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1. Introduction

This thesis is in combinatorial commutative algebra. It contains four publications,

preceeded by a four-chapter overview. In Chapters 2 and 3 we assemble the necessary

background, respectively graph-theoretic and simplicial in the former chapter and

algebraic in the latter. In Chapter 4 we summarize the publications and showcase the

main results.

In this introductory chapter we provide context for the publications: in Section 1.1

we condense some of the notions discussed in Chapters 2 and 3, and in Section 1.2 we

outline briefly the content of the publications.

1.1 Interplay between combinatorics and commutative algebra

The leitmotif in combinatorial commutative algebra is that there are bijections between

sets of combinatorial objects (simplicial complexes, graphs, trees, . . . ) and sets of

algebraic objects (squarefree monomial ideals, quadratic squarefree monomial ideals,

polarizations, . . . ), and often the combinatorial properties of a combinatorial object are

equivalent to algebraic properties of the corresponding algebraic object. The algebraic

objects recurring in all four publications are squarefree monomial ideals of some

polynomial ring K[x1, . . . , xn] over a field K. The main bridge between combinatorics

and commutative algebra exploited in this thesis is the well-known bijection{
simplicial complexes

on {1, . . . ,n}

}
−→
{

squarefree monomial

ideals in K[x1, . . . , xn]

}
,

called the Stanley–Reisner correspondence, associating to a simplicial complex Δ its

so-called Stanley–Reisner ideal

IΔ := (xσ |σ ∉Δ),

where xσ :=∏i∈σ xi. Among squarefree monomial ideals, those generated by quadratic

monomials play a central role in Publications I, III and IV. These arise as edge ideals
of graphs or alternatively as Stanely–Reisner ideals of flag simplicial complexes; in

the first case one may write the ideal as

IG = (xix j | {i, j} is an edge of G).
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We adopt the first point of view in Publications I and III, and the second in Publi-

cation IV. The theory concerning Stanley–Reisner ideals has been around since the

1970’s, and the systematic study of edge ideals was initiated by Villarreal in the early

1990’s.

Free resolutions and Betti numbers, recalled below, are one of the main topics of

Publications I, II and III. For a finitely generated graded K[x1, . . . , xn]-module M, so

in particular for any monomial ideal of K[x1, . . . , xn], a free resolution of M consists

of a sequence of module maps (di : Fi → Fi−1)+∞i=1 between free modules, plus an

additional surjective module map ε : F0 → M, such that the image of every map in

. . .−→ Fi+1
di+1−−−→ Fi

di−→ Fi−1 −→ . . .−→ F1
d1−→ F0

ε−→ M

is equal to the kernel of the map to its right. Up to isomorphism, there is a unique

free resolution of M satisfying certain “gradedness” and “minimality” conditions, and

from such a resolution one may define numerical invariants of M called its graded
Betti numbers, denoted by βi, j(M) or just βi, j. These numbers are arranged as entries

in the Betti table β(M) of M:

0 1 2 3 · · ·
0 β0,0 β1,1 β2,2 β3,3 · · ·
1 β0,1 β1,2 β2,3 β3,4

2 β0,2 β1,3 β2,4 β3,5

3 β0,3 β1,4 β2,5 β3,6
...

...
. . .

For any finitely generated graded module M, there is only a finite number of non-zero

entries in the Betti table β(M).
The issue with free resolutions and Betti numbers is that, although there are algo-

rithms to compute them, a priori one does not know what to expect in general. So

the main problem in this subject is to find an explicit and canonical description of

the resolutions for large classes of modules, or, when those are out of reach, explicit

formulas for the Betti numbers. The latter problem may also be very challenging, in

which case one may at least be satisfied with bounding the non-zero region of the Betti

table. A well-studied invariant is the regularity of M

reg(M) :=max{ j |βi,i+ j(M) �= 0 for some i},

equal to the highest index of a non-zero row in the Betti table of M.

The fruitful interplay between commutative algebra and combinatorics mentioned

above is exemplified by the following celebrated theorem, which is of essential use in

Publication I.

Theorem (Fröberg, [42]). Let G be a graph. The following are equivalent:

• the edge ideal IG has a 2-linear resolution (which means that the only non-zero

Betti numbers of IG are in row 2 of the Betti table β(IG), which one could also

write in short as reg(IG)= 2);

2
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• the complement G of G is chordal, that is, the only induced cycles in G are

triangles.

Aside from describing the resolutions or the numerical invariants of some class of

modules or giving combinatorial interpretations of them, another focal problem is that

of classifying the possible Betti numbers attainable by some module. This has been

wide open for more than a century, since Hilbert first introduced the idea of a free

resolution in the 1890’s. A major breakthrough occurred, starting in 2006, when Boij

and Söderberg (correctly) conjectured that any Betti table sits inside a cone whose

extremal rays are generated by the so-called pure tables. That is, the Betti table β(M)
of a module M can be written as a weighted finite sum

β(M)=
∑

j

c jπ j,

where the π j are such pure tables and the numbers c j ∈Q≥0 are called Boij–Söderberg
coefficients of M. Just as in the case of resolutions, it is possible to algorithmically

find these Boij–Söderberg coefficients, but there are only few (and partial) results

providing explicit formulas for them, or combinatorial interpretations of them.

1.2 Outline of the publications

Publications I, II and III concern the resolutions or the numerical homological in-

variants (i.e., the Betti numbers, Boij–Söderberg coefficients and regularity) of some

monomial ideals. The most closely related works are Publications I and II, the latter

being a generalization of the former but more algebraic in flavor. Publications III

and IV are both about squarefree monomial ideals generated in degree 2; in the former

we are interested in Betti numbers and regularity, and we view these ideals as edge ide-

als of graphs, relating their homological properties to graph-theoretic properties of the

associated graph, whereas in the latter paper we view these objects as Stanley–Reisner

ideals, defined in terms of directed trees, and we focus on the associated simplicial

complexes and trees.

Below follow more details about each publication:

• In Publication I we consider a construction from early complexity theory that

takes any graph G and returns a graph BL(G) that in particular has chordal

complement, so that the edge ideal IBL(G) has a 2-linear resolution by Fröberg’s

theorem above. We prove very explicit formulas for the Boij–Söderberg coeffi-

cients of IBL(G) and the Betti numbers of IBL(G), in terms of the degrees of the

vertices of G.

• In Publication II we generalize the construction in Publication I, seen from a

purely algebraic point of view. This more general construction, called lineariza-
tion, takes as input any monomial ideal and returns (injectively) a monomial

ideal with a d-linear resolution. We introduce another, auxiliary construction

3
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that gives an equigenerated monomial ideal starting from an arbitrary one. We

study several (in particular, homological) properties of both constructions.

• There are still no explicit formulas that express the regularity of an edge ideal IG

in terms of “easy” invariants of G such as the degrees of the vertices. Pub-

lication III is about the regularity of edge ideals. There we say that βi, j is a

parabolic Betti number if i and j satisfy certain conditions. This defines a

region of the Betti table that grows wider and wider as the row index grows.

Our main result is that if βi, j is a parabolic Betti number on row r of the Betti

table, then almost all graphs G with βi, j(IG)= 0 are such that reg(IG)= r−1.

This follows partially from a structural result we prove in Publication III: almost

all the graphs G with βi, j(IG) = 0 can be covered with r−2 cliques and one

independent set.

• In Publication IV we consider monomial ideals I(T)⊆ S that are defined starting

from directed trees T. We study the quotients of S/I(T) by regular sequences

consisting of variable differences (that is, we do the “opposite of polarizing” the

ideals I(T)) and study the ideals associated to these quotients. Among the ideals

defining the quotients we classify in particular the squarefree ones and their

associated simplicial complexes, and among these ideals we find in particular

the Stanley–Reisner ideals of triangulated polygons.

To conclude this first chapter, we remark that in this thesis the set N of natural
numbers consists of the non-negative integers, including 0.

4



2. Graphs and Simplicial Complexes

The notions in Sections 2.1 and 2.3 are all very standard and quite commonly used in

combinatorial commutative algebra. Section 2.2 contains more involved concepts.

2.1 Basic definitions in graph theory

Denote by
(V

2

)
:= {W ⊆V | #W = 2} the set of two-element subsets of a set V .

A finite simple graph is an ordered pair (V ,E) where V is a finite set and E ⊆ (V2).
The elements of V and E are called respectively the vertices and edges of G, and the

sets V and E are called respectively the vertex set and edge set of G. Two vertices v
and w are adjacent if {v,w} ∈ E. If e = {v,w} is an edge of G, the vertices v and w are

called the ends of e. One may visualize a graph pictorially: for instance the drawing

1

2 3

4 5

represents the finite simple graph G = (V ,E) with vertex set V = {1,2,3,4,5} and edge

set E = {{1,2}, {1,3}, {2,3}, {4,5}}.

Definition 2.1.1. Let G be a finite simple graph with vertex set V . The degree of

a vertex v ∈ V , written degG(v) or simply deg(v), is the number of vertices that are

adjacent to v. Denoting by n the cardinality of V , the degree vector of G is defined as

dG := (d0, . . . ,dn−1), where di is the number of vertices in G of degree i.

In the finite simple graph G drawn above, the vertices 1, 2 and 3 have degree 2,

whereas the vertices 4 and 5 have degree 1. The degree vector in this case is dG =
(0,2,3,0,0). Notice that graphs that “look very different” might have the same degree

vector. For instance

1 2 3 4 5

has the same degree vector (0,2,3,0,0) as the other finite simple graph above.
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Graphs and Simplicial Complexes

Intuitively the “combinatorial structure” of a finite simple graph doesn’t change if

we rename the labels of its vertices, and this idea is made precise by the concept of

graph isomorphism.

Definition 2.1.2. Let G = (VG ,EG) and H = (VH ,EH) be two finite simple graphs.

An isomorphism from G to H is a bijection ϕ : VG →VH such that

{v,w} ∈ EG ⇔ {ϕ(v),ϕ(w)} ∈ EH .

If there exists an isomorphism from G to H, we say that G and H are isomorphic. An

unlabeled graph is the isomorphism class of a finite simple graph.

In Publications I, II and IV we refer to a finite simple graph simply by graph,

whereas in Publication III a graph is usually an unlabeled graph. For this reason, in

Chapters 2, 3 and 4 the distinction will be as explicit as possible, in order to avoid

confusion. Sometimes we refer to a finite simple graph as a labeled graph, as opposed

to unlabeled.

Definition 2.1.3. Given a finite simple graph G = (V ,E), the complement of G is the

finite simple graph G := (V ,E′), with vertex set V and edge set E′ := (V2)\ E. That is,

G has the same vertices as G and exactly the edges that G does not have.

For an unlabeled graph G, one defines the complement G as the isomorphism class

of the complement of any labeled graph in the class G. In fact, many of the terms

defined in this section are usually introduced just for labeled graphs but are used also

in the unlabeled context in an intuitive way.

Definition 2.1.4. Given a set V , the clique (or complete graph) on V is the finite

simple graph with edge set
(V

2

)
. That is, all the vertices are adjacent to each other. We

denote by Kn the isomorphism class of a clique on a vertex set with n elements, and

call it the clique (or complete graph) on n vertices. The disjoint union of r cliques

is called an r-cluster. The complement of a (labeled or unlabeled) clique, that is, a

graph where no two vertices are adjacent, is called an independent set.

Definition 2.1.5. A finite simple graph G is r-partite if the vertex set V of G can be

written as a disjoint union V = V1 �V2 �·· ·�Vr so that, for all i ∈ {1, . . . , r}, no two

vertices in Vi are adjacent. We say that G is complete r-partite if additionally, for all

i �= j, every vertex in Vi is adjacent to every vertex in Vj. The 2-partite graphs are

called bipartite graphs. We denote by Ka1,a2,...,ar the isomorphism class of a finite

simple graph whose vertex set consists of r disjoint sets V1, . . . ,Vr where #Vi = ai,

and where, for all i �= j, every vertex of Vi is adjacent to every vertex of Vj.

Notice that the complete r-partite graphs are exactly the complements of the r-

clusters.

Example 2.1.6. The first finite simple graph G drawn on the previous page is a 2-

cluster. The isomorphism class of G can be written as the disjoint union K3�K2. The

6
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complement of G is the following bipartite graph, whose isomorphism class is K3,2

according to the definition above:

1

2 3

4 5

Notice that this graph is complete bipartite.

2.1.1 Subgraphs

Definition 2.1.7. Let G = (V ,E) be a finite simple graph.

• We say that G′ = (V ′,E′) is a subgraph of G if V ′ ⊆V and E′ ⊆ E∩(V ′
2

)
.

• A subgraph G′ = (V ′,E′) of G is an induced subgraph of G if E′ = E∩(V ′
2

)
,

that is, if E′ consists of all the edges in E with both ends in V ′.

• Given a subset W ⊆V , we denote by G[W] the finite simple graph with vertex

set W and edge set E∩(W2 ), that is, with edge set consisting of all the edges in

E with both ends in W . We call G[W] the subgraph of G induced by W .

Example 2.1.8. Consider the finite simple graph G

1

2 3

4 5

and the following:

1

2 3

4 5

not a subgraph of G

1

2 3

4 5

a subgraph of G

1

2 3

4

an induced subgraph of G

The subgraph in the middle is not induced because it has both the vertices 2 and 3
but lacks the edge {2,3}. The subgraph on the right can be written as G[W], for

W = {1,2,3,4}.

Definition 2.1.9. Given two unlabeled graphs G and H, we say that H is an induced
subgraph of G if there are labeled graphs G′ and H′, respectively in the classes G
and H, such that H′ is an induced subgraph of G′ in the “labeled sense”.

7



Graphs and Simplicial Complexes

Definition 2.1.10. Given a finite simple graph G = (V ,E), a matching in G is a subset

M ⊆ E such that no two distinct elements of M share an end.

Example 2.1.11. For instance, M = {{1,2}, {4,5}
}

is a matching in the graph G of

Example 2.1.8. In fact, M is a maximal matching, in the sense that one cannot add

any more edges of E to M and obtain a matching in G.

In Publication III, matchings will occur in the following unlabeled version, and

without an “ambient” graph G:

Definition 2.1.12. We call unlabeled matching on n edges the unlabeled graph that is

the isomorphism class of the finite simple graph G = (V ,E) with

V = {v1, . . . ,vn,w1, . . . ,wn} and E ={{vi,wi} | i = 1, . . . ,n
}

,

where the elements v1, . . . ,vn,w1, . . . ,wn are pairwise distinct. Alternatively, we call

this the unlabeled matching on 2n vertices.

Notice that matchings are a special case of clusters, in which each clique is of

cardinality 2.

2.1.2 Chordal and split graphs

Definition 2.1.13. For n ≥ 3, a finite simple graph is called a cycle on n vertices (or

cycle of length n) if it is isomorphic to (V ,E), where the elements of V = {v1, . . . ,vn}
are pairwise distinct and E ={{vi,vi+1} | i = 1, . . . ,n−1

}∪{{v1,vn}
}

. We denote the

isomorphism class of a cycle on n vertices by Cn. A cycle on three vertices is called a

triangle.

Definition 2.1.14. A finite simple graph G is chordal if the only cycles that are

induced subgraphs of G are triangles. That is, if G′ is a subgraph of G and G′ is a

cycle of length greater than 3, then there is an edge e in G and not in G′ connecting

two vertices of G′; such an edge is called a chord of G′.

Example 2.1.15. The finite simple graph

1

2 3

4 5

is not chordal because it contains an induced cycle of length 4.

Definition 2.1.16. A finite simple graph G = (V ,E) is split if V can be written as a

disjoint union V =V1 �V2 so that G[V1] is a clique and G[V2] is an independent set.

8
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Example 2.1.17. The unlabeled graph

is (the isomorphism class of) a split graph. The subgraph induced by the four vertices

on the left is a clique, and the three vertices on the right form an independent set.

Remark 2.1.18. Notice that all split graphs are chordal, and that the complement of a

split graph is also split. This is a key observation, with Publication I in mind.

2.1.3 Trees

Definition 2.1.19. For n ≥ 2, a finite simple graph is called a path on n vertices if it is

isomoprhic to (V ,E), where the elements of V = {v1, . . . ,vn} are pairwise distinct and

E ={{v1,v2}, {v2,v3}, . . . , {vn−2,vn−1}, {vn−1,vn}
}

.

More precisely, the graph (V ,E) above is called a path from v1 to vn. A finite simple

graph G is connected if, for any distinct vertices a and b of G, G contains a path from

a to b as subgraph.

The first finite simple graph drawn on page 5 is not connected. The second one is,

and in fact the second one is a path on five vertices.

Definition 2.1.20. A finite simple graph G is called a forest if G does not contain any

cycle as a subgraph. A forest that is also connected is called a tree.

Trees are characterized by the following property (part of Theorem 1.5.1 in [20]):

Proposition 2.1.21. For a finite simple graph G, the following are equivalent:

• G is a tree;

• for any two vertices v and w in G, there is a unique path in G linking v and w.

Definition 2.1.22. Let T be a tree and let v and w be vertices of T. We denote by

vTw the unique path in T linking v and w.

In Publication IV we consider directed (or oriented) trees. The edges in a directed

graph are defined as ordered pairs. For instance, the picture

1
2

3

4

5

6

7

8

9

10
11

9
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represents the directed tree T = (V ,E) with V = {1,2, . . . ,11} and

E ={(1,2), (2,3), (2,4), (2,5), (5,6), (5,8), (6,7), (8,9), (10,8), (10,11)
}

.

From a directed graph one gets an “underlying” undirected one by regarding the edges

as sets, forgetting the order.

Notice that for any edge e and any vertex v in a directed tree, by Proposition 2.1.21,

one has that either e points towards v or not. In particular, for any edge e of a

directed tree T, one gets a partition of the vertex set V of T into two non-empty sets

{v ∈V | e points towards v} and {v ∈V | e does not point towards v}.

2.2 Extremal graph theory: critical graphs

Extremal graph theory is a branch of graph theory that deals in particular with counting

and describing the structure of the graphs that do not contain some given subgraphs.

We refer to Chapter 7 of [20] for a general introduction.

Two of the first major results in extremal graph theory, proven in the 1940’s, are

the well-known theorem by Turán [72], bounding the number of edges of a graph

that does not contain a clique of a given size, and the generalization of it known as

the Erdős–Stone theorem [35]. The results of the kind we are interested in, from the

point of view of Publication III, state that the graphs (or at least almost all graphs)

that do not contain some given subgraph can be covered with a determined number of

cliques and independent sets. An example of such a result, by Erdős, Kleitman and

Rothschild [34], states that almost all graphs that do not contain triangles are bipartite.

(See the details in the subsections below.)

The rather technical concept of “critical graph” discussed in this section was intro-

duced relatively recently (compared to the rest of the topics discussed in this chapter)

by Balogh and Butterfield [3]. (See also Butterfield’s thesis [13] for additional informa-

tion and references, although with a different notation.) They prove a characterization

of critical graphs in terms of the graphs that do not contain them as induced subgraphs

(see Theorem 2.2.17 below), and this result is a key tool for us in Publication III.

Whereas the other sections in this chapter contain material that is very commonly used

in commutative algebra, we believe that in Publication III we are the first to make use

of critical graphs to prove results about Betti numbers of edge ideals.

One of the motivating prior results for [3] was the following (for the details involved,

see the sections below):

Theorem 2.2.1 (Prömel and Steger, [64]). Let H be an unlabeled graph with chro-

matic number χ(H)= k+1. The following are equivalent:

• almost every graph G that does not contain H as a (not necessarily induced)

subgraph is k-colorable;

• there exists an edge e such that χ(H− e)= k.

10
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The point of view of Balogh and Butterfield [3] is that H in the theorem above is

“critical”, in the sense that removing an edge changes the chromatic number, and their

goal is to generalize the theorem to the induced setting, for a suitable definition of

“critical”. Notice that Prömel and Steger [65] previously defined a different concept of

“critical graph” (see Definition 2.10 of [65]). The authors of [3] write that both their

own definition and that of [65] are so technical that they do not know whether one is a

generalization of the other.

We collect all the concepts involved in the definition of critical graph in Sections 2.2.1

and 2.2.2. But first of all we recall the notion of “almost every graph”.

Definition 2.2.2. Let A and B be two families of unlabeled graphs, with B ⊆A . For

each positive integer n, denote

An := {unlabeled graphs on n vertices belonging to A },

Bn := {unlabeled graphs on n vertices belonging to B},

and assume that Bn �= � (at least for all large n). We say that almost every graph in
A is in B if

lim
n→∞

|An|
|Bn|

= 1.

We also use expressions like “almost all graphs” or “for almost all graphs”, etc., all

with the same connotation as above. This concept is used in Publication III with a

slightly different notation.

2.2.1 Covering pairs and (s, t)-templates

Let G = (V ,E) be a finite simple graph and let X be a finite set, whose elements are

called colors. A function f : V → X is called a coloring of G if, for all v and w in V ,

{v,w} ∈ E ⇒ f (v) �= f (w),

that is, if any two adjacent vertices do not share the same color. If such a coloring

exists for a set X such that #X = k, one says that G is k-colorable. The chromatic
number of G, denoted χ(G), is the smallest k such that G is k-colorable. The concepts

of (s, t)-template and coloring number defined below generalize this situation.

Remark 2.2.3. Another way to phrase the definition of coloring, aiming for a general-

ization of this concept, is as follows: if for all i ∈ X we denote Vi := {v ∈V | f (v)= i},
then f is a coloring of G if and only if each induced subgraph G[Vi] is an independent

set.

In Publication III we consider a more general version of graph coloring, which is

also well studied in graph theory but perhaps less popular in other branches of math.

Instead of partitioning the vertex set into independent sets, we partition it into cliques
and independent sets. Recall that we denote [n] := {1,2, . . . ,n}.

11
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Definition 2.2.4. Let G = (V ,E) be a finite simple graph. We say that (s, t) is a

covering pair for G if there is a function f : V → [s+ t] such that the following holds:

if for all i ∈ [s+t] we denote Vi := {v ∈V | f (v)= i}, then G[Vi] is a clique for 1≤ i ≤ s
and G[Vi] is an independent set for s+1≤ i ≤ s+ t. If (s, t) is a covering pair for G,

we call G an (s, t)-template.

Remark 2.2.5. Observe the following:

• The (0,k)-templates are exactly the k-colorable graphs.

• Any of the cliques or independent sets in the definition above may be empty. So

in particular if G is an (s, t)-template, then G is also an (s′, t′)-template for any

s′ ≥ s and t′ ≥ t.

• The (1,1)-templates are exactly the split graphs. (See Definition 2.1.16.)

• The complement of an (s, t)-template is a (t, s)-template.

The definitions above can be used for unlabeled graphs in an intuitive way, since the

existence of colorings does not depend on the labeling. For instance, one may give the

following:

Definition 2.2.6. For an unlabeled graph G, we say that G is an (s, t)-template if

one (or equivalently all) of the labeled graphs in the isomorphism class G is an

(s, t)-template according to the definition above.

Example 2.2.7. Consider P5, the path on five vertices. The pair (2,0) is not a covering

pair for P5 because the largest cliques in P5 are edges, and two edges are not enough

to cover all of P5. On the other hand, (2,1) is a covering pair for P5: one may pick as

independent set the middle point of P5 and as cliques the first and last edge:

clique indep.
set

clique

Notice that this is not the only way to cover P5 with two cliques and one independent

set. For instance, the independent set could alternatively consist of the first, third and

fifth vertex, and the two cliques would then consist of the two remaining vertices, one

vertex each.

Definition 2.2.8. Let G be a finite simple graph. The coloring number of G, denoted

χc(G), is the smallest number k such that every pair (s, t) of non-negative integers

such that s+ t = k is a covering pair for G. If a pair (s, t) with s+ t = χc(G)−1 is not a

covering pair for G, then (s, t) is called a witnessing pair for G.

Example 2.2.9. Consider the five-cycle C5 and the seven-cycle C7:

C5 C7

12
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One may check that χc(C5) = 3 and that (2,0), (1,1) and (0,2) all are witnessing

pairs for C5. That is, C5 cannot be covered by two cliques, nor one clique and one

independent set, nor two independent sets. One may also check that χc(C7) = 4
and that the witnessing pairs for C7 are (3,0) and (2,1), whereas (1,2) and (0,3) are

covering pairs for C7. Observe that χc(C5)= χ(C5) and χc(C7)> χ(C7)= 3.

2.2.2 Critical graphs

The presence of an induced subgraph in G up to isomorphism clearly does not depend

on whether we are considering G or any other labeled graph isomorphic to G. So in

the following definition by “graph” one may consider both a labeled or an unlabeled

graph.

Definition 2.2.10. Given graphs G and H, we say that G is H-free if G does not

contain an induced subgraph that is isomorphic to H (or “an induced subgraph that is

a member of the isomorphism class H” in the unlabeled case). More generally, given

a family of graphs F , we say that G is F -free if G is H-free for all H ∈F .

Example 2.2.11. For instance, one has the following:

• Any bipartite graph is triangle-free. The converse is not true: cycles of odd

length greater than 3 are triangle-free but not bipartite. However, Erdős, Kleit-

man and Rothschild [34] proved that almost all (in the sense of Definition 2.2.2)

triangle-free graphs are bipartite.

• The definition of chordal graph may be shortened by saying that a graph G is

chordal if G is F -free, where F := {Cn | n ≥ 4} consists of all cycles of length

n ≥ 4.

Definition 2.2.12. For a family F of unlabeled graphs, define

P (n,F ) := {unlabeled graphs G on n vertices | for all H ∈F , G is H-free}.

In the case of F = {H}, we simply write P (n,H) for P (n, {H}).

We need to measure how much of an unlabeled graph H is left when we cover as

much as possible of H with s cliques and t independent sets:

Definition 2.2.13. For an unlabeled graph H and non-negative integers s and t, denote

by F (H, s, t) the set of minimal (by induced containment) unlabeled graphs F such

that H can be covered by s cliques, t independent sets, and a copy of F. In other

words, F (H, s, t) consists of the unlabeled graphs in the set{
H−U |U ⊆VH and H[U] is an (s, t)-template

}
which are minimal with respect to induced containment.

13
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In particular, one gets F (H, s, t) = {�} if H itself is an (s, t)-template. Notice

moreover that in practice when trying to determine what a specific set F (H, s, t) is,

we consider maximal cliques and independent sets, because if they were not maximal

then we would just end up with a graph F that is not minimal with respect to induced

containment, that is, a graph F that strictly contains some other F ′, obtained with

maximal cliques and independent sets, as an induced subgraph.

Example 2.2.14. Consider the five-path H = P5. The set F (P5,1,0) consists of

exactly two graphs F1 and F2: F1 is the path on three vertices, obtained when we

choose to cover one of the external edges of P5, and F2 is the the disjoint union of

an edge and a vertex, obtained when we choose to cover one of the internal edges

of P5. In the following picture the covered clique is in gray and dashed, whereas the

remaining “uncovered” graph (in black) is F1 and F2, respectively:

clique clique

Indeed, neither F1 nor F2 is an induced subgraph of the other.

Definition 2.2.15. An unlabeled graph H is critical if, for all non-negative integers s
and t with s+ t = χc(H)−2 and for all large enough n, there are at most two graphs in

P (n,F (H, s, t)).

Example 2.2.16. Consider the five-cycle C5 and the seven-cycle C7. From Exam-

ple 2.2.9 we know that χc(C5)= 3 and χc(C7)= 4. In order to determine whether C5

is critical, one needs to consider the pairs (s, t) such that s+ t = 3−2, namely the pairs

(1,0) and (0,1). We have

F (C5,1,0)= { }, F (C5,0,1)= { }.

Then C5 is not critical, because for large n the set P (n,F (C5,1,0)) consists of more

than two elements: in particular it always contains at least the graph on n vertices

with no edges, the graph on n vertices with one edge, and the complete graph Kn. On

the other hand, C7 is critical: as χc(C7)= 4, we need to inspect values of s and t such

that s+ t = 4−2, which give

F (C7,2,0)= { , }, F (C7,1,1)= { }, F (C7,0,2)= { }.

Thus, for large n we get the sets

P (n,F (C7,2,0))= {Kn,Kn}, P (n,F (C7,1,1))= {Kn}, P (n,F (C7,0,2))=�,

which all have cardinality at most 2, and therefore C7 is critical.

The following is the main result of [3] and one of the key tools that we used in

Publication III.

Theorem 2.2.17 (Theorem 1.9 of [3]). Let H be an unlabeled graph with χc(H)≥ 3.

The following are equivalent:

14
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• almost every H-free graph is an (s, t)-template, for some s and t such that (s, t)
is a witnessing pair for H (that is, s+ t = χc(H)−1 and (s, t) is not a covering

pair for H);

• H is critical.

Example 2.2.18. Consider the seven-cycle H = C7. By Example 2.2.9 we know that

χc(C7)= 4 and that the witnessing pairs are (3,0) and (2,1). By Example 2.2.16 we

also know that C7 is critical. Hence, by the theorem above, almost every C7-free

graph is a (3,0)-template or a (2,1)-template.

2.3 Simplicial complexes

Given a set V , a simplicial complex Δ on V is a family of subsets of V such that,

whenever σ ∈Δ and σ′ ⊆σ, we have σ′ ∈Δ. (Very often in the literature this is called

an abstract simplicial complex.) The elements of V are called the vertices of Δ.

We call the elements of Δ its faces, and the faces that are maximal with respect to

inclusion are called the facets of Δ. For a face σ ∈Δ we say that the dimension of σ is

dimσ := |σ|−1. The dimension of Δ is defined as the largest dimension of any of its

faces. If all the facets of Δ have the same dimension, Δ is pure. Lastly, given some

subsets F1, . . . ,Fs of V , denote by 〈F1, . . . ,Fs〉 the simplicial complex on V consisting

of all the subsets of Fi, for all i.
The most important simplicial complexes for us, used in Publication III, are inde-

pendence complexes of graphs:

Definition 2.3.1. Let G be a finite simple graph. The simplicial complex whose faces

are the independent sets of G is called the independence complex of G and denoted

Ind(G). (See also Remark 2.3.15 below.)

Indeed Ind(G) is a simplicial complex: if I is an independent set of vertices, any

subset I ′ ⊆ I still consists of independent vertices. Another famous complex in

the literature is the clique complex of G, having as faces the cliques of G. The

independence complex of G is equal to the clique complex of the complement G.

Example 2.3.2. Consider the finite simple graph G with vertex set [5] = {1, . . . ,5}
drawn below, along with its independence complex:

G

1

2

3 4

5

Ind(G)

1

2

3 4

5
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Consider now the following simplicial complex Δ on vertex set [6], where we write

i1 i2 . . . is for the set {i1, i2, . . . , is}, in order to make the notation less heavy:

Δ := 〈12, 13, 23, 234, 235, 236, 245, 256, 345, 356〉.

That is, Δ consists of two hollow tetrahedra (one in blue and one in red) glued along

the (full) triangle 235, plus an additional triangle (without the interior) glued to the

tetrahedra along the edge 23:

6

3

5

4

2

1

Observe that Δ cannot be the independence complex of a graph, because 12, 13 and

23 are all faces of Δ but 123 is not.

Definition 2.3.3. Let Δ be a simplicial complex. We say that Δ is flag if all the

minimal non-faces of Δ have cardinality 2.

The second simplicial complex Δ in Example 2.3.2 is not flag because {1,2,3} is a

minimal non-face of Δ.

Remark 2.3.4. Notice that Ind(G) is a flag simplicial complex for any G. Conversely,

every flag simplicial complex is the independence complex of some graph. (More

precisely: The 1-skeleton of a simplicial complex is its underlying graph. A flag

complex Δ is the independence complex of the complement of the 1-skeleton of Δ.

See for instance Lemma 9.1.3 of [50].)

Definition 2.3.5. Let Δ be a simplicial complex. We say that Δ is (non-pure) shellable
if the facets of Δ can be ordered as F1,F2, . . . ,Fm so that, for all 2 ≤ j ≤ m, the

subcomplex

〈F1, . . . ,Fj−1〉∩〈Fj〉
is pure and has dimension dimFj −1. An order of the facets as above is called a

shelling order.

Equivalently, F1,F2, . . . ,Fm is a shelling order of Δ if and only if, for all j < i, there

exist � ∈ Fi \ Fj and k < i such that Fi \ Fk = {�}.

Example 2.3.6. Consider once more the simplicial complex Δ in Example 2.3.2, and

again write i1 i2 . . . is for the set {i1, i2, . . . , is} if s ≥ 2, so that for instance {24,25}
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stands for {{2,4}, {2,5}}. The complex Δ is shellable, and the ordering of the facets as

in Example 2.3.2 is a shelling order. Indeed, one has

〈12〉∩〈13〉 = {{1}}

〈12, 13〉∩〈23〉 = {{2}, {3}}

〈12, 13, 23〉∩〈234〉 = {23}

〈12, 13, 23, 234〉∩〈235〉 = {23}

〈12, 13, 23, 234, 235〉∩〈236〉 = {23}

〈12, 13, 23, 234, 235, 236〉∩〈245〉 = {24,25}

〈12, 13, 23, 234, 235, 236, 245〉∩〈256〉 = {25,26}

〈12, 13, 23, 234, 235, 236, 245, 256〉∩〈345〉 = {34,35,45}

〈12, 13, 23, 234, 235, 236, 245, 256, 345〉∩〈356〉 = {35,36,56},

and all the complexes above are pure and of the correct dimension.

Definition 2.3.7. Let Δ be a pure simplicial complex. We say that Δ is stacked if the

facets of Δ can be ordered as F1,F1, . . . ,Fm so that, for all 2≤ j ≤ m, the facet Fj is

attached to X j−1 := 〈F1, . . . ,Fj−1〉 along a single codimension-one face of X j−1. An

order of the facets as above is called a stacking.

Remark 2.3.8. Stacked simplicial complexes are flag complexes, and they are also

shellable.

The most relevant example of stacked simplicial complexes for us (in Publication IV)

are triangulations of balls (see [19]).

Example 2.3.9. Consider the following simplicial complex

1
2

3

45

6

7

which is a triangulation of a ball (specifically, of a heptagon). This is a stacked

simplicial complex, and for instance

127, 257, 567, 245, 324.

is a stacking of its facets. A triangulation of a ball in one dimension higher is for
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instance the simplicial complex

1

6

3

5

2

7
8

4

and

1278, 2578, 5678, 2458, 2345.

is a stacking of its facets.

Remark 2.3.10. Stacked complexes are also known in the literature as facet con-
structible complexes. They are related to stacked polytopes. For an explanation of this,

and an interesting source of references about these complexes, we refer to Section 4.5

of Goeckner’s thesis [43].

We recall a couple more notions that will be useful later.

Definition 2.3.11. Let Δ be a simplicial complex with vertex set V . For any W ⊆V ,

the restriction of Δ to W is the simplicial complex

Δ[W] := {σ ∈Δ |σ⊆W}.

Definition 2.3.12. Let Δ be a simplicial complex with vertex set V . For any σ⊆V ,

denote σ :=V \σ. The Alexander dual of Δ is the simplicial complex

Δ∨ := {σ |σ⊆V and σ ∉Δ}.

2.3.1 Simplicial homology

One may define the reduced homology of a simplicial complex Δ over a field K as

follows. For additional details see for instance Chapter 1 of [60].

Definition 2.3.13. Let Δ be a simplicial complex on [n]= {1, . . . ,n}. For any face σ ∈
Δ, write σ= { j1, . . . , jd}, assuming that j1 < ·· · < jd , and define sgn( jr,σ) := (−1)r+1.

Denote by Fi the set of faces of Δ of dimension i, and consider the K-vector spaces

KFi with bases indexed by the faces of dimension i. Define

∂i : KFi −→KFi−1 , ∂i(eσ) :=
∑
j∈σ

sgn( j,σ)eσ\{ j},

where σ ∈ Fi. This way one gets the chain complex

0−→KFn−1 ∂n−1−−−→ . . .−→KFi ∂i−→KFi−1 ∂i−1−−→ . . .−→KF0 ∂0−→KF−1 −→ 0.
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The i-th reduced homology of Δ over K is defined as

H̃i(Δ;K) := ker(∂i)/im(∂i+1),

and if K is understood from the context we simply write H̃i(Δ)= H̃i(Δ;K).

The intuitive idea is that the dimension (as a K-vector space) of H̃i(Δ,K) is the

number of i-dimensional holes of Δ. Notice, as a straightforward consequence of the

definition, that

H̃i(Δ)= 0 for all i > dim(Δ).

Example 2.3.14. Consider the simplicial complex Δ in Example 2.3.2, and again

write i1 i2 . . . is for the set {i1, i2, . . . , is}, for s ≥ 2. Then one has

F−1 = {�},

F0 = {{1}, {2}, {3}, {4}, {5}, {6}},

F1 = {12,13,23,24,25,26,34,35,36,45,56},

F2 = {234,235,236,245,256,345,356},

and Fi =� for i > 2, so that the complex in the definition above is

0−→K7 ∂2−→K11 ∂1−→K6 ∂0−→K−→ 0.

One may check that dim(ker∂0)= dim(im∂1)= 0, so that H̃0(Δ)= 0. In general the

dimension of H̃0 is equal to the number of connected components minus 1, and indeed

Δ is connected. One may also check that

dim H̃1(Δ)= 1 and dim H̃2(Δ)= 2,

where H̃1(Δ) accounts for the one-dimensional hole in the triangle with edges 12, 13
and 23, and the H̃2(Δ) for the two two-dimensional holes inside the tetrahedra.

Remark 2.3.15. Notice that the concept of independence complex above is defined

for labeled graphs, but in Publication III we consider independence complexes of

unlabeled graphs. In fact we are only interested in the homology of Ind(G), and that

does not change if we relabel the vertices of G.
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3. Tools from Commutative Algebra

We refer to [59] for the basics on rings and modules. The rings considered in this thesis

are commutative and with a multiplicative identiy: they will usually be polynomial

rings K[x1, . . . , xn] over a field K.

Given a commutative ring R with identity, a chain complex C is a sequence of maps

of R-modules

. . .−→ Mi+1
di+1−−−→ Mi

di−→ Mi−1 −→ . . .

such that di ◦di+1 = 0 for all i ∈Z, that is, such that im(di+1)⊆ ker(di) for all i ∈Z.

The chain complexes considered in this thesis, called resolutions, are such that Mi = 0
for all i < 0. We say that the complex C is exact in Mi if im(di+1) = ker(di). One

may measure how far the complex C is from being exact in Mi by considering the

i-th homology of C

Hi(C ) := ker(di)/im(di+1).

Then C is exact in Mi if and only if Hi(C ) = 0. We call C an exact complex if

Hi(C )= 0 for all i ∈Z.

3.1 Free resolutions

For a general commutative ring R with identity, the free R-modules are very rare:

they are exactly the direct sums of (finitely or infinitely many) copies of the ring R.

In a nutshell, what one does with free resolutions is “approximating” an arbitrary

R-module M with a sequence of free R-modules.

Definition 3.1.1. A free resolution of an R-module M is a chain complex

. . .−→ Fi+1
di+1−−−→ Fi

di−→ Fi−1 −→ . . .−→ F1
d0−→ F0,

where each Fi is a free R-module, together with an additional module homomorphism

ε : F0 → M, called augmentation map, such that the chain complex

. . .−→ Fi+1
di+1−−−→ Fi

di−→ Fi−1 −→ . . .−→ F1
d1−→ F0

ε−→ M −→ 0

is exact. That is, im(di)= ker(di−1) for all i ∈N, and ε is surjective.
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In the literature, people sometimes refer to the second complex in the definition

above as a resolution of M, and sometimes as an augmented resolution, possibly

without the zero-module on the right.

Assuming that a set {mi | i ∈Λ0} of generators of M is known, and that one knows

how to compute kernels of R-module maps, it is intuitively possible to construct a

free resolution of M as follows. Let F0 :=⊕i∈Λ0
R be the the direct sum of as many

copies of the ring R as the generators of M, and let {ei | i ∈Λ0} be a basis of F0. The

map

ε : F0 −→ M

ei �−→ mi

is a surjection, and by the first isomorphism theorem one has

F0/ker(ε)∼= M.

Now, the map ε might also be injective, which happens if and only if ker(ε)= 0. In

this case the module M is actually isomorphic to F0 via ε, which means that M is

free and there are no non-trivial relations among the generators of M. If otherwise

this is not the case, then ker(ε) is a non-zero module, with a system of generators

{gi | i ∈Λ1}, describing the relations among the generators of M. Define then the next

module in the resolution as F1 :=⊕i∈Λ1
R and the map

d1 : F1 −→ F0

ηi �−→ gi,

where {ηi | i ∈Λ1} is a basis of the free module F1. Then by construction one has

im(d1)= ker(ε), and again by the first isomorphism theorem

F1/ker(d1)∼= ker(ε).

There are two cases again: if ker(d1)= 0 then the module ker(ε) is free, isomorphic

to F1, and this is a satisfactory description of it; if otherwise ker(d1) �= 0, then we

keep going, constructing a free module F2 with as many generators as ker(d1) and a

map d2 : F2 → F1. And so on. . . This way one constructs a resolution of M, possibly

going on endlessly.

In the setting of K[x1, . . . , xn]-modules there are indeed algorithms to compute

kernels, implemented in several computer algebra systems. If M is a finitely generated

such module, the free modules Fi constructed at each step are themselves finitely

generated, and if one considers systems of generators that are not redundant, then

the procedure described above to construct a free resolution of M ends after a finite

number of steps—that is, Fi = 0 for i � 0. This will be made more precise in the next

section.
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3.2 Minimal graded free resolutions

In this thesis the ring R will almost always be a polynomial ring K[x1, . . . , xn], where

K is a field, and the R-modules M that we consider will always be finitely generated.

In fact we fix once and for all the notation

S :=K[x1, . . . , xn],

where the letter S stands for “standard grading”.

3.2.1 Graded resolutions

We recall a few basic definitions concerning graded rings and modules, and refer to

Sections 1 and 2 of [63] for additional content and fundamental results such as the

graded version of Nakayama’s lemma.

Definition 3.2.1. A commutative ring R with identity is a graded ring if there is a

direct sum decomposition R =⊕i∈Z Ri into abelian groups such that RiR j ⊆ Ri+ j

for all i and j. The elements of Ri are called homogeneous elements of degree i. An

ideal I of a graded ring R is called a homogeneous (or graded) ideal if I is generated

by homogeneous elements.

The graded ring we will consider is always S =K[x1, . . . , xn], for some n, where the

decomposition S =⊕i∈Z Si is obtained by taking the abelian groups

Si := 〈xa1
1 xa2

2 . . . xan
n | a j ∈N for all j, and a1 +·· ·+an = i〉

= { f ∈ S | every monomial of f has degree i},

so that in particular Si = 0 for all i < 0. This agrees with the “usual” notion of

homogeneous polynomial.

Definition 3.2.2. An S-module M is called a graded module if there is a direct sum

decomposition M =⊕i∈Z Mi into abelian groups such that R jMi ⊆ M j+i for all i
and j. The elements of Mi are called homogeneous elements of degree i. A submodule

N ⊆ M is called a graded submodule if it is generated by homogeneous elements.

A module map ϕ : M → N between graded modules is called a graded map if

ϕ(Mi)⊆ Ni for all i ∈Z,

that is, if ϕ preserves the degree. In most cases the maps we will consider can be

represented as multiplications by some homogeneous element, possibly of high degree,

and clearly such multiplication maps cannot preserve the degrees of the elements. A

way to fix this issue is by “shifting” the grading in the module M.

Definition 3.2.3. Let M be a graded M-module. For j ∈Z, one defines the module M
shifted by j degrees as

M(− j) :=
⊕
i∈Z

M(− j)i, where M(− j)i := Mi− j.

The integer j is called the shift.
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Observe that the elements and the algebraic structure of M and M(− j) are exactly

the same. The only difference is that we consider a different grading. The ring S
itself is a graded S-module and it can be shifted: for instance, if S =K[x, y, z], then

the homogeneous polynomial x2 y3 + z5 has degree 2 in S(−3) and degree 4 in S(−1).
The multiplication map

S(−4) ·x3

−→ S(−1)

is a graded map. More generally, one can take a direct sum of shifted copies of S. For

instance, (x2 + yz, x4) is a homogeneous element of degree 1 in S(−1)⊕S(−3).

Definition 3.2.4. A free resolution is called graded if all the maps are graded.

One can construct a graded resolution by refining the discussion in Section 3.1. If M
is generated by homogeneous elements m1, . . . ,mt with degrees di = deg(mi), then

the module F0 can be defined by shifting suitably the direct summands as

F0 :=
t⊕

i=1

S(−di)

and the augmentation map ε : ei �→ mi is graded. Then it turns out that ker(ε) is a

graded submodule of F0, and one may proceed by defining F1 with suitable shifts.

We refer to Construction 4.2 of [63] for additional details.

Example 3.2.5. Let S = K[x, y, z] and I = (x2, xy, y3). One may check that the

complex

0−→ S(−5)

⎡
⎢⎢⎢⎢⎣

y2

−x

−1

⎤
⎥⎥⎥⎥⎦

−−−−−→ S(−3)⊕S(−4)⊕S(−5)

⎡
⎢⎢⎢⎢⎣

y 0 y3

−x −y2 0

0 x −x2

⎤
⎥⎥⎥⎥⎦

−−−−−−−−−−−−−−−→

S(−2)2 ⊕S(−3)

[
x2 xy y3

]

−−−−−−−−−−−−→S

is a graded resolution of S/I.

3.2.2 Minimal resolutions

For a K-vector space, all minimal systems of generators have the same cardinality,

namely the dimension of the space. For general R-modules there might be different

systems of generators that are minimal but have different cardinality: for instance the

Z-module—that is, abelian group—Z is generated by {1} or by {2,3} and they are both

minimal systems of generators. However, as a consequence of Nakayama’s lemma, for

a graded S-module M the situation is as beautiful as it can be: not only all minimal

systems of homogeneous generators of M have the same cardinality, but the number

of generators of a fixed degree d is the same in all miminal systems of homogeneous

generators of M. (See Theorem 2.12 of [63].) In what is called a minimal resolution

of M, one pushes this even further.
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Theorem 3.2.6. For a graded free resolution, the following conditions are equivalent:

• at each step, the generators for each module considered in the resolution form a

minimal system of generators;

• we have im(di)⊆ (x1, . . . , xn)Fi−1 for all i. That is, if we choose bases for the

free modules Fi, and we represent the maps in the resolution as multiplica-

tions by matrices, then the entries of these matrices are elements of the ideal

(x1, . . . , xn), namely the entries of the matrices cannot be non-zero constants.

For a proof, see for instance Theorem 7.3 of [63].

Definition 3.2.7. If a graded free resolution satisfies the equivalent conditions above,

then it is called a minimal graded free resolution. We will just call such a resolution a

minimal resolution for short.

Example 3.2.8. The resolution in Example 3.2.5 is not minimal, because there is an

entry −1 ∉ (x1, . . . , xn) in one of the matrices. More explicitly, the reason is that there

is a redundant generator ⎛⎜⎜⎝
y3

0

−x2

⎞⎟⎟⎠= y2

⎛⎜⎜⎝
y

−x

0

⎞⎟⎟⎠− x

⎛⎜⎜⎝
0

−y2

x

⎞⎟⎟⎠
for the kernel of the map S(−2)2 ⊕S(−3)→ S. On the other hand,

0−→ S(−5)

⎡
⎢⎣ y2

−x

⎤
⎥⎦

−−−−−→ S(−3)⊕S(−4)

⎡
⎢⎢⎢⎢⎣

y 0

−x −y2

0 x

⎤
⎥⎥⎥⎥⎦

−−−−−−−−−−→ S(−2)2 ⊕S(−3)

[
x2 xy y3

]

−−−−−−−−−−−−→ S,

where we got rid of that redundant generator, is a minimal resolution for S/I.

A homomorphism of complexes between

. . .→ Mi+1
di+1−−−→ Mi

di−→ Mi−1 → . . . and . . .→ Ni+1
d′

i+1−−−→ Ni
d′

i−→ Ni−1 → . . .

is a sequence of module maps (ϕi : Mi → Ni)i∈Z (with ϕi = 0 for all i < 0 in the case

of resolutions) such that all the squares in the diagram

. . . �� Mi+1

ϕi+1

��

di+1
�� Mi

di
��

ϕi

��

Mi−1

ϕi−1

��

�� . . .

. . . �� Ni+1
d′

i+1

�� Ni
d′

i

�� Ni−1 �� . . .

commute. See Section 3 of [63] for additional details about homomorphism of com-

plexes, and in particular isomorphisms of resolutions. For the following fundamental

result, we refer to Theorem 7.8 of [63].
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Theorem 3.2.9. Let M be a graded finitely generated S-module. There exists a

minimal graded free resolution for M, and it is unique up to isomorphism.

In virtue of this theorem one often speaks of “the” minimal resolution of M.

Some good news is that minimal resolutions are “finite”. Hilbert already showed in

the 1890’s (albeit in primordial form) some of the properties that would later become

fundamental cornerstones in the theory of polynomial rings with coefficients in a field:

Theorem 3.2.10 (Hilbert [53]). Let S = K[x1, . . . , xn] be the polynomial ring in n
variables over a field K and let M be a finitely generated graded S-module. Then,

• all the modules in a minimal resolution of M are finitely generated;

• denoting by F0, . . . ,Fp the non-zero modules in a minimal resolution of M, one

has p ≤ n.

The second part of the theorem above is referred to as Hilbert’s syzygy theorem.

See for instance Theorem 15.2 of [63] for a proof. For a reference in English about

Hilbert’s work, see for instance the translation [54] of some notes taken during one of

his courses on the topic.

Another piece of good news, as anticipated in Section 3.1, is that there are algorithms,

implemented in computer algebra systems such as CoCoA [1] or Macaulay2 [44], that

produce minimal resolutions. See for instance Section 4.8.B of [58] for the explicit

technical details about such algorithms. The bad news is that, although algorithms

are known, one doesn’t in general know a priori what to expect. There are very few

classes of S-modules for which an explicit description of the minimal resolution

is known, with a canonical construction and closed formulas for the maps in the

resolution. Quoting Peeva’s words in [63], the general trend in the last decades has

been to “introduce new ideas and constructions which either have strong applications
or/and are beautiful”. More explicitly, the following are some of the main ways in

which the problem has been tackled:

• One considers a special class of modules (or in particular ideals), and gives an

explicit description for a minimal resolution of the elements of that class. (See

some of the items in the list in Section 3.3.1).

• One gives constructions that work in great generality but that are usually not

minimal resolutions. For instance the Koszul complex (see Section 14 of [63])

is in general a complex, not a resolution, and it is a resolution exactly when

the elements defining it form a regular sequence. Other such constructions are

mentioned in Section 3.3.1.

• A well-known result (see for instance Theorem 7.5 of [63]) states that the mini-

mal resolution is contained as a subcomplex in any resolution. One may start

from a given non-minimal resolution and essentially “eliminate” the redundant

parts in order to get a minimal resolution. See for instance Theorem 4.8.6

of [58].
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Even for monomial ideals (which one would guess to be a preposterously simple case)

the problem of producing an explicit canonical description of minimal resolutions

has been elusive for the last half a century. For the case of minimal resolutions of

monomial ideals, see Section 3.3.1.

3.2.3 Betti numbers, Betti tables and regularity

When we write the free modules in a minimal graded free resolution as

Fi =
⊕
j∈Z

S(− j)βi, j ,

the natural numbers βi, j are uniquely determined.

Definition 3.2.11. The numbers βi, j are called the (coarsely graded) Betti numbers
of M. We shall write βS

i, j(M) or βi, j(M) if there is ambiguity about the module or

even the ring. The i-th total Betti number of M is βi :=∑ j∈Zβi, j.

There are well-known strict inequalities for the smallest shifts (see Definition 3.2.3),

following straightforwardly from the fact that the Betti numbers come from a resolution

that is graded and minimal:

Proposition 3.2.12. For all i, denote by ti :=min{ j |βi, j �= 0} the smallest shift in the

module Fi. Then ti < ti+1.

So, if one were to arrange the Betti numbers in a table in the “intuitive way”, namely

by putting the number βi, j in column i and row j, there would be a part of the table

that is automatically always zero, above the diagonal:

0 1 2 3 4 · · ·
0 β0,0 0 0 0 0 · · ·
1 β0,1 β1,1 0 0 0

2 β0,2 β1,2 β2,2 0 0

3 β0,3 β1,3 β2,3 β3,3 0

4 β0,4 β1,4 β2,4 β3,4 β4,4
...

...
. . .

For this reason, in order to save space, one usually arranges the Betti numbers by

“lifting” column i by i positions, as follows.

Definition 3.2.13. The Betti table of M, denoted β(M), is a table where in colum i
and row j one places the Betti number βi,i+ j of M.
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That is, the Betti numbers are arranged like this:

0 1 2 3 4 · · ·
0 β0,0 β1,1 β2,2 β3,3 β4,4 · · ·
1 β0,1 β1,2 β2,3 β3,4 β4,5

2 β0,2 β1,3 β2,4 β3,5 β4,6

3 β0,3 β1,4 β2,5 β3,6 β4,7

4 β0,4 β1,5 β2,6 β3,7 β4,8
...

...
. . .

Notice that often in the literature the name “Betti diagram” is used instead of

“Betti table”. This also applies to “pure diagram” in place of “pure table” as in

Definition 3.6.2, most notably for us in the literature about Boij–Söderberg theory.

One has the following immediate consequence of Theorem 3.2.10:

Corollary 3.2.14. For any finitely generated graded S-module M, there is only a

finite number of non-zero Betti numbers.

In practice one usually just writes the smallest possible sub-rectangle of the Betti

table containing all the non-zero Betti numbers, and one refers to that as the Betti

table. Moreover, often in the literature dashes or dots are used in place of zeros.

Example 3.2.15. Consider for instance

I = (x1x2x4, x2
1x2

2x3, x3
3x3

4) ⊂ Q[x1, x2, x3, x4].

A minimal resolution of I is for instance

0−→ S(−6)⊕S(−8)

⎡
⎢⎢⎢⎢⎣

x1x2x3 x3
3x2

4

−x4 0

0 −x1x2

⎤
⎥⎥⎥⎥⎦

−−−−−−−−−−−−−−−→

S(−3)⊕S(−5)⊕S(−6)

[
x1x2x4 x2

1x2
2x3 x3

3x3
4

]

−−−−−−−−−−−−−−−−−−−−−−→I −→ 0.

Therefore, the Betti table β(I) is

0 1

3 1 −
4 − −
5 1 1

6 1 −
7 − 1.
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A first measure of the complexity of the graded minimal resolution of M is given by

how “wide” and “tall” the (non-zero region of the) Betti table of M is. The width is

measured by the so-called projective dimension of M and is easier to understand.

Definition 3.2.16. The projective dimension of M is the number

projdim(M) :=max{i | Fi �= 0}

=max{i |βi,i+ j(M) �= 0 for some j},

where Fi denotes the i-th module in a minimal resolution of M.

The following is a restatement of the second part of Theorem 3.2.10, with the

notation just introduced.

Theorem 3.2.17 (Hilbert’s syzygy theorem). If S =K[x1, . . . , xn] is a polynomial ring

in n variables over a field K and M is a finitely generated graded S-module, then

projdim(M)≤ n.

That is, the largest index of a non-zero column of the Betti table can be at most n,

the number of variables. On the other hand, although the number of non-zero rows is

also finite, there is a priori no bound to the highest index of a non-zero row. One may

consider for instance the ideal (xd
1 ), generated by a single element of degree d: the

highest—actually, the only—index of a non-zero row of the Betti table of this ideal

is d, and one may do this for arbitrary d.

The (Castelnuovo–Mumford) regularity is the invariant that measures how “tall” the

Betti table of M is:

Definition 3.2.18. The highest index of a non-zero row of the Betti table of M is the

(Castelnuovo–Mumford) regularity of M, denoted reg(M). That is,

reg(M) :=max{ j |βi,i+ j(M) �= 0 for some i}.

This numerical invariant is intimately related to linear resolutions (see Section 3.5).

3.3 Monomial ideals

Denote as usual S =K[x1, . . . , xn], where K is a field. Recall that a monomial is a

product of (possibly repeated) variables.

Definition 3.3.1. An ideal I of S is called a monomial ideal if I is generated by

monomials.

The S-modules considered most often in this thesis will be monomial ideals I
or quotients S/I by monomial ideals. Our main reference for most results about

monomial ideals is the namesake monography [50] by Herzog and Hibi.

Recall that a polynomial f ∈ S can be written in a unique way as a finite linear

combination of monomials, with coefficients in K\ {0}. The set formed by these

monomials is usually called the support of f . A very useful characterization of the

monomial ideals is the following (see Corollary 1.1.3 of [50]):
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Proposition 3.3.2. For an ideal I of S, the following are equivalent:

• I is a monomial ideal;

• for all f ∈ S, f belongs to I if and only if every monomial in the support of f
belongs to I.

The word “support” has a different meaning in this thesis when it is applied to a

monomial (as in Definition 3.3.6 below), so we refrain from using it any longer in the

sense of summands of f with a non-zero coefficient, as in the proposition above.

In general an ideal has infinitely many minimal systems of generators. For an arbi-

trary homogeneous ideal, even if one asks for “monic” and homogeneous generators,

usually one still needs to fix an ordering of the monomials in order to get a uniquely

determined system of generators. Consider for instance I = (x1 − x2, x2 − x3) =
(x1 − x2, x1 − x3). However, for monomial ideals this matter is very simple (see

Proposition 1.1.6 of [50]):

Proposition 3.3.3. A monomial ideal I has a unique minimal system of monomial

generators, consisting of the monomials in I which are minimal with respect to

divisibility.

Definition 3.3.4. We denote by G(I) the unique minimal system of monomial genera-

tors of a monomial ideal I.

It is clear at this point that a monomial ideal I is a very combinatorial object: it is

determined by a finite number of vectors in Nn, namely the vectors of exponents of

the monomials in G(I).

Example 3.3.5. Consider S =K[x, y] and the ideal I = (xy3, x3 y2, x4 y, x6). The

exponent vectors in N2 of the minimal monomial generators of I are respectively

(1,3), (3,2), (4,1), (6,0).

It is very common to visualize these as points in the plane, as in the following picture:

1 2 3 4 5 6 7

1

2

3

4

A monomial xi y j is divisible by xy3 if and only if i ≥ 1 and j ≥ 3, which defines a

cone with vertex (1,3). The monomials that belong to I are then easily readable from

the picture above: they are exactly the monomials with exponent vector lying in the

union of the four cones associated to the minimal generators of I. This union of cones

is the gray region in the picture above.
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One may visualize monomial ideals in three variables in a very similar fashion as in

the example above, drawing cones in the three-dimensional space instead of the plane.

Definition 3.3.6. Let m be a monomial in S. We call the support of m, denoted by

supp(m), the set consisting of the variables of S that divide m.

For instance, supp(x3
1x2x2

5)= {x1, x2, x5}.

Monomial ideals arise mainly as initial ideals of arbitrary ideals in S. The theory

of Gröbner bases (see Chapter 15 of [25] or Section 39 of [63]) offers a variety of

algorithms to solve problems about arbitrary ideals, and many of these problems

become trivial for monomial ideals. To name one, the ideal membership problem has a

very easy answer in the monomial case, implicit in the results recalled above. Another

example of such a situation, which we recall next and which is useful in what follows,

concerns colon ideals.

Definition 3.3.7. Let I and J be ideals of S. The quotient ideal (or colon ideal) of I
by J is defined as

I : J := {g ∈ S | for all f ∈ J, f g ∈ I}.

When J = ( f ) is a principal ideal, we shall write simply I : f = I : ( f ).

Lemma 3.3.8. Let I ⊂ S be a monomial ideal and let m ∈ S be a monomial. Then

I : m =
( u

gcd(u,m)
| u ∈G(I)

)
.

For a proof, see Proposition 1.2.2 of [50].

Example 3.3.9. Notice that the generators of I : m on the right-hand side in the lemma

above are not necessarily minimal. For instance, in K[x1, x2, x3] one has

(x1x2, x1x3) : x2 = (x1, x1x3)= (x1).

3.3.1 Resolutions of monomial ideals

In the 1960’s Kaplansky raised the problem of systematically studying resolutions

of monomial ideals. Despite the apparently easy structure of monomial ideals, the

problem of describing their minimal resolutions explicitly (with closed formulas, in a

universal and canonical way) has been quite elusive for more than half a century. Here

follows a first indication that the problem is not as harmless as it might seem.

Remark 3.3.10. In general the characteristic of the ground field K matters. Consider,

inside the ring K[x1, . . . , x6], the monomial ideal

I = (x1x2x3, x1x2x6, x1x3x4, x1x4x6, x1x5x6,

x2x3x6, x2x4x5, x2x4x6, x3x4x5, x3x5x6).
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Depending on whether char(K) �= 2 or char(K)= 2, the Betti table of I is respectively

0 1 2

3 10 15 6
or

0 1 2 3

3 10 15 6 1

4 − − 1 −.

This is however only a mild complication: in practice, for almost all finite character-

istics one gets the same result as in characteristic 0. Moreover, there are some Betti

numbers that do not depend on the characteristic, and in some situations all Betti

numbers are independent of the field K. Almost all the Betti numbers in this thesis

(save a couple of explicit exceptions) have been computed for char(K) = 0, so we

shall assume this from now on.

A great deal of research on resolutions of monomial ideals has been done after

Kaplansky first posed the problem, starting with Taylor’s PhD thesis [70], where she

defined a canonical construction that works for every monomial ideal but gives a

highly non-minimal resolution in general (see Section 26 of [63]). Since then, many

more constructions have been introduced, and they either produce minimal resolutions

only for certain classes of monomial ideals, or complexes that work in great generality

but are not always minimal resolutions, or not even resolutions to begin with. Some of

these constructions, however “partial”, provide fruitful combinatorial or topological

interpretations of what happens on the algebraic side. We mention some of the most

well-known such constructions:

• The Koszul complex (see Section 14 of [63]) constitutes a famous complex that

works in great generality. It is usually not a resolution but provides anyway

useful information. In the case of a monomial ideal I, the Koszul complex is a

resolution if and only if no two elements of G(I) have a non-trivial common

divisor.

• The Eliahou–Kervaire resolution [31] is a minimal resolution defined for

strongly stable monomial ideals. (See also Section 28 of [63].)

• Cellular resolutions [4, 5] have an interesting underlying topological structure.

(See also [56, 57], where these objects are categorified.)

• The Scarf complex [4] is always contained in the minimal resolution, and

sometimes constitutes a minimal resolution. (See also Section 59 of [63].)

• In 2019, Eagon, Miller and Ordog [23] described a canonical minimal resolution

for every monomial ideal, for characteristic zero and most positive character-

istics. In the positive-characteristic case, the constructions still work but are

non-canonical. After the paper [23] was made public, Tchernev [71] produced

minimal resolutions for all monomial ideals; these resolutions work in every

characteristic, and they are canonical but not in closed form.

• The most notable case of interest to us is the following: Hochster, Stanley and

Reisner introduced a machinery where one associates bijectively squarefree
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monomial ideals to simplicial complexes, via the so-called Stanley–Reisner
correspondence, which allows to understand the Betti numbers of squarefree

monomial ideals in terms of simplicial homology (see [67], [68], Chapter 5

of [12], Section 62 of [63] and Section 3.4.1 below).

We refer to [23] and Ordog’s thesis [62] for additional information and references.

To conclude this subsection we consider the very first map in a resolution of a

monomial ideal, the augmentation map, and its kernel. Let I be a monomial ideal with

G(I)= { f1, . . . , fm}, and write d j := deg( f j) for all j. One defines

ε : Sm =
m⊕

j=1

S(−d j)−→ I, e j �−→ f j,

where e1, . . . , em is a basis for Sm. Of course one may get a different map just by

rearranging the order of the generators, but this does not affect significantly what

ker(ε) is. With a very mild abuse of notation, one introduces the following.

Definition 3.3.11. We call Syz(I) := ker(ε) the (first) sygyzy module of I and we call

the elements of Syz(I) the syzygies of I.

That is, a syzygy of I is a tuple (p1, p2, . . . , pm) ∈ Sm such that

p1 f1 + p2 f2 +·· ·+ pm fm = 0.

Determining syzygies for arbitrary homogeneous ideals is not a completely trivial

matter, but the situation for monomial ideals is much simpler: observe that for any i
and j we have

ε( f j e i − f i e j)= f j f i − f i f j = 0.

The elements f j e i − f i e j can be “refined” to

σi j := f j

gcd( f i, f j)
ei − f i

gcd( f i, f j)
e j

= lcm( f i, f j)
f i

e i −
lcm( f i, f j)

f j
e j,

and these still map to zero.

Definition 3.3.12. The σi j’s above are called the reduced trivial syzygies of I.

For the following well-known result we refer to Theorem 15.10 of [25].

Theorem 3.3.13 (Schreyer). The reduced trivial syzygies of I generate Syz(I).

Example 3.3.14. The reduced trivial sygygies are not necessarily a minimal sys-

tem of generators for Syz(I). Consider for instance I = (x1x2x4, x2
1x2

2x3, x3
3x3

4) ⊂
K[x1, x2, x3, x4]. Then

σ12 = (x1x2x3, −x4, 0), σ13 = (x3
3x2

4, 0, −x1x2),

and σ23 is redundant, since σ23 =−x2
3x2

4σ12 + x1x2σ13.
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3.4 Squarefree monomial ideals

Among all monomial ideals, those generated by squarefree monomials play a special

role. Their particularly nice structure allows one to use topological tools. In particular,

one can compute their Betti numbers by means of simplicial homology. Moreover, as

we shall see in Section 3.7, one can always transform an arbitrary monomial ideal into

a squarefree one, preserving in particular the Betti numbers.

3.4.1 The Stanley–Reisner correspondence and Hochster’s formula

Definition 3.4.1. A monomial ideal I ⊂ S = K[x1, . . . , xn] is said to be squarefree
if none of the minimal monomial generators of I is divided by the square of some

variable. That is, the entries of the exponent vectors of the monomials in G(I) can

only be 0 or 1.

For a subset σ⊆ [n]= {1, . . . ,n}, we denote

xσ :=
∏
i∈σ

xi.

(Notice that for instance in [60] the same monomial is denoted by xσ.)

Definition 3.4.2. Given a simplicial complex Δ on [n]= {1, . . . ,n}, the Stanley–Reisner
ideal of Δ is

IΔ := (xσ |σ ∉Δ),

that is, the ideal generated by the non-faces of Δ, in the polynomial ring K[x1, . . . , xn].

In practice, IΔ is generated by the minimal non-faces of Δ.

Example 3.4.3. Consider the following simplicial complex Δ

1
2

3

45

6

7

which has three facets of dimension 2 and the hollow triangles 127 and 234. The

Stanley–Reisner ideal IΔ lives in K[x1, . . . , x7] and it is the ideal

IΔ = (x1x2x7, x1x3, x1x4, x1x5, x1x6, x2x3x4, x2x6, x3x5, x3x6, x3x7, x4x6, x4x7).

Notice that this ideal has two generators of degree 3. Instead, the Stanley–Reisner

34



Tools from Commutative Algebra

ideal of the simplicial complex

1
2

3

45

6

7

is the ideal

(x1x3, x1x4, x1x5, x1x6, x2x6, x3x5, x3x6, x3x7, x4x6, x4x7),

and all of its minimal generators are of degree 2.

Remark 3.4.4. Flag simplicial complexes (see Definition 2.3.3) are exactly the com-

plexes whose Stanley–Reisner ideal is generated in degree 2.

The map {
simplicial complexes

on {1, . . . ,n}

}
−→
{

squarefree monomial

ideals of K[x1, . . . , xn]

}
Δ �−→ IΔ

is a bijection, and it is called the Stanley–Reisner correspondence. The following

result and variations of it are commonly known as Hochster’s formula.

Theorem 3.4.5 (Hochster). Let Δ be a simplicial complex on [n]. For any i, j ≥ 0,

βi, j(IΔ)=
∑

W∈([n]
j )

dimK H̃ j−i−2(Δ[W];K).

The original formulation of the result above is in [55]. For additional (finer) versions

of it see for instance Corollaries 1.40 and 5.12 of [60], or Theorem 62.15 of [63].

3.4.2 Edge ideals of graphs

Definition 3.4.6. Given a finite simple graph G = (V ,E), the edge ideal of G is the

ideal

IG := (xvxw | {v,w} ∈ E)

in the polynomial ring K[xv | v ∈V ].

In Publication III we talk about “edge ideals of unlabeled graphs”, a concept that

does not seem to be well-defined. However, what we actually investigate in that paper

are the Betti numbers of such ideals, and those do not depend on the labelings. Namely,

if G ∼=G′ is an isomorphism of labeled graphs, then βi, j(IG)=βi, j(IG′) for all i and j.
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Edge ideals, whose systematic study was initiated by Villarreal [73] about thirty

years ago, have a very rich literature. The main goal is to relate algebraic properties of

the ideal IG to combinatorial or topological properties of G. We refer to Chapter 9

of [50] for a general introduction to such results, in particular relating properties of G
to the Cohen–Macaulayness of IG or homological invariants of IG . A few results of

the latter kind are discussed below.

Remark 3.4.7. Recall that the independence complex Ind(G) is the simplicial com-

plex with the the independence sets of G as faces. Notice that IG is equal to the

Stanley–Reisner ideal IInd(G), and recall that the independence complexes of graphs

are precisely the flag simplicial complexes (Remark 2.3.4).

Clearly the only non-zero Betti number in column 0 of the Betti table is on row

2, and it is the number of edges in G. By Proposition 3.2.12, this implies that all of

row 0 and row 1 are zero. Moreover, it is a well-known fact that for all i ≥ 0 and

j > 2(i+1), one has βi, j(IG) = 0 . (See for instance [15] or [36].) That is, for edge

ideals we always have zero entries under the diagonal consisting of the Betti numbers

βi,2(i+1)(IG):

0 1 2 3 4 · · ·
2 β0,2 β1,3 β2,4 β3,5 β4,6 · · ·
3 − β1,4 β2,5 β3,6 β4,7

4 − − β2,6 β3,7 β4,8

5 − − − β3,8 β4,9

6 − − − − β4,10
...

...
. . .

Definition 3.4.8. We refer to the diagonal consisting of the Betti numbers βi,2(i+1),

for i ≥ 0, as the main diagonal of the Betti table.

Hochster’s formula 3.4.5 reduced to the case of edge ideals gives the following:

Theorem 3.4.9 (Hochster’s formula for edge ideals). Let G be a finite simple graph

with vertex set V . For any i, j ≥ 0,

βi, j(IG)=
∑

W∈(V
j )

dimK H̃ j−i−2
(
Ind(G)[W];K

)
.

For the concept of linear resolution in the following, celebrated result by Fröberg,

see Definition 3.5.1 below. For a proof, see for instance Theorem 9.2.3 of [50].

Theorem 3.4.10 (Fröberg, [42]). Let G be a finite simple graph. The following are

equivalent:

• IG has a 2-linear resolution, that is, all the non-zero Betti numbers of IG are on

row 2 of the Betti table;

• the complement G of G is chordal.
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The following is a refinement by Dochtermann and Engström [22] of Hochster’s

formula, in the case of edge ideals of graphs with chordal complement.

Theorem 3.4.11. For a finite simple graph G with vertex set V and with chordal

complement, one has

βi,i+2(IG)=
∑

W∈( V
i+2)

(−1+ the number of connected components of G[W]
)
.

In spite of the apparently easy combinatorial structure of edge ideals and the fact

that Hochster’s result and variations of it have been around for more than forty years,

to the best of our knowledge it is still not known explicitly what the exact value

of reg(IG) is for an arbitrary graph G, in terms of easy numerical invariants of G, such

as the degrees of the vertices. Very often, only bounds for the regularity are known,

or alternatively exact values only for edge ideals of graphs in some special class. We

recall a few such results:

• Let m(G) be the matching number of a graph G, that is, the largest size of a

maximal matching in G. Hà and Van Tuyl [45] showed that reg(IG)≤ m(G)+1,

a result later generalized for arbitrary squarefree monomial ideals in [46] (see

also [47]).

• An exact result, also proven in [45], states that for a chordal graph G one has

reg(IG)= c+1, where c is the largest number of pairwise 3-disjoint edges of G.

• Dirac’s theorem [21] characterizing chordal graphs was imported to commu-

tative algebra in [51], thereby “expanding” Fröberg’s Theorem 3.4.10. (See a

comprehensive summary of this in Theorem 9.2.12 of [50].) In particular, G is

chordal if and only if projdim(IInd(G)∨)= 1 (if and only if reg(IG)= 2).

• If exact data about the Betti numbers or other numerical invariants of an edge

ideal are out of reach, one is at least interested in knowing some asymptotic

behavior. The work [36], somewhat related to our Publication III, is an example

of a paper containing such asymptotic results.

Among the plethora of papers concerning Betti numbers of edge ideals, of particular

importance to us is [22].

3.5 Linear resolutions

Definition 3.5.1. A finitely generated graded S-module M has a d-linear resolution
if βi, j(M)= 0 for j �= i+d, that is, if all the non-zero entries of the Betti table of M
are in the d-th row.

The following list contains a few reasons why linear resolutions are interesting.

Items 4 and 5 are the most relevant to us, for Publications I and II.
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1. The concept of linear resolution is intimately related to that of regularity (see

Definition 3.2.18): M has a linear resolution iff all the generators of M are in

the same degree d and reg(M) is equal to d, the smallest possible value.

2. Since the Hilbert series is additive with an alternating sign on exact sequences,

one can compute the Hilbert series of M from its graded Betti numbers: if

0−→
⊕
j∈Z

S(− j)βp, j −→ . . .−→
⊕
j∈Z

S(− j)β0, j −→ M −→ 0

is an exact complex (not necessarily a minimal resolution, namely the numbers

βi, j do not actually need to be the Betti numbers of M), then

HSM(t)=
∑p

i=0(−1)i∑
j∈Zβi, j t j

(1− t)n .

One cannot in general go the other way around, because there might occur some

cancellations: for instance, S/(x2, xy, y3) and S/(x2, y2) have the same Hilbert

series but different Betti numbers. However, when M has a linear resolution

one can get the Betti numbers from the Hilbert series.

3. Any minimal resolution has some linear complexes as its building blocks. In

particular, the linear strand is the linear part of a minimal resolution. We refer

to Chapter 7 of [26], which contains several results and applications of this topic

to algebraic geometry. Observe that a minimal linear resolution corresponds to

its own linear strand.

4. The well-known Eagon–Reiner theorem (see Theorem 3.5.5 below) says that I
has a linear resolution if and only if the Alexander dual I∨ is Cohen–Macaulay.

5. Graph theory is related to 2-linear resolutions by the famous result by Fröberg

(Theorem 3.4.10) stating that the edge ideal of a graph G has a linear resolution

if and only if the complement of G is chordal (see Definition 2.1.14).

6. Expressing a polynomial f ∈ R[x1, . . . , xn] as a sum of squares provides a cer-

tificate of non-negativity for f . Sums of squares are a hot topic of interest in

real algebraic geometry and optimization (among others), with a long and rich

history. In [7] it was shown that if X is a non-degenerate totally-real projective

variety, then every non-negative quadratic form on X is a sum of squares, mod-

ulo the defining ideal of X , if and only if X is a 2-regular variety. See also the

survey [6] for a gentle introduction and a more general discussion, relating also

to the fifth item of this list.

Among the many influential papers concerning linear resolutions, we mention that

of Eisenbud and Goto [28] and the classical work by Steurich [69]. More recent

directions of research involve families of ideals such that every product of elements in

the family has a linear resolution (see for instance [11] or [14]). We refer to Chapter 7

of [26] and Section 17 of [63] for additional information and references.
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Having a linear resolution implies in particular that there is only one non-zero Betti

number in column 0, that is, all the elements in a minimal system of homogeneous

generators of M have the same degree. This motivates the following definition.

Definition 3.5.2. A monomial ideal I is equigenerated if all the elements of G(I)
have the same degree.

In order to state the next famous result we recall what the Alexander dual of a

squarefree monomial ideal is.

Definition 3.5.3. For any subset σ⊆ [n] := {1, . . . ,n}, denote xσ :=∏i∈σ xi and mσ :=
(xi | i ∈σ). Given a squarefree monomial ideal I = (xσ1 , . . . , xσs ) ⊆ S =K[x1, . . . , xn],
the Alexander dual of I is the ideal

I∨ :=mσ1 ∩·· ·∩mσs .

Equivalently, I∨ is the ideal generated by the monomials with non-trivial common

divisor with every monomial in I (equivalently, in G(I)). In terms on Stanley–Reisner

ideals, one can relate the Alexander dual of an ideal to that of a simplicial complex

(see Definition 2.3.12) by noticing that IΔ∨ = (IΔ)∨. For other equivalent descriptions

of I∨ and additional information, see for instance Section 62 of [63] or Section 1.5.2

of [50].

We also recall the notion of “Cohen–Macaulay ring”, ubiquitous in commutative al-

gebra, without specifying all the details involved because anyway it is just instrumental

for our purposes.

Definition 3.5.4. For a Noetherian local ring R with maximal ideal m, a finitely gen-

erated R-module M �= 0 is a Cohen–Macaulay module if depth(M)= dim(M). If R
is any Notherian ring, M is called a Cohen–Macaualy module if the localization Mm

is Cohen–Macaulay as defined in the local case, for any maximal ideal m in the

support of M. If R is Cohen–Macaualy as an R-module, then we say that R is a

Cohen–Macaulay ring.

We only use results about Cohen–Macaulay rings in Publication II, and even there it

is actually in an indirect way, thanks to the following well-known result:

Theorem 3.5.5 (Eagon–Reiner, [24]). For a squarefree monomial ideal I ⊆ S, the

following are equivalent:

• I has a linear resolution;

• S/I∨ is Cohen–Macaulay.

For a proof, see for instance Corollary 62.9 of [63].

3.5.1 Ideals with linear quotients

Recall that, given an ideal I ⊆ S and a polynomial f ∈ S, one defines the colon ideal

I : f := {g ∈ S | f g ∈ I}.
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Definition 3.5.6. Let I ⊆ S =K[x1, . . . , xn] be a homogeneous ideal. We say that I
has linear quotients if there exists a system of homogeneous generators f1, f2, . . . , fm

of I such that the colon ideal ( f1, . . . , f i−1) : f i is generated by linear forms for all i.

Example 3.5.7. The order in which we take the generators matters. In the ring

K[x1, . . . , x5], take I = (x1x2x3, x3x4x5, x2x3x4). If we took the generators in the

given order, we would get in particular the colon ideal (x1x2x3) : x3x4x5 = (x1x2),
whose only generator is quadratic. On the other hand, if we order the generators as

f1 = x1x2x3, f2 = x2x3x4, f3 = x3x4x5,

then we get ( f1) : f2 = (x1) and ( f1, f2) : f3 = (x2). So indeed I has linear quotients.

The following two results are respectively Proposition 8.2.1 and Corollary 8.2.2

in [50]:

Proposition 3.5.8. Let I ⊆ S =K[x1, . . . , xn] be a homogeneous ideal equigenerated

in degree d and with linear quotients. Then I has a d-linear resolution.

Corollary 3.5.9. Let I ⊆ S be an equigenerated homogeneous ideal with linear quo-

tients. For k = 1, . . . ,m, let rk be the number of generators of ( f1, . . . , fk−1) : fk.

Then

βi(I)=
m∑

k=1

(
rk

i

)
.

In particular it follows that projdim(I)=max{r1, r2, . . . , rm}.

With the notation above, notice in particular that r1 = 0, and this only affects the

Betti number β0, with a summand
(r1

0

)= 1.

Example 3.5.10. Continuing Example 3.5.7, with the notation of Corollary 3.5.9 we

get r1 = 0, r2 = 1 and r3 = 1. So the projective dimension of I is 1 and we have

β0(I)=
3∑

k=1

(
rk

0

)
= 1+1+1= 3, β1(I)=

3∑
k=1

(
rk

1

)
= 0+1+1= 2.

The following is a combination of Lemma 8.2.3 and Corollary 8.2.4 in [50]:

Lemma 3.5.11. Let I be a monomial ideal and write G(I) = {u1,u2, . . . ,um}. The

following are equivalent:

• I has linear quotients with respect to u1,u2, . . . ,um;

• for all j < i, there exist an integer k < i and an integer � such that

uk

gcd(uk,ui)
= x� and x� divides

u j

gcd(u j,ui)
.

Assume now that I is squarefree and let Fi := supp(ui) for all i ∈ {1, . . . ,m}. The

equivalent conditions above hold if and only if

40



Tools from Commutative Algebra

• for all i and all j < i, there exist an integer � ∈ Fj \Fi and an integer k < i such

that Fk \ Fi = {�}.

Ideals with linear quotients are intimately related to the concept of shellability for

simplicial complexes (see Definition 2.3.5) by the following well-known equivalence,

which is Proposition 8.2.5 in [50]:

Proposition 3.5.12. Let Δ be a simplicial complex. The following conditions are

equivalent:

• IΔ has linear quotients with respect to a monomial system of generators;

• the Alexander dual Δ∨ of Δ is shellable.

More precisely, if G(IΔ)= {u1,u2, . . . ,um} and Fi := supp(ui) for i ∈ {1, . . . ,m}, then

IΔ has linear quotients with respect to u1, . . . ,um if and only if F1,F2, . . . ,Fm is a

shelling order of Δ∨, where F denotes [n]\ F.

3.6 Boij–Söderberg theory

Denote by β(M) the Betti table of a finitely generated graded S-module M. The

problem of classifying the possible Betti tables attainable by the modules of the form

S/I, for some homogeneous ideal I, has been open for many decades, and it is still

apparently out of reach. Boij–Söderberg theory, born in 2006, constitutes the main

major breakthrough since the problem was first raised. The main merits of Boij and

Söderberg were:

• considering the Betti tables of all finitely generated graded S-modules M and

not only those of the form S/I, observing that there is a semigroup structure on

the set of all Betti tables:

β(M1)+β(M2)=β(M1 ⊕M2);

• considering Betti tables up to rational multiples, viewing them as elements in a

cone inside an infinite-dimensional Q-vector space.

The first preprint version of [8] appeared on the arXiv in 2006. There Boij and

Söderberg first proposed their conjectures, describing a cone whose extremal rays are

generated by “pure tables” (called “pure diagrams” in the literature) and stating that

(1) there are indeed modules with Betti tables on those rays, and (2) any Betti table of

a Cohen–Macaulay graded S-modules lies inside this cone. A good deal of research

spanning a few months resulted in proofs by Eisenbud, Fløystad and Weyman [27] and

Eisenbud and Schreyer [29] of the original conjectures. Inspired by these, Boij and

Söderberg went on and were able to extend the results to the case of graded S-modules

that are not necessarily Cohen–Macaulay, in [9]. For a detailed early survey of the

theory and a general introduction, we refer to [37].
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Definition 3.6.1. The minimal resolution of a finitely generated graded S-module M
is called a pure resolution of type s= (s0, s1, . . . , sp) if it has the form

0→ S(−sp)βp,sp →···→ S(−s0)β0,s0 ,

that is, if there is at most one non-zero entry in each column of the Betti table.

By Proposition 3.2.12, one necessarily has s0 < s1 < ·· · < sp: now the smallest shift

in each homological position is the only shift. Notice that linear resolutions are a

special case of pure resolutions, attained when si = s0 + i for all i ∈ {1, . . . , p}.

Definition 3.6.2. A degree sequence is a finite sequence of increasing non-negative

integers. Given a degree sequence s= (s0, . . . , sp), we define the pure table associated
to s, denoted π(s), as the table with entry

π(s)i, j :=
{∏

k �=0,i
∣∣ sk−s0

sk−si

∣∣ if i ∈ {0, . . . , p} and j = si,

0 otherwise

in column i and row j. We define a partial order on the set of degree sequences by

setting

(s0, . . . , sp)≥ (m0, . . . ,mt)

if p ≤ t and si ≥ mi for all i ∈ {0, . . . , p}.

Notice that the definition of the partial order is very natural: one could extend

s= (s0, . . . , sp) to the longer sequence (s0, . . . , sn), with si =+∞ for i ∈ {p+1, . . . ,n}.

Remark 3.6.3. It is more customary to use the letter d instead of s for degree

sequences. However, Boij–Söderberg theory appears in this thesis (in Publication I)

in relation to the degrees of the vertices of some graphs, so the notational choice is

meant to avoid any possible confusion. In fact, in Publication I we use the letter n
to denote a degree sequence, but here that would result in a notationally hideous nn,

where the subscript is the number of variables in S =K[x1, . . . , xn]. Notice moreover

that “degree sequence” has a different meaning in graph theory, but we never make

use of that concept in this thesis.

The fundamental result in Boij–Söderberg theory of interest to us is the following.

(See for instance [37], Theorem 5.1.)

Theorem 3.6.4. Let M be a finitely generated graded S-module. There is a strictly

increasing chain s1 < ·· · < st of degree sequences, and there are numbers cs1 , . . . , cst ∈
Q≥0 such that the Betti table β(M) of M can be written as

β(M)= cs1π(s1)+·· ·+ cstπ(st).

For Cohen–Macaulay modules the decomposition above is unique. With the ap-

propriate notation and some assumption on the “windows” where one can select the

degree sequences, the decomposition above is unique (see [9]) also for more general

modules. Of course as it is written above one could have some redundant degree

sequence with coefficient zero. This is relevant to us for Publication I.
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Definition 3.6.5. We call the decomposition in the theorem above a Boij–Söderberg
decomposition of M, and we refer to the non-negative rational numbers cs1 , . . . , csp as

Boij–Söderberg coefficients of M.

There is an easy algorithm to compute Boij–Söderberg decompositions:

1. Let M be a module with Betti table β :=β(M).

2. For each non-zero column i of β one picks the position si of the first non-

zero entry and constructs a degree sequence s = (s0, s1, . . . , sn). Let c be the

largest non-negative rational number such that all the entries of β− cπ(s) are

non-negative.

3. If β− cπ(s) is non-zero, replace β by β− cπ(s) and repeat the step above.

Otherwise the algorithm has ended.

See [30] or [37] for additional details. Next we illustrate the algorithm with an

example.

Example 3.6.6. Consider in S =K[x, y, z] the ideal I = (x2, xy, xz2). The Betti table

β=β(S/I) of the S-module S/I is

0 1 2 3

0 1 0 0 0

1 0 2 1 0

2 0 1 2 1.

The first degree sequence to consider is (0,2,3,5), corresponding to the boxed entries:

0 1 2 3

0 1 − − −
1 − 2 1 −
2 − 1 2 1.

The largest rational number c such that all the entries of the table

β− cπ(0,2,3,5)=

⎛⎜⎜⎝
1 0 0 0

0 2 1 0

0 1 2 1

⎞⎟⎟⎠− c

⎛⎜⎜⎝
1 0 0 0

0 5 5 0

0 0 0 1

⎞⎟⎟⎠
are non-negative is c = 1

5 . So next we need to consider

β′ :=β− 1
5
π(0,2,3,5)=

⎛⎜⎜⎜⎝
4
5 0 0 0

0 1 0 0

0 1 2 4
5

⎞⎟⎟⎟⎠ ,
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and the degree sequence corresponding to the boxed entries is (0,2,4,5). The largest

rational number c′ such that all the entries of the table

β′ − c′π(0,2,4,5)=

⎛⎜⎜⎝
4
5 0 0 0

0 1 0 0

0 1 2 4
5

⎞⎟⎟⎠− c′

⎛⎜⎜⎝
3 0 0 0

0 10 0 0

0 0 15 8

⎞⎟⎟⎠
are non-negative is c′ = 1

10 . The next table is then

β′′ :=β′ − 1
10

π(0,2,4,5)=

⎛⎜⎜⎜⎝
1
2 0 0 0

0 0 0 0

0 1 1
2 0

⎞⎟⎟⎟⎠ ,

and the degree sequence corresponding to the boxed entries is (0,3,4). The largest

rational number c′′ such that all the entries of the table

β′′ − c′′π(0,3,4)=

⎛⎜⎜⎝
1
2 0 0 0

0 0 0 0

0 1 1
2 0

⎞⎟⎟⎠− c′′

⎛⎜⎜⎝
1 0 0 0

0 0 0 0

0 4 3 0

⎞⎟⎟⎠
are non-negative is c′′ = 1

6 . The last table is then

β′′ − 1
6
π(0,3,4)=

⎛⎜⎜⎝
1
3 0 0 0

0 0 0 0

0 1
3 0 0

⎞⎟⎟⎠= 1
3
π(0,3).

Putting all of this together one gets the Boij–Söderberg decomposition

β(S/I)= 1
5
π(0,2,3,5)+ 1

10
π(0,2,4,5)+ 1

6
π(0,3,4)+ 1

3
π(0,3).

Similarly to what happens with minimal resolutions, even though there is an algo-
rithm to compute Boij–Söderberg decompositions, one does not know in general what
outcome to expect. To the best of our knowledge, there is no universal understanding

of the Boij–Söderberg coefficients in terms of other invariants of the module. Over

the last decade, several papers have been focusing on the problem of shedding light

on the combinatorial meaning of Boij–Söderberg decompositions and coefficients

(see for instance [16, 17, 32, 41, 61]), sometimes providing explicit formulas for

the Boij–Söderberg coefficients of modules in some special class, like edge ideals of

graphs with chordal complement, or more general modules with linear resolutions.

Publication I is one such paper. Some useful results in [32], which we recall in the

following section, are of particular interest to us.

3.6.1 Boij–Söderberg theory for 2-linear resolutions

Engström and Stamps proved very explicit formulas in [32] showing how Betti num-

bers and Boij–Söderberg coefficients are related for modules with 2-linear resolutions.
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Definition 3.6.7. If a finitely generated graded S-module M has Betti table of the

form

0 1 2 . . . p

0 m 0 0 · · · 0

1 0 β1,2 β2,3 · · · βp,p+1

then we call (β1,2, . . . ,βp,p+1,0, . . . ,0), by adding as many 0’s as necessary to have n
entries, the Betti vector of M and denote it by ω(M).

Notice that we are allowed to add 0’s so that ω(M) has exactly n entries by Hilbert’s

Syzygy Theorem 3.2.17. Moreover, if an ideal I ⊆ S has a 2-linear resolution, indeed

the Betti table β(S/I) of the quotient is of the form

0 1 2 . . . p

0 1 0 0 · · · 0

1 0 β1,2 β2,3 · · · βp,p+1

Because in this section and in Publication I all the Betti tables can have non-zero

entries only in this unambiguous way, we denote Betti tables like the one above as

β(S/I)=
(

1 0 0 · · · 0

0 β1,2 β2,3 · · · βp,p+1

)
,

omitting the row and column indices. By Theorem 3.6.4, any Betti table is the

weighted average of certain pure tables π(s). For Betti tables such as the above, the

only possible pure tables are those of the form π(0,2,3,4, . . . , j, j+1), namely such

that β0,0 �= 0 and the other non-zero Betti numbers are all located after the first entry

in the second row (i.e., the row with index 1) of the Betti table. For instance,

π(0,2)=
(

1 0 0 · · ·
0 1 0 · · ·

)
and π(0,2,3)=

(
1 0 0 0 · · ·
0 3 2 0 · · ·

)
.

Using the same notation as in [32], we denote by π j the Betti vector of the pure table

π(0,2,3, . . . , j, j+1). For the tables π(0,2) and π(0,2,3) above, we have

π1 = (1,0, . . . ) and π2 = (3,2,0. . . ).

Slightly larger examples are

π7 = (28,112,210,224,140,48,7,0,0, . . . ),

π8 = (36,168,378,504,420,216,63,8,0,0, . . . ),

π9 = (45,240,630,1008,1050,720,315,80,9,0,0, . . . ).

By Theorem 3.6.4, specified to the case of modules with a Betti table such as that in

Definition 3.6.7, we can write

β(M)=
n∑

j=1

c jπ j

for some unique c j ∈Q≥0.
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Definition 3.6.8. With the same assumptions and notation as above, we call the

coefficient c j of π j the j-th Boij–Söderberg coefficient of M.

Lemma 3.6.9 (Lemma 3.1 and Theorem 3.2 of [32]). Let M be an S-module with

a Betti table as in the definition above, and let c = (c1, . . . , cn) be the vector with the

Boij–Söderberg coefficients of M. Let Ω be the square matrix of order n whose

(i, j)-entry is j
(i+1

j+1

)
. Then Ω is invertible and the inverse Ω−1 has (i, j)-entry equal

to (−1)i− j 1
i

(i+1
j+1

)
. Moreover, we have c =ω(M)Ω−1.

Definition 3.6.10. A sequence of integers λ= (λ1,λ2, . . . ,λn) such that

t ≥ λ1

1
≥ λ2

2
≥ ·· · ≥ λn

n
≥ 0

is called an anti-lecture hall composition of length n bounded above by t.

For general information about anti-lecture hall compositions, see [18], where they

were introduced, and [66]. Engström and Stamps ([32], Section 4) show how to

associate a unique anti-lecture hall composition with t = 1 and λ1 = 1 to an ideal with

a 2-linear resolution.

Lemma 3.6.11 (Proposition 4.11 of [32]). Let I ⊆ S be an ideal with a 2-linear

resolution, and denote by λ= (λ1, . . . ,λn) the anti-lecture hall composition associated

to I. Let Ψ be the invertible n×n matrix with (i, j)-entry equal to Ψi j =
(i−1

j−1

)
. Then

we have λ=ω(S/I)Ψ−1.

3.7 Polarizations

Polarization is a technique that allows one to get a squarefree monomial ideal starting

from an arbitrary monomial ideal, while preserving some properties. In particular the

Betti numbers stay the same (Proposition 3.7.6).

The classical notion of polarization was originally used by Hartshorne in his proof

of the connectedness of the Hilbert scheme (see Chapter 4 of Hartshorne’s paper [48]).

Later it became a standard tool in commutative algebra thanks to the work of Hochster.

More recently, new versions of “polarization” have been introduced, such as the

b-polarization for strongly stable ideals (see [74]). Letterplace ideals (see [38, 39])

constitute polarizations for Artinian monomial ideals, and shifting (see Chapter 11

of [50]) can also be seen as a form of polarization.

In this context one often starts from a monomial ideal I ⊂ S and gets a squarefree

monomial ideal Ĩ in a larger polynomial ring S̃, and one can go back from S̃/Ĩ to S/I
by taking a quotient modulo a regular sequence (see Section 3.7.1 below) consisting

of variable differences. After a surprisingly long time, a systematic study of this kind

of situation has begun in the recent paper [2], in the case of powers of graded maximal

ideals. In the remaining sections of this chapter we introduce the notions involved in

this, necessary for Publication IV and part of Publication II.
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3.7.1 Regular sequences

Let R be a commutative ring with identity and let M be an R-module.

Definition 3.7.1. An element a ∈ R is M-regular if the only element m ∈ M such that

am = 0 is m = 0. A sequence of elements a1, . . . ,as ∈ R is an M-regular sequence if

the following conditions hold:

1. ai is M/(a1, . . . ,ai−1)M-regular for all i ∈ {1, . . . , s};

2. M/(a1, . . . ,as)M �= 0.

The second condition is often automatically satisfied, for instance in the context of

graded rings and modules, if all the elements a1, . . . ,as are of positive degree, as it

will be the case for most sequences considered in this theses, in Publications II and IV:

the regular sequences there will consist of differences of variables.

In a very “explicit” context, say R is a polynomial ring and M = R/I is the quotient

by some ideal of R, it is possible to check whether a given sequence of polynomials is

M-regular: several computer algebra systems have algorithms to do that. It is however

quite difficult in general to construct regular sequences. The most famous example

in the literature of a regular sequence, consisting of specific variable differences, is

described in the next section.

The following result is very well known. See for instance Theorem 2.1.3 of [12] for

a proof.

Theorem 3.7.2. Let R be a Notherian ring and let a1, . . . ,as be an R-regular sequence.

If R is a Cohen–Macaulay ring, then R/(a1, . . . ,as) is a Cohen–Macaualy ring.

The following result is also folklore, see Theorem 20.3 of [63] for a proof.

Proposition 3.7.3. Let R be a positively graded ring and let M be a finitely generated

graded R-module. Let a ∈ R be homogeneous and of positive degree, and assume that

a is both R-regular and M-regular. Let F be a minimal graded free resolution of M
over R. Then F⊗R R/(a) is a minimal graded free resolution of M/aM over R/(a).
In particular, the graded Betti numbers of M over R are the same as those of M/aM
over R/(a); that is, for each i and j, we have

βR
i, j(M)=βR/(a)

i, j (M/aM).

Example 3.7.4. Let S =K[x1, x2, x3, x4, x5, x6] and let I be the ideal generated by the

three 2×2 minors of the matrix [
x1 x2 x3

x4 x5 x6

]
,

that is, I = ( f1 := x1x5 − x2x4, f2 := x1x6 − x3x4, f3 := x2x6 − x3x5). Then S/I has

minimal resolution

0−→ S(−3)2

⎡
⎢⎢⎢⎢⎣

x3 x6

−x2 −x5

x1 x4

⎤
⎥⎥⎥⎥⎦

−−−−−−−−−−−→ S(−2)3

[
f1 f2 f3

]

−−−−−−−−−−−→ S −→ S/I −→ 0.
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If we set a := x4 − x2 and M := S/I, then a is both S-regular and M-regular. The

minimal resolution of M/aM as an S/(a)-module is

0−→ (S/(a)
)
(−3)2

⎡
⎢⎢⎢⎢⎣

x3 x6

−x2 −x5

x1 x4

⎤
⎥⎥⎥⎥⎦

−−−−−−−−−−−→ (S/(a)
)
(−2)3

[
f1 f2 f3

]

−−−−−−−−−−−→ S/(a)−→ M/aM −→ 0,

where the bar denotes the equivalence class in the quotient. The graded Betti numbers

are indeed the same.

By iterating Proposition 3.7.3, one gets in particular the following:

Corollary 3.7.5. Let I be a homogeneous ideal of S = K[x1, . . . , xn] and denote

M := S/I. Let a1, . . . ,as be an M-regular sequence of homogeneous elements of S of

positive degree and define the ideal J := (a1, . . . ,as). Then, for all i and j,

βS
i, j(M)=βS/J

i, j (M/JM).

3.7.2 Separations and polarizations

In the classical polarization one starts from an arbitrary monomial ideal and gets a

squarefree one, replacing the monomial xa1
1 xa2

2 . . . xan
n , in the ring K[xi | i = 1, . . . ,n],

by the monomial

(x1,1x1,2 . . . x1,a1 )(x2,1x2,2 . . . x2,a2 ) . . . (xn,1xn,2 . . . xn,an ),

in the larger ring K[xi,1, . . . , xi,ai | i = 1, . . . ,n]. Using x, y and z instead of x1, x2 and

x3, consider for instance the ideal

I := (x4 y2, x2 y3z, xz2) ⊂ S :=K[x, y, z].

With the classical polarization one would get

Ipol := (x1x2x3x4 y1 y2, x1x2 y1 y2 y3z1, x1z1z2)

⊂ Spol :=K[x1, x2, x3, x4, y1, y2, y3, z1, z2].

One can then recover S/I by taking the quotient of Spol/Ipol modulo the variable

differences

x1 − x2, x2 − x3, x3 − x4, y1 − y2, y2 − y3, z1 − z2

so that in the quotient one has x1 = x2 = x3 = x4, y1 = y2 = y3 and z1 = z2. The

variable differences above constitute an Spol/Ipol-regular sequence. So in particular

the homological invariants of Spol/Ipol and S/I are the same, as a special case of

Proposition 3.7.3:

Proposition 3.7.6. The graded Betti numbers of S/I and Spol/Ipol are equal.
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And moreover, Ipol being squarefree, one has the advantage that the Stanley–Reisner

machinery can be applied to Ipol. We refer to Section 21 of [63] for additional

information on the classical polarization.

This classical construction is not the only way to turn an arbitrary monomial ideal

into a squarefree one. A small example where one has different ways to polarize an

ideal is given by

I := (x, y, z)2 = (x2, xy, xz, y2, yz, z2)

inside S :=K[x, y, z]. One may polarize I in exactly two non-isomorphic ways (up to

permutation of the variables):

I1 := (x1x2, x1 y1, x1z1, y1 y2, y1z1, z1z2),

I2 := (x1x2, x1 y2, x1z2, y1 y2, y1z2, z1z2)

in S̃ := K[xi, yi, zi | i = 1,2]. Notice that the first is the classical polarization. In

both cases the differences x1 − x2, y1 − y2 and z1 − z3 form a regular sequence, and

taking the quotient modulo that regular sequence yields S/I. The reason behind the

existence of these two distinct polarizations is that the polarizations of (x1, . . . , xn)2 are

in bijection with the unlabeled trees on n+1 vertices, as shown in [2] and explained

in the following section. For n = 3, there are two unlabeled trees on n+1 vertices, and

it turns out that I1 above is associated to the tree on the left and I2 to the one on the

right, with respect to the bijection in [2]:

The goal with the setup introduced next, first appeared in [39], is to generalize the

classical polarization.

Definition 3.7.7. Let p : B′ → B be a surjection of finite sets with |B′| = |B|+1. Let

b1 and b2 be two distinct elements of B′ such that p(b1) = p(b2). Denote for short

K[xB] :=K[xi | i ∈ B] and K[x′B] :=K[xi | i ∈ B′]. Let I be a monomial ideal in K[xB]
and J a monomial ideal in K[xB′]. We say that J is a separation of I if the following

conditions hold:

1. The ideal I is the image of J by the map K[xB′]→K[xB] induced by p.

2. Both the variables xb1 and xb2 occur in some minimal generators of J (usually

in distinct generators).

3. The variable difference xb1 − xb2 is a K[xB′]/J-regular element.

In general, if p : B′ → B is a surjection of finite sets and I ⊆K[xB] and J ⊆K[xB′] are

monomial ideals such that J is obtained by a succession of separations of I, we also

call J a separation of I. If J is squarefree and a separation of I, then we say that J is

a polarization of I.
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The recent work [2] initiates the systematic study of polarizations in the connotation

above, considering the polarizations of (x1, . . . , xn)m, focusing in particular on the

cases n = 3 (with arbitrary m) and m = 2 (with arbitrary n).

3.7.3 Polarizations of (x1, . . . , xn)2 and tree ideals

The results presented here are taken from Section 6 of the fourth version of [2].

Definition 3.7.8. Let I ⊆ S and J ⊆ R be monomial ideals inside the polynomial

rings S and R. We say that I and J are isomorphic as monomial ideals if there is a

bijection from the set of variables of S to that of R that induces a bijection from G(I)
to G(J).

Let T be a directed tree. Denote by V the set of vertices and by E the set of edges

of T. For e ∈ E and v ∈V , we define

eto(v) :=
{

1 if e points to v,

0 otherwise.

For a field K, consider the polynomial ring S = K[xe,0, xe,1 | e ∈ E] that has two

variables for each edge of T. Recall that, given two vertices v and w in T, we denote

by vTw the only path in T linking v and w.

Definition 3.7.9. For a pair of vertices v,w in V , consider the path vTw. Let e and f
be the edges on vTw incident to v and to w, respectively. Define the monomial

mv,w := xe,eto(v)xf , fto(w).

The tree ideal of T is the ideal of S

I(T) := (mv,w | v,w ∈V ).

Example 3.7.10. Consider the tree T as in the following picture, the star with four

edges pointing outwards:

1
2

3
4

1a

b

c

d

v

For instance the path aTv consists only of the edge 1, so that both e and f in the

definition of ma,v above are equal to the edge 1, and then ma,v = x1,1x1,0. The tree

ideal I(T) is generated by the monomials

ma,b = x1,1x2,1 ma,c = x1,1x3,1 ma,d = x1,1x4,1 ma,v = x1,1x1,0

mb,c = x2,1x3,1 mb,d = x2,1x4,1 mb,v = x2,1x2,0 mc,d = x3,1x4,1

mc,v = x3,1x3,0 md,v = x4,1x4,0.
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Consider the polynomial rings

S =K[xe,i | e ∈ {1, . . . ,n}, i ∈ {0,1}] and S′ =K[xe | e ∈ {1, . . . ,n}].

Theorem 3.7.11 ([2], Theorem 6.1). The polarizations of (x1, . . . , xn)2 ⊂ S′ are in

bijection with the undirected trees on n+1 vertices. More precisely,

• for any directed tree T on n+1 vertices, the ideal I(T) is a polarization of

(x1, . . . , xn)2 ⊂ S′, and every polarization of (x1, . . . , xn)2 is isomorphic as a

monomial ideal to some I(T);

• two polarizations I(T) and I(T ′) are isomorphic as monomial ideals if and only

if the underlying undirected trees of T and T ′ are isomorphic.

Remark 3.7.12. The star on n+1 vertices corresponds to (the monomial ideals iso-

morphic to) the classical polarization. Similarly, the path on n+1 vertices corresponds

to the letterplace ideal L(2,n) (see [39]).

Example 3.7.13. Consider the following directed tree T ′:

1
2

3
4

1a

b

c

d

v

The underlying undirected tree of T ′ is the same as the one of the directed tree T in

Example 3.7.10. The only difference is in the direction of the edge 4. Indeed, I(T) and

I(T ′) are isomorphic as monomial ideals, and I(T ′) is obtained from I(T) by simply

swapping x4,1 and x4,0. On the other hand, any directed tree that has as underlying

undirected tree one of

or

gives rise to a tree ideal that is not isomorphic to I(T).
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4. Summary of the Publications

This chapter contains summaries of Publications I, II, III and IV, respectively in

Sections 4.1, 4.2, 4.3 and 4.4.

4.1 Explicit Boij–Söderberg theory of ideals from a graph
isomorphism reduction

Question 4.1.1 (Graph Isomorphism Problem). Are two given finite simple graphs G
and H isomorphic? (See Definition 2.1.2.)

Of course this problem can be solved in a naïve way by checking all possible

bijections VG →VH of the vertex sets of G and H until one finds an isomorphism or

runs out of bijections. But this algorithm is slow. A more meaningful question is the

following:

Question 4.1.2. Is there an algorithm that, given two graphs G and H, determines in

polynomial time—that is, polynomial in the number of vertices of G and H—whether

G and H are isomorphic?

This is still an open problem, and it was the main motivation behind Publication I. In

the origins of complexity theory, Booth and Lueker [10] introduced a construction that

takes an arbitrary finite simple graph G and returns a split graph (see Definition 2.1.16):

Definition 4.1.3. Let G = (V ,E) be a finite simple graph. Let BL(G) be the graph

with vertex set V ∪E and edge set{
{u,v} | u,v ∈V

}∪⋃
e∈E

{
{u, e}, {v, e} | e = {u,v}

}
.

That is, BL(G) contains the complete graph on V and “new” vertices corresponding

to the edges of G, with each e ∈ E being adjacent to both ends of e. We call BL(G)
the Booth–Lueker graph of G.

Example 4.1.4. In the picture below a graph G is on the left and its Booth–Lueker
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graph on the right:

b c

a

d

b c

a

d

The elements of V are not labeled to keep the notation less heavy, and the copy of G
inside BL(G) is drawn with thicker lines for the sake of clarity.

Remark 4.1.5. Booth–Lueker graphs are split graphs: with the notation of the def-

inition above, BL(G)[V ] is a clique and BL(G)[E] is an independent set. Notice

however that not all split graphs are Booth–Lueker graphs: for instance the one drawn

in Example 2.1.17 cannot be a Booth–Lueker graph because it has a vertex of degree 0
(and one of degree 3). In Publication I it seemed psychologically helpful to refer to

the clique BL(G)[V ] as the left part of BL(G) and the independent set BL(G)[E] as

the right part of BL(G). This is illustrated inside and immediately after Example 2.11

of Publication I.

Booth and Lueker proved the following:

Proposition 4.1.6 (Booth–Lueker, [10]). For two finite simple graphs G and G′, one

has G ∼=G′ if and only if BL(G)∼= BL(G′).

The train of thought behind Publication I was:

1. The mapping G �→ BL(G) is a polynomial-time reduction of the isomorphism

problem for general finite simple graphs to that of split graphs, which are in

particular chordal and with a complement that is also chordal.

2. Graphs G with a chordal complement are exactly those whose edge ideal IG

has a 2-linear resolution, by Theorem 3.4.10. Such resolutions and their Boij–

Söderberg decompositions were studied by the first author of Publication I and

Matthew Stamps in [32].

3. How much do the homological invariants (i.e., the Betti numbers, or equivalently

the Boij–Söderberg coefficients) of the Booth–Lueker graph BL(G) help in

understanding the isomorphism class of G?

Unfortunately the answer to the last question is, not that much. We show that

the Betti numbers (or equivalently, the Boij–Söderberg coefficients) of BL(G) are

equal to those of BL(G′) if and only if the degree vectors dG and dG′ are equal (see

Definition 2.1.1), and there are in general many non-isomorphic graphs sharing the

same degree vector. However, we find our results particularly explicit, unlike others
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expressing the Boij–Söderberg coefficient of some module in terms of combinatorial

data. To state the results precisely, recall that the Betti table of S/IBL(G) has the form

0 1 2 . . . p

0 β0,0 0 0 · · · 0

1 0 β1,2 β2,3 · · · βp,p+1

and that we denote by

ω(BL(G)) :=ω(S/IBL(G))= (β1,2, β2,3, . . . ,βp,p+1,0, . . . ,0)

the Betti vector of S/IBL(G). As explained in Section 3.6.1, it is equivalent to know

• the Betti vector of S/IBL(G),

• the Boij–Söderberg coefficients of S/IBL(G), or

• the anti-lecture hall composition associated to BL(G).

Our main results in Publication I show that knowing any of the objects above is

equivalent to knowing

• the degree vector of G.

We find explicit formulas to compute the Betti vector of S/IBL(G) knowing the degree

vector of G, and vice versa we can compute the degree vector in terms of the (last non-

zero) Betti numbers of S/IBL(G). The following is a combination of Propositions 3.1

and 3.4 of Publication I:

Proposition 4.1.7. Let G be a finite simple graph with n vertices and m edges, and

let dG = (d0,d1, . . . ,dn−1)T be the degree vector of G. Let A be the (n+m−1)×n
matrix defined by Ai j =

( j+n−2
i

)
, and let v be the column (n+m−1)-vector defined

by vi =
( n

i+1

)
. Then

ω(BL(G))= AdG −v.

Let Δ(G) be the largest vertex degree in G. Let B be the square submatrix of A
obtained by taking the first Δ(G)+1 columns and the rows from n−1 to n+Δ(G)−1.

Then B is invertibe, with (B−1)i j = (−1)i+ jBi j, and

dG = B−1(βn−1,n +1, βn,n+1, βn+1,n+2, . . . , βn+Δ(G)−1,n+Δ(G)).

(The “+1” in the first entry is not a typo.)

More interestingly, we give a very explicit description of the Boij–Söderberg coef-

ficients of S/IBL(G), by applying Lemma 3.6.9 to the first part of Proposition 4.1.7,

after some manipulations. The following is Theorem 3.5 of Publication I:
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Theorem 4.1.8. Let G be a graph with n vertices and m ≥ n edges. Denote by dk

the number of vertices of degree k in G. Then the j-th Boij–Söderberg coefficient of

S/IBL(G) is

c j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if j ≤ n−2,

d0
n if j = n−1,

d j−n+1
j +

∑n−1
i= j−n di

j( j+1) if n−1< j ≤ 2n−2,

0 if j > 2n−2.

As for the anti-lecture hall composition associated to BL(G), the following is

Proposition 3.7 of Publication I:

Proposition 4.1.9. Let G be a finite simple graph with n vertices and m ≥ n−1
edges. Denote by dk the number of vertices of degree k in G, and denote by λ the

anti-lecture hall composition associated to BL(G). Then we have

λ j =

⎧⎪⎪⎨⎪⎪⎩
j for j = 1, . . . ,n,

dn−1 +dn−2 +·· ·+d j−n+1 for j = n, . . . ,2n−2,

0 for j > 2n−2.

In particular, note that for j = n we get λn = dn−1 +dn−2 +·· ·+d0 = n.

The complement of a split graph is also split. The complement BL(G) of the Booth–

Lueker graph of G also has edge ideal IBL(G) with 2-linear resolution, to which one

may apply the machinery of Section 3.6.1. And of course the complement is also

such that G ∼= G′ if and only if BL(G) ∼= BL(G′). Therefore one may wonder how

much the homological invariants of BL(G) help in distinguishing isomorphism class

of G. It turns out that the answer is even worse than in the case of BL(G). Knowing

those invariants of BL(G) is equivalent to knowing the number of vertices and number

of edges of G. We provide explicit formulas, analogously to the case of BL(G), in

Propositions 4.1 and 4.3 and Theorem 4.2 of Publication I.

4.2 Linearization of monomial ideals

The Booth–Lueker construction in Publication I can be interpreted as a map{
quadratic squarefree

monomial ideals

}
−→
{

quadratic squarefree monomial

ideals with a linear resolution

}
.

The initial goal of Publication II was to generalize as much as possible the Booth–

Lueker construction seen from this viewpoint. As it turns out, a natural way to define

such a generalization is as follows.

Definition 4.2.1. Let I ⊂K[x1, . . . , xn] be a monomial ideal with minimal set of mono-

mial generators G(I) = { f1, . . . , fm}, such that f1, . . . , fm all have the same degree d.

For all i ∈ {1, . . . ,n}, denote by Mi the largest exponent with which xi occurs in G(I).
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Let M :=max{M1, . . . , Mn}. In the polynomial ring R :=K[x1, . . . , xn, y1, . . . , ym] we

define the linearization of I

Lin(I) := (xa1
1 · · ·xan

n | a1 +·· ·+an = d and ai ≤ Mi for all i
)

+( f j yj/xk | xk divides f j, k = 1, . . . ,n, j = 1, . . . ,m
)

and the ∗-linearization of I

Lin∗(I) := (xa1
1 · · ·xan

n | a1 +·· ·+an = d and ai ≤ M for all i
)

+( f j yj/xk | xk divides f j, k = 1, . . . ,n, j = 1, . . . ,m
)
.

We call the first summand the complete part of Lin(I) (respectively, of Lin∗(I)) and

the second summand the last part of Lin(I) (respectively, of Lin∗(I)).

Remark 4.2.2. Notice that the last parts of Lin(I) and Lin∗(I) are always equal. The

only difference is in the complete part: since Mi ≤ M for each i ∈ {1, . . . ,n}, we always

have

Lin(I)⊆Lin∗(I),

with equality only when M1 = M2 = ·· · = Mn = M. The reason for introducing

Lin∗(I), which is “coarser” than Lin(I), is that given its symmetry it’s easier to

understand than Lin(I) in general. Moreover Lin∗(I) is a more direct generalization

of the Booth–Lueker construction of Publication I, in the sense that

Lin∗(IG)= IBL(G),

whereas with Lin(IG) one would not take into account the vertices of G that do not

have any neighbors: consider for instance the finite simple graph G

1

2 3

4

with edge ideal IG = ( f1 = x1x2, f2 = x1x3, f3 = x2x3
)
. Then Lin(IG) and Lin∗(IG)

are the edge ideals of the following graphs, respectively,

1

2 3

4

1

2 3

4

where we omit the labels of some vertices to lighten the notation.
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4.2.1 Main results

Let J ⊆K[z1, . . . , zr] be a monomial ideal with minimal system of monomial genera-

tors G(J)= {g1, . . . , gs}. Write gi = za1i
1 · · · zari

r for all i. Fix a vector of non-negative

integers v = (v1, . . . ,vr) ∈Nr. We use v to “crop from above” the ideal J by keeping

only the generators of J whose vector of exponents is componentwise at most as large

as the vector v: that is, we define

J≤v := (gp | api ≤ vi for all i = 1, . . . , r),

and we say that J≤v is obtained by cropping J by v. The following result (Propo-

sition 2.9 of Publication II) is instrumental in the proof of the main property of

Lin(I) and Lin∗(I), and it seemed interesting in its own right, especially as an analog

for linear quotients of a general folklore result on resolutions (see Proposition 56.1

of [63]).

Proposition 4.2.3. Let J = (g1, . . . , gs) ⊂ K[z1, . . . , zr] be a monomial ideal with

linear quotients with respect to the given ordering of the generators. Fix v ∈Nr and

write J≤v = (gb1 , . . . , gbt ), where b1 < ·· · < bt are the indices of the generators that

survived the cropping. Then J≤v has linear quotients with respect to gb1 , . . . , gbt .

Using the same notation as in the definition of linearization above, the main property

is the following (Theorem 3.7 of II).

Theorem 4.2.4. Assume that f1, . . . , fm are in decreasing lexicographic order. List the

generators of the complete part of Lin(I), and respectively of Lin∗(I), in decreasing

lexicographic order. List the generators
f j
xk

yj of the last part first by increasing j, and

secondly by increasing k. The ideals Lin(I) and Lin∗(I) have linear quotients with

respect to the given ordering of the generators.

This has an immediate consequence, by Proposition 3.5.8:

Corollary 4.2.5. The ideals Lin(I) and Lin∗(I) have d-linear resolutions.

We prove that also the radical
�

Lin∗(I) has linear quotients and compute its Betti

numbers (see Theorem 3.18 and Corollary 3.19), where we consider the ∗-linearization

to lighten the notation (which is still a bit heavy anyway).

Particular attention was given to the case when I is squarefree, which happens if and

only if Lin(I) is squarefree, if and only if Lin∗(I) is squarefree. In this case we are

able to give a (cumbersome but) explicit description of the Betti numbers of Lin∗(I).
In particular, we answer one of the motivating questions: In Publication I we showed

that the Betti numbers of IBL(G) only depend on the degrees of the vertices of G, so is

there an analog to this in general for Lin∗(I)? The answer is yes, and for Lin∗(I) it

turns out that the Betti numbers depend only on how many generators of I (all of the

same degree d) are divided by a common monomial of degree d−1. We introduce

the following terminology:
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Definition 4.2.6. Let u = xi1 · · ·xid−1 , with i1 < ·· · < id−1, be a squarefree monomial.

We call u a (d−1)-edge of I if u divides some generator of I. The multiplicity of a

(d−1)-edge u of I is the number

mult(u) := #{ f i ∈G(I) | u divides f i},

where G(I) = { f1, . . . , fm}. We call a j-cluster a set of cardinality j consisting of

generators of I that are divided by a same (d−1)-edge u.

Notice that a 1-edge, obtained for d = 2, is just a variable, and its multiplicity in the

sense above corresponds to the graph-theoretic notion of degree. Notice moreover that

the word “cluster” here does not have the same meaning as in Definition 2.1.4 and

Publication III. The following is Corollary 4.10 in Publication II:

Corollary 4.2.7. Let I be generated by m monomials of degree d as in the results

above. Let C j ∈N be the number of maximal j-clusters, that is, j-clusters that are not

contained in a ( j+1)-cluster. Then

βi
(
Lin∗(I)

)=(i+d−1
d−1

)(
n

i+d

)

+
(

n−d+1
i

)(
md−

∑
j≥2

( j−1)C j

)

+
∑
j≥2

C j

j∑
k=2

(
n−d+k

i

)
.

Example 4.2.8. Consider the ideal I = (x1x2x3, x1x2x4, x1x2x5)⊂ S =K[x1, . . . , x5].
The hypergraph corresponding to this ideal consists of three triangles that share the

common edge x1x2 (which has codimension 1). The ∗-linearization of I lives in

R =K[x1, . . . , x5, y1, y2, y3], and it’s the ideal

Lin∗(I)= (x1x2x3, x1x2x4, . . . , x2x4x5, x3x4x5)

+ (y1x2x3, x1 y1x3, x1x2 y1, . . . , y3x2x5, x1 y3x5, x1x2 y3),

with
(n

d

)+md = (53)+3×3= 19 generators. In fact, in this example one has Lin(I)=
Lin∗(I). One may check that the Betti table β(Lin∗(I)) is

0 1 2 3 4 5

3 19 45 43 21 6 1.

Next we compute the colon ideals Jk := (g1, . . . , gk−1) : gk. For gk in the complete

part of Lin∗(I) we get the ideals written below on the left column, and after that for
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gk in the last part we get the ideals on the right:

J1 = (0) J11 = (x1, x4, x5)

J2 = (x3) J12 = (x2, x4, x5)

J3 = (x3, x4) J13 = (x3, x4, x5)

J4 = (x2) J14 = (x1, x3, x5)

J5 = (x2, x4) J15 = (x2, x3, x5)

J6 = (x2, x3) J16 = (x3, x4, x5, y1)

J7 = (x1) J17 = (x1, x3, x4)

J8 = (x1, x4) J18 = (x2, x3, x4)

J9 = (x1, x3) J19 = (x3, x4, x5, y1, y2).

J10 = (x1, x2)

In this small example we can observe some facts that hold in general: the colon ideals

Jk with gk in the complete part are very regular, they clearly don’t depend on the

generators of I, and they have nothing to do with the variables yj. They have at most

n−d generators, in this case 5−3= 2. On the other hand, the ideals Jk with gk in the

last part of Lin∗(I) have more generators, at least n−d+1, and some of these ideals

happen to have additional generators, consisting of some variables yj.

The squarefree case is discussed at length in Section 4 of Publication II, both with

a direct argument and with a more conceptual proof suggested by Gunnar Fløystad,

using his “polarization techniques” (see Section 3.7.2), based on the repeated use of

the following well-known results:

• the quotient of a Cohen–Macaulay ring by a regular sequence is Cohen–Macaulay

(see Theorem 3.7.2);

• a squarefree monomial ideal I has a linear resolution iff S/I∨ is Cohen–Macaulay

(see Theorem 3.5.5).

Among the other results in Publication II, we only mention the following: One

may wonder whether Lin(I) belongs to some famous class of ideals with linear

quotients. Polymatroidal ideals, defined below, constitute one such large class (see

also Section 12.6 of [50]). For a variable y and a monomial u, we denote by degy(u)
the highest exponent e ∈N such that ye divides u.

Definition 4.2.9. An equigenerated monomial ideal J ⊂K[z1, . . . , zr] is polymatroidal
if the following holds: for any u and v in G(J) and for any i such that degzi

(u) >
degzi

(v), there exists j such that degz j
(u)< degz j

(v) and u
zi

z j ∈G(J).

It was natural to ask how often Lin(I) is polymatroidal, and it turns out that it almost

never is (Theorem 3.14 of Publication II):
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Theorem 4.2.10. For a monomial ideal I ⊂ S = K[x1, . . . , xn] equigenerated in de-

gree d, in the following cases Lin(I) is polymatroidal:

• d = 1, that is, I is generated by some variables;

• d is arbitrary and I is principal.

In all other cases Lin(I) is not polymatroidal.

4.2.2 Equification of monomial ideals

The linearization construction defined above works in a sensible way only when

applied to equigenerated monomial ideals. So finding a way to extend it to arbitrary

monomial ideals was a natural problem. This is done in Publication II by making a

preliminary step, which amounts to defining an injective map{
monomial ideals

in K[x1, . . . , xn]

}
−→
{

equigenerated monomial

ideals in K[x1, . . . , xn, z]

}
.

Definition 4.2.11. Let I be a monomial ideal in S = K[x1, . . . , xn], with minimal

system of monomial generators G(I) = { f1, . . . , fm}. Denote d j := deg( f j) for all j,
and let d :=max{d j | j = 1, . . . ,m}. We define the equification of I as

Ieq := ( f1zd−d1 , f2zd−d2 , . . . , fmzd−dm )

in the polynomial ring S[z]=K[x1, . . . , xn, z] with one extra variable z.

Remark 4.2.12. Observe that the words “equification” and “equify” already exist in

English, as technical terms in trading and economics. In Publication II there is of

course no relation at all to that connotation of equification. The word “equification”

was suggested to me in analogy to “sheafification”, which is a well-known process in

algebraic geometry to make a presheaf into a sheaf.

In Section 5 of Publication II we start by investigating some basic properties of the

equification, such as the following:

Lemma 4.2.13. The generators of Ieq in Definition 4.2.11 are minimal.

A way to illustrate pictorially what happens with Ieq for n = 2 is as follows. Think

of the monomials in K[x, y] as lattice points in the plane with axes x and y. For all d,

consider the line x+ y= d, which goes through all monomials of degree d in x and y.

Then, what (·)eq does is that we add a new axis z that comes out of the plane, we take

the generators of I of degree d′ (which are the ones lying on the line x+ y= d′) and

we “lift” them up to height d−d′. So, in particular, the generators of degree d stay on

the plane.

Example 4.2.14. Consider for instance the ideal I = (x3, xy, y4) ⊂ K[x, y] and its

equification Ieq = (x3z, xyz2, y4)⊂K[x, y, z]. We draw these in the following pictures,
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respectively on the left and on the right:

x3

y4
xy

x

y

z

y4x3z

xyz2

x

y

z

With a slight abuse of notation, the generator x3 lies on the line x+ y= 3, xy on the

line x+ y= 2 and y4 on the line x+ y= 4, all of them on the plane z = 0. Those three

parallel lines are all dashed, in the left picture. The generators of Ieq all lie on the

plane x+ y+ z = 4, colored in gray on the right.

We then focus our attention on the homological properties of the equification: the

main question is, what is the relation between the minimal resolutions of I and of Ieq?

In particular, what is the relation between their Betti numbers? We prove some partial

results in this direction, the first being Proposition 5.8 of Publication II, on total Betti

numbers:

Proposition 4.2.15. Let I ⊂ S be a monomial ideal and consider its equification

Ieq ⊂ T = S[z]. We have βS
0 (I)=βT

0 (Ieq) and βS
i (I)≤βT

i (Ieq) for all i > 0.

(Notice that the equality for β0 is Lemma 4.2.13.) Later we focus on the first syzygy

module. Recall Definition 3.3.12 and Theorem 3.3.13. Denote

σ
eq
i j := lcm(gi, g j)

gi
ei −

lcm(gi, g j)
g j

e j

= lcm( f i, f j)zmax{0,di−d j}

f i
e i −

lcm( f i, f j)zmax{0,d j−di}

f j
e j

the reduced trivial syzygies for Ieq, where gi = f i zd−di . The following is Proposi-

tion 5.11 of Publication II.

Proposition 4.2.16. The reduced trivial syzygy σ
eq
i j is a redundant generator of

Syz(Ieq) if and only if there exists k ∉ {i, j} such that lcm( fk, f i) and lcm( fk, f j)
divide lcm( f i, f j) and min{di,d j}≤ dk.

Example 4.2.17. We show an example where the equality for all Betti numbers

is attained and an example where the inequalities are strict. First consider, inside

S :=K[x1, x2, x3] and T := S[z], respectively, the ideals

I = (x2
1, x1x2

2x2
3, x3

2x2
3) and Ieq = (x2

1z3, x1x2
2x2

3, x3
2x2

3).
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Then the Betti tables βS(I) and βT (Ieq) are respectively

0 1

2 1 −
3 − −
4 − −
5 2 2

3 2

and

0 1

5 3 1

6 − −
7 − −
8 − 1

3 2,

and the minimal resolutions are

0−→ S2

⎡
⎢⎢⎢⎢⎣

0 x2
2x2

3

x2 −x1

−x1 0

⎤
⎥⎥⎥⎥⎦

−−−−−−−−−−−→ S3

[
x2

1 x1x2
2x2

3 x3
2x2

3

]

−−−−−−−−−−−−−−−−−−→ I −→ 0

and

0−→ T2

⎡
⎢⎢⎢⎢⎣

0 x2
2x2

3

x2 −x1z3

−x1 0

⎤
⎥⎥⎥⎥⎦

−−−−−−−−−−−−−→ T3

[
x2

1z3 x1x2
2x2

3 x3
2x2

3

]

−−−−−−−−−−−−−−−−−−−−→ Ieq −→ 0.

In this case the total Betti numbers of I and Ieq are equal. Consider now, inside

S =K[x1, . . . , x4] and T = S[z], respectively, the ideals

I = (x1x2x4, x2
1x2

2x3, x3
3x3

4) and Ieq = (x1x2x4z3, x2
1x2

2x3z, x3
3x3

4).

The Betti tables βS(I) and βT (Ieq) are respectively

0 1

3 1 −
4 − −
5 1 1

6 1 −
7 − 1

3 2

and

0 1 2

6 3 − −
7 − − −
8 − 1 −
9 − − −
10 − 2 −
11 − − 1

3 3 1.

In this case we have strict inequalities βS
i (I) < βT

i (Ieq) for i = 1,2. The matrices

corresponding to the first syzygies of I and Ieq are respectively⎡⎢⎢⎣
x1x2x3 x3

3x2
4

−x4 0

0 −x1x2

⎤⎥⎥⎦ and

⎡⎢⎢⎣
x1x2x3 x3

3x2
4 0

−x4z2 0 x2
3x3

4

0 −x1x2z3 −x2
1x2

2z

⎤⎥⎥⎦ .

For I the reduced trivial syzygy σ23 is redundant, because σ23 =−x2
3x2

4σ12+ x1x2σ13.

But for Ieq the corresponding syzygy, appearing as the third column in the matrix, is

not redundant.

63



Summary of the Publications

4.3 The regularity of almost all edge ideals

As remarked in Section 3.4.2, the Betti table of an edge ideal has some entries that are

always zero, under (or equivalently, to the left of) the main diagonal consisting of the

numbers

βi,2(i+1), i ≥ 0.

In Publication III we consider a region of the Betti table that extends from the main

diagonal to the right, bounded on the right by a parabola.

Definition 4.3.1. Let r ≥ 3. A Betti number βi, j on the r-th row of the Betti table is

called a parabolic Betti number if the following hold:

r−2≤ i ≤ r−2+
(

r−1
2

)
,

2(r−1)≤ j ≤ 2(r−1)+
(

r−1
2

)
.

The following picture represents the top-left part of the Betti table, omitting rows 0
and 1 because they only contain zeros for edge ideals. The parabolic Betti numbers on

row r, for 3≤ r ≤ 10, are marked by gray squares. The main diagonal and the parabola

of numbers βi, j attained for i = r−2+(r−1
2

)
and j = 2(r−1)+(r−1

2

)
are also drawn,

for the sake of completeness and clarity.

0 1 3 6 10 15 21 28 36
2
3
4
5
6
7
8
9

10

Recall from Section 2.1 that a k-cluster is the disjoint union of k cliques, or equiv-

alently the complement of a complete k-partite graph. We introduce the following

notion.

Definition 4.3.2. We denote a k-cluster by

Ka1,...,ak = Ka1 �Ka2 �·· ·�Kak ,

where a1,a2, . . . ,ak, that we assume being ordered as a1 ≤ a2 ≤ ·· · ≤ ak, are the

number of vertices in the k cliques. Let k ≥ 2. If a1 = 2 and 2 ≤ ai ≤ i for all

i ∈ {2,3, . . . ,k}, then we say that Ka1,...,ak is a parabolic k-cluster.
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Example 4.3.3. We list the parabolic k-clusters for small values of k:

k 2 3 4 5

K2,2,2,2,2 K2,2,2,2,3 K2,2,2,2,4 K2,2,2,2,5

parabolic K2,2 K2,2,2 K2,2,2,2 K2,2,2,3 K2,2,2,3,3 K2,2,2,3,4 K2,2,2,3,5 K2,2,2,4,4

k-clusters K2,2,3 K2,2,2,4 K2,2,3,3 K2,2,2,4,5 K2,2,3,3,3 K2,2,3,3,4

K2,2,3,4 K2,2,3,3,5 K2,2,3,4,4 K2,2,3,4,5

Parabolic Betti numbers and parabolic clusters are linked by the following special

case of Lemma 21 of Publication III:

Lemma 4.3.4. Let βi, j be a parabolic Betti number on the r-th row of the Betti table,

for some r ≥ 3. Let G be an unlabeled graph such that βi, j(IG)= 0. Then there is a

parabolic (r−1)-cluster C such that G is C-free (see Definition 2.2.10).

We show that the parabolic clusters are critical, and this, together with the lemma

above, allows us to employ the critical graph machinery by Balogh and Butterfield [3]

described in Section 2.2 of the thesis. The following are the main results of Publica-

tion III, appearing there as Theorems 32 and 33, respectively.

Theorem 4.3.5. Let βi, j be a parabolic Betti number on the r-th row of the Betti table,

for some r ≥ 3. Almost every graph G with βi, j(IG)= 0 is an (r−2,1)-template.

Theorem 4.3.6. Let βi, j be a parabolic Betti number on the r-th row of the Betti table,

for some r ≥ 3. For almost every graph G with βi, j(IG)= 0, one has that

1. reg(IG)= r−1, and

2. every parabolic Betti number of IG above row r is positive.

We show that our results are “sharp”. More precisely, we were guided by to the

following questions:

• Is the “almost” in the statements above necessary? How many graphs G are there

with a vanishing parabolic Betti number βi, j(IG) on row r and with regularity

different from r−1?

• What about non-parabolic Betti numbers? Can one (easily) prove more general

results?

We provide some answers to the first questions in Section 6 of Publication III, by

proving the following (Theorem 36 in Publication III):

Theorem 4.3.7. Let r ≥ 3 and i ≥ 2r−4 be integers. For large n, there are at least

2.99n graphs G on n vertices such that

(1) on row r, one has β j,r+ j(IG)> 0 for i < j ≤ n− r;

(2) on row r, one has β j,r+ j(IG)= 0 for j ≤ i;
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(3) below row r, all Betti numbers are zero.

The second problem above is addressed in Section 7, considering the first non-

parabolic Betti numbers and showing that things seem to fall apart quickly, as soon as

we step out of the region of the Betti table consisting of the parabolic Betti numbers.

We relate our results to the following, famous conjecture in extremal graph theory.

Conjecture 4.3.8 (Erdős–Hajnal, [33]). For every graph H there is a constant τ >
0 (depending only on H) such that any H-free graph G contains a clique or an

independent set of order at least |G|τ.

We prove the following (Proposition 48 in Publication III).

Proposition 4.3.9. Let i ≥ 0 and 2≤ j ≤ 2i+2. There is a τ> 0 such that if βi, j(IG)=
0 then there is a homogenous set of order |G|τ in G.

Notice that the condition on i and j in the proposition above means that βi, j is in

the region of the Betti table bounded above by row 2 (including that row) and below

by the main diagonal of numbers βi,2i+2 (including that diagonal).

Lastly, we consider a “space” (actually, a graph) of graphs, defined as follows.

Definition 4.3.10. Let n be a non-negative integer. Let V be the set of unlabeled

graphs on n vertices. We define the labeled graph Gn = (V ,E), where {G1,G2} is in E
if G1 can be obtained by adding exactly one edge to G2, or vice versa.

In Publication III this appears simply as G , suppressing the index n. For n = 4, G4

looks like this:

One may observe in this example a few easy facts that hold in general:

• One may partition the vertices of Gn in
(n

2

)+1 independent sets, based on the

cardinality of the edge set: the i-th independent set Ii consists of all unlabeled

graphs on n vertices with exactly i edges.

• The edges of Gn only occur between independent sets of adjacent cardinalities

(that is, between Ii and Ii+1).

• The map G �→G that swaps G with its complement is an automorphism of Gn.
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The main results of Publication III revolve around (s, t)-templates, so it was natural

to wonder how these graphs behave inside Gn. We were in particular interested

in the connectedness of the set of (s, t)-templates, and we proved the following

(Proposition 50 in Publication III).

Proposition 4.3.11. For any non-negative integers s, t and n, the set of the (s, t)-
templates on n vertices is connected in Gn.

4.4 Triangulations of polygons and stacked simplicial
complexes: separating their Stanley–Reisner ideals

In Publication IV we consider tree ideals I(T)⊂ S arising from directed trees T (see

Section 3.7.3). A quotient of S/I(T) modulo a sequence of variable differences can

still be written as S̃/Ĩ, a polynomial ring modulo a monomial ideal. We characterize

• all the S/I(T)-regular sequences consisting of variable differences,

and among these, in particular,

• those such that the corresponding monomial ideal Ĩ is squarefree;

• those such that Ĩ is squarefree and Ĩ is the Stanley–Reisner ideal of a simplicial

ball. In particular, we find triangulations of polygons.

Fix a directed tree T with vertex set V and edge set E. Recall that for an edge e and

a vertex v one defines

eto(v) :=
{

1 if e points to v,

0 otherwise.

For two vertices v and w consider the unique path vTw linking v and w in T, and

let e and f be the edges on vTw that are incident in v and w, respectively, so that

(forgetting the direction of the edges) the path vTw looks like

v
e f

w

Recall that one defines mv,w := xe,eto(v)xf , fto(w), and that the tree ideal of T is

I(T) := (mv,w | v �= w ∈V ),

in the polynomial ring S := k[xe,0, xe,1 | e ∈ E]. Denote 1= 0 and 0= 1, and

hv,w := xe,eto(v) − xf , fto(w).

Before giving the necessary definitions to state the main results of the paper, notice

that we prove in passing that there is a bijection between:

• the set of partitions of the edge set E into r sets, and
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• the set of partitions of the vertex set V into r+1 independent sets,

constructing an explicit bijection before the statement of Theorem A.1 of Publica-

tion IV. The fact that such a bijection exists is not hard to prove and is implicitly stated

for instance as Corollary 6 of [49], but to the best of our knowledge we are the first to

explicitly show a bijection and state this result. More on this will appear in [40].

The first step in determining the S/I(T)-regular sequence consisting of variable

differences is the following (Lemma 5.3 in Publication IV):

Lemma 4.4.1. The differences of variables in S which are S/I(T)-regular are exactly

those of the form hv,w above.

We use the following terminology.

Definition 4.4.2. For any tree Y (regardless of the possible direction of the edges),

we say that a sequence of vertices v,u,w is Y -aligned if u lies inside the unique path

vY w in Y linking v and w.

Definition 4.4.3. Let U ⊆ V be a subset of the vertex set of T, and let Y be a tree

(unrelated to T) on U . We say that Y flows with T if whenever v,u,w is a T-aligned

sequence of vertices in U , then v,u,w is a Y -aligned sequence.

Example 4.4.4. Consider the following trees T, Y and Y ′:

1 2 3 4 5 6 7

8

9

10

T

1 3 8 5

9
Y

1 8 3 5

9
Y ′

with V = {1,2, . . . ,10} and U = {1,3,5,8,9}. The T-aligned sequences of vertices in U
are

1,3,5, 1,3,8, 1,3,9, 1,8,9, 3,8,9, 5,8,9.

The tree Y flows with T, and the tree Y ′ does not flow with T, for instance because

the sequence 5,8,9 is not Y ′-aligned.

Definition 4.4.5. Let Y be a tree with vertex set U ⊆ V . Let L(Y ) be the linear

subspace of S generated by the variable differences hv,w, for all the edges {v,w} of Y .

If L(Y ) has a basis which is a regular sequence of variable differences for S/I(T), we

say that L(Y ) is a regular linear space for S/I(T).

The following are respectively a combination of Propositions 5.12 and 5.15, and

then below Theorem 5.16, in Publication IV:

Proposition 4.4.6. Let Y be a tree on U ⊆V . The following are equivalent:

• Y flows with T;
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• L(Y ) is a regular linear space for S/I(T).

Theorem 4.4.7. There is a bijection between the set of regular linear spaces for

S/I(T) and the set of partitions of V .

Notice that for instance the variable differences xe,0 − xe,1, for all e ∈ E, form a

regular sequence (corresponding to the trivial partition of V with only one part). The

quotient of S/I(T) modulo these differences yields k[xe | e ∈ E]/(xe | e ∈ E)2. We are

interested, for combinatorial reasons, in finding the regular quotients of S/I(T) that

can be written as a polynomial ring modulo a squarefree ideal. This is described in

Lemma 6.1 and Theorem 6.2 of Publication IV:

Lemma 4.4.8. Let Y be a tree on U ⊆V flowing with T. The following are equivalent:

• the quotient of S/I(T) by L(Y ) yields a squarefree ideal;

• the set U consists of independent vertices in T.

Theorem 4.4.9. There is a bijection between the set of regular linear spaces that yield

a squarefree ideal and the set of partitions of V into independent sets of vertices.

Lastly, among the regular quotients that yield a squarefree ideal, we are interested

in particular in those whose associated simplicial complex is a triangulated ball. To

state this more precisely, define the dual graph G(Δ) of a pure simplicial complex Δ

as the following graph with vertex set equal to the set of facets of Δ: for two facets

F and G, G(Δ) has the edge {F,G} if and only if F and G share a codimension-one

face. Then we call Δ a triangulated ball if G(Δ) is a tree. This is done with a different

terminology, using hypergraphs and hypertrees, in Section 3 of Publication IV.

Example 4.4.10. Consider the following pure simplicial complexes of dimension 2,

with their dual graphs drawn in red:

The complex on the left is a triangulated ball, whereas the one on the right is not.

Indeed, the one on the right has three facets sharing the same codimension-one face.

We describe in Section 8 of Publication IV how to get squarefree quotients of

S/I(T) whose associated simplicial complex is a triangulated ball, and in particular

triangulations of polygons, whose dual tree has largest vertex degree at most 3. We

prove the following (Theorem 8.7 in Publication IV):

Theorem 4.4.11. There is a bijection between:

• the set of regular linear spaces for S/I(T) yielding a squarefree ideal whose

associated simplicial complex is a triangulated ball, and
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• the set of partitions of the edge set E of T into sets of independent edges.

Example 4.4.12. Consider the directed tree T

a

b

c d

1

3

2
4 5

whose tree ideal I(T) is generated by the monomials

m12 = xa,1xa,0 m13 = xa,1xb,1 m14 = xa,1xc,0 m15 = xa,1xd,0

m23 = xb,0xb,1 m24 = xc,1xc,0 m25 = xc,1xd,0 m34 = xb,1xc,0

m35 = xb,1xd,0 m45 = xd,1xd,0.

The ideal I(T) is the Stanley–Reisner ideal of the following simplicial complex:

(a,1)

(b,1)

(d,0)

(a,0)

(b,0)

(c,1)

(d,1)

(c,0)

The difference of variables h1,5 = xa,0 − xd,1 constitutes a regular sequence. The

quotient of S/I(T) by xa,0 − xd,1 can be written as S′/I ′, where S′ is almost the same

polynomial ring as S, except that the variables xa,0 and xd,1 are identified as a single

variable y, and I ′ is the monomial ideal obtained by replacing in the generators of I(T)
all occurrences of xa,0 and xd,1 by y. This ideal I ′ is squarefree and the associated

simplicial complex is a triangulated ball. By Theorems 4.4.9 and 4.4.11, the sequence

xa,0 − xd,1 is associated to a partition of V into independent sets of vertices and to a

partition of E into independent sets of edges. These partitions are respectively

V = {1,5}∪ {2}∪ {3}∪ {4} and E = {a,d}∪ {b}∪ {c}.

If the new variable y corresponds to a vertex v, the simplicial complex of the quotient

by xa,0 − xd,1 is

(a,1)

(b,0)

(d,0)

(c,0)v

(b,1)

(c,1)
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Notice that both the simplicial complexes drawn in this example have dual graphs that

are trees isomorphic to the underlying undirected tree of T. This is not a coincidence:

the dual graph of the simplicial complex of I(T) is always isomorphic to T, a fact that

follows from Lemma 4.2, and for the dual graph of the triangulated heptagon above

this holds by Proposition 8.6 of Publication IV.

Remark 4.4.13 (The graph whose edge ideal is I(T)). The ideal I(T) is not defined

starting from an undirected graph, but it is nonetheless the edge ideal of such a graph,

call it GT , on the set of vertices {x1,i, . . . , xn,i | i = 0,1}. The graph GT fits into the

framework of the paper [52] by Herzog and Moradi, where they define the concept

of a König graph as follows. For an arbitrary finite simple graph, the maximum

cardinality of a matching is always at most as large as the minimum cardinality of a

vertex cover; if for a graph G these two numbers are equal, then G is called a König
graph. Corollary 2.4 of [52] states that G is König if and only if S/IG (where IG is

the edge ideal of G) has a system of parameters consisting of variable differences. In

the case of I(T)= IGT one just gets the “trivial” regular sequence consisting of all the

variable differences xe,1 − xe,0.
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