
Task Complexity Analysis: A Mobile
Application Case Study

Sami Nieminen

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 25.5.2022

Thesis supervisor:

Prof. Antti Oulasvirta

Thesis advisor:

M.Sc. (Tech.) Timo Mätäsaho

The document can be stored and made available to the public on the open internet
pages of Aalto University. All other rights are reserved.



aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Sami Nieminen

Title: Task Complexity Analysis: A Mobile Application Case Study

Date: 25.5.2022 Language: English Number of pages: 7+67

Department of Communications and Networking

Major: Human-Computer Interaction Code: SCI3097

Supervisor: Prof. Antti Oulasvirta

Advisor: M.Sc. (Tech.) Timo Mätäsaho

Interfaces are used to perform various tasks and in HCI particularly a human
performs some task with the aid of a computer with the mediation of an interface.
Tasks and interactions can be modelled as graphs, where the graph attributes
contain information relevant to the understanding of the interaction task. Based on
the interaction graph, it is possible to compute numerical task complexity measures
that help compare the complexities of different tasks. However, determining the
nature of tasks with manual evaluation is labor-intensive and does not work well
with large-scale problems such as algorithmic design or evaluation of large datasets.
In this work, we have shown that it is possible to algorithmically infer tasks
structures from user interfaces and compute task complexity measures for the task
structures represented by graphs. More specifically, the graphs contain descriptions
of the components and the interaction modes associated with them, such as a
tap. The graphs have been generated from Enrico dataset view hierarchies. The
accuracy of the generated graphs is 53.5 % (90 % CI, 15 % ME). Majority of
the errors are caused by issues in the underlying dataset. The computed task
complexity measures include Wood’s task complexity and Halstead’s E measure.
The task complexity measures behave in a fundamentally different way, and their
applicability requires further validation. The results demonstrate that it is possible
to computationally model and understand tasks performed by humans on interfaces
based only on the interface structure. The ability to infer interface task structure
as a graph and an adjacency matrix adds a novel perspective for analyzing and
modeling user interfaces.

Keywords: computational interaction, graph analysis, mathematical modeling,
mobile applications, task analysis, task complexity, user interfaces
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Käyttöliittymillä suoritetaan lukuisia tehtäviä ja erityisesti HCI-alalla ihminen suo-
rittaa tehtäviä tietokoneen ja käyttöliittymän avustuksella. Tehtäviä ja vuorovaiku-
tuksia voidaan mallintaa graafeina, joissa graafin ominaisuudet sisältävät tehtävän
ymmärtämiseen olennaista tietoa. Vuorovaikutusgraafin pohjalta on mahdollista
laskea numeerisia tehtävien monimutkaisuusarvoja tehtävien monimutkaisuuksien
vertailuun. Kuitenkin, tehtävien luonteen päättely manuaalisella evaluaatiolla on
työlästä, jonka takia se ei toimi hyvin suuren skaalan ongelmiin kuten algoritmilli-
seen suunnitteluun tai suurien datasettien evaluointiin. Tässä työssä osoitettiin,
että on mahdollista päätellä tehtävien rakenteet käyttöliittymistä ja laskea graafien
esittelemille tehtävärakenteille tehtävän monimutkaisuusarvo. Tarkemmin graafit
sisältävät kuvaukset käyttöliittymien komponenteista ja niihin liitetyistä vuorovai-
kutuksista, kuten sormella napautuksesta. Graafit on generoitu Enrico datasetin
näkymähierarkioista. Generoitujen graafien tarkkuus on 53.5 % (90 % CI, 15 % ME).
Enemmistö graafien virheistä johtuu datasetin ongelmista. Tehtävien monimutkai-
suusarvoina on käytetty Woodin tehtävän monimutkaisuusmittaa ja Halsteadin E
mittaa. Työn monimutkaisuusarvot käyttäytyvät fundamentaalisesti erilailla, ja
niiden pätevyys vaatii lisävahvistusta. Tulokset osoittavat, että pystymme lasken-
nallisesti mallintamaan ja ymmärtämään ihmisten käyttöliittymillä suorittamia
tehtäviä pelkästään käyttöliittymän rakenteeseen nojaten. Kyky päätellä käyttö-
liittymän rakenne ja sillä suoritettavat tehtävät graafina ja vierekkäisyysmatriisina
lisää uuden näkökulman käyttöliittymien analysoimiseen ja kehittämiseen.

Avainsanat: grafianalyysi, käyttöliittymät, laskennallinen vuorovaikutus,
matemaattinen mallinnus, mobiilisovellukset, tehtävä-analyysi,
tehtävän monimutkaisuus
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1 Introduction
Here we define the context and motivation for task complexity analysis in human-
computer interaction (HCI), the research problem, contributions made by solving
the problem, constraints of the research, and finally the thesis structure.

1.1 Motivation
In industrial projects where part of the product includes a mobile application or a
website, a particular concern is how to make the interface easy to use or in similar
terms less complex. In the field of HCI, various techniques and methods exist to
improve an interface, where they can also be employed to make the interface less
complicated. The importance of interface improvement is reflected in the many
techniques employed by HCI experts. These techniques and methods include but are
not limited to

• online controlled experiments like A/B testing [1, 2, 3, 4],

• expert based usability evaluations [5] such as heuristic evaluation, cognitive
walkthrough, and think aloud method [6],

• various surveys and interviews that help understand the quality of an interface
possibly with the help of predesigned scales such as system usability scale (SUS)
[5].

A particular limitation with these methods is their employability for computational
and algorithmic approaches. In particular, many of the methods require considerable
amount of manual work to find ways to improve interfaces. In computational
interaction [7] a focus is placed on using mathematical models and algorithms with
capacity to explain and improve interaction. In this work, we aim to

1. demonstrate a mathematical modeling methodology for algorithmically inferring
task and interaction structures in the form of interaction graphs from interfaces
view hierarchies.

2. evaluate several task complexity formulas for their suitability to be used with
the mathematical methodology used to infer the task and interaction structures.

Developing a mathematical method to consistently improve and analyze the task
complexity presented by an interface can be used to further the field of computational
interaction. Additionally, it may help various industrial projects where continuous
development practices [8] especially in design and interface development areas could be
sped up by having a consistent and reliable way to quantify the difficulty experienced
by users when they want to perform a task with the aid of the interface. Once the
difficulty of the task is quantifiable, it will be possible to determine which interface
may be superior for aiding the user in accomplishing the intended task.
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1.2 Research Problem and Questions
Within the scope of task complexity modeling under the field of computational
interaction [7] there are two interesting initial research directions that can be pursued.
The first research direction is constructing task models of already existing interfaces
and obtaining task complexity measures for them. Firstly, by obtaining the models
and measures, it will be possible to compare the interfaces against each other
objectively in terms of how difficult accomplishing tasks on them will be. Secondly,
by constructing task complexity models of UIs algorithmically, we will be able to
study where the algorithms may face limitations when compared to human evaluation
of a correct task model.

The second initial research direction of interest ties to constructing new UIs
algorithmically. When developing interfaces algorithmically, a particular topic of
interest is which objective function to use for maximizing certain aspects of user
performance [7]. Task complexity measures can serve as an objective function to be
optimized for when constructing interfaces algorithmically. Both the first and second
research directions enable us to generate task complexity measures for interfaces,
which can later be studied against task complexity experienced by humans.

In this work, we choose to focus on the first option of constructing task complexity
models for already existing interfaces and computing task complexity measures for
them algorithmically. More specifically, we aim to study how well a basic algorithmic
approach is able to infer the task and interaction model when compared to human
evaluation. In order to do this we will use Enrico [9] which is a dataset of mobile
interfaces with guarantees of matching between UI screenshots and the view hierarchy.
We aim to answer two questions in this work that are complementary:

1. What types of problems exist for inferring interaction graphs from view hierar-
chies in terms of dataset quality and inference algorithm performance?

2. Evaluating several task complexity measures for their suitability to be employed
with the interaction graphs.

When evaluating the limitations with inferring interaction graphs from view
hierarchies, we measure a numerical estimate of the frequency of the inference
limitations with a confidence interval and margin of error. With evaluating the
task complexity measure suitability, we will be focused on understanding if the task
complexity measure can conceptually fit into the generated task models. A particular
consideration from an evaluation perspective will be how well the model captures the
interaction qualities in the task. If a particular task complexity model assumes the
existence of irrelevant qualities from interface interaction perspective in the model,
then it may be deemed a less suitable model.

When considering the research problem within the problem types in HCI research
as discussed by Oulasvirta and Hornbæk [10] our work contributes in the conceptual-
empirical study types in the HCI field. Firstly, creating a model to explain tasks
algorithmically presented on interfaces constitutes a conceptual problem. The cause
of the conceptual problem is implausibility [10] of manual task analysis to scale up to
large scale problems, which calls for a computational interaction approach. A second
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conceptual problem in this work is understanding which task complexity algorithms
capture the relevant interaction qualities presented on the graphs sufficiently. Lastly,
the supportive research problem is an empirical problem, as we try to understand
unknown effects on the correctness of the tasks presented on the interaction graphs
when compared to what a human would assume the tasks to be. The unknown effects
are classified to dataset limitations and inference algorithm limitations.

1.3 Research contribution
This thesis contributes to the field of computational interaction through a novel graph
based method of inferring interface task structure and computing task complexity
measures based on the view hierarchy of an interface. More specifically, we extract a
directed graph and an adjacency matrix from the view hierarchy, which will contain
a description of the tasks the user may perform on the interface. The directed graph
and the adjacency matrix can then be used to compute measures of complexity for
the interface. These measures can be used to automatically measure interface task
complexity as they may be experienced by humans, especially once studied against
measures of subjective task complexity and task performance.

Since we are inferring the interface task structure both algorithmically and
evaluating them with a random sample against human understanding of the tasks
on the interface, we are also able to study where an algorithm may have difficulties
inferring the task structure correctly. The inference difficulties may be caused either
by the underlying dataset or the inference logic of the algorithm. This will contribute
towards understanding where algorithmic behavior may differ from the same task
when performed by a human. Especially as it pertains to the understanding of the
nature of tasks themselves. Understanding these differences will allow developing
task inference algorithms more carefully with more human-like understanding of
tasks when it comes to the design and evaluation of interfaces.

1.4 Research Topic Constraints
The topic area has been specifically restricted to the demonstration of applying a task
inference algorithm on mobile application view hierarchies and evaluating suitable
task complexity measures to be used with the interaction graphs inferred by the
algorithm. This means we do not attempt to obtain ideal algorithmic accuracy for
inferring task structure or complexity measures in this work. To the authors best
knowledge, this is the first time task complexity has been inferred algorithmically
from mobile application view hierarchies. As a consequence, demonstrating the basic
principle of how to infer the task structure and identifying conceptually suitable
task complexity measures for the interaction graphs shall take priority. The act of
manually reviewing the algorithm performance against human understanding of tasks
will contribute towards developing more accurate interface task structure inference
algorithms in the future.

In this work, we focused on 1) researching what types of task inference problems
can be found for an algorithm when compared to human performance on the same
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task, and 2) evaluating conceptually suitable task complexity measures for the
interaction graphs. This means we have purposefully omitted to study how well the
task complexity measures actually measure complexity as experienced by humans,
or how they relate to task performance measures such as task completion time and
error rate. These omissions are primarily due to this work being more focused
on understanding algorithmic performance for an inference task rather than the
human experience or performance, although human experience and performance form
important parts of the HCI field.

1.5 Thesis Structure
In the upcoming chapters, we first discuss the required background to understand
the construction of task structure based on interface view hierarchy and analysis of
task complexity. The background literature discussion starts with an introduction to
Rico [11] and Enrico [9] datasets, which will be used throughout this thesis. Secondly,
we will discuss the basics of directed graphs, which form the basis for inferring
task structure algorithmically. Then we move on to discuss task analysis, with an
emphasis on task complexity analysis. Within task complexity analysis, we further
place a specific emphasis on being able to analyze task complexity algorithmically,
with the algorithm being suitable for the interaction graphs generated in this work.

In the third chapter, we will introduce the methodology required to infer task
structure from interface view hierarchies. A particularly important concept here is
how to represent interface components and the interaction modes connected to the
components in graphs. We will also discuss the formulation of an adjacency matrix
based on the graph and computing task complexity measures based on the graphs.
In the fourth chapter, we will convert the procedure presented in the third chapter
to an algorithmic inference procedure for Rico view hierarchies. In the fifth chapter,
we will review the quality of the algorithmically inferred interaction graphs and also
visualize the task complexity measures for the graphs. In the sixth chapter we discuss
the results of the work, the limitations and potential future work directions. Lastly,
we draw conclusions reached from the work in the seventh chapter.
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2 Background
In this section, we focus on the required background to understand how to construct
interaction graphs and compute task complexity measures based on the graphs.
Firstly, we will introduce Rico [11] and Enrico [9] datasets as they will be used
throughout this work. Secondly, we must understand the basics of directed graphs
which can be used to model interactions and how the interactions combine into
various tasks that can be performed on an interface. The basics of directed graphs
are discussed in Section 2.2 with an emphasis on a perspective that will carry over
to forming interaction graphs.

Thirdly, we discuss task analysis in Section 2.3 with a computational interaction
focused perspective. We first introduce hierarchical task analysis to connect the
concept of tasks in this work to previous work in the field of HCI. Then we review
task complexity analysis followed by discussion on task complexity factors. Lastly,
we introduce Wood’s task complexity and several task complexity measures derived
from software complexity measures.

2.1 Rico and Enrico
Rico [11] is a mobile UI dataset consisting of 72k UIs collected from 9.7k Android
applications using a hybrid data collection strategy. The data includes screenshots,
wireframes, view hierarchies, interaction traces, layout vectors, animations and
metadata. The data has been collected by first employing a human to browse the
application with the browsing data collected from their use sessions. The human
browsing data has been used to warm up an automated crawler which performs
further crawling.

Deka et al. [11] used a subset of applications to demonstrate that the hybrid
crawling strategy achieves a better coverage of the applications. This extended
coverage of applications with the dataset would make a useful feature for studying the
total task complexities of real applications using the mathematical tools described in
Section 2.3.2. However, the Rico dataset is noisy with mismatches between wireframes
and screenshots and other data quality issues as described by [9, 12, 13, 14]. This
means that any full application covering task complexity graph is also likely to not
represent ground truth due to the noise present in the data. From the potential
datasets we use Enrico [9] although the approach and dataset presented in [12] would
offer a promising direction for studying task complexity as well.

Enrico [9] is a manually curated subset of Rico that contains high-quality data.
Enrico was generated from a random sample of 10k UIs from the Rico dataset with
1460 UIs as the end result. The dataset curation was accomplished by having two
humans review the UIs for inconsistencies between the wireframes and screenshots
on a web-based graphical UI (GUI). Subsequently, the good UIs were labelled to a
series of 20 UI layout topics such as login, maps and tutorial. The dataset quality
was showcased by performing autoencoder classification on the dataset in order to
predict the topic labels. Additionally, an UMAP algorithm based manifold projection
was used to visualize the dataset. From the perspective of our work, the curation of
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Figure 1: An Icon component view hierarchy description for Rico ID 124.

the data is the most critical feature, as this allows us to generate interaction graphs
of the Enrico UIs in Section 4.

In Figure 1 we see an example of Rico ID 124 view hierarchy description for an Icon
component. In this work, we will make use of the view hierarchy descriptions to infer
task structures. The keys in the view hierarchy we will be leveraging include bounds,
clickable and componentLabel. The clickable key will be particularly important as it
will be used to determine which components form a part of the task structure used
to measure task complexity. The componentLabel key will be used to determine
which interaction type will be performed by the user, which we will discuss in the
next section.

2.2 Graphs and Directed Graphs
A graph is a combinatorial structure that is formed by combining two distinct sets
called vertices and edges with an incidence relation set between them. Additionally,
graphs can have various attributes encoded into them with the use of colors, weights
and descriptions. A directed graph is a particular type of graph where the incidence
relations have arrows that point the direction of travel between the vertices. [15]

Figure 2 showcases two graphs. Both of the graphs have the same sets for vertices
V = {a, b, c} but the edges differ. The left graph has edges defined by E = {ab, ac, bc}
and the right graph by E = {d, e, f}. The difference between these two graphs is
that the one on the right is a directed graph and uses specifically assigned names
for distinguishing the edges of the graph. The distinct names and directions of the
edges on the right side graph form an important part of this work.
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Figure 2: A graph with three nodes and vertices (left) and a graph with the same
structure but specifically designated edge names in a directed graph format (right).

Figure 3: Adjacency matrices for the graphs presented in Figure 2. The one on the
left corresponds to the left graph in Figure 2 and the one on the right to the right
graph. Note that the left matrix is symmetric due to two-way directions between
the graphs. The right adjacency matrix is not symmetric, as the connections are
one-way only in the graph the adjacency matrix represents.

From the perspective of our work, another particularly important concept is the
matrix representation of graphs. A matrix representation of a graph allows us to
employ linear algebra on graphs [15]. An adjacency matrix is a matrix where the
rows and columns describe nodes of a graph. For a simple graph such as the one on
the left of Figure 2 the adjacency matrix is a symmetric matrix with ones as values
where there are connections between the nodes. The left side of Figure 3 shows an
adjacency matrix for the undirected graph from Figure 2. The right side of the same
figure shows the adjacency matrix for the right graph from Figure 2, where due to
the directed edges the adjacency matrix is not symmetric anymore.

Graph based models can be used for various applications related to human
interactions with computers, systems and human factors [16, 17, 18, 19, 20, 21, 22, 23].
For example, sequences of user interactions can be presented as paths in a graph
where the user moves from one node to the next [17]. Similarly, user action choices
can be modeled by transition matrices [17]. A transition matrix represents the
probabilities of moving from one state to the next in a Markov chain. A Markov
chain is a sequence where transitioning from one state to the next does not depend
on earlier states in the sequence [15]. Figure 4 shows a transition matrix and a
graph for the transition matrix for a three node scenario. Baber and Stanton [24]
demonstrate how to use a transition matrix when performing task analysis for error
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Figure 4: A Markov diagram and a transition matrix, where moving from one state
to the next depends on the probability attributes attached to the edges of the graph.

identification. In this work, we focus on non-stochastic behavior, but adjacency
matrices can be replaced with transition matrices when studying stochastic user
behavior with interfaces.

Hardman et al. [19] applied graph descriptions to mathematically study improving
user interfaces for fighter jets such as the F-15. In the work, the display layout is
modeled as a discrete Markov chain containing nodes and edges. The nodes describe
a page on the display, and edges describe inputs performed by the user to move from
one node to the next. In this context the directed graph is also connected as the
user must be able to transition from any operational state to any other state given
changing operation conditions. A graph is connected when any node is reachable
from any other node in the graph [15]. The act of traversing between nodes is called a
walk, and during a walk an alternating sequence of nodes and edges will be traversed
through [15]. The work of Hardman et al. [19] differs on a fundamental level from
our work, since the graphs generated in this work are not connected.

Ceci and Lanotte [25] applied sequential pattern mining to extract sitemaps,
which help understand the design structure of websites without needing to manually
maintain a sitemap. Similarly, hierarchical models can be used to model web graphs
[26]. Hierarchical Markov models which are probabilistic graphs can be used to
analyze human behaviors. Youngblood and Cook [27] used sequential pattern mining
to automatically generate hierarchical Markov models of inhabitant behaviors in
smart office and home environments. The hierarchical Markov models enabled
learning how to control the smart environment using reinforcement learning.

2.3 Task Analysis
Task analysis is used to systematically obtain an understanding of human interaction
with a system or between humans [28, 29]. Due to the recent developments in artificial
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intelligence [30, 31], and especially reinforcement learning [32], we will expand task
analysis in the scope of this work to include agent interaction with a system or
humans. We will call humans and agents as operators. Task analysis covers what
actions and cognitive processes an operator needs to perform in order to achieve a
goal [29]. A simple goal can be making the bed in the morning and moving a pillow
to the end of the bed, an action that takes the operator towards the goal. Performing
task analysis gives an understanding of the relations between the demands of the
system, the capabilities of the operator in the system and how those demands might
need to be altered to reduce errors in performing the task [29].

According to Wickens et al. [28], task analysis at a basic level consists of four
steps which include

1. Defining the analysis purpose and identify the type of data required

2. Collecting task data

3. Summarizing task data

4. Analyzing task data

Performing task analysis can be accomplished by various techniques and methods,
including hierarchical task analysis (HTA), [29], GOMS [33], task complexity analysis
[34, 35, 29, 33] and cognitive task analysis [36]. Due to the vast number of task
analysis methods and application domains [29, 33, 37] we will limit ourselves to
briefly reviewing methods to those that are relevant to computational interaction and
specifically to interface design and analysis. This means we are primarily concerned
with task analysis where it fulfills one of the following criteria defining computational
interaction [7]

• a way of updating a model with observed data from users;

• an algorithmic element that, using a model, can directly synthesize or adapt
the design

• a way of automating and instrumenting the modelling and design process

• the ability to simulate or synthesize elements of the expected user-system
behavior

With the above-mentioned criteria for computational interaction and steps for
performing task analysis, examples of computational approaches to accomplishing
task analysis or parts of it in different fields include

• Automated planning [30]

• Data mining [27, 38]

• Graph modeling [35, 39, 27]

• Machine learning [40, 41, 42]
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• Reinforcement learning [43, 32, 44]

• Robotics [45, 46]

• Simulations [47, 48, 49]

Within the scope of this work we are focused on human interaction with a system
and even more specifically on human interaction with a user interface. For interfaces,
hierarchical task analysis is a recommended task analysis method [29] and additionally
it has relevant similarities to hierarchical reinforcement learning [32]. Hierarchical
task models can be formulated as matrices and tensors, connecting it to graph based
task representations. As a consequence, we will describe hierarchical task analysis in
Section 2.3.1 as an example. We will then move on to describing task complexity
analysis in Sections 2.3.2, 2.3.4 and 2.3.5. A particular area of focus in this work is
applying task complexity formulas.

Table 1 presents the task complexity equations that will be evaluated in the
upcoming Sections 2.3.4 and 2.3.5. The formulas have been selected as a representative
sample of formulas that have been considered for human-computer (or system)
interaction previously [35, 39, 50, 51, 52, 53]. This choice is made in the light of not
intending to make the primary focus of this work giving comprehensive overview of
task complexity formulas. Examples of relevant formulas beyond the scope of this
work include those in the finite-state machine literature [54, 55].

Equation Name Formula

Equation 1 Component complexity TC1 = ∑p
j=0

∑n
i=1 Wij

Equation 2 Coordinative complexity TC2 = ∑n
i=1 ri.

Equation 3 Dynamic complexity TC3 =
∑m

f=1 |TC1(f+1) − TC1(f)|
+|TC2(f+1) − TC2(f)|

Equation 4 Autocorrelation TC4 =
∑m

f=1 |TC1(f+1) − TC1(f)|
(1− ρT C1) + |TC2(f+1) − TC2(f)|(1− ρT C2)

Equation 5 Total task complexity TCt = αTC1 + βTC2 + γTC3

Equation 6 Halstead’s E measure E = η1N2(N1+N2)
2η2

log2(η1 + η2)

Equation 7 McCabe’s v(G) v(G) = e− n+ p

Equation 8 Shannon’s entropy H = −∑h
i=1 p(Ai) log2 p(Ai)

Table 1: Task complexity formulas evaluated in this work.

2.3.1 Hierarchical Task Analysis

HTA is a process where tasks to accomplish goals are decomposed down into subtasks
until a desired level of detail is reached [56, 29]. According to Annett [56] when
performing hierarchical task analysis, the unit of analysis is an operation that specified
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by goal. The operations are activated by actions caused by an input. Finally, the
operations are terminated by feedback. Within the scope of HTA [29] goals are
defined as desired system states by the human and tasks are specific methods used
to obtain the goal. Operations are units of behavior that are performed to obtain a
goal.

Hierarchical task analysis process begins by defining a goal the user has to
accomplish [29]. The goals are decomposed down to sub-operations and plans, where
the plans are used to describe in which order and under which conditions each
sub-operations should be performed. The sub-operations may be broken down to
even more detailed sub-operations if deemed necessary. This process is repeated until
a sufficient level of detail is reached.

In Figure 5 contains a sample HTA for a user interface. The top level goal of the
HTA is to simply operate the interface. For this goal, six possible tasks have been
found. The six subgoals are on the second level of the hierarchy, such as signing in to
the application. In order to accomplish the top level goal of operating the interface,
the user needs to perform only one of the subgoals. This is denoted in the plan 0
where the user has to do one of the tasks as noted by the OR operators.

If the user chooses to do task 1 there will be three subtasks that need to be
performed. The subtasks and their order are described in plan 1 where the AND
operators define that they will all be executed to fulfill task 1. For inputting email
and password (1.1.1 and 1.2.1) the user must perform subtasks for both which include
multiple taps to activate the email or password fields and then fill in the correct
sign in information. This is where in the context of our work we draw the line for
sufficient detail of hierarchical task analysis and will not break it down any further.

2.3.2 Task Complexity Analysis

Task complexity analysis is a subtopic of task analysis [29, 33]. Task complexity
simply represents the inherent difficulty with executing a particular task [33]. More
specifically, task complexity refers to how complicated performing a task in terms
of operations is for a human. This can include both objective and subjective task
complexity [57]. Subjective task complexity is the perceived complexity observed
by the task performers. On the other hand, objective task complexity is focused
on measuring the intrinsic factors affecting the complexity of the task. An intrinsic
attribute can be a number of steps needed to take or time taken to point to a specific
element on the interface. We specifically use the definition provided by Liu and Li
[57] also referenced by [58], where they defined task complexity as an aggregate of
all intrinsic factors which have an effect on performing a task.

When considering different forms of task complexity, Ham, Park and Jung [59]
visualized the forms of task complexity as presented in Figure 6 below. They
distinguished the importance of user interface design as a mediator of task complexity.
What their distinction implies is that by analyzing the representation of the work
domain, we can improve human performance with the task. As both the interface
and the work domain are subjects of objective complexity, we can apply optimization
techniques on mathematical models of objective task complexity to study how to
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Figure 5: Hierarchical task analysis and the UI screenshot for Rico ID 2716. The
purpose of this task analysis is to determine what options the user has in operating
the interface.

improve human performance with the task. The improvement in human performance
can be measured by reduced error rate, improved task completion time or in reduced
subjective task complexity experienced by the human [57].

2.3.3 Task Complexity Factors

When considering task complexity factors suitable for objective perspective, the
factors are preferentially measurable such that their measure is not dependent on the
qualities of any particular user [57]. Additionally, for user interface derived measures,
the factors are derivable from the visible representation of the user interface. Liu
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Figure 6: Task complexity types visualization based on the work of Ham, Park and
Jung [59].

and Li [57] performed a review of factors contributing to task complexity, either as
complexity reducing or complexity increasing factors. Table 2 compiles their review
of the factors. The categories in Figure 2 serve as broader conceptual frameworks
for grouping factors into related task components. The category of goal and output
contains factors that are formed by the desired outcome of the task. The goal and
output is necessary for task modeling in order to define when the task is successfully
completed or when the user has failed the task. As a comparison of task clarity
describing goal of a task as tapping on the purple button in Figure 8 leftmost screen
is a task with a good task clarity. On the other hand, asking the user to identify a
desirable product on the middle screenshot of Figure 8 is an example of a task that
has low clarity due to ambiguity in what is considered a desirable product. A task
that has little clarity is also difficult to represent objectively as a number for when it
is successfully completed or not completed.

Input factors category represents the clarity and difficulty of giving input through
the user interface [57]. As an example, if the text "Henkilötunnus" (social security
number) was removed from figure 9 screenshots, then the input clarity would be
reduced. A skilled user may still be able to figure out the required data for the input
field through testing against the input validity validator used on the input field.

Process factors represent procedural operations that must be completed to get to
the goal of the task. Quantity of steps represents an intrinsic measure of the number
of procedures performed in the task. For completing a subtask represented by the
three screenshots in Figure 8, the user has to complete three steps where each step
is complete once the purple button has been tapped on in each of the views, for
example. On the other hand, physical requirements of the process category in Table
2 are affected when the accuracy requirement of the physical action is increased, for
example. This effect can be objectively measured by the index of difficulty of Fitts’
law [60]. In the first screenshot of Figure 8 pressing the button with text "Ohita
edut" places greater physical requirements as the target is smaller than the purple
button above it.
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Category Factor Effect
Goal/output Clarity Negative

Quantity Positive
Redundancy Negative

Change Positive
Input Clarity Negative

Quantity U-shape
Diversity Positive
Inaccuracy Positive

Rate of change Positive
Redundancy Negative
Conflict Positive

Unstructured guidance Positive
Mismatch Negative

Non-routine events Positive
Process Clarity Negative

Quantity of paths Positive
Quantity of steps Positive

Conflict Positive
Repetitiveness Negative

Cognitive requirements Positive
Physical requirements Positive

Time Concurrency Positive
Pressure Positive

Presentation Format Varies
Heterogeneity Positive
Compatibility Negative

Table 2: Compilation of task complexity factors by Liu and Li [57].

Time factors place temporal demands on completing and performing the task. For
example, when performing emergency operating procedures on nuclear power plants,
there may be limits on when the procedure must be completed in order to prevent
safety hazards [35]. Similarly, when playing various computer or mobile games, there
may be time limits which make performing the task presented by the game more
difficult. Time factor is measurable as is, since having to perform the same task in
less time adds time pressure factor to the task, measured by the difference between
the original time requirement and the new time requirement.

2.3.4 Wood’s Task Complexity

Wood [34] discussed three different perspectives to assess task complexity, defined as
1) component complexity, 2) coordinative complexity, and 3) dynamic complexity.
Additionally, a way to assess total task complexity was presented by Wood. Com-
ponent complexity refers to the number of information cues for distinct acts that
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Figure 7: Precedence relations on a graph. Node b has a precedence relation to node
a.

needed to be completed in order to complete a task. Component complexity can
then be measured as

TC1 =
p∑
j=0

n∑
i=1

Wij, (1)

where p is the number of subtasks, n is the number of acts for each subtask and Wij

represents the number of information cues for each act. Wood noted redundancy
as a factor that reduces component complexity, where redundancy can be analyzed
from either acts or information cues perspective. An example is presented in Figure
8 of information cues and acts for that are both similar through button design across
various parts of a UI. Similar design for UIs helps reduce total task complexity.

Coordinative complexity [34] refers to the demands placed on completing a task
when considering the coordinative relationships between information cues, acts and
products. Coordinative demands can be placed in the forms of timing, frequency,
intensity and location requirements. An example of a coordiantive relationship is the
requirement to move a mouse on top of a correct icon on a computer before clicking
on it. A timing related coordinative relationship can be moving a game character
while performing an act like collecting a moving item on the screen by pressing a
collect item button. Generally, the more demands on a task are place on it in the
forms of frequency, timing, intensity and location related requirements, the more
coordinatively complex the task is.

Mathematically a simple case of coordinative complexity can be defined as a
sequence of precedence relations in order to accomplish a particular task [34]

TC2 =
n∑
i=1

ri. (2)

In Equation 2, TC2 represents coordinative complexity, ri denotes a precedence
relation and n is the count of precedence relations i is the order of the precedence
relation. In terms of a graph, the number of precedence relations is the number of
edges when walking the start node to the current node on that specific graph path.
Figure 7 showcases an example of a graph with precedence relations. Node b on
the graph has one precedence relation, as the act represented by node a must be
performed first. On the other hand, node c has two precedence relations, as acts on
both a and b nodes on the graph must be performed first. The total TC2 on Figure
7 is three, as both the precedence relations of nodes b and c are counted.
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Figure 8: Example of UI similarity (redundancy) in the form of purple buttons that
acts as similar information cues and act requirements for moving to the next part
across multiple views. Screen capture taken from Telia Dot application [61].

Dynamic task complexity [34] refers to changes in the complexity of a task over
time, either due to predictable or stochastic processes. The changes in dynamic
complexity are measured by

TC3 =
m∑
f=1
|TC1(f+1) − TC1(f)|+ |TC2(f+1) − TC2(f)|, (3)

where TC1 represents component complexity from Equation 1 and TC2 is a measure
of coordinative complexity from Equation 2. Both TC1 and TC2 are measured
in standardized units and f represents the number of time periods when measures
are taken for the task. If the task complexity is evolving unpredictably, then an
autocorrelation term may be required in order to represent the predictability of the
change. Mathematically this is formulated as

TC4 =
m∑
f=1
|TC1(f+1) − TC1(f)|(1− ρTC1) + |TC2(f+1) − TC2(f)|(1− ρTC2), (4)

where the terms are the same as in Equation 3 but ρTCi
represents the autocorrelation

for component and coordinative complexities. As autocorrelation measures similarity
between two time series, then an increase in autocorrelation means that the dynamic
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task changes are more similar to each other, leading to a reduction in dynamic task
complexity metric.

Figure 9: A UI view that places coordinative complexity requirements on the user.
In order to get the move to next view button active represented by purple color, the
user must first correctly fill in the required information. In this view, the required
coordinative complexity is variant and depends on if the owner is also the user of
the mobile subscription. Screen capture taken from Telia Dot application [61].

When the change in dynamic complexity happens through a predictable process,
usually there are information cues and other knowledge that help indicate what will
happen when the task complexity changes. Figures 10 and 11 below represent an
example of predictable dynamic task complexity change depending on what type of
number order a user makes. Figure 10 represents a situation where the customer
initially chooses the white button in the leftmost screenshot for a new number.
Figure 11 is the same situation, but the customer wants to transfer an existing phone
number and has chosen to click on the purple button. Depending on which button the
customer presses, the task complexity change is dynamic and reasonably predictable.
Additionally, Figure 9 showcases an example of dynamic complexity between the
center and right screenshots, where selecting if the owner is the user alters the task
requirements in a fairly predictable manner. If the owner of the subscription is not
the owner, then personal information for the different user must be provided.
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Figure 10: A scenario where the customer wants to order a new phone number, which
leads to a predictable dynamic complexity change for the next view shown to the
customer. The new number is represented by the white button in the left screenshot.
Screen capture taken from Telia Dot application [61].

Lastly, for total task complexity, Wood [34] recommends a linear formula in the
form

TCt = αTC1 + βTC2 + γTC3, (5)

where each factor from equations 1 to 3 is weighted according to a scalar value
with α>β>γ. However, he notes that to get a more accurate formula derivation is
obtained through derivation due to dependencies between equations 1, 2 and 3.

When considering total task complexity for a modern UI, then Figures 10 and
11 represent a case example where a measure of total task complexities could be
obtained for two alternative UIs. The component and coordinative complexities
are the same for the left and right figures. On the other hand, the effects of the
center screens lead to different total task complexity measures for ordering a number
transfer or a new number.
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Figure 11: The customer has chosen to press on the purple button in the left most
figure as they want to transfer their existing phone number. This dynamically alters
the task complexity and this time two new views must be successfully navigated
through. After the two subtasks are completed, the customer returns to the same
phase in the rightmost picture as in Figure 10 rightmost picture. Screen capture
taken from Telia Dot application [61].

2.3.5 Software Complexity Formulas

The major difference with the equations used by Park et al. [35] when compared to
the derivation of Equation 5 by Wood [34] comes from using the software complexity
concept as a way to derive a step complexity measure. Software complexity can
be analyzed from textual and structural perspectives. The textual perspective
analyzed by Park [35] includes Halstead’s E measure, while structural perspective
was considered using McCabe’s v(G) measure and entropy measure. Of the three
formulas, Park found the entropy measure to be the most suitable for analyzing
step complexity of nuclear power plant emergency operating procedures, where Xu’s
choice of formula [62] seems to be in agreement with this assessment.

Halstead’s E measure is defined as

E = η1N2(N1 +N2)
2η2

log2(η1 + η2), (6)

where η1 is the number of unique operators, η2 is the number of unique operands, N1
the total frequency of operators and N2 the total frequency of operands. Park [35]
describes Halstead’s E measure as an absolute measure of software complexity, where
the number of mental discriminations is used to obtain a complexity measure through
operands and operators. In software complexity the semicolon ; and IF clauses are
traditional examples of operators while any variable A can act as an operand.
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In Figure 11, the second screenshot from the left serves as an example of application
of Halstead’s E measure to user interface task complexity analysis. Activating the
text entry fields and pressing on any of the buttons can be classified as operators,
while the checkmarks for two fields and text entry fields contain operands. For the
text entry field, the text value is the operand. The frequency of checkmark operands
and operators is 2 for both, while the text entry field activators have 4 operators and
4 operands. Park [35] remarked that the primary challenge with applying Halstead’s
E measure to task complexity analysis is consistently using predefined operators and
operands. In this work, the discriminating operands and operators is a suitable way
to analyze task complexity as the operands and operators are predefined by Rico
dataset [11].

McCabe’s v(G) measure [63] uses a directed graph construction in order to define
a measure of software complexity. The graph must have a unique start and end node,
and each node corresponds to a block of code with sequential flow of code. The v(G)
measure is also known as the cyclomatic number and is defined as

v(G) = e− n+ p, (7)

where e is the number of nodes, n is the number of vertices connecting the nodes
and p is the number of connected components. For studying the applicability of
v(G) to interface task complexity, we also need the definition of a strongly connected
graph [63]. A strongly connected graph has nodes connected by edges such that each
node can be reached from any node by traversing along the edges. As we will see in
Section 3 with the method we have constructed interaction flow graphs McCabe’s
v(G) will not be a suitable task complexity metric.

Lastly, for the entropy based formulation from [64] we define entropy based on
Shannon’s entropy definition such that

H = −
h∑
i=1

p(Ai) log2 p(Ai). (8)

In Equation 8, Ai defines the identified classes in the graph, h is the number of
identified classes and p(Ai) is the probability of encountering a class Ai within the
graph. When measuring complexity using entropy, there are two types of entropy,
where the first-order entropy is called chromatic information content and the second-
order entropy is called structural information content. Chromatic information content
measures the amount of differently connected nodes in the graph. When defining
each node as a mode of interaction, such as a tap or a swipe, we in essence measure
the expected paths towards the next interaction point and where the previous
interaction was most likely done. Second-order entropy on the other hand considers
class identification by categorizing nodes to be the same if they have the same number
and types of neighbors within one arc distance [35]. Although Park et al. chose to
use this measure, it is likely not ideal for our work. This is due to the majority of
graph nodes being connected in the same way. Additionally, the neighbors for almost
all the nodes will be the same S and E nodes.
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3 Interface Task Complexity Analysis
In this section, we develop an approach for extracting task structure from view
hierarchies and perform computation procedure for two distinct task complexity
measures for user interfaces. The two complexity measures we use are Halstead’s E
measure, and Wood’s TC measure, with background on the measures provided in
Section 2.3.4 for TC and Section 2.3.5 for Halstead’s E measure.

In order to quantify task complexity for interfaces, we must first discuss the
definition of available interaction modes for mobile devices and particularly their
relation to different types of components occurring in Rico [11] and Enrico datasets
[9]. Quantifying the interaction modes will allow us to formulate an interaction graph
containing descriptions of relations between various interactions performed by the
humans dependent on the interface structure. The graphs can then be reformulated
as adjacency matrices, which lend themselves well for algorithmic use. Lastly, the
combined information formed by the graph and adjacency matrix can be leveraged
for computing task complexity measures.

3.1 Defining Interaction Modes
The two basic interaction mode definitions in this work are provided by the Rico
dataset [11]. The two definitions are defined by the Android ecosystem [65]. The first
interaction mode is a tap, where a user simply touches a component on the screen.
The second interaction mode is a swipe, where a user will perform a horizontal
swiping gesture with their finger once it comes in touch with the phone screen. With
the nature of task complexity measurement, it is preferable to make two amendments
to the interaction mode definitions. Some components in Rico and Enrico datasets
such as Input component and Map View component can require the users to perform
multiple interactions in a row.

Firstly, they may use multiple gestures to accomplish different goals on the same
component. When taking the example of an Input field, a particular problem is
the number of taps the user can perform to input their name or email or any other
requested information. The tap count the user will perform is unknown, but we
should be able to quantify the increased task difficulty caused by multiple taps. Two
examples of this type of scenario are shown in Figure 12 where the user can Input a
new item to the list or interact with a Date Picker component. The number of taps
will be variant and depend on the task the user is intending to perform. So the task
of inputting an item for "shoes" is less complicated than the task of inputting "Put
insurance card in the wallet". As a solution to this problem, we define an interaction
mode definition called multi-tap. The definition is valid for any component that can
be tapped more than once during a task. This definition lends itself to Halstead’s
E measure, where a multi-tap adds to the number of unique operands as defined
in Equation 6 while not modifying any other factor of the measure. The multi-tap
definition is in essence a placeholder for an unknown variable that is not defined yet.
If the number of interactions on the component is known, then the placeholder can
be replaced with a series of taps on the component.
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Figure 12: Rico ID 1332 (right) with an Input component and, ID 19016 (left) with
a Date Picker component. These two interfaces have the commonality that we don’t
know how many taps the user may choose to apply on the components.

In the second modification, we consider scenarios where the user may choose
amongst multiple different interaction styles such as taps, swipes or pinches [65]
to perform an operation on the same component. This scenario is particularly
exemplified by the Map view component where the user may move the map with a
swipe, tap on some part of the map or pinch to zoom in. An example interface is
show in Figure 13. We call this interaction mode placeholder multimode and the
purpose is to be replaced once the exact interaction choice is known, just like with
multi-tap interaction placeholder.

As a final review, we now have four distinct interaction modes we are using,
as opposed to the two modes originally used in Rico [11]. The modes are tap,
swipe, multi-tap, and multimode. The multi-tap and multimode exist to serve as 1)
placeholders for unknown interaction quantities, and 2) as distinguishers for Halstead’s
E measure. If the tasks the users perform were specified explicitly beforehand, we
could omit the placeholder interaction modes. An alternative solution is to use the
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Figure 13: Rico ID 4008 with a Map View component enabling the user to choose
among several interaction modes such as a swipe or a pinch.

most common interaction mode for these components, which is a tap.

3.2 Mappings of Interaction Modes, Components and Task
Endings

Enrico [9] dataset has 17 distinct components that are interactable as shown in Table
3. For each component we have designated an abbreviation purely for making vertex
plotting more feasible for graphs with a large vertex count as performed in Section 4.
The interaction modes for each component are defined under the interaction column
in Table 3. For the vast majority of components, a tap [65] is the most suitable
interaction mode. For three of the components we have the multi-tap and multimode
interaction modes as described in Section 3.1 We cannot guarantee perfect accuracy
for some components with respect to the correct interaction mode such as Image
or Web View components. Ensuring correct interaction mode interpretation all the
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Component Abbreviation Interaction Ends task
Advertisement AD Tap yes

Background Image BI Tap yes
Button Bar BB Tap yes

Card CC Tap yes
Checkbox C Tap no
Date Picker DP Multi-tap no

Icon I Tap yes
Image IM Tap yes
Input IP Multi-tap no

List Item L Tap yes
Map View M Multi-mode yes

On/Off Switch S Tap no
Pager Indicator P Swipe yes
Radio Button RB Tap yes

Text TC Tap yes
Text Button TB Tap yes
Web View WV Tap yes

Table 3: Enrico component labels and their corresponding abbreviations, HCI
interaction types and if the interaction will end the current task the user is performing.
The definition of which interactions can end a task is dependent on the way task
and goals are defined. In this work, the goal is to simply operate an interface until
a new view is shown, so any action that likely moves the user to the next view is
deemed as task ending interaction.

time would require manual human review or an advanced algorithm that is able to
infer by itself the interaction mode for components based on the nature of the task
to be performed.

The ends task column is used to define if interacting with the specific component
is likely to end a task. If the task will not be ended it means we will connect two
components to each other rather than to an end node which will be described in
detail in 3.3. When considering Rico ID 505 in Figure 14 the UI is asking the user
to select topics of interests and then click Done which would complete the task the
user should perform on that interface. In this UI the Done button is in two places
which makes algorithmic inference more difficult as we will see in Section 4.

On the contrary to Rico ID 505 in ID 545 in Figure 14 we see List Items that do
not end the task. The task description for ID 545 is to select a particular item from
the menu the user wishes to further interact with, such as opening About section. An
alternative task is to open the top left menu icon component if they wish to navigate
elsewhere on the application. This is another challenge we will face when performing
algorithmic task inference in Section 4. Generally a designer may choose to use a
component in a variety of ways and encoding all of these ways into an algorithm
is challenging. This also forms one of the more prominent limitations of this work
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Figure 14: Rico IDs 505 (left) and 545 (right) showcasing UIs with List Item
components. The UIs differ notably in the sense that the left one has not task
ending List Items, while ID 545 has task ending List Items. This conflict is one
of the fundamental challenges in developing algorithms to automatically infer task
structures from preexisting UI view hierarchies.

in the algorithmic section. When a human does manual task analysis and graph
constructions, inferring these differences is almost trivial on the other hand, as shown
in Section 3.3.

3.3 Adjacency Matrix and Interaction Graphs
In order to measure task complexity on interfaces, we need a systematic way to
extract the structure and order of interactions from the interface structure based
on the description in the view hierarchy of the interface. Interaction graphs and
adjacency matrix are based on directed graphs as described in Section 2.2. Even
more specifically, the interaction graphs we construct are based on control graphs.
Some relevant contexts where control graphs have been introduced include software
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complexity studies [63, 66], nuclear power plant EOPs [35], and spaceflight operation
complexity [39]. As a consequence, our concern is on applying control graphs within
the novel context of studying human interaction with mobile user interfaces. For
brevity, we call the graphs in this work interaction graphs rather than interaction
control graphs.

3.3.1 Graph Attributes

The process of building interaction graphs starts from the types of interface compo-
nents. The component will determine the mode of interaction, so we first embed the
component on the graph. The components are placed as the nodes of the graphs
according to the encoding provided in Table 3. An example graph for Rico ID 2789
is shown in Figure 15. A component being defined as a node can be interpreted as
something the arc of the graph will perform an operation on, such as a tap. So the
nodes form the operands for Halstead’s E measure. The arc of the graph has an
interaction mode as an attribute, which is defined by the node the arc will attach to.
The arc represents the operation a human must perform in the form of an interaction
gesture.

When we consider the situation in Figure 15 the user is able to perform two
different tasks that both require interaction. The form of interaction is a tap for both
of the tasks, and they are both performed on text button (TB) components. When
considering Figure 15 further, we can see that a graph is a suitable mathematical
structure to store information about the fundamental aspects of multiple tasks at
the same time. Thus, each of the arcs starting from the node marked with S then
constitutes a distinct subtask within a collection of possible tasks making up the
whole UI view.

The purpose of the S node in Figure 15 is to represent the start of the task, which
also can be interpreted as the user observing the interface when such a distinction is
beneficial. It also serves as a placeholder for constructing larger interaction graphs
made up of multiple views with distinct components. Similarly, the E node represents
the end of a task once a task ending interaction as defined in Table 3 has been
performed.

When we have an interface with components that do not end a task within the
particular scope of task analysis, we get interaction paths longer than one node for
some of the paths that start from the S node. An example is presented in Figure 16
where the user may perform three distinct tasks starting from the S node. The first
task on the left side is for tapping the top left corner icon (I) to move backwards to
the previous screen. The second task is getting another confirmation code on the
phone by tapping the Resend Code text button (TB). The last task on the right is
the most complicated one, as the user must first input the received confirmation code
on the input (IP) component with a series of taps. Once the user has inputted the
code, they must tap the Continue text button (TB) connected to the IP component
to finish the task located on the right side of the Figure 16.

The UI in Figure 16 I also show us an example of how we have limited the scope of
this work. A generic task for the user logging in could require the user to resend code
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Figure 15: Rico ID 2789 interaction graph and the UI. In the graph, the S node
refers to a start position or initial observation by the user. It is best thought of
as an attachment point for all the tasks visible on the interface. The TB nodes
represent the two text buttons on the interface, and on both of them the user can
perform a tap gesture. The E node refers to the end point for all the tasks that can
be performed on the interface. The O attributes of the arcs can be thought of as
observations caused by the interface refreshing the view after interacting with a task
ending component.

and after that perform input entry and tapping the Continue button. Constructing a
graph for this particular task could be accomplished by simply attaching the right
most path on Figure 16 directly after the TB node. We however will keep the scope of
tasks as simple as possible during this work and focus on demonstrating application
of graphs to user interface complexity computation.

3.3.2 Adjacency Matrix

Although we have already constructed interaction graphs by hand for user interfaces,
it is not enough to algorithmically infer interaction graphs. Rather, we need to have
a way to represent the component order and relations between them in a numeric
format suitable for a computer. This is where the adjacency matrix comes in, as we
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Figure 16: Rico ID 1074 with two types of traverse paths starting from the S node.
The graph has two paths with traverse length one and one path with traverse length
two. Each of the paths starting from the S node represents a distinct task.

will later see in Section 4. Here, we focus on describing a few simple cases that help
understand how to read an adjacency matrix used to describe an interaction graph.

Based on what we saw in the previous Section 3.3.1 and based on the theory of
directed graphs discussed in Section 2.2 we still need to fully describe the relations
between nodes in a manner that is suitable for algorithmic inference of task structure
from user interface hierarchies. In order to do this, we use adjacency matrices, where
the columns and rows of the matrix describe the user interface components. In other
words, each column and row position refers to a node on the interaction graph.

When we consider the graph and screenshot of Rico ID 2789 in Figure 15 we get
an adjacency matrix as show in Figure 17. The matrix is interpreted such that the
column nodes have arcs pointing towards the row nodes, where the values are set
to one. Thus, the column with S has arcs pointing to both of the text button (TB)
components. Similarly, both of the text buttons (TB) have arcs towards the end
node E represented by the ones on the last row of the matrix.

A slightly more complicated case is presented by the interface shown in Figure 16
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Figure 17: Rico ID 2789 adjacency matrix.

Figure 18: Rico ID 1074 adjacency matrix with an arc between input and text button
interface component as seen in Figure 16.

for Rico ID 1074. The corresponding adjacency matrix is show in Figure 18. In the
adjacency matrix, we have an arc connection between input (IP) and text button
(TB) components. The connection between them is represented by the value 1 show
on the second last row on the matrix. It follows that any number of connected
subtasks for related interface components may be represented in the matrix.

3.4 Applying Task Complexity Measures
This section discusses the selection of a particular task complexity formula for
measuring task complexity and the necessary definitions for interaction types that
are required to obtain consistent numerical measures across different views shown on
the same application. Additionally, we define how to combine generating designs and
contrasting the impact through task complexity formulas. First we discuss Halstead’s
E measure which is the easiest to compute, followed by Wood’s task complexity
measure. In this work, we will not use McCabe’s measure, as the graphs do not
work well for obtaining varying measures for connected components in Equation
7. We also will not employ the entropy measure used by [35, 52, 62] despite the
existence of empirical support for their relation to subjective task complexity and
task performance measurement. This is due to the monotonicity of the neighboring
nodes, which are primarily S and E nodes.
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3.4.1 Halstead’s E Measure

Halstead’s E measure is the simplest task complexity measure to compute. Based on
the formula presented in Equation 6 we simply need the unique and total counts for
both operators and operands. We define the operators conceptually equivalent to the
types of interactions performed to interact with user interface components within
the scope of our work. Similarly, we define operands to be conceptually equivalent
to interface components which the user will be operating on.

We use a somewhat arbitrary decision to not count the start (S) and end (E) nodes
when computing task complexity. This will also apply to Wood’s task complexity
later. What this means is we will count only the user interface components and their
related interaction modes. Depending on the scope where task complexity is studied
for user interfaces including the start and end nodes may be beneficial. This may be
if they for example represent the complexity experienced by a user when performing
an observation of the interface. For our initial demonstration purpose, these are not
a key consideration, albeit they affect the numerical values.

For the user interface with Rico ID 2789 presented in Figure 15 we can easily use
either the graph or the adjacency matrix from Figure 17 to compute the E measure.
Firstly, the total number of operands N2 = 2 is simply the number of interface
components on the graph or the adjacency matrix. Next we obtain total operators
N1 = 2 from the total number of interaction options which are determined by the
interface components. In our context, it is the same value as the total operands
count. For unique operands η2 = 1 we simply take the set of all interface components
in the interaction graph. Similarly, the number of unique operators η1 = 1 is the set
of edges of the graph excluding the O-value. By plugging the values into Equation 6
we obtain E = 4 as the task complexity measure. Rico ID 1074 offers a slightly more
complicated example, since it has three different types of components and two types
of interaction modes. Using the same principles we obtain N1 = 4, N2 = 4, η1 = 2
and η2 = 3. The corresponding task complexity measure is E ≈ 24.8.

3.4.2 Wood’s Task Complexity

When considering Wood’s task complexity as discussed in Section 2.3.4 our work
will not make use of dynamic task complexity from Equation 3 as stochasticity is
beyond the scope of this work. Equations 1 and 2 for component complexity and
coordinative complexity are within the scope of this work. As discussed in Section
3.4.1, we will not count S and E nodes. This will affect the measures obtained from
both of the Wood equations.

For Rico ID 2789 in Figure 15 we first compute component complexity TC1
using Equation 1. The number of subtasks on the graph is 2 with each subtask
containing exactly one act of tapping on a text button. The buttons themselves
represent one information cue for completing the acts. The text on top of the
interface screenshot represents one more potential information cue. We however
cannot reliably quantify such cases correctly within the scope of this work. As a
consequence, only the components to be interacted with will be used as information
cues. A potential solution to this limitation will be described in Section 6.2. With
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these criteria, we obtain TC1 = 2 for Rico ID 2789. Using Equation 2 we obtain
TC2 = 0 for coordinative complexity (precedence relations) as we are not counting
the S node as parts of walks on the graph. Using Equation 5 with, α, β = 1 we
obtain TCt = TC1 + TC2 = 1 + 0 = 1.

Rico ID 1074 in Figure 16 we again compute component complexity using Equation
1. In this case, we obtain TC1 = 4 for the whole graph. We see that the interface
contains text that likely behaves as information cues for performing some acts, such
as what to do if you did not receive a verification code. Given algorithmic limitations
in Section 4 we will not count these specific information cues again. Using Equation
2 we obtain TC2 = 1. On the graph for Rico ID 1074 the right-most text button
(TB) has input (IP) as the precedence relation. Based on Equation 5 we obtain
TCt = TC1 + TC2 = 4 + 1 = 5.
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4 Algorithmic Computation Procedure
Turning a manual computational procedure into an automated procedure can be a
non-trivial task. Add to that using a collection of UIs created by others rather than
self-created sandbox UIs, and the difficulty to automate becomes even greater. As a
consequence, in this chapter, we describe how the computation of task complexity
for 1460 interfaces from Enrico [9] has been implemented using adjacency matrices
and directed graphs. The graph and task complexity computation implementation
can be divided to five sub-phases.

1. Definition of interface component types to human-computer interaction modes
for mobile devices. We demonstrated this procedure in Sections 3.1 and 3.2.

2. Extraction, sorting and determination of human interactable control compo-
nents from Enrico [9].

3. Computing the adjacency matrix structure based on the sorted components.

4. Defining the vertices and edges based on the adjacency matrix.

5. Computation of task complexity measures for Halstead’s E measure and Wood’s
task complexity measure.

Each of the sub-phase is discussed in a subsection in the same order as listed above.

4.1 Interactable Components Extraction
We extract each interactable component by searching for the clickable key in the
JSON file (for an example, refer to Figure 1). The interactable component extraction
is done such that each top level component is checked for clickability first. If it is not
clickable and the component has child components placed inside it, then we check if
those are interactable. This process is repeated until an interactable component is
found or there are no child components to check anymore.

After extracting the interactable components, we perform sorting on the com-
ponents. We sort the components in order to determine in what order a person
might interact with interactable components when there are components such as an
input field or checkbox (see Table 3) on the interface that do not lead to the end
of a task. The sorting is done to determine which interactable components need
to be connected to another interactable component rather than the task end node.
The sorting algorithm is such that the component with the highest vertical axis
values are placed first compared to lower components. If there is overlap between
the components within vertical axis bounds, we perform comparison between the
horizontal axes to determine which component is higher and place it first.

4.2 Computing Adjacency Matrix
We follow the principles discussed in 3.3.2 for formulating the adjacency matrix, but
focus on briefly discussing the automated formulation of the adjacency matrix. The
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Figure 19: Rico IDs 30348 (left) and 36999 (right). On the left we see an example
where the list items are supposed to be clickable, such as the one containing the Scan
text and the corresponding icon on the left, but instead the whole Drawer component
was marked as clickable. On the right the list items were not marked as clickable
containing news items and additionally the top Toolbar was marked as clickable,
although the child icons are the clickable components in reality.

adjacency matrix is formulated from a collection of vectors, where the first row vector
is the initial observation performed by the user. In our setting, where we consider
only one task at a time, all the values in the first row vector are zeroes. This also
means it does not add to task complexity by itself. The interactable component row
vectors will be formulated with a for-loop one-by-one in the same order they were
sorted earlier in Section 4.1.

When running the for-loop, there are three required central concepts to place the
interactions and their relations in the correct order automatically in the adjacency
matrix. The first concept is the concept of an end point counter, which is initialized
with the same value as the length of interactable components. Each end point
accounted for in the counter means, there shall be columns with one as the value
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corresponding to the counter count on the last row of the matrix. The ones are
placed starting from the second column of the matrix towards the end but never to
the first or last columns which represent start and end nodes. The number of end
points can be reduced while in the for-loop if components are found that do not end
the task, and the number of zeros on the last row is increased correspondingly.

The second central concept is the concept of an anchor column. The purpose of
the anchor column is to determine how to connect interactable components that do
not end the task chosen by the user. As detailed in Section 3.3.1 when completion of
a task requires an action such as an input the input is usually connected to something
like a button that will bring the task such as user registration to completion.

The for-loop applies three different logical rules to each interactable component
row vector, where each rule is checked for with an if-else clause. The standard action
performed by the else-clause has a purpose to place a task ending user interaction
to the adjacency matrix. A task ending interaction here means that the last row of
the adjacency matrix will have a connection to this particular row. In practice, the
connection is defined by placing value one on column two of the last row if the first
sorted component is a task ending interaction.

In the second if-else condition, we process components that do not end the task,
such as a text input field. The particular significance of this clause is that it modifies
the currently active anchor column we described above, in addition to adding a new
row describing the possible tasks the user may complete. The currently active anchor
column is set to match the column position of the matrix representing this particular
component. The position of the anchor component on the columns is known due
to the sorting procedure described in Section 4.1 (the first component has column
position 1 when counting starts from 0). The next component in the for-loop will be
attached to this anchor component by setting the anchor column value to one for the
currently active component row. This is visualized in figures 20 and 21, where the
Rico ID 492 interface has an input field followed by a button that must be clicked to
finish the task of sending a comment. In this case, the input component (IP) with
"Send a comment" text sets the current anchor column value to 5, and the following
text button (TB) component located on the second last row will have a value 1 set to
column 5. The task for sending a comment has the task finishing exit node attached
to the text button, as shown on Figure 21.

In the first if-else condition, we process a special case of the second condition.
This is for cases where there may be an interface with an input field but no subsequent
button. Rather, these types of interfaces are such that the application will automati-
cally bring the task to end when the user has for example inputted a number code for
a verification procedure. Figure 22 showcases an example scenario for Rico ID 10482.
The trigger for this condition is the existence of a not task ending component as
presented in Table 3 and the component being the last in the sorted component array.
We acknowledge that this may not be a foolproof way to identify such components,
but have not come across other scenarios like this so far. With the adjacency matrix
constructed, we are ready to define the vertices and edges of the directed graph.
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Figure 20: Rico ID 492.

4.3 Computing Vertices and Edges
The vertices and edges are generated in a format suitable for Python implementation
of the Igraph library [67]. Between the vertices and edges, the vertices are defined first,
as generating the edges depends on the vertices. The vertices for each component
are named according to the abbreviation-column presented in Table 3 while the
associated interaction mode defined as an edge is based on the interaction-column of
the same table.

In order to algorithmically determine the correct vertex positions for each compo-
nent, the adjacency matrix per column non-zero value counts need to be extracted
from the adjacency matrix. We should take note that the first and last row of the
adjacency matrix are not included in determining the vertex locations. The start and
end vertex locations are known beforehand, so they can be placed at the beginning
and end of the vertex location vector automatically.
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Figure 21: Rico ID 492 adjacency matrix and directed graph construction based on
the JSON file.

4.4 Task Complexity Computations
Here we discuss how to compute two task complexity measures algorithmically with
general background of the algorithms described in Sections 2.3.4 and 2.3.5, and
manual computation procedure described in Section 4.4.

For computing Halstead’s E measure, we take the length of the set of edges
for unique operators count, n1 as described in Section 2.3.5. For the number of
unique operands, n2 we take the length of the set of vertices but subtract two so the
start and end nodes are not counted. For total operator frequency N1 and operand
frequency N2 we take the length of the arrays, but for N2 we subtract two again.
With this, we can simply plug in the variables to Equation 6. Compared to Halstead’s
measure computing, Wood’s total task complexity based measures is considerably
more challenging for interfaces, which we will discuss next.

4.4.1 Wood’s Task Complexity

As described in Section 3.4.2 we compute Wood’s task complexity measure for
component complexities and coordinative complexities. Based on these two measures,
we compute the total task complexity measure based on Equation 5. It is worth
noting that in our work the α, β, and γ for Wood’s task complexity are all 1 and
can be omitted as we have not done empirical determination for them. For reference
on empirically determining the values or using different reference values, see [35, 50].

Computing Wood’s component complexity is trivial in this work, as we are not
able to infer all the information cues for performing each act from the interfaces
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Figure 22: Rico ID 10482 showcasing a special case for an input field where there is
no subsequent task ending component. Rather, the UI should automatically move
forward to a new state and end the current task when the user has inputted a phone
number.

correctly. This issue is treated more in Section 3.4.2. As a consequence, TC1 from
Equation 1 is simply computed as the length of the vertices array minus two to not
count the S and E nodes.

TC2 measure from Equation 2 is computed by employing a cursor inside the
adjacency matrix. The algorithm loops through each of the sorted control components.
Each of the components on the adjacency matrix has one as a value representing a
connection to a preceding component, such as in Figure 21. On the rightmost text
button component, the algorithm finds the position of the current component and
rolls the cursor position (row number) on the adjacency matrix backwards inside a
second loop until a component attached to the first column is found. Each time the
cursor is moved adds one to the precedence relation count for TC
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5 Results
In this section, we describe the results obtained from algorithmic inference of task
structure for Enrico interfaces based on the algorithm described in Section 4. First,
we will review the quality of a random sample of N = 30 graphs. The review will help
identify previously unrecognized issues with Rico dataset and analyze limitations
with the task structure inference algorithm. Secondly, we will visualize the task
complexity measures obtained for the algorithmically generated graphs.

5.1 Graph Issues Identification
In this section, we take a random sample of N = 30 from the algorithmically generated
task graphs and compare them to human understanding of the correct task structure.
A sample size of 30 will offer a 90% confidence interval and a 15% margin of error
for 1413 graphs. This review process will help us identify two types of errors in the
generated graphs. The first type of error includes errors caused by incorrect data
in the view hierarchy file. The second type of error includes incorrect assumptions
made in the inference algorithm. The graph quality review process is performed as
follows:

1. Compare algorithmically generated graph to UI screenshot for consistency.

2. If any inconsistencies are identified, review the graph and screenshot against
the view hierarchy file to identify the cause of the inconsistency.

The results of the manual review are listed in Table 4 and the related UI screenshots
and graphs are presented in Figure 24. Out of the 30 algorithmically generated
interaction graphs, we have 11 type 1 issues and 4 type 2 issues. Finally, we did
not find issues between the interface and the interaction graph for 15 of the random
samples.

As an example of the review procedure, when we consider the graph for Rico ID
21070 located top left corner of Figure 24 we see that the task structure is correct
except that there is one node that we cannot verify with certainty to be correct. The
leftmost I node in the graph represents the menu icon located in the top left corner
of the interface. The L nodes represent list item icons containing descriptions of the
games and their results. Each list item seems to be clickable on the interface for the
purpose of starring the game or game series as a favorite. Next, we have a TB node
at the second rightmost position in the graph. The node represents the Live text in
the toolbar. We cannot verify with certainty that this text should be clickable, as
based on human intuition it looks more likely to be just a header text. Lastly, we
have a WV node that describes a Web View component located at the very bottom
of the interface that displays an advertisement to the user. The tasks represented on
the graph include the following:

• Click on the top left menu icon in order to navigate to another part of the
application.
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ID Type Explanation
21070 0 Cannot verify if the Live text button in toolbar is clickable.
52188 0
46877 1 Top left corner back arrow Icon not marked as clickable
36664 1 Stats, Diary and Growth not marked as clickable
10798 1 Clickable components listed from underneath side menu
43093 1 Contains multiple views and Pager component is not clickable
9438 2 The algorithm assumes Input connected to another component
61683 0
12804 0
58529 1 Components under side panel marked as clickable
64005 0
39118 0
68924 0
53268 0
64417 0
28646 0
28021 0
36999 2 The algorithm failed to find all 11 clickables
64461 1 Hierarchy describes a hidden card component
41976 2 Misclassified toolbar components as not clickable
33868 0
46677 0
1115 1 Passbook text is probably not clickable
69913 0
17169 1 Components under side panel marked as clickable
21103 2 Failed to represent multiple Inputs correctly
21397 1 Toolbar Text components not marked as clickable
8592 1 List items marked as clickable, not children
60061 1 Text link not marked as clickable
1028 0

Table 4: Manual review results for a random sample of 30 graphs. Type 0 means
the graph matches the UI screenshot based on manual review. Type 1 means
an inconsistency caused by incorrect data in the view hierarchy. Type 2 means
inconsistency between the screenshot and graph due to limitations with the algorithm.
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• Select a game or a game series as a favorite by clicking on the list item
representing that. particular game or series. There are 12 options to choose
from in total.

• Click on the advertisement at the bottom of the interface in order to access an
audiobook.

The second interface for from the second row in Figure 24 for Rico ID 9438 on
the other hand has 3 paths starting from the S node at the top. This does not match
expected behavior. We see one path for opening a menu in the top right corner.
The menu is represented by the I-node for an icon. At the bottom of the interface
we see two text buttons represented by TB nodes which allow the user to log in or
create an account. Lastly, the input node represented by IP in the graph seems to
be such that once the input has been entered correctly, the application will attempt
to join a webinar automatically. Based on this, we expect 4 nodes to start from the
S node. In other words, the algorithm incorrectly assumes that after the input is
complete, a button can be clicked to complete the task of joining a webinar. The
tasks represented by the graph we have generated are as follows:

• Press in the top right corner Icon to access a menu.

• Enter a webinar ID in the input field and press Try GoToWebinar for free
button to join the webinar.

• Press Sign in text button to log in to your user account.

In addition to the issues identified in the manual review procedure, the algorithm
failed to generate graphs for 70 Enrico IDs due to errors during runtime. The
specific interfaces where we were not able to generate a graph have been listed in
Appendix A. The primary reasons for generating a graph included division by zero,
unexpected component in the view hierarchy marked as clickable and math domain
error. Division by zero is caused by the view hierarchy not having any components
marked as clickable. An example of such a UI is provided in Figure 23 on the right,
where the interface clearly has clickable components, but the view hierarchy does not
describe them correctly. In the same figure, Rico ID 50400 on the left has a Drawer
component incorrectly marked as clickable.

5.2 Task Complexity Measure Results
The task complexity measures presented here are measuring the total task complexity
of the graphs we generated based on the algorithmic computation procedure in
Section 4. This means each measurement looks at the whole interface and does not
measure the effects of individual subtasks, such as "click on a menu icon to access
another part of the application". More specifically, we have obtained task complexity
measure results for Halstead’s E measure and Wood’s task complexity. The results
for Halstead’s E measure are depicted in Figure 25. Halstead’s E measure has a
relatively tight spread when measured in total control components for each interface.
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Figure 23: Rico ID 50400 (left) with Drawer component incorrectly marked as
clickable when the List Item child components should be marked as clickable. Rico
ID 54399 (right) has a view hierarchy where no components are marked as clickable,
although there should be clickable components.

The spread has more variability when measured in the number of paths, on the other
hand. The thing worth noticing with Halstead’s E measure is that the complexity
measure is exponentially upwards sloping. At the same time, [52] had to match task
completion time with an exponential function to an entropy based (see Equation
8) TACOM formula [52]. The TACOM formula yielded complexity values above 0
but less than 4 for nuclear power plant emergency operating procedures. However,
no definitive conclusions can be drawn from this as the context of our work is less
complex.

For Wood’s task complexity, we have visualized the component complexity results
in Figure 26 and coordinative complexity results in Figure 27. The component
complexity measure behaves perfectly linearly with respect to total number of control
components, as we have not made any modifications to Equation 1. With number
of paths we see some spread upwards as the number of paths can be less than the
total number of components. Wood’s coordinative complexity measure has more
variability in the measure behavior, with the variability explained by a reduction in
path counts when compared to control component counts. A ratio of less than 1:1
between paths and control components means the interface has components that do
not end the task. Each level of depth adds n! to coordinative complexity measure,
where n is the count of precedence relations the last node on that walk has. This
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Figure 24: Manually reviewed graphs with the IDs corresponding to Table 4 so that
the first table ID is in the top left corner and the last ID is in the bottom right
corner. Each UI screenshot has the corresponding graph directly underneath it.
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Figure 25: Halstead’s E measure results. On the left we have results with respect
to total number of control components and on the right with respect to number of
paths starting from the S node.

Figure 26: Wood component complexity results.

behavior is explained by Equation 2.
The results for Wood’s total task complexity are visualized in Figure 28. The

results are the sum of coordinative complexity and component complexity measures.
The measure simply has the joint behavior of Figures 26 and 27. We can expect
the behavior of the measure to be different if the algorithm measuring component
complexity has the ability to infer all the information cues related to performing
an act on each component. However, the algorithm in this work does not have the
capability.

In Figure 29 representing Rico ID 27152 UI and interaction graph, we see an
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Figure 27: Wood coordinative complexity results.

Figure 28: Wood’s total task complexity results.

example of a relatively complicated UI according to the Halstead E and Wood’s total
task complexity measures. Similarly, the UI has 25 control components and 25 paths,
making it a relatively complicated interface. The figure also highlights one of the
key limitations with the results. In Table 2 Liu and Li [57] compiled a list of factors
that affect task complexity. The interface has a notable level of redundancy, which
reduces the level of task complexity. As an example of redundancy, the interface uses
the same star and speaker icons on the right side. However, the results for Halstead
E measure increase exponentially. As a consequence, the measure only captures
task complexity increasing factors in the form of operators and operands, while not
accounting for task complexity reducing factor or other task complexity increasing
factors.
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Figure 29: Interaction graph results for Rico ID 27152. The graph and interface are
among the more complicated in the dataset, with Halstead E measure at 1211.7 and
Wood’s total task complexity at 25.
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6 Discussion
In this work, we aimed to research what types of challenges exist for inferring task
structure and what types of task complexity measures would be suitable for the
graphs used in this work. Understanding the challenges will allow us to design better
algorithms for task structure inference in the future. Additionally, we are better able
to understand what types of factors need to be accounted for in the dataset being
used for the inference task in order to prevent graph quality issues.

In Section 3 we first described how a human would infer task structure from
interfaces with manual computation and analysis. This was followed by computation
of task complexity measures. Manual computation allowed us to understand what
types of steps are required in inferring task structure and complexity measures from
view hierarchies. With this understanding we moved on to Section 4 where we
focused on turning the manual computation procedure into an algorithmic version.
The benefit of the algorithmic inference procedure is that we are able to analyze
a large amount of interfaces in a shorter amount of time. Lastly, in Section 5 we
reviewed a random sample of 30 graphs in order to identify potential quality issues
with the underlying dataset and the graph generating algorithm. Then we presented
the results obtained from computing task complexity measures for the graphs and
discussed their behavior in light of component counts and number of paths on a
graph.

In the upcoming two sections we will first discuss the limitations of this work
including with using a pre-existing dataset, the way we have formulated the graphs,
limitations of the algorithm, and the graph quality review we performed. Secondly, we
discuss future work that can be performed. The areas we will discuss for future work
include requirements on datasets for inference, what directions inference algorithm
improvement may take, and what types of studies can be performed to verify the
applicability of different task complexity measures for task complexity as experienced
by real users.

6.1 Limitations
When considering the results obtained during quality assurance in Section 5.1 we
see that problems with the dataset were quite frequent. This is despite Leiva,
Hota and Oulasvirta [9] generating a high quality dataset suitable for layout design
categorization with manual review from the original Rico dataset [11]. However,
looking at clickability in the view hierarchy was beyond the scope of their work. We
note that this seems to be one of the few works where the correctness of clickability for
Rico view hierarchies has been reviewed and can be considered to augment the work
of [9] in understanding what types of quality issues exist for large-scale algorithmically
generated datasets. Schoop et al. [12] performed research that has looked into view
Rico view hierarchy tappability. One of the primary causes for the issues seems to
be components not being correctly marked as clickable. From the perspective of our
work, the primary limitation for the graphs presenting the task structure correctly is
formed by quality issues in the Rico view hierarchy.
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As a consequence, we are able to estimate that approximately 35 to 65% of
the graphs are correct. However, the correctness of the generated graphs does not
affect the validity of the results obtained in Section 5.2 as they demonstrate how
the measures behave with respect to different graph shapes rather than human
performance or experience. However, understanding on the applicability of the task
complexity measures used in this work to human perception of task complexity is
still limited, as we did not investigate subjective task complexity. Rather, we were
focused on the implementation of the algorithm as a proof of concept. Generally,
understanding of task complexity measures relationship to human task performance
on interfaces [68] is limited.

The graphs we generated based on Section 3 have a limited range of application.
The graphs don’t account for situations where stochasticity is involved, such as when
a user will perform an unknown number of interactions, such as with an Input or
a Map View component. However, the stochasticity limitation can be resolved by
using a transition matrix as described in Section 2.2. Additionally, our graphs do
not consider situations where the user may need to perform multiple actions across
components before finishing a task, like activating three switches to on state and
then pressing a component that leads to a new view.

The algorithm has limited inference capabilities when a component that does not
lead to the end of a task immediately, such as an Input component. When we try to
infer which component should be interacted with next, the algorithm may find it
difficult to find the correct component. This is especially true if completing the Input
operation leads to automatic view refresh, such as in Figure 22. This becomes even
more complicated if there are other components directly below the Input component,
as the algorithm may assume it to be a task finishing component related to the
Input. We found Halstead’s E measure (Equation 6) to be particularly suitable for
analyzing interactions in the graph format employed in this work. The suitability is
due to the E measure having direct correspondence to performing interactions on
components through the operators and operands concepts. The primary limitation
with Halstead’s E measure is that it does not account for task complexity increasing
and reducing factors outside of operations and operators, as described in Table 2.

Wood’s task complexity measure (Equation 5) shows some promise, but it also
requires further development. In Figure 26 the behavior of the metric is trivial since
it increases linearly with the number of components. This is caused by the algorithms’
inability to determine which non-clickable components act as information cues for
the clickable components. We will discuss a potential solution to this limitation in
Section 6.2. Lastly, in Section 2.3.5 we evaluated McCabe’s v(G) (Equation 7) to not
be ideal for the types of graphs presented in this work. Shannon’s entropy formula
(Equation 8) has been employed on graphs by [35, 50, 51, 52, 53]. There is potential
to employ the formula, but it requires further consideration with numerical behavior
caused by the S and E nodes. The S and E nodes are suitable for KLM on the other
hand, where S node can represent mental preparation time and E node the reaction
to system delay after an interaction.
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6.2 Future work
The most important future work direction is performing validation for the Wood
and Halstead E measure metrics on interfaces. As discussed by Liu and Li [68] there
has not been much research validating the (objective) task complexity measures
to subjective task complexity and task performance metrics. Especially for graph
based measure validation. A few notable works that have done validation for graph
based task complexity metrics include [35, 52, 39, 62]. However, none of these have
employed Wood’s task complexity or Halstead’s E measures as metrics. Validating
the measures can be accomplished with laboratory testing by obtaining measures
of task performance metrics and subjective task complexity ratings. An alternative
validation approach is to study the behavior of task complexity metrics against
keystroke-level model task completion time estimates [69, 70, 43]. Subjective task
complexity can be measured with NASA TLX [71, 35, 51]. Recently, an approach
for validating a graph based complexity measure for human errors has also been
demonstrated [53]

Secondly, In our work, we faced limitations with inferring the information cues for
each tappable component from the interface. This could be amended by using XRAI
heatmaps [12] and using components above a certain saliency threshold value as
information cues for Equation 1. This would improve the quality of results obtained
from Equation 1. Another notable limitation was that not all the components were
correctly marked as clickable. Taperception can potentially offer a solution to this
limitation.

The third direction for future work can involve applying task complexity measures
and as objective functions for interface design [7, 72]. This is the opposite direction
of what we performed in this work, as new interfaces are generated from scratch by
formulating interaction graphs with desirable interaction sequences and converting
them to interfaces where one or multiple objective functions are optimized for.
Additionally, when generating interfaces algorithmically based on task complexity
modeling, it is possible to use tappability prediction [12] as a measure of design
goodness besides total task complexity.

A fourth research direction involves performing more comprehensive computa-
tional task analysis on interfaces that span across multiple views or pages on an
interface. Analyzing such scenarios requires using tensors to represent the tasks to be
performed on the interface. Such task analysis can be used to open new investigation
directions into how to optimize navigation structure across multiple views or pages
such that a human is able to perform their desired goals easily. In stochastic scenarios,
we can apply transition probability tensors and model tasks across multiple views
or pages as Markov decision processes. In this line of research, concepts such as
small world graphs, strongly connected graphs and the diameter and radius of the
graph are of interest as well [17]. As an example, the diameter (eccentricity) of a
graph can act as an objective function [7] for multi-view or page navigation structure.
The optimization of the graph diameter (maximal distance to reach from interface
views or pages the furthest away from each other) becomes particularly interesting
when we consider limited space for navigation on each view or page as an interface
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optimization constraint [7]. A more comprehensive tensor based computational task
analysis can also be used to perform a full HTA evaluation.

Lastly, further basic research into generating interaction graphs and numerical
task complexity measures could increase the scope of applicability of task complexity
measures. In particular, previous work has studied factors affecting task complexity
[57]. By studying how to represent these factors as mathematical functions and
combining said functions in a manner similar to that performed by Wood [34] it is
possible to formulate comprehensive numerical measures of tasks and the complexity
associated with performing the task. Mathematical representation of tasks and their
nature as graphs can offer new approaches in the field of computational interaction to
study the quality of an interface and on the other hand for constructing an interface
algorithmically from a task based perspective [7].

7 Conclusions
This work has shown that it is possible to algorithmically infer interface task structure
from user interface view hierarchies and computationally perform task analysis based
on the inferred structures. The inferred task structure represented as an interaction
graph represents the task options a human has when interacting with an interface.
Additionally, graphs and matrices seem to be a promising mathematical tool for
representing interactions and lend themselves for solving large scale interaction
problems. Transition matrices can offer a promising tool to study stochastic task
and goal scenarios on interfaces.

Under simple task structure scenarios such as those based on Enrico [9], the
largest concern with the inferred task structures are formed by potential quality
issues in the view hierarchy correctness. A secondary concern is caused by scenarios
where it may be difficult to determine how a component that does not end a task
relates to other components on the interface. A particularly challenging aspect is
caused by creativity of designers, which an algorithm may have difficulties adapting
to creative use of interface elements and interaction modes.

Given the ability to represent tasks and goals as matrices such as adjacency
matrices and transition matrices, we are able to employ mathematical techniques on
them and compute various mathematical measures depending on the information
that is mapped on the matrix. Such mathematical measures offer an avenue for
studying algorithmically human performance metrics and experiences on interfaces.
This ability can be particularly beneficial for 1) large scale problems where manual
task analysis methods do not scale well, and 2) for estimating interface quality early
in the development process. This is accomplished by capturing relevant interface
qualities affecting interface complexity on the matrix as attributes. This can provide
savings in interface development time and cost, as the matrix does not necessarily
require a fully developed interface prototype.
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8 A Rico Ids With Errors

File Reason File Reason
10498.json ’Toolbar’ 44719.json ’Toolbar’
11148.json ’Drawer’ 46019.json division by zero
13721.json ’Drawer’ 46146.json division by zero
14310.json division by zero 46528.json division by zero
18262.json ’Drawer’ 46609.json division by zero
1996.json ’Drawer’ 47883.json division by zero
20891.json division by zero 49228.json ’Drawer’
21186.json ’Toolbar’ 50078.json division by zero
21545.json division by zero 50105.json ’bounds’
23689.json division by zero 50109.json ’bounds’
24673.json division by zero 50400.json ’Drawer’
24701.json ’Drawer’ 52304.json ’Drawer’
26150.json division by zero 53596.json ’Drawer’
26442.json ’Toolbar’ 54046.json math domain error
27046.json ’Drawer’ 54392.json ’Toolbar’
29058.json division by zero 54399.json division by zero
30348.json ’Drawer’ 54536.json division by zero
3140.json ’Drawer’ 57819.json ’Drawer’
33395.json division by zero 5782.json division by zero
34595.json ’Drawer’ 5942.json division by zero
35472.json division by zero 59577.json division by zero
35597.json math domain error 62012.json ’Drawer’
36100.json division by zero 64454.json division by zero
36918.json division by zero 6469.json ’Toolbar’
36999.json ’Toolbar’ 65183.json division by zero
37376.json division by zero 68041.json division by zero
39015.json ’Toolbar’ 68580.json division by zero
39118.json division by zero 68871.json ’Toolbar’
39334.json division by zero 7000.json division by zero
3993.json ’Drawer’ 7013.json ’Drawer’
41458.json division by zero 70943.json math domain error
41679.json ’Toolbar’ 72071.json division by zero
43387.json division by zero 7953.json division by zero
44706.json ’Toolbar’ 8150.json division by zero
44718.json ’Toolbar’ 8522.json ’Toolbar’

Table 5: Rico view hierarchy files that caused errors when running the algorithm for
generating graphs. A total of 70 view hierarchy files caused errors.
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9 B Task Complexity Sourcecode

import pandas as pd
import j s on
from pandas . i o . j son import j son_normal ize
import i g raph as igraph
import math
import numpy as np
import os as os
import csv
import random
import matp lo t l i b . pyplot as p l t

vert icesMap = { " Advertisement " : "AD" ,
" Background␣Image " : " BI " ,
" Button␣Bar " : "BB" ,
" Checkbox " : "C" ,
" Card " : "CC" ,
" Date␣Picker " : "DP" ,
" Icon " : " I " ,
" Image " : "IM" ,
" Input " : " IP " ,
" L i s t ␣ Item " : "L" ,
"Map␣View " : "M" ,
"On/Off ␣Switch " : " S " ,
" Pager␣ Ind i c a t o r " : "P" ,
" Radio␣Button " : "RB" ,
" Text " : "TC" ,
" Text␣Button " : "TB" ,
"Web␣View " : "WV" }

edgesMap = { "AD" : "Tap" ,
"BB" : "Tap" ,
" BI " : "Tap" ,
"C" : "Tap" ,
"CC" : "Tap" ,
"DP" : " Multi " ,
" I " : "Tap" ,
"IM" : "Tap" ,
" IP " : " Input " ,
"L" : "Tap" ,
"M" : " Multi " ,
"P" : " Swipe " ,
"RB" : "Tap" ,
" S " : "Tap" ,
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"TB" : "Tap" ,
"TC" : "Tap" ,
"WV" : "Tap" }

doNotEndTask = [ " Checkbox " , " Date␣Picker " , " Input " ,
"On/Off ␣Switch " ]

def getNormalizedBounds ( dimensions , bounds ) :
x1 = bounds [ 0 ] / dimensions [ 2 ]
y1 = bounds [ 1 ] / dimensions [ 3 ]
x2 = bounds [ 2 ] / dimensions [ 2 ]
y2 = bounds [ 3 ] / dimensions [ 3 ]
return [ x1 , y1 , x2 , y2 ]

def sortControlComponents ( components ) :
sortedComponents = [ ]
for component in components :

bounds = component [ 1 ]
componentPosit ion = 0
for i in range ( len ( sortedComponents ) ) :

compareTo = sortedComponents [ i ]
compareToBounds = compareTo [ 1 ]
#I f the new component i s be low the prev ious one
#then we move
#i t to towards the end o f component order ing
i f bounds [ 1 ] > compareToBounds [ 3 ] :

componentPosit ion += 1
#i f we have ove r l ap between the
#components we choose by
#the component order ing in h o r i z on t a l p lane
e l i f bounds [ 0 ] > compareToBounds [ 2 ] :

componentPosit ion += 1
#otherw i s e we assume tha t the curren t
#component i s b e f o r e the o ther component

sortedComponents . i n s e r t ( componentPosition , component )
return sortedComponents

def getControlComponents ( ch i l d r en ) :
controlComponents = [ ]
def loopForControlComponents ( ch i l d r en ) :

for c in ch i l d r en :
c l i c k a b l e = c [ ’ c l i c k a b l e ’ ]
i f ( c l i c k a b l e ) :

controlComponents . append ( ( c l i c k ab l e , c [ ’ bounds ’ ] ,
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c [ ’ componentLabel ’ ] ) )
e l i f ( " c h i l d r en " in c ) :

loopForControlComponents ( c [ " c h i l d r en " ] )

loopForControlComponents ( ch i l d r en )
ccCount = len ( controlComponents )
return controlComponents , ccCount

def def ineAdjacencyMatr ix ( controlComponents , ccCount ) :
adjacencyMatrix = [ [ 0 ] ∗ ( ccCount+2)]
endVector = [ 0 ] ∗ ( ccCount+2)
endpointsCounter = ccCount
#t h i s d e f i n e s where the next nodes s h a l l form connec t ions
currentAnchorColumn = 0
componentLimit = ccCount − 1
for i in range ( ccCount ) :

component = controlComponents [ i ]
in te rmed iateVector = [ ]

#sp e c i a l case f o r f i l l i n g a l o g i n code
#with automatic UI r e f r e s h
#when Input f i e l d meets r e qu i r ed l e n g t h
i f ( component [ 2 ] in doNotEndTask and i == componentLimit ) :

in te rmed iateVector = [ 0 ] ∗ ( ccCount+1)
inte rmed iateVector . i n s e r t ( currentAnchorColumn , 1)
currentAnchorColumn = 0
endVector [ i +1] = 1

e l i f ( component [ 2 ] in doNotEndTask ) :
in te rmed iateVector = [ 0 ] ∗ ( ccCount+1)
inte rmed iateVector . i n s e r t ( currentAnchorColumn , 1)
currentAnchorColumn = i + 1
endVector [ i +1] = 0
endpointsCounter −= 1

else :
i n te rmed iateVector = [ 0 ] ∗ ( ccCount+1)
inte rmed iateVector . i n s e r t ( currentAnchorColumn , 1)
currentAnchorColumn = 0
endVector [ i +1] = 1

adjacencyMatrix = adjacencyMatr ix + [ inte rmed iateVector ]
#endVector [ id +1] = 1

adjacencyMatrix = adjacencyMatr ix + [ endVector ]
return np . array ( adjacencyMatr ix ) , endpointsCounter

def d e f i n eVe r t i c e s ( adjacencyMatrix , controlComponents ) :
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v e r t i c eLab e l s = [ "E" ]
noEndpoints = pd . DataFrame ( adjacencyMatr ix )
noEndpoints . drop (0 , i np l a c e=True )
noEndpoints . drop ( noEndpoints . t a i l ( 1 ) . index , i np l a c e=True )
l aye r sWithVer t i c e s = noEndpoints .sum( ax i s=0)
laye r sWithVer t i c e s = laye r sWithVer t i c e s [ l aye r sWithVer t i c e s != 0 ]
columnsWithVert icesIndexes = laye r sWithVer t i c e s . index
currentComponentItem = 0
for i in columnsWithVert icesIndexes :

currentColumn = adjacencyMatrix [ : , i ]
for row , c in enumerate ( currentColumn ) :

i f c == 1 :
currentItem =

controlComponents [ currentComponentItem ] [ 2 ]
#These form the base l e v e l o f the graph
#and other components are i n s e r t e d around the s e
#to match the order r equ i r ed by igraph
i f ( i == 0 ) :

v e r t i c eLab e l s . append ( vert icesMap [ currentItem ] )
else :

v e r t i c eLab e l s . i n s e r t ( row−1,
vert icesMap [ currentItem ] )

currentComponentItem += 1

ve r t i c eLab e l s = ve r t i c eLab e l s + [ "S " ]
return v e r t i c eLab e l s

def def ineEdges ( adjacencyMatrix , v e r t i c eLabe l s , endpointCount ) :
edgeLabels = [ ]
workedThroughGroupItems = 0
for v in range ( len ( v e r t i c eLab e l s )−1):

i f ( v e r t i c eLab e l s [ v ] in edgesMap ) :
edgeLabels = edgeLabels + [ edgesMap [ v e r t i c eLab e l s [ v ] ] ]

e l i f ( v e r t i c eLab e l s [ v ] == "E" ) :
edgeLabels = ( [ "O" ]∗ endpointCount ) + edgeLabels

return edgeLabels

def computeHalstead ( edgeLabels , v e r t i c eLab e l s ) :
#number o f unique opera tor s
n1 = len ( set ( edgeLabels ) )
#number o f unique operands . We remove s t a r t and end
n2 = len ( set ( v e r t i c eLab e l s ))−2
#t o t a l f requency o f opera tor s
N1 = len ( edgeLabels )
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#t o t a l f requency o f operands . We remote s t a r t and end
N2 = len ( v e r t i c eLab e l s )−2

f i r s t P a r t = (n1∗N2∗(N1+N2) )/ (2∗ n2 )
logPart = math . l og ( n1+n2 , 2)
#rounded to S s i g n i f i c a n t numbers
return round( f i r s t P a r t ∗ logPart , 3 )

#we have omit ted McCabe from t h i s work due
#to d i f f i c u l t i e s wi th s c a l i n g
#McCabe might be a s u i t a b l e measure in o ther con t e x t s
def computeMcCabeVG( adjacencyMatrix ) :

nodes = len ( adjacencyMatrix )
edges = adjacencyMatr ix .sum ( ) .sum( )
return nodes − edges

#ca l l e d from computeWoodEntropy ()
def woodCoordinativeComplexity ( adjacencyMatrix ,
sortedControlComponents , screenDimens ions ) :

p r ecedenceRe la t i ons = 0
for i in range ( len ( sortedControlComponents ) ) :

cu r so r = i + 1
currentAdjacencyRow = adjacencyMatrix [ cu r so r ]
currentComponentIndex =
np . where ( currentAdjacencyRow ==1) [0 ] [ 0 ]
i f ( currentComponentIndex == 0 ) :

continue
while ( currentComponentIndex > 0 ) :

p recedenceRe la t i ons += 1
cur so r −= 1
currentAdjacencyRow = adjacencyMatrix [ cu r so r ]
currentComponentIndex =

np . where ( currentAdjacencyRow ==1) [0 ] [ 0 ]

def woodComponentComplexity ( v e r t i c eLab e l s ) :
ve r t i c e sCount = len ( v e r t i c eLab e l s )

return ver t i ce sCount

def computeWoodEntropy ( adjacencyMatrix , sortedControlComponents ,
screenDimensions , v e r t i c eLab e l s ) :

coord inat iveComplex i ty = woodCoordinativeComplexity (
adjacencyMatrix , sortedControlComponents , screenDimens ions )

componentComplexity = woodComponentComplexity ( v e r t i c eLab e l s )
return coord inat iveComplex i ty , componentComplexity
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def g e tF i l e ( f i leName ) :
with open( " h i e r a r c h i e s / "+fi leName , encoding=" utf−8" )
as f :

data = j son . load ( f )
dimensions = data [ ’ bounds ’ ]
c h i l d r en = data [ ’ c h i l d r en ’ ]
return dimensions , c h i l d r en

def v i sua l i z eMat r i x ( adjacencyMatrix , v e r t i c eLabe l s ,
edgeLabels , f i leName , manualTest=False ) :
d i r e c t ed = ig . Graph . Adjacency ( adjacencyMatrix , mode=" d i r e c t ed " )
d i r e c t ed . vs [ " l a b e l " ] = v e r t i c eLab e l s
d i r e c t ed . vs [ " c o l o r " ] = " white "
d i r e c t ed . es [ " l a b e l " ] = edgeLabels
#d i r e c t e d . es [ " curved " ] =

seq (−0.5 , 0 . 5 , l ength = ecount ( d i r e c t ed ) )
d i r e c t ed . es [ " curved " ] = False
layout = d i r e c t ed . layout ( " r t " )
#save to f i l e
#re turn as a p l o t f o r a j upy t e r c e l l
i f (manualTest == True ) :

return i g . p l o t ( d i r e c t ed , layout=layout ,
bbox=(0 , 0 , 350 , 350) , margin=20)

i g . p l o t ( d i r e c t ed , " graphs / "+fi leName [:−5]+ " . png " ,
layout=layout , bbox=(0 , 0 , 800 , 800) , margin=20)

return

def determineControlGraphForFi le ( f i l e ) :
screenDimensions , c h i l d r en = g e tF i l e ( f i l e )
controlComponents , ccCount = getControlComponents ( ch i l d r en )
#we need to s o r t c on t r o l components as they are not a lways
#in a s e n s i b l e order from the p e r s p e c t i v e o f how the ac t i on s
#would be performed
sortedControlComponents =

sortControlComponents ( controlComponents )
adjacencyMatrix , endpointCount =

def ineAdjacencyMatr ix ( sortedControlComponents , ccCount )
v e r t i c eLab e l s =

d e f i n eVe r t i c e s ( adjacencyMatrix , sortedControlComponents )
edgeLabels =

def ineEdges ( adjacencyMatrix , v e r t i c eLabe l s , endpointCount )

#complex i t y computation
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ha l s t ead = computeHalstead ( edgeLabels , v e r t i c eLab e l s )
mcCabe = computeMcCabeVG( adjacencyMatrix )
woodCoordinative , woodComponent = computeWoodEntropy (

adjacencyMatrix , sortedControlComponents ,
screenDimensions , v e r t i c eLab e l s )

print ( " Halstead " , ha l s tead , "McCabe" , mcCabe ,
"Wood␣ coo rd i na t i v e " , woodCoordinative ,

"Wood␣component " , woodComponent , "Wood␣ t o t a l " ,
round( woodCoordinative+woodComponent , 2 ) )

return [ f i l e , adjacencyMatrix , v e r t i c eLabe l s , edgeLabels ,
ha l s tead , woodCoordinative , woodComponent , mcCabe ]

def l i s t A l l F i l e s ( f o lde rPath ) :
return os . l i s t d i r ( f o lde rPath )

def writeAnalyt i c sDataToFi l e ( graphArrays ) :
header = [ ’ id ’ , ’ ha l s t ead ’ , ’ c o o rd i na t i v e ’ , ’ component ’ ,

’wood ’ , ’ wood_sqrt ’ , ’ paths ’ , ’ components ’ ]
with open( ’ . / a n a l y t i c s . csv ’ , ’w ’ ,

encoding=’UTF8 ’ , newl ine=" " ) as f :
w r i t e r = csv . wr i t e r ( f )
w r i t e r . writerow ( header )
for graphArray in graphArrays :

paths = 0
for row in graphArray [ 1 ] :

i f row [ 0 ] == 1 :
paths +=1

#f i l e = graphArray [ 0 ]
wood = graphArray [5 ]+ graphArray [ 6 ]
rowToWrite = [ graphArray [ 0 ] , graphArray [ 4 ] ,

graphArray [ 5 ] , graphArray [ 6 ] ,
round(wood , 2 ) , round(math . s q r t (wood ) , 2 ) ,
paths , len ( graphArray [2 ] ) −2 ]

wr i t e r . writerow ( rowToWrite )

def writeErrorsDataToFi le ( e r r o r s ) :
with open( ’ . e r r o r s . csv ’ , ’w ’ , encoding=’UTF8 ’ , newl ine=" " )
as f :

w r i t e r = csv . wr i t e r ( f )
w r i t e r . writerow ( [ ’ f i l e ’ , ’ e r r o r ’ ] )
w r i t e r . wr i terows ( e r r o r s )

def l o opA l l J s onF i l e s ( f o lde rPath ) :
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a l l F i l e s = l i s t A l l F i l e s ( f o lde rPath )
c svAna ly t i c s = [ ]
e r r o r s = [ ]
for f in a l l F i l e s :

try :
controlGraphArray = determineControlGraphForFi le ( f )
c svAna ly t i c s . append ( controlGraphArray )
v i s ua l i z eMat r i x ( controlGraphArray [ 1 ] ,

controlGraphArray [ 2 ] , controlGraphArray [ 3 ] , f )
except Exception as e :

e r r o r s . append ( [ f , e ] )
continue

writeAnalyt i c sDataToFi l e ( c svAna ly t i c s )
wr i teErrorsDataToFi le ( e r r o r s )

l o opA l l J s onF i l e s ( " h i e r a r c h i e s " )

r e s u l t s = pd . read_csv ( ’ a n a l y t i c s . csv ’ )
print ( r e s u l t s )

p l t . f i g u r e (1 , f i g s i z e =(16 , 8 ) )
p l t . subp lot ( 1 , 2 , 1 )
p l t . s c a t t e r ( r e s u l t s [ ’ components ’ ] , r e s u l t s [ ’ ha l s t ead ’ ] )
p l t . x l ab e l ( " Control ␣components " )
p l t . y l ab e l ( " Halstead " )
p l t . subp lot ( 1 , 2 , 2 )
p l t . s c a t t e r ( r e s u l t s [ ’ paths ’ ] , r e s u l t s [ ’ ha l s t ead ’ ] )
p l t . x l ab e l ( " Paths " )
p l t . y l ab e l ( " Halstead " )

p l t . f i g u r e (2 , f i g s i z e =(16 , 8 ) )
p l t . subp lot ( 1 , 2 , 1 )
p l t . s c a t t e r ( r e s u l t s [ ’ components ’ ] , r e s u l t s [ ’wood ’ ] )
p l t . x l ab e l ( " Control ␣components " )
p l t . y l ab e l ( "Wood␣ t o t a l " )
p l t . subp lot ( 1 , 2 , 2 )
p l t . s c a t t e r ( r e s u l t s [ ’ paths ’ ] , r e s u l t s [ ’wood ’ ] )
p l t . x l ab e l ( " Paths " )
p l t . y l ab e l ( "Wood␣ t o t a l " )

p l t . f i g u r e (2 , f i g s i z e =(16 , 8 ) )
p l t . subp lot ( 1 , 2 , 1 )
p l t . s c a t t e r ( r e s u l t s [ ’ components ’ ] , r e s u l t s [ ’ c o o rd i na t i v e ’ ] )
p l t . x l ab e l ( " Control ␣components " )
p l t . y l ab e l ( "Wood␣ coo rd ina t i v e " )
p l t . subp lot ( 1 , 2 , 2 )
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p l t . s c a t t e r ( r e s u l t s [ ’ paths ’ ] , r e s u l t s [ ’ c o o rd ina t i v e ’ ] )
p l t . x l ab e l ( " Paths " )
p l t . y l ab e l ( "Wood␣ coo rd ina t i v e " )

p l t . f i g u r e (2 , f i g s i z e =(16 , 8 ) )
p l t . subp lot ( 1 , 2 , 1 )
p l t . s c a t t e r ( r e s u l t s [ ’ components ’ ] , r e s u l t s [ ’ component ’ ] )
p l t . x l ab e l ( " Control ␣components " )
p l t . y l ab e l ( "Wood␣component " )
p l t . subp lot ( 1 , 2 , 2 )
p l t . s c a t t e r ( r e s u l t s [ ’ paths ’ ] , r e s u l t s [ ’ component ’ ] )
p l t . x l ab e l ( " Paths " )
p l t . y l ab e l ( "Wood␣component " )

reRun = False
i f reRun == False :

raise Exception ( "Don ’ t ␣ rerun ␣ the ␣ code␣ block ␣below␣by␣ acc ident " )

#t h i s i s s e t to f a l s e so we don ’ t a c c i d e n t a l l y r e s e t the sample
def randomSampleForQA( checkFolder ) :

i f reRun == True :
a l l F i l e s = l i s t A l l F i l e s ( checkFolder )
sample = random . sample ( a l l F i l e s , k=30)
for s in sample :

print ( s )

randomSampleForQA( ’ s c r e en sho t s ’ )
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