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1. Introduction

This thesis concerns different aspects of regularity theory for two types of
nonlinear parabolic PDEs that can be written in the general form

∂tu− divA
(
x, t, u,D

(|u|m−1u
) )

= 0, (1.1)

for m > 0. Here u = u(x, t) is a function depending on spatial and temporal
variables that can be scalar or vector valued, whereas the parameter m

depends on the specific problem. It is also assumed that the vector field A

fulfills suitable measurability and continuity properties together with the
structure conditions

A(x, t, u, ξ) · ξ ≥ Co|ξ|p, (1.2)

|A(x, t, u, ξ)| ≤ C1|ξ|p−1, (1.3)

for p > 1 and some positive constants Co and C1. These type of equations
can be viewed as generalizations of the linear heat equation (for which
m = 1 and p = 2). However, besides mathematical interest many real life
phenomena are nonlinear in nature, which makes it important to develop
theory and techniques that are not based on the linear structure. It is
typical that there exists no general theory for nonlinear PDEs, which is
why different equations require different tools. Depending on a specific
problem in question, the structural conditions (1.2) and (1.3) will be chosen
differently.

We restrict ourselves to two special cases of (1.1). These are equations
of p-growth structure, when m = 1, and of porous medium type structure,
when p = 2. A prototype of the former is the parabolic p-Laplace equation
that can be written in the form

∂tu− div
(
|∇u|p−2∇u

)
= 0. (1.4)

For the standard theory of this equation we refer to the monographs by
DiBenedetto [24], DiBenedetto et al. [26] and Wu et al. [66]. Despite the
inhomogeneous scaling behavior of (1.4), one notable advantage of the
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equation is that adding a constant to the solution will produce another
solution.

A prototype of (1.1) with p = 2 is the porous medium equation (PME for
short), that can be written as

∂tu−Δ
(
|u|m−1 u

)
= 0. (1.5)

For the standard theory of this equation we refer to the monographs by
Vázquez [64], [63], and Daskalopoulos & Kenig [22] in addition to the
references above. In contrast to the equation (1.4), there is an additional
technical difficulty with the porous medium equation. This is due to the
fact that together with the anisotropic scaling behavior, one cannot add
constants to a solution to produce another solution.

The physics of these equations depends on the different parameter ranges.
We call the regimes p > 2 for (1.4) and m > 1 for (1.5) the slow diffusion
or degenerate case. In this case, disturbances propagate with finite speed,
and free boundaries occur. Conversely, we call the regimes p < 2 in (1.4)
and m < 1 in (1.5), the fast diffusion or singular case. In this case distur-
bances propagate with infinite speed, and solutions may become extinct
in finite time. Moreover, at the points where |∇u| = 0, the equation (1.4)
degenerates when p > 2 and becomes singular for p < 2. Analogously
for (1.5), the equation degenerates at the points u = 0 when m > 1 and
becomes singular when m < 1.

One may define and study different notions of solutions to the problems
above. The usual starting point for equations in the divergence form is
to study weak solutions, which are defined with test functions under the
integral sign. Then, one does not need to assume any differentiability
for the solution with respect to time, and only sufficiently integrable first
derivatives in space. Depending on this level of integrability of the gradient,
one may consider weak solutions (with p-integrable gradient) or very weak
solutions (with less than p-integrable gradient). In this thesis we will
focus on the former definition. It is often useful to relax the equation by
requiring only inequality instead of equality in (1.4) or (1.5), which leads
to the concept of (weak) super- or subsolutions. However, in some cases
even these definitions fail to include all interesting solutions in the theory.
This motivates us to also study the so-called supercaloric functions, which
are defined via a parabolic comparison principle.

In Publication II we consider supercaloric functions for the parabolic p-
Laplace equation in the fast diffusion case, and we prove a dichotomy and
several characterizations for the two classes of these functions. The theory
is discussed in Chapter 2. In Publication I we prove higher integrability of
the gradient for weak solutions to porous medium type systems, which is
described in Chapter 3. The stability of solutions to the systems with same
structure is studied in Publication III, which is discussed in Chapter 4.
In case an obstacle is restricting the behavior of the solution, we show
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in Publication IV, which corresponds to Chapter 5, that the solution is
locally Hölder continuous provided that the obstacle is Hölder continuous.

1.1 Weak solutions

We begin with some notation. From now on we consider space-time cylin-
ders ΩT := Ω × (0, T ) ⊂ R

n+1, in which Ω is a bounded open set. The
parabolic boundary of the space time cylinder ΩT is defined as ∂pΩT :=

Ω × {0} ∪ ∂Ω × (0, T ). In the case of vector-valued functions i.e., for
u = (u1, u2, ..., uN ) : ΩT → R

N , for some N ≥ 1, we will also use shorthand
notation for the power by setting um := |u|m−1u. In the scalar case N = 1,
we will denote the (weak) gradient of u by ∇u = (∂x1u, ∂x2u, ..., ∂xnu) :

ΩT → R
n. Here ∂xi is the weak derivative in the direction of the xi-axis

defined via integration by parts. In the vectorial case the gradient is taken
component-wise producing another vector of length Nn, and in this case
we use the notation Du = (∇u1,∇u2, ...,∇uN ) : ΩT → R

Nn.
We will also use the framework of parabolic Sobolev spaces. Especially

we consider functions u in Lp(0, T ;W 1,p(Ω,RN )), which we interpret as
measurable maps u : ΩT → R

N , such that x �→ u(x, t) ∈ W 1,p(Ω,RN ) for
almost every t ∈ (0, T ) and¨

ΩT

(|u|p + |Du|p) dxdt < ∞.

The space Lp
loc(0, T ;W

1,p
loc (Ω,R

N )) is defined analogously on compact subsets
of ΩT . Moreover, we consider a vector field A : ΩT × R

N × R
Nn → R

Nn

which is a Carathéodory function with the structure (1.2) and (1.3). We
will always assume that either m = 1 or p = 2 in this thesis.

A standard starting point in regularity theory is to define weak solutions
for (1.1) as maps u : ΩT → R

N with um ∈ Lp(0, T ;W 1,p(Ω,RN )) satisfying¨
ΩT

(−u · ∂tϕ+A
(
x, t, u,Dum

) ·Dϕ
)
dxdt = 0 (1.6)

for all test functions ϕ ∈ C∞
0 (ΩT ,R

N ). This can be heuristically motivated
by multiplying each equation in (1.1) by a test function, and integrating
by parts. Especially when considering equations (N = 1), it can be useful
to study solutions for which (1.6) is relaxed. We call function u a weak
supersolution if the integral in (1.6) is nonnegative for all nonnegative
test functions ϕ. Similarly, we call u a weak subsolution if the integral is
nonpositive for all such ϕ. When deriving estimates for weak solutions
some additional integrability assumptions are sometimes adequate. This
becomes apparent when deriving energy estimates as in Section 1.2, and
in particular when p is close to 1 or m is close to 0.

An advantageous property with weak solutions is that for the prototype
cases we consider the existence is relatively well-known. We do not focus
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on these questions in this thesis, but as classical references we mention [3]
and monographs by Lions [50] and Showalter [60]. Furthermore, regularity
theory is attainable via energy estimates. Locally bounded weak solutions
are Hölder continuous, for which standard references for the parabolic
p-Laplace equation are [23] and [17], and for nonnegative solutions to
porous medium equations [25] and the monograph [26] by DiBenedetto,
Gianazza & Vespri. Hölder continuity of signed solutions were treated in
a unified way for both equations in [48]. Also, for (1.4) locally bounded
gradients are Hölder continuous by [24]. Moreover, weak supersolutions
possess lower semicontinuous representatives, which was proven in [44]
for the parabolic p-Laplace equation, and in [49] for doubly nonlinear
equations. We also mention that for the porous medium equation (1.5) in
the degenerate case m > 1, an alternative definition of the solution is used
for example in [26] and [28] by requiring that |u|m+1

2 ∈ L2(0, T ;W 1,2(Ω))

instead of um ∈ L2(0, T ;W 1,2(Ω)). In this thesis we do not consider the
former definition, but for a study between the connection of these two
definitions we refer to [12].

The definition of a weak solution above is local in nature. In some cases,
we will also consider solutions to the porous medium type system (p = 2),
for which some specific boundary values are prescribed. These we will call
Cauchy-Dirichlet problems, which can formally be introduced as a problem⎧⎨⎩ ∂tu− divA(x, t, u,Dum) = 0 in ΩT ,

u = g on ∂pΩT ,
(1.7)

for a given boundary function g. The standard assumptions we make for g

are similar as for the solution u, and at least that gm ∈ L2(0, T ;W 1,2(Ω,RN )).
The formulation in (1.7) is formal in a sense that it is not specified in de-
tail in what sense the solution u attains the boundary values g. In more
precise terms, we assume that u is a solution to the corresponding Cauchy-
Dirichlet problem if u satisfies (1.6) with p = 2, and in addition

(um − gm)(·, t) ∈ W 1,2
0 (Ω,RN ) for a.e. t ∈ (0, T ), and

1

h

ˆ h

0

ˆ
Ω

∣∣∣um+1
2 − g

m+1
2

∣∣∣2 dxdt −→ 0,
(1.8)

as h → 0. In particular, we consider boundary value problems in Publica-
tion I and Publication III, which are discussed in Chapters 3 and 4.

We also consider weak solutions to obstacle problems. An obstacle prob-
lem can be interpreted as a constraint problem, when there is an obstacle
function ψ restricting the behavior of the weak solution u, namely u ≥ ψ

pointwise. Solutions to such problems can be defined via a variational
inequality, or as minimal supersolutions lying above the given obstacle
ψ. In Publication IV, we take the former as a starting point to show
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Hölder regularity for the solution. In connection with supercaloric func-
tions in Publication II, we exploit an existence result proved in [42] based
on the latter definition. These are discussed more in Chapters 5 and 2.

1.2 Energy estimates

The first step to obtain regularity results for weak solutions is typically by
deriving energy estimates, which are also called Caccioppoli inequalities,
starting from (1.6). These can be obtained in different forms, but a standard
approach is to choose suitable test function in (1.6), which typically depends
on the solution itself. For weak solutions, by testing heuristically with
ϕ = umηp with a regular enough nonnegative cut-off function η vanishing
in compact subset of ΩT , one can derive an estimate of the form

ess sup
t∈(0,T )

ˆ
Ω×{t}

ηp|u|m+1 dx+

¨
ΩT

ηp |Dum|p dxdt

≤ c

¨
ΩT

|∂tηp| |u|m+1 dxdt+ c

¨
ΩT

|Dη|p |um|p dxdt, (1.9)

for some positive constant c depending on m, p, Co and C1. In this estimate
m = 1 in the case of p-growth and p = 2 in the case of porous medium
structure. First terms on both sides result from estimates for the parabolic
part of the equation, whereas second terms are due to estimates for the
divergence part. In contrast to the Sobolev inequality in Section 1.3, the
energy estimate gives an integral bound for the gradient of the solution
in terms of the solution itself. In order to extract information from (1.9)
the right hand side should be finite. In particular, the integrability of the
first term should be ensured. Also, already when testing the equation
with given ϕ and deriving the estimate, the first integral in (1.6) should
be integrable. A requirement u ∈ Lm+1

loc (ΩT ,R
N ) is adequate, and this can

be included in the definition of weak solution especially in the singular
case (p < 2 in case of p-growth, m < 1 with porous medium structure). The
estimate presented in (1.9) is local, and in the case of global problem as
in (1.7), one may derive the estimate up to the parabolic boundary. In this
case, testing heuristically with ϕ = ξ(t)(um − gm) results in an analogous
estimate to (1.9). For example, one may derive an estimate in which the
integrands |u|m+1 are replaced on both sides of (1.9) with |um+1

2 − g
m+1

2 |2.
In this case, the initial condition in the form (1.8)2 can be used. In addition,
this type of estimate typically produces integrals involving the gradient
Dgm and time derivative ∂tg

m on the right hand side of (1.9).
A notable difficulty in deriving the energy estimate of the type (1.9)

becomes apparent when testing (1.6) with test function depending on
um. The problem is due to the fact that no regularity requirements are
imposed on solution in the time direction in the first place, whereas the

13
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test function should be at least weakly differentiable with respect to the
temporal variable. One can overcome this difficulty by approximating
solution um in a suitable sense, so that approximants possess sufficient
regularity in time. In practical terms this can be achieved by mollifying um

in time, so that suitable convergence properties hold true and estimates are
recovered for the solution um itself after passing to the limit. There exist
different options for this procedure, e.g. standard mollification or Steklov
averages (as in [24]) but especially in case of porous medium type structure
so called exponential mollification has turned out to be particularly useful.
This type of mollification has been introduced in [54] and useful properties
have been established in [37] and [9]. For v ∈ L1(ΩT ,R

N ) and h > 0, we
define the mollification by

[[v]]h(x, t) :=
1

h

ˆ t

0
e

s−t
h v(x, s) ds.

In some cases it is useful to use the reverse time mollification, which is
defined analogously as a weighted integral from t to T . The standard
properties for mollifications include convergence [[v]]h → v in Lp(ΩT ,R

N ) as
h → 0, provided that v ∈ Lp(ΩT ,R

N ). Similarly, the Lp-convergence holds
true for the spatial gradient of the function v as well. Feature that stands
out with the exponential mollification is that one has a formula for the
time derivative, namely

∂t[[v]]h =
1

h
(v − [[v]]h) .

This will be particularly useful when deriving energy estimate of type (1.9),
since when testing the equation (1.6) with function depending on [[um]]h,
the parabolic part produces a term with a specific sign, which allows to
conclude the estimate (1.9).

1.3 Sobolev inequality

Another fundamental tool used in regularity theory is the parabolic Sobolev
embedding, which implies inclusions for certain function spaces. Indeed,
many results in regularity theory follow the idea of combining energy
estimates and Sobolev type inequalities. The order of which these inequali-
ties are used depends for example whether one wishes to prove estimates
for the solution itself or for the gradient. There exist different variants
for the latter, and one way is to write it in the following form (see [24]):
If v ∈ Lp(0, T ;W 1,p

0 (Ω,RN )), 1 ≤ p < ∞ and 0 < r < ∞, there exists a
constant c = c(p, r, n,N) such that

¨
ΩT

|v|q dxdt ≤ c

¨
ΩT

|Dv|p dxdt

(
ess sup
t∈(0,T )

ˆ
Ω×{t}

|v|r dx
) p

n

, (1.10)

14



Introduction

in which q = p
(
1 + r

n

)
. Observe that there is product of two terms on the

right hand side, and the second one is not present at all in the elliptic
setting. Essentially, the inequality (1.10) implies that the function v is
integrable to a higher power than p, provided that the function belongs in
addition to L∞(0, T ;Lr(Ω,RN )). For a weak solution it is natural to assume
um ∈ Lp(0, T ;W 1,p(Ω,RN )) a priori as presented in Section 1.1. In order to
conclude that the second term is finite, one may exploit an energy estimate
with suitable choice of r.
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2. Theory for supercaloric functions

In order to include some fundamental solutions in the theory, the definition
of weak solutions as in (1.6) turns out to be too restrictive. A well-known
example of a fundamental solution is the Barenblatt solution (discovered
in [5]), which can be written for the p-Laplace equation in the case p > 2n

n+1

as

U(x, t) = (λt)−
n
λ

(
c− p−2

p (λt)
− p

λ(p−1) |x| p
p−1

) p−1
p−2

+
χ{t>0}, (2.1)

for (x, t) ∈ R
n × (−∞,∞), in which λ = n(p− 2)+ p and c > 0. In the upper

half-space, the Barenblatt solution is a solution to the parabolic p-Laplace
equation. However, in any domain containing the origin, this function fails
to be even a weak supersolution. This is due to the fact that the a priori
integrability property fails, i.e., |∇U |p is not locally integrable in any such
domain. This suggests that we define a more general class of solutions. We
will consider a class called supercaloric functions, which has been studied
in the elliptic case e.g. in [31], and in the linear case for the heat equation
in [65]. We say that u : ΩT → (−∞,∞] is a supercaloric function for the
parabolic p-Laplace equation if the following conditions are satisfied:

(i) u is lower semicontinuous,

(ii) u is finite in a dense subset of ΩT ,

(iii) u satisfies comparison principle in the following sense: let Ω′
t1,t2 � ΩT

be a space-time cylinder and h ∈ C(Ω′
t1,t2) be a weak solution to (1.4). If

u ≥ h on the parabolic boundary ∂pΩ
′
t1,t2 = Ω′ × {t1}

⋃
∂Ω′ × (t1, t2), then

u ≥ h in Ω′
t1,t2 .

Weak supersolutions are required to be integrable, which implies finite-
ness condition (ii). They also possess lower semicontinuous representatives
that has been proven in [44], [49]. The third condition is a comparison
principle, which is shown for weak supersolutions in [33]. This implies that
weak supersolutions are supercaloric functions when restricted to lower
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Theory for supercaloric functions

semicontinuous representatives, so the class of supercaloric functions is a
generalization in that sense. Observe that for supercaloric functions the
only connection to the equation is via the comparison principle (iii).

We consider local properties of supercaloric functions for the parabolic
p-Laplace equation in this chapter. In order to emphasize this particular
equation in question, we may also denote these functions by p-supercaloric
functions. A technical advantage that is present with the parabolic p-
Laplace equation is the property that allows one to add constants to solu-
tions. Further, since any supercaloric function u is lower semicontinuous
and u > −∞ in ΩT by definition, it follows that u is locally bounded from
below. Due to these two properties it is sufficient to consider nonnegative
u when studying for example local integrability of u. Indeed, in a com-
pact subset K � ΩT instead of u one may consider u + | infK u| which is
nonnegative with essentially same integrability properties as u. It is also
immediate from the definition that pointwise minimum of finite number of
supercaloric functions is supercaloric. Further, supercaloric functions are
closed under increasing convergence, provided that the limit is finite in a
dense set, which has been shown in [41].

2.1 Slow diffusion case

In Publication II we consider classification theory for supercaloric functions
in the singular supercritical case. In the degenerate case the theory is
well developed, see e.g. [37], [45], and for the corresponding theory for
the porous medium equation see [34], [38]. Already in the degenerate
case, it is well-known that the classification theory is dictated by two
leading examples: the Barenblatt solution (2.1) and the friendly giant
(defined below in (2.2)). First one is a representative of a relatively well
behaving class of supercaloric functions (Barenblatt class), and latter of
a class with strong singularities. These classes can be characterized by
integrability properties. In the degenerate case, the integrability exponent
p− 2 is decisive; if a supercaloric function is integrable to this particular
exponent, it belongs to the Barenblatt class and if not, it belongs to the
complementary class. Furthermore, it can be shown that any function in
the Barenblatt class is integrable up to any power less than p− 1 + p

n . For
a supercaloric function this means that the function is either integrable
up to power p − 1 + p

n , or not even to p − 2. Another feature that stands
out in the complementary class is the rate of blow-up. In the degenerate
case, there exists a time slice to such that the supercaloric function blows
up at least with rate (t − to)

− 1
p−2 , when t approaches to from the future.

Furthermore, this blow-up takes place in the whole time slice. Friendly
giant gives this mildest possible rate for blow-up for the functions in the
complementary class.
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In the degenerate case the Barenblatt class can be characterized by the
following theorem (see [45]).

Theorem 1. Let p > 2 and Ω be an open set in R
n. For a p-supercaloric

function u the following conditions are equivalent:

(i) u ∈ Lp−2
loc (ΩT ),

(ii) ∇u exists and |∇u| ∈ Lq
loc(ΩT ) whenever q < p− 1 + 1

n+1 ,

(iii)
ess sup
t∈(δ,T−δ)

ˆ
Ω′

|u(x, t)| dx < ∞

whenever Ω′ � Ω and δ ∈ (0, T2 ).

There is also a connection between measure data problems and su-
percaloric functions in the Barenblatt class. Especially, the Barenblatt
solution U satisfies the equation

∂tU − div
(
|∇U |p−2∇U

)
= Mδ

in the weak sense, where M > 0 is constant depending on c in (2.1) and δ

is Dirac’s delta concentrated in the origin. Furthermore, any supercaloric
function in the Barenblatt class (characterized in Theorem 1 in the slow
diffusion case and in Theorem 3 below in the fast diffusion case) is a
solution to the measure data problem with a Radon measure μ on the right
hand side as above. In the degenerate case the converse has also been
studied in [39].

As mentioned above, the leading example of a class of supercaloric func-
tions that do not satisfy properties in Theorem 1 is so-called friendly giant.
This function has the following explicit form

V (x, t) = U(x)(t− to)
− 1

p−2χ{t>to}, (2.2)

where x ∈ Ω and Ω ⊂ R
n is a bounded domain. Furthermore, U > 0

satisfies an elliptic eigenvalue problem

div
(
|∇U |p−2∇U

)
+

1

p− 2
U = 0

with zero boundary values on ∂Ω. Observe that the function V blows up
for every spatial point x ∈ Ω when approaching the time instant to from
the future. The function V in (2.2) fails to satisfy items in the Theorem 1.
This is an example from the complementary class, for which there exists
the following characterization (see [45]).

Theorem 2. Let p > 2 and Ω be an open set in R
n. For a p-supercaloric

function u the following conditions are equivalent:
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(i) u /∈ Lp−2
loc (ΩT ),

(ii) for some δ ∈ (0, T2 ),

ess sup
t∈(δ,T−δ)

ˆ
Ω′

|u(x, t)| dx = ∞

whenever Ω′ � Ω and |Ω′| > 0.

(iii) there exists (xo, to) ∈ ΩT such that

lim inf
(x,t)→(xo,to)

t>to

u(x, t) (t− to)
1

p−2 > 0.

2.2 Fast diffusion case

Publication II extends the classification theory for supercaloric functions
for the parabolic p-Laplace equation from range p > 2 to 2n

n+1 < p < 2. In
a similar fashion as in the degenerate case, supercaloric functions can
be divided into two mutually exclusive classes also in the singular case.
In contrast to the degenerate case, the decisive integrability exponent is
n
p (2− p), which is less than one. The Barenblatt solution is still the leading
example in the good class with some regularity properties in terms of
integrability (up to the power p−1+ p

n > 1) representing the worst possible
behavior. However, there is a remarkable difference in the complementary
class. The friendly giant is apparent only in the degenerate case, but ceases
to exist in the singular case. Instead, a prime example representing the
behavior in the complementary class is given by the infinite point source
solution (IPSS, see [16]). A qualitative difference compared to the friendly
giant is that space and time change roles in the blow-up. Whereas the
friendly giant is unbounded on the whole time slice but at a single moment
of time, the blow-up for IPSS happens at a single point xo in space but for
all large enough instances of time. This is a standing singularity, that does
not decay as time passes. A minorant for the blow-up in the complementary

class is given by the IPSS, which is |x − xo|−
p

2−p near point xo and large
enough instances of time.

The first step in proving characterizations for the two classes of su-
percaloric functions (in both slow and fast diffusion cases) is by showing
that supercaloric functions can be approximated pointwise by truncations
of weak supersolutions. Indeed, we can show that locally bounded su-
percaloric functions are weak supersolutions. The proof of this especially
for the more general form of the equation with coefficients relies on the
obstacle problem, see [41] and [42]. Idea is first to approximate the lower
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semicontinuous supercaloric function pointwise from below by more reg-
ular (e.g. smooth) functions. Then, in each space time box one solves
a boundary value problem with these approximants acting as obstacles
inducing the boundary values as well. In this way, one obtains a weak
supersolution above the obstacle, and by using appropriate comparison
principle, one can deduce that these supersolutions are bounded pointwise
from above by u. This implies a pointwise converging sequence of weak
supersolutions to the original supercaloric function u from below. Since u

is locally bounded, it ends up being a weak supersolution itself.
When boundedness is not required for supercaloric functions a priori,

these functions are divided into two mutually exclusive classes as men-
tioned above. When 2n

n+1 < p < 2, Barenblatt solution (2.1) can be written
as

U(x, t) = (λt)−
n
λ

(
c+ 2−p

p (λt)
− p

λ(p−1) |x| p
p−1

)− p−1
2−p

χ{t>0},

where λ = n(p−2)+p and the constant c is a positive number. In Publication
II we obtain the following characterization for supercaloric functions in
the Barenblatt class in the singular case.

Theorem 3. Let 2n
n+1 < p < 2 and Ω be an open set in R

n. Assume that
u is a p-supercaloric function in ΩT . Then the following assertions are
equivalent:

(i) u ∈ Lq
loc(ΩT ) for some q > n

p (2− p),

(ii) u ∈ L
n
p
(2−p)

loc (ΩT ),

(iii)
ess sup
δ<t<T−δ

ˆ
Ω′

|u(x, t)| dx < ∞,

whenever Ω′ � Ω and δ ∈ (0, T2 ).

In particular, we can show that functions beloning to this class are ac-
tually integrable up to any power q < p − 1 + p

n . This improvement in
integrability can be shown by using Moser type iteration scheme. Es-
sentially this is a result of combining the Sobolev embedding (1.10) and
an energy estimate for weak supersolutions. A suitable form of energy
estimate for a nonnegative weak supersolution u can be written as
¨

ΩT

|∇u|pu−ε−1ϕp dxdt+ ess sup
0<t<T

ˆ
Ω
u1−εϕp dx

≤ c(p, ε)

¨
ΩT

up−1−ε|∇ϕ|p dxdt+ c(p, ε)

¨
ΩT

u1−ε|∂t(ϕp)| dxdt,

21



Theory for supercaloric functions

for any nonnegative test function ϕ ∈ C∞
0 (ΩT ). The parameter ε ∈ (0, 1)

can be chosen freely, and the constant c(p, ε) → ∞ if ε → 0 or ε → 1. One
can employ the energy estimate above via approximation by truncating
the supercaloric function as min{u, k} for k = 1, 2, ... which is a weak
supersolution. In order to combine the Sobolev embedding (1.10) and the
energy estimate above, one chooses r > 0 and ε ∈ (0, 1) in these estimates
suitably so that the right hand side of the Sobolev embedding can be
estimated by the energy estimate. In order to increase the integrability
exponent for u in this manner, it is crucial to assume that the parameter
p is above the critical exponent 2n

n+1 . In the end, the improvement in
integrability for u is obtained by passing to the limit k → ∞, where k is
the truncation level. This procedure can be repeated until the integrability
exponent exceeds p− 1 + p

n .
As the Theorem 4 shows below, if a supercaloric function does not belong

to the Barenblatt class, it is not integrable even to a power n
p (2− p). This

indicates that there exists a gap[
n
p (2− p), p− 1 + p

n

)
of integrability exponents, which is nonempty in the case 2n

n+1 < p < 2, the
lower bound being less than 1 and the upper bound greater than 1.

In the fast diffusion case, instead of the friendly giant (2.2) a prime
example from the complementary class is the IPSS. This one can write as

U(x, t) =

(
ct

|x|p
) 1

2−p

, (x, t) ∈ R
n × (0,∞),

for a specific positive constant c depending on n and p. One can verify that
any of the items in Theorem 3 fails to hold in a domain ΩT for which 0 ∈ Ω.
In fact, the IPSS can be modified into a supercaloric function with even
worse singularity in space (Example 4.2 in Publication II).

The next theorem that has been proven in Publication II gives a char-
acterization for the complementary class of Barenblatt type supercaloric
functions in the singular case.

Theorem 4. Let 2n
n+1 < p < 2 and Ω be an open set in R

n. Assume that
u is a p-supercaloric function in ΩT . Then the following properties are
equivalent:

(i) u /∈ Lq
loc(ΩT ) for any q > n

p (2− p),

(ii) u /∈ L
n
p
(2−p)

loc (ΩT ),

(iii) there exists Ω′ � Ω and δ ∈ (0, T2 ) such that

ess sup
δ<t<T−δ

ˆ
Ω′

|u(x, t)| dx = ∞,
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(iv) there exists (xo, to) ∈ ΩT such that

lim inf
(x,t)→(xo,s)

t>s

u(x, t)|x− xo|
p

2−p > 0

for every s > to.

The last item in the Theorem 4 represents a very interesting behavior of
supercaloric functions in the complementary class. It states that functions
in that class possess a singularity in space. Even more, the statement
gives a lower bound for the blow-up rate and the singularity does not decay
as time passes. An important tool in obtaining this blow-up rate is a weak
Harnack inequality, which asserts that on time slices pointwise infimum
of a nonnegative supersolution can be bounded from below by the integral
average of the supersolution over the same set. In the case 2n

n+1 < p < 2,
for a supersolution u this can be written as

inf
B2�(xo)

u(·, t) ≥ c1−
ˆ
B2�(xo)

u(x, s) dx (2.3)

for any t ∈ [
s+ 3

4θ�
p, s+ θ�p

]
, in which

θ = c2

(
−
ˆ
B2�(xo)

u(x, s) dx

)2−p

.

Here c1 and c2 are positive constants depending only on n and p. For the
proof of this form of the weak Harnack inequality, see [27]. Observe that in
this result there is a waiting time depending on the integral average, which
increases as the integral average itself increases. One way of showing the
pointwise blow-up property is first to assume for example item (iii) in
Theorem 4. This implies that there exists a sequence (ti) of instants of
time, for which integrals over space blow up in the limit, i.e.

lim
i→∞

−
ˆ
B2�(xo)

u(x, ti) dx = ∞,

for some ball B2�(xo) ⊂ Ω′. Then, one may roughly deduce that as the
integral average blows up on the right hand side of (2.3), it also forces the
pointwise infimum on the left hand side to blow up. In order to keep the
time interval in the domain, i.e. θ�p in control, one shrinks the radius �

along the sequence, which gives an idea how the desired blow-up rate can
be deduced.
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3. Higher integrability

For functions that satisfy a reverse Hölder inequality, an application of
Gehring’s lemma can be used to obtain a higher integrability result. In
the case of parabolic PDEs, higher integrability of the weak solution itself
is typically a direct consequence of Sobolev and Caccioppoli inequalities
together with the standard integrability assumptions for the solution and
its gradient. However, a similar property on the gradient level is usually a
more subtle issue, in which technique based on self-improving property of
suitable reverse Hölder inequalities can be exploited. In Publication I we
show that the gradient of a weak solution to porous medium type systems
is integrable to a higher power than assumed a priori, and up to the
boundary of the domain. More precisely, we prove this result for solutions
to a Cauchy-Dirichlet type problem (1.7) in the case m > 1. Prior to our
result there was a breakthrough for the local problem in [28] by Gianazza
& Schwarzacher, and the result was generalized in [8] by Bögelein et al.
The overall strategy of our proof follows the ideas presented in the local
case, although the boundary imposes additional difficulties one needs to
solve.

There is a long history of higher integrability results for the gradients
of solutions that goes back to the paper by Elcrat & Meyers, [53], in
which the result was proven for elliptic systems of p-Laplace type. This
result was extended up to the boundary by Kilpeläinen & Koskela in [32].
In the parabolic setting the first higher integrability result was proven
for quasilinear systems by Giaquinta & Struwe in [30]. This corresponds
to (1.1) with m = 1 and p = 2. However, this technique was not applicable to
more general nonlinear PDEs. Almost 20 years later, higher integrability of
the gradient was proven for parabolic p-Laplace type systems by Kinnunen
& Lewis in [35], and similar result up to the boundary was shown later
by Parviainen in [55], [56]. Higher order systems has been studied by
Bögelein & Parviainen in [15]. Again over a decade later of the result
for parabolic problems with p-growth, the self-improving property was
shown to hold for gradients of nonnegative solutions to degenerate porous
medium type equations by Gianazza & Schwarzacher in [28], which was
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extended for systems in [8] and to singular case in [29] and [11]. This type
of technique has been applied to doubly nonlinear systems in [7], and also
for obstacle problem for the PME in [18] and [19]. The higher integrability
property has also been studied in the context of very weak solutions for
parabolic p-Laplace type systems in [36] and [1]. The case of variable
exponents has been investigated e.g. in [2].

3.1 Main result

Our result extends the higher integrability for porous medium type systems
up to the boundary. We consider a Cauchy-Dirichlet problem written in
the form ⎧⎨⎩ ∂tu− divA(x, t, u,Dum) = divF in ΩT ,

u = g on ∂pΩT ,
(3.1)

where the vector field A satisfies porous medium type growth conditions
and F is a source term. Boundary values g are assigned in the sense
of (1.8). For a sufficiently regular boundary function g, source term F and
domain Ω there exists ε > 0, such that for a weak solution u to (3.1) there
holds

|Dum| ∈ L2+ε(ΩT ), (3.2)

together with an estimate as stated in Theorem 1.4 in Publication I. For a
weak solution u it is assumed a priori only that |Dum| ∈ L2(ΩT ), so that
the result implies an improvement. Parameter ε in (3.2) depends on n, N ,
m, Co, C1 and parameters connected to the properties of the domain Ω, the
source term F , and the boundary function g, which are discussed in the
next section.

Key challenges in deriving gradient estimates in the case of porous
medium type equations is due to the structure of the equation. Especially,
a difficulty arises from the fact that the degeneracy of the equation depends
on the solution rather than its gradient, while aim is to prove the estimates
for the latter. To be able to handle this issue, in Publication I we will work
with intrinsic cylinders of the form

Q(θ)
� (xo, to) = B�(xo)×

(
to − θ1−m�

m+1
m , to + θ1−m�

m+1
m

)
,

with a scaling parameter θ, which roughly corresponds to 1
� |u|m. Fur-

thermore, as the cylinders are intersecting the parabolic boundary of the
domain ΩT , the boundary function g will be coupled with the scaling pa-
rameter θ as well. We will prove most of the estimates separately near the
lateral and near the initial boundary of the domain.

The first step in the proof is to derive suitable Caccioppoli and Sobolev-
Poincaré inequalities. By combining these estimates we are able to prove
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reverse Hölder inequalities for the gradient in cylinders satisfying specific
intrinsic couplings. We construct a collection of intrinsic cylinders in which
the derived reverse Hölder inequalities can be applied, and in addition,
other favorable properties such as a Vitali type covering result can be
established. This allows us to extend the higher integrability result to the
whole domain.

3.2 Domain and extensions

To begin with, in addition to the standard assumptions on the boundary
function g in (1.7), we assume continuity in time for g (from the interval
[0, T ] to the space Lm+1(Ω,RN )) together with some higher integrability
properties for gm. In particular, we suppose gm ∈ L2+ε(0, T ;W 1,2+ε(Ω,RN ))

and ∂tg
m ∈ L

m(2+ε)
2m−1 (ΩT ,R

N ). Furthermore, the boundary of the spatial
domain Ω plays a role in boundary regularity. A standard assumption
we make is the capacity density condition on the complement, which is
already necessary in the case of elliptic equations with p-growth as shown
in [32]. More precisely, we assume that the complement of Ω is uniformly
2-thick, which means that for some positive constants μ and �o,

cap2
(
(Rn \ Ω) ∩B�(xo), B2�(xo)

) ≥ μ cap2
(
B�(xo), B2�(xo)

)
holds true for all xo ∈ R

n \ Ω and 0 < � < �o. Heuristically, this means
that there is a substantial amount of complement around every point on
the lateral boundary ∂Ω in the sense of capacity. As mentioned before,
this type of assumption is already present in the proof of equations with
p-growth, see [32], [55], [56].

In order to prove the result for porous medium systems, we assume fur-
ther that the domain Ω is Sobolev W 1,2+ε-extension domain. In more accu-
rate terms this means that there exists a linear operator E : W 1,2+ε(Ω) →
W 1,2+ε(Rn) such that Eu(x) = u(x) for a.e. x ∈ Ω with the bound

‖Eu‖W 1,2+ε(Rn) ≤ cE‖u‖W 1,2+ε(Ω)

for any u ∈ W 1,2+ε(Ω) and some constant cE ≥ 0.
To be able to work in cylinders that intersect complement of ΩT , we use

extensions û and ĝ coinciding with u and g in ΩT . Essentially the idea
is that g is extended slice-wise as a Sobolev function outside Ω, which is
possible since Ω is a Sobolev extension domain. Further, this extension
(still denoted by g) in the strip R

n × [0, T ) is reflected to the negative
times such that ĝ(·, t) = g(·,−t) for t ∈ (−T, 0) in R

n. Inside Ω, we define
û(·, t) = g(·,−t) for t ∈ (−T, 0). Moreover, we exploit the property (1.8)1,
which allows us to extend the function um − gm by zero slice-wise outside
Ω. We may define û outside Ω such that ûm − ĝm = 0 holds in R

n+1 \ ΩT .
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3.3 Towards reverse Hölder inequalities

In this section we will focus mostly on the case where the cylinder Qθ
�(zo)

intersects at least the lateral boundary, and is allowed to touch the initial
boundary as well. We call this case near the lateral boundary, while the
term near the initial boundary represents the case when the cylinder
intersects only the initial boundary. By deriving a Caccioppoli inequality
near the lateral boundary, we essentially establish a bound for the integral
of |Dum|2 in terms of

¨
Q

(θ)
� (zo)∩ΩT

|um − gm|2
�2

dxdt (3.3)

and ¨
Q

(θ)
� (zo)∩ΩT

θm−1

∣∣um+1
2 − g

m+1
2

∣∣2
�

m+1
m

dxdt (3.4)

on the right hand side. The term (3.3) is connected to the diffusion part
and (3.4) to the parabolic part of the equation.

The Sobolev-Poincaré inequality is another fundamental building block
when deriving reverse Hölder inequalities. The idea of the Sobolev-Poincaré
inequality is to bound the term (3.3) by an integral involving the gradient
|Dum|q, where the power satisfies q < 2. To establish this, we work in
cylinders satisfying sub-intrinsic scaling, that can be written as

−−
¨

Q
(θ)
� (zo)

2
|ûm − ĝm|2 + |ĝ|2m

�2
dxdt ≤ 2d+2θ2m (3.5)

near the lateral boundary, and

−−
¨

Q
(θ)
� (zo)

|û|2m
�2

dxdt ≤ 2d+2θ2m (3.6)

near the initial boundary (when not touching the lateral boundary).
Then, in order to deduce reverse Hölder inequalities, the task is to

combine Caccioppoli and Sobolev-Poincaré inequalities. Roughly the idea
is to bound (3.4) by (3.3). For this we wish to bound θ in the integrand
of (3.4) from above. In particular, near the lateral boundary we consider
cases where either the coupling

θ2m ≤ K−−
¨

Q
(θ)
� (zo)

2
|ûm − ĝm|+ |ĝ|2m

�2
dxdt, (3.7)

or

θ2m ≤K−−
¨

Q
(θ)
� (zo)∩ΩT

(
|Dum|2 + |F |2 + |∂tgm| 2m

2m−1

)
dxdt (3.8)

+K−−
¨

Q
(θ)
� (zo)∩{t>0}

|Dgm|2 dxdt
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holds true for some constant K ≥ 1, in addition to (3.5). We call the former
the non-degenerate case and the latter the degenerate case. The proofs
for reverse Hölder inequalities differ depending on these cases. The non-
degenerate case is more involved, and there we use (3.7) together with
the Poincaré inequality for ĝm (Lemma 4.3 in Publication I) in order to
estimate the term (3.4) by (3.3) in the Caccioppoli inequality, after which
the Sobolev-Poincaré inequality is applicable. In the degenerate case we
exploit Young’s inequality to split the integral in (3.4) into two parts, so
that one term is exactly δθ2m with a small δ, and the other term can be
estimated from above by (3.3). By using the bound (3.8) for δθ2m, the
resulting integral of |Dum|2 can be absorbed to the left hand side, and the
Sobolev-Poincaré inequality is again applicable.

By following the steps described above we may deduce a reverse Hölder
inequality, that can be written in the form

1

|Q(θ)
� (zo)|

¨
Q

(θ)
� (zo)∩ΩT

|Dum|2 dxdt

≤ c

(
1

|Q(θ)
8� (zo)|

¨
Q

(θ)
8� (zo)∩ΩT

|Dum|q dxdt
) 2

q

(3.9)

+ c−−
¨

Q
(θ)
8� (zo)∩{t>0}

[(
|F |2 + |∂tgm| 2m

2m−1

)
χΩT

+ |Dgm|2
]
dxdt

near the lateral boundary, where the exponent q < 2 is connected to the
self-improving property of uniformly 2-thick sets (in this case R

n \ Ω),
see [47]. Near the initial boundary similar type of bound can be deduced,
where the exponent on the right hand side has explicit form q = 2n

d , in
which d = n+ 1 + 1

m is the parabolic dimension associated to our cylinders.
Here we have also used the fact that Ω is a W 1,2+ε-extension domain, which
allows us to extend the gradient of gm on the right hand side slice-wise
outside Ω.

3.4 Final arguments

The strategy of the final proof is to construct a collection of sub-intrinsic
cylinders, in which the reverse Hölder inequalities hold true, and for which
one can show a Vitali type covering property. Then we are able to derive a
gradient estimate in the super-level sets of the gradient |Dum| leading to
the higher integrability result by a Fubini type argument.

The construction of these cylinders follows the idea of [8] and [28] in
the interior case. The scaling parameter θ will depend on a considered
reference point in space zo and radius �. So-called rising sun construction
is exploited, since in particular it is not clear a priori if the constructed
system of cylinders is nested with respect to the radius �. This challenge
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is already present in the interior case. However, there are additional
complications related to the boundary of the domain. Especially, the sub-
intrinsic scaling will depend on the boundary values g if the particular
cylinder is close to the lateral boundary. In more technical terms this means
that sub-intrinsicness is understood in the sense of (3.6) if � < 1

2 dist(xo, ∂Ω)

and (3.5) if � ≥ 1
2 dist(xo, ∂Ω). By rising sun type construction, we can show

that the resulted parameter θzo = θzo;� is decreasing and continuous with
respect to �, so that the cylinders Q(θzo )

� (zo) are nested w.r.t. �. Furthermore,
we are able to show a Vitali type covering for cylinders constructed like
this (Lemma 6.3 in Publication I). Moreover, by considering a point zo in
super-level set {|Dum| > λm} for large enough λ, we can find a maximal
radius �zo > 0 such that

−−
¨

Q
(θ�zo )
�zo

(zo)

[|Dum|2χΩT
+G2

]
dxdt = λ2m (3.10)

holds true, so that the integral average is smaller than λ2m for all � > �zo .
Here G will depend on spatial and temporal derivatives of gm, as well as
the source term F . For points zo in the super-level set {|Dum| > λm} we
are able to show that the reverse Hölder inequality holds in the form

1∣∣∣Q(θ�zo )
�zo (zo)

∣∣∣
¨

Q
(θ�zo )
�zo

(zo)∩ΩT

|Dum|2 dxdt

≤
⎛⎝ c∣∣∣Q(θ�zo )

32�zo
(zo)

∣∣∣
¨

Q
(θ�zo )

32�zo
(zo)∩ΩT

|Dum|q dxdt
⎞⎠

2
q

(3.11)

+ c

¨
Q

(θ�zo )

32�zo
(zo)∩{t>0}

G2 dxdt,

for some exponent q < 2. This is a result by extensive case-by-case anal-
ysis by deducing that either one of the bounds (3.7) or (3.8) hold true so
that (3.9) is applicable. Additional complications are induced by the fact
that it is not clear a priori how close to the lateral boundary a particular
cylinder in question is. Especially in the degenerate case, coupling (3.10)
is crucial.

The conclusion of higher integrability is obtained by covering the super-
level sets {|Dum| > λm} by enlarged cylinders of disjoint and countable
subcollection of {Q(θ�zo )

32�zo
(zo)}, which is possible by Vitali type covering in

Lemma 6.3 in Publication I. Then, a reverse Hölder type inequality can
be deduced in these super-level sets, and the integrability exponents on
both sides of the equation can be increased by using Fubini type argument.
This implies the final result given in Theorem 1.4 in Publication I.
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4. Stability

Publication III concerns stability for porous medium systems. Stability
here answers the question "do weak solutions to a sequence of problems
converge to the solution of the limit problem, if the parameter characteriz-
ing the problems converges?". This type of result can also be considered
to be practically motivated, as in the applications the parameter can be
measured only approximately. Then, it is important to know that the
corresponding solutions are stable with respect to small fluctuations of
that parameter. In Publication III we considered stability in both local and
global, in the sense of Cauchy-Dirichlet problem (1.7), setting.

In the case of the parabolic p-Laplace equation, stability of the solu-
tions to Cauchy-Dirichlet problems was proven by Kinnunen and Parvi-
ainen in [40]. In particular, they showed that weak solutions of problems
with varying p converge to the solution of the limit problem in a suit-
able parabolic Sobolev space. There the result was shown for solutions to
boundary value problems, which are known to be unique. In particular, to
show convergence of the gradients in suitable sense, the authors in [40]
used the higher integrability result from [55]. This requires an additional
condition for the lateral boundary, namely that the complement of the
domain satisfies a uniform capacity density condition. Furthermore, in the
case of parabolic p-Laplace equation stability has been studied for Cauchy
problems in the upper half-space in [52] up to generality of Radon measure
as the initial data. In case of the porous medium equation, we also mention
that there exists a manuscript [51] concerning stability of nonnegative
solutions.

One remarkable feature in our result for porous medium systems is that
in contrast to the parabolic p-Laplace equation treated in [40], we do not
need the higher integrability result or additional regularity requirements
for the lateral boundary. This is connected to the fact that in the case
of equations with p-growth, the function spaces of the solutions vary if
p varies, while for porous medium equation the corresponding function
space stays fixed even if m varies. Essentially, our proof for stability relies
on suitable energy estimates and a compactness result from [61] together
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with appropriate interpolation lemma from [6].

4.1 Main results and assumptions

The result we obtain roughly tells that if (mi) is a sequence of real numbers
in the interval

(
(n−2)+
n+2 ,∞

)
converging to some m inside the same interval,

then weak solutions ui to the corresponding system (1.1) (where p = 2)
with mi converge to the solution u of the limit problem in a suitable norm.
Essentially we show that the solutions converge in the sense

umi
i → um in L2(0, T ;W 1,2(Ω,RN )), (4.1)

as i → ∞, provided that appropriate assumptions are made. For a local
problem, the convergences are naturally understood on compact subsets
of ΩT . The results for local and global problems are stated precisely in
Theorems 2.3 and 2.7 in Publication III.

In addition to the structure conditions in (1.2) and (1.3) (with p = 2), we
further assume monotonicity for the vector field A. This means that for
some positive constant μ,

(A(x, t, u, ξ)−A(x, t, v, η)) · (ξ − η) ≥ μ |ξ − η|2 , (4.2)

holds true for a.e. (x, t) ∈ ΩT and all pairs (u, ξ), (v, η) ∈ R
N × R

Nn.
In Publication III we consider both local and global (Cauchy-Dirichlet)

problem. Especially in the local case, some additional assumptions are in
order. Namely, we suppose that

umi
i ⇀ um weakly in L2

loc(ΩT ,R
N ), (4.3)

when i → ∞ for some function um ∈ L2(ΩT ,R
N ). In addition, if (n−2)+

n+2 <

m < 1, we suppose that

umi+1
i is bounded in L1

loc(ΩT ,R
N ). (4.4)

The assumption (4.3) allows us to identify the limit um such that it is
unique for the whole sequence. The boundedness assumption in (4.4)
ensures that the Caccioppoli inequality gives a uniform (with respect to
i) bound, also in the singular case. In the degenerate case this is already
implied by (4.3).

4.2 Local case

The first step is in the proof is to derive a suitable Caccioppoli inequality
for weak solutions ui to the porous medium system corresponding the
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parameter mi. This can be obtained in a form

sup
t∈(t1,t2)

ˆ
Ω
η2|ui|mi+1 dx+

¨
ΩT

η2|Dumi
i |2 dxdt

≤ cm
δ

¨
Ω×(t1−δ,t2)

η2|ui|mi+1 dxdt+ cm

¨
ΩT

|Dη|2|umi
i |2 dxdt,

where η ∈ C∞
0 (Ω) and c = c(m,Co, C1) > 0 with the constant c being

uniformly bounded with respect to m. Now assumptions (4.3) and (4.4)
imply that the right hand side is uniformly bounded with respect to i,
which implies

umi
i ⇀ um weakly in L2

loc(0, T ;W
1,2
loc (Ω,R

N ))

as i → ∞ along a subsequence. In particular, the weak convergence in (4.3)
identifies the limit also for the gradients. Then, the strategy is to improve
this convergence from weak to strong. At first, the strong convergence is
shown for the functions umi

i in L2
loc. The main difficulty is to show that a

compactness result in [61, Theorem 3] is applicable. Especially, in order to
apply the result we have to establish the condition

‖τhui − ui‖L1(t1,t2−h;L1(K,RN )) → 0, (4.5)

uniformly in i, as h → 0 for any compact subset K � Ω and 0 < t1 < t2 <

T . This can be verified by using a suitable application of interpolation
lemma [6, Lemma 4.4], which implies (4.5) once we ensure that (ui) is
uniformly equicontinuous in C([t1, t2]; (W

1,2
0 (Ω,RN ))′). This can be shown

by using the weak formulation with test function ξδw, in which ξδ is a
cut-off function in time and w ∈ W 1,2

0 (K,RN ). Then, by an application of
Gagliardo-Nirenberg inequality and standard arguments, the convergence
can be improved from L1

loc(ΩT ,R
N ) to L2

loc(ΩT ,R
N ).

Finally, to show the convergence of the gradients we use monotonicity
property (4.2) of the vector field A, which implies

¨
ΩT

ηξ|Dumi
i −Dum|2 dxdt

≤ c

¨
ΩT

ηξA(x, t, ui, Dumi
i ) · (Dumi

i −Dum) dxdt (4.6)

− c

¨
ΩT

ηξA(x, t, u,Dum) · (Dumi
i −Dum) dxdt

for a cut-off function η in space and ξ in time. The second term on the
right hand side vanishes as i → ∞ due to structural conditions of A

together with weak convergence of the gradients. For the first term we
use (mollified) equation with a test function ϕ = ηξ(umi

i − [[um]]h). In this
way, we are able to show that also the first term on the right hand side
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of (4.6) will vanish when i → ∞, which implies the desired convergence
for the gradients in L2

loc(ΩT ,R
Nn). Furthermore, the limit function u is

indeed a solution to the limit problem with exponent m. Since ui → u in
L1
loc(ΩT ,R

N ), and (ui, Dumi
i ) → (u,Dum) pointwise, one can deduce

lim
i→∞

(¨
ΩT

[−ui∂tϕ+A(x, t, ui, Dumi
i )] dxdt

)

=

¨
ΩT

[−u∂tϕ+A(x, t, u,Dum)] dxdt,

along a subsequence, since A(x, t, ui, Dumi
i ) is bounded in L2

loc(ΩT ,R
Nn)

and continuous in the last two variables.
Observe that a passage to a subsequence occurs several times in our

arguments. However, any subsequence of the original sequence (umi
i )

has a converging subsequence which converges to the same limit um in
L2
loc(0, T ;W

1,2
loc (Ω,R

N )) by the proof. Identification of the limit is essentially
due to (4.3). Indeed, if the original sequence would not converge to this
limit, then given a compact subset K ⊂ Ω and 0 < t1 < t2 < T , one
could extract a subsequence for which there exists ε > 0 such that ‖umi

i −
um‖L2(t1,t2;W 1,2(K,RN )) ≥ ε for all i. For this particular subsequence, the
proof above still gives a convergent subsequence in the same norm. This is
a contradiction, which implies that the original sequence must converge.

4.3 From local to global result

The proof of the global result applies the local result and uses similar argu-
ments. However, in the global case we do not assume the conditions (4.3)
and (4.4). In contrast, we need some assumptions for the boundary func-
tion g, which are specified in (2.10) in Publication III. For example, the
assumption gm̃ ∈ C1(ΩT ) for some m̃ < m will be sufficient (but it does
not need to be this strong). This will imply convergence of gmi , as well as
its temporal and spatial derivatives to corresponding of gm in appropriate
spaces.

Again, the Caccioppoli inequality (Lemma 6.2 in Publication III) together
with the assumptions on g imply that (umi

i ) and (Dumi
i ) are bounded

sequences in L2. This further implies that along a subsequence, umi
i

converges to some um weakly in L2(0, T ;W 1,2(Ω,RN )). By applying the
local result we can immediately conclude that this convergence holds locally
in the strong sense for a subsequence. This implies pointwise convergence
almost everywhere (by passing to a subsequence again), which can be
exploited to obtain a strong convergence in Lq(0, T ;W 1,q(Ω,RN )) for any
q < 2 by similar arguments as in the local case. By application of Gagliardo-
Nirenberg inequality, this convergence can be improved for the functions
umi
i to hold in L2(ΩT ,R

N ). With the results at this stage, we are already
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able to show that the limit function u (along a specific subsequence) attains
the boundary values g in the sense of (1.8).

It is left to show the strong convergence of the gradients in L2(ΩT ,R
Nn),

which is obtained in a similar fashion as in the local case. In this case
the proof becomes a bit more involved, since the test function in the weak
form of the equation should have zero boundary values on the lateral
boundary in the Sobolev sense. We are able to overcome this problem
splitting the first term on the right hand side of (4.6) into two terms by
adding and subtracting integral of ξA

(
x, t, ui, Dumi

i

) · D[[um]]h. Then by
using ϕ = ξ(umi

i − gmi + [[gm]]h − [[um]]h) as a test function in the weak
formulation of the equation with a cut-off function ξ in time, we are able to
show the convergence of the gradients in L2(ΩT ,R

Nn).
As in the local case, the convergences hold up to now for a subsequence

and some limit function u solving the equation in the weak sense with
exponent m. If we restrict ourselves to the model system A(x, t, u,Dum) =

Dum, we can show that the solutions are unique as in the monograph [63]
by Vázquez, which implies convergence of the whole sequence with similar
argument as in the local case.
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5. Hölder regularity for the obstacle
problem

The obstacle problem can be interpreted as a constraint problem, when
there are other constraints affecting the behavior of the solution than only
the data on the boundary of the domain. In Publication IV we study local
Hölder continuity for solutions to obstacle problems to porous medium type
equations, for which we introduced a prototype in (1.5). In this case, we
use an alternative starting point for the equation, namely

∂tu
q −Δu = 0,

for q ∈ (0,∞). Here the nonlinearity is shifted from the divergence part
to the parabolic part. We define the solution to the obstacle problem via a
variational inequality. This can be written as follows: for a given obstacle
ψ, a solution u to the obstacle problem satisfies u ≥ ψ and

〈〈∂tuq, ϕ(v − u)〉〉+
¨

ΩT

A(x, t, u,∇u) · ∇ (ϕ(v − u)) dxdt ≥ 0,

for any nonnegative cut-off function ϕ and comparison map v that also
stays above the given obstacle, i.e. v ≥ ψ. Here the vector field A satisfies
structure conditions (1.2) and (1.3) with p = 2. The term 〈〈·, ·〉〉 is defined
via integration by parts in the time direction. In order to prove the Hölder
continuity of the solution u, we assume that the obstacle ψ is Hölder
continuous as well. This is a natural assumption to make in the sense that
the solution may touch the obstacle in some parts of the domain.

The obstacle problem has been studied in different contexts. In the
case of variational solutions, problems related to parabolic p-Laplace type
equations has been studied for example in [59], [10] and [46]. One can also
define the solution to the obstacle problem as the smallest supersolution
staying above the given obstacle. In the case of parabolic p-Laplace type
equations this approach has been considered in [42] and for the porous
medium equation in [4] and [43].

In the obstacle-free case, the proof of Hölder continuity for weak solu-
tions to degenerate porous medium equations goes back to the paper by
DiBenedetto and Friedman [25]. The detailed argument in the singular
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case can be extracted from [26]. Hölder continuity was proven for the solu-
tions of obstacle problem to quasilinear equations in [62] and [21]. In the
case of porous medium type equations, Hölder continuity was established
with nonnegative obstacles in [14] in the degenerate case and in [20] in the
singular case. Novelty in the Publication IV is that we obtain the result
with an obstacle that may take any real values, and prove the Hölder
regularity in a unified way for both singular and degenerate cases. Publi-
cation IV focuses purely on this regularity result. A question of existence
for variational solutions to the obstacle problem to porous medium type
equations has been addressed e.g. in [3], [13], [57] and [58].

Our proof relies on a De Giorgi type iteration argument. In the heart of
this approach are energy estimates for truncations of solutions. Idea is to
show Hölder continuity near each point in the domain by constructing a
sequence of cylinders shrinking to a common vertex. When passing from
one cylinder to the subsequent one in the sequence, we show that the oscil-
lation of the solution is reduced by a fixed amount. Essentially, information
from the level of measure is transferred to pointwise information by using
applications of energy and logarithmic estimates with suitable truncation
levels.

The main difficulty when treating the obstacle problem is already present
in the energy estimates. The estimate for truncations from above take the
same form as in the obstacle-free case, but for truncations from below a
restriction appears. Namely, the truncation level in the latter case must
be above the obstacle ψ. In the De Giorgi type iteration argument, this is
taken into account in the upper bound for the oscillation of the solution
u. More precisely, the upper bound for the oscillation of u must be large
enough compared to the oscillation of the obstacle ψ. Moreover, when
the solution is negative and substantially below its level of oscillation, a
technical argument is needed to show that the De Giorgi iteration can be
carried out in this case as well.

For a given reference point zo = (xo, to) ∈ ΩT , in the degenerate case
in [14] the authors used cylinders of the form

Q�,θ�2(zo) = B�(xo)× (to − θ�2, to) � ΩT , (5.1)

in the proof of Hölder continuity. These cylinders are intrinsic, and the
scaling parameter θ is comparable to u1−m for nonnegative u. In contrast,
in the singular case in [20], the authors exploit a slightly different form of
cylinders, namely

Qθ1/2�,�2(zo) = Bθ1/2�(xo)× (to − �2, to) � ΩT , (5.2)

in which the scaling parameter θ is comparable to um−1. In the proof for
both of these regimes, the cases when u is close to zero (degenerate/singu-
lar), and when it is away from zero (non-degenerate/non-singular) were
treated separately.
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In the Publication IV, we treat signed solutions in cylinders of the
form (5.1), in which θ is comparable to |u|q−1. In particular, we are able
to use this same form of intrinsic cylinders in the whole parameter range
0 < q < ∞ without switching to the form (5.2) in the singular case. We can
avoid this by exploiting the scaling invariance property of the PME. More
precisely, it can be verified that for given obstacle ψ and corresponding
variational solution u, for any M > 0 the function

ũ(x, t) :=
1

M
u(x,M q−1t)

is a solution to the obstacle problem with obstacle ψ̃(x, t) = 1
Mψ(x,M q−1t)

and vector field Ã(x, t, v, ξ) = 1
MA(x,M q−1t,Mv,Mξ) in the domain Ω

˜T

with T̃ = M1−qT . Furthermore, the property of Hölder continuity with this
transformation is preserved with the same Hölder exponent.

In the following, μ+ and μ− will represent pointwise bounds from above
and below, respectively, for the solution u in suitable parabolic cylinders.
Furthermore, ω = μ+ − μ− will then naturally be an upper bound for
the oscillation of u. We will use slightly different factors for θ ≈ |u|q−1 in
different cases that are described in Section 5.3.

5.1 The obstacle

The obstacle ψ plays obviously a role in our argument. To show Hölder
continuity for the solution u, we require this condition for the obstacle as
well. More precisely, we will assume that

ψ ∈ C0;β,β
2 (ΩT ) for some β ∈ (0, 1).

The obstacle will also be present already in the energy estimates. In
cylinders Q�,s(zo) = B�(xo) × (to − s, to), the energy estimates for the
truncations of a solution u can be written as

max

{
ess sup

to−s<t<to

ˆ
B�(xo)×{t}

ϕ2g±(u, k) dx,
¨

Q�,s(zo)
ϕ2|∇(u− k)±|2 dxdt

}

≤ c

¨
Q�,s(zo)

[(u− k)2±|∇ϕ|2 + g±(u, k)|∂tϕ2|] dxdt (5.3)

+

ˆ
B�(xo)×{to−s}

ϕ2g±(u, k) dx

for level k and regular enough cut-off function ϕ ≥ 0. Constant c in the
estimate depends on Co and C1 (the quantity g± depends on q). Here we
may interpret g±(u, k) ≈ (|u|+ |k|)q−1(u− k)2±, up to a constant depending
on q. The upper signs (+) in the inequality correspond estimate for the
truncations from below, and lower signs (−) for the truncations from above.
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There is a notable difference compared to the obstacle-free case. While
k ∈ R can be chosen arbitrarily in that case, in presence of an obstacle we
need an additional requirement for the truncations from below (+). More
precisely, we require that in that case

k ≥ sup
Q�,s(zo)

ψ,

so that the level of truncation must be above the obstacle in the whole
cylinder. When applying the De Giorgi type iteration argument, this will
result in a condition of type

sup
Q�,θ�2 (zo)

ψ ≤ 1
2

(
μ+ + μ−) . (5.4)

When proving the reduction of oscillation in shrinking cylinders, this
condition is ensured by choosing the the upper bound ω for the oscillation
of u to be large enough compared to the oscillation of the obstacle ψ.

5.2 The alternatives

Two different types of alternatives are used in our proof; either⎧⎨⎩
∣∣Q�,θ�2(zo) ∩

{
u ≤ μ− + 1

2ω
}∣∣ ≤ νo

∣∣Q�,θ�2(zo)
∣∣ ,∣∣Q�,θ�2(zo) ∩

{
u ≤ μ− + 1

2ω
}∣∣ > νo

∣∣Q�,θ�2(zo)
∣∣ , (5.5)

or ⎧⎨⎩
∣∣Q�,θ�2(zo) ∩

{
u ≥ μ+ − 1

2ω
}∣∣ ≤ νo

∣∣Q�,θ�2(zo)
∣∣ ,∣∣Q�,θ�2(zo) ∩

{
u ≥ μ+ − 1

2ω
}∣∣ > νo

∣∣Q�,θ�2(zo)
∣∣ , (5.6)

in which νo ∈ (0, 1). Here μ+ can be viewed as an upper bound and μ−

as a lower bound for u in the cylinder Q�,θ�2(zo), so that ω represents
an upper bound for the oscillation of u in the same cylinder. The choice
whether considering (5.5) or (5.6) is connected to different cases described
in Section 5.3. The upper inequalities, (5.5)1 and (5.6)1 are called first
alternatives, and the lower ones, (5.5)2 and (5.6)2, second alternatives.
Next we will present a heuristic idea on the reduction of oscillation of u
when passing from the intrinsic cylinder Q�,θ�2(zo) to a smaller one by
using alternatives in (5.5). The scaling parameter in intrinsic cylinders
here could be considered to be either θ = ωq−1 (case (5.9)) or θ ≈ (μ+)

q−1

(case (5.10)). We will omit the vertex zo from the notation of the cylinders.
By using a De Giorgi type lemma relying on the energy estimate (5.3) with
(−), the alternative (5.5)1 will essentially result in a reduction of oscillation
in a subcylinder of Q�,θ�2 as

ess inf
Q �

2 ,θ( �2 )
2

u ≥ μ− + 1
4ω. (5.7)
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The parameter νo in (5.5) will be determined by this De Giorgi type lemma,
and it will be a small number depending only on the data Co, C1, n and q.
After this, one is left to deal with the second alternative (5.5)2. By using
the definition ω = μ+ − μ−, one can write this condition equivalently in
the form ∣∣Q�,θ�2 ∩

{
u > μ+ − 1

2ω
}∣∣ < (1− νo)

∣∣Q�,θ�2
∣∣ .

In order to conclude pointwise information for u and reduce the oscillation
also in this case, aim is to use an application of De Giorgi type lemma
again. A problem that appears now is that the parameter 1− νo is close to
1, while De Giorgi type lemmas are applicable only when this parameter
is small. By applying a logarithmic estimate, De Giorgi’s isoperimetric
inequality and the energy estimate (5.3) with (+), we are able to show that∣∣∣Q�, 1

2
νoθ�2

∩ {
u > μ+ − ηω

}∣∣∣ < ν1

∣∣∣Q�, 1
2
νoθ�2

∣∣∣ ,
holds true for any small parameter ν1 > 0 and some small constant η =

η(n, q, Co, C1, ν1). Observe that here the restriction (5.4) needs to be taken
into account. By choosing ν1 sufficiently small, an application of De Giorgi
type lemma can again be exploited. In this case ν1 will depend only on the
data n, q, Co and C1, and so will η. In this way we obtain a reduction of
oscillation in a subcylinder of Q�,θ�2 again as

ess sup
Q �

2 , 12 νoθ(
�
2 )

2

u ≤ μ+ − 1
2ηω. (5.8)

The cylinder Q �
2
, 1
2
νoθ( �

2 )
2 is a subcylinder of Q �

2
,θ( �

2 )
2 in (5.7) and the coeffi-

cient η will be smaller than 1
2 resulting in a coefficient smaller than 1

4 in
front of ω in (5.8). Now (5.7) and (5.8) together imply that

ess osc
Q �

2 , 12 νoθ(
�
2 )

2

u ≤ δω,

in which δ = 1 − 1
2η which only depends on the data n, q, Co and C1.

By passing to this smaller cylinder Q �
2
, 1
2
νoθ( �

2 )
2 , the upper bound for the

oscillation of u is reduced by a fixed amount δ. Similar ideas can also be
used when considering the alternatives in (5.6).

5.3 Cases near zero and away from zero

In the construction of cylinders, we will distinguish between three different
cases. We refer to near zero case, if

μ+ ≥ 1
4ω and μ− ≤ 1

4ω. (5.9)

If this fails, we refer to away from zero case, which splits into two subcases.
We call the subcase above (and away from) zero if

μ− ≥ 1
4ω, (5.10)
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and below (and away from) zero if

μ+ ≤ −1
4ω. (5.11)

In each of the cases, we are able to use the machinery described in sec-
tion 5.2 and reduce the oscillation of u when passing to a smaller cylinder.
Significant feature in the construction of shrinking cylinders is that it can
be done in such a way that there is a pattern how different cases (5.9), (5.10)
and (5.11) can occur when passing from one cylinder to the next one. As-
sume that we have defined first cylinder Qo in the sequence and consider
Qi for some i ∈ N. If (5.9) holds true, then the oscillation can be reduced
by the scheme described Section 5.2 when passing to the cylinder Qi+1. In
this cylinder, any of the three cases can again occur. However, if we reach
some index j for which either (5.10) or (5.11) holds, the oscillation can be
again reduced when passing to Qj+1 but in the cylinder Qj+1 the same case
holds as in Qj . This means that when passing from a cylinder in the near
zero case to the subsequent one, any of the three cases can occur, but once
above or below zero case holds in some cylinder in the sequence, in every
subsequent cylinder the same case holds as well. This pattern is exploited
in the final argument to prove Hölder continuity of u.
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