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Abstract 

Food production today is more global than ever. Food trade ensures 

adequate and diverse food even in areas with low self-sufficiency. Foodstuffs 

are being traded across the world, but so are agricultural inputs such as 

fertilizers, machinery, and pesticides. Shocks and disturbances in the trade 

flows of agricultural inputs, caused by e.g. conflict, may be devastating to the 

food production and yields of otherwise self-sufficient countries. This aspect 

of food security and resilience requires more attention. In this study, we 

modelled the effects of agricultural input shocks using global spatial data on 

crop yields, fertilizers, machinery and pesticides with random forest, a 

machine learning algorithm. We show that the most drastic yield losses are 

caused by shocks in one or multiple fertilizers. Areas with the highest crop 

yields suffer the most from all agricultural input shocks, while low-yielding 

areas are seldom affected. Yield losses in these high-yielding ‘breadbasket’ 

areas of the world would be detrimental to global food security. Our study 

provides important information in high spatial definition to be used in future 

discussions on food security and resilience. 
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Tiivistelmä 

Ruoan tuotanto on kansainvälisempää kuin koskaan. Tuonti ja vienti 

mahdollistavat sen, että ruokaa on saatavilla ja se on monipuolista myös 

niillä alueilla, joilla omavaraisuusaste on alhainen. Maailman ympäri kulje-

tetaan ruoan lisäksi myös ruoantuotantoon tarvittavia lannoitteita, torjunta-

aineita, koneita ja laitteita. Katkot ja häiriöt maatalouden tuotantopanosten 

tuontikuljetuksissa voivat olla vahingollisia sellaisten alueiden ruoantuotan-

nolle ja sadoille, jotka ovat muuten omavaraisia. Tähän ruokaturvan ja sen 

häiriönsietokyvyn ulottuvuuteen on syytä kiinnittää enemmän huomiota. 

Tässä tutkimuksessa rakensimme random forest -koneoppimismallin selvit-

tääksemme maatalouden tuotantopanosten tuontikatkosten vaikutuksia sa-

toihin käyttäen viljelysatoja, lannoitteita, maatalouskoneita ja torjunta-ai-

neita koskevia maailmanlaajuisia paikkatietoaineistoja. Tulokset osoittavat, 

että katkokset yhdessä tai useammassa lannoitteessa aiheuttavat suurimmat 

satomenetykset. Alueet, joilla sadot ovat suurimpia, kärsivät eniten tuotan-

topanosten katkoista, kun taas matalasatoisilla alueilla vaikutuksia ei juuri 

näy. Satomenetykset näissä maailman ”vilja-aitoissa” runtelisivat koko maa-

ilman ruokaturvaa. Tutkimuksemme antaa lisää tietoa keskusteluun ruoka-

turvasta ja sen kestävyydestä ja häiriönsietokyvystä. 
 

Avainsanat  ruokaturva, maatalouden tuotantopanos, random forest, lannoitteet  
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FAO Food and Agriculture Organization of the United Nations 
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NSE Nash-Sutcliffe model efficiency 

ntree number of trees grown in the random forest algorithm 

OOB Out-of-Bag, data left out in the bootstrapping process of random 

forest 

P phosphorus 
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1 Introduction 
 

Food is a basic human right (UN, 1948). For this right to be ensured, food 

security needs to be improved globally and locally. According to the defini-

tion of FAO, the Food and Agricultural Organization of the United Nations, 

food security is achieved when “food is available, accessible, nutritious, and 

its supply is stable” (FAO et al., 2015). Climate change and climate extremes, 

economic slowdowns and conflicts are recognized as the biggest threats to 

and disruptors of global food security (FAO et al., 2021). The capability to 

respond and adapt to potential disruptions in any of the aspects of food se-

curity mentioned above is called resilience (Seekell et al., 2017). Many studies 

and policy changes to improve resilience have been launched in recent years. 

There are two ways to increase resilience related to national and regional 

food security: increasing food production and increasing trade (Fader et al., 

2013). Historically, increased food imports have improved food availability 

in countries more than increased self-sufficiency (Porkka et al., 2013). Inter-

est in self-sufficiency has, however, grown in recent years (Clapp, 2017) due 

to e.g. the food crisis of 2007–2008 and more recently the COVID-19 pan-

demic (Falkendal et al., 2021). Since today’s global food trade network is in-

terconnected and complex, disturbances in some of the nodes can quickly ex-

pand to a global scale as e.g. increased food prices (Puma et al., 2015). The 

trade of food that enhances food security and resilience locally and regionally 

could reduce resilience on the global scale (Kummu et al., 2020; Seekell et 

al., 2017). 

Global agricultural trade is not only composed of food stuffs, but also ag-

ricultural inputs that are used to produce the food (e.g. Lehikoinen et al., 

2021). While some countries might be self-sufficient enough in their food 

system to handle disturbances or shocks in the food trade flows, the efficiency 

of their food production and yield might be influenced by the trade flows of 

imported agricultural inputs. The resilience of different countries’ food sys-

tems therefore relies on both aspects (Marchand et al., 2016).  

The global agricultural trade system can be disturbed by e.g. natural dis-

asters, trade price fluctuations, export bans, global pandemics and geopolit-

ical tensions (FAO, 2015; Heslin et al., 2020; Puma et al., 2015). These can 

all cause sudden changes or shocks in the flows of food and agricultural in-

puts, when trade routes are disconnected on purpose, by a crisis, or by a nat-

ural disaster. One of the identified causes of the 2007–2008 food crisis was 

the high price of P fertilizers (up to 800% increase in price), oil and energy. 

The high price of  fertilizers led to failing crops for developing world farmers, 

food-related unrest in many countries and export bans of food and inputs, as 

well as increasing government subsidies for fertilizers to combat the price 

increase (Chowdhury et al., 2017; Cordell and White, 2011; Vidal, 2008). The 

COVID-19 pandemic lockdowns saw interruptions in shipping and transport 

logistics and e.g. fertilizer retail store closures due to movement restrictions, 
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exposing the fragility of supply chains of food and agricultural inputs (Am-

jath-Babu et al., 2020; Garnett et al., 2020). Post-Brexit UK has seen short-

ages in petroleum and supermarket food, stemming from logistical problems 

caused by immigration and movement restrictions. These problems have also 

affected agricultural inputs (Harris, 2021). The container ship Evergiven 

blocked one of the busiest trade routes on the globe for several days in March 

2021. The Suez Canal is an important transport route for many agricultural 

inputs and their raw materials, including 30% of the world’s potassium ferti-

lizers (Sainsbury, 2021). Maritime chokepoints around the world present 

risks of potential trade route shocks. 

The global effects of agricultural input shocks have been studied widely in 

economic trade models (Beckman et al., 2020; Haile et al., 2016; Kalkuhl et 

al., 2016; O’Hara et al., 2015) that concentrate on the market price fluctua-

tions of crop inputs. In most of these studies, the actual agricultural input 

volumes decrease only a few percent even after doubled prices. The “shocks” 

are thus mild, as are their effects on yield. In a global data-based article 

Mueller et al. (2012), while not studying agricultural input shocks directly, 

identify areas of fertilizer overuse where food security could be maintained 

with considerably less nutrients. These areas are likely to be resilient to 

shocks in agricultural inputs. 

Recent national-level studies examine the agricultural input aspect of food 

system resilience in more detail. Jansik et al. (2021) report the status of Finn-

ish agricultural input resilience, based on information gathered from stake-

holder interviews. All pesticides and most modern seeds are currently im-

ported to Finland, as is energy (electricity and oil). All these inputs have lim-

ited replaceability in the event of a shock, but vulnerability is reduced by in-

volving multiple suppliers (countries, vendors) for all inputs. Similarly, Lehi-

koinen et al. (2021) study the most important Finnish trade relationships 

connected to food security. They find that Finland relies most on imports for 

energy, but for other inputs like fertilizers and machinery it is a net exporter, 

which increases resilience. Both Jansik et al. (2021) and Lehikoinen et al. 

(2021) highlight Finland’s dependency on Russian oil and ammonia. Political 

instabilities in the region could affect Finnish food production, as shown by 

planned preparations for the effects of sanctions against Russia during the 

war in Ukraine (ProAgria, 2022). Nanda et al. (2019) study food security re-

silience in the face of phosphorus scarcity in India using a qualitative frame-

work based on stakeholder engagement and literature. They find that the 

most influential factor in India’s low phosphorus resilience is the dependence 

on phosphorus imports, followed by a large proportion of small farms, farm-

ers’ low purchasing power and poor soil fertility levels. Targeting these areas 

with policy changes would improve resilience considerably. Barbieri et al. 

(2021) study global phosphorus resilience by examining different countries’ 

soil phosphorus reserves, phosphate rock reserves and phosphorus exports. 

They find that countries with an economy highly dependent on phosphorus 
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rich exports, but low phosphorus soil or rock reserves are most vulnerable to 

global shocks in phosphorus. Argentina and Indonesia are examples of such 

vulnerable countries. 

These studies highlight the effect of agricultural inputs and their trade on 

the resilience of different countries, and recognize the risks of agricultural 

input shocks for global food security (Kalkuhl et al., 2016; Marchand et al., 

2016). To our knowledge, however, no studies have been conducted on the 

effects of agricultural input shocks on crop yields on a global scale. Inspired 

by previous national-scale agricultural resilience and input shock studies 

mostly based on expert estimates (Jansik et al., 2021; Nanda et al., 2019), we 

wanted to take a data-driven approach to find out how shocks in agricultural 

inputs would affect different global crop yields. We aimed to study whether 

there are areas and/or crops that are especially vulnerable to shocks in agri-

cultural inputs and what the most important inputs in these vulnerable areas 

might be. Identifying at-risk areas and crops could benefit further studies on 

national and global food security in the face of future global change. 

 



11 

 

2 Background 
 

Agricultural food production today is a complex sum of many factors. Differ-

ent kinds of crops require different physical, chemical, biological and anthro-

pological interventions to produce adequate yields. Geography, climate and 

soil composition determine the baseline for agricultural production, but with 

man-made agricultural inputs, crop yields can be increased. Indeed, modern 

population growth in the 20th century was possible only after the invention 

of nitrogen fertilizer manufacture. Food production and yields increased 

even more dramatically after the Green Revolution, which began in the 

1950’s and 60’s when modern agricultural inputs and practices were intro-

duced. These include synthetic fertilizers, pesticides, improved high yield va-

riety seeds, mechanization of farming, and improved irrigation practices 

(Evenson and Gollin, 2003; Pingali, 2012).  

Despite agrotechnological inventions increasing yields around the globe, 

environmental conditions and climate still determine the highest achievable 

yields and much of the spatial and temporal differences between yields. Ac-

cording to Lobell and Field (2007), approximately 30% of yield variability 

may be explained by climatic characteristics, and Ray et al. (2015) show that 

32–39% of global interannual yield variability in maize, rice, wheat and soy-

bean is explained by climate. The effectiveness of different agricultural inputs 

is not independent from climate either: modern seed varieties and fertilizers 

work best with large rainfall or irrigation, where increases in yield are 40%, 

but in hardier or more marginalized environments the yield growth can be 

only 10% (Pingali, 2012). The effects of agricultural inputs on yield are not 

always straightforward or universal, and many laboratory, field and statisti-

cal analyses have studied their relationships over the years. 

 

2.1 Fertilizers 
 

When crops grow, they assimilate carbon and nutrients into their plant tis-

sue. When a crop is harvested, these nutrients are removed from the ecosys-

tem. Many years of harvesting from the same field will deplete its nutrient 

reserves if the soil is not well managed or conserved. Nutrients need to be 

replenished in the soil, either through biological nitrogen fixation with suit-

able plants, or by adding manure or commercial nutrients. In historical 

small-scale farming, where animal agriculture was practiced together with 

farming, manure was easily available to improve nutrient balance in the 

fields. Today, crop farming and manure production are often separated by 

geography as well as farm specialization, so farms rely heavily on commercial 

nitrogen, phosphorus, and potassium fertilizer products (Robertson and Vi-

tousek, 2009). Commercial fertilizer use is more precise and less laborious 

because the nutrient content per volume is constant and high. For the same 
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amount of nutrients, much more organic fertilizer, such as manure or crop 

residues is needed than mineral fertilizers.  

Globally it is recognized that increased synthetic and mineral fertilizer use 

in the Green Revolution over the years led to increased yields (Conant et al., 

2013). McArthur and McCord (2017) found that yields increased linearly with 

fertilizer use from 1961 to 2000 when studying countries individually. 

The most important nutrients supplied by fertilizers are nitrogen (N), 

phosphorus (P) and potassium (K). Nitrogen is a vital part of any cell struc-

ture in amino acids and proteins. In plants, nitrogen is also important in 

chlorophyll and photosynthesis. Nitrogen can be synthetized with the Haber-

Bosch method, discovered in 1909. Phosphorus is an important component 

of many organic molecules in plants and animals. Phosphorus fertilizer is 

manufactured from phosphate rock, a finite natural resource. Depending on 

the author, phosphorus reserves are estimated to be exhausted in the next 

50–100 years (Cordell et al., 2009). Potassium is essential in maintaining the 

correct osmotic balance in plants and other organisms, as well as functioning 

in several enzymes. The correct osmotic balance helps plants transport nu-

trients and is vital in protecting the plant from harsh environmental condi-

tions as well as diseases and pests. Adequate K fertilization also helps plants 

to assimilate more N fertilizer (Johnston, 2003). 

The share of commercial, mineral, inorganic or synthetic fertilizers of total 

agricultural fertilization varies according to the study source and year. For 

nitrogen, the inorganic share is estimated to be between 44% and 55.6% in 

2000 (Liu et al., 2010; Sheldrick et al., 2002; Smil, 1999; Zhang et al., 2021). 

For phosphorus, the inorganic share is between 40% and 64.2% (Liu et al., 

2008; Lun et al., 2018; Sheldrick et al., 2002). The only global estimate of 

the share of inorganic potassium is from Sheldrick et al. (2002), 15%, but Liu 

et al. (2017) estimate that 43.5% of potassium nutrients in 2010 came from 

inorganic fertilizers in China, the largest fertilizer user of the globe. 

The consumption and share of inorganic fertilizers also vary between re-

gions (Figure 1). In Africa and South America, the use of inorganic commer-

cial fertilizers is much more limited than in the rest of the world. Asia uses 

over 60% of the world’s mineral nitrogen fertilizers (Liu et al., 2010). This 

major share of the global mineral nitrogen fertilizer reserves is still only half 

of the total nitrogen input in Asia; the rest of the nitrogen comes from ma-

nure and biological fixation. 

The exact percentages of inorganic fertilizer use are hard to estimate, but 

the consensus is that commercial fertilizers are a vital part of today’s agricul-

ture. They are highly necessary to maintain the food production volumes re-

quired for today’s world population. Erisman et al. (2008) estimate that 44% 

of the world population in 2000 was sustained by synthetic nitrogen fertiliz-

ers. 
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Figure 1: Fertilizer consumption in different continents in 2000. Nitrogen from (Liu 

et al., 2010), phosphorus from (Lun et al., 2018), and potassium from FAOSTAT 

(FAO, 2021b). No data was available for non-mineral potassium fertilizer use. 

 

 

Even though the increase in yields during the Green Revolution was made 

possible by the use of mineral and synthetic fertilizers, the exact relationships 

between fertilizers and yields are more difficult to study and they depend on 

environmental and other factors. Mueller et al. (2017) summarize many ni-

trogen input vs. yield models and find them all to start with a small or zero 

intercept, and at low nitrogen input rates yields increase rapidly, but the ef-

fect plateaus at higher input rates. After a certain threshold (different for 

each crop and dependent on climate conditions), adding more nitrogen fer-

tilizer does not increase yield as effectively or does not increase it at all. A 

similar relationship type is estimated for phosphorus as well as phosphorus 

and nitrogen interplay (Frank et al., 1990). Summarizing many decades of 

fertilizer studies, Stewart et al. (2005) conclude that the average share of 

yield achieved with fertilizers ranges from about 40% to 60% in the USA and 

England, with higher values in the tropics. 

Timing of fertilizer input is also crucial and can affect nutrient use effi-

ciency i.e. assimilation into the crop (Sinclair and Rufty, 2012). The different 

major nutrients also need to be in balance with each other for best possible 

results to be achieved.  

Many farmers with access to fertilizers and means to purchase them use 

more fertilizers than theoretically necessary to “be safe”, which contributes 

to global nutrient pollution from leaching farmlands. Ju et al. (2009) show 

that in China, nitrogen input is largely excessive, with no changes to yield 

even if nitrogen input decreased by 50%. Many studies agree that there are 

great regional and geographical differences in nitrogen use efficiency (e.g. 
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Mueller et al., 2017; Vitousek et al., 2009), driven by country-specific policies 

and management practices (Wuepper et al., 2020). Globally, nitrogen input 

practices and fertilizer need are often out of sync (Cassman et al., 2002); de-

veloped countries are able to fertilize an already nutritious soil, whilst in the 

developing countries the fertilizers added might not be enough to replenish 

the soil nutrient reserves after harvest. Poorly managed crop fertilization 

does not increase the crop yield with the full potential of the fertilizers but 

increases environmental pollution through nutrient leaching and runoff. Ac-

cording to Lassaletta et al. (2014), more than half of the nitrogen input to 

crops (including organic and inorganic nitrogen) is not assimilated to the 

crops but lost to the environment. 

 

2.2 Machinery 
 

Machinery and farm mechanization was an important part of the Green  

Revolution, freeing human and animal labour from all parts of agriculture: 

crop establishment, harvesting, weeding, application of fertilizers and pesti-

cides, but also from post-harvest operations, storage and further processing. 

According to Mrema et al. (2014), machinery has several benefits in increas-

ing crop production: the cultivated area can be expanded and the correct tim-

ing of agricultural operations is easier. Furthermore, tractors can be used not 

only in crop production directly, but also in e.g. infrastructure improvement 

and transportation, indirectly helping to maximize production.  

Studies directly linking agricultural machinery and yield are scarce, con-

tradictory, and the effects of machinery are often hard to separate from those 

of fertilizers. In the developing countries, increase in machinery coincides 

and correlates with increased cereal yields from 1960 to 2000 (Sims et al., 

2016), but the regression is not significant according to McArthur and 

McCord (2017). In China, 11.8% of the agricultural output or yield growth 

between 1965 and 1989 has been attributed to farm power or machinery (fol-

lowing fertilizers 21.9%, research 19.8% and institutional change 13.8%) 

(Mrema et al., 2014). Verma (2006) summarizes many Indian studies on 

yield increases and mechanization: farms owning or hiring tractors had 12–

32% higher yields than traditional manual labour farms. In addition, they 

show that yields of wheat, rice, sugarcane and potato increase significantly in 

farms after tractor purchase. Verma (2006) notes, however, that in many 

studies the yield increases could be attributed to better fertilization and irri-

gation, which usually accompany more mechanized farms. Singh (2006) 

used multiple linear regression to study the impacts of fertilizers, irrigation 

and farm power on yield in Indian farms: they conclude that irrigation con-

tributes most to yield, followed by farm power and then fertilizers (standard-

ized regression coefficients 42%, 32% and 26% respectively). 

The studies of the effects of machinery and mechanization on yield have 

focused on the transition from human and animal power to machines, mostly 
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during the Green Revolution. In developed countries, precision agriculture is 

highly mechanized, and larger yields rely more and more on agricultural 

technology (Jansik et al., 2021). Agricultural machinery is highly dependent 

on skilled experts and specific spare parts for its repair, which in turn are 

dependent on trade flow functionality. More studies are needed on the degree 

of precision agriculture and its effect on yield. 

 

2.3 Pesticides 
 

FAO defines pesticides as substances used for “repelling, destroying or con-

trolling any pest, or regulating plant growth”. The term “pest” includes in-

sects, plant pathogens, weeds, fungi, molluscs and rodents among others. Ac-

cording to estimates by FAO (2021d), these pests decrease global crop yields 

between 20% and 40% each year. 

The Green Revolution increases in yield are in part explained by the use 

of pesticides (Cooper and Dobson, 2007). Pesticides have allowed for food 

production to expand to areas unsuitable without pest control and for some 

crops to be planted earlier in otherwise suboptimal conditions, lengthening 

the growing period and increasing yields. In addition to quantity increasing, 

the quality of crops has also improved in part due to pesticides. Pesticide use 

has freed manpower from manual and mechanical weeding and other inten-

sive crop management. Pesticide use has enabled farmers to modify produc-

tion systems and to increase crop productivity without sustaining the higher 

losses likely to occur from an increased susceptibility to the damaging effect 

of pests (Oerke et al., 2012). 

Webster et al. (1999) calculate a 160% to 185% increase in yield due to 

pesticide use, and Zhang et al. (2015) show a statistically significant positive 

effect of pesticides on rice, cotton and maize production in China. The same 

study also finds that pesticides are heavily overused for these crops. Globally, 

pesticide use rates vary depending on crop and climate, but also depending 

on e.g. farm size. Many studies identify risk-averse behaviour in pesticide 

use: farmers are prepared to spray more pesticides to be safe (Jørgensen et 

al., 2019). This seems to be the case at least in developed countries; Ghimire 

and Woodward (2013) found evidence of over-use of pesticides at high GDP 

per capita levels but under-use in low GDP per capita level countries. 

Approximately 3 million tonnes of pesticides were used in 2000 globally. 

There are geographic differences in pesticide use: Asia uses as much pesti-

cides as the other continents combined (Figure 2) (FAO, 2021c). China, USA, 

Brazil and Argentina are the biggest users in absolute tonnes (Maggi et al., 

2019). Global use has been growing steadily through the years. 

 



16 

 

 
Figure 2: Pesticide use in different continents of the world. Data from FAO (2021c). 
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3 Material and methods 
 

Global spatial data on crop yields and agricultural inputs was used to con-

struct models with a machine learning method. Effects of climate were ad-

dressed by modelling yields and agricultural inputs in different climate bins. 

 

3.1 Data 
 

Agricultural input and climate bin data was available for 12 crops, that were 

thus selected for analysis: barley, cassava, groundnut, maize, millet, potato, 

rice, sorghum, soybean, sugarbeet, sugarcane and wheat.  

Yield data (tonnes/ha) was sourced from Monfreda et al. (2008). It repre-

sents the average yield between 1997 and 2003, thus minimizing the effect of 

interannual yield variability. For production calculations, harvested area (ha) 

from the same dataset was used (Table 1). 

Fertilizer grid data was acquired from the EarthStat website by request. 

Only the mineral part of fertilizer application in Mueller et al. (2012) was 

used, as it is affected by trade. Atmospheric deposition or manure-based fer-

tilization was not taken into account in this analysis. 

For machinery use, World Bank data from FAO (2021a) was aggregated 

across multiple years to an average for each country and transformed into a 

raster. If the World Bank data source did not have machinery data for a par-

ticular country, the average of the continent was used. In the case of Sub-

Saharan Africa, the continent average was missing from the original data and 

was calculated as an average of those Sub-Saharan countries for which data 

was available. The machinery data is not crop-specific, but rather a proxy 

measure of the degree of agricultural mechanization used in the area. 

Pesticide data from Maggi et al. (2019) consists of application rate data of 

the 20 most used pesticides for each crop class. Crop-specific pesticide data 

was available for wheat, maize, rice and soybean. For the eight other crops, 

the aggregate class Other was used, as classified by Maggi et al. (2019). The 

pesticide data was given as high and low estimates, but for our analysis, a 

mean estimate was calculated from these. Furthermore, the 20 different pes-

ticide application rates were rescaled by giving the highest application rate of 

each pesticide the value 1. The 20 rescaled pesticide grids were then summed 

together. This way we were able to decrease the amount of pesticide variables 

to just one, while retaining the significance of each individual pesticide. 

Straight-forward summing of individual pesticides would have masked the 

active ingredients that are only needed in smaller quantities.  

We included a statistic for irrigation in our model, as irrigated crops have 

higher yields (Lobell et al., 2009). According to Wang et al. (2021), global 

irrigated wheat yields are 34% larger than rainfed yields, and irrigated maize 

yields are 22% larger than rainfed yields. They also discovered geographic 
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and climatic differences in the effect of irrigation on yield: the largest effects 

of irrigation on yield increase are found in drier areas like the US Great 

Plains, Southern Europe and Northern China. Irrigation also enhances the 

effect of fertilization: the same fertilizer input produces higher yields on irri-

gated crops than on non-irrigated, based on empirical studies by e.g. Di Paolo 

and Rinaldi (2008) as well as yield modelling results by Mueller et al. (2012). 

Even in a situation of agricultural input shocks, the infrastructure for irriga-

tion would remain unchanged and could potentially alleviate the effects of 

decreased inputs. Irrigated and rainfed harvested area was sourced from 

Portmann et al. (2010), and for our analysis it was transformed to the share 

of harvested area under irrigation (%). 

 
Table 1: Spatial datasets used as input for the model. 

name unit timeframe notes reference 

Yield kg/ha 

2000 – Aver-

age of census 

data between 

1997–2003 

Crop-specific 
Monfreda et 

al. (2008) 

Precipitation 

and 

temperature 

mm, °C 

Historical  

climate data 

1970–2000  

averaged 

Crop-specific, 

calculations 

modified from 

(Mueller et al., 

2012) 

WorldClim 

data from Fick 

and Hijmans 

(2017) 

 

Machinery 
Tractors/ 

100 km2 
1995–2005 

not crop-spe-

cific 
FAO (2021a) 

Fertilizer  

application rate 
kg/ha 2000* 

Crop-specific, 

mineral ferti-

lizer only 

Mueller et al. 

(2012) 

Pesticide  

application rate 
kg/ha 

estimation for 

year 2015 

Crop-specific 

for maize, 

rice, soybean 

and wheat, 

aggregate 

classes for 

others 

Maggi et al. 

(2019) 

Share of har-

vested area  

under irrigation 

% 

annual irriga-

tion averages 

around the 

year 2000 

Crop-specific 

MIRCA2000 

data from 

Portmann et 

al. (2010) 

 
* From Mueller et al. (2012): “Data represents the year 2000 largely as a collection of data 
from 1999, 2000. Data for some countries is as old as 1994 or as recent as 2001.” 
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3.2 Methods 
 

3.2.1 Climate bins 

 

To control for the yield variation caused by climate, we divided each crop into 

climate zones or bins according to temperature and precipitation in order to 

study the variation in yield caused only by the agricultural inputs. For exam-

ple, crops in Finland are compared to crops in similar climate bins in Canada, 

Russia and China to capture the relationships between inputs and yield in 

their respective climates. The climate bin method has been used successfully 

before in global agricultural production analyses (Johnston et al., 2011; 

Licker et al., 2010; Mueller et al., 2012). In our study, the climate bin method 

is differs from earlier methods with respect to data analysis and research 

questions were different: Johnston et al. (2011) and Licker et al. (2010) use 

growing degree days (GDD) and the soil moisture index to construct the cli-

mate bins, while Mueller et al. (2012) use GDD and precipitation and divide 

the bins by equal harvested area. All earlier climate bin methods discarded 

the bottom 5% of observations with the lowest harvested area, but our study 

did not. Earlier methods have generated 100 climate bins, we used 25 to have 

more datapoints in each climate bin.  

In this study, to create climate bins with equal amounts of datapoints, 

WorldClim weighted mean temperature and total precipitation 5 arcmin grid 

data were used (Fick and Hijmans (2017), Table 1). For each crop area, tem-

perature and precipitation were divided into 5 quantiles to group the crop 

area into 25 different climate zones (see example in Figure 3). 

 

 

 
Figure 3: Calculated climate bins for wheat. Each climate bin represents an area 

with similar temperature and precipitation characteristics. 
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3.2.2 Random forest regression 

 

Following division into climate bins, preliminary examination of the agricul-

tural input data revealed that the relationship between that data and with 

crop yields was not linear, and that the different inputs correlated together 

(e.g areas with high fertilizer input also have high pesticide input). A machine 

learning approach was thus selected, as it can handle non-linear relation-

ships and predictor interactions and is able to process many different types 

of datasets with minimal intervention (Leng and Hall, 2020). 

Random forest (Breiman, 2001) is a machine learning algorithm based on 

classification and regression trees (Breiman et al., 2017) with some special 

modifications. Firstly, the tree is constructed with bootstrapped data, i.e. a 

random subset of the data with resampling. Within each node of the tree, a 

defined number of randomly selected parameters is used to split the node so 

that the weighted variance is minimized. Hundreds or even thousands of 

trees are constructed like this, making them uncorrelated and preventing 

overfitting (i.e. fitting the model too well to the training data without learning 

any general relationships). The final output of the random forest regression 

is the average of all the output values of the individual uncorrelated trees in 

the forest. Random forest can be adjusted with different hyperparameter val-

ues (Probst et al., 2019). A larger number of trees grown (ntree) improves the 

accuracy of the random forest but increases the required computing power. 

The number of parameters used to split the node (mtry) is usually set to p/3 

in case of regression, where p is the number of variables in the model. The 

third hyperparameter value is nodesize which is the minimum number of ob-

servations remaining in the tree’s terminal (leaf) node. The default value for 

regression trees is 5. Smaller nodesize values lead to deeper trees, because 

more nodes are needed to reach the small terminal nodes. The random forest 

default values have been shown to produce good results (Fernández-Delgado 

et al., 2014). 

As random forest is essentially a black box model, some specialized  

analyses are needed to distinguish the effect of different parameters on the 

forest result. For our model, we used accumulated local effects or ALE plots 

to analyze model behaviour (Apley and Zhu, 2020; Zhao and Hastie, 2021). 

In ALE, different variable effects are separated from their combined effects 

by calculating differences in model predictions when changing the parameter 

at certain intervals. The ALE score is the parameter effect in relation to the 

average of the model. 

In the past, random forest has been used for yield predictions with smaller 

scale climate, irrigation and satellite data (Chlingaryan et al., 2018; Evering-

ham et al., 2016; Fukuda et al., 2013; Johnson et al., 2016; Newlands et al., 

2014). It has also been used in agricultural modelling to help select the 
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important variables for constructing another type of model (Tulbure et al., 

2012). 

Jeong et al. (2016) study the random forest algorithm in global yield pre-

dictions in comparison with multiple linear regression. They find that in 

global wheat yield prediction as well as smaller scale maize and potato yield 

prediction, random forests outperform multiple linear regression in predic-

tion accuracy. However, Jeong et al. (2016) uses mostly meteorological and 

geophysical variables and only one agricultural input (nitrogen). In predict-

ing yield variability in time and space, Feng et al. (2018) and Leng and Hall 

(2020) also find that random forest performs better than regression or pro-

cess-based models, but they only use climate data. To our knowledge, no ran-

dom forest analyses have been done with only global, trade-dependent agri-

cultural input data. 

With the modelling method selected and data pre-processed, the random 

forest models for each of the 12 crops and their 25 climate bins were con-

structed. The agricultural input and yield data were assigned into their re-

spective climate bins and transformed into dataframes, where each row con-

sisted of a 5 arcmin grid cell and all its agricultural input and yield data.  

Random forest regression was performed with R package randomforest 

(Liaw and Wiener, 2002) on each climate bin individually. To minimize over-

fitting and spatial autocorrelation, the data in each climate bin was divided 

into 60 arcmin grids, that were randomly assigned to training and testing 

data (75% and 25%, respectively).   

The training data was used to construct the forest with hyperparameter 

values mtry = 2, ntree = 1000 and nodesize = 5. Default hyperparameter val-

ues were used for all forests for all crops, as preliminary testing with hyperpa-

rameter tuning showed little or no improvement to model performances.  

Model performance was visualized and measured by comparing the model 

predictions of the testing data to the known original yields, and root mean 

square error (RMSE) and Nash-Sutcliffe model efficiency (NSE) values were 

calculated. RMSE-scores of the different crop models are relative to the av-

erage yields, which can vary considerably between crops. Another way to ex-

amine model performance in a more standardized manner is the Nash-Sut-

cliffe model efficiency score, which varies between - and 1, 1 describing a 

perfect model and values 0 describing a model that has the same predicta-

bility as a mean value. Values between 0 and 1 indicate an acceptable perfor-

mance (Moriasi et al., 2007). 

In addition, the random forest algorithm performs similar validation by 

using the Out-of-Bag (OOB) data, i.e. data that is left out by the algorithm 

when bootstrapping the data for different trees in the random forest. The 

OOB and test data validation processes can be used to investigate the possible 

overfitting of the model. If the OOB validation scores are significantly better 

than the test data validation scores, the model may be overfitted to the orig-

inal training data. Yield modelling with machine learning does not yet have 
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established metrics for evaluating models, but we are using the same meth-

ods as Jeong et al. (2016). 

The constructed forest was then used to predict different agricultural in-

put shock scenario effects on crop yield. The scenarios tested were individual 

input shocks (N-rate shock, P-rate shock, K-rate shock, machinery shock, 

pesticide shock), shock to all fertilizers, and shock to all inputs. Three degrees 

of shock severity were used for each scenario: 25%, 50% and 75% decreases 

in scenario inputs. 

For each bin, forest construction and scenario prediction were iterated 50 

times with results saved from each iteration. We were thus able to calculate 

prediction variances between iterations, improving the estimation of model 

stability (Leng and Hall, 2020). 

All analyses and calculations were performed using R software version 

4.0.4 (R Core Team, 2021) using R Studio. The code is available in github: 

https://github.com/ahvoa/shock_pub  

  

https://github.com/ahvoa/shock_pub
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4 Results 
 

4.1 Model evaluation 
 

We evaluated the random forest models by comparing the trained model with 

the test data. Figure 4 presents the root mean square errors (RMSE) of each 

climate bin for wheat, calculated with the OOB method (leaving out data 

when constructing the model with training data) and manually comparing 

with the test data. The RMSE-scores are not significantly different in the 

training and the testing data. 

 

 

 
Figure 4: Wheat model RMSE (root mean square error) scores calculated while 

training the model (OOB RMSE) and with the test data (test RMSE). A lower score 

denotes less error and thus a better model. 

 

 

Because RMSE-scores are calculated relative to the average yield of crops, 

a more objective indicator of model performance, NSE, was calculated. For 

most of the crops and climate bins, the NSE-scores are above 0.65 (Figure 5), 

indicating that the models have good (NSE > 0.65) or very good (NSE > 0.75) 

simulation results and predicting power (Moriasi et al., 2007). The scores for 

sugarbeet seem to be especially high, while cassava and groundnut climate 

bins 1–4 have very poor scores. Scenario predictions from these poorly 

scored climate bins were examined with caution. 
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Figure 5: NSE (Nash-Sutcliffe model efficiency) scores for all crops. A score above 

0.5 denotes a satisfactory model, above 0.65 a good model and above 0.75 a very 

good model. 

 

 

Model validation was further studied by plotting observed and modelled 

yields from the testing dataset that was left out when constructing the model 

(Figure 6). Visual inspection reveals that in many models, the linear regres-

sion line of the observed vs. modelled yield follows the 1:1 red line quite well. 

The deviations suggest that lower yields are predicted to be slightly higher 

than their observed values, whilst higher yields are slightly lower in the pre-

diction than observed. 
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Figure 6: Wheat validation scatterplots comparing the observed (x-axis) and mod-

elled (y-axis) yields from the test dataset. The red diagonal line denotes the 1:1-line 

where modelled yields would be identical to original yields. The blue line represents 

linear regression between the observed and modelled yields. 

 
 

4.2 Model behaviour 
 

Model behaviours, i.e. the relationships of each parameter to yield, were 

studied using accumulated local effects (ALE) plots. The differences between 

model iterations in each bin were inspected visually (Figure 7). The plots 

show what the effect of each parameter with different input rates is compared 

to the average prediction. For example, for a machinery rate above 500 trac-

tors/km2, the predicted yield is 1 kg/ha higher than the average prediction. 

There is some deviation in ALE-scores between different iterations of the 

model, especially for fertilizers and machinery. This group of ALE plots is 

very representative of the other crops and climate bins: usually the ALE-

scores of pesticides and irrigation are very limited and they have little 
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deviation between iterations. Fertilizers and machinery have more variability 

in their effects on the model. For this particular wheat climate bin 10, the 

high N-rate, K-rate and machinery have a positive effect on the yield. In the 

agricultural input shock scenarios, it could be expected that these inputs are 

also critical. 

 

 

 
Figure 7: ALE-plot (Accumulated Local Effects) for wheat climate bin 10. Each grey 

line represents the ALE-results of one model iteration. 

 

 

The iteration ALE-plots from each wheat climate were summarized into 

one climate bin ALE-score line with LOESS (locally estimated scatterplot 

smoothing, Cleveland and Devlin (1988)) and the results for the whole crop 

is presented (Figure 8). For N-rate, P-rate and irrigation, the ALE-plots in 

each climate bin are quite similar. For the other inputs the effects of the pa-

rameter rate on yield differ more between climate bins. Figure 8 plots also 

reveal that the agricultural input rates are not distributed equally between 

climate bins; some bins do not have the highest input rates.  
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Figure 8: LOESS-smoothed ALE-scores for each climatebin for wheat. The colours 

represent each climate bin as in Figure 3. 

 

 

4.3 Scenarios 
 

The random forest models constructed from agricultural input and yield data 

were used to predict yield changes in agricultural input shock scenarios for 

each climate bin individually. Figure 9 presents the results for all different 

shock scenarios for wheat bin 10. The results here, and the typical result from 

most scenarios in all crops and climate bins, were that after a shock in agri-

cultural inputs, the areas with the highest original yields suffered the most. 

In the N-rate shock scenario, when the original yield is high (x-axis), the 

shock yield is smaller (y-axis). If the original yield is smaller, the shock yield 

stays the same or may even increase: the points are on the red line or above 

it. Additionally, larger input shock scenarios decrease the yields more: 75% 

input shock plots have the lowest shock yields.  

Some shock scenarios do not seem to decrease the yields very much. In 

Figure 9, only shocks in the N-rate, K-rate and machinery show declines in 

yields, as well as a fertilizer shock and a shock in all inputs. N-rate, K-rate 

and machinery were also shown to be influential for this model in the ALE-

plots in Figure 7 Similar responses are seen in all crops, with the significant 

shock scenarios varying between crops and climate bins. 
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Figure 9: Wheat bin 10 

scatterplots for each of 

the studied shock sce-

narios. The red diago-

nal line denotes the 

1:1-line where sce-

nario-yields would be 

identical to original 

yields. Points below 

the red line indicate 

that the agricultural in-

put shock decreased 

yield. 
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When exploring the 50% N-input scenario (Fig. 10) we found that yield 

decreases were induced in e.g. Central Europe, the eastern parts of North 

America and some locations in Southern Africa, China and India. On the 

other hand, a shock in all inputs simultaneously decreases yield more and in 

more locations, as seen in Fig. 11. The areas affected are larger and the yield 

decreases deeper than in a single input shock scenario. 

 

 

 
Figure 10: Yield decrease of wheat after a 50% shock in N-input. The map only 

highlights the yield decreases and omits yield increases. 

 

 

No one geographical area has large declines in all crops, but in some areas 

yields decreases can be seen for a few different crops (Figure 11). The yields 

of barley, maize, potato and wheat all decrease heavily in Western United 

States. Barley, maize, millet, potato, sorghum and soybean yields all decrease 

in Northern Argentina. Barley, maize, potato, wheat and to some extent sug-

arbeet also see large yield decreases in Central Europe: France, Germany and 

the UK. 
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Figure 11: Yield decreases in all crops after a 50% shock in all inputs. The maps 

only highlight the yield decreases and omit yield increases. 
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To study the results more in relation to each climate bin, scenario results 

of all climate bins of a crop were aggregated, focusing on yield decreases (Fig-

ure 12). Crop-wide it is confirmed again that a higher shock degree causes 

more yield decline. There are differences between the climate bins in the 

shocks they are susceptible to; climate bins 9–13 seem to respond heavily to 

N shock. Most climate bins experience yield decrease in a larger area when 

all inputs have a shock and in many climate bins the fertilizer shock effect is 

the same as the effect of a shock in all inputs. There are some climate bins, 

such as 21–25, that do not see a huge yield decrease area share with any shock 

type. A P-rate shock or a pesticide shock seems to have little effect in some of 

the climate bins of wheat, even at 75%. 

While Figure 12 shows how the area of the yield decrease changed with 

different shocks, Figure 13 shows how deep the yield decrease is in each cli-

mate bin. The depth of the yield decline does not change as drastically as the 

area of decline in the previous figure. The average yield declines are around 

-25% of the original yield, and a little more for the fertilizer shock scenario 

and the all input shock scenario. 

However, for some climate bins, the agricultural input shock does not in-

crease the area of yield decline, but rather the depth: instead of decreasing 

the yield in more cells, the shock induces deeper yield decreases. An example 

in the wheat crop is climate bin 1, where the area of yield decline does not 

increase between shocks or shock degrees (Figure 12), but the depth of the 

yield decline increases for a 75% fertilizer shock and a shock all (Figure 13).  

 

 

 
Figure 12: Wheat shock tile plots. Each tile represents the share of the respective 

climate bin’s cells where yield decline after the shock was greater than 10% from 

the original yield. 
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Figure 13: Mean yield decline of bin cells where yield decline was more than 10%. 

The colour of the tile reflects the average yield decline of all the cells where decline 

was greater than 10% of the original yield (note the different colour scale). Tile plots 

for other studied crops can be found in the Supplementary Material. 

 

 

There are similarities and differences between the crops and their climate 

bins in their yield decrease responses to the different shock scenarios (see 

Supplementary Fig. A 1). For many crops, the shock in pesticide inputs has 

little effect on yield decrease. For most crops, shock yield decreases are sim-

ilar with a shock in all fertilizers and a shock in all inputs, emphasizing the 

importance of fertilizers. 

Over all 12 crops, there is no trend detected in the shock-induced yield 

decline related to the climate bin variables. In individual crops, some clus-

tering of heavily affected bins can be seen (Supplementary Fig. A 2–A 3), but 

in general agricultural input shock effects are not concentrated in particular 

climate types. 

To better study the differences between crops and to compare our results 

to existing literature, scenario results were converted from yields to produc-

tion volumes. Shock scenario effects on production were calculated by mul-

tiplying all shock yields (t/ha) with their harvested area (ha) and comparing 

to the original production (Figure 14). These calculations did not focus on the 

yield decreases but included all predicted shock yields. The different shock 

percentages have a different effect on the production decrease, which does 

not necessarily reflect the rate of increase in the shock: for wheat, a 25% 

shock in all inputs decreases production by 15%, but a 50% shock decreases 

production by 20%. 
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Figure 14: The effects of the different shock scenarios on global production (pro-

duction = yield * harvested area). The different shades indicate the effect of different 

shock percentages. 

 

 

The crop most affected in global production by a shock in all agricultural 

inputs is maize, where production declines over 50% with a 75% shock in all 

agricultural inputs. The largest yield decreases by shocks in individual agri-

cultural inputs occur in barley, rice and wheat, by N-rate, and in maize, by 

machinery. Soybean and sugarbeet production are affected by shocks in K-

rate. Despite not showing significant effects on yields in previous figures, pes-

ticides seem to have a substantial effect on e.g. sugarcane production on the 

global scale. 

In addition to studying the differences in shock scenario productions be-

tween different crops, country-specific production changes were studied af-

ter the shock scenario “50% shock in all inputs” (Fig. 15). All the studied crops 

were included in these calculations. 
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Figure 15: Change in total production over 12 analyzed crops, a) on grid cell level 

and b) by country. Same colour scale for both maps. 

 

 

The countries with the largest relative decreases in production are Den-

mark, Oman, the United Kingdom, New Zealand, and Saudi Arabia, with de-

clines greater than 50%. Of the five current top producers of the studied 12 

crops (Brazil, China, India, Thailand, and the United States), United States 

has the largest decline in production, -42%. The largest absolute decline oc-

curs in the United States, where production declines by 200 million tonnes, 

followed by China with a 140 million-tonne decline. Many countries in Africa 

and e.g. Finland and the Baltics suffer very little.  
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5 Discussion 
 

Random forest models were built with agricultural input and yield data. The 

models were then used to predict yield changes in 21 different agricultural 

input shock scenarios. We used spatially gridded datasets, which allowed us 

to model the effects in high resolution and identify sub-national differences. 

The scenario results demonstrate that agricultural input shocks are especially 

devastating to high-yield areas in Northern America and Western Europe. 

The input use in these areas is also typically high. In lower-yielding and low-

input areas, the yields stayed the same or could even increase. By focusing on 

the yield decreases we were able to highlight the areas where agricultural in-

puts are most crucial.  

Studying model behaviour using ALE-plots revealed that there are simi-

larities and differences between climate bins and crops in the way each agri-

cultural input affects yield. The results from the shock scenarios clarified this 

even more: most crops and climate bins had decreased yields after shocks in 

one or more fertilizers, but there were some instances affected by neither. 

Because a shock in agricultural inputs affects high-yielding areas more, the 

decreases in these “bread-basket” areas influence global food production and 

food security. This study demonstrates the importance of the agricultural in-

put aspect in food system resilience both nationally and globally. 

 

5.1 Models 
 

Most of the random forest models for crops and climate bins had NSE scores 

above 0.65 (Figure 5), indicating good or very good model performance (Mo-

riasi et al., 2007). Sugarbeet models, in particular, had high NSE scores in all 

climate bins. These high NSE values are similar to the results in Jeong et al. 

(2016) for global wheat yield predictions with random forest. There was var-

iation between climate bins and crops with some performing better than oth-

ers. Analyzing the performances with respect to the temperature and precip-

itation quantiles (Figure 5), it seems there are some extreme bins where the 

NSE-score is low, for example the lowest temperature quantile of cassava and 

groundnut, and the highest temperature and precipitation bins of millet. It is 

possible that in these climate bins the input data is not diverse enough to 

produce good models, or that climate or other factors play a more important 

role than the agricultural inputs we studied. The model validation scatter-

plots (Figure 6) confirm the well-performing models. The fact that some 

models predicted higher yields to be lower than observed yields is important 

to keep in mind when analyzing the scenario results. 

The RMSE scores between training and testing datasets were similar (Fig-

ure 4), which usually indicates that the model does not overfit. Comparing to 

Jeong et al. (2016), their calculated RMSE for globally predicted wheat yields 
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is 0.32 t/ha, 11.9% of the average yield. Our wheat climate bin RMSEs varied 

from 14% to 40% of the average yields. Better RMSE scores in Jeong et al. 

(2016) may be due to a larger number of mostly climate based variables, but 

Jeong et al. (2016) also note that the good results may be a product of spatial 

autocorrelation between datapoints in similar political units; this could also 

be the case in our study with sugarbeet. Observations are never completely 

independent in geographic data due to e.g. cultural and governance practices 

being similar in geographically close areas. Ferraciolli et al. (2019) shows that 

spatial autocorrelation increases overfitting in a yield model for sugarcane 

and that it underestimates the error of the model. They counteract the prob-

lem by splitting the data into k-means clusters and assigning clusters ran-

domly to training and testing data. Similarly to Ferraciolli et al. (2019), we 

attempted to minimize overfitting and spatial autocorrelation by dividing the 

training and testing data into grids to keep adjacent cells in different groups 

to make sure that the model predictions were truly based on relationships in 

the data. The division was also altered for each iteration of the model, and 

the final result is the median of all the different iterations.  

All statistically built models are only as good as their data, and similarly 

the random forest models presented here rely on the data they were con-

structed with. Most of the input data and yield data are from the same time 

period, with averages around the year 2000. The pesticide data is from 2015 

according to Maggi et al. (2019), but the underlying data used to model the 

pesticide rates in their article ranges from 1994 to 2016. Climate data used 

for defining the climate bins are averages from 1970–2000. Our models de-

scribe the relationships between yields and agricultural inputs around the 

year 2000, but we assume that the relationships between the inputs and yield 

have remained quite similar and changes are slow, and that the results are 

therefore applicable also to the current situation. Because data is aggregated 

across many years, yield variability between years is muted in the averaging 

process. Our models and scenarios represent relationships and changes in 

the averages, but in reality, interannual variability in yields could alleviate or 

exacerbate the changes seen in the models and scenarios. 

Apart from temporal accuracy, spatial accuracy is also a limitation in the 

models. Despite being in the same resolution, the data rasters might not al-

ways align with complete accuracy, creating some datapoints with unreason-

able agricultural input and yield compilations. We believe these instances to 

be rare enough not to affect the model functionality, as random forest is quite 

robust to outliers (Breiman, 2001). Yet another aspect that could have af-

fected model performances are the details of the model input data: for a 

wheat climate bin with 28,000 observations, there are only 30 unique values 

for N-rate or P-rate. Many of the fertilizer rates are known only at subna-

tional/county level. For machinery, we used country-level data or, in some 

cases, continental averages. The low level of detail in the data could increase 
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spatial autocorrelation. More detailed data would improve the accuracy and 

prediction power of our model. 

The ALE-plots show that different model iterations behave quite similarly 

(Figure 7). The greatest differences between iterations are seen with the high-

est agricultural input values. The plots reveal interesting patterns in the mod-

els, some expected and others unexpected. Fertilizers were expected to have 

a great impact on the yield, and this is confirmed by the majority of ALE-

plots (Figure 8). Many yield relationships follow the typical form described 

by Mueller et al. (2017) for nitrogen, (high slope at low rates, plateau at 

higher rates), but some unusual bell shapes are also found for some climate 

bins, where medium fertilizer rate corresponds to highest effect on yield. This 

might be an indication that areas with medium mineral fertilizer input and 

highest yields are using more manure-based or organic fertilizers to increase 

the yield. 

Machinery also often has a Mueller-type ALE-plot response, where at 

smaller machinery rates even a small increase has a large effect on yield, but 

at the highest machinery rates the effect on yield stay the same. This is to be 

expected, as moving from human- or animal-powered land modification to 

agricultural machinery has been shown to increase the productivity of farms 

(e.g. Mrema et al., 2014). 

Irrigation or the irrigated share of the harvested area was expected to have 

a greater effect on yield, based on previous literature (e.g. Lobell et al., 2009; 

Wang et al., 2021). Even in the hot and dry climate bins the ALE plots do not 

show a large effect of irrigation on yield compared to the other inputs. Some-

what unexpectedly, pesticides also have low ALE scores throughout most of 

the crops and climate bins compared to the other agricultural inputs, despite 

having the most detailed data (Figure 7 and Figure 8). Both irrigation and 

pesticide use may be masked by the other inputs; their effect may be larger 

on their own but compared to fertilizers and machinery it is minimal. 

 

5.2 Scenarios 
 

The scenario yields predicted by the random forest models are presented in 

Figs. 9–13 and the Supplementary Material. Random forest regression pre-

dicts the shock scenario yields by “selecting” observations in the same climate 

bin where input use is similar to scenario use. Decreased scenario shock 

yields indicate that in the climate bin, original yields were only attainable 

with original input values. Increased yields after scenario shocks mean that 

in the same climate bin, similar or better yields are possible with less com-

mercial agricultural inputs.  

We found that for all the studied shock scenarios, the largest yield de-

creases were observed for high yields, whilst lower yields tended not to be 

affected negatively by the shocks. As seen in the Figure 6 scatterplots, a very 

small part of this effect could be attributable to model performance. The 
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increase in low yields and the variation between areas of low yields and low 

rates of commercial agricultural inputs might be due to using more manure-

based fertilization, using more efficient agricultural practices or to better soil 

quality. 

In contrast, high yields are very dependent on commercial agricultural in-

puts and are therefore negatively affected by agricultural input shocks. The 

variation of high yields can be explained by variation in agricultural input 

use. The scenario predictions thus identify areas of high yields that need com-

mercial trade-dependent agricultural inputs to sustain their original high val-

ues. The original high yields are only possible in their respective climate bins 

with a specific higher agricultural input intensity. The scenario shocks are 

also larger in absolute values for the higher input and higher yielding areas. 

Because shock scenario yield decreases are focused on high yields, the ar-

eas most affected by shocks in agricultural inputs are the high-yielding areas 

or “breadbaskets” of the globe (Figure 11 maps, and Figure 15 country map): 

Northern America, Central Europe, Argentina and parts of China. The large 

yield reductions also affect the total global production of the crops (Figure 

14): even though many smaller yields were not negatively affected by the ag-

ricultural input shocks, as seen in Figure 9 scatterplots, global production 

overall decreases due to the decreasing yields of the world’s high-yielding 

breadbasket areas. In addition to creating problems for local food security, 

shocks in agricultural inputs could affect the global food trade if large yield 

decreases fall on important global food exporters and trade nodes (Puma et 

al., 2015). More research is needed to fully understand the interconnected 

effects of agricultural input shocks on the global food trade. 

The highest agricultural input values do not always correlate with the 

highest yields. In Fig. 16 the N-rate for the highest original yields is ca. 150–

200 kg/ha, while the highest N-rate of 300 kg/ha produced original yields of 

2.5 t/ha (darkest black points, indicated with green). The deepest yield de-

creases are seen in the highest original yields. Their original high yields were 

possible with a certain optimum combination of fertilizers, other inputs and 

agricultural qualities. The highest N-rate and the low original yield connected 

to it indicate overuse of the fertilizer with regard to the other agricultural 

management factors. The full potential of high N-input is not achieved be-

cause best results require high fertilization coupled with adequate water sup-

ply and soil modification using machinery. Other fertilizers also need to be in 

sync, both temporally and stoichiometrically, with the N-fertilizer to produce 

maximum yields. 
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Figure 16: Wheat bin 10 fertilizer shock. The green circle demonstrates the grid cells 

with the highest N-rates that nonetheless have a relatively low original yield (2.5t/ha) 

and subsequently do not suffer large yield decreases after shocks in N-input.  

 

 

5.3 Soil nutrients could affect shock scenarios 
 

Overusing fertilizers is not uncommon. For example, Sattari et al. (2012) and 

references therein describe situations where years and decades of phospho-

rus fertilizer overuse results in a residual phosphorus pool in the soil large 

enough to support good yields without external phosphorus input. Does our 

model consider this situation? 

The random forest models presented here do not directly address residual 

nutrients in the soil, but areas with overuse of fertilizers are not predicted to 

suffer yield decreases from the shock since there are locations in the same 

climate bin where the yields are the same or better with less nutrients (as 

seen in Figure 16 above). Better yields are achieved with less inputs that are 

better balanced and correctly managed or due to better soil, and thus the 

model predicts similar or even increased yields for areas where fertilizers are 

overused.  

Overuse of fertilizers is a large source of water pollution, and many studies 

and government programmes aim to reduce it (HELCOM, 2013). The use of 

fertilizers is spatially imbalanced: both over- and underuse occurs. In China 

for example, previous research indicates fertilizer overuse and subsequent 

fertilizer surplus in the soil, especially for phosphorus (Lun et al., 2018; Mac-

Donald et al., 2011). It is shown in many studies (e.g. Mueller et al., 2012; 

Wuepper et al., 2020) that China could reduce its fertilizer inputs without 

affecting yield. West et al. (2014) find that “~50% of the excess nitrogen and 

phosphorus is concentrated in only 24% and 21% of the world’s cropland 

area, respectively, and that China, India, and the United States together ac-

count for ~64% to 66% of excess nitrogen and phosphorus”. West et al. 

(2014) also calculate that between 14% to 29% of nitrogen and between 13% 

to 22% of phosphorus could be reduced without affecting current yields, tar-

geted to excessive users. Our shock scenarios indicate yield decreases in high-



40 

 

yielding areas of China, India and the United States (Fig. 11), but only after 

shocks largely exceeding the reductions proposed by West et al. (2014). 

Therefore, our results do not contradict previous studies on excess fertilizers; 

the shock scenarios are a greater reduction in agricultural inputs than the 

overuse seems to be. 

In some parts of the globe, not enough fertilizers are used. MacDonald et 

al. (2011) study global agricultural phosphorus balances in 2000 and identify 

areas of deficit where the phosphorus input from inorganic or organic ferti-

lizers is not equal to the amount harvested, meaning that soil phosphorus 

reserves are being depleted. One of the highly deficit areas is Argentina. The 

Lun et al. (2018) study demonstrates similar results on the country level for 

phosphorus, and Liu et al. (2010) also calculate nitrogen deficit soils for Ar-

gentina. In our scenarios, Argentinian yields of maize, potato, sorghum and 

soybean were found to be sensitive to shocks in fertilizer input with signifi-

cant yield decreases after shock scenarios. Due to nutrient deficient soils the 

true effects of agricultural input shocks might be even worse than calculated 

in our analysis. P deficiency was also found for Eastern Europe and Russia, 

but our analyses did not predict yield decreases in these areas due to their 

low original yields. 

A more detailed analysis of soil nutrient budgets combined with the results 

from our analysis could reveal more information on vulnerable areas. The 

use of soil residual nutrient data could enhance the estimation of yield de-

crease since the nutrient reserves in the soil could either alleviate or exacer-

bate the effects of input shocks. 

 

5.4 Study limitations 
 

In addition to soil nutrient balances, other datasets could improve the agri-

cultural input models, scenario predictions and subsequently analyses on 

food security and vulnerability, especially for lower yields. Agricultural field 

slope or soil type are demonstrated not to be significant parameters in yield 

models according to Mueller et al. (2012). Data on non-commercial fertilizers 

and nutrient use is available and was considered for our analysis to study 

whether higher manure use would protect from fertilizer shocks, but ulti-

mately the data was left out. As regards to non-mineral and non-commercial 

fertilizers, it is difficult to estimate e.g. whether the manure is self-supplied 

or transported from elsewhere and thus susceptible to trade disturbances or 

not. 

Other agricultural inputs considered in food security analyses include en-

ergy and imported seeds. Energy used in agriculture in the form of oil is in-

cluded in our analysis indirectly through machinery, but energy is also used 

in post-harvest processing of crops, affecting the eventual quality and quan-

tity of yield. According to Jansik et al. (2021), animal husbandry and 
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greenhouse crops are more energy-intensive and energy-dependent forms of 

agriculture than field crops.  

High-yielding seed varieties are an important factor at least in the devel-

oped countries. The shocks could be crucial, depending on crop and climate 

conditions: in Finland approx. 70% of sugarbeet crops are grown from im-

ported seeds modified for Finnish climate conditions, according to Jansik et 

al. (2021). They estimate large decreases in sugarbeet yields due to seed im-

port shocks, based on Finnish expert interviews. A potato seed import shock 

is estimated to cause a 10% decrease in yield on the first year, and a more 

severe one if the shock was prolonged. A small part of the shock could be 

alleviated by own seed production. Including the use of imported seeds in 

agricultural input shock analyses would provide important information with 

regard to food security. Unfortunately, no globally comprehensive data was 

available to be included in our analysis. 

While more variables like governance, GDP etc. might have improved the 

model’s accuracy, we deliberately wanted to mask the effects of non-input 

related factors for the purposes of the scenarios. This way the shock scenario 

yield estimates are based on all yields of the climate bin and not just on cells 

with similar governance or GDP, to allow for a more diverse overview. 

 

5.5 Comparison to other agricultural input shock studies 
 

Mueller et al. (2012) use global spatial data and models to calculate yield gaps 

for major crops. They also model areas where reductions in fertilizers would 

be possible without yield decreases for the major cereals: wheat, rice and 

maize. The methods and result units are different from our analysis, but some 

visual comparisons between maps could be made. The major areas that could 

not withstand reductions in fertilizers according to Mueller et al. (2012) are 

Eastern Europe, Central Africa, and South America. In our analysis, these 

same areas were not particularly susceptible to fertilizer shock scenarios, be-

cause of their low original yields, except for Argentinian croplands. Their 

model is based on slightly different global yield data and is constructed from 

both the global data and previous models of input yield relationships. In their 

model, lower yields are more affected by agricultural input than in our mod-

els. A more detailed analysis of their results and more than visual comparison 

could reveal more similarities or differences in the results.  

Jansik et al. (2021) use expert interviews to investigate the effects of agri-

cultural input shocks on Finnish agriculture. In their estimate, a total shock 

in the input of farm chemicals, fertilizers and pesticides could reduce yields 

by 10–40% (crops not specified). In our scenarios, a 75% shock in all inputs 

reduced the yields of Finnish wheat, barley and potato by a maximum of 40%. 

Jansik et al. (2021) also conclude that the effects of pesticide shocks would 

be severe: grain yields could decrease by 30%, potato yields by 50% or more. 

In our study, pesticide shocks had a low effect globally, but in our Finnish 
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75% pesticide shock scenarios, barley, potato and wheat yields decreased 

moderately: 15%, 30% and 25%, respectively. 

Haile et al. (2016) use an economic trade model to predict the effects of 

phosphate price increase and find that even if the international price of P 

doubled, the global crop yield decreases only by 1–7% in wheat, maize, rice 

and soybean. The decrease in actual fertilizer input was not discussed in the 

model. O’Hara et al. (2015) also study the effects of a phosphate fertilizer 

price shock using economic models. In their study, the phosphate fertilizer 

price increases by 200%, but the global use of phosphate fertilizers declines 

by only 3%. They find decreases in production to be only a few percent glob-

ally, from 0% to 14% in the largest producers. In India, the phosphate price 

increase leads to phosphate and potash application rates changing by -11% 

and -26%, respectively. For maize, this means a 14% reduction in production. 

In our somewhat comparable shock scenarios, a 25% P-rate shock and a 25% 

fertilizer shock, maize production in India decreased by 3% and by 12%, re-

spectively. 

Beckman et al. (2020) model the food security impacts of EU’s Green Deal 

and Farm to Fork strategies on a global level. These EU strategies aim to re-

duce pesticides by 50% and fertilizers by 20%, as well as land use (by 10%) 

and antimicrobial use in livestock (by 50%). If all countries decreased the 

mentioned agricultural inputs, agricultural production would decrease in 

some places as being too costly, while increasing in other places where farm-

ing is more profitable due to changes caused by adopting the strategy. The 

study predicts wheat production changes of -33%, +3% and -33% for China, 

the United States and the EU, respectively. This can be compared to our 

shock scenario of a 25% shock to all inputs, which resulted in -25%, 0% and 

-7% production changes in the respective countries. 

 

5.6 Shock alleviating factors 
 

Economic models like those presented in Beckman et al. (2020); Haile et al. 

(2016) and O’Hara et al. (2015) allow for reaction to world events and crop 

management changes in response to them, whereas in our model, yields for 

all cells are predicted individually and independently from neighbouring 

cells. The economic models assume alleviating factors to price increase 

shocks or scenarios: governments of developed countries can subsidize farm-

ers to buy farm chemicals; the world market and grain prices shift the pro-

duction locations of different crops. Individual farmers can increase or de-

crease their farming acreage to adjust to new input levels, and they can also 

substitute chemicals with machinery and labour or adjust their farming prac-

tices with investments (Beckman et al., 2020; Haile et al., 2016).  

Compared to the phosphorus price shock scenarios (Haile et al., 2016; 

O’Hara et al., 2015), our input shock scenarios are more drastic. Especially 

the all input shock scenario in our study represents a more war-like or severe 
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pandemic situation, a worst-case scenario. Our study also assumes that the 

agricultural input shock occurs at a critical time point in crop management 

or that the shock is prolonged and exhausts the buffering capacity countries 

or individual farms might have. The stakeholder interview study by Jansik et 

al. (2021) concludes that, on average, Finnish farmers have 10-15% of their 

yearly fertilizers and pesticides in storage. 

Farm chemicals and other agricultural inputs in national or personal re-

serves could alleviate the trade shocks, but otherwise means to substitute the 

missing agricultural inputs are scarce. Some pesticides can be replaced by 

mechanical weeding or adjusting crop management timing (Jørgensen et al., 

2019). In high-precision agriculture in the developed countries, machinery is 

nigh impossible to be replaced by manpower or even animal power without 

huge yield losses (Jansik et al., 2021). Supplementing fertilizers with organic 

nutrients from manure and crop residues is possible up to a certain degree. 

In a time of agricultural input shock, manure etc. could become a commodity 

to be traded and become scarce on their own. 

Many previous studies have focused on P due to its finite reserves, but our 

analysis shows that for some areas, other inputs and their shortages may be 

just as important as regards yield. The summarizing tile plots in Figs. Figure 

12 andFigure 13 and the Supplementary Material do not reveal any one agri-

cultural input as being the most influential in shock yield decreases across all 

climate bins and crops. Globally, 50% of fertilizers are of commercial origin 

and susceptible to trade shocks. The most severe yield decreases are related 

to shocks in fertilizers. To increase food security and resilience in the face of 

global trade network uncertainties, areas with a high degree of commercial 

fertilizer use should seek to replace them with more sustainable and local bio-

based fertilizers, especially in the case of finite phosphorus reserves. The ad-

verse effects of overusing fertilizers, like eutrophication, could also be miti-

gated by more sustainable and circular fertilizer use.  

Our analysis describes the yields and agricultural inputs in the year 2000, 

and the shock scenario effects on the relationships of that time point. In the 

future as the changing climate will change global yields (Wheeler and Von 

Braun, 2013), it can also modify agricultural input requirements, e.g. more 

pest damage means increased pesticide application (Rosenzweig et al., 2001). 

Thus some inputs might be more crucial for future yields. The growing global 

population and the goals to provide food security for all will also increase the 

need of agricultural inputs. The dwindling commercial phosphorus re-

sources, expected to be depleted in 50 to 100 years (Cordell et al., 2009) will 

force the agricultural sector to find new, sustainable ways of increasing and 

maintaining high yields. All in all, agricultural inputs and their availability 

should be taken into account now and in the future when a more resilient and 

sustainable global food system is constructed. 
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6 Conclusions 
 

To our knowledge, this work is the first attempt at constructing a model and 

scenarios to study trade-dependent agricultural input shocks and their ef-

fects on global yields with high spatial definition. Previous studies have fo-

cused on price increases and economic effects, and yields and crop produc-

tion have been treated as national aggregates and without a precise spatial 

dimension. 

The random forest models presented in this study had a predicting power 

of 60–80% on average, indicating good performance. The models were used 

to predict yield changes in the face of agricultural input shocks. The relation-

ships between agricultural inputs and crop yields are complex, as are the ef-

fects of different input shocks. The largest yield decreases were observed for 

high-yielding areas of each crop, where the specific high agricultural input 

rates are in balance to produce maximum yields. These high-yielding areas 

are important not only for regional food security, but also for global food pro-

duction. 

With more precise agricultural input data and additional supporting envi-

ronmental data, the effects of agricultural input shocks could be understood 

even better. Our results highlight the fragility and interconnectedness of the 

food-related trade system. The results can serve to evaluate regional food se-

curity more comprehensively, and together with other information help iden-

tify at-risk areas. 

 

 

 

  



45 

 

References 

 

Amjath-Babu, T.S., Krupnik, T.J., Thilsted, S.H. and McDonald, A.J.  2020.  Key 
indicators for monitoring food system disruptions caused by the COVID-19 
pandemic: Insights from Bangladesh towards effective response. Food 
security 12(4), 761-768. 

Apley, D.W. and Zhu, J.  2020.  Visualizing the effects of predictor variables in black 
box supervised learning models. Journal of the Royal Statistical Society: 
Series B (Statistical Methodology) 82(4), 1059-1086. 

Barbieri, P., MacDonald, G.K., Bernard de Raymond, A. and Nesme, T.  2021.  Food 
system resilience to phosphorus shortages on a telecoupled planet. Nature 
Sustainability, 1-9. 

Beckman, J., Ivanic, M., Jelliffe, J.L., Baquedano, F.G. and Scott, S.G.  2020.  
Economic and Food Security Impacts of Agricultural Input Reduction Under 
the European Union Green Deal’s Farm to Fork and Biodiversity Strategies. 
USDA Economic Research Service (Economic Brief Number 30). 

Breiman, L.  2001.  Random forests. Machine Learning 45(1), 5-32. 
Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. 2017. Classification and 

regression trees, Routledge. 
Cassman, K.G., Dobermann, A. and Walters, D.T.  2002.  Agroecosystems, nitrogen-

use efficiency, and nitrogen management. AMBIO: A Journal of the Human 
Environment 31(2), 132-140. 

Chlingaryan, A., Sukkarieh, S. and Whelan, B.  2018.  Machine learning approaches 
for crop yield prediction and nitrogen status estimation in precision 
agriculture: A review. Computers and Electronics in Agriculture 151, 61-69. 

Chowdhury, R.B., Moore, G.A., Weatherley, A.J. and Arora, M.  2017.  Key 
sustainability challenges for the global phosphorus resource, their 
implications for global food security, and options for mitigation. Journal of 
Cleaner Production 140, 945-963. 

Clapp, J.  2017.  Food self-sufficiency: Making sense of it, and when it makes sense. 
Food Policy 66, 88-96. 

Cleveland, W.S. and Devlin, S.J.  1988.  Locally weighted regression: an approach to 
regression analysis by local fitting. Journal of the American statistical 
association 83(403), 596-610. 

Conant, R.T., Berdanier, A.B. and Grace, P.R.  2013.  Patterns and trends in nitrogen 
use and nitrogen recovery efficiency in world agriculture. Global 
Biogeochemical Cycles 27(2), 558-566. 

Cooper, J. and Dobson, H.  2007.  The benefits of pesticides to mankind and the 
environment. Crop Protection 26(9), 1337-1348. 

Cordell, D., Drangert, J.-O. and White, S.  2009.  The story of phosphorus: global 
food security and food for thought. Global Environmental Change 19(2), 
292-305. 

Cordell, D. and White, S.  2011.  Peak phosphorus: clarifying the key issues of a 
vigorous debate about long-term phosphorus security. Sustainability 3(10), 
2027-2049. 

Di Paolo, E. and Rinaldi, M.  2008.  Yield response of corn to irrigation and nitrogen 
fertilization in a Mediterranean environment. Field Crops Research 105(3), 
202-210. 



46 

 

Erisman, J.W., Sutton, M.A., Galloway, J., Klimont, Z. and Winiwarter, W.  2008.  
How a century of ammonia synthesis changed the world. Nature Geoscience 
1(10), 636-639. 

Evenson, R.E. and Gollin, D.  2003.  Assessing the impact of the Green Revolution, 
1960 to 2000. Science 300(5620), 758-762. 

Everingham, Y., Sexton, J., Skocaj, D. and Inman-Bamber, G.  2016.  Accurate 
prediction of sugarcane yield using a random forest algorithm. Agronomy 
for Sustainable Development 36(2), 27. 

Fader, M., Gerten, D., Krause, M., Lucht, W. and Cramer, W.  2013.  Spatial 
decoupling of agricultural production and consumption: quantifying 
dependences of countries on food imports due to domestic land and water 
constraints. Environmental Research Letters 8(1), 014046. 

Falkendal, T., Otto, C., Schewe, J., Jägermeyr, J., Konar, M., Kummu, M., Watkins, 
B. and Puma, M.J.  2021.  Grain export restrictions during COVID-19 risk 
food insecurity in many low-and middle-income countries. Nature Food 
2(1), 11-14. 

FAO 2015. The impact of natural hazards and disasters on agriculture and food 
security and nutrition: A call for action to build resilient livelihoods, Food 
and Agriculture Organization of the United Nations. 

FAO 2021a. Agricultural Machinery, tractors, 
https://data.worldbank.org/indicator/AG.AGR.TRAC.NO, date accessed: 
[24 March 2021]. 

FAO 2021b. Fertilizers by Nutrient, Food and Agriculture Organization of the 
United Nations, https://www.fao.org/faostat/en/#data/RFN/, date 
accessed: [22 November 2021]. 

FAO 2021c. Pesticides Use, Food and Agriculture Organization of the United 
Nations, https://www.fao.org/faostat/en/#data/RP, date accessed: [22 
November 2021]. 

FAO 2021d. Q&A on Pests and Pesticide Management, 
https://www.fao.org/news/story/en/item/1398779/icode/, date accessed: 
[13 December 2021]. 

FAO, IFAD, UNICEF, WFP and WHO 2021.  The State of Food Security and 
Nutrition in the World 2021. Transforming food systems for food security, 
improved nutrition and affordable healthy diets for all., FAO, Rome, Italy. 

FAO, IFAD and WFP 2015. State of Food Insecurity in the World 2015. Meeting the 
2015 international hunger targets: taking stock of uneven progress, Food 
and Agriculture Organization of the United Nations, Rome. 

Feng, P., Wang, B., Li Liu, D., Xing, H., Ji, F., Macadam, I., Ruan, H. and Yu, Q.  
2018.  Impacts of rainfall extremes on wheat yield in semi-arid cropping 
systems in eastern Australia. Climatic Change 147(3), 555-569. 

Fernández-Delgado, M., Cernadas, E., Barro, S. and Amorim, D.  2014.  Do we need 
hundreds of classifiers to solve real world classification problems? The 
Journal of Machine Learning Research 15(1), 3133-3181. 

Ferraciolli, M.A., Bocca, F.F. and Rodrigues, L.H.A.  2019.  Neglecting spatial 
autocorrelation causes underestimation of the error of sugarcane yield 
models. Computers and Electronics in Agriculture 161, 233-240. 

Fick, S.E. and Hijmans, R.J.  2017.  WorldClim 2: new 1‐km spatial resolution 
climate surfaces for global land areas. International Journal of Climatology 
37(12), 4302-4315. 

Frank, M.D., Beattie, B.R. and Embleton, M.E.  1990.  A comparison of alternative 
crop response models. American Journal of Agricultural Economics 72(3), 
597-603. 

https://data.worldbank.org/indicator/AG.AGR.TRAC.NO
https://www.fao.org/faostat/en/#data/RFN/
https://www.fao.org/faostat/en/#data/RP
https://www.fao.org/news/story/en/item/1398779/icode/


47 

 

Fukuda, S., Spreer, W., Yasunaga, E., Yuge, K., Sardsud, V. and Müller, J.  2013.  
Random Forests modelling for the estimation of mango (Mangifera indica L. 
cv. Chok Anan) fruit yields under different irrigation regimes. Agricultural 
Water Management 116, 142-150. 

Garnett, P., Doherty, B. and Heron, T.  2020.  Vulnerability of the United Kingdom’s 
food supply chains exposed by COVID-19. Nature Food 1(6), 315-318. 

Ghimire, N. and Woodward, R.T.  2013.  Under-and over-use of pesticides: An 
international analysis. Ecological Economics 89, 73-81. 

Haile, M.G., Kalkuhl, M. and von Braun, J. 2016. Worldwide acreage and yield 
response to international price change and volatility: a dynamic panel data 
analysis for wheat, rice, corn, and soybeans, in: Food price volatility and its 
implications for food security and policy, pp. 139-165, Springer. 

Harris, L. 2021. Brexit farm inputs shortages and delays persist, Farmers Weekly, 
https://www.fwi.co.uk/business/markets-and-trends/input-prices/brexit-
farm-inputs-shortages-and-delays-persist, date accessed: [3 August 2021]. 

HELCOM 2013.  HELCOM Copenhagen Ministerial Declaration Taking Further 
Action to Implement the Baltic Sea Action Plan - Reaching Good 
Environmental Status for a healthy Baltic Sea, Copenhagen, Denmark. 

Heslin, A., Puma, M.J., Marchand, P., Carr, J.A., Dell'Angelo, J., D'Odorico, P., 
Gephart, J.A., Kummu, M., Porkka, M. and Rulli, M.C.  2020.  Simulating 
the cascading effects of an extreme agricultural production shock: global 
implications of a contemporary US dust bowl event. Frontiers in Sustainable 
Food Systems 4, 26. 

Jansik, C., Huuskonen, H., Karhapää, M., Keskitalo, M., Leppälä, J., Niemi, J., 
Niskanen, O., Perttilä, S. and Rinne, M. 2021.  Maatalouden 
tuotantopanosten saatavuuden riskit: Kriiseihin varautuminen 
ruokahuollon turvaamisessa, Luonnonvarakeskus. 

Jeong, J.H., Resop, J.P., Mueller, N.D., Fleisher, D.H., Yun, K., Butler, E.E., Timlin, 
D.J., Shim, K.-M., Gerber, J.S. and Reddy, V.R.  2016.  Random forests for 
global and regional crop yield predictions. PLoS One 11(6), e0156571. 

Johnson, M.D., Hsieh, W.W., Cannon, A.J., Davidson, A. and Bédard, F.  2016.  Crop 
yield forecasting on the Canadian Prairies by remotely sensed vegetation 
indices and machine learning methods. Agricultural and Forest Meteorology 
218, 74-84. 

Johnston, A.E. 2003. Understanding Potassium and It's Use in Agriculture, 
European Fertilizer Manufacturers' Association, Brussels. 

Johnston, M., Licker, R., Foley, J., Holloway, T., Mueller, N.D., Barford, C. and 
Kucharik, C.  2011.  Closing the gap: global potential for increasing biofuel 
production through agricultural intensification. Environmental Research 
Letters 6(3), 034028. 

Jørgensen, L.N., Kudsk, P. and Ørum, J.E.  2019.  Links between pesticide use 
pattern and crop production in Denmark with special reference to winter 
wheat. Crop Protection 119, 147-157. 

Ju, X.-T., Xing, G.-X., Chen, X.-P., Zhang, S.-L., Zhang, L.-J., Liu, X.-J., Cui, Z.-L., 
Yin, B., Christie, P. and Zhu, Z.-L.  2009.  Reducing environmental risk by 
improving N management in intensive Chinese agricultural systems. 
Proceedings of the National Academy of Sciences 106(9), 3041-3046. 

Kalkuhl, M., Von Braun, J. and Torero, M. 2016. Food price volatility and its 
implications for food security and policy, Springer Nature. 

Kummu, M., Kinnunen, P., Lehikoinen, E., Porkka, M., Queiroz, C., Röös, E., Troell, 
M. and Weil, C.  2020.  Interplay of trade and food system resilience: Gains 

https://www.fwi.co.uk/business/markets-and-trends/input-prices/brexit-farm-inputs-shortages-and-delays-persist
https://www.fwi.co.uk/business/markets-and-trends/input-prices/brexit-farm-inputs-shortages-and-delays-persist


48 

 

on supply diversity over time at the cost of trade independency. Global Food 
Security 24, 100360. 

Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. and Garnier, J.  2014.  50 year 
trends in nitrogen use efficiency of world cropping systems: the relationship 
between yield and nitrogen input to cropland. Environmental Research 
Letters 9(10), 105011. 

Lehikoinen, E., Kinnunen, P., Piipponen, J., Heslin, A., Puma, M.J. and Kummu, M.  
2021.  Importance of trade dependencies for agricultural inputs: a case study 
of Finland. Environmental Research Communications 3(6), 061003. 

Leng, G. and Hall, J.W.  2020.  Predicting spatial and temporal variability in crop 
yields: an inter-comparison of machine learning, regression and process-
based models. Environmental Research Letters 15(4), 044027. 

Liaw, A. and Wiener, M.  2002.  Classification and regression by randomForest. R 
news 2(3), 18-22. 

Licker, R., Johnston, M., Foley, J.A., Barford, C., Kucharik, C.J., Monfreda, C. and 
Ramankutty, N.  2010.  Mind the gap: how do climate and agricultural 
management explain the ‘yield gap’ of croplands around the world? Global 
Ecology and Biogeography 19(6), 769-782. 

Liu, J., You, L., Amini, M., Obersteiner, M., Herrero, M., Zehnder, A.J.B. and Yang, 
H.  2010.  A high-resolution assessment on global nitrogen flows in cropland. 
Proceedings of the National Academy of Sciences 107(17), 8035-8040. 

Liu, Y., Villalba, G., Ayres, R.U. and Schroder, H.  2008.  Global phosphorus flows 
and environmental impacts from a consumption perspective. Journal of 
Industrial Ecology 12(2), 229-247. 

Liu, Y., Yang, J., He, W., Ma, J., Gao, Q., Lei, Q., He, P., Wu, H., Ullah, S. and Yang, 
F.  2017.  Provincial potassium balance of farmland in China between 1980 
and 2010. Nutrient Cycling in Agroecosystems 107(2), 247-264. 

Lobell, D.B., Cassman, K.G. and Field, C.B.  2009.  Crop yield gaps: their 
importance, magnitudes, and causes. Annual Review of Environment and 
Resources 34, 179-204. 

Lobell, D.B. and Field, C.B.  2007.  Global scale climate–crop yield relationships and 
the impacts of recent warming. Environmental Research Letters 2(1), 
014002. 

Lun, F., Liu, J., Ciais, P., Nesme, T., Chang, J., Wang, R., Goll, D., Sardans, J., 
Peñuelas, J. and Obersteiner, M.  2018.  Global and regional phosphorus 
budgets in agricultural systems and their implications for phosphorus-use 
efficiency. Earth System Science Data 10(1), 1-18. 

MacDonald, G.K., Bennett, E.M., Potter, P.A. and Ramankutty, N.  2011.  Agronomic 
phosphorus imbalances across the world's croplands. Proceedings of the 
National Academy of Sciences 108(7), 3086-3091. 

Maggi, F., Tang, F.H.M., la Cecilia, D. and McBratney, A.  2019.  PEST-
CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide 
application rates from 2015 to 2025. Scientific Data 6(1), 1-20. 

Marchand, P., Carr, J.A., Dell’Angelo, J., Fader, M., Gephart, J.A., Kummu, M., 
Magliocca, N.R., Porkka, M., Puma, M.J. and Ratajczak, Z.  2016.  Reserves 
and trade jointly determine exposure to food supply shocks. Environmental 
Research Letters 11(9), 095009. 

McArthur, J.W. and McCord, G.C.  2017.  Fertilizing growth: Agricultural inputs and 
their effects in economic development. Journal of Development Economics 
127, 133-152. 



49 

 

Monfreda, C., Ramankutty, N. and Foley, J.A.  2008.  Farming the planet: 2. 
Geographic distribution of crop areas, yields, physiological types, and net 
primary production in the year 2000. Global Biogeochemical Cycles 22(1). 

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D. and Veith, 
T.L.  2007.  Model evaluation guidelines for systematic quantification of 
accuracy in watershed simulations. Transactions of the ASABE 50(3), 885-
900. 

Mrema, G., Soni, P. and Rolle, R.S.  2014.  A regional strategy for sustainable 
agricultural mechanization: sustainable mechanization across agri-food 
chains in Asia and the Pacific region. RAP Publication (2014/24). 

Mueller, N.D., Gerber, J.S., Johnston, M., Ray, D.K., Ramankutty, N. and Foley, J.A.  
2012.  Closing yield gaps through nutrient and water management. Nature 
490(7419), 254-257. 

Mueller, N.D., Lassaletta, L., Runck, B.C., Billen, G., Garnier, J. and Gerber, J.S.  
2017.  Declining spatial efficiency of global cropland nitrogen allocation. 
Global Biogeochemical Cycles 31(2), 245-257. 

Nanda, M., Cordell, D. and Kansal, A.  2019.  Assessing national vulnerability to 
phosphorus scarcity to build food system resilience: the case of India. 
Journal of Environmental Management 240, 511-517. 

Newlands, N.K., Zamar, D.S., Kouadio, L.A., Zhang, Y., Chipanshi, A., Potgieter, A., 
Toure, S. and Hill, H.S.J.  2014.  An integrated, probabilistic model for 
improved seasonal forecasting of agricultural crop yield under 
environmental uncertainty. Frontiers in Environmental Science 2, 17. 

O’Hara, J.K., Mulik, K. and Gurian-Sherman, D.  2015.  Agricultural production 
impacts of higher phosphate fertilizer prices. Journal of International 
Agricultural Trade and Development 9(2), 233-253. 

Oerke, E.C., Dehne, H.W., Schönbeck, F. and Weber, A. 2012. Crop production and 
crop protection: estimated losses in major food and cash crops, Elsevier. 

Pingali, P.L.  2012.  Green revolution: impacts, limits, and the path ahead. 
Proceedings of the National Academy of Sciences 109(31), 12302-12308. 

Porkka, M., Kummu, M., Siebert, S. and Varis, O.  2013.  From food insufficiency 
towards trade dependency: a historical analysis of global food availability. 
PloS one 8(12), e82714. 

Portmann, F.T., Siebert, S. and Döll, P.  2010.  MIRCA2000—Global monthly 
irrigated and rainfed crop areas around the year 2000: A new high‐
resolution data set for agricultural and hydrological modeling. Global 
Biogeochemical Cycles 24(1). 

ProAgria 2022. Kevään kylvöihin viljaa ja valkuaiskasveja - jos taloudellisesti 
mahdollista, Pro Agria, https://www.proagria.fi/ajankohtaista/kevaan-
kylvoihin-viljaa-ja-valkuaiskasveja-jos-taloudellisesti-mahdollista-17894, 
date accessed: [19 March 2022]. 

Probst, P., Wright, M.N. and Boulesteix, A.L.  2019.  Hyperparameters and tuning 
strategies for random forest. Wiley Interdisciplinary Reviews: Data Mining 
and Knowledge Discovery 9(3), e1301. 

Puma, M.J., Bose, S., Chon, S.Y. and Cook, B.I.  2015.  Assessing the evolving 
fragility of the global food system. Environmental Research Letters 10(2), 
024007. 

R Core Team 2021.  R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. 

Ray, D.K., Gerber, J.S., MacDonald, G.K. and West, P.C.  2015.  Climate variation 
explains a third of global crop yield variability. Nature Communications 6(1), 
1-9. 

https://www.proagria.fi/ajankohtaista/kevaan-kylvoihin-viljaa-ja-valkuaiskasveja-jos-taloudellisesti-mahdollista-17894
https://www.proagria.fi/ajankohtaista/kevaan-kylvoihin-viljaa-ja-valkuaiskasveja-jos-taloudellisesti-mahdollista-17894


50 

 

Robertson, G.P. and Vitousek, P.M.  2009.  Nitrogen in agriculture: balancing the 
cost of an essential resource. Annual Review of Environment and Resources 
34, 97-125. 

Rosenzweig, C., Iglesius, A., Yang, X.-B., Epstein, P.R. and Chivian, E. 2001. Climate 
change and extreme weather events - Implications for food production, plant 
diseases, and pests. 

Sainsbury, P. 2021. Suez Canal choked by giant container ship disrupting a key food 
and fertiliser trade route, Materials Risk. Commodity market insights & 
expertise, http://materials-risk.com/suez-canal-choked-by-giant-
container-ship-disrupting-a-key-food-and-fertiliser-trade-route/, date 
accessed: [11 October 2021]. 

Sattari, S.Z., Bouwman, A.F., Giller, K.E. and van Ittersum, M.K.  2012.  Residual 
soil phosphorus as the missing piece in the global phosphorus crisis puzzle. 
Proceedings of the National Academy of Sciences 109(16), 6348-6353. 

Seekell, D.A., Carr, J., Dell'Angelo, J., D'Odorico, P., Fader, M., Gephart, J.A., 
Kummu, M., Magliocca, N., Porkka, M., Puma, M.J., Ratajczak, Z., Rulli, 
M.C., Suweis, S. and Tavoni, A.  2017.  Resilience in the global food system. 
Environmental Research Letters 12(2), 10; 11-10. 

Sheldrick, W.F., Syers, J.K. and Lingard, J.  2002.  A conceptual model for 
conducting nutrient audits at national, regional, and global scales. Nutrient 
Cycling in Agroecosystems 62(1), 61-72. 

Sims, B.G., Hilmi, M. and Kienzle, J.  2016.  Agricultural mechanization: a key input 
for sub-Saharan Africa smallholders. Integrated Crop Management eng 23. 

Sinclair, T.R. and Rufty, T.W.  2012.  Nitrogen and water resources commonly limit 
crop yield increases, not necessarily plant genetics. Global Food Security 
1(2), 94-98. 

Singh, G.  2006.  Estimation of a mechanisation index and its impact on production 
and economic factors—A case study in India. Biosystems engineering 93(1), 
99-106. 

Smil, V.  1999.  Nitrogen in crop production: An account of global flows. Global 
Biogeochemical Cycles 13(2), 647-662. 

Stewart, W.M., Dibb, D.W., Johnston, A.E. and Smyth, T.J.  2005.  The contribution 
of commercial fertilizer nutrients to food production. Agronomy Journal 
97(1), 1-6. 

Tulbure, M.G., Wimberly, M.C., Boe, A. and Owens, V.N.  2012.  Climatic and genetic 
controls of yields of switchgrass, a model bioenergy species. Agriculture, 
Ecosystems & Environment 146(1), 121-129. 

UN  1948.  Universal declaration of human rights. UN General Assembly 302(2), 14-
25. 

Verma, S.  2006.  Impact of agricultural mechanization on production, productivity, 
cropping intensity income generation and employment of labour. Status of 
Farm Mechanization in India 2006, 133-153. 

Vidal, J. 2008. Soaring fertiliser prices threaten world's poorest farmers, The 
Guardian (online edition), 
https://www.theguardian.com/environment/2008/aug/12/biofuels.food, 
date accessed: [14 November 2021]. 

Vitousek, P.M., Naylor, R., Crews, T., David, M.B., Drinkwater, L.E., Holland, E., 
Johnes, P.J., Katzenberger, J., Martinelli, L.A. and Matson, P.A.  2009.  
Nutrient imbalances in agricultural development. Science 324(5934), 1519-
1520. 

http://materials-risk.com/suez-canal-choked-by-giant-container-ship-disrupting-a-key-food-and-fertiliser-trade-route/
http://materials-risk.com/suez-canal-choked-by-giant-container-ship-disrupting-a-key-food-and-fertiliser-trade-route/
https://www.theguardian.com/environment/2008/aug/12/biofuels.food


51 

 

Wang, X., Müller, C., Elliot, J., Mueller, N.D., Ciais, P., Jägermeyr, J., Gerber, J., 
Dumas, P., Wang, C. and Yang, H.  2021.  Global irrigation contribution to 
wheat and maize yield. Nature Communications 12(1), 1-8. 

Webster, J.P.G., Bowles, R.G. and Williams, N.T.  1999.  Estimating the economic 
benefits of alternative pesticide usage scenarios: wheat production in the 
United Kingdom. Crop Protection 18(2), 83-89. 

West, P.C., Gerber, J.S., Engstrom, P.M., Mueller, N.D., Brauman, K.A., Carlson, 
K.M., Cassidy, E.S., Johnston, M., MacDonald, G.K. and Ray, D.K.  2014.  
Leverage points for improving global food security and the environment. 
Science 345(6194), 325-328. 

Wheeler, T. and Von Braun, J.  2013.  Climate change impacts on global food 
security. Science 341(6145), 508-513. 

Wuepper, D., Le Clech, S., Zilberman, D., Mueller, N. and Finger, R.  2020.  
Countries influence the trade-off between crop yields and nitrogen pollution. 
Nature Food 1(11), 713-719. 

Zhang, C., Guanming, S., Jian, S. and Hu, R.-f.  2015.  Productivity effect and 
overuse of pesticide in crop production in China. Journal of Integrative 
Agriculture 14(9), 1903-1910. 

Zhang, X., Zou, T., Lassaletta, L., Mueller, N.D., Tubiello, F.N., Lisk, M.D., Lu, C., 
Conant, R.T., Dorich, C.D. and Gerber, J.  2021.  Quantification of global and 
national nitrogen budgets for crop production. Nature Food, 1-12. 

Zhao, Q. and Hastie, T.  2021.  Causal interpretations of black-box models. Journal 
of Business & Economic Statistics 39(1), 272-281. 

 



52 

 

A. Supplementary Material 
 

Fig. A 1: tile plots for all studied crops, representing the share of climate bin 

cells where yield decline was more than 10% of the original yield. Barley has 

the largest area of decreased yield with the biggest shock scenarios. The var-

iation is also strong, with a 25% shock showing a much smaller yield decrease 

area than a 75% shock. In barley, there is also considerable variation between 

the different climate bins and scenarios. Maize, rice and wheat do not see 

such drastic yield decrease variation between the 25%, 50% and 75% scenar-

ios. The variation between climate bins and scenarios is also smaller, with 

many areas predicting a ~50% share of yield decrease. For soybean, the av-

erage share of bin area where yield decrease was more than -10% is smaller 

than for the above-mentioned crops, around 30%. Some climate bins in po-

tato and barley are most affected by machinery shocks. Machinery also seems 

to be an important factor in the yield of cassava, indicating for bins 1–3 that 

100% of their area experienced yield decline. However, the NSE scores for 

these climate bins of cassava were very poor (Figure 5), so these yield decline 

results may not be very reliable. 
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A 1: Tile plots showing the percentage of bin area where shock yield was at least 

10% lower than the original yield. Colour legend is the same as in Fig. A 2. 

 

 

Figs. A 2 and A 3: maize tile plots for one shock percentage (75%) arranged 

to highlight the effect of climate bins. For example, climate bins 8, 9, 12, 13, 

and 14 share relatively close temperature and precipitation conditions and 

are also most heavily affected by the shock in all inputs. 

 

 
A 2: Maize, percentage of bin area where the shock yield was at least 10% lower 

than the original yield. 
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A 3: Maize, mean shock yield decline in cells where the shock yield was at least 

10% lower than the original yield. 
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