)

The set s′ ∈ E(sI(j)) ∩ E(sj) ∩ E(sk) iterates over the set of paths that differs
from path s ∈ S in nodes j and k but is the same in nodes I(j). If x(k, j) = 0 and
we have that z(sj|sI(j), sk) = 1 then the constraint enforces that the probability of a
path s′ with s′

k ̸= sk and s′
j ̸= sj and s′

I(j) = sI(j), must be 0. In other words, if
the information given by sk is not available, the decision must stay the same when
the information given by sk changes and information given by sI(j) stays unchanged.
Conversely if x(k, j) = 1, then we allow the probability of the path s′ to be greater
than 0.

If the cardinality of the set K(j) is greater than one, we can enforce the require-
ments by iterating over all possible states of all k ∈ K(j)

π(s′) ≤ 1+x(k, j)−z(sj|sĪ(j)\k, sk), ∀sj, sĪ(j), sk, ∀k ∈ K(j), ∀s′ ∈ E(sĪ(j)\k)∩E(sj)∩E(sk).
(15)

Thus far the analysis of the information structures has relied on a decision to
share information from specified nodes. More importantly, the requirement is that
the information set of a decision node is decided beforehand. However, it may be
of interest to represent problems, in which earlier events influence the realization
of the information sets of decision nodes. Following the notations of [29], we can
define a distinguishability set Dk,j ∈ C ∪ D and and a distinguishability condition
F : SDk,j

↦→ 0, 1, such that F (SDk,j
) = 1 ⇐⇒ x(k, j) = 1. The difference is that

now the realization is conditional to the states of earlier nodes. We can modify the
notation and introduce a mapping xk,j(s) that tells if for path s the edge (k, j) exists.
We denote the set of paths for which this is true as SDk,j

⊆ S Thus the constraints
on path probabilities can be rewritten as

π(s′) ≤ 1 + xk,j(s′) − z(sj|sI(j), skj
), ∀s′ ∈ E(sI(j)) ∩ E(sj) ∩ E(skj

) ∩ SDk,j
. (16)

The constraint states that for all situations, where the information set without
the additional information skj

stays the same, the additional information skj
changes

and similarly the distinguishability condition changes, we cannot change the decision
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if we have no access to the additional information.

3.3 Cost of adding edges

The expansion of the information set can increase the expected utility of the sys-
tem. To select the edges that grow the expected utility the most, we optimize the
information structure of the problem. If we do not limit the number of edges that
can be added to the influence diagram, the information structure with the maximum
amount of information would be selected. The only restriction that could limit the
number of edges is the acyclicity of the influence diagram. Thus the problem would
reduce to finding an optimal subset of potential edges such that a cycle would not
be created. However, the acyclicity requirement is accounted for by predetermining
the set of potential edges.

A penalty for each added edge is instead used to represent the cost of acquiring
information. Consider for example two independent scout patrols, which have an
option of contacting the other patrol. The contact increases the probability of getting
caught and thus the decision wether or not to contact affects the expected utility of
the system. This is not considered in the initial formulation of the problem.

The penalty can be expressed in many ways. In some cases, one can quantify
the cost of adding information and subtract it from the utility function. This could
be the case, for example, if the added wear and tear would be considered for the
communication equipment for the scout patrols. For example, if a very fragile and
expensive equipment would need to be replaced after 100 uses, then the penalty term
to the utility function would be 1

100p, where p denotes the price of the equipment. In
some cases the penalty term cannot be added to the utility function, because some
decisions can affect the probability distributions of some chance events, which then
in turn affect the utility of the system.

3.4 Optimization models with constraints on path probabili-
ties

Adding the constraints on path probabilities to the optimization model introduced
in [8], we get the following model:
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max
x∈X

max
z∈Z

∑︂
s∈S

π(s)U(s) (17)

s.t.
∑︂

sj∈Sj

z(sj|sĪ(j)) = 1, ∀j ∈ D, ∀sĪ(j) ∈ SĪ(j) (18)

0 ≤ π(s) ≤ p(s), ∀s ∈ S (19)

π(s) ≤ z(sj|sĪ(j)), ∀s ∈ S, ∀j ∈ D (20)

z(sj|sĪ(j)) ∈ {0, 1}, ∀j ∈ D, ∀s ∈ S, ∀sĪ(i) ∈ SĪ(i) (21)

x(k, j) ∈ {0, 1}, ∀j ∈ D, k ∈ K(j) (22)

π(s′) ≤ 1 + x(k, j) − z(sj|sI(j), sk), ∀sj, sI(j), sk, ∀s′ ∈ E(sI(j)) ∩ E(sj) ∩ E(sk)
(23)

We optimize over all decision strategies z ∈ Z and over all possible information
structures x ∈ X. Here X denotes all combinations of binary variables x(k, j), for
all j ∈ D. Now let j = D1 and K(j) = R2 in the 2-monitoring problem. Thus
X := x(Ri, Dj) ∈ {0, 1} such that i, j ∈ {1, 2}, i ̸= j. Consider a decision strategy
in Tables 6 and 7, in which the decision in D1 is informed by the report R2. The
decision at D1 is different when sR1 is big and sR2 is either small or big. Thus the
decision strategy requires that the edge between nodes R2 and D1 exists.

To demonstrate how the constraints on path probabilities work, assume that the
information structure is specified by x(R2, D1) = 0 and x(R1, D2) = 1, meaning that
there is no edge between nodes R2 and D1 and there is an edge between nodes R1

and D2. Consider paths in Table 8. Both paths s1 and s2 are compatible with the
given decision strategy as they fulfill the constraint (20). In constraint (23) we have
that z(sj|sI(j), sk) = 1, s ∈ s1, s2. We also assumed that x(R2, D1) = 0. Thus the
right side of the constraint (23) becomes 1 + 0 − 1 = 0 at j = D1. Now if we examine
path s2, we can see that s2

D1 ̸= s1
D1 , s2

I(D1) = s1
I(D1) and s2

k ≠ s1
k. Thus we see that

s2 ∈ E(s1
I(D1)) ∩ E(s1

D1) ∩ E(s1
k). Thus it should hold according to constraint (23)

that π(s2) ≤ 0 =⇒ 0.032 ≤ 0, which is not the case. Thus decision strategy in Tables
6 and 7 is not compatible with the information structure x(R2, D1) = 0. However,
if we change a part of the information structure to x(R2, D1) = 1 when x(R1, D2)
stays the same, then the constraint holds and the decision strategy is compatible
with the information structure.
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Table 6: A local strategy ZD1

sR1 sR2 sD1

big big yes

small big no

small small no

big small no

Table 7: A local decision strategy ZD2

sR2 sD2

big yes

small no

Table 8: Illustrative paths
sL sR1 sR2 sD1 sD2 sF π(s)

s1 big big small no yes no 0.028
s2 big big big yes yes no 0.032

Next we present a model for the optimal information structure of a given decision
node. We introduce a penalty matrix R such that the cost of adding an edge (k, j)
is given by R(k, j). The cost is subtracted from the expected utility of the system if
the edge is added to the information structure. The optimal information structure
of a given decision node j is the solution of the following optimization problem:

max
x∈X

max
z∈Z

∑︂
s∈S

π(s)U(s) −
∑︂

k∈K(j)
x(k, j)R(k, j) (24)

s.t.
∑︂

sj∈Sj

z(sj|sĪ(j)) = 1, ∀j ∈ D, ∀sĪ(j) ∈ SĪ(j) (25)

0 ≤ π(s) ≤ p(s), ∀s ∈ S (26)

π(s) ≤ z(sj|sĪ(j)), ∀s ∈ S, ∀j ∈ D (27)

z(sj|sĪ(j)) ∈ {0, 1}, ∀j ∈ D, ∀s ∈ S, ∀sĪ(j) ∈ SĪ(j)

(28)

x(k, j) ∈ {0, 1}, ∀j ∈ D, k ∈ K(j) (29)

π(s′) ≤ 1 + x(k, j) − z(sj|sĪ(j)\k, sk), ∀sj, sĪ(j)\k, sk, ∀k ∈ K(j), (30)

∀s′ ∈ E(sI(j)) ∩ E(sj) ∩ E(sk)
(31)
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Finally, we present a model which optimizes the information structure of an
influence diagram by considering multiple decision nodes in conjunction.

max
x∈X

max
z∈Z

∑︂
s∈S

π(s)U(s) −
∑︂
j∈D

∑︂
k∈K(j)

x(k, j)R(k, j) (32)

s.t.
∑︂

sj∈Sj

z(sj|sĪ(j)) = 1, ∀j ∈ D, ∀sĪ(j) ∈ SĪ(j) (33)

0 ≤ π(s) ≤ p(s), ∀s ∈ S (34)

π(s) ≤ z(sj|sĪ(j)), ∀s ∈ S, ∀j ∈ D (35)

z(sj|sĪ(j)) ∈ {0, 1}, ∀j ∈ D, ∀s ∈ S, ∀sĪ(j) ∈ SĪ(j)

(36)

x(k, j) ∈ {0, 1}, ∀j ∈ D, k ∈ K(j) (37)

π(s′) ≤ 1 + x(k, j) − z(sj|sĪ(j)\k, sk), ∀j ∈ D, ∀k ∈ K(j), ∀sj, sĪ(j)\k, sk,

(38)

∀s′ ∈ E(sI(j)) ∩ E(sj) ∩ E(sk)
(39)

3.5 Constraints on local decisions

Another way to represent the problem are constraints on local decisions. Consider
decision nodes j ∈ D and their augmented information sets Ī(j). A decision set is a
set of decision nodes and their augmented information sets D = ∪j∈D{j} ⋃︁ ∪j∈DĪ(j).
A decision path is then a sequence of states sD ∈ SD. An active decision path is s.t.
the decision strategy maps the augmented information states to the corresponding
decisions in the decision path sD. We can define a binary mapping y(sD) ∈ {0, 1} as

y(sD) ≤ 1
|D|

∑︂
j∈D

z(sj|sĪ(j))

y(sD) ≥
∑︂
j∈D

z(sj|sĪ(j)) − |D| + 1,
(40)

where the states sj and sĪ(j) correspond with the decision path sD. The decision
path sD is active if y(sD) = 1.

The active decision path is thus a path s such that the augmented information set
of node j coincides with the path. Formally this is a set {s ∈ S|sD = s′

D
}. However,

the actual information set might be smaller than the augmented information set. We
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can define a binary variable ξ(k) through

ξ(k) ≤ 1
Ξ(k)

∑︂
{j∈D|k∈I(j)}

x(k, j)

ξ(k) ≥ Ξ(k) −
∑︂

{j∈D|k∈I(j)}

x(k, j) + 1,
(41)

where Ξ(k) = |{j ∈ D|k ∈ Ī(j)}| The mapping ξ(k) is thus 1 if and only if the node
k is known in all decision nodes that it is a candidate for. Consequently, ξ(k) gets
the value zero if k is not known at every decision that it is a candidate for. Formally,
ξ(k) = 0 if there exists j ∈ D s.t. k ∈ Ī(j) and x(k, j) = 0.

Of interest are nodes k ∈ K(j), j ∈ D such that ξ(k) = 0. These are the nodes
that are in the augmented information set of some decision node j ∈ D and therefore
their states are a part of the active decision path but they are not a part of the
information that the decision maker can utilize. Nodes k ∈ K(j), j ∈ D such that
ξ(k) = 1 are then included in all possible information sets and in all cases the decision
maker knows the state of the node.

Let K be a set of nodes k s.t. ξ(k) = 0. For an active decision path sD we require
that if the information set that the decision maker can utilize is smaller than the
augmented information set, then the decision strategy cannot depend on the nodes
that are not available. This corresponds to the situation where the decision strategy
z(sj|sI(j)\sk

, sk) stays the same for all states sk ∈ Sk. This condition can be enforced
through

1
|D|

∑︂
j∈D

z(sj|s′
I(j)\I(j), sI(j)) ≥ y(sD), ∀sD ∈ SD, ∀s′

K ∈ SK . (42)

This approach is attractive in the sense that instead of full paths it suffices to
inspect active decision paths.

However, a better approach is to limit the decisions made based on the selected
information set and the active decision path for each decision node j ∈ D. Above a
decision path was introduced to cover all decision nodes and their maximal information
sets. However, the decisions in different decision nodes are made based on their
maximal information set and thus it suffices to analyse the corresponding local
decision sets Dj = {j} ∪ Ī(j) and local decision paths

sDj
∈ SDj

= Sj ∪ SĪ(j). (43)
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Thus for each sk, ∀k ∈ K(j), we have to make sure that the decision sj stays the
same for different sk if x(k, j) = 0. We can enforce this with the following constraint

|z(sj|s′
k, sI(j)\k) − z(sj|sk, sI(j)\k)| ≤ x(k, j), ∀j ∈ D, ∀k ∈ K(j), ∀s ∈ SDj

, ∀s′
k ̸= sk.

(44)
An advantage of this approach is that the number of constraints stays fairly low even
though the number of paths grows. The number of constraints is thus proportional
to the cardinality of the augmented information state.

3.6 Optimization models with constraints on local decisions

Adding the constraints on local decisions to the Decision Programming framework,
we get the following optimization model:

max
x∈X

max
z∈Z

∑︂
s∈S

π(s)U(s) −
∑︂
j∈D

∑︂
k∈K(j)

x(k, j)R(k, j) (45)

s.t.
∑︂

sj∈Sj

z(sj|sĪ(j)) = 1, ∀j ∈ D, ∀sĪ(j) ∈ SĪ(j) (46)

0 ≤ π(s) ≤ p(s), ∀s ∈ S (47)

π(s) ≤ z(si|sĪ(j)), ∀s ∈ S, ∀i ∈ D (48)

z(sj|sĪ(j)) ∈ {0, 1}, ∀j ∈ D, ∀s ∈ S, ∀sĪ(j) ∈ SĪ(i)

(49)

x(k, j) ∈ {0, 1}, ∀j ∈ D, k ∈ K(j) (50)

|z(sj|s′
k, sI(j\k)) − z(sj|sk, sI(j)\k)| ≤ x(k, j) ∀j ∈ D, ∀k ∈ K(j), ∀s ∈ SDj

, ∀s′
k ̸= sk

(51)

The optimization is carried over the binary variables X := {x(k, j)|j ∈ D, k ∈
K(j)} and over all possible decision strategies. In the 2-monitoring example, the local
decision paths for the decision nodes are DD1 = {D1, R1, R2} and DD2 = {D2, R1, R2}.
Moreover, K(D1) = {R2} and K(D2) = {R1}. Consider for example the decision
strategies in Tables 9 and 10. Assume that the information structure is specified
by x(R2, D1) = 0 and x(R1, D2) = 1. Then consider the path presented in Table 11
and especially the local decision path for j = D1, which is s1

DD1
= (sR1 = big, sR2 =

small, sD1 = no).
Consider the constraint (51) and select j = D1 and k = R2. Then s = s1

DD1
. We

must consider states s′
R2 that are different from the specified state in the local decision
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path. There exist only one option for this, which is s′
R2 = big. The local decision

strategy in 9 evaluated at the local decision path s1
DD1

gives z(s1
D1|s1

R1 , s1
R2) = 1,

since the decision alternative s1
D1 = no is selected for s1

R1 = big and s1
R2 = small.

Thus, the path is compatible with the decision strategy. Now for the different s′
k it

holds that z(s1
D1|s1

R1 , s′
R2) = 0, since the decision alternative s1

D1 = no is not selected
for s1

R1 = big and s1
R2 = big. Since x(R2, D1) = 0, the constraint (51) does not hold.

Below the constraint is calculated for these parameters.

|z(s1
D1|s′

R2 , s1
R1) − z(s1

D1|s1
R2 , s1

R1)| ≤ x(R2, D1) (52)

⇒ |0 − 1| ≤ 0. (53)

Thus, the decision strategy is incompatible with the given information structure.
If we set x(R2, D1) = 1, then the constraint is fulfilled and the decision strategy
is compatible with the information structure. Alternatively we can adopt a local
decision strategy given in Table 12 for D1 and then the constraint would be fulfilled
with the assumed information structure of X(R2, D1) = 0 and X(R1, D2) = 1.

Table 9: A local decision strategy ZD1

sR1 sR2 sD1

big big yes

big small no

small big no

small small no

Table 10: A local decision strategy ZD2

sR1 sR2 sD2

big big yes

big small yes

small big no

small small no

Table 11: Illustrative path
sL sR1 sR2 sD1 sD2 sF

s1 big big small no yes no
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Table 12: An alternative local decision strategy Z∗
D1

sR1 sR2 sD1

big big no
big small no
small big yes
small small yes

3.7 Constraints on extended state space

Another way to represent the problem is to extend the state space of some nodes.
Assume that j ∈ D has an information set I(j) and a set K(j). We enumerate the
state space of each i ∈ I(j) as Si = {1, ..., n}. Then we extend the state space of
each k ∈ K(j) to include a zero state sk = 0, which represents the situation where
the information of node k is not available to support the decision at j. We define
the augmented state space for a node as

S◦
k = {0, 1, ..., n}, ∀j ∈ D, k ∈ K(j). (54)

Now instead of paths or local decisions, we have to analyse the local decisions on
extended information states. In previous sections, a local decision strategy was a
decision alternative for each realization of the information state of a decision node.

Now we cannot necessarily select a decision alternative for each realization of
the information state due to the fact that some nodes in K(j) can be only in state
sk = 0. Thus, we have to select the decision alternative for the information state
that is compatible with the information structure. For this purpose we introduce a
zero-extension operator E∗ : SĪ(j) ↦→ S◦

Ī(j), j ∈ D

E∗(sĪ(j)) = {s′ ∈ S◦
Ī(j)|s

′
i = s′

i, s′
k ∈ {0, sk}, ∀i ∈ Ī(j)\K, K ⊆ K(j), k ∈ K} (55)

Assume that j ∈ D, Ī(j) = {a, b} and K(j) = {b}. Assume also an information
state sĪ(j) = (1, 1). Then the zero-extension operator for sĪ(j) gives

E∗(sĪ(j)) = {(1, 1), (1, 0)}. (56)

We require that exactly one decision alternative and one alternative from the set of
extended information states are selected.
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∑︂
sj∈Sj

∑︂
s◦∈E∗(sĪ(j))

z(sj|s◦) = 1, ∀sĪ(j) ∈ SĪ(j) (57)

The selected alternative from the set of extended information states depends on
the selected information structure. When x(k, j) = 0, we need to select a decision
alternative for an extended information state, where sk = 0. When x(k, j) = 1 we
need to select a decision alternative for all information states, where sk > 0. These
requirements can be enforced through

∑︂
sj∈Sj

∑︂
{s′∈S◦

Ī(j)|s′
k

>0}
z(sj|s′) ≤ Mx(k, j), ∀k ∈ K(j) (58)

and

∑︂
sj∈Sj

∑︂
{s′∈S◦

Ī(j)|s′
k

=0}
z(sj|s′) ≤ M [1 − x(k, j)], ∀k ∈ K(j), (59)

where M is a large constant. In this thesis we set M to be the number of paths for
the influence diagram, due to the fact that the sum on the left side of the constraints
can be quite different depending on the selected information structure. We must
select a decision alternative for each realization of states of nodes in the information
set of the decision node. The number of different combinations for sI(j) is given by∏︁

p∈I(j) |Sp|. If the nodes in K(j) are not known when making a decision at j, then
the number of different combinations for which we select a decision alternative is
again ∏︁

p∈I(j) |Sp|. This is because the only possible value for sk is the zero value.
However, if the information given by a node k ∈ K(j) is made available when making
a decision at j, then we must also select a decision alternative for the different
combinations of {sk} ∪ {sI(j)}. This corresponds to |Sk| ∏︁

p∈I(j) |Sp|. Thus it follows
that

∑︂
sj∈Sj

∑︂
s′∈S◦

Ī(j)

z(sj|s′) =
∏︂

p∈I(j)
|Sp|

∏︂
{k∈K(j)|x(k,j)=1}

|Sk|. (60)

Thus, the constant M is needed to ensure that that the sum on the left in
constraints (58) and (59) stays below the right side of the constraint in cases, where
x(k, j) = 1. It suffices to select a large enough M . Since it holds that

∏︂
p∈I(j)

|Sp|
∏︂

{k∈K(j)|x(k,j)=1}
|Sk| ≤ |S|, (61)
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selecting M to be the number of paths guarantees that the constraints (58) and
(59) hold.

We also have the constraint on path probabilities

π(s) ≤
∑︂

s◦∈E∗(sĪ(j))
z(sj|s◦), ∀s ∈ S, ∀j ∈ D (62)

The mutual exclusivity of the information states ensures that the sum in constraint
(62) has at most one positive term. This proposition is proved as follows.

Theorem 3.2. Let j ∈ D and s ∈ S. Assume that constraints (58) and (59) hold
and that K(j) is a nonempty set. Then the sum ∑︁

s◦∈E∗(sĪ(j)) z(sj|s◦) has at most
one positive term.

Proof. Assume that there is a decision sj and two distinct information states
s′

Īj
, s′′

Ī(j) ∈ E∗(sI(j)¯ ), s′
Ī(j) ̸= s′′

Ī(j) such that z(sj|s′
Ī(j)) = z(sj|s′′

Ī(j)) = 1. By the defini-
tion of E∗, there exists k ∈ K(j), such that s′

k = sk and s′′
k = 0. Assume that x(k, j) =

0. Then according to constraint (58) z(sj|s′) ≤ ∑︁
sj∈Sj

∑︁
{s◦∈S◦

Ī(j)|s◦
k

=s◦
k

} z(sj|s◦) ≤ 0,
which is a contradiction to the assumption. Similarly, if x(k, j) = 1 then according
to constraint (59) z(sj|s′′) ≤ ∑︁

sj∈Sj

∑︁
{s◦∈S◦

Ī(j)|s◦
k

=0} z(sj|s◦) ≤ 0, which again is a
contradiction to the assumption. Thus, there can be at most one positive term in
the summation of (62).

3.8 Optimization model with constraints on extended state
space

Adding the constraints on extended state space to the Decision Programming frame-
work gives the following optimization model
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max
x∈X

max
z∈Z

∑︂
s∈S

π(s)U(s) −
∑︂
j∈D

∑︂
k∈K(j)

x(k, j)R(k, j) (63)

s.t.
∑︂

sj∈Sj

∑︂
s◦∈E∗(sĪ(j))

z(sj|s◦) ≤ 1, ∀j ∈ D, sĪ(j) ∈ SĪ(j) (64)

0 ≤ π(s) ≤ p(s), ∀s ∈ S (65)

π(s) ≤
∑︂

s◦∈E∗(sĪ(j))
z(sj|s◦), ∀s ∈ S, ∀j ∈ D (66)

z(si|sĪ(i)) ∈ {0, 1}, ∀i ∈ D, ∀s ∈ S, ∀sĪ(i) ∈ SĪ(i)

(67)∑︂
sj∈Sj

∑︂
{s′∈S◦

Ī(j)|s′
k

>0}
z(sj|s′) ≤ Mx(k, j), ∀j ∈ D, k ∈ K(j) (68)

∑︂
sj∈Sj

∑︂
{s′∈S◦

Ī(j)|s′
k

=0}
z(sj|s′) ≤ M [1 − x(k, j)], ∀j ∈ D, k ∈ K(j) (69)

Notice that constraint (64) is changed from equality to inequality compared to
the cosntraint that was presented in previous subsection. This is possible because the
change enables a polyhedron as the feasible area. The optimum of a polyhedron is
found at an extremum point and thus the change does not affect the result. Instead it
makes the optimization problem convex and thus quicker to compute. This requires
also that the target function, which is the utility of the decision consequences added
to the costs of the selected information structure, is scaled such that the minimum
value of the utility function is greater than zero.

In the 2-monitoring example, assume that the information structure is given
by x(R1, D2) = 1 and x(R2, D1) = 0. The number of paths in the 2-monitoring
problem is 26 = 64 and thus we set M = 64. Consider the local decision strategies
ZD1 and ZD2 presented in Tables 13 and 14. The local decision strategy at node
D1 gets the value 1 only when sR2 = 0. Thus we get that the sum of local decision
strategies at j = D1 in constraint (68) is 0. Conversely the sum of local decision
strategies at j = D1 in constraint (69) is 2. The specified information structure
states that x(R2, D1) = 0, so both constraints are fulfilled and the decision strategy
is compatible with the information structure. At decision node D2 we get that the
sum of local decision strategies in constraint (68) is 4 and the sum of local decision
strategies in constraint (69) is 0. Thus when we substitute x(R1, D2) and M = 64 to
the constraints, we get that the decision strategy is compatible with the information
structure.
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Table 13: A local decision strategy ZD1

sR1 sR2 sD1

big 0 yes

small 0 no

Table 14: A local decision strategy ZD2

sR1 sR2 sD2

big big yes

small big no

big small no

small small no

3.9 Analysis of computational requirements

We have presented three approaches for the structure of the influence diagram. Here,
we analyse the computational requirements for solving the problem. The evaluation
of an influence diagram can be a computationally demanding task. Even the most
simple diagrams may require a lot of computational power [32]. If the complexity
of the diagram grows, so does the required computational power. For example, the
solution of limited memory influence diagrams are in the worst case evaluated in
exponential time [18].

However, the Decision Programming framework, which is the basis of this thesis
computes the optimal decision strategy quite efficiently although the problem is
NP-complete. As noted in [8], the sharing of reports in N-monitoring example
increases the number of analysed paths considerably but can still be computed in
a reasonable time when the number of instances is 4. However, to optimize the
structure of the influence diagram using the Decision Programming framework, the
size of the problem grows fast when introducing new conditional edges. In what
follows we discuss the number of constraint that each optimization model adds to
the decision model.

The number of constraints on path probabilities are proportional to the number of
paths in the influence diagram. For each conditional edge (k, j), j ∈ D, k ∈ K(j) there
are constraints for each state sj and sĪ(j) and for each path s′ ∈ E(sI(j))∩E(sj)∩E(sk).
Thus the number of constraints per conditional edge (k, j) depends on the size of the
extension, which is given by ∏︁

i∈N\j,Ī(j) |Si| and the size of the state space of nodes
in Ī(j) and j. The size of the problem grows quite significantly when the number
of paths grows and we introduce more conditional edges to the problem. Thus, the
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number of constraints on path probabilities (constraint (39)) is

∑︂
j∈D

∑︂
k∈K(j)

|Sj||SĪ(j)|
∏︂

i∈N\{j∪Ī(j)}
|Si|. (70)

The constraints on local decisions can handle larger problems better than the
constraints on path probabilities can. Instead of building constraints for full paths
it uses the augmented information sets of the decision nodes. For each conditional
edge (k, j), the number of constraints depends on the size of the local decision path
|SDj

| and the size of the state space of node k. Each sDj
and each s′

k ̸= sk, for the sk

stated in the local decision path sDj
is constrained to follow the information structure.

Thus the number of constraints per distinct local decision path sDj
is |Sk| − 1, since

the path contains only one realization from Sk. The number of constraints on local
decisions is then given by

∑︂
j∈D

∑︂
k∈K(j)

|SDj
|(|Sk| − 1). (71)

Constraints on the extended state space introduce far less constraints to the
optimization model. With this method, the constraints do not grow when new nodes
are added to the information set of a decision node. For each k ∈ K(j), j ∈ D we
have only two constraints. The number of extended state space constraints is then
given by ∑︂

j∈D

∑︂
k∈K(j)

2 (72)

However, the extended state space constraint method increases the state space of
nodes in K(j), j ∈ D. This grows the number of decision strategy variables which
have to be optimized, which is not the case with the other two methods. Thus,
smaller number of added constraints does not imply that the optimization model is
more efficient.

The number of extended state space constraints is not proportional to the size
of the state space of the nodes in the influence diagram unlike the other methods.
This suggests that when the state space of nodes in the influence diagram grows,
the constraints on extended state space are superior to the other methods. The
constraints on path probabilities and the constraints on local decisions are quite
similar to each other. However, a significant difference is that the constraints on
path probabilities are set for the extensions of path segments instead of local decision
paths. This suggests that when the influence diagram contains multiple decision
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nodes, which have relatively small information sets, the constraints on local decisions
are superior to the constraints on path probabilities. However, when the problem
consists of only one decision node and it’s information set, then the difference between
the number of constraints is smaller.

Explicit enumeration is a good comparison for all optimization methods. In
explicit enumeration, one would iterate over all possible information structures and
all possible decision strategies and select the one with the best expected utility.
To calculate the expected utility of a single decision strategy and an information
structure, one would need to consider all possible information structures and all
possible decision strategies. For each information structure and decision strategy,
there is a need to calculate the utility and the probability of each path. Explicit
enumeration then is proportional to the number of paths, to the number of possible
decision strategies and to the number of possible information structures. Since the
decision strategy variables and information structure variables are binary variables,
we would need to calculate the utility and probability of a path |S|2|Z|2|X| times.
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4 Computational experiments

This section examines the computational performance of the models. All computations
were performed using Julia 1.6.2 in Aalto University’s jupyter environment. The
optimization models were solved using the JuMP framework with GLPK-optimizer.
All used codes can be accessed via this link

4.1 N-M-monitoring problem

The N-M-monitoring problem is similar to the 2-monitoring problem presented above
with the exception that now there are N reports and M decisions. In addition, all
edges between reports and decisions belong to the set K(j), ∀j ∈ D. The influence
diagram of the problem is in Figure 4. The probabilities between the reports and the
load as well as between the decisions and the failure event are randomly generated.
For the load probabilities a random number between 0 and 1 is generated using
the rand-function of julia language. The probability of load being in state high is
the generated number and the probability of load being in state low is 1 minus the
generated number. Similarly, all the report probabilities are generated using the
rand-function. This time two random numbers between 0 and 1 are generated using
the rand-function.

The first of the generated numbers is used as the probability of a true positive
report if it lies between 0.5 and 1. If the generated number is less than 0.5, then
the probability of a true positive report is 1 minus the generated number. Similar
procedure is utilized for the second generated random number as the probability
of a true negative report. Similarly, the probability of failure given the load and
fortification actions is created using two random numbers between 0 and 1. The first
generated number is used as the probability of failure given that the load is in state
high. The probability of no failure when the load is in state high is thus 1 minus
the random number.

The second random number is then the probability of failure when the load is in
state low. Since the failure event also depends on the fortification actions, a special
denominator is created for each iteration of the possible states of action nodes. This
random number is constrained on being slightly greater than 1. Thus the probability
of failure given that the load is in state high and the probability of no failure given
that the state of load is low are divided by the denominator. This way we get unique
probabilities for all realizations of failure node’s information state. The costs of
reports are random numbers between 0 and 10 and the costs of fortification actions

https://github.com/toubinaattori/thesis
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are the same as the randomly generated denominators for the failure probabilities.
The utility of the system is 0 minus the fortification costs if the system collapses,
and 100 minus the fortification actions if the system does not collapse. The utilities
are normalized such that the minimum utility is 0. All problems were solved 10
times with different randomly generated starting values and the average of these
solve times is presented.

Figure 4: Influence diagram of the N-M-monitoring problem, where N = 2 and M =
2

The N-M-monitoring problem was solved using the constraints on path proba-
bilities, local decisions and extended states. The models were solved ten times for
each N-M pair and Table 16 shows the solution times for each optimization model.
The problem was solved by relaxing the binary requirement of the decision strategy
variables and instead constraining them to lie between 0 and 1. As noted in [8] this
also leads to optimality.
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Table 15: Solution times for different N and M in seconds
N M path prob. local decisions extended states
1 1 0.000195 0.000178 0.000218
2 1 0.000517 0.000435 0.000788
2 2 0.00238 0.00132 0.00304
3 2 0.00882 0.00463 0.01133
3 3 0.04316 0.01256 0.02985
4 3 0.15849 0.04726 0.07990
4 4 0.76935 0.13819 0.25490
5 4 3.93886 0.66613 2.66954
5 5 19.3005 1.81897 5.03522

The solution times grow quite fast and already when N = 5 and M = 5, the
optimal solution takes several seconds to find. However, the computation time of
the models is still quite reasonable. The results are quite consistent. Constraints on
local decisions are the fastest, whereas the constraints on path probabilities and the
constraints on extended state space are the slowest depending on problem size. On
smaller instances the extended state space constraints are slower than the constraints
on path probabilities whereas on bigger instances the constraints on extended state
space are quicker than the constraints on path probabilities. This suggests that the
computation time of constraints on path probabilities grows faster than the one of
constraints on extended state space.

4.2 Oil wildcatter problem

Consider the traditional oil wildcatter problem presented in section 2.1 with the
exception that the wildcatter has multiple expert reports to choose from. The
influence diagram of the modified oil wildcatter problem where the number of possible
reports is 3 is in Figure 5. We solve the problems of different sizes and compare
the solution times that the different optimization models give. We assume that the
probability of the existence of oil is 0.15, which then means that the probability of
no oil is 0.85. The probabilities of individual reports given the existence of oil are
created as follows: First, four numbers between 0 and 1 are randomly created using
the rand-function of julia language. These numbers are used as parameters for two
different normal distributions. Two of them are used as means and two as variances.
Then two normal distributions are generated using these values, and 100 observations
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are sampled from the normal distributions. The normal distribution with the lower
mean is taken to be the test statistic distribution of test results for test where there
are no oil in the ground. The normal distribution with the higher mean is then taken
to be the test statistic distribution for test results where there is oil in the ground.
Using the randomly sampled values, a cutoff point is estimated s.t. the amount of
false negative results and false positive results is as small as possible. Then by using
this cutoff point, a false positive rate and a false negative rate are calculated. These
rates are then used as the probabilities for achieving a false negative test result and
a false positive test result. Thus, the probability of a true positive test is one minus
false negative. Costs of tests are randomly created as integers between 0 and 50 and
the highest costs are associated to the test that gives the lowest false positive rate.
The cost of drilling is 300 and the potential payoff is 7000. The problem is randomly
generated and solved twenty times for each problem size. Each problem is solved by
all three methods and an average of solution times is reported. Table 16 gives the
computation times for the different solution methods for N ∈ {1..6}.

Table 16: Solution times for different N in seconds

N path prob. local decisions extended states Avg number of selected edges
1 0.000186 0.000183 0.000188 0.25
2 0.000602 0.000518 0.000661 0.75
3 0.002399 0.002267 0.003676 1.00
4 0.01003 0.01243 0.01801 1.28
5 0.07974 0.18375 0.14647 1.53
6 0.99904 30.7098 7.73159 1.8

The solution times of the three methods are quite similar to each other in smaller
instances. The constraints on local decisions are slightly quicker than the other
models in small problem sizes but when the problem size grows, the constraints on
local decisions slow down relative to the others. The constraints on path probabilities
is the fastest method in bigger instances as the average time to optimality takes
approximately a second on average, whereas the other methods take several seconds.
This is unexpected considering that the number of constraints for the path probabilities
is the highest of the three. The number of added edges seems quite reasonable.
Approximately a third of the possible reports were selected to support the decisions.

We can also test the optimization models when relaxing the binary requirement of
the decision variable z. The relaxed oil wildcatter problem is solved with N ∈ {1, ..., 6}
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Figure 5: Influence diagram of the modified oil wildcatter problem

and the average solution times are highlighted in Table 17. The results are quite
similar as to the N-M-monitoring example in previous section. Constraints on
local decisions are the fastest in all problem sizes. Now however, the constraints
on extended state space are quicker than the constraints on path probabilities in
smaller problem sizes whereas the constraints on path probabilities are faster than
the constraints on extended state space in bigger problem sizes. The relaxation has a
significant impact to the solution times. Especially in bigger instances the impact is
big. Solution with the constraints on local decisions took approximately 1000 times
longer without the relaxation.

Table 17: Solution times for different N with relaxation
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N path prob. local decisions extended states avg no of edges
1 0.000152 0.000112 0.000142 0.25
2 0.000479 0.000265 0.000367 0.65
3 0.001792 0.000773 0.001724 1.075
4 0.00762 0.00243 0.00830 1.275
5 0.02345 0.01175 0.06242 1.7
6 0.11159 0.04725 0.49111 1.575

4.3 Extended oil wildcatter problem with a perfect report

Consider again the extended oil wildcatter problem. The exception to the previous
subsection is that now there exists a perfect report that indicates the existence of
oil with certainty. In addition, there are n − 1 imperfect reports, which are much
cheaper than the perfect report. When demonstrating the results, the perfect report
is always denoted as Rn, where n is the size of the problem. The goal of this exercise
is to determine how many imperfect but uncorrelated reports are needed to replace
the perfect report.

The parameters of the problem are modified as follows. The potential payoff
when drilling for oil is 11000. This payoff is achieved when the decision to drill is
yes and there is oil in the ground. The cost of drilling is 1000 and the cost of the
perfect report is 400. The probability of oil is again 0.15 whereas the probability of
no oil is then 0.85. The imperfect reports are equal to each other and the probability
of a false negative test result is the same as the probability of a false positive test
result. This means that the probability of the report indicating oil in the ground
given that there is oil in the ground is the same as report indicating no oil when
there isn’t oil in the ground. Table 18 shows some solutions for the problem. The
results show that the imperfect reports can be quite useful when combining them
with other uncorrelated imperfect reports. Imperfect reports can also be more useful
outright as we can see in the last row of the table. The model has only chosen to
run one report, which indicates the existence of oil correctly with a probability of
0.9. The cost of the report is so small compared to the perfect report that it gives
better expected utility than using the perfect report.

Table 18: Results
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N P(sRi
= yes | sO = yes) Cost Added edges

3 0.8 20 (R3, D)
4 0.8 20 (R1, D), (R2, D), (R3, D)
4 0.75 20 (R4, D)
5 0.75 20 (R1, D), (R2, D), (R3, D), (R4, D)
3 0.9 50 (R2, D)

4.4 Order of tests

Consider another variant of the oil wildcatter problem. The wildcatter has the ability
to perform tests for the potential drilling site but this time the subject of interest is
the order of the tests. The assumption is that the wildcatter can perform a single
test at a time and then must choose wether to drill, run another test or not to drill.
Once a drilling decision has been made, the wildcatter cannot change it anymore.

The analyzed variant is quite small. The wildcatter has only two tests that can
be utilized. Thus the wildcatter must first make a decision wether to run one of the
possible tests. Then a decision can be made to wait for the result of another test or
to drill straight away based on the result of the first test. The influence diagram of
the problem is presented in Figure 6.

The state space of decision in period 1 is now {yes, no, wait}, where wait means
that the decision is made in period 2. If decision alternatives yes or no are already
agreed in period 1, they must stay the same in period 2 as well. Thus, path
probabilities that contain violations of this principle must be set to 0. In addition,
we are limited to one test per period. If we opt to do no testing in period 1, then we
cannot run both tests in period 2. In addition we assume that if a test is selected in
period 1, the result of that test is also available when making a decision in period 2.
These requirements can be enforced through separate constraints.

x(j, D1) ≤ x(j, D2), ∀j ∈ {Test1, T est2} (73)

x(Test1, D1) + x(Test2, D1) ≤ 1 (74)

x(Test1, D2) + x(Test2, D2) ≤ 1 + x(Test1, D1) + x(Test2, D1) (75)

The problem was calculated with tests specified in Table 19.

Table 19: Test probabilities
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Figure 6: Influence diagram of the order of tests problem

O T P(T1|O) P(T2|O)
yes yes 0.5 0.93
yes no 0.5 0.07
no yes 0.07 0.5
no no 0.93 0.5

The costs of both tests are 25 and the utility if oil is found from the ground is
20000. The cost of drilling is 1000. The cost of selecting the option sD1 = wait is 100.
The cost of waiting simulates the time value of money [31]. With these parameters,
an optimal decision strategy and optimal information structure are calculated. The
decision strategy is presented in Tables 20 and 21. The optimal information structure
is presented in Table 22. Thus, the optimal information structure is to run test 2
in period one and then test 1 in period 2. If test 2 indicates that there is oil in the
ground, we decide to drill immediately. If the test shows that there is no oil in the
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ground, we will instead order the second test and decide on drilling in the second
period. The expected utility of the system is 2400,78.

This example also highlights a significant shortcoming of the framework, which is
that the information structure cannot be state dependent. If the first test shows that
there is oil in the ground, we already decide to drill in period 1. Then we couldn’t
change the decision in period 2 anymore due to the presented constraints. However,
the optimal information structure states that test 1 is ran in period 2 no matter the
result of test 2 and the decision in period 1. Therefore, this example highlights a
problem, where the tests have to be prebooked and they cannot be ordered on the
fly.

Table 20: Optimal local decision strategy Z∗
D1

sT1 sT2 sD1

yes yes yes
no yes yes
yes no wait
no no wait

Table 21: Optimal local decision strategy Z∗
D2

sD1 sT1 sT2 sD2

wait yes yes yes
wait no yes yes
wait yes no yes
wait no no no

Table 22: Optimal information structure
x(Test1, D1) 0
x(Test2, D1) 1
x(Test1, D2) 1
x(Test2, D2) 1
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5 Possible applications and extensions

The extension of influence diagrams to alternative information structures has many
potential applications. Posing the question of what information should be provided
to the decision maker is valuable in certain situations. We have applied the models
successfully to the N-M-monitoring problem and to modified oil wildcatter problems.
The given framework gives intriguing possibilities for these kind of sequential decision
problems, where there are multiple parallel decisions to be made. The given framework
could be utilized to consider the order of decisions. For example in the case of the
N-M-monitoring problem a decision D1 could be expanded to different stages, where
we would choose from three different options SD1 = {yes, no, wait}. This way we
could analyse sequential decisions D1

1...Dn
1 in contrast to the sequential decisions

S1
2 ...Dn

2 . We would then be able to analyse potential edges between decision pairs
(Di

1, Di+1
2 ) and thus get the optimal ordering of the decisions by optimizing the

information structure. The difference to the order of tests example in section 4.4 is
that we would consider edges between various decision nodes. It would also be of
value to consider some cases where the order of the decision is somewhat random but
the decision maker nevertheless would know the realizations of previous decisions.

One obvious application area is health care resource optimization. As the resources
for health care are limited, the testing decisions for different diseases mean that
there may not be enough resources left for other tests [33]. The test results are
available for the doctors if a test decision is made for a certain disease. Thus it
is a natural application area for the presented frameworks. Consider for example
the resource allocation problem discussed in [34], which presents utilitarian and
egalitarian decision models for the testing decisions of coronary heart disease. A
utilitarian approach for health care resource allocation is to maximize the aggregate
population health, whereas the egalitarian approach is to minimize health differences
between population segments. [35] An influence diagram representation for the
optimal information structure is presented in Figure 7. Here, chance nodes represent
tests that can be run in each period and the decisions represent treatment decisions
that have to be made based on the tests that have been done. If the treatment is
started in period 1 or 2 then it needs to be continued also in period 3. The limited
resources could be represented by limiting the number of added edges for example to
three with the following constraint: ∑︁

j∈D,k∈K(j) x(k, j) ≤ 3. Influence diagrams are
already a useful tool in medical decision analytics [36] but as presented above, our
framework gives a lot of flexibility to the problem layout. The same approach could
be also used in contingent portfolio programming developed in [37].
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Figure 7: Influence diagram of the healthcare resource allocation problem

In this thesis, the Decision Programming framework has been extended to situa-
tions where the addition of an edge is deterministic and thus the structure of the
influence diagram is defined at the onset. The framework given by Herrala et. al. can
handle also situations, where the existence of edges depends on some random events.
It would be of value to extend the Decision Programming framework to handle also
uncertainties that affect to the information structure of the problem.
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6 Conclusions

The thesis has presented three models for optimizing the information structure of an
influence diagram. Two of the models rely on constraints that force decisions to be
equal in cases where information that is not known changes and other information
stays the same. The optimization models differ in the extent on which they enforce
constraints. The third optimization model forces the decisions to be made without
the information of nodes that are not available.

The constraints on path probabilities analyse full paths and thus the number of
constraints grows quite fast as a function of the nodes in the decision problem. For
example, adding barren nodes to the influence diagram does not change the optimal
decision strategy or the optimal information structure in any way, but the number
of paths grows and thus the number of constraints also grows. The constraints on
local decisions analyse only augmented information sets and their combinations so
the number of constraints grows when the augmented information sets grow.

The constraints on extended state space introduce a zero-state which indicates
that the information given by a node with the zero-state may not be known. Thus a
decision strategy is only created for an information state that is compatible with the
information structure.

All methods were tested with example problems. The methods perform quite
similarly in small problems. When the size of the problem grows, the differences
between the models grow. The constraints on local decisions are superior to the
other models in all problem sizes and types. Constraints on extended state space and
constraints on path probabilities were quite similar to each other. In N-M-monitoring
problem the constraints on path probabilities were faster in smaller instances whereas
the constraints on extended state space were faster in larger instances. In the
modified oil wildcatter problem the order of the two models was reversed. The
constraints on extended state space was faster in smaller instances whereas the
constraints on path probabilities were faster on larger instances. The approaches
are applicable to problems with fairly many decision nodes and multiple different
information structures but there are limitations. In N-M-monitoring problem, the
maximum problem size that was solved using the introduced models was N = 5 and
M = 5. The modified oil wildcatter problem was solved with a maximum of 6 reports.
The relaxation of the decision strategy variables has a significant impact on the
computational requirement. The N-M-monitoring problem was already impossible to
solve with N = 3 and M = 3 without the relaxation. The contribution can be quite
valuable in decision problems with multiple decisions that give more information on



some target. As evidenced by the extended oil wildcatter problem that was solved
above, the optimization models can handle multiple testing decisions. Now all solved
models had only two states per node. However, when the initial state space of the
nodes grows, then the constraints on extended state space could work better than
the other models.

All models assume that the information structure can be decided before the
chance events and decisions represented by nodes in the influence diagram take
place. Contrary to the assumption, the information structure may not be fully
known beforehand. An important addition to the decision model would be a non-
deterministic view of the realization of the information structure.
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