
Accelerating Convolutional Neural
Network Inference on Digital Signal
Processor

Uula Ollila

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 28.02.2022

Supervisor

Prof. Antti Hannukainen

Advisor

M.Sc. Marko Hassinen



Copyright © 2022 Uula Ollila



Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Uula Ollila
Title Accelerating Convolutional Neural Network Inference on Digital Signal

Processor
Degree programme Master’s Programme in Mathematics and Operations Research
Major Applied mathematics Code of major SCI3053
Supervisor Prof. Antti Hannukainen
Advisor M.Sc. Marko Hassinen
Date 28.02.2022 Number of pages 95+2 Language English
Abstract
The ongoing deployment of 5G NR is to bring a completely new wave of technology
and revolutionize wireless data transfer. The new standard will provide improved
data rates, lower latency, better energy efficiency and larger capacity for connected de-
vices. New performance requirements and increased flexibility challenge conventional
physical layer (L1) solutions and boost research of new algorithmic approaches. One
proposed new approach is deep learning (DL), which in recent studies have shown to
provide a feasible alternative for existing algorithms in terms of computational load
and accuracy. So far, neural networks (NNs) based solutions are not available in any
commercial 5G physical layer product. They employ highly specialized hardware,
which poses challenges when efficient NN inference implementations are considered.

Convolutional neural networks (CNNs) are an essential subtype of NNs and have
recently been introduced to replace several L1 processing blocks. This work aims
to develop a comprehensive framework that enables accelerating CNN inferences
on CEVA-XC4500 DSP, a current state of the art in L1 processing. The basic
idea of the framework is presented earlier for multilayer perceptrons (MLPs), and
this work elaborates the idea for 1-D CNNs. Essential parts of CNNs are covered,
including convolution layers, pooling layers and some activation functions. The
DSP implementation is optimized with the single instruction, multiple data (SIMD)
intrinsics that the DSP offers broad support. Since the DSP is designed for fixed-
point arithmetic, the framework includes a procedure for quantizing the network
parameters as a part of the framework’s offline preprocessing part.

Implementation’s real-time performance is evaluated by recording the processor
cycle counts of running inference with five different CNN models. The results are
recorded in a software simulator that simulates the operation of the DSP in a cycle-
accurate manner. The implementation’s accuracy and quantization procedure are
also evaluated. The results show that the target DSP can accelerate optimized
CNN inferences effectively. Compared to the unoptimized reference implementation,
speedups ranging from 6.5 to 26.8 were observed. Most performance gains originate
from optimizing the convolution layers, typically computationally the heaviest part
of CNNs. Clear benefits can also be observed from optimizing pooling layers and
activation functions.
Keywords 5G, convolutional neural network, digital signal processor, neural network

inference, hardware acceleration, SIMD



Aalto-yliopisto, PL 11000, 00076 AALTO
www.aalto.fi

Diplomityön tiivistelmä

Tekijä Uula Ollila
Työn nimi Konvoluutioneuroverkkoinferenssin kiihdyttäminen digitaalisella

signaaliprosessorilla
Koulutusohjelma Matematiikan ja operaatiotutkimuksen maisteriohjelma
Pääaine Sovellettu matematiikka Pääaineen koodi SCI3053
Työn valvoja Prof. Antti Hannukainen
Työn ohjaaja FM Marko Hassinen
Päivämäärä 28.02.2022 Sivumäärä 95+2 Kieli Englanti
Tiivistelmä
Meneillään oleva 5G NR-standardin käyttöönotto on tuomassa mukanaan täysin
uutta teknologiaa, joka on muuttamassa pysyvästi langatonta tiedonsiirtoa. Uusi
standardi mahdollistaa nopeamman tiedonsiirron, pienemmän viiveen, paremman
energiatehokkuuden ja suuremman kapasiteetin yhdistetyille laitteille. Uudet suo-
rituskykyvaatimukset ja verkkojen joustava rakenne haastavat perinteiset fyysisen
kerroksen (L1) ratkaisut ja vauhdittavat uusien algoritmisten lähestymistapojen tut-
kimusta. Yksi ehdotettu lähestymistapa on syväoppiminen (deep learning, DL), joka
on hiljattain osoittautunut käyttökelpoiseksi vaihtoehdoksi nykyisille algoritmeille
laskentakuorman ja tarkkuuden näkökulmasta. Toistaiseksi neuroverkkoihin perustu-
via ratkaisuja ei ole saatavilla missään kaupallisessa fyysisen kerroksen tuotteessa.
Niissä hyödynnetään erikoistuneita sulautettuja järjestelmiä, mikä asettaa tiettyjä
haasteita tehokkaiden neuroverkkoinferenssien näkökulmasta.

Konvoluutioneuroverkot (CNN) ovat neuroverkkojen alatyyppi, joita on vasti-
kään ehdotettu korvaajiksi tietyille fyysisen kerroksen prosessointiosille. Tässä työssä
pyritään kehittämään kattava ohjelmistokehys, jonka avulla konvoluutioneuroverk-
koinferenssejä voidaan kiihdyttää CEVA-XC4500 digitaalisella signaaliprosessorilla
(DSP). Ohjelmistokehyksen perusideaa on hyödynnetty aiemmin monikerroksisilla
perseptroniverkoilla, ja tässä työssä kehitetään ideaa edelleen soveltumaan yksiu-
lotteisille CNN-malleille. Toteutus optimoidaan hyödyntäen DSP:n laajoja vektori-
laskentaominaisuuksia. DSP on suunniteltu kiinteän pisteen aritmetiikkaa varten,
joten ohjelmistokehys toteuttaa mallien parametrien kvantisoinnin kiintopisteluvuiksi
osana verkon offline-esikäsittelyä.

Toteutuksen suorituskykyä arvioidaan mittaamalla kuluneiden prosessorisyklien
määrä viidellä eri CNN-inferenssillä. Mittaukset suoritetaan syklitarkalla ohjelmisto-
simulaattorilla. Lisäksi tarkastellaan inferenssin kvantisointia ja tarkkuutta. Tulok-
set osoittavat, että DSP voi kiihdyttää optimoituja inferenssejä hyvin tehokkaasti.
Optimoimattomaan referenssitoteutukseen verrattuna havaittiin 6.5-26.8 kertaisia
nopeuslisäyksiä. Suurin osa suorituskyvyn kasvusta tapahtuu konvoluutiokerroksis-
sa, joka on tyypillisesti CNN-mallien laskennallisesti raskain osa. Selkeää hyötyä
saavutetaan myös optimoimalla koontikerroksia ja aktivaatiofunktioita.
Avainsanat 5G, konvoluutioneuroverkko, digitaalinen signaaliprosessori,

neuroverkkoinferenssi, laitteistokiihdyttäminen, SIMD



Preface

I have done easier things in my life than writing this thesis. It was a challenging
but, in the end, also so rewarding experience. Sometimes during this process, I felt
like I was a living example of the paradox of Achilles and the tortoise. Every time I
thought I was close to the finish line, I realized there was always something more to
do. I’m so glad that it is now over.

At this point, it is time to express gratitude to everyone who has supported
me in my studies. I must thank my supervisor Antti and advisor Marko for all the
great advice and feedback in this thesis process. I admire your patience. I also want
to thank my co-workers at Nokia for the great discussions during this time. I am
grateful to my line managers, Henna Koskenniemi and Mikko Volanen, for providing
me with the opportunity to do this thesis as a part of your team. It was so truly
amazing to constantly learn new things in such a challenging environment.

Most importantly, I want to thank my family for always supporting me in
everything I do. And Unna, I express my endless gratitude to you. It was sensational
to share this journey with you. No one else could cheer me up better than you do
when it feels that there is no sense in absolutely anything.

Finishing this thesis brings an end to the most memorable part of my life.
These years at Otaniemi and Aalto University gave me so much more than I could
ever imagine back in 2015 when I jumped that night train at Oulu railway station.
Studying has been so much more than just studying for me. I’d like to thank The
Guild of Physics, especially boards 2017 and 2019. It is crazy to think about what
kind of amazing stuff I could do with you. I also want to thank all my friends I was
privileged to get to know during these six and a half years. These people around me
are so much more valuable in my life than any degree.

Y161b, Otakaari 1, Espoo 28.02.2022

Uula Ollila

v



Contents

Abstract iii

Abstract (in Finnish) iv

Preface vi

Contents vii

Abbreviations ix

1 Introduction 1
1.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Physical layer in wireless communication 3
2.1 Wireless communication . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Channel model . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Deep learning in physical layer processing . . . . . . . . . . . . . . . 6
2.2.1 Use cases in 5G physical layer . . . . . . . . . . . . . . . . . . 7

3 Neural networks 10
3.1 Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Connection architecture . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Forward propagation . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.3 Backpropagation and optimization . . . . . . . . . . . . . . . 16
3.3.4 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 Deep learning frameworks . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Deep learning compilers . . . . . . . . . . . . . . . . . . . . . 21
3.4.3 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Convolutional neural networks 23
4.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Key concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



vii

4.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 Convolution layer . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Pooling layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Digital signal processor 32
5.1 Key concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.3 Fixed-point representation . . . . . . . . . . . . . . . . . . . . 36

5.2 CEVA-XC4500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.2 Vector computation unit . . . . . . . . . . . . . . . . . . . . . 40
5.2.3 Compiler and intrinsic functions . . . . . . . . . . . . . . . . . 41

6 Implementation 42
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Real-time inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3.1 Convolution layer . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.2 Pooling layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.3 Activation functions . . . . . . . . . . . . . . . . . . . . . . . 58

7 Experimental setup 61
7.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8 Evaluation 71
8.1 Quantization and model correctness . . . . . . . . . . . . . . . . . . . 71
8.2 Performance optimization . . . . . . . . . . . . . . . . . . . . . . . . 74

8.2.1 Scalar reference . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.2.2 Input quantization . . . . . . . . . . . . . . . . . . . . . . . . 75
8.2.3 Convolution layers . . . . . . . . . . . . . . . . . . . . . . . . 77
8.2.4 Pooling layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.2.5 Activation functions . . . . . . . . . . . . . . . . . . . . . . . 80
8.2.6 Batching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.3 Evaluation summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9 Conclusions 87

References 89

A CEVA intrinsics 96



Abbreviations

1D One dimensional
5G NR Fifth generation new radio
AI Artificial intelligence
API Application programming interface
ASIC Application specific integrated circuit
BP Backpropagation
BPSK Binary phase-shift keying
CNN Convolutional neural network
DAAU Data address and arithmetic unit
DFT Discrete Fourier transform
DL Deep learning
DMA Direct memory access
DMRS Demodulation reference signal
DNN Deep neural network
DSP Digital signal processor
ECG Electrocardiogram
eMBB Enhanced Mobile Broadband
FFT Fast Fourier transform
FNN Feedforward neural network
FPGA Field-programmable gate array
GCU General computation unit
GEMM General matrix multiply
GPP General purpose processor
GPU Graphics processing unit
IDE Integrated development environment
IDFT Inverse discrete Fourier transform
IEEE Institute of electrical and electronics engineers
ILP Instruction level parallelism
IR Intermediate representation
L1 Physical layer
LS Least squares
LTE Long term evolution
MAC Multiply-accumulate operation
MEA Mean absolute error
MIMO Multiple input multiple output

viii



ix

ML Machine learning
MLP Multilayer perceptron
mMTC massive Machine Type Communications
MPN McCulloch-Pitts neuron
MSE Mean squared error
NMSE Normalized mean squared error
NN Neural network
ONNX Open neural network exchange
OSI Open Systems Interconnection
PCU Program control unit
PRACH Physical random access channel
PUSCH Physical uplink shared channel
QAM Quadrature amplitude modulation
QPSK Quadrature phase-shift keying
ReLU Rectified Linear Unit
RISC Reduced instruction set computer
RNN Recurrent neural network
SGD Stochastic gradient descend
SIMD Single instruction, multiple data
SNR Signal to noise ratio
SoC System on a chip
TOA Time of arrival
TPU Tensor processing unit
URLLC Ultra-reliable and low latency communications
VA Vector arithmetic unit
VB Vector bit manipulation unit
VM Vector move and pack unit
VCU Vector computation unit
VLIW Very long instruction word
VRF Vector register file



Chapter 1

Introduction

The current deployment of fifth-generation (5G) mobile networks (MN) is due to
bring a completely new wave of technology and revolutionize everyday lives. 5G
New Radio (NR) will provide improved data rates, lower latency, better energy
efficiency and larger capacity for connected devices. The standard is designed to be
highly flexible to support different use cases and applications. Compared to previous
standards, improvements of 5G NR will not be small but rather a significant leap
into a new level in performance [1].

New performance requirements and increased network flexibility pose new en-
gineering challenges by significantly increasing network complexity. It challenges
conventional information theory solutions and speeds up research of new algorithmic
approaches. Deep learning (DL) and neural networks (NN) are included in the
proposed approaches. NNs are already a current state of the art in many fields
outside signal processing, such as computer vision and speech recognition [2]. Recent
studies show that in terms of computational load and accuracy, neural networks
can provide a feasible alternative for existing signal processing algorithms [3]. In
the physical layer context, the proposed DL based applications include substituting
individual blocks [4, 5, 6] as well as replacing the entire transceiver with autoencoder
[7, 8]. Despite active research in simulated environments, DL-based solutions are not
yet active in any commercially available 5G base station.

Most of the real-time processing in the physical layer is done using highly spe-
cialized hardware typically implemented in a System on Chip (SoC). The SoC can
include multiple digital signal processors (DSPs) and application-specific hardware
accelerators. Both can be used to accelerate different signal processing algorithms.
However, either of them is rarely designed for operating with floating-point tensors,
which are the core of almost all modern DL models. Those models are optimally
processed using specific DL processing hardware, which is not yet very common
in current SoCs operating in millions of base stations for years. Modifying, ex-
tending or replacing existing hardware is difficult and expensive; thus, efficient NN
implementations for existing hardware can be beneficial. Conventional DSPs are
optimized for multiply-accumulate (MAC) operations, which form the core of most
signal processing algorithms. Neural networks share this fundamental similarity; the
multiplications and additions between inputs and network parameters are at the core



2

of neural network inference.
This work aims to develop a comprehensive framework that enables the efficient

accelerating of convolutional neural networks (CNN) inferences on CEVA-XC4500
DSP. The DSP is part of a Nokia ReefShark chipset, which is Nokia’s in-house
developed SoC for baseband products. The SoC design is based on 3GPP specifications
for LTE and 5G NR network standards. ReefShark is delivered as a physical layer
processing plug-in unit for the Nokia AirScale baseband module, which serves as a
software-defined system module supporting all radio technologies from 2G to 5G.

The basic idea of the framework in this work is not that novel. In [9, 10]
accelerating multilayer perceptrons (MLPs) in the same target DSP were thoroughly
studied. This work elaborates this idea to support one-dimensional CNNs. This
work presents implementations for essential parts of a CNN, including convolution
layers, pooling layers and necessary activation functions. The implementation is
optimized by vectorizing all components of the inference algorithm using the single
instruction, multiple data (SIMD) intrinsics the DSP supports. Since the target
DSP is designed essentially for fixed-point arithmetic, the framework also includes a
procedure for quantizing the network parameters of the floating-point models into
compatible fixed-point formats as a part of the offline preprocessing phase.

The real-time performance of DSP implementation is evaluated by recording
the processor cycle counts of running inference with five different CNN models. The
cycle counts were recorded in a software simulator, which simulates the operation
of the DSP in a cycle-accurate manner. It does not consider all effects that affect
the overall performance of the actual SoC, such as data transfer between the main
memory and internal memory of the DSP. Thus, the measured cycle counts in this
work provide only lower bound estimates for the cycle counts on the SoC hardware.

1.1 Structure
This work is divided into nine Chapters, which are organized as follows. Chapter 2
discusses the wireless physical layer providing the basics of wireless communication
systems and introducing the latest approaches to improving physical layer communi-
cations with deep learning. Chapter 3 provides the background in neural networks
and deep learning. It also looks into modern deep learning frameworks, compilers
and methods for quantization. Chapter 4 introduces convolution as a mathematical
operation and provides background on convolutional neural networks (CNNs) and the
key concepts related to them. Chapter 5 covers the fundamental concepts of digital
signal processor (DSP) design and discusses the features and constraints of the target
SoC. The focus is mainly on the DSP for which the implementation is designed.
Chapter 6 presents in detail the implemented inference framework, including the
offline preprocessing and the real-time DSP inference. Chapter 7 introduces the
experimental setup and metrics that are applied in the evaluation of the performance
and the correctness of the DSP inference. The obtained results are presented and
analyzed in Chapter 8. Finally, the work is concluded in Chapter 9.



Chapter 2

Physical layer in wireless
communication

The Open Systems Interconnection (OSI) model is a conceptual model that char-
acterizes communications over a network between computer systems. It aims to
provide an interoperative way to describe communication between diverse computer
systems using standardized protocols. The OSI model is widely used as it visualizes
how networks operate and helps isolate and troubleshoot network problems. The
model partitions data flow in a communication system into seven abstraction layers.
Each intermediate abstraction layer serves certain functionalities to the above layer
and utilizes functionalities provided by the layer below it [11].

The first and lowest of the seven layers in the OSI model is the physical layer
(Layer 1 or L1). L1 enables data transmission over a physical medium, such as
optical signals in a fibre or radio waves over the air. The physical layer defines the
means of transmitting a raw bitstream over a physical connection between devices
in a network by providing an electrical, mechanical, and procedural interface to the
transmission medium. As it is a fundamental layer under all higher-level layers, the
physical layer has a crucial role in establishing reliable communication and achieving
proper transmission rates.

The neural network inference framework developed in this work objects to
accelerating inferences related to wireless L1 processing in 5G mobile networks. The
target hardware is a state of the art solution for physical layer processing in 5G base
station products. This Chapter provides a background on the wireless physical layer
to understand the context of the possible use cases. In the first Section, the basic
principles of wireless communication are discussed. The second Section introduces
some recent applications and advantages of exploiting deep learning to improve
physical layer processing. After that, two use cases are introduced shortly, for which
deep learning solutions have been developed in previous works. These cases are
realistic examples in which the inference framework developed in this work could be
used in the physical layer of 5G mobile networks.

3



4

2.1 Wireless communication
In modern society, many digital systems rely on different wireless communication
methods. In all wireless systems, the basic idea is that the data is transmitted from
one location to another over a wireless medium, typically air. A conventional wireless
communication system consists of a transmitter, a radio channel, and a receiver in
the basic form. Transmitter sends the data over a transmission medium, i.e. the
channel, and the receiver receives the transmitted signal and tries to reconstruct
the original content of the data. The data can be information from analogue voice
signals to bitstreams describing files on digital systems.

2.1.1 Channel model
The transmitter and the receiver communicate over a radio channel in wireless
communication. The transmitted signal arrives at the receiver through only one
path in the ideal case. However, this is rarely the case in the real communication
environment. The transmitted signal is affected by many physical effects. In addition
to the direct signal, the receiver receives reflected, scattered and diffracted as the signal
faces different surfaces and objects on its way. Due to this multipath propagation,
the different components of the same signal can reach the receiver at different arrival
times. This phenomenon is illustrated in Figure 2.1. In addition to multipath
propagation, the signal is distorted by the atmospheric noise and signals from other
transmitters. The signal power is attenuated as a function of the transmission
distance. The radio channel is also only rarely static. Transmitters and other objects
in the environment can move, and for example, weather can contribute significantly
to the channel conditions.

The wireless system design must consider these distorting effects in the radio
channel to enable effective and reliable wireless communication. In a system where the
transmitter and receiver consist of one antenna each, the channel can be formulated

Figure 2.1: Example of physical effects affecting the channel conditions between
transmitter (base station) and receiver (mobile phone) in urban environment [12].



5

as
y = Hx + n, (2.1)

where y ∈ Cn and x ∈ Cn is the received and transmitted signal vectors, respectively,
H ∈ Cn×n is the channel matrix and n ∈ Cn is the noise vector. To be able to adapt
the transmission to current channel conditions, many mathematical models have
been developed to estimate the channel properties, i.e. to provide accurate estimates
for the channel matrix H. Channel estimation can apply statistical methods and
measure impulse response when some known data is transmitted, which is known
both at the transmitter, and the receiver [13]. Recently, deep learning-based solutions
have been widely studied in channel condition estimation [7, 6, 14]. These approaches
are discussed more in Section 2.2.

2.1.2 Transceiver
In most wireless systems, devices are typically a combination of both a transmitter
and a receiver and are thus called transceivers commonly. Traditionally transceiver
is described as a chain of functionality blocks, each of which performs a specific
processing step for the transmitted or received signal. Figure 2.2 illustrates a
simplified diagram of the functional blocks of a transceiver. Each block executes a
solidly founded and isolated function, which are highly optimized based on long-term
research in signal processing [7].

In the transmitter end (Tx), the data is first fed to source coding that uses
a priori knowledge of the data properties to minimize redundancy. The process
compresses the data and thus reduces the amount of data to be transmitted. If the
application requires, the source coding can be combined with encryption to prevent
access from unauthorized parties. After source coding, the data is channel encoded to
add redundancy and make the signal more robust against errors during transmission
over the air. There are many different approaches for the encoding, and the approach
can be adjusted based on the channel conditions to optimize the error resistivity [13].

After channel encoding, the obtained codeword is mapped from a sequence of

Source Source coding Channel encoding Modulation

Tx
Transmitter

Noise,diffraction,
interference, etc.

Detection

Channel estimation

DemodulationChannel decodingSource decoding

Destination
Receiver

Rx

Channel

Figure 2.2: Simplified diagram of physical layer functionalities in a transceiver [3].



6

bits into a vector x of complex-valued symbols through a process called modulation.
Modulation combines the carrier wave with an input signal that contains the infor-
mation to enable data transmission with low energy. The most common modulation
schemes include binary phase-shift keying (BPSK), quadrature phase-shift keying
(QPSK) or quadrature amplitude modulation (QAM). The complex-valued symbols
obtained with modulation are then sent over a radio channel, which attenuates,
distorts and adds noise to the signal [13].

At the Receiver end (Rx), the signal is received with one or more antennas, and
basically, the same operations are performed in the opposite direction. In the first
phase, the received symbols are detected from the signal, and the channel between
transmitter and receiver is estimated using known reference symbols. The channel
estimate is applied to adapt transmissions to different channel conditions and improve
transmission quality. After detection, the vector of received symbols are fed to the
demodulator to obtain soft bits, a vector of real values between 0 and 1. The soft
bits are passed to the channel decoder, which estimates the source coded bits. The
algorithm used in channel decoding depends on the chosen coding and modulation
schemes. Finally, the estimated bits are fed to the source decoding, which tries to
recover the original data [13].

2.2 Deep learning in physical layer processing
In recent years Deep Learning (DL) has been proposed as a potential approach
to improve the physical layer performance of wireless transceivers. It has already
been successfully applied elsewhere in wireless communications, despite that the
current networks are well-known and effective conventional algorithms exist for many
tasks [15]. Because the physical layer strongly assesses the foundation of the overall
network-level performance, the DL-based L1 processing is a promising technology.
There are some reasons why DL could provide gains over the current state of the art
in L1 processing [7]:

• Most L1 signal processing algorithms have long-term statistics and information
theory foundations. They are often justified optimal with tractable mathemati-
cal models, generally linear, stationary, and normally distributed. However,
in practice, systems have many imperfections and non-linearities (e.g. timing
offset, finite resolution) that such models can only approximately collect. Thus,
a DL-based physical layer solution or processing block that do not require a
mathematically tractable model might be a justified choice. It can be optimized
for a certain hardware configuration and channel conditions enabling better
optimization for such imperfections.

• The leading design principle in the physical layer is to split the signal processing
into a chain of multiple independent functionality blocks. Each block performs
an isolated functionality such as channel encoding, symbol detection, modu-
lation or channel estimation. This approach produces efficient, accomplished,



7

and well controllable processing chains, but it is known that individually tuned
processing blocks provide only sub-optimal end-to-end performance [16].

• It has been shown that neural networks are universal function approximators
[17] and have excellent algorithmic learning capabilities even in complex channel
conditions [7]. Neural networks are possible to execute the highly parallelized
on different architectures [18] and combined with limited-precision data types
[19]. Thus, there is evidence that DL-based solutions could save energy and
computational costs compared to their manual counterparts originating from
the information-theoretic approach. They might reduce the hardware design
costs by decreasing the need for specialized signal processing hardware.

• Effective handling of large data sets is essential for all DL. It requires powerful
hardware and software libraries. Massively parallel processing architectures
with distributed memory architectures, such as graphic processing units (GPUs),
are available for model development and increasingly specialized chips and
compilers for NN inferences [20, 21]. Only since very recently have these tools
been cheaply and widely available.

Recent studies on wireless physical layers have proposed alternative approaches
to augment or replace certain parts of the conventional processing chain. In [7]
neural network was applied in modulation recognition, and the obtained solution
outperformed the conventional methods based on expert knowledge. Deep learning
in channel encoding and decoding has been studied, for example, in [22] and [23].
DL-based end-to-end solutions, in which both the transmitter and receiver are
learned simultaneously from the data without any prespecified modulation schemes
or waveforms, are the utmost case and have also been studied in the literature, for
example, in [7] and [8].

2.2.1 Use cases in 5G physical layer
The fifth-generation New Radio (5G NR) is the latest mobile network data transferring
standard, first launched on a large scale in April 2019. Compared to the legacy
4G/LTE standards, the 5G standard offers advanced capabilities that enable higher
data rates, reduced latencies, better energy efficiency and large connection density.
This new capacity is implemented with a wide range of spectrum bands, Massive
Multiple Input Multiple Output (MIMO) antennas combined with beamforming and
flexible network configuration and slicing capabilities. Because 5G networks are
rolled out while LTE networks are still fully-operational, tight interwork of these two
networks using dual connectivity is one of the essential requirements for the new
standard [1].

The three primary 5G development scenarios have guided the definition of
network requirements: enhanced Mobile Broadband (eMBB), Ultra-Reliable and Low
Latency Communications (URLLC) and massive Machine Type Communications
(mMTC). eMMB is the most beneficial for a regular mobile network user. It does
not point to a specific use case but rather a seamless user experience and superior



8

data transfer rates. URLLC relates use cases where low latency service is essential or
life-critical such as autonomous vehicles or remote surgery. mMTC scenario targets
networks that connect many devices with low data rates and non-delay sensitive
transmissions. Typically these devices are low cost and have long battery life, such
as different IoT devices and sensors [1].

The physical layer of 5G NR is a tremendous topic, and covering its entirety
even in a superficial manner is out of the scope of this work. Due to this complexity,
only a high-level overview of two different functionalities in the 5G physical layer
are provided. Recent works [14] and [5] have introduced deep learning solutions
to use cases related to these functionalities. These convolutional neural network
(CNN) based models are used to evaluate the inference framework implementation’s
correctness and performance in this work.

Autoencoder in pilot-based channel estimation

Channel estimation is a method for measuring the properties of the medium between
the transmitter and the receiver. This knowledge can be obtained in wireless networks
by sounding the channel, i.e. transmitting known reference signals and measuring
the impulse response. In 5G NR mobile networks, the Demodulation reference signal
(DMRS) is one of the standard pilot signals applied in channel estimation.

In [14], a CNN-based Autoencoder was developed to estimate wireless channel
based on the DMRS pilot signal. The work aimed to optimize the channel estimation
block in the 5G NR Physical Uplink Shared Channel (PUSCH). The autoencoder
was trained under multiple channel conditions and a wide range of signal to noise
ratio (SNR) values. The high-quality data for the model training was generated in a
5G-compliant link-level simulator applying a specific 5G Data Generation Tool. The
training procedure trained the model to reach a level of abstraction where the model
estimates the channel accurately in various channel conditions with different SNR
values.

The solution was compared with the traditional Least Squares (LS) channel
estimation method. The developed autoencoder surpassed the conventional method,
proving to be a promising solution for channel estimation in the 5G physical layer. The
work stated that the autoencoder achieved an average of up to 90 % less estimation
error than the conventional method under certain conditions over all the channel
conditions and SNR values. The encoder part of the autoencoder in [14] is used as
one of the models to evaluate the inference framework developed in this work. The
model is discussed in Chapter 7.

Preamble Detection and time of arrival estimation with deep learning

Accurate Time of Arrival (TOA) estimation and reliable signal detection is crucial in
5G NR. In the initial access process, signal detection is used for physical random
access channel (PRACH) preamble detection, and TOA Estimation is used for signal
synchronization. Conventionally TOA estimation is done using correlation-based
methods, where the correlation between all possible preamble sequences and the
received signal is computed. Due to multipath propagation and noise, this method



9

for TOA estimation may not be accurate. The other is to use the so-called template
matching method based on convex programming. It provides better accuracy than the
correlation method, but the high computational complexity prohibits its application
in real-time.

In [5], a CNN-based framework was proposed for preamble detection and TOA
estimation without the need of knowing the exact transmitted waveform. The solution
was evaluated with extensive simulations on synthetic and actual measured data. The
results showed that the proposed method improves prediction accuracy roughly three
times higher while keeping the same computational complexity as the correlation
method. The method also provides 1000x computational reduction compared to the
template matching method without loss of accuracy. The CNN in [5] is used as one
of the models to evaluate the inference framework developed in this work. The model
is discussed more in Chapter 7.



Chapter 3

Neural networks

Artificial intelligence (AI) is a thriving field of research that is applied successfully in
many practical applications, such as automating routine tasks, speech recognition,
and classifying images. AI systems are characterized by their ability to collect
knowledge from data without being explicitly programmed. This capability is
commonly recognized as machine learning (ML). It enables computers to deal
with problems that require knowledge from the real world and make decisions.
However, conventional machine learning algorithms heavily depend on input data
representation. Recognizing features from representations requires specific techniques
that are typically time-consuming and need much manual work. An approach
called representation learning can overcome this manual feature engineering. In this
approach, machine learning is applied to extract the mapping from representation
to output and the representation itself. It allows the system to adapt to new tasks
with minimal human intervention and often output more valuable results than
hand-designed representations [2].

Deep learning (DL), part of the family of machine learning methods, covers
a selection of methods that utilize representation learning capabilities. The basic
idea is to combine simple machine learning models into more complex ones. Most
DL methods are based on neural networks (NNs), which have layered structures
that progressively extract higher-level features from the input. The idea is to store
long-term experimental knowledge and utilize it later. Mathematically, they can
be described as functions that map a set of input values to output values. The
first concepts were developed already in the 1940s, but it was relatively unpopular
for decades [24]. Recently, it has seen a massive increase in research activity and
application proposals due to two key reasons. Firstly, the increasing digitization of
society has genuinely increased the amount of accessible training data. Secondly,
distributed computing and new powerful hardware have expanded available compu-
tational resources significantly. It has enabled the training of more complex NNs,
which have been applied to a much broader set of applications with increasingly
accurate results [25, 26].

This Chapter covers the basics of neural networks. The following four sections
cover the relevant building blocks and design principles. Because the target network
architecture in this work is a convolutional neural network, they are covered in more

10



11

... ...

n∑︁
i=1

ωixi + b φ(·) ŷ

b

Bias

x1

x2

x3

xn

ω1

ω2

ω3

ωn

Inputs Weights Sum Activation Output

Figure 3.1: Logical view of a perceptron.

detail in Chapter 4.

3.1 Neuron
A neuron is the fundamental processing element of any NN. The first mathematical
model, McCulloch-Pitts neuron (MPN), was introduced back in 1943 [24]. It is
a highly simplified model of a real biological neuron, and with binary output and
fixed-parameter values, it involves no learning capabilities. In the 1950s, Rosenblatt
introduced a new, more flexible neuron model based on the idea of MPN. This
so-called Rosenblatt’s perceptron is the core building block of all modern NNs [27].
It acts essentially as a binary classifier operating in a supervised manner. A single
perceptron is the simplest possible neural network model.

The basic operating logic of a perceptron is visualized in Figure 3.1. Perceptron’s
input consists of a vector x ∈ Rn, and the local field y ∈ R is computed as a weighted
sum of the input

y = ω · x + b. (3.1)

Vector of synaptic weights ω ∈ Rn and scalar bias term b ∈ R are the internal
parameter of perceptron. Bias enables perceptron to model functions that do not
pass through the origin, increasing the flexibility of the perceptron model. To obtain
the final output ŷ, an activation function φ : R→ R is applied to the local field of
the neuron.

ŷ = φ(y) (3.2)

Activation functions add non-linearity to the network and, in some cases, limit the
magnitude of the neuron output. The activation function can be any non-linear
and differentiable function. Multilayer NNs applying only linear activation functions
can be reduced to a single layer of perceptrons. Therefore non-linear activation



12

is required to be able to learn non-linear behaviour. The most commonly applied
activation functions that are also used in this work are:

1. Rectified Linear Unit (ReLU) is very simple and nowdays the most fre-
quently applied activation function. It is continuous, piecewise linear function
defined as

φReLU(y) = max(y, 0). (3.3)
It is linear with positive input values, and with negative input values, it outputs
zero. ReLU is differentiable everywhere except origin. The constant derivative
of 1 on the positive side results in relatively large gradients during training,
which enables a good training speed compared to other non-linear activation
functions [26, 2].
Leaky ReLU is a special version of standard ReLU, where a small positive
slope is applied to the negative values instead of constant zero output:

φLeaky(y) =

⎧⎨⎩y if y > 0
αy otherwise.

(3.4)

Typically, the slope coefficient α is a minimal and not learnable parameter
determined before the network training phase. Leaky ReLU can be applied in
cases where the network suffers from a sparse activation problem, i.e. standard
ReLU would output only a few non-zero activations.

2. Sigmoid function produces output activations compressed to the interval
]0, 1[ and is defined as

φsigmoid(y) = 1
1 + e−y

(3.5)

It is mainly applied to the output layer neurons as the output can be interpreted
as a probability distribution. Sigmoid can also be applied to the hidden layers’
neurons, limiting the magnitude of output values. Sigmoid is continuously
differentiable and has a non-zero derivative at each point, ensuring that gradient-
based learning algorithms never get completely stuck. The gradient is close to
zero for most of the domain, and the function is sensitive only when the input
value is close to zero. Thus, Sigmoid can suffer from gradient saturation when
layer input is very large or small, making network training slow.

3. Softmax function φsoftmax : Rn → Rn is generalization of a standard sigmoid
function defined as

φsoftmax(y)i = eyi

n∑︁
j=1

eyj

, (3.6)

where the denominator performs normalization such that the function output
elements sums to one. The output can be interpreted as a probability distribu-
tion of a discrete variable. Thus, softmax is typically applied on the output
layer neurons of a classifier representing the probability distribution over n
different classes.



13

3.2 Connection architecture
A NN consisting of a single perceptron can perform only simple tasks such as binary
classification, but more versatile NNs are required for more complex applications.
For example, when the output of a network is a vector, multiple neurons are required.
Multiple neurons are organized to form larger computation units called layers. Mul-
tilayer perceptron (MLP) is a basic neural network model with multiple layers. It
contains one input layer, one output layer, and at least one hidden layer. The basic
principle of MLP is illustrated in Figure 3.2.

In MLP, a layer of neurons performs a mapping f : Rn → Rm to obtain a vector
containing local fields of the neurons

a = f(x; W , b) = W x + b. (3.7)

Rows of weight matrix W ∈ Rm×n contain weight vectors of individual neurons, and
bias vector b ∈ Rm contains bias terms of individual neurons. All neurons except the
ones in the input layer apply non-linear activation functions as described in Section
3.1. The activation function φ : Rm → Rm is applied element-wise to the vector
containing local fields of the neurons on the layer

h = φ(a) = φ(f(x; W , b)), (3.8)

where h ∈ Rm is the layer output also called as activation. NN can consist of multiple
sequential layers of neurons that apply different activation functions.

x1

x2

x3

x4

x5

h1,1

h1,2

h1,3

h1,4

h1,5

h1,6

h2,1

h2,2

h2,3

h2,4

h2,5

ŷ1

ŷ2

ŷ3

ŷ4

Input layer Hidden layers Output layer

Figure 3.2: An example of multilayer perceptron (MLP) network. The network
receives x ∈ R5 as an input, and maps it to an output ˆ︁y ∈ R4. The network has a
total of 11 hidden neurons divided into two layers.



14

MLP containing at least one hidden layer of sufficiently many neurons can
operate as a universal function approximator as proved by Hornik et al. [17]. It
means that such NN can approximate any functions up to arbitrary accuracy when
certain mathematical assumptions are met. For example, any continuous function
on a closed and bounded subset of Rn is a general enough assumption for most
practical applications [2]. The universal approximation theorem does not offer
information about how many neurons are required that NN can provide adequate
function approximations. In addition, the theorem states that a large enough MLP
can represent a function but does not guarantee that the training algorithm can
learn that function. The learning algorithm may not be able to find the correct set
of parameters, or it can choose the wrong model as a result of overfitting [2].

Connection architecture defines the connections between neurons in different
layers. MLP is an example of a fully connected network, i.e. each neuron in one layer
is connected to every neuron in the next layer with a specific weight that describes
the strength of the connection. In partially connected layers, neurons are connected
to only a limited number of neurons in the subsequent layer. A neural network can
contain simultaneously layers with both types of neurons, partially connected and
fully connected. A convolutional neural network (CNN) is a typical example of a
network that contains partially connected layers. It is the target network architecture
in this work, and it is discussed in detail in Chapter 4.

The direction of information flow between the layers can also distinguish the
network type. If there are no feedback connections from the neuron output back to
the input, the network is called a feedforward network (FNN). MLP and CNN are
examples of FNN that do not involve any feedback connections. If some layers are
connected backwards to earlier layers, the network can hold its previous states in
memory. Networks including these feedback connections are called recurrent neural
networks (RNNs) and are out of the scope of this work.

3.3 Training
The popularity and usefulness of NNs rely strongly on their ability to learn from the
data and store the information in the internal parameters of the network, i.e. weights
and biases. The procedure of adjusting these parameters to improve the network
performance is called training. Several different learning algorithms can be applied in
training. These algorithms are traditionally divided into three broad categories [28]:

1. Supervised learning

2. Unsupervised learning

3. Reinforcement learning

In supervised learning, the algorithm applies labelled training data. It contains
input-output pairs {x(i), y(i)}, where y(i) is the desired output with the given input
x(i), and index i ∈ Z denotes the sample index. The learning algorithm tries to
adjust the network parameter such that the predicted output by the network is as



15

close as possible to the desired output y(i). In this Section, it is assumed that x(i),
y(i) and any intermediate input and output of the network can be tensors of arbitrary
shape. To simplify the notation, each tensor can be imagined as flattened into a
vector with an equal number of elements as the original tensor.

With unsupervised learning, only input samples x(i) are provided to the learning
algorithm. There is no desired output, and the network is trained to recognize
patterns and structures from the data. Unsupervised learning is typically utilized
for three main applications; clustering, association, and dimensionality reduction.
Reinforcement learning is a learning procedure where the input samples x(i) are
fed to the network, and the network interacts with the environment and learns to
maximize the reward function or other user-provided reinforcement signal. It can be
treated as a game-like situation, where the network gets either rewards or penalties
for the actions it performs.

Most neural network training algorithms are based on different variants of
gradient descend optimization algorithms. The optimization is executed using model-
specific loss functions, which are minimized by adjusting the network parameters.
The computing of the gradients in multilayer networks is done using backpropagation
[2]. The basic ideas behind these methods are introduced in this Section.

3.3.1 Forward propagation
Forward propagation is the procedure where an input is mapped to a an output using
individual weight and bias parameters for each neuron in a neural network. When
forward propagation is conserned, the entire NN of k layers can be viewed as an
function f that consist simpler function describing individual layers (f1, f2, . . . , fk)
and activations (φ1, φ2, . . . , φk). Each layer has internal set of weights Wi and bias
parameters bi that are usually denoted with θi = {Wi, bi} that includes all free
parameters of the ith layer. Forward propagation of a network with k layers mapping
input x to an output can be written

a1 = f1(x; θ1)
h1 = φ1(a1)
a2 = f2(h1; θ2)
h2 = φ2(a2)

...
ak = fk(hk−1; θk)ˆ︁y = φk(ak),

(3.9)

where ˆ︁y is the final output, and ai and hi are outputs of the ith layer before and
after applying the elementwise activation function φi, respectively. As mensioned,
the dimensions of ai, hi and ˆ︁y can vary from single scalar value to any arbitrary
shaped tensor depending on the NN and the task it is designed to perform. When
forward propagation is performed using model with trained parameters, it is called
inference. Inferences are discussed more detailed in Section 3.4.



16

3.3.2 Loss function
The loss function is a function that measures how an ML model is performing and
gives the distance between the predicted output and the model’s expected output.
The loss function’s return value is typically a single scalar value called loss or error.
The model’s internal parameters are adjusted to minimize the loss function in NN
training. Most training algorithms operate using batches consisting of multiple data
samples, and the loss function computes an average loss over the entire batch. A loss
function must fulfil two assumptions for it to be used in backpropagation, an essential
part of any NN training procedure. Firstly, a loss function must be an average
over individual loss functions for n individual data samples x(i), i.e. L = 1

n

n∑︁
i=1
L(i).

Secondly, it must be written as a function of the network’s output.
There are multiple feasible alternatives for the loss function. Choosing the best

loss function depends on the NN architecture and type of the problem [2]. Two
commonly applied loss functions are mean squared error (MSE) and mean absolute
error (MAE). Mean squared error (MSE) for n input samples is given by

LMSE(ˆ︂Y , Y ) = 1
n

n∑︂
i=1

1
m

m∑︂
j=1

(︂ ˆ︁y(i)
j − y

(i)
j

)︂2
, (3.10)

where ˆ︂Y = ( ˆ︁y(1), . . . , ˆ︁y(n)) are predicted outputs of the network and Y = (y(1), . . . , y(n))
are expected outputs of the network corresponding to the input samples X =
(x(1), . . . , x(n)). Arguments ˆ︁y(i) and y(i) can be any arbitrary shaped tensors of
m elements in total, and are treated as a vectors. Normalized mean squared error
(NMSE) is essentially a standard MSE function normalized with the average of
squared expected outputs

LNMSE(ˆ︂Y , Y ) =
1
n

n∑︁
i=1

1
m

m∑︁
j=1

(︂ ˆ︁y(i)
j − y

(i)
j

)︂2

1
n

n∑︁
i=1

1
m

m∑︁
j=1

(︂
y

(i)
j

)︂2 , (3.11)

Mean absolute error (MAE) [2] is common linear loss function option given as

LMAE(ˆ︂Y , Y ) = 1
m

m∑︂
i=1

1
n

n∑︂
j=1

⃓⃓⃓ ˆ︁y(i)
j − y

(i)
j

⃓⃓⃓
. (3.12)

3.3.3 Backpropagation and optimization
Backward propagation of errors is an algorithm extensively applied for computing
the gradient of a loss function with respect to the network parameters. It was first
introduced as a general method for automatic differentiation by S. Linnainmaa in
1970 without NN context [29]. In NN training context, the algorithm was introduced
in the 1980s using the term backpropagation (BP) [30, 31].

Function gradient is typically straightforward to derive analytically, but numeri-
cal evaluation can be computationally expensive in many cases. Backpropagation



17

provides a simple and inexpensive procedure to compute gradients for NN learn-
ing purposes. The algorithm is based on the chain rule of calculus. The gradient
with respect to each parameter is computed layer by layer, iterating the network
backwards starting from the last layer to avoid duplicate calculations of unnecessary
intermediate values. Using the chain rule gives the gradient of a loss function w.r.t.
to the parameters of the ith layer θi

∇θi
L(θ) =

(︄
∂ai

∂θi

)︄⊤

∇ai
L(θ). (3.13)

The first factor on the right hand of (3.13) can be given
∂ai

∂θi

= ∂

∂θi

f(hi−1, θi) = hi−1, (3.14)

if it is assumed that every layer fi(hi−1; θi) is a linear function. The second factor is
usually called error and denoted

∇ai
L(θ) = δi. (3.15)

For the final kth layer can be written using chain rule

δk = ∇ak
L(θ) =

(︄
∂hk

∂ak

)︄⊤

∇hk
L(θ) =

(︄
∂φk(ak)

∂ak

)︄⊤

∇ˆ︁Y L(θ) (3.16)

With the hidden layers, i.e. 1 < i < k, the recursive definition can be obtained using
again the chain rule

δi = ∇ai
L(θ) =

(︄
∂ai+1

∂ai

)︄⊤

∇ai+1L(θ)⏞ ⏟⏟ ⏞
δi+1

=
(︄

∂ai+1

∂hi

∂hi

∂ai

)︄⊤

δi+1

=
(︄

∂ai+1

∂hi

∂φi(ai)
∂ai

)︄⊤

δi+1 =
(︄

∂fi+1(hi; θi+1)
∂hi

∂φi(ai)
∂ai

)︄⊤

δi+1

(3.17)

Using Equations (3.14), (3.16) and (3.17) the gradient for each layer w.r.t. to the
layer parameters θi in Equation (3.13) can be given as

∇θi
L(θ) = hi−1δi, where (3.18)

δi =

⎧⎪⎨⎪⎩
(︂

∂φi(ai)
∂ai

)︂⊤
∇ˆ︁Y L(θ), if i = k(︂

∂fi+1(hi;θi+1)
∂hi

∂φi(ai)
∂ai

)︂⊤
δi+1, if 1 ≤ i < k.

(3.19)

The computed gradients obtained with backpropagation can be applied in training
the network parameters with any gradient-based optimization method.

With a properly determined loss function, the training procedure can be inter-
preted as a generic optimization problem, where the objective function is

J(θ) = L(ˆ︂Y , Y ) = L(f(X; θ), Y ). (3.20)

Training inputs are used to adjust network parameters θ by minimizing the objective
function J(θ). In general, most training algorithms proceed in the following steps



18

1. Initializing phase. Initialize network parameters using some random initial-
izing strategy.

2. Forward propagation phase. Perform forward propagation for each input-
output pair (x(n), y(n)) in training batch (X, Y ) proceeding from the input
layer to layer k, output layer. Store the predicted outputs ˆ︁y(n) of the network,
activations of each layer ai and output od each layer ai.

3. Backpropagation phase. Calculate the gradient of the objective function
∇θJ(θ) layer by layer using Equation (3.18). Proceed backwards from the
output layer kth to the input layer.

4. Weight update phase. Update the network weights using the gradient such
that the objective function value decreases, i.e.

θ ← θ − η∇θJ(θ) (3.21)

5. Repeat. Repeat phases 2-4 until desired threshold is reached or the objective
function value does not decrease with further iterations.

The parameter η in Equation (3.21) is some positive number called learning rate. The
value of learning rate can vary during the training procedure depending on the applied
optimization algorithm. Most popular algorithms are stochastic gradient descend
(SGD) and its variants such as Adam optimizer [32]. More detailed description of
different optimization methods can be found for example in [2].

3.3.4 Regularization
Regularization is a technique that is commonly applied to prevent model overfitting.
Typically it is performed by adding the objective function an additional regularization
term λR(θ) resulting an objective function

˜︁J(θ) = L(f(X; θ), Y ) + λR(ω). (3.22)

The regularizer R is a function of the network parameters θ, that penalizes specific
weight values more than others. Bias parameters rarely cause overfitting, and
thus regularization is typically limited to weight parameters ω. Multiplier λ is a
hyperparameter determined separately from the training.

Regularizer, R, is typically chosen to prefer small weight values. L1-regularization
applies the absolute values of weights

RL1(ω) =
∑︂

i

|ωi|. (3.23)

It forces most weight values to be zero, increasing the network’s sparsity. Thus, it
is an effective method to decrease the network complexity and the possibility of
overfitting.



19

L2-regularisation uses the squared L2-norm of the weights as a regularization
element

RL2(ω) =
∑︂

i

ω2
i . (3.24)

With L2-regularization, weights tend to have minimal but still non-zero values. It
does not encourage zero weights, and it is not a robust regularization method if the
data includes outlier samples.

In addition to L1- and L2-regularisation, the dropout regularization has become
very popular recently [33]. Dropout is a regularization method that approximates
training a large number of NNs with different architectures in parallel. The method
prevents effectively overfitting by increasing the randomness of the network. It is
a computationally inexpensive but robust procedure for regularizing different NNs.
The idea behind dropout is rather simple: during training, a neuron is turned off
with some random probability of P = [0, 1[.

3.4 Inference
The inference is a process to deploy and use the neural network model with the trained
parameters. Mathematically it is identical to the forward propagation in Equation
(3.9). Modern NN architectures are designed to achieve the best possible accuracy in
the given task. This principle has led to a situation where many current state-of-
the-art NNs, especially CNNs, are very complex and computationally demanding
[34]. Complexity is not a problem during training, although it requires a significant
computation time. Dedicated hardware such as GPUs that process tensors in parallel
are widely used in NNs during both training and inference [2]. In practice, NN model
development and training are usually done using existing deep learning frameworks,
which are shortly introduced later in this Section.

Performing inference typically unveils some restrictions and requirements for the
model itself. When practical applications are considered, they can be deployed to
limited computational capacity and memory devices, such as mobile devices, drones
and many embedded devices. Moreover, in real-time software applications, the
inference latency has a crucial role in the feasibility of the NN model. Therefore,
active research has been conducted to optimize model sizes and inference times with
minimal accuracy losses.

In general, there are roughly two different approaches for optimizing NN in-
ferences. The first approach develops novel NN architectures to exploit inefficient
computations and reduce memory requirements without a notable decrease in model
accuracy. For example, MobileNet [35], and SqueezeNet [36] are compact CNNs
developed for computer vision applications in portable devices with limited computa-
tional resources. The second approach tries to optimize existing models. Inferences
can be converted to a more optimized format for the target device using, for example,
specific deep learning compilers. In this Section, details of the most common deep
learning compilers are discussed. Networks can also be optimized by converting data
into formats that require less memory and are more efficient to process. Usually,



20

this is done using quantization, supported by many deep learning frameworks and
compilers. Because this method is also extensively used in this work, it is discussed
in Section 3.4.3.

3.4.1 Deep learning frameworks
Standard workflow when developing NN models relies heavily on using some existing
DL framework. They are platforms that provide support and tools for all steps
needed to create a trained NN inference solution to be performed on a target device.
Most popular DL frameworks are free, open-source software libraries offering a simple
high-level approach to DL models construction. They support broadly different types
of NNs and provide tools for practical model training and performing inferences.
Typically, frameworks can utilize different hardware accelerators, such as GPUs, to
optimize the training and inferences of large models. The two most popular DL
frameworks include:

TensorFlow is DL framework developed by Google Brain released in 2015 [37].
TensorFlow has the most extensive support for different language interfaces, including
Python, C++ and many others. TensorFlow can represent differentiable programs
employing a dataflow graph of primitive operators extended with restricted control
edges. TensorFlow Lite is an expansion toolset designed for mobile and embedded
DL solutions [37], that offers tools for optimizing NNs into a more memory-efficient
and mobile-optimized format. Keras is a popular, simplified frontend to ease the
usage of the TensorFlow core [38].

PyTorch is a highly customizable DL framework based on the former Torch
framework primarily developed by Facebook [39]. PyTorch defines a Tensor class
to store and operate on multidimensional rectangular arrays. It uses primitive
embedding to construct dynamic dataflow graphs in Python. Pytorch Mobile is a set
of tools for deploying models to mobile and embedded devices. It provides tools for
quantizing and optimizing models created in PyTorch that can then be saved into a
serialized format for mobile deployment. Pytorch Mobile offers APIs for Android,
iOS and Linux devices. Similar to Keras, FastAI is an advanced high-level frontend
to simplify the usage of PyTorch [40].

ONNX, Open neural network exchange was introduced in 2017 to increase
interoperability between different DL frameworks [41]. It provides an open standard
for sharing DL models between different DL frameworks based on definitions for
extendable computation graph models, built-in operators and standard data types.
Each computation dataflow graph forms an acyclic graph consisting of a list of nodes.
Each node is a call to an operator, including input and output values. ONNX is also
utilized in this work.

In this work, PyTorch and ONNX are applied as a part of the developed inference
framework, which is discussed in Chapter 6.



21

3.4.2 Deep learning compilers
DL frameworks enable reasonable network inferences in mobile devices and other
consumer electronics. However, the scope of possible inference hardware is not
limited to only them. Target hardware can include for example, field-programmable
gate arrays (FPGA), specialized processors such as DSPs [42, 43] and application-
specific integrated circuits (ASIC) [21, 18]. Recently internet giants have pointed
increasing interest toward ASICs that are specifically designed to process network
inferences, such as TPU developed by Google [44]. Different hardware is designed
for certain computations, and hardware-specific optimization is required for efficient
inferences. It is known that manual implementation for various hardware platforms
is time-consuming.

As a solution, DL compilers, such as TVM [45] and Glow [46], are proposed.
These compilers directly transform computational graphs from DL frameworks into
an optimized machine code suitable for the target hardware. They use layered design,
where the high-level graph is transformed into final machine code via one or more
intermediate representations (IR), optimized separately at each step. When this
approach is used, the target devices have to support only a limited number of generic
operations. A limited number of needed operations enables inferences to be easily
scaled for different types of hardware.

A typical starting point for DL compilers is a computational graph of a NN
model offered by a DL framework such as TensorFlow or PyTorch or an exchange
format such as ONNX [41, 45]. In the first stage, hardware-independent high-level
dataflow rewriting is performed to form an optimized graph. In the second stage,
the resulting high-level IR is further optimized at the operator level, e.g., removing
unnecessary nodes and replacing operations with cheaper equivalents. This stage
operates at a higher, deep learning specific abstraction level, which cannot be done
efficiently with general-purpose compilers [45]. An optimization of this stage is
operator fusion, which combines multiple operations into a single processing step,
avoiding redundant memory accesses. After this, the high-level IR is transformed
into a lower-level IR. The low-level IR is designed for hardware-specific optimization
and code generation on multiple hardware targets [21]. As a result of this compiler
chain, generated inference code optimized for the target hardware is produced.

DL compilers have been proved to provide powerful tools for accelerating NN
inference on different hardware. However, their focus is on supporting general-
purpose hardware (e.g. CPU, GPU) and designed explicitly for DL purposes, i.e. DL
accelerators. This work focuses on implementing inference for DSP mainly designed
for wireless communication, which is not supported by any available DL compiler.
Thus, the required inference operations are implemented manually using the available
general-purpose compiler. Because only a tiny subset of DL models are considered,
and a similar approach has been successfully applied earlier [9, 10], this approach is
justified.



22

3.4.3 Quantization
Quantization is a specific issue addressed by DL frameworks and compilers, related
especially to memory usage but also computational efficiency [47]. In this context,
quantization refers to converting the network parameters into a format requiring
a smaller number of bits. Reduced bit-widths can be obtained e.g. by converting
common 32-bit floating-point parameters into fewer bit floating-point representations
[37], or integers [19, 34]. Integer quantization is particularly useful with embedded
systems because network inferences can be performed using integer-only operations.
In many embedded systems, there is no hardware support for floating-point oper-
ations, and integer quantization is necessary to perform any inferences in the first
place. Though the system has floating-point support, integer operations are usually
significantly faster than floating-point operations and require cheaper, less complex
hardware [34]. Integer quantization can also be favoured in some cases due to
memory-related reasons. Typical modern processors are much faster than the fastest
memory available. With small bit-width integers, the limited memory bandwidth can
be utilized more efficiently, providing significantly improved data-level parallelism
[19].

There are several different approaches for performing integer quantization of
NNs. The most common approach is to quantize parameters to 8-bit signed or
unsigned integers, supported by all popular DL frameworks and compilers. 8-bit
linear quantization can be done symmetrically such that the real-valued range
endpoints map to the smallest and largest integers. The second option is to do it
symmetrically so that the real-valued zero maps to the quantized integer zero [34].
Separate scale parameters are used to track the range of real values represented by the
quantized values. The parameters must be chosen carefully to avoid losing accuracy
when reducing the number of bits. In general, there are two approaches in which
part of the development quantization is performed. In post-training quantization,
network parameters are quantized after the model has been trained [47, 20]. In
quantization aware training, the quantized inference is taken into account already
during the training process [34, 19].

8-bit linear integer quantization is probably the most popular integer quantization
scheme, but other useful schemes have been reported. Floating-point numbers can
be converted to fixed-point numbers by applying appropriate bit-widths [47]. This
approach is prevalent in many signal processing applications; thus, most signal
processing hardware is usually designed for fixed-point computation [48]. The
implementation of this work is designed for wireless physical layer purposes, and
the target hardware is optimized for operating 16-bit fixed-point numbers. Related
theory about fixed-point numbers and arithmetic will be discussed more detailed in
Section 5.1.3, and the implemented quantization approach in Section 6.2.



Chapter 4

Convolutional neural networks

A convolutional neural network (CNN) is an essential subtype of feedforward neural
networks. They employ a mathematical operation called convolution in at least one
of their layers. In most applications, CNNs are designed to process multidimensional
input data with known grid-like topology. They are instrumental in extracting
information from input data where the relative position of elements is more important
than the absolute position. Examples of such data include 1-D time series with
regular intervals or 2-D images consisting of a grid of pixels.

CNNs have been studied extensively during the last decades and have shown
excellent performance in many applications. LeNet-5, one of the earliest modern
CNNs, was introduced in the 1990s by LeCun et al. [49]. It was initially developed
to recognize handwritten digits and was later considered the basis of all modern
CNNs. LeNet-5 introduced all the basic building blocks of CNNs, and during that
time, it outperformed all other recognition methods. After that, different variations
of LeNet-5 architecture have been widely used for many applications also in other
fields outside object recognition.

The second breakthrough of CNNs came in the 2000s due to the development
of fast NN implementations utilizing graphics processing units (GPUs). Krizhevsky
et al. won the ImageNet ILSVRC challenge in 2012 with their GPU-based AlexNet
architecture [26]. The network had a very similar architecture to LeNet-5, but it
consisted of more layers with more learnable parameters. Since then, CNNs have
won several machine learning and computer vision contests and raised emerging
commercial interest [50]. So far, most CNN solutions are applied to 2-D data such
as images using a 2-D convolution operation. However, 2-D convolution is not
suitable for all applications, where the data cannot be converted to 2-D conveniently
[51]. Thus, CNNs applying 1-D convolution have raised emerging interest during
recent years, especially in applications where the data can be expressed easily in
1-D. Recently 1-D CNNs have been proposed and already achieved state-of-the-art
performance levels in several applications such as electroencephalography (EEG)
based early diagnosis [52], structural health monitoring [53], and damage detection
in bearings [54, 55]. Because 1-D convolution is also computationally much less
expensive, 1-D CNNs are particularly interesting when considering the real-time
inference applications in embedded systems with limited computation capacity [51].

23



24

This chapter provides a brief theoretical background on CNNs. Because hardware
implementations in this work cover only 1-D CNNs, the focus is mainly on 1-D
convolution. The fundamental mathematical operations related to CNNs, convolution
and cross-correlation are introduced in the first Section. It is followed by introducing
some key advantages of CNNs, the general architectural principles in designing CNNs,
and some of their basic building blocks.

4.1 Convolution
The convolution (f ∗ g) : R→ R of two functions f : R→ R and g : R→ R produces
a third function by

(f ∗ g)(t) =
∫︂
R

f(τ)g(t− τ)dτ. (4.1)

It is well-defined if f(t) and g(t) decay sufficiently rapidly at infinity such that the
integral in equation (4.1) exists [2]. In the field of machine learning, as in this work,
the data is not continuous and the domain of definition is always somehow discretized.
If it is assumed that function arguments can take only integer values i.e. f : Z→ R
and g : Z→ R, the discrete convolution is defined as

(f ∗ g)[i] =
∞∑︂

n=−∞
f [n]g[i− n]. (4.2)

Especially in the field of machine learning, the first argument of the operation, in this
case, f [i], is referred to often as input [2]. The second argument, in this case, g[i],
is often referred to as kernel and the output (f ∗ g)[i] is called usually as a feature
map. These three terms are used in this work when details related to convolution
are discussed. An example of one-dimensional discrete convolution is visualized in
Figure 4.1. The elements of f that do not contain actual values of f are visualized
with zeros.

Commutativity is an important property of convolution that is convenient in
many applications. It means that there holds

(f ∗ g)[i] = (g ∗ f)[i] =
∞∑︂

n=−∞
f [i− n]g[n]. (4.3)

The related discrete operation without the kernel reversion is called cross-correlation
and defined by

(f ⋆ g)[i] =
∑︂

n

f [n]g[n + i]. (4.4)

Cross-correlation is not commutative. In the NN context, commutativity property
is rarely necessary [2]. The learning algorithm will learn the correct values of the
kernel in the appropriate location. An algorithm based on convolution applying
kernel reversing will learn a reversed kernel, and an algorithm without the reversion
will learn identical values, but just in different locations. Therefore, many widely
used deep learning frameworks implement, in fact, cross-correlation but call it
convolution [2]. In this work, this convention is followed, and both operations are



25

f1 f2 f3 f4 f5 f60 0 0 0
g3

g3

g3

g3

g3

g3

g3

g3

g2

g2

g2

g2

g2

g2

g2

g2

g1

g1

g1

g1

g1

g1

g1

g1

y1 y2 y3 y4 y5 y6 y7 y8

Figure 4.1: Discrete convolution with one dimensional input f and kernel g of width
3. The convolution f ∗ g is given by y.

called convolution. When discussing convolution in the context of deep learning and
neural networks, it is not referred precisely to as the standard discrete convolution
as it is usually understood in the mathematical literature and described in this
Section. The differences and the unique properties of convolution in practical CNN
applications are discussed in Section 4.3.1.

The convolution theorem is one of the most important properties applied in
signal processing that connects the Fourier transform and convolution. For two
discrete functions f and g, the theorem is written

(f ∗ g)[i] = F−1(F(f) · F(g)), (4.5)

where F and F−1 denote discrete Fourier transform (DFT) and inverse discrete
Fourier transform (IDFT) respectively, and (·) denotes the pointwise product between
two functions [56]. Thus, discrete convolution can be replaced with DFT and
pointwise product of the transformed sequences under suitable conditions. Many fast
convolution algorithms apply this property to obtain more efficient computations
than direct convolution. These approaches apply fast Fourier transform algorithms
(FFT) to evaluate the DFT of the sequences, which can reduce the required amount
of arithmetic operations significantly and speed up the computation [56].

4.2 Key concepts
Local connectivity, parameter sharing and equivariance are important con-
cepts CNNs exploit to improve overall performance, compared to the traditional
multilayer perceptrons (MLPs).

Local connectivity means that each neuron of a single layer is connected only
to a small region of the input volume. In convolution layers, these sparse connections
between local regions are achieved using smaller kernels than the input reducing the



26

y1 y2 y3 y4 y5y3

x1 x2 x3 x4 x5x2 x3 x4

y1 y2 y3 y4 y5y3

x1 x2 x3 x4 x5

Figure 4.2: Local connectivity. The highlighted input elements in x are the receptive
field of highlighted output element y3. Top: When convolution with kernel of width
3 is applied, only three elements of x affect y3. Bottom: With fully connected
neurons, all inputs elements affect to y3.

number of parameters. On the contrary, the number of parameters in fully connected
layers might be vast, especially when multidimensional data is considered. Local
connectivity is visualized in Figure 4.2. A receptive field hyperparameter describes
how large input volume is connected to each output neuron.

Parameter sharing means applying the same parameter value in multiple
locations inside a single model. On the contrary, in NNs with fully connected layers,
every edge between neurons has a unique weight. Parameter sharing is visualized in

y1 y2 y3 y4 y5

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

x1 x2 x3 x4 x5

Figure 4.3: Parameter sharing. The connections applying a distinct parameter are
indicated with red arrows. Top: The central element of a kernel is indicated with
a red arrow in a simple convolution model. Since parameter sharing, the same
parameter is used at all input locations. Bottom: Single red arrow shows the central
element of a weight matrix in a fully-connected model. The model does not apply
parameter sharing, and the parameter is used only once.



27

Figure 4.3. One essential advantage of applying convolution layers and parameter
sharing is to reduce the memory requirements. Convolution can be dramatically
more efficient in memory consumption and statistical efficiency.

Equivariance with respect to translation is a property of a convolution layer,
that can be achieved by choosing the parameter sharing with a particular form. A
function f(x) is equivariant to a function g(x) if

f(g(x)) = g(f(x)) (4.6)

In practice, it means that if the layer’s input is translated, its output translates in the
same way. The resulting output is equivariant under translations of input features’
because the same parameters are shared across the whole input volume.

4.3 Architecture
Most common layers in CNNs are Convolution layer, Pooling layer and Fully-
Connected layer. An example of a classifying CNN architecture is illustrated in
Figure 4.4. The example network and the network architectures applied in this work
take multiple 1-D arrays as input. One array is called a channel, and input can consist
of several channels. CNNs process input data through one or more convolution layers,
the basic building block of all CNNs. A convolution layer produces a multichannel
feature map as an output. The properties of feature maps can be adjusted with
different hyperparameters, which are covered in more detail in Section 4.3.1. Linear

...
...

ŷ1

ŷ2

ŷm

Input
layer

1-D Conv
layer

Pooling
layer

1-D Conv
layer

Pooling
layer

Fully
connected

layer

Output
layer

Feature extraction Classification

Figure 4.4: The high-level structure of an example convolutional neural network with
two 1-D convolution layers, each followed by a pooling layer. The last layer of the
network is a classifying fully-connected layer.



28

feature maps are then combined with non-linear activation functions to produce
non-linear feature maps as an output of a layer. Different activation function choices
are covered in Section 3.

Another important concept related to CNNs is pooling. Pooling layers are
placed after convolution layers and perform non-linear down-sampling of the feature
map. Most common pooling layer implementations are discussed in Section 4.3.2.
When the CNN is used for classification, convolution and pooling layers can be
followed by one or more fully-connected layers, as in the example in Figure 4.4. The
multidimensional output of a convolution layer must be flattened into a single vector
before applying fully-connected layers.

4.3.1 Convolution layer
CNN has at least one or more convolution layers that perform an operation consisting
of multiple parallel applications of convolution or cross-correlation. The layer’s
purpose is to extract features from the input located in different locations across the
volume. Because convolution operation with a single kernel can extract only one
kind of feature albeit, in multiple locations, several parallel convolution operations
are needed.

When working with one-dimensional data, such as time series, the actual software
implementations of convolution layers in fact have 3-D tensors as an input. Let the
layer input consist of observations x ∈ RN×C(in)×L(in) , where N is the number of data
samples, C(in) is the number of input channels, and L(in) is the spatial extend of each
channel. The learnable parameters of the convolution layer consist of a set of kernels
and a set of bias terms. Let ω ∈ RC(out)×C(in)×F be the tensor of kernels, where C(out)

is the number of output channels, C(in) is the number of input channels, and F is
the receptive field of single kernel. The layer activation a ∈ RN×C(out)×L(out) is given

ai,j,k =
C(in)∑︂
l=1

F∑︂
m=1

xi,l,k+m−1ωj,l,m (4.7)

, where the indexes correspond as follows: i is the data sample index, j is the output
channel index, k is the output element index, l is the input channel index, and m is
the offset between output and input elements.

The summation is illustrated in Figure 4.5. As can be seen, kernels have a small
receptive field but they extend along all input channels enabling strong connections
between spatially local input patterns. In the Figure, different colours illustrate
different kernels that are applied to the input feature maps. Finally, bias term
b ∈ RC(out) is added to each output before applying non-linear activation function
ϕ(·) to obtain final output of the layer h ∈ RN×C(out)×L(out) , where

hi,j,k = ϕ(ai,j,k + bj) (4.8)

A typical choice is to have one bias term per one output channel and share the
parameter over all locations within this channel.

In convolution layers, there are a few fundamental hyperparameters that are
used to control the spatial arrangement and dimensions of the output feature maps:



29

l

m

a

Figure 4.5: An illustration of 1-D convolution layer.

• Depth, C(out): Number of output channels, i.e. the number of kernels applied
to the layer input. Adjusts the number of neurons connected to the same
region in the input volume. Neurons learn to activate certain features from the
input data, so this hyperparameter controls how many different features one
convolution layer can activate.

• Receptive field, F : Neurons are connected only to a local region of the input
volume as illustrated in Figure 4.5. The receptive field gives the spatial extent
of this connectivity, i.e. the size of a kernel.

• Stride, S: Specifies the stride the kernel is slid along the input feature map.
When stride is 1, the kernel is moved one element by one, leading to overlapping
receptive fields and larger output feature maps. When stride is more than 1,
there is less overlap between receptive fields, and output feature maps shrink.

• Zero-padding, P : The input can be zero-padded to control the size of the
output feature map. Without padding, the width of the output shrinks by one
element less than the receptive field size at each convolution layer. Zero-padding
allows controlling the receptive field and the size of the output independently.

The effects of different hyperparameter on the spatial arrangement of the output
are illustrated in Figure 4.6. The Figure illustrates the behavior of one neuron
with different hyperparameter values. The kernel and bias values are omitted for
simplicity reasons. Assuming a convolution layer accepting input with dimension
x ∈ RN×C(in)×L(in) . The shape of corresponding output h ∈ RN×C(out)×L(out) can be
determined using the following rule

L(out) = L(in) − F + 2P

S
+ 1 (4.9)

, where L(out) is the spatial extend of the input, that depends on receptive field F ,
zero-padding P and stride S.

The convolution layer has the most considerable computational load within
a CNN, and it has been studied how efficiency can be improved. Most studies
consider 2D CNNs, but the same principles can be applied to 1D CNNs when some



30

y1 y2 y3 y4 y5

x1 x2 x3 x4 x50 0

y1 y2 y3

x1 x2 x3 x4 x50 0

Figure 4.6: Hyperparameters. One 1-D neuron with receptive field F = 3, input size
L(in) = 5 and zero-padding P = 1. Top: The neuron strided across the input in
stride of S = 1. The output is of size L(out) = (5− 3 + 2)/1 + 1 = 5. Bottom: The
neuron uses larger stride of S = 2, giving output of size L(out) = (5−3+2)/2+1 = 3.

simplifications are made. Roughly three approaches can be exploited to increase the
efficiency of convolution layer processing. All approaches typically require hardware-
aware implementations, but modern DL frameworks and compilers provide some
support for efficient convolution layer computation with specialized hardware [57].

• Lower the convolution layer to a standard matrix-matrix multiplication and
apply General Matrix Multiplication (GEMM). Kernels and input are trans-
formed into two intermediate matrices so that the dot-product of these matrices
matches the output obtained with direct convolution. In this method, existing
robust GEMM implementations can be applied [57]. A major downside is that
the intermediate matrices significantly increase memory consumption.

• Transform kernels and input to a domain, where elementwise multiplication can
be applied to two transformed sequences. Many implementations are based on
Fast Fourier transform (FFT) and convolution theorem (Eq. (4.5)) [58]. The
transformation cost may be too high with a single convolution, but the cost can
be amortized if the transformations can be reused effectively. FFT approach
can bring major benefits when many kernels and long convolved vectors are
used.

• Develop specialized hardware implementations based on the direct computa-
tion of convolution requiring detailed knowledge about the target hardware.
Typically, the optimization leads to multiple specialized solutions optimized
only for some subset of possible parameter choices for the convolution layer.
This approach can enable efficient implementations for some models but does
not allow the development of general implementation. This approach is applied
in this work.



31

4.3.2 Pooling layer
The pooling layer is a very typical type of layer in CNNs that is placed after
convolution layers. It performs non-linear downsampling of the input, which helps to
make the model more invariant to small input translations. The pooling layer can be
applied to sequentially reduce the feature maps’ spatial size, decrease the number of
parameters, and limit memory consumption and computation in the network. Thus,
it is a suitable tool to control overfitting.

Few standard non-linear functions are commonly applied in pooling. The most
popular choice is max pooling, the operation reports the maximum value in the
receptive field region. The second standard option is average pooling that computes
an average of the elements in the receptive field region. 1-D max pooling and average
pooling operations are illustrated in Figure 4.7.

The pooling operation does not have any learnable parameter, so it does not
introduce any new parameter to the network. Stride, S and receptive field, F are
the hyperparameter that determine the size of the output. Pooling does not change
the depth of the network, i.e. the number of channels the data contains. Assuming a
pooling layer accepting input x ∈ RN×C(in)×L(in) , where N is the number of batches,
C(in) the number of input channels and L(in) is the spatial extend of the input. The
shape of the output h ∈ RN×C(out)×L(out) can be determined using the following rule

L(out) = floor
(︄

L(in) − F

S

)︄
+ 1 (4.10)

, where L(out) is the spatial extend of the output and depending on the receptive field
F and the stride S. The output depth C(out) = C(in) because pooling does not affect
the depth. In some cases, the rounding function floor(·) is replaced with function
ceil(·).

1.0 0.3 0.2

0.1 1.0 0.3 0.1 0.0 0.2

0.1 1.0 0.3 0.1 0.0 0.2

0.55 0.2 0.1

Figure 4.7: Pooling operation. One 1-D neuron performing pooling with receptive field
F = 2, input size L(in) = 6 and stride S = 2. The output is of size (6− 2)/2 + 1 = 5.
Top: Max pooling. Bottom: Average pooling.



Chapter 5

Digital signal processor

In this work, the target hardware for CNN inference is a digital signal processor
(DSP), a part of an integrated circuit referred to as a System on a Chip (SoC).
SoC typically comprises an entire computer system and can include general-purpose
processors (GPP), internal memory units, I/O ports, application-specific hardware
accelerators, and additional processors such as DSPs or graphics processing units
(GPU). The purpose of SoCs is to integrate the functionalities of multiple chips
into one, thus reducing the size, power consumption and manufacturing costs of
mass-produced computer systems. The downside is that extending the features
available in an existing SoC is not possible without designing and manufacturing a
new chip. That is why SoCs are generally used in applications where the attainable
benefits are valuable, and it is not crucial to replace a single component of the system.

To be more precise, the target hardware of this work is the DSP of a physical
layer signal processing SoC designed to operate as a part of a 5G baseband solution.
It is specifically designed to perform real-time signal processing and fulfil the strict
time requirements introduced by the 5G technology. The SoC contains

• multiple CPU cores,

• a large number of application-specific hardware accelerator blocks for executing
time-critical signal processing tasks, and

• several programmable DSP cores for accelerating computationally demanding
algorithms.

In this Chapter, the target SoC is covered. First, some key concepts of DSPs
are introduced, including parallelism, memory architecture and fixed-point number
representation. The second Section of this Chapter gives a brief overview of the
CEVA-XC4500 DSP architecture and the most important features affecting the
inference implementation.

5.1 Key concepts
The target SoC is designed to perform physical layer signal processing in real-time, and
thus it uses multiple methods to accelerate algorithms. The most critical software is

32



33

handled by the application-specific hardware accelerators, while the other is processed
by the general-purpose processors (GPPs) or digital signal processors (DSPs). The
target SoC contains multiple identical DSP cores that process independent tasks
parallel such that one task is processed entirely by the same core. The DSP job
system is designed to not split tasks between the cores. The job system is why the
parallelism mechanisms within the DSP cores are crucial when designing software
with real-time processing capabilities.

5.1.1 Parallelism
Instruction-level parallelism

A single instruction on a processor can be divided into several stages, each taking at
least one cycle to complete. A reduced instruction set computer (RISC) has a small
and highly optimized set of instructions with a regular instruction pipeline. The
instruction cycle in the classic RISC pipeline consists of five stages: instruction fetch,
instruction decode, execute, memory access, and register write back [59]. Each stage
is typically handled by a different functional unit of the processor. If each instruction
is processed sequentially from the first stage to the last, only one functional unit of a
processor is performing a task at a time, and processor resources are wasted.

Instruction set parallelism (ILP) can be applied to speed up computing. There
are two typical approaches for ILP: dynamic and static. Dynamic ILP means the
processor decides which instructions to execute in parallel at run time. Pipelining is
the simplest form of dynamic ILP. If consecutive instructions are independent, the
processor can speed up the execution by processing different stages of consecutive
instructions simultaneously using different functional units. In the classic RISC case,
up to five instructions can be processed simultaneously, and it is possible to achieve
the processing speed of one instruction per clock cycle [59].

Many modern processors can perform more efficient dynamic ILP than pipelining.
Superscalar processors contain redundant functional units, enabling parallel execution
of multiple instructions. Superscalar processors perform runtime dynamic dependency
analysis. If an instruction does not depend on the result of another instruction, it
can be executed parallelly. It is possible to process more than one instruction per
cycle with a superscalar processor combined with pipelining [60].

When dynamic ILP is applied, complex hardware logic is needed for the runtime
dependency analysis, which increases hardware costs and limits the size of a possible
instruction set. With static ILP, runtime dependency analysis is not necessary.
Instead, the instructions scheduling is determined at compile time. Typically with
higher-level languages such as C++, this task is handled by the compiler. Very
long instruction word (VLIW) is a static ILP method where a specific compiler is
used to compose a packet of instructions that can be executed simultaneously. The
compiler is responsible for combining the instructions so that the packets contain only
independent instructions. Typically VLIW processors are superscalar and support
also pipelining. The target DSP in this work is a superscalar VLIW processor utilizing
a high level of instruction-level parallelism [48].



34

Data-level parallelism

Data-level parallelism refers to the computing approach, where the data is distributed
to multiple nodes that operate in parallel. One common way to implement data-level
parallelism is Single instruction, multiple data (SIMD), where each unit performs
the same instruction simultaneously on multiple data elements [59]. A common
form of SIMD is vectorization, where the same operation is applied to a wide vector
register instead of one element. The target DSP in this work utilizes vectorization as
the primary mechanism for data-level parallelism [48]. Figure 5.1 illustrates scalar
and SIMD versions of multiple-accumulate (MAC) operations. The operation is
performed on single 32-bit floating-point numbers in the scalar version. In the SIMD
version, eight 32-bit floating-point numbers are loaded to a 256-bits wide register
and operated with single MAC instruction after that.

Especially for digital signal processing, SIMD can provide significant advantages
and improvement in performance. Compared to general-purpose computing, SIMD
also has many disadvantages that should be considered when designing implemen-
tations. All algorithms cannot be vectorized easily because data alignment may
have some restrictions in SIMD algorithms. For example, algorithms that require
collecting scattered data into SIMD registers cannot employ vectorization very well.

Robust SIMD implementations usually require using some architecture-specific
SIMD instruction sets. Specific intrinsic functions and compilers must be used,
requiring much manual work by the developer to develop new implementations.
Typically different implementations must be provided to be able to support different
hardware. So far, most compilers cannot generate SIMD instructions from a generic
high-level program without human intervention [59].

mac r2, r0, r1

r0 x0

×

r1 y0

+

r2 z0

=

r2 z0

32 bits

vmac vr2, vr0, vr1

vr0 x0 x1 x2 x3 x4 x5 x6 x7

× × × × × × × ×

vr1 y0 y1 y2 y3 y4 y5 y6 y7

+ + + + + + + +

vr2 z0 z1 z2 z3 z4 z5 z6 z7

+ + + + + + + +

= = = = = = = =

vr2 z0 z1 z2 z3 z4 z5 z6 z7

8 · 32 = 256 bits

Figure 5.1: Visualization of multiply-accumulate (MAC) operation using 32-bit
floating point numbers with scalar and SIMD instruction.



35

5.1.2 Memory
The DSP memory system is one of the critical factors affecting the overall performance
of DSP. Most DSPs contain two essentially different types of memory; external and
internal. Internal on-chip memory provides high-speed and low latency memory
access to the DSP’s processing units [61]. In addition, DSP has access to external
and peripheral off-chip memory. For example, in typical SoC, external memory is
shared with multiple other hardware subsystems and serves as the main system
memory for the system. Internal memory should be preferred when designing DSP
algorithms due to the superior latency compared to external memory.

Direct memory access (DMA) is used when data is transferred between internal
and external memory. DMA is the hardware mechanism that allows peripheral
components to transfer data directly without the need to involve the system processor
[62]. It enables other hardware subsystems to access data in the main system memory
without tying the processor resources for the duration of the data transfer. Typically,
moving data to and from memory is much slower than the processing capability of the
processor. Compared to the alternative methods where the processor is responsible
for the data transfer, DMA can reduce the computational overhead significantly.
DMA enables that computation and memory access can be done parallel as the
processor continues normal processing, while DMA is responsible for handling the
memory access simultaneously.

The internal memory architecture of the processors is one of the key differences
between GPPs and DSPs. Most GPPs in modern computers are based on von
Neumann architecture, which is visualized in Figure 5.2. It uses single, shared
internal memory for program instructions and data combined with a single bus for
memory access. The central processing unit (CPU) fetches an instruction from
memory in a normal program execution procedure. A specific control unit decodes
the instruction to determine what operations are executed, and then the instruction
is executed in the arithmetic or logic unit. The instruction has typically two parts,
the opcode and the operand. The opcode specifies the executed operation and the
operand specifies what data should be operated.

In the classical von Neumann architecture, the processor operates serially,
retrieving one instruction or piece of data at a time. When the instruction execution

Input

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

Memory Unit

Address bus Data bus

Output

Figure 5.2: Von Neumann processor architecture.



36

Instruction
memory

Address bus

Data bus

Data
memory

Address bus

Data bus

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

Input Output

Figure 5.3: Harvard processor architecture.

requires memory access, the next instruction will be fetched after the previous
instruction is processed completely. Thus, the shared memory for both instruction
and data can be seen as a bottleneck in the von Neumann architecture [63].

DSPs are designed to quickly process a large amount of data requiring high-speed
data fetching from memory. Therefore, most DSPs are based on the Harvard processor
architecture introduced by IBM at Harvard University in 1944. It is visualized in
Figure 5.3. The processor has two separate internal memory spaces combined with
separated address buses and data buses. One memory is dedicated to the program
instructions and one for the data. The processor can fetch program instructions and
data parallelly using separate buses. This separation enables higher throughput and
decreased latencies in signal processing tasks.

5.1.3 Fixed-point representation
Digital signal processing with numbers containing fractional parts is typically executed
using two different arithmetics, fixed-point and floating-point arithmetics. Most
GPPs perform arithmetic using floating-point representation and apply the IEEE-754
floating-point number standard in their arithmetic units [64]. The standard describes
how the binary representation of numbers with fractional parts is formed and how the

31

sign s

30-23

exponent e

22-0

mantissa m

sign bit 7 integer bits 8 fractional bits

26 25 24 23 22 21 20 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8−27

•
binary point

Figure 5.4: Top: Bit pattern of a 32-bit single precision floating point number
in standard IEEE-754 format. Bottom: Bit pattern of a 16-bit Q8.8 fixed point
number and the corresponding powers of two.



37

arithmetic operations are executed. A 32-bit single-precision floating-point number
in IEEE-754 standard format consists one sign bit s, eight exponent bits e and 23
mantissa bits m. Bit positions are visualized in Figure 5.4. The real value r given
by the binary sequence can be computed as

r = (−1)s · (1.m) · 2e−127 (5.1)

Because all bit positions and lengths are fixed, the IEEE-754 standard gives unam-
biguous real number representation for all possible 32-bit sequences. Floating-point
numbers have a dynamic range, i.e. with a fixed number of digits, numbers of different
orders of magnitude can be presented. The exponent part of the number indicates
the binary point position of the numbers. The point can "float", which refers to the
name of the representation.

Many DSPs and other embedded devices support only integer arithmetic and
have limited or no support for floating-point numbers. Numbers with fractional
parts can be processed with integer operations applying fixed-point representation.
Fixed-point numbers are integers that are scaled to include the information of the
fractional part of the number, and the arithmetic can be performed with the same
integer arithmetic units as with the ordinary integers. However, the binary sequence
of an integer representing a fixed-point number cannot be converted to a real number
without additional information about the correct scaling factor. The developer is
responsible for handling this scaling factor when using fixed-point arithmetic.

One widely applied notation for fixed-point numbers is Q-format. It is a short
description of how two’s complement integers can be interpreted as fractional numbers.
The format Qm.n describes a fixed-point number with m − 1 integer bits and n
fractional bits stored in a signed two’s complement integer with a total of N = m + n
bits. Fixed-point numbers can take values from the subset given by

P =
{︂
p/2n | − 2N−1 ≤ p ≤ 2N−1 − 1, p ∈ Z

}︂
. (5.2)

An example bit pattern of a Q8.8 fixed-point number is illustrated in Figure 5.4. The
real value interpretation r ∈ R of a Qm.n formatted integer x ∈ Z can be computed
as

r = 2−n

(︄
N−2∑︂
i=0

2ixi − 2N−1xN−1

)︄
, (5.3)

where xi is the ith bit of x [65]. In the above defition, the most-significant bit in a
signed two’s complement number is the referred as the sign bit, and determines also
the sign of the fixed-point representation. The conversion between from floating-point
number xfloat to fixed-point number xQm.n in Qm.n format using N = m + n bits is
given as

xQm.n = int (2n · xfloat) , (5.4)
where operation int(·) rounds a floating-point number to nearest integer and casts
the result to a signed N bits wide integer. Inverse conversion from fixed-point to
floating-point is given as

xfloat = 2−n · float (xQm.n) , (5.5)



38

where operation float(·) converts a signed integer to the closest floating-point rep-
resentation of the same integer. As said earlier, the position of the binary point
must be tracked manually by the developer and cannot be observed straight from
the binary format of the fixed-point number. In addition to this there are some
practicalities, that should be considered when performing fixed-point arithmetic

• Addition: When adding two fixed-point numbers Qm.n and Qp.q, there must
hold m = p and n = q, i.e. the number of fractional bits must match between
the summands. The summation result format is Q(m + 1).n = Q(p + 1).q.

• Multiplication: When multiplying two fixed-point numbers Qm.n and Qp.q,
the result format is Q(m + p).(n + q).

• Division: When dividing fixed-point numbers Qm.n with fixed-point number
Qp.q, the result format is Q(m + q).(n + p).

Information loss is possible because fixed-point arithmetic often produces more bits
than the operands. The intermediate results of algorithms applying fixed-point
numbers must be scaled, rounded, and truncated to avoid overflows. Limited bit-
width might cause significant precision loss that should be taken into account when
designing algorithms for devices using fixed-point numbers [65].

As seen earlier, the most significant advantage of floating-point arithmetic is
much more simplified programming enabling the usage of higher-level languages.
With floating-point values, a programmer has more flexibility as it is not needed
to follow the position of the binary point and take care of the scaling, truncating,
and rounding of the intermediate results. The floating-point model also has a
broader dynamic range and precision, making it easier to avoid overflow and possible
information loss. However, floating-point arithmetic is much more complex at the
hardware level than much simpler integer arithmetic required by the fixed-point
numbers. It requires more complicated devices that occupy more hardware space, are
more expensive, and have greater power consumption. Floating-point units might
also support limited parallelism, leading to some performance drawbacks. Therefore,
a fixed-point implementation should be considered in algorithms that do not require
dynamic range and greater precision of floating-point values.

5.2 CEVA-XC4500
The target SoC of this work contains several CEVA-XC4500 DSP cores optimized for
advanced wireless infrastructure equipment. Target DSP utilizes effectively very-long
instruction word (VLIW) and single instruction, multiple data (SIMD) concepts. It
is a scalable solution for many different signal processing tasks essential in wireless
communication. Fully programmable architecture provides more flexibility than
dedicated hardware accelerators, which are also extensively used in the target SoC
to accelerate physical layer computational loads [48].

CEVA XC4500 offers a high parallelism level, low power consumption and high
code density. The primary mechanism for instruction-level parallelism is VLIW, in



39

which multiple instructions from different functional units can be executed simulta-
neously in one cycle. Data-level parallelism is based on SIMD features extensively
used in many vectorized operations. The DSP instruction set contains many vector
operations, including basic arithmetic, multiply and accumulate (MAC) and bit
manipulation. The manufacturer provides a specialized C-level compiler to support
VLIW and SIMD capabilities [48].

5.2.1 Architecture
The CEVA-XC4500 target DSP is based on the Harvard architecture with separate
program instruction and data memories. It contains 128 kilobytes of internal program
instruction memory and 256 kilobytes of internal data memory. However, the DSP
support up to 4 GB of unified memory spaces using four physical interfaces, one for
instruction memory and three for data memory [66]. Data transfer between internal
and external memories is done using dedicated DMA engines of the DSP.

CEVA-XC4500 instruction set is based on a load-store computer architecture
utilizing Reduced instruction set computer (RISC) operations and instructions only.
The DSP has dedicated load/store units handling memory accesses. Units load
data directly from the memory to the registers and store data from registers to the
memory. These registers serve as sources and destinations for all other computation
instructions. All loading instructions support only 4-byte (32 bits) aligned memory
addresses. Because the fixed-point numbers in this work occupy mostly 2 bytes,
this limitation causes some suboptimal usage of vectorization properties, which are
discussed more in Chapter 6. When storing data in memory, also 2-byte aligned
addresses are accessible.

The most important functional units of the DSP are [48]:

• The General Computation unit (GCU) handles all the general non-vectorized
computations and bit-manipulation operations. It has four independent sub-
units, M0, M1, L, and S, that can execute instructions in parallel. GCU handles
the Accumulate register file (ACF) consisting of 24 40-bit accumulators.

• The Data Address and Arithmetic Unit (DAAU) is responsible for all data
memory accesses. It has two units, LS0 and LS1, capable of loading and
storing from/to the data memory using various supported addressing modes.
Addressing Register File (ARF) contains 25 32-bit registers for addressing
purposes. A Scalar unit (SC) is also part of the DAAU and can perform
arithmetic, logical, and shift operations on the ARF registers without affecting
the accumulators. SC enables post-modification of pointers, i.e. the DAAU
can increment and decrement pointers from which data is accessed, parallel
with address generation.

• The Program Control Unit (PCU) aligns instructions from the program memory
and dispatches them to different functional units. PCU also manages the
program counter and correct program flow.



40

• Two Vector Computation Units (VCUs) perform all vector computations and
vector bit-manipulation operations. Each VCU consists of three independent
computational units and a vector register file (VRF). VCU is the core of the
inference implementations in this work and is covered in more detail in Section
5.2.2.

5.2.2 Vector computation unit
Two VCUs support SIMD operations, the main parallelization mechanism in the
CEVA-XC4500 DSP. Both VCUs contain three independent functional units:

• Vector arithmetic unit (VA) performs the arithmetic operations such as addition,
subtraction, multiplication, and multiply-accumulation (MAC).

• Vector bit manipulation unit (VB) performs the bit-manipulation operations
and generic 32-bit arithmetic operations such as bit insertion, bit extraction,
bit pack, matrix transpose, and shift.

• Vector Move and Pack Unit (VM) performs vector manipulation operations
such as moving data, packing, unpacking and scaling.

In addition to functional units, each VCU consists of a Vector Register File (VRF)
that contains following register types:

• Vector Input (vi): Twelve 256-bit registers

• Vector Orthogonal (vo): Four 320-bit registers

• Vector Common (vc): Four 32-bit registers

The VA, VB, and VM units operate in different execution stages. As a result, various
instructions take a different number of cycles to execute. The number of stages
an instruction requires for execution determines the cycle penalty before another
instruction can use the result. The instruction set for the target DSP contains mainly
instructions for fixed-point numbers with variable bit widths from 8 bits up to 72 bits.
However, most instructions support only 16-bit and 32-bit fixed-point numbers, called
words and double-words, respectively. There is also limited support for floating-point
numbers, including basic arithmetic operations such as addition and multiplication.

DSP implements so-called instruction replication to save program code and
power consumption. By default, each vector instruction is executed identically in
both VCUs, each applying the same instruction to a different set of data. The
replication mechanism is flexible and can be controlled via dedicated mode-bits for
each VCU, enabling execution only in a single VCU. There are also instructions for
inter-vector operations that can combine results between VCU. Moving data across
VCUs requires additional instructions, increasing processing overhead.

Conditional clauses in the DSP code lead to branching, accomplished with
conditional jumps and calls. Conditions must be resolved before the processor can
proceed further. Introducing a conditional branch instruction to the processing



41

pipeline causes a four-cycle delay until the condition is read. The default behaviour is
that the DSP guesses that the jump is not taken not to break the sequential pipeline
operation. If this guess is incorrect, the pipeline must be flushed, leading to a 3 to 7
cycles penalty. If such branched code is executed often, for example, in a loop, the
delays may add up to a very significant portion of the processing time [67].

With CEVA-XC4500, sequential code should be preferred whenever possible.
Many signal processing algorithms require performing operations based on some
condition. To prevent simple conditional operations from causing cycle penalties,
the target DSP supports a predicate mechanism for almost all vector operations
[48]. Each atomic operation of a VCU instruction can be conditioned on a 16-bit
predicate register. A zero predicate bit in the predicate register does not prevent
the execution of the atomic operation itself but only blocks writing its result to the
output vector register. Thus, a zero predicate bit defends a word or double-word
part of the output vector, and the part preserves its current value.

5.2.3 Compiler and intrinsic functions
The CNN inference implementation in this work is written in the C++ programming
language using a specialized C/C++ compiler provided by the DSP manufacturer. The
SIMD features of the target DSP are available as intrinsic functions, which are mainly
handled as a single machine instruction by the compiler. The few exceptions are
macro functions, which are handled as sequences of several machine instructions and
perform more complex tasks such as converting floating-point and integer numbers.
All SIMD intrinsics that are applied in this work, are described in Tables A.01 and
A.02. In the target DSP context, a word refers to 16-bit signed or unsigned value, and
double-word refers to 32-bit signed or unsigned value. In the intrinsic descriptions,
HIGH and LOW refer to double-word parts. HIGH means the most significant 16
bits and LOW the least significant 16 bits.

The target DSP is a superscalar processor utilizing VLIW architecture. The
instruction-level parallelism is achieved using static scheduling of machine instructions,
which can be of 16-, 32-, 48-, 64- or 80-bit in width [68]. Performing the scheduling is
mainly delegated to the compiler. When compiler optimization options are enabled,
the compiler optimizes intrinsic functions into VLIW instruction packets. The target
DSP supports eight-way 256-bit VLIW, i.e. up to eight instructions from different
units can be executed in parallel for one processor cycle [48].

As the CNN inference modules are implemented in C++, some responsibility
for code optimization is delegated naturally to the compiler. As such, performance
improvements can be achieved by modifying the source code to allow the compiler
to perform various optimizations.



Chapter 6

Implementation

This work aims to accelerate convolutional neural networks (CNNs) on the target hard-
ware, CEVA-XC4500 DSP, with reasonable efficiency and accuracy. A comprehensive
framework for accelerating different CNNs on the target hardware was developed to
obtain this goal. In this context, the framework covers the required preprocessing
to convert a CNN to a suitable format for the DSP and the performance-critical
real-time inference.

The basic idea of the framework in this work is not novel, but CNNs have not yet
been implemented for the target hardware to the author’s best knowledge. Existing
commercial DL frameworks, as well as the solutions introduced in [9] and [10] share
at least some of the ideas. In [10] accelerating MLPs (fully-connected layers) in the
target DSP was thoroughly studied. However, from the implementation point of
view, CNNs are fundamentally different compared to ordinary MLPs and must be
treated a bit differently.

The solution introduced here is tailored for one particular DSP, and identical
implementations do not necessarily exist. The aim is to produce robust inference
for this particular DSP, not to support multiple hardware. However, the general
principles are not completely limited to this DSP, and some ideas can be leveraged
to other hardware, even though the source code is not portable. Because the target
hardware is not primarily designed to accelerate NN inferences, the framework lacks
some flexibility and cannot be applied to any arbitrary CNN. The scope of this work
was restricted to only 1D CNNs for simplicity reasons, as 1D CNNs already have
existing applications in the 5G physical layer [5]. Extending the framework’s support
to 2D CNNs and beyond is left for future research.

The previous three chapters cover the relevant background related to neural
networks and target hardware. This chapter presents the framework’s main ideas
applied to accelerate CNNs in the target DSP. The Chapter is distributed into three
Sections. In the first Section, an overview of the solution is provided. The second
Section describes how the network and its parameters are preprocessed before the
performance-critical real-time inference is called. The parts of the real-time inference
are described in the last Section.

42



43

6.1 Overview
The DSP job system controls the computational flow of the DSP. To make this
framework compatible with the job system and the existing software architecture on
the SoC, it must fulfil some requirements. The GPP of the SoC initializes DSP jobs
by creating a job description. The description contains all necessary information for
running the DSP job; in this context, the real-time NN inference. The job description
consists of the job configuration section and addresses where input and output data
are located in the SoC shared memory. The description is transferred to a hardware
scheduler that enqueues the job to one of the SoC’s DSP-cores and initializes input
data transfer from SoC shared memory to DSP internal memory via the DMA engine.
DSP then runs the job according to the job description’s configuration section. The
output is transferred back to SoC shared memory via DMA, or another job continues
processing on the same DSP core using the previous job’s output as an input.

Figure 6.1 illustrates the framework to run a CNN in the DSP. The large box on
the left-hand side contains the preprocessing part executed outside SoC and has
to be done only once for each model. In this part, the configuration section of the
job description is formed, and all network parameters are quantized to a fixed-point
format. All details of the CNN inference should be provided in the configuration
section, which is described in Section 6.2. The large box on the right-hand side
contains the performance-critical real-time inference due to optimization using the
target DSP vectorization capabilities. All input for the real-time inference must be
in one contiguous memory block addressed in the job description to be transferred
to DSP internal memory via DMA. Input includes the input data and all network

P
re

pr
oc

es
si

ng

Trained model
in ONNX-format

Determine quantization parameters
Algorithms 1 and 2

Quantize
bias and kernel
parameters

Create model
config for DSP

Load parameters and configuration
to shared memory of SoC

Input data
Transfer input data,
parameters and model config
via DMA to internal memory

Representative
data set

R
eal-tim

e
inference

Start real-time execution
Algorithm 3

Input data quantization

Convolution layer
Algorithm 4 or 5

Max pooling layer
Algorithm 6

Avg pooling layer
Algorithm 7 or 8

Activation functions
Algoritms 9 or 10

Inference output

Figure 6.1: An overview of the framework to run CNN inference in the target DSP.



44

parameters (i.e. kernels and biases). All performance-critical code is written in C++
and compiled with a compiler optimization level of -O3.

6.2 Preprocessing
Target DSP is designed for 16-bit and 32-bit fixed-point numbers, and the best perfor-
mance is achieved when 16-bit numbers are used whenever possible [67]. Therefore,
the trained ONNX floating-point network is converted into a fixed-point format. As
a part of the preprocessing, all kernel tensors and bias vectors are extracted from
the floating-point model, quantized and stored in a contiguous memory block, ready
to be transferred to the SoC shared memory. Kernel vectors that are odd in length
are padded with extra zeros at the end of the vector. Zero padding must be added
because the target DSP supports only 32-bit aligned load instructions. The effect of
this restricted memory access is explained in more detail in Section 4.3.1.

In addition to parameter quantization and kernel padding, the configuration
describing the structure of the network inference is formed in this part. Information
for the configuration section of the job description is retrieved from the floating-
point model and the quantization procedure. All algorithms and procedures of this
Section are implemented in Python. Because the complexity of the preprocessing is
not critical for real-time inference, the performance of this part is not measured or
evaluated in this work.

Parameter quantization

As discussed in Section 3.4.3, there exist many different methods to perform network
quantization. Inference inputs and kernel weights are quantized to 16-bit fixed-point

Algorithm 1 Estimate the number of guard bits.
Input: Kernel tensors ω1, . . . , ωn,

Numbers of output channels C
(out)
1 , . . . , C(out)

n

1: procedure EstimateQuardBits({ω1, C
(out)
1 }, . . . , {ωn, C(out)

n })
2: gB ← 0
3: for i← 1 to n do ▷ Loop kernel tensors
4: m← 0
5: while j < C

(out)
i do ▷ Loop output channels

6: S ← sum(abs(ωi[j, :, :]) ▷ Absolute sum of node weights
7: m← max(m, S)
8: j ← j + 1
9: end while

10: gi ← ⌈log2(⌊m⌋+ 1)⌉ ▷ Number of guard bits in layer i
11: gB ← max(gB, gi) ▷ Update global number of guard bits
12: end for
13: return gB ▷ Return estimate for the required number of guard bits
14: end procedure



45

numbers and the bias parameters to 32-bit fixed-point numbers. The quantization
procedure applies a post-training approach with a small representative input data
set. The optimal amount of fractional bits for kernel weights, biases, inputs and
outputs are determined layerwise for each convolution layer. In this implementation,
pooling layers and activation functions are designed not to change the fixed-point
format. However, average pooling and activation function implementations need the
current number of fractional bits of the input as a part of the layer configuration.

Determining the required amount of fractional bits as a part of the preprocessing
enables efficient real-time computations using simple operations. Biases can be added
directly to the results of multiplication in convolution layers. 40-bit activations of the
multiply-accumulate operations in the layers can be normalized simply by bit-shifting
to the resolution required by the subsequent layer and discarding the excess bits.

If the activations values of some layer happen to require more integer bits than the
current Q-format for the layer output has, non-redundant integer bits are discarded,

Algorithm 2 Determine the number of fractional bits.
Input: Representative input data x1, . . . , xn,

Kernel tensors ω1, . . . , ωk,
Bias vectors b1, . . . , bk,
Number of guard bits gB from Algorithm 1

1: procedure DetermineFracBits(x1, . . . , xn, {ω1, b1}, . . . , {ωk, bk}, gB)
2: {m0, . . . , mk} ← {0, . . . , 0} ▷ Initialize max activations of each layer
3: for i← 1 to n do
4: m0 ← max(m0, max(abs(xi))) ▷ Update max input absolute value
5: a0 ← xi

6: for j ← 1 to k do
7: aj ← fj(aj−1; ωj, bj) ▷ Process layer
8: mj ← max(mj, max(abs(aj))) ▷ Update max activation for j:th layer
9: aj ← φj(aj) ▷ Process activation function

10: end for
11: end for
12: f

(a)
0 ← 15− ⌈log2m0⌉ − ⌈gB/2⌉ ▷ Input fractional bits

13: for j ← 1 to k do
14: if layer type == Conv then
15: f

(a)
j ← 15− ⌈log2mj⌉ − ⌈gB/2⌉ ▷ Activation fractional bits

16: f
(w)
j ← 15− ⌈log2(max(abs(ωj)))⌉ − ⌊gB/2⌋ ▷ Kernel fractional bits

17: f
(b)
j ← f

(a)
j−1 + f

(w)
j ▷ Bias fractional bits

18: else
19: f

(a)
j ← f

(a)
j−1 ▷ Activation fractional bits

20: end if
21: end for
22: return f

(a)
0 , . . . , f

(a)
k , f

(w)
1 , . . . , f

(w)
k , f

(b)
1 , . . . , f

(b)
k

23: end procedure



46

which causes a significant error. Preventing overflow, i.e. discarding non-redundant
during the activation normalization to 16-bits, is done using so-called guard bits.
In this procedure, the resolution of the kernel weights and inputs is reduced to leave
redundant bits in the normalized 16-bit outputs. If the resolution of kernel weight
and layer input is reduced by one bit each, their fixed-point product occupies two bits
less. The product has then room to overflow two bits more without compromising
the accuracy of the 16-bit normalization due to discarding non-redundant bits. The
selection of the number of guard bits balances between avoiding overflows and losing
resolution. The guard bit estimation procedure applied in this work is presented in
Algorithm 1. The estimation applies the maximum absolute sum of kernel weights
that contribute to a single activation in the network. The number of guard bits
is adjusted such that it has an equal amount of bits to the integer part of this
maximum absolute sum. It estimates both the contribution of the total number of
accumulations in a single activation and the scaling effect caused by usually small
kernel weights [69]. The guard bit estimate gB provided by Algorithm 1 is used for
every layer throughout the network.

After an estimate for the number of guard bits is obtained, the number of
fractional bits for the network input, network parameters and activations are obtained
with Algorithm 2. The approach is somewhat similar to the MLP quantization in
[10]. However, because this work operates with CNNs, there are some differences.
The algorithm proceeds in the following manner:

1. The input of the first layer, i.e. the input data, is quantized using a representa-
tive data set. The largest absolute value of all representative inputs is recorded
in m0. The selected Q-format is a number with the highest possible resolution,
i.e., the largest amount of fractional bits, which can be used to represent m0.
The number of fractional bits for the input data denoted f

(a)
0 is computed by

subtracting the required number of integer bits and sign bit from the available
16 bits:

f
(a)
0 = 16− (max(0, ⌈log2 m0⌉) + 1) = 15− (max(0, ⌈log2 m0⌉). (6.1)

In Q-format, which is explained in Section 5.1.3, this equals to

Q
(︂
16− f

(a)
0

)︂
.
(︂
f

(a)
0

)︂
. (6.2)

In the preprocessing part, only the Q-format for the input is determined. The
actual input quantization is performed during the real-time inference.

2. For the inputs of the subsequent layers, i.e. the activations, the amounts of
fractional bits are determined by running the floating-point network using a
representative data set. In the Algorithm, each layers’ maximum activation mj

is recorded. The number of fractional bits in the jth layer f
(a)
j is then adjusted

such that this maximum mj can be represented in this format with the highest
possible resolution as in Equation (6.1). If the layer is a pooling layers, the
activation fractional bits are preserved, i.e. f

(a)
j = f

(a)
j−1. If the convolution

layer includes the Leaky Relu activation function, the α-parameter is quantized
to the same format as the layer input, i.e. the number of fractional bits is f

(a)
j−1.



47

3. For the kernel weight quantization, each layer’s largest absolute kernel weight
value is recorded. The number of fractional bits f

(w)
j is selected based on this

value similarly as previously with activations.

4. For the 32-bit bias parameters in the jth layer, the number of fractional bits is
obtained simply just summing the number of fractional bits of the layer inputs
and the kernel weights

f
(b)
j = f

(a)
j−1 + f

(w)
j (6.3)

Because the jth layer’s convolution product contains the same number of
fractional bits, no normalization is required when the bias term is added.

Configuration creation

As a part of model preprocessing, the details of the network architecture and additional
parameters for each layer are extracted from the floating-point model and converted
into a suitable format for the target DSP. In addition, some parameters related to
quantization are extracted from the Algorithm 2. The information is stored in the
configuration section of the DSP job description. The content of the configuration
section does not have a fixed format but is typically defined as a C-type struct. The
structure of the DSP job configuration is illustrated in Figure 6.2.

Model configuration is described in a struct containing members for parameters
necessary for the real-time inference execution, such as the number of fractional bits
of input data, batch size, and the sizes of the fixed-size working buffers. In addition
to parameter members, the top-level NetworkConfiguration struct also contains
an array for the inference function members. These InferenceFunction structures
contain information for running specific parts of the real-time inference.

struct NetworkConfiguration {
string Name
int BatchSize = N

int InFracBits = f
(a)
0 ,

int WorkBufLen = N (buf)

int FunCount
InfFun
Functions[FunCount]

}

struct InferenceFunction {
string Type
int Index
InferenceFunArgs Args

}

struct InferenceFunctionArgs {
int Alpha = α

int InChnCount = C(in)

int InVecLen = L(in)

int OutChnCount = C(out)

int OutVecLen = L(out)

int KernelSize = F
int Stride = S
int Padding = P
int QuantParam

}

InferenceFunction

InferenceFunArgs

Figure 6.2: An illustration of the configuration section of the DSP job description.



48

All individual layers or activation functions are implemented as separate functions
in this work. Functions are configured in InferenceFunction structs that have a tag
and index members indicating which of the implemented functions should be executed.
The struct also contains a lower-level InferenceFunctionArgs struct that includes
the actual function arguments, which are passed as arguments to the implemented
functions. The inference function arguments have a standardized format, so all
functions receive the same type of struct as an argument. However, all argument
are not needed to run the specific functions, for example Padding, Stride and
KernelSize are needed only in convolution and pooling layers. args.QuantParam
contains the post-shift coefficient for output normalization or the number of fractional
bits in the layer input if the inference function requires the information.

6.3 Real-time inference
The real-time inference implementation is the performance-critical part of the NN
inference, and therefore the program cycle counts are tracked only from this part of the
inference. The performance-critical part starts after the model has been preprocessed.
First, the program code, the job configuration, input data and network parameters
are transferred to the internal memory via DMA. The inference implementation,
described in Algorithm 3, calls sequentially multiple functions until the entire network
inference is processed. In this framework, these functions forming the actual body
of the real-time inference are called inference functions. All the functions calls
are made according to the network configuration given in the DSP job description.
The configuration also contains all the additional parameters needed for running the
functions, such as parameters related to quantization and input/output dimensions.
The workflow of the real-time inference is heavily influenced by the workflow developed
in [10], but have some significant differences. Overall, the solution may also share
many similarities with deep learning inference frameworks available commercially.

In this work, the input data format is assumed to be in the so-called "channels
first" -format. It means that the network input and each layer activations have the
following structure x ∈ RN×C×L, where N is the batch size, C is the number of
channels, and L is spatial extend of the channels. This data format does not require
special flattening between convolution and fully-connected layers. The data is already
in a continuous memory block stored in the correct order. Thus, in the future, it
is possible to add fully-connected layers easily to models using principles presented
in [10]. If another data format such as "channels last" is used, the data must be
converted to the correct format. If this conversion is done as a part of the real-time
inference, it might decrease performance significantly.

The floating-point input data is quantized before the first inference functions
are called. This so-called real-time quantization is also vectorized. This vectorization
procedure is described detailed in [10]. The same approach applies to the standard
ReLU-activation function, which was studied as well in [10]. Even though the
vectorization procedure of input quantization and ReLU activation is not repeated,
the contribution to the overall performance of the networks is studied as a part of



49

Algorithm 3 The workflow of the real-time inference.
Input: Network configuration config,

Pointers to data arrays input_ptr, output_ptr
Pointers to parameter arrays kernel_ptr, bias_ptr

1: procedure NetworkInference(config, input_ptr, output_ptr,
kernel_ptr, bias_ptr)

2: in_buf[config.workingBufferSize] ▷ Fixed-size working buffers
3: out_buf[config.workingBufferSize]
4: in_buf← QuantizeInput(config.InputFracBits, input_ptr)
5: while i < config.FunctionCount do ▷ Process all inference functions
6: fun← config.Functions[i]
7: switch fun.Type do
8: case Convolution layer:
9: ProcessConvLayer(fun.Args, kernel_ptr,bias_ptr,

in_buf,out_buf)
10: break
11: case Max pooling layer:
12: ProcessMaxPoolLayer(fun.Args, in_buf, out_buf)
13: break
14: case Average pooling layer:
15: ProcessAvgPoolLayer(fun.Args, in_buf, out_buf)
16: break
17: case Sigmoid:
18: ProcessSigmoid(fun.Args, in_buf,out_buf)
19: break
20: case Leaky ReLU:
21: ProcessLeakyRelu(fun.Args, in_buf, out_buf)
22: break
23: case ReLU:
24: ProcessRelu(fun.Args, in_buf, out_buf)
25: break
26: end switch
27: swap in_buf and out_buf pointers
28: i← i + 1
29: end while
30: copy in_buf to output_ptr
31: end procedure

the performance evaluation in Chapter 8.
This work aims to modify program code to apply the target hardware features

to speed up the computations in different inference parts. The main method for the
improvements is vectorization, for which the CEVA DSP offers extensive support.
In this Section, the vectorization of individual inference functions is described. The
pseudocodes in this Section try to catch the main ideas behind the vectorization of



50

each function. All vectorized intrinsics that are used in the pseudocodes are explained
in Tables A.01 and A.02. Pseudocodes cannot be directly translated to code that can
be executed in CEVA-XC4500 DSP, and some of the details have been abstracted
away for clarity reasons. For example, the effect of zero-padding on the program
code is omitted from the pseudocodes to keep them even somewhat compact. When
zero padding is applied, it has to be handled every time vector heads and tails are
processed. In practice, it is implemented using a vector predicate mechanism. When
batch sizes containing multiple input data samples are processed, the Algorithms
illustrated in this Section are iterated until all input samples have been processed.
At the Algorithm level, it means an additional for-loop that iterates through all
input samples.

6.3.1 Convolution layer
For the convolution layer DSP implementations, two different vectorization approaches
are applied. The first approach only supports convolution layers that use stride
parameter S = 1. The second approach is applied with convolution layers that
utilize stride parameter S > 1. Both approaches are based on vectorization of direct
computing of convolution (or cross-correlation). There are also other approaches
to speed up the convolution layer computation that are discussed in Section 4.3.1.
The modification of the direct computation was chosen in this work as it is the best
approach for the target hardware. The effects of convolution layer vectorization on
the inference performance is discussed in Section 8.2.3.

First vectorization approach: Kernels as coefficients

The first convolution layer optimization approach uses effectively parallelized multiply-
accumulate (MAC) operations that the target DSP supports. The implementation
is illustrated in Algorithm 4. The basic idea of the approach is to maximize the
number of output elements stored back in the SoC shared memory in one iteration.
The Algorithm iterates overall output channels producing 28 elements of the output
channel with each iteration. All input channels are iterated within each 28 element
chunk as all input channels contribute to each output element. Adding the bias term
is done initially, where every element of the output vector is initialized with bias
values (line 6).

The two innermost loops of the Algorithm are illustrated in Figure 6.3. Only
eight elements are shown in the Figure for both VCUs instead of the 16 elements
to save space. As seen, kernel elements are loaded as a coefficient. The target DSP
supports only 32-bit aligned memory access when loading registers. In addition,
coefficient registers are 32-bit in width, and hence two 16-bit kernel elements are
loaded simultaneously. Also, the input vector is loaded in the intervals of two
elements, as seen in lines 15 and 16. Different parts of the 32-bit doublewords in
kernels and input vectors are accessed using LOW and HIGH. As the keywords
operate separately in both VCUs, loading/storing input and output elements from
memory must be done separately for both VCUs.



51

VCU0 VCU1 Kernels

x0
0

xn
0

x0
1

xn
1

x0
2

xn
2

x0
3

xn
3

x0
4

xn
4

x0
5

xn
5

x0
6

xn
6

x0
7

xn
7

x0
6

xn
6

x0
7

xn
7

x0
8

xn
8

x0
9

xn
9

x0
10

xn
10

x0
11

xn
11

x0
12

xn
12

x0
13

xn
13

× k0
0

LOW

+
x0

1

xn
1

x0
2

xn
2

x0
3

xn
3

x0
4

xn
4

x0
5

xn
5

x0
6

xn
6

x0
7

xn
7

x0
0

xn
0 xn

7

x0
7

xn
8

x0
8

xn
9

x0
9

xn
10

x0
10

xn
11

x0
11

xn
12

x0
12

xn
13

x0
13

xn
6

x0
6 × k0

1

HIGH Rotate input

+
x0

2

xn
2

x0
3

xn
3

x0
4

xn
4

x0
5

xn
5

x0
6

xn
6

x0
7

xn
7

x0
8

xn
8

x0
9

xn
9 xn

8

x0
8

xn
9

x0
9

xn
10

x0
10

xn
11

x0
11

xn
12

x0
12

xn
13

x0
13

xn
14

x0
14

xn
15

x0
15 × k0

2

LOW Load new input

...
× kn

0

LOW Load new input channel

+
× kn

1

HIGH Rotate input

+
× kn

2

LOW Load new input

=
y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

1st input
channel

nth input
channel

12 first output
elements

Figure 6.3: An illustration of the first vectorization approach that handles kernel
elements as coefficients. The Figure shows processing the first 12 elements of one
output channel when the input has n input channels with a kernel size of three, no
padding and stride equal to one, i.e. (F, S, P ) = (3, 1, 0). The target hardware VCUs
can process 16 elements simultaneously, but the Figure visualizes only eight elements
to save space.

Due to the 32-bit aligned memory access in vector register loading, input registers
are updated from memory only every second iteration. Every second iteration, they
are rotated using LOW/HIGH keywords, resulting in that all 32 output elements
are not usable. Two dummy elements must be left in the output registers in both
VCUs, which totals 28 usable output elements. If the kernel length is odd, one extra
iteration must be performed, which is seen in line 21. In the pseudocode, this is
written with if -clause. Because conditional code should be avoided with the target
DSP, this conditional is executed in practice such that completely separate functions
are made for odd and even size kernels. In the case of odd kernels, to keep the
memory pointer correctly aligned, an extra zero is added to the end of each kernel
as a part of the preprocessing discussed in Section 6.2. The output elements are
accumulated into 40-bit wide integers in the output vector register o. The values
are normalized back to a 16-bit fixed-point number using the normalizing bit-shift
determined as a part of the preprocessing and stored in args.QuantParam (lines
28-29).

Handling zero-padding and vector tails are abstracted away from the pseudocode.
Zero-padding is handled with the vector predicate mechanism, and vector tails are
handled using the so-called overwriting technique [67]. It means that only the whole



52

Algorithm 4 Vectorized convolution layer handling kernels as individual coefficients.
1: function ProcessConvLayer(args, kernel_ptr, bias_ptr, input_ptr,

out_ptr)
2: for all output channels do
3: input_mov_ptr← input_ptr ▷ Reset pointer
4: b← c_load(bias_ptr); bias_ptr += 1
5: for all 28 element chunks of the output vector do
6: o← v_fill(b) ▷ Fill with bias parameter
7: input_chn_ptr← input_mov_ptr ▷ Reset pointer
8: input_mov_ptr += 28
9: k_ptr← kernel_ptr ▷ Reset kernel pointer

10: for all input channels do
11: x_ptr0← input_chn_ptr ▷ Reset pointer
12: x_ptr1← x_ptr0 + 14 ▷ Second pointer for VCU1
13: input_chn_ptr += args.InputVectorLength
14: for all 2 element chunks of kernel vector do
15: x← v_load_vuX(x_ptr0, 0); x_ptr0 += 2
16: x← v_load_vuX(x_ptr1, 1); x_ptr1 += 2
17: k ← c_load(k_ptr); k_ptr += 2
18: o← vc_mac(x, 0, LOW, k, LOW, o)
19: o← vc_mac(x, 0, HIGH, k, HIGH, o)
20: end for
21: if kernel size is odd then
22: x← v_load_vuX(x_ptr0, 0)
23: x← v_load_vuX(x_ptr1, 1)
24: k ← c_load(k_ptr); k_ptr += 2
25: o← vc_mac(x, 0, LOW, k, LOW, o)
26: end if
27: end for
28: o← v_shift(o,−args.QuantParameter) ▷ Post shift
29: o← v_pack(o) ▷ Cast to 16-bit elements
30: out_ptr← v_store_vuX(14, o, out_ptr, 0); out_ptr += 14
31: out_ptr← v_store_vuX(14, o, out_ptr, 1); out_ptr += 14
32: end for
33: kernel_ptr += args.InputChannelCount · args.KernelSize
34: end for
35: end function

28 element chunks are processed. If the length of the vector is not multiple of 28, some
dummy values are processed, enabling some flexibility compared to solutions with
the exact number of elements produced. Key observations of this implementation:

• Algorithm can only be applied when stride S = 1, i.e. the kernel is moved one
element at one iteration. When the stride is larger, this approach fails.



53

• Does not require complicated preprocessing of the network parameters. Only
odd size kernel vector must be zero-padded to even length.

• Enables high utilization of vector registers with any kernel size. Due to the
32-bit aligned loading instructions, some dummy values are present in the
output registers.

• Bias term addition can be vectorized effectively as the accumulator vector is
initialized with bias parameters in line 6.

Second vectorization approach: Kernels as vectors

The second approach for the convolution layer uses the most straightforward way to
vectorize dot products between kernels and input vectors. This approach is reported
in Algorithm 5. Contrary to the first approach, this method also supports models
where stride parameter S larger than one is used. The algorithm produces two
output elements with one iteration. In the version presented in Algorithm 5, only
kernel sizes up to 16 is supported because the kernel is cloned to both VCUs, that
operate parallel the same procedure. However, the algorithm can easily be converted
to larger kernels if this VCU parallelization is not applied.

VCU0 VCU1
x0

0

x1
0

xn
0

x0
1

x1
1

xn
1

x0
2

x1
2

xn
2

x0
3

x1
3

xn
3

x0
4

x1
4

xn
4

x0
5

x1
5

xn
5

x0
6

x1
6

xn
6

x0
7

x1
7

xn
7

x0
2

x1
2

xn
2

x0
3

x1
3

xn
3

x0
4

x1
4

xn
4

x0
5

x1
5

xn
5

x0
6

x1
6

xn
6

x0
7

x1
7

xn
7

x0
8

x1
8

xn
8

x0
9

x1
9

xn
9

k0
0 k1

0 k0
0 k1

0

1 0 1 0

k1
0 k2

0 k1
0 k2

0

1 0 1 0

kn
0 kn+1

0 kn
0 kn+1

0

1 0 1 0

k0
1 k1

1 k0
1 k1

1

1 0 1 0

k1
1 k2

1 k1
1 k2

1

1 0 1 0

kn
1 kn+1

1 kn
1 kn+1

1

1 0 1 0

k0
2 k1

2 k0
2 k1

2

1 0 1 0

k1
2 k2

2 k1
2 k2

2

1 0 1 0

kn
2 kn+1

2 kn
2 kn+1

2

1 0 1 0

k0
3 k1

3 k0
3 k1

3

1 0 1 0

k1
3 k2

3 k1
3 k2

3

1 0 1 0

kn
3 kn+1

3 kn
3 kn+1

3

1 0 1 0

×pred

×pred

×pred

+

...

=
Σ

Internal sum
y0 y1

1st input
channel

2nd input
channel

nth input
channel

Figure 6.4: Illustration of the second vectorization approach handling kernels as
vectors. The Figure shows processing the first two elements of one output channel
when the input has n input channels with a kernel size of four, no padding and stride
equal to two, i.e. (F, S, P ) = (4, 2, 0). VCUs can process 16 elements simultaneously
in the target hardware, but only eight are visualized to save space.



54

Algorithm 5 Vectorized convolution layer handling kernels as vectors. This version
is applicable for models with F ≤ 16.

1: function ProcessConvLayer(args, kernel_ptr, bias_ptr, input_ptr,
output_ptr)

2: ptr_shift← args.InputVectorLength− args.Stride
3: pred← vpr_move(0xFFFF≫ (16− args.KernelSize))
4: for all output channels do
5: input_mov_ptr← input_ptr ▷ Reset moving input pointer
6: b← c_load(bias_ptr); bias_ptr += 1 ▷ Bias parameter
7: for all 2 element chunks of the output vector do
8: x_ptr← input_mov_ptr ▷ Reset input pointers
9: input_mov_ptr += (args.Stride≪ 1)

10: k_ptr← kernel_ptr ▷ Reset kernel pointer
11: o← v_fill(0) ▷ Reset accumulator
12: for all input channels do
13: x← v_load_vuX(x_ptr, 0) ▷ Load input to VCU0
14: x_ptr += args.Stride
15: x← v_load_vuX(x_ptr, 1) ▷ Load input to VCU1
16: x_ptr += ptr_shift
17: k← v_load(k_ptr) ▷ Load kernel
18: k_ptr += args.KernelSize
19: o← vv_mac(x, 0, LOW, k, 0, LOW, o, pred)
20: end for
21: o← v_add_int(o) ▷ Intra-vector sum
22: o← v_add(o, b) ▷ Add bias
23: o← v_shift(o,−args.QuantParameter)
24: v_store_vuX(1, o, output_ptr, 0); output_ptr += 1
25: v_store_vuX(1, o, output_ptr, 1); output_ptr += 1
26: end for
27: kernel_ptr += args.InputChannelCount · args.KernelSize
28: end for
29: end function

The procedure taking place inside the two innermost loops of the Algorithm
is illustrated in Figure 6.4. Only eight elements per VCU are visualized to save
space instead of the 16 elements in the actual hardware. As can be seen, the vector
predicate mechanism is applied to disable excess MAC operations if the kernel length
is less than 16. After the contribution from all input channels has been summed up,
a final intra-vector summation is performed (line 21) to obtain the final result of
the dot product sums. Bias term is added with a separate operation in the end. As
can be observed from the pseudocode, the second vectorization approach has some
suboptimal properties:

• Intra-vector summation is required to combine the partial sums of the dot
products resulting in that only two output elements are obtained from one



55

iteration. It is not the ideal use of the target hardware [67].

• The vectorization properties can be utilized properly only if the kernel length
equals 16. Otherwise, some of the operations must be switched off with vector
predicates.

• Bias parameter has to be added to the result with an additional intrinsic and
cannot be vectorized properly.

6.3.2 Pooling layer
Pooling layers are an essential part of the model in most CNN architectures and
are discussed detailed in Section 4.3.2. This work implements two different pooling
methods: max pooling and average pooling. The implementations provided in this
Section are not general examples applicable to any model. Thus, some Algorithms
are limited to support only some set of network parameters. The effects of pooling
layer vectorization on the inference cycle counts are discussed in Section 8.2.4.

Algorithm 6 Vectorized average pooling layer for unit stride.
1: function ProcessAvgPoolLayer(args, input_ptr, out_ptr)
2: k ← (1≪ args.QuantParameter)/args.KernelSize
3: for all input channels do
4: for all 28 element chunks of the input vector do
5: x_ptr← in_ptr ▷ Reset input pointer
6: in_ptr += 28 ▷ Increase input pointer
7: o← v_fill(0) ▷ Reset accumulator vector
8: for all 2 element chunks of the kernel do
9: x← v_load(x_ptr); x_ptr += 2

10: o← vc_mac(x, 0, LOW, k, LOW, o)
11: o← vc_mac(x, 0, HIGH, k, LOW, o)
12: end for
13: if kernel size is odd then
14: x← v_load(x_ptr)
15: o← vc_mac(x, 0, LOW, k, LOW, o)
16: end if
17: o← v_shift(o,−args.QuantParameter) ▷ Post shift to input format
18: o← v_pack(o) ▷ Cast to 16-bit elements
19: out_ptr← v_store(28, o, out_ptr); out_ptr += 28
20: end for
21: end for
22: end function



56

Average pooling

The average pooling layer implementation was made for two slightly different pur-
poses. In the first approach, presented in Algorithm 6, the implementation supports
only models where unit stride (S = 1) is applied. When unit stride is used, the
operation is very close to the convolution layer in Algorithm 4. It does not perform
downsampling, which is the typical function of a pooling layer in many CNNs. The
layer performs averaging of the input vector within the receptive field, which is the
same as convolution with identical and constant weight equal to k = 1/F , where F
is the kernel size. Due to the 32-bit aligned memory access when loading elements to
the registers, the input is processed in 28 element chunks.

The implementation of the average pooling with a unit stride in Algorithm 6
is very similar to convolution layer implementation in Algorithm 4 with two key
differences:

• The accumulator vector o is initialized with zeros instead of bias parameter
(line 7).

• Constant kernel parameter k (line 2) is used for all iterations instead of loading
kernel parameters from memory. The fixed-point format for k is the same as
the layer input, and the number of fractional bits is stored in args.QuantParam.
If the layer input has large values, this might cause problems, and some other
format for this parameter should be used.

The second implementation for average pooling in Algorithm 7 is for more
conventional feature vector downsampling, where stride is equal to kernel size. In
this case, the implementation supports kernel size and stride two, i.e. F = S = 2,

Algorithm 7 Vectorized average pooling layer, when F = S = 2.
1: function ProcessAvgPoolLayer(args, input_ptr, output_ptr)
2: k ← (1≪ args.QuantParameter)/args.KernelSize
3: cfg ← v_move(0, 0x02468ACE) ▷ Vector for permutation
4: cfg ← v_move(1, 0x13579BDF) ▷ In 32-bit hexadecimal
5: for all input channels do
6: for all 32 element chunks of the input vector do
7: o← v_fill(0) ▷ Reset accumulator vector
8: x← v_load(input_ptr); input_ptr += 32
9: o← vc_mac(x, 0, LOW, k, LOW, o)

10: o← vc_mac(x, 0, HIGH, k, LOW, o)
11: o← v_shift(o,−args.QuantParameter) ▷ Post shift to input format
12: o← v_pack(o) ▷ Cast to 16-bit elements
13: o← v_permute(o, cfg) ▷ Move elements with even index to front
14: v_store(16, o, output_ptr); output_ptr += 16
15: end for
16: end for
17: end function



57

cfg[0] cfg[1]

v_permute

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x0 x2 x4 x6 x8 x10 x12 x14

0 2 4 6 8 A C E

x1 x3 x5 x7 x9 x11 x13 x15

1 3 5 7 9 B D F

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

One 32-bit dw =
eight 4-bit offsets

One 32-bit dw =
eight 4-bit offsets

Figure 6.5: Illustration of the vector shuffling applied in Algorithms 7-8. Configuration
vector cfg contains 16 4-bit indexes which define positions of words to be extracted
from the input vector x. The shuffling operation is executed identically in both
VCUs, and thus only 16 elements are visualized.

which means that the output feature vector size is half the input feature vector size.
It is the most common choice of parameters when average pooling is applied for
downsampling purposes. However, the same procedure can be utilized with larger
kernels with some modifications.

The algorithm operates in 32 input element chunks producing 16 output elements.
Two sequential input elements are averaged by performing MAC-operation with
constant k similarly as in Algorithm 6. Then every second element of the output is
discarded using vector shuffling. The vector shuffling using v_permute-intrinsic is
illustrated in Figure 6.5. The operation is controlled using configuration vector cfg
from which only two first doublewords are needed. cfg contains 16 4-bit indexes,
which define the positions of words to be extracted from the input vector. Initializing
configuration vector is visible in lines 3-4 in Algorithm 7. The 32-bit values are
given in hexadecimal because they seemingly illustrate the 4-bit indexes that are
initialized.

Max pooling

Max pooling is the most common type of pooling layer applied in CNNs. The
operation reports the maximum value in the receptive field region. In this work,
vectorized max-pooling layer performing downsampling is implemented for equal
kernel sizes and strides of 2 and 4. Currently, the pseudocode presented in Algorithm
8 supports only equal strides and kernel sizes. The algorithm operates with entire 32
element chunks and produces either 16 or 8 output elements depending on the kernel
size (line 2). Because v_max-intrinsic does not support offsetting with LOW/HIGH-
keyword, the second input vector must be obtained by vector shuffling. Otherwise,
the algorithm is very similar to the corresponding average pooling layer in Algorithm
7.



58

Algorithm 8 Vectorized max pooling layer for F = S = {2, 4}.
1: function ProcessMaxPoolLayer(args, input_ptr, output_ptr)
2: k ← 32/args.KernelSize ▷ Number of output elements
3: cfg1← v_move(0, 0x12345678) ▷ Vector for permutation
4: cfg1← v_move(1, 0x9ABCDEF0) ▷ In 32-bit hexadecimal
5: cfg2← v_move(0, 0x02468ACE) ▷ Vector for permutation
6: cfg2← v_move(1, 0x13579BDF)
7: for all input channels do
8: for all 32 element chunks of the input vector do
9: x← v_load(input_ptr); input_ptr += 32

10: for all 2 element chunks of the kernel do ▷ 1-2 iterations
11: y ← v_permute(x, cfg1) ▷ Rotate vector by one
12: z ← v_max(x, y)
13: x← v_permute(z, cfg2) ▷ Move elements with even idx to front
14: end for
15: output_ptr← v_store(k, x, output_ptr); output_ptr += k
16: end for
17: end for
18: end function

6.3.3 Activation functions
Activation functions are integral parts of many CNNs that allow networks to learn
phenomena with non-linear properties. As a part of this work, two different vectorized
activation functions, Leaky Rectified Linear Unit (Leaky ReLU) and Sigmoid were
implemented. Standard ReLU activation function is already implemented in [10]
and the same procedure is applied here. The impact of vectorization of activation
functions on the inference performance is discussed in Section 8.2.5.

Both activation functions are elementwise and operate in 32 element chunks to
ensure optimal vectorization. Handling the input tail when the input vector length
is not a multiple of 32 is omitted from this Subsection’s pseudocodes. The tails are
handled with the so-called overwriting technique, similar to the previous Algorithms.
The working buffers for storing intermediate results of the inference are allocated to
a size of a multiple of 32 words. Even if the input size is not multiple of 32, it is
possible to read and write the complete 32 elements chunks without any overflows.
Processing garbage values in the vector tail do not affect the result with elementwise
functions. This approach avoids using potentially ineffective conditional jumps for
tail processing.

Leaky ReLU

The vectorized implementation of the Leaky ReLU activation function is illustrated in
Algorithm 9. The implementation relies on the vector predicate mechanism discussed
in Section 5.2.2. The v_max-intrinsic with a vector of zeroes on line 6 outputs
a vector predicate pred, where the bits are set corresponding to the positions of



59

Algorithm 9 Vectorized Leaky ReLU activation function.
1: function ProcessLeakyRelu(args, input_ptr, output_ptr)
2: c← 1≪ args.QuantParameter
3: α← args.Alpha
4: for all 32 element chunks of the input do
5: x← v_load(input_ptr); input_ptr += 32
6: pred← v_min(x, 0) ▷ Minimum with vector of zeros
7: o← vc_mltply(x, 0, LOW, c, LOW)
8: o← vc_mltply(x, 0, LOW, α, LOW, pred)
9: o← v_shift(o,−args.QuantParameter)

10: o← v_pack(o)
11: v_store(32, o, out_ptr); output_ptr += 32
12: end for
13: end function

positive values. On line 8, this predicate vector is applied in vector multiplication,
resulting in only positive elements being multiplied with α.

The α-coefficient, args.Alpha is the negative slope coefficient of the function.
The parameter value is defined as a part of the model constructing procedure, and it
is quantized to a 16-bit fixed-point number as a part of the preprocessing discussed
in Section 6.2—the number of fractional bits stored in args.QuantParam is the same
as the input activations have. If activations are large and α is small, this approach
might lose the α-coefficient accuracy in the quantization, and it is rounded to zero.
In that case, the function outputs the same as the standard ReLU. When activations
are small enough, and the number of fractional bits is enough, no problems should
be observed. With large activations, the problem can be solved using different
fixed-point formats for α-coeffients. Output has the same format as the input, which
requires that the resulting vector is normalized with bit-shift and elements are packed
back to 16-bit values. Because this normalization is done for all elements in the
output vector o, the negative input values are also bit-shifted by multiplying them
on line 7 with constant c.

Sigmoid

Algorithm 10 shows the pseudocode of vectorized version of an approximation of
Sigmoid activation function. Real-time implementation of exponential functions such
as Sigmoid with fixed-point numbers can be tedious, and can easily result inefficient
hardware implementations. Approximations enable applying only integer arithmetic,
can provide significant preformance improvements. This might decrease the accuracy
of the function, which is not crucial in most cases when NN actication functions
are conserned. In this work, Sigmoid function (Eq. (3.5)) is approximated using



60

Algorithm 10 Vectorized Sigmoid activation function.
1: function ProcessSigmoid(args, input_ptr, output_ptr)
2: a← v_fill(−2≪ args.QuantParameter)
3: b← v_fill(2≪ args.QuantParameter)
4: c← 1≪ args.QuantParameter
5: for all 32 element chunks of the input do
6: x← v_load(input_ptr); input_ptr += 32 ▷ Load 32 values
7: o← v_shift(x,−1) ▷ Divide by 2
8: o← vv_add(x, c) ▷ Add c
9: o← v_shift(x,−1) ▷ Divide by 2 again

10: pred← v_min(x, a)
11: o← v_fill(0, pred) ▷ Replace values below threshold with 0
12: pred← v_max(x, b)
13: o← v_fill(c, pred) ▷ Replace values above threshold with c
14: v_store(32, o, out_ptr); output_ptr += 32 ▷ Store 32 values
15: end for
16: end function

piecewise function

φsigmoid(y) ≈

⎧⎪⎪⎨⎪⎪⎩
0 if y < −2
y
4 + 1

2 if − 2 ≤ y ≤ 2
1 if y > 2.

(6.4)

, which is in fact first-order Taylor expansion of Sigmoid-function in the interval
[−2, 2]. With this approximation, all multiplication can be implemented efficiently
with bit-shifts. Same approximation is applied also in the scalar implementation of
the function [70]. Replacing values below and above the thresholds is done using
vector predicate mechanism discussed in Section 5.2.2. Initializing these vector
predicates is visible on lines 10 and 12 in Algorithm 10.



Chapter 7

Experimental setup

In this Chapter, the experimental setup used in this work is explained. Implementing
CNNs to target DSP and evaluating the obtained solution requires multiple tools
and software. The first section describes these tools and the workflow. Because this
work aimed to provide a scalable implementation that could effectively accelerate
different CNNs, five models with different characteristics were applied in the testing
stage. These models are described in Section 7.2. Because the context of this work
is real-time physical layer processing using hardware with limited resources, the
models’ computational complexity and memory consumption are important aspects
that should be considered as part of the implementation evaluation process. Thus,
some metrics are derived for estimating the computational complexity and memory
consumption of different NNs.

In this work, the performance of the real-time inferences is measured in processor
cycles recorded with a performance-accurate simulator. The detail of the performance-
related metrics and measurements are explained in Section 7.4. In addition, effective
utilization of the target DSP properties requires quantization of the parameters
and the input data. Some information loss is unavoidable because the quantized
fixed-point numbers use representations with a smaller number of bits. Thus, as part
of the performance evaluation, quantized inference accelerated in the target hardware
is compared with the reference floating-point inference to evaluate the quantized
model’s correctness. The metrics and the procedure to evaluate the correctness of
the inferences is described in Section 7.4.

7.1 Workflow
The DSP code is run in a software simulator instead of an actual SoC. Measuring
cycle-accurate results in the SoC would require capturing program traces with
specialized equipment such as Lauterbach in-circuit program trace tool [9]. Because
DSP manufacturer provides performance accurate software simulator, that has been
verified in previous work [9], it is an obvious choice to perform experiments in this
simulated environment. The workflow is designed to ensure that the simulated results
are accurate and that the procedure can be easily ported to actual hardware. The
following workflow is applied to evaluate the performance of each NN real-time

61



62

inference:

1. Creating test model
Create a floating-point model using PyTorch DL framework [39], and export
the model to ONNX-format [41]. The model would be trained and tested in the
standard deep learning workflow applying some DL framework such as PyTorch
before exporting it to ONNX-format. However, model training is typically
one of the most time-consuming parts of model development and requires a
large amount of training data. Because model training is not necessary for the
performance evaluations executed in this work, models were not trained, and no
real-life data was used. Instead, all network parameters and the input data was
generated randomly using techniques described in Section 7.3. Thus, the model
outputs in the experiment part are not related to any real-life phenomena.

2. Preprocessing
Import the ONNX-model and preprocess it to a suitable format for DSP. The
number of guard bits was determined by running Algorithm 1 and the number
of fractional bits by running Algorithm 2. For each model, 1000 representative
input data samples were generated for Algorithm 2. Because the data was
generated from the normal distribution in these experiments, much fewer
samples would have been enough. However, when real-life data is used, the size
of the representative data set should be large enough. Then network parameters
are quantized based on previously determined parameters. In the final step of
preprocessing, the DSP suitable network configuration is created as described
in Section 6.2. The configuration and the quantized parameters are stored in
separate files, mimicking storing them in the shared memory of the actual SoC.

3. Real-time inference
Performance critical run-time implementation is executed using a software
simulator, a part of the CEVA Toolbox integrated development environment
(IDE). It offers a cycle-accurate simulation environment for the target CEVA-
XC4500 DSP, and thus the experiments can be executed without accessing the
actual hardware. The simulator cannot simulate the DSP’s external memory;
thus, it provides cycle-accurate results only when the code size is less than
the internal instruction memory size, and all data fits internal data memory.
Each experiment starts by loading model configuration, model parameters and
the floating-point input data from files to the internal memory of the DSP.
Loading from separate files mimics data transfer via DMA on the actual SoC.
After that, the inference function described in Algorithm 3 is called, and the
cycle counts are recorded. When all steps of the inference function have been
processed, the model’s output is stored in a file for further analysis.

4. Evaluation
The output of DSP run-time inference is compared with the floating-point
reference model executed using ONNX run-time framework [71]. The correctness
of the DSP inference is evaluated based on the procedure and the metrics
described in Section 7.4.



63

7.2 Models
A total of five different 1D CNN models with a varying number of parameters and
layers were used to evaluate the hardware implementations. Two of the models are
CNNs designed for physical layer processing in 5G networks [14, 5]. These models are
examples of models that the inference framework for the target DSP could be applied
in practice. Three other models are not related to the physical layer domain at all
[52, 72]. They are literature examples of possible CNN architectures for performance-
critical applications. These models also give more variation for the properties of
the test models to provide more understanding of the performance of the run-time
implementations developed in this work. Because 1D CNNs are still somewhat novel
ideas in deep learning, the literature did not yet provide many well-documented
examples that could have been applied in the implementation testing in this work.
Thus, also some models not related to physical layer processing were used.

All test models contain convolution layers and pooling layers that perform
feature extraction from the data. Some models also contain fully-connected layers
that perform classification or prediction based on the extracted features. Because
fully-connected layer implementation is already extensively studied [10], only feature
extraction parts are modelled, including convolution layers, pooling layers and needed
activation functions.

The summary of the models is presented in Table 7.2. Models are named from
Model A to Model E, and these names are used in the following Sections when test
models are referred to. Because the purpose of this work is to study hardware-specific
CNN implementations, it is essential to estimate the computational complexity and
the memory consumption of the models. The computational complexity of the
models is estimated using the number of multiply-accumulate (MAC) operations
performed to obtain the layers’ outputs. It is reasonable because convolution layers
are computationally the most intensive layers in CNNs and apply mostly MAC
operations. Thus, the number of MAC operations is computed only for these layers
without activation functions. The number of operations is computed based on
portable-reference computation without any DSP specific optimizations that might
reduce the number of operations. Estimating the complexity of pooling layers and
activation functions is not that straightforward as they might not utilize MAC
operations and are thus excluded. Based on the Equation (4.7), the number of MAC
operations performed in one convolution layer for one input sample is

N
(MAC)
i = C

(in)
i C

(out)
i L

(out)
i Fi, (7.1)

where i denotes the layer index.
The memory requirements of the models are also estimated. The instruction

memory consumption depends heavily on the chosen compiler optimization level
and cannot be explicitly estimated. Thus, only data memory consumption can
be reasonably computed. The DSP data memory is applied during the real-time
inference to store the network parameters, intermediate results of the layers, and
the model’s input. The minimum memory requirement for network inference can be
estimated by computing how much memory is needed to store all this information.



64

Table 7.1: Number of learnable parameters and input elements of a CNN.

Parameter Type Formula Condition

Input 32-bit float, N (in) = NC
(in)
1 L

(in)
1 only first layer.

data 4 bytes

Kernel 16-bit int, N
(F )
i = C

(in)
i C

(out)
i Fi if convolution layer.

weights 2 bytes N
(F )
i = 0 else.

Bias 32-bit int, N
(B)
i = C

(out)
i if convolution layer.

parameters 4 bytes N
(B)
i = 0 else.

This requirement depends on the number of elements to be stored and the type of
the elements. In this work, the intermediate results of the layers are stored in two
fixed-size buffers with type 16-bit int occupying 2 bytes. The needed buffer sizes
for each layer are determined in the preprocessing stage using the following rule

N
(buf)
i = max

⎛⎝32
⎡⎢⎢⎢NC

(out)
i L

(out)
i

32

⎤⎥⎥⎥ , 32
⎡⎢⎢⎢NC

(in)
i L

(in)
i

32

⎤⎥⎥⎥
⎞⎠ , (7.2)

where i is the layer index, and N is the batch size. Buffers are allocated to a size
of a multiple of 32 words to avoid buffer overflow in algorithms where 32 words are
processed simultaneously without specific tail handling. Working buffers are reused
between layers by swapping memory addresses pointing to input and output buffers;
thus, only two are needed to process the entire network. Computing the number of
input elements and the number of learnable parameters in each layer of a CNN is
summarized in Table 7.1. The network parameters are always the same for all input
samples within and between batches; thus, the parameters are independent of the
batch size N .

By applying the above ruling, the total number of learnable parameters in the
network is

N (P ) =
∑︂

i

(︂
N

(F )
i + N

(B)
i

)︂
(7.3)

and the corresponding total memory requirement M (tot) for processing batch size of
N input samples expressed in bytes is

M (tot) = 4 bytes×N (in) + 2 bytes×max
i

(︂
2N

(buf)
i

)︂
(7.4)

+
∑︂

i

(︂
2 bytes×N

(F )
i + 4 bytes×N

(B)
i

)︂
(7.5)

The total memory consumptions M (tot) in kilobytes (KB), total numbers of network
parameters N (P ) and total computational complexities N (MAC) of the test models are
reported in Table 7.2. The total computational complexity is computed by summing
up all MAC operations in convolution layers (Eq. (7.1)).



65

Table 7.2: Summary of the CNNs used in the DSP implementation evaluation.

Name Application Layers Params. Memory, Operations,
n N (P ) M (tot) (KB) N (MAC)

Model A Near-infrared transmittance 6 106 2,45 5 125
spectroscopy signal regression [72]

Model B Near-infrared reflectance 4 146 16,55 62 300
spectroscopy signal regression [72]

Model C ECG signal classification 8 1 234 13,18 186 274
for arrhythmia detection [52]

Model D Preamble detection and TOA 6 722 65,43 289 792
estimation in 5G networks [5]

Model E Autoencoder for channel 9 10 302 44,53 1 915 200
estimation in 5G networks [14]

Model A
This model is developed for predicting the fat content in meat samples by analyzing
the measured near-infrared transmittance spectra. The architecture details are
presented in Table 7.3. Each input data sample contains 100 spectral observations,
and the model consists of three small convolution layers combined with average
pooling layers for the feature extraction. After the last pooling layer, the channels are
concatenated to form a feature vector considered as a new representation of the input
sample. The final layer, which is not modelled in this work, is a fully-connected layer
acting as a standard linear regressor during model training. In [72], two additional
regression methods are proposed as well. Model A is an example of a compact CNN
with a relatively small computational load and memory consumption.

Table 7.3: Model A. Architecture of a CNN for predicting the fat content in meat
samples by near-infrared transmittance spectra regression [72]. The shape of the
model input is (N, C

(in)
1 , L

(in)
1 )=(N,1,100), where N refer to the batch size of one

inference iteration.

Idx, Layer Kernel Output shape Activation Params. Memory, Oper.
i type (Fi, Si, Pi) (N, C

(out)
i , L

(out)
i ) function N

(P )
i M

(tot)
i (KB) N

(MAC)
i

1 Conv. (7,1,0) (N,5,94) Sigmoid 40 1,92 3 290
2 Ave pool. (2,2,0) (N,5,47) - 0 1,84 -
3 Conv. (7,1,0) (N,1,41) Sigmoid 36 0,99 1 435
4 Ave pool. (2,2,0) (N,1,20) - 0 0,16 -
5 Conv. (5,1,0) (N,5,16) Sigmoid 30 0,38 400
6 Ave pool. (2,2,0) (N,5,8) - 0 0,31 -

Model B
Model B is very similar to Model A and is designed for predicting saccharose content
in orange juice samples measured with near-infrared reflectance spectroscopy. Each
measured spectra contains 700 observations. Model B applies two convolution layers



66

Table 7.4: Model B. Architecture of a CNN for determining the concentration of
saccharose in orange juice samples by near-infrared reflectance spectra regression
[72]. The shape of the model input is (N, C

(in)
1 , L

(in)
1 )=(N,1,700), where N refer to

the batch size of one inference iteration.

Idx, Layer Kernel Output shape Activation Params. Memory, Oper.
i type (Fi, Si, Pi) (N, C

(out)
i , L

(out)
i ) function N

(P )
i M

(tot)
i (KB) N

(MAC)
i

1 Conv. ( 9,1,0) (N,5,692) Sigmoid 50 13,62 31 140
2 Ave pool. ( 2,2,0) (N,5,346) - 0 13,51 -
3 Conv. (19,1,0) (N,1,328) Sigmoid 96 6,95 31 160
4 Ave pool. ( 2,2,0) (N,1,164) - 0 1,28 -

combined with average pooling layers to extract features. Model B is slightly more
complex and requires more memory than Model A due to the much larger input
spectra size [72].

Model C
This CNN is designed for automated detection of arrhythmias, and the architecture is
presented in detail in Table 7.5. The model inputs an electrocardiogram (ECG) signal
of 500 elements and classifies the signal into four classes representing different types of
arrhythmia. Model A represents a typical classification model with four convolution
layers combined with max-pooling layers for feature extraction, followed by three
fully-connected classifying layers. Fully-connected layers performing classification
are not modelled in this work. Model C has achieved an accuracy of 92,50 % in the
experiments reported in [52].

Table 7.5: Model C. Architecture of CNN for automated detection of ar-
rhytmias based on ECG Signals [52]. The shape of the model input is
(N, C

(in)
1 , L

(in)
1 )=(N,1,500), where N refer to the batch size of one inference iter-

ation.

Idx, Layer Kernel Output shape Activation Params. Memory, Oper.
i type (Fi, Si, Pi) (N, C

(out)
i , L

(out)
i ) function N

(P )
i M

(tot)
i (KB) N

(MAC)
i

1 Conv. (27,1,0) (N, 3,474) Leaky ReLU 84 5,72 38 394
2 Max pool. ( 2,2,0) (N, 3,237) - 0 5,55 -
3 Conv. (14,1,0) (N,10,224) Leaky ReLU 430 9.61 94 080
4 Max pool. ( 2,2,0) (N,10,112) - 0 8,75 -
5 Conv. ( 3,1,0) (N,10,110) Leaky ReLU 310 5 33 000
6 Max pool. ( 2,2,0) (N,10,55) - 0 4,30 -
7 Conv. ( 4,1,0) (N,10,52) Leaky ReLU 410 2,97 20 800
8 Max pool. ( 2,2,0) (N,10,26) - 0 2,03 -



67

Model D
Model D is a CNN designed for random access channel (RACH) preamble detection
and time of arrival (TOA) estimation in 5G networks (Table 7.6). TOA estimation
is typically applied for synchronization purposes in initial access and localization of
the transmitter. Traditional TOA estimation has been executed using correlation-
based methods. The proposed NN solution improves estimation results, especially in
conditions where nonlinearities occur in the RF chain due to multipath propagation
and noise. The model input consists of the received signal, in this case, a complex-
valued vector with 4095 values. The network architecture uses three convolution layers
combined with Max pooling layers for feature extraction and dimension reduction.
After that, in [5] feature vector is fed to two fully-connected layers, which are not
included in this work. Model D provided significant improvements in prediction
accuracy and computational complexity compared to the existing methods [5].

Table 7.6: Model D. Architecture of Convolution Neural Network for preamble
detection and Time of Arrival (TOA) estimation in initial access and localization of
5G network [5]. The shape of the model input is (N, C

(in)
1 , L

(in)
1 )=(N,2,4095), where

N refer to the batch size of one inference iteration.

Idx, Layer Kernel Output shape Activation Params. Memory, Oper.
i type (Fi, Si, Pi) (N, C

(out)
i , L

(out)
i ) function N

(P )
i M

(tot)
i (KB) N

(MAC)
i

1 Conv. (16,2,8) (N,4,2048) ReLU 132 32,27 262 144
2 Max pool. ( 4,4,0) (N,4,512) - 0 32,00 -
3 Conv. ( 8,4,2) (N,6,128) ReLU 198 8,40 24 576
4 Max pool. ( 4,4,0) (N,6,32) - 0 3,00 -
5 Conv. ( 8,4,2) (N,8,8) ReLU 392 1,53 3 072
6 Max pool. ( 4,4,0) (N,8,2) - 0 0,25 -

Model E
Model E is an autoencoder designed to perform pilot-based channel estimation in a
5G cellular network. In this work, only the encoder part is modelled. The model
architecture consists of five convolution layers and four average pooling layers. The
best results were obtained in the proposed solution when 192 complex Demodulation
Reference Signals (DMRS) were used as an input sample. The solution was com-
pared to the current industry standard, Least Squares (LS) channel estimation and
significant improvements were achieved.



68

Table 7.7: Model E. Architecture of CNN Autoencoder in pilot-based Channel
Estimation for 5G Physical Uplink Shared Channel [14]. The shape of the model
input is (N, C

(in)
1 , L

(in)
1 )=(N,2,192), where N refer to the batch size of one inference

iteration.

Idx, Layer Kernel Output shape Activation Params. Memory, Oper.
i type (Fi, Si, Pi) (N, C

(out)
i , L

(out)
i ) function N

(P )
i M

(tot)
i (KB) N

(MAC)
i

1 Conv. (7,1,3) (N,192,10) ReLU 150 7,81 26 880
2 Ave pool. (3,1,0) (N,190,10) - 0 7,50 -
3 Conv. (7,1,3) (N,190,20) ReLU 1420 17,66 266 000
4 Ave pool. (3,1,0) (N,188,20) - 0 14,84 -
5 Conv. (7,1,3) (N,188,30) ReLU 4230 30,35 789 600
6 Ave pool. (3,1,0) (N,186,30) - 0 22,03 -
7 Conv. (7,1,3) (N,186,20) ReLU 4220 30,08 781 200
8 Ave pool. (3,1,0) (N,184,20) - 0 14,53 -
9 Conv. (7,1,3) (N,184,2) ReLU 282 14,93 51 520

7.3 Data
Network training is typically one of the most time-consuming phases in constructing
a neural network for practical application. It requires specialized hardware such as
GPUs and plenty of relevant training data. In the context of this work, processor
cycle counts of fixed-point NN inferences were considered attractive. It was also
monitored that the accuracy of the fixed-point inference accelerated in DSP was not
substantially worse than the floating-point reference. Measuring this information
does not necessarily require accelerating trained networks. Thus, models are not
trained, and real-life data is not used because it is not necessary for the scope of this
thesis. Random values generated from the standard normal distribution were used
as input data for the models, i.e.

x ∼ N (µ, σ2), where µ = 0 and σ = 1. (7.6)
A typical workflow with NNs includes input data scaling as a part of the preprocessing
step. It ensures that training can be executed more effectively and gradient-based
methods converge faster, even in cases where the range of values in the input data
is wide [2]. This scaling can be carried out using many approaches, such as min-
max normalization or standardization. Values generated from standard normal
distribution have comparable statistical properties as any data set converted to a
standard score by standardization.

Because models in this work are not trained, also network parameters must be
generated for experiments. To ensure that the network activation values remain
finite, well known neural network weight initializing strategies were employed. In
layers applying ReLU activation function, Kaiming initialization stategy [73] is used,
i.e. the kernel weight values are generated from uniform distribution:

ω ∼ U(−a, a), where a =
⌜⃓⃓⎷ 2

(1 + c2)N (in)
i

, (7.7)



69

c is the negative slope of the ReLU activation, in stardard ReLU c = 0. Layers
applying other activation than ReLU, Xavier initialization strategy [74] is employed

ω ∼ U(−a, a), where a =
⌜⃓⃓⎷ 6

N
(in)
i + N

(out)
i

. (7.8)

N
(in)
i and N out

i are number of incoming and outgoing network connections of the ith
layer, respectively. For convolution layers they equal

N
(in)
i = FiC

(in)
i and N

(out)
i = FiC

(out)
i . (7.9)

Bias parameters are initialized using identical distributions as the weights.

7.4 Metrics
The performance of the real-time inferences is measured in DSP processor cycles.
Cycle counts are recorded in a performance-accurate simulator. Cycle-count recording
is started when all required data and the program code are available in the internal
memory of DSP, and the inference function described in Algorithm 3 is called.
Because the cycle counts in this work are recorded in the simulator, they do not
necessarily take into account all effects in the hardware that affect the total cycle
counts. However, the simulated cycle counts provide reliable lower-bound estimates
for the inference latency times in the SoC. They can be applied in evaluating the
feasibility of the solutions in practical applications.

For each individual cycle-count result, the inference was executed 100 times in
the simulator using new data set for every iteration. Before executing simulations, it
was manually verified that each version of the DSP code gives an identical output
when the same data set is inserted. The reported cycle counts are arithmetic means
from those 100 iterations. Because absolute cycle counts and latency times are
confidential information, they are not reported in Section 8.2 that discusses the
performance of the implementation. Instead differences in percentages compared to
the starting point of the optimization, i.e. the fully-scalar portable reference, are
reported.

Because all models are converted to fixed-point format before running the
inferences in DSP, some information loss inevitably occurs. The obtained outputs
are compared with the floating-point reference outputs to verify that the quantized
inference output is still valid. Three key statistics are recorded based on the feature
vectors extracted by the models for each iteration, which are reported in Section 8.1.
Before determining these statistics, the fixed-point output of the DSP inference is
converted back to floating-point format. Maximum Absolute Error (MaxAE)
and Mean Squared Error (MSE) are used to distinguish some possibly incorrect
elements in the DSP inference output:

MaxAE = max
i
|ei| = max

i
|yi − ŷi| (7.10)

MSE = 1
n

n∑︂
i

e2
i = 1

n

n∑︂
i

(yi − ŷi)2 (7.11)



70

Floating-point
reference output

Fixed-point
output from DSP

Convert to
floating
-point

Class 1

Class 2

Class 3

Class 4

Class 1

Class 2

Class 3

Class 4

Insert both
outputs separately

One fully-connected
layer

Softmax-
activation
function

Compare
classes

Model
consistency

Figure 7.1: An overview of the procedure to compare the fixed-point real-time
inference output and floating-point reference output using a simple NN classifier.

,where i covers all indices of the output and y is the output of the floating-point
reference model, and ŷ is the output of the real-time DSP inference. It is essential to
eliminate possible programming faults in the DSP implementations and detect the
integer overflow caused by suboptimal quantization parameter choices. The purpose
was not to avoid any overflow happening because, in many cases, they might not
have that severe effect on the overall correctness of the model. However, it was
necessary to distinguish if the model quantization caused some apparent deviation
from the floating-point reference that could be avoided by adjusting the quantization
parameters.

The third statistic, model consistency, measures the usefulness of the fea-
ture vectors the models provide as an output. The feature vectors are fed to a
fully-connected layer with the Softmax activation function, which performs a simple
classification to four classes. The procedure is illustrated in Figure 7.1. The layer
weights are random weights generated using distributions described in Section 7.3.
The classification is done with floating-point numbers using the PyTorch DL toolbox.
The reported model consistencies are the percentages of iterations, where the classifi-
cation result performed using the DSP inference feature vector, and floating-point
reference feature vector agree.



Chapter 8

Evaluation

The previous two chapters thoroughly explain the procedure to build and evaluate
the DSP implementation. The metrics for measuring the correctness of the results as
well as the execution performance were introduced in Section 7.4. The performance
evaluations for the five test models are reported in this Chapter using these metrics.
The content of this Chapter can be divided into three different parts. In the first
part, the correctness of the DSP inference results is evaluated and discussed. In the
second part, the computational performance is evaluated based on the cycle counts
measured in the software simulator. Lastly, a summary of the evaluation is provided.

8.1 Quantization and model correctness
As a part of the performance evaluation process, the correctness and usefulness of
the DSP inference output are evaluated. Before real-time inference implementations
were executed in the target DSP, they were quantized to fixed-point format using
the procedure explained in Section 6.2. The obtained amounts of guard bits, as well
as Q-formats for layer inputs/outputs and network parameters for all test models,
are reported in Table 8.1. The Table shows parameters for only convolution layers,
as the framework is designed so that the quantization format can only change in
convolution layers. Representative data set was generated from the distribution
discussed in Section 7.3, and the size of the data set was 1000 samples for each model.
When measuring computational performance, the reported Q-formats were used in
all DSP inference executions.

The Q-formats obtained with the Algorithm 2 are pretty consistent. Input
data has the same format Q6.10 in all models because identically generated input
data was used. Kernel parameters apply the same number of fractional bits in
almost all models and layers. It suggests that layerwise determination of quantization
parameters is unnecessary in this case. The same format for inputs, activations
and parameters could have been used throughout the network. In this case Q6.10
for input data and activations, Q2.14 for kernel parameters and Q8.24 for bias
parameters. However, layerwise quantization formats might be a good idea when
real-life data and trained parameters are used. Especially when fewer bit numbers
are applied, layerwise quantization is probably necessary. The models should be

71



72

Table 8.1: Quantization parameters for test models A-E obtained with Algorithms 1
and 2 with representation data set of size 1000 samples. Only convolution layers are
included, other layers does not affect quantization format.

Model Layer, i Input Kernel Bias Output Post shift

Model A 1 Q6.10 Q1.15 Q7.25 Q5.11 14

Guard bits: 4 3 Q5.11 Q1.15 Q6.26 Q4.12 14
5 Q3.13 Q1.15 Q5.27 Q3.13 14

Model B 1 Q6.10 Q2.14 Q8.24 Q5.11 13
Guard bits: 3 3 Q5.11 Q1.15 Q6.26 Q3.13 13

Model C
1 Q6.10 Q1.15 Q7.25 Q6.10 15

Guard bits: 3
3 Q6.10 Q1.15 Q7.25 Q6.10 15
5 Q6.10 Q1.15 Q7.25 Q5.11 14
7 Q5.11 Q1.15 Q6.26 Q4.12 14

Model D 1 Q6.10 Q1.15 Q7.25 Q6.10 15

Guard bits: 3 3 Q6.10 Q1.15 Q7.25 Q6.10 15
5 Q6.10 Q1.15 Q7.25 Q5.11 14

Model E

1 Q6.10 Q2.14 Q8.24 Q6.10 14

Guard bits: 4

3 Q6.10 Q1.15 Q7.25 Q5.11 14
5 Q5.11 Q1.15 Q6.26 Q4.12 14
7 Q4.12 Q1.15 Q5.27 Q4.12 15
9 Q4.12 Q1.15 Q5.27 Q3.13 14

tested with trained parameters and actual input data to increase the reliability of
the quantization.

The number of guard bits is determined with Algorithm 1, and it turns out that a
pretty moderate number of guard bits, 3-4 bits, are used with all models. When 16-bit
fixed-point data and parameters are randomly generated from known distributions, it
seems that more guard bits are not needed. The quantization procedure is probably
robust enough for many deep learning applications. It should be noted that when
the quantization strategy of this implementation is applied, data outliers have the
same effect as the guard bits. They increase the number of integer bits in the input
and activation formats and thus decrease the fixed-point model resolution. The
robustness against outliers can be increased by modifying Algorithm 2 to use some
percentile containing most of the values instead of the largest absolute values. Thus
the most extreme outliers could be left outside when determining the amounts of
integer and fractional bits.

Table 8.2 reports the Model consistencies, Maximum Absolute Error (MaxAE)
and Mean Squared Error (MSE) for test models A-E. The measured values are
obtained from all iterations executed to measure the computational performance
of different implementation versions. The Table includes minimum, maximum and
average values for MaxAE and MSE. From MaxAEs and MSEs can be seen that



73

Table 8.2: Model consistencies, Maximum Absolute Error (MaxAE) and Mean
Squared Error (MSE).

Model Number of Model MaxAE MSEiterations consistency

Model A 7 500 99.48 %
Min. 2.93 · 10−3 1.26 · 10−6

Avg. 1.28 · 10−2 3.01 · 10−5

Max. 3.58 · 10−2 2.18 · 10−4

Model B 7 500 99.69 %
Min. 6.40 · 10−3 5.06 · 10−6

Avg. 1.89 · 10−2 1.31 · 10−4

Max. 6.61 · 10−2 1.22 · 10−3

Model C 7 500 99.96 %
Min. 8.88 · 10−4 8.75 · 10−8

Avg. 9.70 · 10−3 4.16 · 10−6

Max. 1.55 · 10−1 2.01 · 10−4

Model D 4 300 100 %
Min. 2.77 · 10−4 9.00 · 10−9

Avg. 1.34 · 10−3 4.98 · 10−7

Max. 3.57 · 10−3 2.17 · 10−6

Model E 2 700 99.81 %
Min. 1.12 · 10−3 2.08 · 10−7

Avg. 1.32 · 10−2 3.67 · 10−6

Max. 7.39 · 10−2 3.30 · 10−5

the accuracy of the fixed-point model is quite good. MSEs indicate that even the
absolute values of the outputs are accurate, which is not even that necessary when
CNNs are used as feature extractors. On average highest error rates in terms of MSE
are reported with models A and B. Those models employ only the Sigmoid activation
function, which is heavily approximated in the DSP implementations as discussed in
Section 6.3.3. Approximation causes a further decrease in accuracy in addition to
quantization. However, the observed values indicate that using approximation is still
a suitable option if Sigmoid activation is necessary to apply.

The model correctness was applied to evaluate the quantized models’ usefulness
as feature extractors. Overall, the results reveal that the DSP implementation can be
used without significantly decreasing classification consistency with all five models.
As seen from model consistencies in Table 8.2, the implementation can reproduce the
predictions of the floating-point model generally very well. Model A has the lowest
consistency of 99.48 %, still indicating excellent agreement with the reference. With
Model D the DSP inference even agrees with floating-point inference perfectly.

With good network design combined with parameter regularization and data
normalization, even much fewer bits than 16-bits would be enough. For example, an
8-bit fixed point option could be an option. It would have an advantageous effect
on computational performance and significantly decrease memory consumption and
required memory bandwidths. However, the target hardware in this work does not
support 8-bit numbers that well. In addition, the experiments simulate only the



74

performance of the DSP inference from the point where all data is available in the
DSP internal memory, so it is not suitable to study, for example, limited memory
bandwidth related issues.

8.2 Performance optimization
This Section characterizes the procedure of how the processor cycle counts of the
DSP inference is incrementally optimized. The starting of the process was a portable,
fully-scalar version of the inference algorithm, where no DSP intrinsics were used.
Different inference algorithm versions are illustrated in Table 8.3. A part of the
algorithm is vectorized and optimized to decrease cycle counts in each version. The
effects of vectorization with each version are evaluated by measuring processor cycles
consumed by the NN inference with all five models.

This section reports differences in cycle count between versions and the percent-
ages of cycles consumed in different parts of the inference algorithm.

Table 8.3: Summary of different DSP implementation versions.

Version Description(Label)

Version 1 Fully-scalar, portable reference implementation. Pure C++ version

(v1) applying only scalar operations. No DSP features used, thus in principle
can be ported to any device.

Version 2 Real-time input quantization from floating-point to fixed-point

(v2) representation is vectorized applying implementation described in [10].
All other inference parts still utilize only scalar operations.

Version 3 Convolution layers are vectorized using Algorithm 5 for Model D and

(v3) Algorithm 4 for rest of models. Pooling layers and activation functions
are still evaluated using only hardware-independent scalar operations.

Version 4 Vectorized pooling layers are added by applying Algorithm 6 or 7 for

(v4) models with average pooling layers, and 8 for models with max pooling
layers. Activation functions are evaluated using only scalar operations.

Version 5
Fully vectorized and optimized version. All suitable parts of the

(v5)
inferences are vectorized. Leaky ReLU and Sigmoid activation functions
apply SIMD by utilizing Algorithms 9-10, and normal ReLU follows
approach described in [10].

8.2.1 Scalar reference
The portable, fully-scalar implementation (Version 1) was profiled to determine
the number of cycles spent on different inference parts as a starting point for cycle
count optimization. Figure 8.1 illustrates the percentages of cycles spent processing
different parts of the inference in Version 1. The control overhead cycles are computed



75

0 20 40 60 80 100

Percentage of the total cycle count

Model E

Model D

Model C

Model B

Model A

Convolution

Pooling

Activation function

Input quantization

Control overhead

Figure 8.1: Version 1. Cycle count shares of different inference parts in portable,
fully-scalar implementation.

by subtracting the cycles of all inference functions from the total cycle count of the
DSP inference. In Figure 8.1, it can be seen very clearly that most cycles are spent
processing the convolution layers as expected. However, in small models such as
Models A and B, many cycles are also consumed in processing other network parts.
When the model is computationally heavy such as Models C and E, almost all cycles
are consumed in convolution layers. Model D is slightly different from other models
as roughly 25 per cent of cycles are consumed in input quantization. Model D has
the largest input data size, which explains the difference. Control overhead cycles
consume a tiny fraction of total cycle counts in all models. It indicates that applying
SIMD capabilities in the inference functions should effectively reduce cycle counts
and processing time.

8.2.2 Input quantization
The first optimization to the fully-scalar implementation is the vectorization of the
run-time input quantization. In Version 2, the scalar quantization function is replaced
by a vectorized one, which implementation is described detailed in [10]. All other
parts of the inference remain the same as in the portable, fully-scalar Version 1.
Input quantization was chosen as the first part to be vectorized because it has been
previously implemented, and reliable performance improvement was observed. As
seen from Figure 8.1, some models also consume a significant amount of clock cycles
in run-time quantization and thus should be vectorized in the early stage of this
process.



76

Table 8.4: Version 2. Cycle count reduction in input quantization function itself,
reduction in total inference cycles compared to fully-scalar reference (Version 1) and
total cycles left in Version 2 compared to Version 1.

Model A Model B Model C Model D Model E
Reduction in input -95.9 % -98.0 % -98,0 % -98.3 % -97.9 %quantization cycles
Reduction compared -7.4 % -7.7 % -1.7 % -25.9 % -0.1 %to total cycles of v1

Total cycles left 92.6 % 92.3 % 98.3 % 74.1 % 99.9 %compared to v1

Table 8.4 shows the performance results obtained in experiments with Version 2.
The Table consists of three different statistics for all models. The first row contains
the clock cycle reduction in per cent in vectorized input quantization compared to
the scalar implementation. As can be seen, the vectorized implementation is very
effective compared to the scalar one; in most models, roughly 98 % of cycles are
saved. The second row contains the reduction in total clock cycles of the inference
compared to the fully-scalar Version. From those numbers can be observed that
in Model D, total cycles are reduced significantly, over 25 %, which is somewhat
expected. In Models E and C, the input quantization does not consume many cycles,

0 20 40 60 80 100

Percentage of the total cycle count

Model E

Model D

Model C

Model B

Model A

Convolution

Pooling

Activation function

Input quantization

Control overhead

Figure 8.2: Version 2. Cycle count shares of different inference parts in implemen-
tation with vectorized input quantization.



77

even in Version 1, and thus the performance is only very minor. The third row gives
the clock cycles left compared to the full-scalar reference after the optimizations
performed in this stage are applied.

Figure 8.2 illustrates the percentages of cycles spent processing different parts
of the inference in Version 2. Vectorization seems to be adequate. Cycle counts
consumed to input quantization are minimized, even with Model D. It is even more
apparent at this stage that the cycle counts are primarily consumed in convolution
layers in all models tested in this work.

8.2.3 Convolution layers
The first vectorized part in the actual network inference is the convolution layer.
Other parts of the inference algorithm, i.e., pooling layers and activation functions,
still use the scalar versions of the functions. Two different implementations were
developed for the convolution layer as discussed in Section 4.3.1. The second approach
treating kernels as vectors (Algorithm 5) is applied with Model D, and the first
approach treating kernels as a separate coefficient (Algorithm 4) is applied with the
rest of the models. The obtained performance improvements with Version 3 are shown
in Table 8.5. As expected, the vectorization of convolution layers offers excellent
performance improvement because they are computationally the most intensive part
of the inferences. In models employing Algorithm 4 in vectorization, the reduction
in convolution layer clock cycles is well over 90 % in all models. With the smallest
model, Model A, the reduction is not as high as in Models B, C and E. Relatively
low number of arithmetic operations and small layer input dimensions does not
enable full utilization of SIMD features. In the heaviest model, Model E, Version
3 consumes only 6.5 % of cycles compared to Version 1, meaning that over 93 %
reduction in total cycles is achieved with only convolution layer vectorization. Most
performance improvement potential is thus achieved already at this stage. With
Models A-C, about 10 to 20 % clock cycles are still left in Version 3, which means that
vectorization of the other network parts probably significantly impacts performance.

Table 8.5 shows that in Model D, convolution layer optimization does not offer

Table 8.5: Version 3. Cycle count reduction in convolution layer functions, reduction
in total inference cycles compared to fully-scalar reference (Version 1) and total
cycles left in Version 3 compared to Version 1.

Model A Model B Model C Model D Model E
Reduction in conv. -94.1% -95.8 % -96.0 % -77.9 % -95.8 %layer cycles
Reduction compared -72.0 % -75.9 % -87.7 % -52.9 % -93.4 %to total cycles of v1

Total cycles left 20.5 % 16.4 % 10.6 % 21.1 % 6.5 %compared to v1



78

0 20 40 60 80 100

Percentage of the total cycle count

Model E

Model D

Model C

Model B

Model A

Convolution

Pooling

Activation function

Input quantization

Control overhead

Figure 8.3: Version 3. Cycle count shares of different inference parts in implemen-
tation with vectorized convolution layers.

a significant performance gain. Model D employs convolution layers with stride
parameters of more than one, which constraints to applying Algorithm 5. It treats
kernels as vectors and computes internal sums of vectors to obtain the inner products
of vectors. Algorithm 5 does not provide an optimal solution as the vectorized
version results in a cycle count reduction of only about 78 %. From Table 7.6
can be observed that in Model D the first convolution layer is computationally far
heavier than subsequent layers. It employs kernels of size 16, which means that
with Algorithm 5, the vectorization can be performed without any dummy values
occupying vector registers during computation. Despite this, the obtained speedups
are worse than other test models, and the solution should be reconsidered.

Figure 8.3 shows the percentage shares of cycle counts that different parts of
the inference consume. As can be observed, in Models A-C, most of the cycles are
consumed in other parts of the inference after the convolution layers are vectorized.
It suggests that there is still potential to improve performance by optimizing these
parts, i.e. pooling layers and activation functions. In Models D and E, convolution
layers consume most cycles even after SIMD is enabled. With these models, further
vectorization will not probably provide that good gain. Instead, convolution layers
should be optimized more.

8.2.4 Pooling layers
Three different approaches were developed to vectorize the pooling layers of the
models as a part of this work. These are discussed more in Section 4.3.2. Two of the



79

Table 8.6: Version 4. Cycle count reduction in pooling layer functions, reduction in
total inference cycles compared to fully-scalar reference (Version 1) and total cycles
left in Version 4 compared to Version 1.

Model A Model B Model C Model D Model E
Reduction in pool. -77.6 % -95.4 % -94.3 % -96.0 % -91.7 %layer cycles
Reduction compared -7.9 % -8.3 % -3.5 % -4.3 % -2.0 %to total cycles of v1

Total cycles left 12.7 % 8.1 % 7.0 % 16.8 % 4.5 %compared to v1

approaches, Algorithms 7 and 6 supports different stride parameters and execute
average pooling layers that are applied in Models A-B and E. Algorithm 8 applies
max pooling, which was used in Models C and D. As can be seen from the Figure 8.3
shown in the previous subsection, pooling layers consume second-highest number of
cycles in all models. They should be properly optimized in order to obtain powerful
DSP inference.

The observed changes in cycle count with Version 4 compared to previous
versions are shown in Table 8.6. Vectorization of the pooling layer brings significant
improvement in all models regardless of the used approach. Model A’s cycle count

0 20 40 60 80 100

Percentage of the total cycle count

Model E

Model D

Model C

Model B

Model A

Convolution

Pooling

Activation function

Input quantization

Control overhead

Figure 8.4: Version 4. Cycle count shares of different inference parts in implemen-
tation with vectorized pooling layers.



80

reduction in pooling layers is significantly lower than in other models, only about 78
%. Small models with short vector lengths do not benefit from vectorization that
well. With other models, vectorization reduces cycle count by over 90 % and Model
E offers the least performance improvement. Model E applies Algorithm 6, which
performs average pooling with stride one. It seems that Algorithms 7 and 8 that
apply pooling with stride S = 2 or S = 4 can be vectorized more effectively. These
results make it hard to distinguish any differences between max and average pooling.

Figure 8.4 visualizes the cycle count shares of Version 4 inference implementation.
It can be seen that in Models B-E, the share of pooling layers is very small after
vectorization. Thus, it is hard to improve performance with pooling layers without
optimizing other network parts. In the smallest model, Model A, the fraction of
pooling is higher mainly due to the ungrateful input dimensions for SIMD in the
pooling layers.

When only activations functions are the last part applying fully-scalar operations,
the model speedups are in the same order as the model computational loads if Model D
is excluded. Model D lacks speed up due to different convolution layer implementation
and has almost 17 % cycles left compared to the reference. The most excellent speedup
is obtained with Model E, with less than five per cent of the initial cycles left. As
seen from Figure 8.4 there is still optimization to be done in all test models applied
in this work.

8.2.5 Activation functions
Activation functions are the last part of the actual network inference, optimized as a
part of this work. Vectorized implementation for two different activation functions is
developed. Test models employ three different activation functions: Rectified Linear
Unit (ReLU), Leaky ReLU and Sigmoid. Leaky ReLU and Sigmoid are implemented
in this work, which is discussed in Section 6.3.3. Standard ReLU has already been
developed in [10] and the exact implementation is applied here.

In Figure 8.4 shown earlier can be seen easily that different activation functions
have different performances when scalar implementation is applied. Sigmoid in

Table 8.7: Version 5. Cycle count reduction in activation functions, reduction in
total inference cycles compared to fully-scalar reference (Version 1) and total cycles
left in Version 5 compared to Version 1.

Model A Model B Model C Model D Model E
Reduction in act. -81.9 % -93.8 % -96.0 % -94.0 % -93.9 %function cycles
Reduction compared -3.9 % -3.9 % -3.0 % -1.1 % -0.2 %to total cycles of v1

Total cycles left 8.7 % 4.2 % 4.0 % 15.7 % 4.3 %compared to v1



81

Models A-B and Leaky ReLU in Model C consume more cycles than normal ReLU
in models D-E. It is logical as the ReLU is a relatively simple activation function to
implement on hardware compared to the two other functions. Thus vectorization of
activation functions has good performance improvement potential in Models A-C.

Table 8.7 shows the reduction in cycle counts of the fully-vectorized implemen-
tation (Version 5) compared to the fully-scalar reference Version 1. The Table also
shows the percentage share of cycles left after all parts of the inference is vectorized
compared to the reference. As can be observed, all activation functions can be
optimized very effectively using SIMD features. The cycle count reduction in activa-
tion function cycle counts is from roughly 94 % up to 96 % in models B-E. Leaky
ReLU seems to utilize SIMD features the best, reaching the highest reduction in
clock cycles. However, marginals between different activation functions are relatively
small. Because Model A is very compact, it cannot utilize SIMD that well, and the
reduction is only a bit over 80 %.

As expected, the overall gain in total cycle count reduction is relatively low
because activation functions are not computationally the heaviest part of the inference.
In models that apply Leaky ReLU and Sigmoid, the contribution is roughly 3-4 %
of the total cycle counts of the scalar reference. The cycle reduction is significantly
lower in Models D and E applying ReLU. Compared to the starting point, the total
cycles left vary from Model A’s 4.0 % to Model D’s 15.7 %.

Figure 8.5 shows the cycle count shares of different inference parts in Version 5.
Compared to the shares in scalar reference in Figure 8.1, the optimized implementation
of Models B-E is well balanced, indicating that the SIMD features benefit all parts

0 20 40 60 80 100

Percentage of the total cycle count

Model E

Model D

Model C

Model B

Model A

Convolution

Pooling

Activation function

Input quantization

Control overhead

Figure 8.5: Version 5. Cycle count shares of different inference parts in fully-
vectorized implementation.



82

of the inference relatively evenly. In Models D-E, convolution layers consume over 95
% of cycles, so the only potential to optimize further is to improve convolution layer
implementation. In Model B and especially in Model A, the shares of other parts
other than the convolution layer have increased significantly during vectorization. It
indicates that other parts are more ineffective than convolution layers and that the
control overhead has increased. With compact models such as model A, processing
multiple input samples, i.e. batching, could improve performance. Activation
functions are elementwise functions, and thus all input samples can be processed as
one long vector when multiple input samples are processed in one batch.

8.2.6 Batching
The previous four subsections discussed the optimization of the DSP inference by
minimizing cycle counts by applying different SIMD methods introduced in Section
6.3. The cycle counts of computationally intensive functions such as convolution layer
are reduced dramatically. The robust implementation of inference functions results
in some increased control overhead in smaller models that can be observed easily
from Figure 8.5. Increasing the number of input samples processed per DSP job
could better utilize the computation resources. At this point, each implementation
has processed inference for one input sample at a time. In this subsection, the
fully-vectorized DSP inference is accelerated using different batch sizes up to 32
input samples, and the obtained results are evaluated. When multiple input samples

Table 8.8: Total cycles left when processing a different number of input samples in one
batch using the fully-vectorized version compared to fully-scalar reference (Version
1) processing batch size of one input sample. In brackets, the cycle count reduction
is reported compared to the fully-vectorized inference (Version 5) processing batch
size of one input sample.

Batch size Model A Model B Model C Model D Model E

1 8.7 % 4.2 % 4.0 % 15.7 % 4.3 %
(0.0 %) (0.0 %) (0.0 %) (0.0 %) (0.0 %)

2 7.1 % 4.0 % 4.0 % 15.7 % 4.2 %
(-18.6 %) (-4.0 %) (-1.7 %) (-0.3 %) (-1.5 %)

4 6.3 % 4.0 % 4.0 % 15.4 % 4.1 %
(-28.0 %) (-5.9 %) (-2.5 %) (-1.7 %) (-3.5 %)

8 5.9 % 3.8 % 3.9 % - 4.1 %
(-32.6 %) (-9.8 %) (-2.9 %) (-) (-4.6 %)

16 5.6 % 3.8 % 3.7 % - -
(-35.1 %) (-10.3 %) (-7.1 %) (-) (-)

32 5.5 % - 3.7 % - -
(-36.3 %) (-) (-7.6 %) (-) (-)



83

are processed applying batching, the total number of inference function calls and
conditional jumps in Algorithm 3 are reduced. Input quantization and all activation
functions applied in this work are elementwise functions. Batching can improve
DSP utilization with small models because it enables the processing of entire vector
registers.

Table 8.8 shows the cycle counts left per input sample using different batch
sizes compared to Version 1 processing one input sample. The results are obtained
by dividing the entire batch’s cycle counts by the number of input samples. In
this work, the maximum batch size is 32. With Models B, D and E, only limited
batch sizes can be applied because the entire input batch, all model parameters and
intermediate results must fit in the internal memory of the DSP at the same time. As
can be observed, the significant speedup from batching can be obtained with compact
models. With the smallest model, Model A, almost 40 % cycle count reduction is
observed when 32 input samples are processed with batching instead of one input
sample. The reduction is much smaller with larger models, but all models are faster
when batching is applied. As can be observed, the effect of batching saturates quite
fast, and there is no point to increase batch sizes limitless. Even with small models,
the most benefit from batching is achieved already with a batch size of 16.

Figure 8.6 shows the cycle count shares in different models when the batch size
is the maximum possible amount of input samples. Increasing batch size has the
desired effect of minimizing the share of cycles consumed by the control code and
maximizing the time spent on useful computation. Cycles spent to control code
almost vanish when batching is applied. It also improves the DSP utilization in

0 20 40 60 80 100

Percentage of the total cycle count

Model E

Model D

Model C

Model B

Model A

Convolution

Pooling

Activation function

Input quantization

Control overhead

Figure 8.6: Cycle count shares of different inference parts in fully-vectorized imple-
mentation when maximum number of input samples is processed.



84

the activation functions and input quantization decreasing their cycle count shares,
especially in smaller models. The results indicate that batching can be a powerful
tool to minimize control overhead and improve DSP utilization in models with small
layer input/output, which otherwise would be difficult.

8.3 Evaluation summary
This work aims to implement a framework that enables the efficient accelerating of
1-D CNNs in the CEVA-XC4500 digital signal processor. The framework includes an
offline network parameter quantization procedure and real-time input quantization
from floating-point values to fixed-point values. The applied quantization procedure
behaves well and can be used without a notable accuracy decrease. The procedure was
thoroughly tested with all five models using randomized input data and parameters.
The obtained results are robust and accurate and show almost perfect consistency with
the floating-point reference model. However, the quantization should be adequately
tested with real-life data and trained parameters, which was not in the scope of this
work. An approximation of the Sigmoid activation function was applied in two test
models. It might be a potential source of inaccuracy in addition to quantization.
However, it was observed that activation function approximation did not cause a
significant accuracy decrease. Based on the experiences of this work, the quantization
procedure should behave very well with any carefully built CNN model.

Five different network inference implementation versions with increasing order of
vectorization were tested using five test models. All versions were designed such that

v1 v2 v3 v4 v5

Version

0

10

20

30

40

50

60

70

80

90

100

C
y
cl

e
co

u
n
ts

le
ft

(%
)

1 2 4 8 16 32

Batch size

0

4

8

12

16

20

Model A

Model B

Model C

Model D

Model E

Figure 8.7: Left: Share of total cycles left in different implementation versions after
inference parts are increasingly vectorized compared to the starting point, fully-scalar
reference (v1). Right: Total cycles left for fully-vectorized version (v5) with different
batch sizes compared to the starting point, fully-scalar reference (v1).



85

they provide comparable, bit-exact outputs. The performance evaluations presented
in this Section show that every part of the network inference can be optimized
effectively using the SIMD features the target DSP supports. Figure 8.7 illustrates
the relative cycle counts of different implementation versions compared to the scalar
reference implementation (v1), i.e. the cycle counts of v1 equals to 100 %. The
Figure also shows the relative cycle counts for the fully-vectorized version (v5) with
different batch sizes. As can be seen, vectorization of each inference part separately
significantly improves models’ end-to-end performance. Because all test models
consume most of the clock cycles in convolution layers, vectorization of those layers
has the greatest impact in all cases.

Apparent differences in performance between models can be observed. Models
B, C and E perform similarly and obtain almost identical relative performance after
optimizations. With Model A, the SIMD approach cannot utilize a similar reduction
in cycle counts. It is the most petite model with a lower computational load than
other models and revealed worse performance in all inference functions, i.e. network
inference parts. It seems that vectorization can be done effectively only when the
layer input dimensions are large enough and the models have enough computational
load. Then, most clock cycles are spent on the sequential parts controlling the
inference workflow instead of the inference parts that execute the actual inference
arithmetic, which can be parallelized with vector operations.

Model A is the only model that benefits from batching, i.e. processing multiple
input samples combined. It indicates that batching can improve DSP utilization
in small models with a low computational load. Model D is the most challenging
model for optimization. It uses Algorithm 5 to process convolution layers that do
not provide optimal performance. Algorithm 5 was also tested with other models
than D, but due to the superior performance of Algorithm 4, the results are not
even included here. It needs further investigation how a model that applies a stride
parameter greater than one can be accelerated faster in the target DSP.

Table 8.9 shows the obtained speedups compared to the fully-scalar reference
implementation with both batch size one and maximum possible batch size for the
given model. The developed DSP implementation achieves the best speedups with
Model C, resulting in 24.7 and 26.8 times fewer cycle counts than the scalar version
without batching and with batching, respectively. The worst speedups are achieved
with Model D, resulting in 6.4 and 6.5. As can be seen from the obtained speedups
of Models B, C and E; with a large enough model that supports Algorithm 4 in
convolution layers, the performance is very predictable.

As already discussed in Section 3.4 accelerating CNN inferences in a real-time

Table 8.9: Obtained speedups.

Model A Model B Model C Model D Model E
Without batching 11.5 23.8 24.7 6.4 23.5
With batching 18.0 26.5 26.8 6.5 24.6



86

context, and especially 1-D inferences, is quite a novel and immature field. It makes
comparing with literature examples challenging as not many comparable studies
are available. However, some closely related examples can be found. In [10] and
[9], MLP inferences were implemented and optimized for the same target DSP. The
observed speedup of 11.5 with Model A in this work is roughly in line with the
highest speedups achieved in those two previous works. Model A is the smallest of
the five models, and the computational load is the most comparable with the models
in those previous works. These previous works did not implement any larger models,
showing how the performance converges if the computational load of the inference is
increased. It should also be noted that Model A is a CNN, not MLP and the tested
models are rather different, making straightforward comparison challenging.

In [75] vectorized Frequency Offset Compensation (FOC) algorithm based on
finite impulse response (FIR) filter was developed for the same target DSP. As
the FIR filter is based on linear convolution, and the hardware implementation
of the FOC algorithm shares the key ideas with Algorithm 4 despite that the use
cases for the implementations are somewhat different. Speedups up to 26 were
observed, which is relatively close to speedups obtained with models B-C and E.
Both implementations are likely close to the limit, how high cycle count reduction
compared to portable scalar implementations can be achieved with vectorization
based optimization when this particular DSP is used.



Chapter 9

Conclusions

This work studies how effectively a state-of-the-art digital signal processor designed
for 5G physical layer processing can be utilized to accelerate convolutional neural
network inference. The author of this work designed, implemented and optimized
a one-dimensional convolutional neural network inference framework specifically
for CEVA-XC4500 DSP. The framework consists of an offline preprocessing part
implemented in Python, and a real-time inference part implemented in C++. The
preprocessing part includes quantizing the floating-point network parameters into
fixed-point representations and constructing a specific network configuration to
execute the real-time inference on the DSP.

The real-time part of the framework consists of the inference code, which
applies multiple DSP specific features to accelerate the neural network inference.
The optimized DSP code is designed to utilize the SIMD capabilities of the target
hardware to reduce the processor cycles required to process the inference significantly.
Compared to scalar reference implementation that does not utilize SIMD, up to 27
times faster inferences were achieved with optimized implementations. The results
indicate that the DSP can significantly accelerate inference computation with a
minimum accuracy decrease. However, highly tailored hardware implementation
restricts the NN model architecture. As properties of the model such as layer
parameters notably affect how well the SIMD features can be utilized, it might be
possible to get significant gains in inference performance with only modest changes
to the CNN architectures.

The developed framework shares ideas with the general-purpose inference frame-
works and the most specialized DSP algorithms investigated in previous works. The
framework supports only a single DSP and a single class of NN models instead of
a broader set of different hardware and a more comprehensive range of NN model
types. It makes the framework far more specialized than the general-purpose DL
frameworks, which typically support a more comprehensive range of DL model types
and different hardware such as mobile phones and embedded devices. At the same
time, the framework tries to offer some flexibility by supporting a wide range of
different network configurations. For example, the number of layers and their di-
mensions are almost freely configurable. It is more flexible than hard-coding the
implementation details to fit specific model architectures. The purpose is to enable

87



88

easy reuse of the same framework with different model sizes and layer configurations.
The obtained performance characteristics suggest that the increased flexibility does
not automatically lead to significant performance penalties. The key is to find the
appropriate balance between the flexibility of general-purpose frameworks and the
performance of highly hardware optimized and unscalable solutions.

From the beginning of this work, the DSP implementation is designed to be
compatible with the current software architecture, particularly the existing DSP job
system on the target SoC. The developed inference implementation is optimized
and evaluated entirely from the DSP point of view. The evaluation ignores any
potential performance bottlenecks in the end-to-end performance when the framework
is evaluated in the actual SoC context. An obvious continuation of this work would
be to consolidate the framework with an adequately trained model, evaluate the
combination as part of a complete signal processing chain, and study the framework’s
feasibility on the target SoC in authentic conditions.



Bibliography

[1] M. Enescu, 5G New Radio: A Beam-based Air Interface. John Wiley & Sons,
2020.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
Available: http://www.deeplearningbook.org. Accessed: 28 Jan 2022.

[3] T. Wang, C.-K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep learning for
wireless physical layer: Opportunities and challenges,” China Communications,
vol. 14, no. 11, pp. 92–111, 2017. Available: https://www.doi.org/10.1109/
CC.2017.8233654.

[4] M. Honkala, D. Korpi, and J. M. Huttunen, “DeepRx: Fully convolutional deep
learning receiver,” IEEE Transactions on Wireless Communications, vol. 20,
no. 6, pp. 3925–3940, 2021. Available: http://doi.org/10.1109/TWC.2021.3
054520.

[5] H. Sun, A. O. Kaya, M. Macdonald, H. Viswanathan, and M. Hong, “Deep
Learning Based Preamble Detection and TOA Estimation,” in 2019 IEEE
Global Communications Conference (GLOBECOM), pp. 1–6, 2019. Available:
https://doi.org/10.1109/GLOBECOM38437.2019.9013265.

[6] H. Huang, J. Yang, H. Huang, Y. Song, and G. Gui, “Deep Learning for Super-
Resolution Channel Estimation and DOA Estimation Based Massive MIMO
System,” IEEE Transactions on Vehicular Technology, vol. 67, no. 9, pp. 8549–
8560, 2018. Available: https://doi.org/10.1109/TVT.2018.2851783.

[7] T. O’Shea and J. Hoydis, “An Introduction to Deep Learning for the Physical
Layer,” IEEE Transactions on Cognitive Communications and Networking, vol. 3,
no. 4, pp. 563–575, 2017. Available: https://doi.org/10.1109/TCCN.2017.
2758370.

[8] S. Dörner, S. Cammerer, J. Hoydis, and S. t. Brink, “Deep Learning Based
Communication Over the Air,” IEEE Journal of Selected Topics in Signal
Processing, vol. 12, no. 1, pp. 132–143, 2018. Available: https://www.doi.or
g/10.1109/JSTSP.2017.2784180.

[9] T. Alonen, “Inference with a neural network in digital signal processing under
hard real-time constraints,” Master’s thesis, Aalto University, School of Electrical

89

http://www.deeplearningbook.org
https://www.doi.org/10.1109/CC.2017.8233654
https://www.doi.org/10.1109/CC.2017.8233654
http://doi.org/10.1109/TWC.2021.3054520
http://doi.org/10.1109/TWC.2021.3054520
https://doi.org/10.1109/GLOBECOM38437.2019.9013265
https://doi.org/10.1109/TVT.2018.2851783
https://doi.org/10.1109/TCCN.2017.2758370
https://doi.org/10.1109/TCCN.2017.2758370
https://www.doi.org/10.1109/JSTSP.2017.2784180
https://www.doi.org/10.1109/JSTSP.2017.2784180


90

Engineering, Jan 2020. Available: http://urn.fi/URN:NBN:fi:aalto-2020
01261880.

[10] J. Korvuo, “Multilayer Perceptron Inference Solution for Digital Signal Process-
ing on the Physical Layer,” Master’s thesis, Aalto University, School of Science,
Nov 2020. Available: http://urn.fi/URN:NBN:fi:aalto-2020122056371.

[11] H. Zimmermann, “OSI Reference Model - The ISO Model of Architecture for
Open Systems Interconnection,” IEEE Transactions on Communications, vol. 28,
no. 4, pp. 425–432, 1980. Available: https://www.doi.org/10.1109/TCOM.1
980.1094702.

[12] M. M. Ahamed and S. Faruque, “Propagation factors affecting the performance
of 5G millimeter wave radio channel,” in 2016 IEEE International Conference
on Electro Information Technology (EIT), pp. 0728–0733, 2016. Available:
https://www.doi.org/10.1109/EIT.2016.7535329.

[13] A. F. Molisch, Wireless communications. John Wiley & Sons, 2 ed., 2011.

[14] J. Ly Ponce, “Application of Autoencoders in pilot-based Channel Estimation for
5G Physical Uplink Shared Channel,” Master’s thesis, Aalto University. School
of Electrical Engineering, Jan 2021. Available: http://urn.fi/URN:NBN:fi:
aalto-202101311760.

[15] M. E. Morocho-Cayamcela, H. Lee, and W. Lim, “Machine learning for
5G/B5G mobile and wireless communications: Potential, limitations, and fu-
ture directions,” IEEE Access, vol. 7, pp. 137184–137206, 2019. Available:
https://doi.org/10.1109/ACCESS.2019.2942390.

[16] E. Zehavi, “8-PSK trellis codes for a Rayleigh channel,” IEEE Transactions
on Communications, vol. 40, no. 5, pp. 873–884, 1992. Available: https:
//www.doi.org/10.1109/26.141453.

[17] K. Hornik, “Approximation capabilities of multilayer feedforward networks,”
Neural networks, vol. 4, no. 2, pp. 251–257, 1991. Available: https://doi.or
g/10.1016/0893-6080(91)90009-T.

[18] D. Moolchandani, A. Kumar, and S. R. Sarangi, “Accelerating CNN Inference
on ASICs: A Survey,” Journal of Systems Architecture, vol. 113, p. 101887,
2021. Available: https://doi.org/10.1016/j.sysarc.2020.101887.

[19] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep Learning
with Limited Numerical Precision,” in Proceedings of the 32nd International
Conference on Machine Learning, vol. 37 of Proceedings of Machine Learning
Research, pp. 1737–1746, PMLR, 2015. Available: http://proceedings.mlr.
press/v37/gupta15.html.

http://urn.fi/URN:NBN:fi:aalto-202001261880
http://urn.fi/URN:NBN:fi:aalto-202001261880
http://urn.fi/URN:NBN:fi:aalto-2020122056371
https://www.doi.org/10.1109/TCOM.1980.1094702
https://www.doi.org/10.1109/TCOM.1980.1094702
https://www.doi.org/10.1109/EIT.2016.7535329
http://urn.fi/URN:NBN:fi:aalto-202101311760
http://urn.fi/URN:NBN:fi:aalto-202101311760
https://doi.org/10.1109/ACCESS.2019.2942390
https://www.doi.org/10.1109/26.141453
https://www.doi.org/10.1109/26.141453
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/j.sysarc.2020.101887
http://proceedings.mlr.press/v37/gupta15.html
http://proceedings.mlr.press/v37/gupta15.html


91

[20] CEVA, “CEVA Deep Neural Network (CDNN),” 2015. Software available:
https://www.ceva-dsp.com/product/ceva-deep-neural-network-cdnn/.
Accessed: 28 Jan 2022.

[21] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan, G. Yang,
and D. Qian, “The Deep Learning Compiler: A Comprehensive Survey,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 3, p. 708–727,
2021. Available: http://doi.org/10.1109/tpds.2020.3030548.

[22] T. Gruber, S. Cammerer, J. Hoydis, and S. t. Brink, “On deep learning-based
channel decoding,” in 2017 51st Annual Conference on Information Sciences
and Systems (CISS), pp. 1–6, 2017. Available: https://www.doi.org/10.110
9/CISS.2017.7926071.

[23] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode linear codes using
deep learning,” in 2016 54th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pp. 341–346, 2016. Available: https:
//www.doi.org/10.1109/ALLERTON.2016.7852251.

[24] W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133,
1943. Available: https://doi-org/10.1007/BF02478259.

[25] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep Neural
Networks for Acoustic Modeling in Speech Recognition: The Shared Views
of Four Research Groups,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 82–97, 2012. Available: http://doi.org/10.1109/MSP.2012.2205597.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” in Advances in Neural Information
Processing Systems, vol. 25, 2012. Available: https://proceedings.neurips.
cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[27] F. Rosenblatt, “The perceptron: a probabilistic model for information storage
and organization in the brain,” Psychological review, vol. 65, no. 6, pp. 386–408,
1958. Available: https://doi.org/10.1037/h0042519.

[28] S. Shanmuganathan, “Artificial neural network modelling: An introduction,”
in Artificial Neural Network Modelling, vol. 628 of Studies in Computational
Intelligence, pp. 1–14, Springer, 2016. Available: https://doi.org/10.1007/
978-3-319-28495-8_1.

[29] S. Linnainmaa, “The representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors,” Master’s thesis
(in Finnish), University of Helsinki, Department of Computer Science, 1970.

https://www.ceva-dsp.com/product/ceva-deep-neural-network-cdnn/
http://doi.org/10.1109/tpds.2020.3030548
https://www.doi.org/10.1109/CISS.2017.7926071
https://www.doi.org/10.1109/CISS.2017.7926071
https://www.doi.org/10.1109/ALLERTON.2016.7852251
https://www.doi.org/10.1109/ALLERTON.2016.7852251
https://doi-org/10.1007/BF02478259
http://doi.org/10.1109/MSP.2012.2205597
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1037/h0042519
https://doi.org/10.1007/978-3-319-28495-8_1
https://doi.org/10.1007/978-3-319-28495-8_1


92

[30] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.
Available: https://doi.org/10.1038/323533a0.

[31] J. L. McClelland, D. E. Rumelhart, and PDP Research Group, Parallel
distributed processing: explorations in the microstructure of cognition, vol. 2.
MIT Press, 1986.

[32] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” in
3rd International Conference for Learning Representations, 2015. Available:
https://arxiv.org/abs/1412.6980.

[33] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” The
Journal of Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014.
Available: https://jmlr.org/papers/v15/srivastava14a.html.

[34] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko, “Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2018. Available:
https://doi.org/10.1109/CVPR.2018.00286.

[35] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” arXiv preprint, 2017. Available:
https://arxiv.org/abs/1704.04861.

[36] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and <0.5MB model size,” arXiv preprint, 2016. Available: https://arxiv.or
g/abs/1602.07360.

[37] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,” 2015.
Software available: https://tensorflow.org. Accessed: 28 Jan 2022.

[38] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd, 2017.

[39] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-
tala, “PyTorch: An Imperative Style, High-Performance Deep Learning Library,”

https://doi.org/10.1038/323533a0
https://arxiv.org/abs/1412.6980
https://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1109/CVPR.2018.00286
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1602.07360
https://tensorflow.org


93

in Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035,
2019. Available: http://papers.neurips.cc/paper/9015-pytorch-an-impe
rative-style-high-performance-deep-learning-library.pdf.

[40] J. Howard and S. Gugger, “FastAI: A Layered API for Deep Learning,” Infor-
mation, vol. 11, no. 108, 2020. Available: https://doi.org/10.3390/info11
020108.

[41] “ONNX: Open Neural Network Exchange.” Software available: https://onnx
.ai. Version 1.9.0. Accessed: 27 Jan 2022.

[42] S. Jagannathan, M. Mody, and M. Mathew, “Optimizing convolutional neural
network on DSP,” in 2016 IEEE International Conference on Consumer Elec-
tronics (ICCE), pp. 371–372, 2016. Available: https://doi.org/10.1109/IC
CE.2016.7430652.

[43] G. Zeng, X. Hu, and Y. Chen, “Optimizing Convolution Neural Network on
the TI C6678 multicore DSP,” MATEC Web Conf., vol. 246, 2018. Available:
https://doi.org/10.1051/matecconf/201824603044.

[44] N. P. Jouppi, C. Young, N. Patil, D. Patterson, et al., “In-datacenter per-
formance analysis of a tensor processing unit,” in Proceedings of the 44th An-
nual International Symposium on Computer Architecture, 2017. Available:
https://doi.org/10.1145/3079856.3080246.

[45] T. Chen, T. Moreau, Z. Jiang, L. Zheng, et al., “TVM: An Automated End-
to-End Optimizing Compiler for Deep Learning,” in 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), pp. 578–594,
USENIX Association, 2018. Available: https://www.usenix.org/conferenc
e/osdi18/presentation/chen.

[46] N. Rotem, J. Fix, S. Abdulrasool, S. Deng, et al., “Glow: Graph Lowering
Compiler Techniques for Neural Networks,” arXiv preprint, 2018. Available:
http://arxiv.org/abs/1805.00907.

[47] D. Lin, S. Talathi, and S. Annapureddy, “Fixed Point Quantization of Deep
Convolutional Networks,” in Proceedings of The 33rd International Conference on
Machine Learning, vol. 48 of Proceedings of Machine Learning Research, pp. 2849–
2858, 2016. Available: https://proceedings.mlr.press/v48/linb16.html.

[48] CEVA, “CEVA-XC4500 Architecture Specification Volume I,” Dec 2018.

[49] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998. Available: https://doi.org/10.1109/5.726791.

[50] “CS231n Convolutional Neural Networks for Visual Recognition.” Course ma-
terial, Stanford University, 2021. Available: https://cs231n.github.io.
Accessed: 28 Jan 2022.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.3390/info11020108
https://doi.org/10.3390/info11020108
https://onnx.ai
https://onnx.ai
https://doi.org/10.1109/ICCE.2016.7430652
https://doi.org/10.1109/ICCE.2016.7430652
https://doi.org/10.1051/matecconf/201824603044
https://doi.org/10.1145/3079856.3080246
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
http://arxiv.org/abs/1805.00907
https://proceedings.mlr.press/v48/linb16.html
https://doi.org/10.1109/5.726791
https://cs231n.github.io


94

[51] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman,
“1D convolutional neural networks and applications: A survey,” Mechanical
systems and signal processing, vol. 151, p. 107398, 2021. Available: https:
//doi.org/10.1016/j.ymssp.2020.107398.

[52] R. U. Acharya, H. Fujita, O. S. Lih, Y. Hagiwara, J. H. Tan, and M. Adam,
“Automated detection of arrhythmias using different intervals of tachycardia ECG
segments with convolutional neural network,” Information Sciences, vol. 405,
pp. 81–90, 2017. Available: https://doi.org/10.1016/j.ins.2017.04.012.

[53] O. Abdeljaber, O. Avci, M. S. Kiranyaz, B. Boashash, H. Sodano, and D. J.
Inman, “1-D CNNs for structural damage detection: Verification on a structural
health monitoring benchmark data,” Neurocomputing, vol. 275, pp. 1308–1317,
2018. Available: https://doi.org/10.1016/j.neucom.2017.09.0699.

[54] L. Eren, T. Ince, and S. Kiranyaz, “A Generic Intelligent Bearing Fault Di-
agnosis System Using Compact Adaptive 1D CNN Classifier,” Journal of
Signal Processing Systems, vol. 91, no. 2, pp. 179–189, 2019. Available:
https://doi.org/10.1007/s11265-018-1378-3.

[55] W. Zhang, C. Li, G. Peng, Y. Chen, and Z. Zhang, “A deep convolutional
neural network with new training methods for bearing fault diagnosis under
noisy environment and different working load,” Mechanical Systems and Signal
Processing, vol. 100, pp. 439–453, 2018. Available: https://doi.org/10.101
6/j.ymssp.2017.06.022.

[56] C. S. Burrus, Fast Fourier Transforms. OpenStax CNX, 2012. Available:
http://cnx.org/content/col10550/1.22.

[57] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and
E. Shelhamer, “cuDNN: Efficient Primitives for Deep Learning,” arXiv preprint,
2014. Available: https://arxiv.org/abs/1410.0759.

[58] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional networks
through FFTs,” in 2nd International Conference on Learning Representations,
ICLR 2014, 2014. Available: https://arxiv.org/abs/1312.5851.

[59] J. L. Hennessy and D. A. Patterson, Computer Architecture: A quantitative
approach. Morgan Kaufmann, 5 ed., 2011.

[60] J. P. Shen and M. H. Lipasti, Modern processor design: fundamentals of
superscalar processors. Waveland Press, Inc., 1 ed., 2013.

[61] R. Oshana, DSP for Embedded and Real-Time Systems. Newnes, 2012.

[62] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux device drivers. O’Reilly
Media, Inc., 3 ed., 2005.

https://doi.org/10.1016/j.ymssp.2020.107398
https://doi.org/10.1016/j.ymssp.2020.107398
https://doi.org/10.1016/j.ins.2017.04.012
https://doi.org/10.1016/j.neucom.2017.09.0699
https://doi.org/10.1007/s11265-018-1378-3
https://doi.org/10.1016/j.ymssp.2017.06.022
https://doi.org/10.1016/j.ymssp.2017.06.022
http://cnx.org/content/col10550/1.22
https://arxiv.org/abs/1410.0759
https://arxiv.org/abs/1312.5851


95

[63] L. Tan and J. Jiang, Digital Signal Processing: Fundamentals and Applications.
Academic Press, 3 ed., 2018.

[64] IEEE, “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2019
(Revision of IEEE 754-2008), pp. 1–84, 2019. Available: https://doi.org/10
.1109/IEEESTD.2019.8766229.

[65] R. Yates, “Fixed-Point Arithmetic: An Introduction.” Digital Sound Labs, 2001.
Available: https://www.cpplab.net/web/dsp/fp.pdf.

[66] CEVA, “CEVA-XC4500 Architecture Specification Volume III (MSS),” Dec
2018.

[67] CEVA, “CEVA-XC4500 Methodology for Optimal Vectorization Application
Note,” Oct 2014.

[68] CEVA, “CEVA-XC4500 Architecture Specification Volume II,” Dec 2018.

[69] V. Rajagopal, C. K. Ramasamy, A. Vishnoi, R. N. Gadde, N. R. Miniskar, and
S. K. Pasupuleti, “Accurate and Efficient Fixed Point Inference for Deep Neural
Networks,” in 2018 25th IEEE International Conference on Image Processing
(ICIP), pp. 1847–1851, 2018. Available: https://doi.org/10.1109/ICIP.201
8.8451268.

[70] M. Cococcioni, F. Rossi, E. Ruffaldi, and S. Saponara, “Fast Approximations of
Activation Functions in Deep Neural Networks when using Posit Arithmetic,”
Sensors, vol. 20, no. 5, 2020. Available: https://www.mdpi.com/1424-8220/2
0/5/1515.

[71] “ONNX Runtime,” 2021. Software available: https://onnxruntime.ai/.
Version 1.7.0. Accessed: 27 Jan 2022.

[72] S. Malek, F. Melgani, and Y. Bazi, “One-dimensional convolutional neural
networks for spectroscopic signal regression,” Journal of Chemometrics, vol. 32,
no. 5, p. e2977, 2018. Available: https://doi.org/10.1002/cem.2977.

[73] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification,” in 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), pp. 1026–1034, 2015. Available:
https://doi.org/10.1109/ICCV.2015.123.

[74] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” in Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics, vol. 9 of Proceedings of Ma-
chine Learning Research, pp. 249–256, PMLR, 2010. Available: https:
//proceedings.mlr.press/v9/glorot10a.html.

[75] T. Ebeling, “Frequency Offset Compensation in a 5G Base Station Receiver,”
Master’s thesis, Aalto University, School of Electrical Engineering, Nov 2019.
Available: http://urn.fi/URN:NBN:fi:aalto-201912226629.

https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://www.cpplab.net/web/dsp/fp.pdf
https://doi.org/10.1109/ICIP.2018.8451268
https://doi.org/10.1109/ICIP.2018.8451268
https://www.mdpi.com/1424-8220/20/5/1515
https://www.mdpi.com/1424-8220/20/5/1515
https://onnxruntime.ai/
https://doi.org/10.1002/cem.2977
https://doi.org/10.1109/ICCV.2015.123
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
http://urn.fi/URN:NBN:fi:aalto-201912226629


Appendix A

CEVA intrinsics

Table A.01: CEVA intrinsics with description applied in the pseudocodes of Chapter
6. Part 1.

CEVA intrinsic Description

v_load(ptr)
Loads 16 double-words from the memory address pointed by ptr,
and writes them to a vector register file addresses by the return
value.

v_load_clone(ptr) Loads 8 double-words from the memory address pointed by ptr,
and clones them identically into both VCUs.

v_load_vuX(ptr,i) Loads 8 double-words to destination VCU indicated by i
from the memory address pointed by ptr.

c_load(ptr)
Loads one double-word from the memory address pointed by ptr,
and writes the value as a coefficient to common register file
addresses by the return value.

v_store(k,a,ptr) Stores k first 16-bit words in vector a to a internal memory address
pointed by ptr.

v_store_vuX(k,a,ptr,i) Stores k first 16-bit words in source VCU of vector a to a internal
memory address pointed by ptr.

v_shift(a,k) Shifts the elements in vector pointed by a with k bits.

v_fill(c,pred) Fills the vector pointed by the return value with constant c. Atomic
operations can be controlled with vector predicate pred.

v_add(a,b,pred)
Performs inter-vector addition for vectors a and b. Second argument
can be also constant c, which is added to all elements in vector a.
Atomic operations can be controlled with vector predicate pred.

v_permute(a,cfg)
Performs shuffling for vector a based on indices in configuration
vector cfg. Vector cfg contains 16 4-bit indexes which define
positions (0 . . . 15) of words to be extracted from vector a.

96



97

Table A.02: CEVA intrinsics with description applied in the pseudocodes of Chapter
6. Part 2.

CEVA intrinsic Description

v_min(a,b)

Compares if elements in vector a are lower than elements in vector
b. Returns a vector containing lower elements, or a vector predicate
in which 1 indicates that the element is lower in vector a
and 0 otherwise.

v_max(a,b)

Compares if elements in vector a are greater than elements in
vector b. Returns a vector containing greater elements, or a
vector predicate in which 1 indicates that the element is greater
in vector a and 0 otherwise.

vv_mltply(a,g,K,b, h, L, pred)

Performs dot product for vectors a and b. K and L indicate word
part (LOW,HIGH) that is used from vectors a and b, respectively.
Similarly, constants g and h determine the offset in double-words
for the dot product and pred controls atomic operations.

vc_mltply(a, g, K, c, L, pred)
Performs dot product for vector a and constant c. K and L
indicate word part (LOW,HIGH) that is used from operands,
respectively. Constant g determines the offset in double-words
for the vector a and pred controls atomic operations.

vv_mac(a, g, K, b, h, L, o, pred)

Performs dot product for vectors a and b, and accumulates
the result with vector o. K and L indicate word part (LOW,
HIGH) that is used from operands, respectively. Constants
g ja h determines the offset in double-words for the vectors a
and b. Vector predicate pred controls atomic operations.

vc_mac(a, g, K, c, L, o, pred)

Performs dot product for vector a and constant c, and
accumulates the result with vector o. K and L indicate word
part (LOW, HIGH) that is used from operands, respectively.
Constant g determines the offset in double-words for the
vector a. Vector predicate pred controls atomic operations.

v_pack(a)
Performs packing of vector a containing 32 32-bit elements into
a vector of 32 16-bit element vector addressed by the return
value. By default LOW part of the elements is used.

v_move(g, c) Performs data move from value c to o a vector register file
addresses by the return value. Constant g determines the offset
in double-words for the operation.


	Abstract 
	Abstract (in Finnish)
	Preface
	Contents
	Abbreviations
	1 Introduction
	1.1 Structure

	2 Physical layer in wireless communication
	2.1 Wireless communication
	2.1.1 Channel model
	2.1.2 Transceiver

	2.2 Deep learning in physical layer processing
	2.2.1 Use cases in 5G physical layer


	3 Neural networks
	3.1 Neuron
	3.2 Connection architecture
	3.3 Training
	3.3.1 Forward propagation
	3.3.2 Loss function
	3.3.3 Backpropagation and optimization
	3.3.4 Regularization

	3.4 Inference
	3.4.1 Deep learning frameworks
	3.4.2 Deep learning compilers
	3.4.3 Quantization


	4 Convolutional neural networks
	4.1 Convolution
	4.2 Key concepts
	4.3 Architecture
	4.3.1 Convolution layer
	4.3.2 Pooling layer


	5 Digital signal processor
	5.1 Key concepts
	5.1.1 Parallelism
	5.1.2 Memory
	5.1.3 Fixed-point representation

	5.2 CEVA-XC4500
	5.2.1 Architecture
	5.2.2 Vector computation unit
	5.2.3 Compiler and intrinsic functions


	6 Implementation
	6.1 Overview
	6.2 Preprocessing
	6.3 Real-time inference
	6.3.1 Convolution layer
	6.3.2 Pooling layer
	6.3.3 Activation functions


	7 Experimental setup
	7.1 Workflow
	7.2 Models
	7.3 Data
	7.4 Metrics

	8 Evaluation
	8.1 Quantization and model correctness
	8.2 Performance optimization
	8.2.1 Scalar reference
	8.2.2 Input quantization
	8.2.3 Convolution layers
	8.2.4 Pooling layers
	8.2.5 Activation functions
	8.2.6 Batching

	8.3 Evaluation summary

	9 Conclusions
	References
	A CEVA intrinsics

