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An electromagnetic pickup capturing vibrations of steel strings in electric stringed instru-
ments modifies the timbre of the instrument in various ways. The acoustic characteristics and
modeling of the pickup position, the sensitivity width of the pickup, the dispersion of waves in
a steel string, mixing options of several pickups, linear resonant filtering of the pickup circuit
itself, and the distortion caused by the distance-dependent magnetic flux are studied.

0 INTRODUCTION

Pickups comprise an important part of the timbre of cer-
tain string instruments. Guitar players recognize their im-
portance, and incorporate each type of pickup, as well as
their position, together with the microphone positioning
placement [1], to a specific style or timbre. For example,
some guitar players prefer humbucker pickups [2] located
at the bridge for playing with distortion, but single coils at
middle and neck positions for a cleaner timbre. Addition-
ally, other instruments, such as the Clavinet [3], use this
kind of device for capturing the vibrations of a string.

Pickup models comprise one class of effects obtained
with virtual analog modeling [4], which is currently an
active research topic in audio signal processing. It includes
emulation of guitar distortion circuits and amplifiers [5, 6,
7, 8] and analog reverberators [9, 10], among others.

A magnetic pickup is a device used to capture the string
vibration on steel stringed musical instruments [11]. It is
built using a permanent magnet with a winding around it,
and it captures the string vibration through the magnetic
variation caused by the proximity of the strings. Since the
strings are, in this case, built using a high permeance ma-
terial, they offer a favorable path for the magnetic flux.
Hence, the magnetic flux is larger when the string is closer
to the magnet than when further.

The first effect of pickups reported in the literature is
related to the position where they are placed. The pickup
placement produces a comb filter effect, which enhances
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certain frequencies while attenuating others [11]. This ex-
plains why bridge pickups yield a brighter sound than mid-
dle and neck pickups. This behavior can be understood,
and a pickup position model can be obtained by evaluat-
ing a waveguide string model [12, 13, 14, 15]. This kind
of model is often used in synthesis [16, 17, 18, 19] and in
commercial products [20, 21]. As well as the position of
the pickups, instruments often offer the possibility of mix-
ing pickups at different positions. The phase differences
between responses at different positions make this kind of
combination to have a complex frequency response, which
could enhance, or even attenuate, certain frequency bands
[22].

In addition to the position of pickups, the way they are
built offers different timbres among different manufacturers
and models. Most of this characteristic timbre is explained
by the equivalent circuit, which often presents a prominent
resonance [11]. Additionally, the frequency of this reso-
nance is highly variable among different models, which
also depends on the number of turns used in the winding as
well as on the material used in the core and for the wire’s
insulation [23, 24].

Finally, the mapping between the string movement and
the magnetic flux captured by the pickup is nonlinear and
is different when the polarization of the string movement
changes. Models for this behavior are obtained from inte-
gral equations representing the magnetic flux at the string
and how it changes the magnetic flux at a measurement
position [25, 26].

An overview of the elements affecting the pickup timbre
is shown in Fig. 1. First there are the effects of the pickup
position and the sensitivity width, which are a comb filter
and a low-pass filter. At this stage, the calculated value is
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Fig. 1. Overview of pickup elements.

equivalent to the sensed string position above the pickup,
and a nonlinear function maps this position to the magnetic
flux in the pickup. The magnetic flux is related to the pickup
output voltage by a derivative operation, and the final output
voltage is the result of filtering this signal with a resonant
filter formed by the pickup equivalent circuit impedance. A
digital implementation of the proposed pickup model can
be used in electric guitar synthesis [13, 27, 28, 29] and
effects processing.

This work presents an overview of the techniques and
modeling issues related to magnetic pickups with some new
developments. Section 1 presents a mathematical founda-
tion for determining the effect different positions have over
the guitar timbre, while Sections 2 and 3 use the same
framework for determining new models for the effects of
mixing options of one or more pickup signals and different
sensitivity widths, respectively. In Section 4 an extension to
the model related to the pickup position presented in Sec-
tion 1 is analyzed, considering the dispersive propagation
of waves in a steel string. The circuit elements related to the
pickups are analyzed in Section 5, where a new model for
the circuit impedance is derived and a new analysis for the
combination of pickups is presented. In Section 6, a new
analysis using a finite element model reveals the nonlin-
ear mapping between magnetic flux and the string position.
Conclusions are presented in Section 7.

1 PICKUP POSITION

The position of magnetic pickups plays a major part in
the guitar timbre and is an important parameter used by gui-
tar players. Pickups placed next to the bridge yield a bright
tone, while a darker tone is achieved when the pickup dis-
tance to the bridge is increased. Hence, guitars often have
two or three pickups, as shown in Fig. 2. For example, Les
Paul-type guitars traditionally have two humbucker pick-
ups, one at the bridge and the other at the neck, whereas
Stratocaster guitars traditionally have three pickups: bridge,
middle, and neck. This effect is related to how the waves
propagate through a string and the standing waves that are
generated by this behavior.

A simple approach to determine the pickup position ef-
fect is based on analyzing the standing waves on a string
[30, 31]. Fig. 3 shows the standing waves composed of four
harmonics in a string and the possible placement of two
pickups P1 and P2. Notice that when the open string in
Fig. 3(a) is played, P2 has higher energy in the first and
second harmonics than P1, while the fourth harmonic is
almost not sensed. When the string in Fig. 3(b) is pressed
at a different position, P2 senses more energy in the first
harmonic than P1, but the third harmonic is suppressed in

(a)

(b)

Fig. 2. Typical position of pickups in electric guitars in (a) a
Stratocaster model and (b) a Les Paul model.

turn. For the second and fourth harmonics, similar energy
is transferred to P1 and P2.

Considering a string of length L and a pickup positioned
at d, the pickup frequency response HP(f, d) may be obtained
as

HP ( f, d) = sin

(
πd f

L f0

)
, (1)

where f is the analysis frequency and f0 is the first har-
monic frequency of the open guitar string [31]. Although
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(a)

(b)

1st

Fig. 3. Pickup position effect based on standing waves (adapted
from [30, 31]).

Fig. 4. General delay-line-based string model for plucking point
and pickup position evaluation, adapted from [14].

this approach is capable of defining the pickup response
given by its position, it fails to determine other important
factors, such as imperfect reflection coefficients at string
terminations.

A framework for analyzing the effect of the pickup po-
sition is shown in Fig. 4, where a waveguide model for a
string is presented in the continuous-time Laplace domain
[12]. In the model of Fig. 4, the transfer functions Rf (s) and

Rb(s) represent the reflection from the fret and the bridge,
respectively, s is the complex frequency variable of the
Laplace transform, the terms e−sτ represent delays of τ sec-
onds in the Laplace domain, X(s) represents an excitation
signal at the plucking point, and YP(s) represents the output
signal at the pickup. This model uses two traveling waves
propagating in opposite directions with a total delay of 2T0

= 2(T1 + T2 + T3) seconds.
The fundamental frequency of the string f0 is related to

the total time delay T0 by

f0 = 1

2T0
, (2)

and the delay times are related to the time a wave takes to
propagate from the fret to the plucking point T1, from the
plucking point to the pickup point T2, and from the pickup
point to the bridge T3. Hence, the string displacement above
the pickup can be determined as [14]

YP(s) = O1(s) + O2(s) = O1(s) [1 + HO1O2(s)] , (3)

where O1(s) and O2(s) are the traveling waves at the pickup
point in the Laplace domain, and

HO1O2(s) = Rb(s)e−2T3s (4)

is the transfer function between the observation points O1

and O2. The incoming wave at the pickup point O1(s) can
be rewritten as

O1(s) = 1
2 X (s) [1 + HE2E1(s)] HE1O1(s)
+O1(s)HL(s)

= 1
2 X (s)HE1O1(s) 1+HE2E1(s)

1−HL(s) ,

(5)

where HE2E1(s) is the transfer function between the exci-
tation points E1 and E2, HE1O1(s) is the transfer function
between the excitation point E1 and the observation point
O1, and

HL(s) = Rb(s)Rf(s)e−2T0s (6)

is the transfer function of the feedback loop. Thus, the final
output regarding the pickup position is

YP(s) = 1

2
X (s)HP(s)

1 + HE2E1(s)

1 − HL(s)
, (7)

where the pickup effect HP(s) is given by

HP(s) = [1 + HO1O2(s)] HE1O1(s). (8)

Since the reflection transfer function at the bridge is often
approximated by a constant Rb(s) = −β, where 0 < β < 1,
and the term HE1O1(s) stands for a constant delay that can
be ignored in this analysis, the pickup position effect can
be approximated by

HP(s) = 1 − βe−2T3s, (9)

where the squared magnitude of the frequency response is
obtained replacing s by jω in Eq. (9):

|HP(ω)|2 = (
1 − βe−2T3jω

) (
1 − βe2T3jω

)
= 1 − 2β cos (2ωT3) + β2,

(10)

where ω represents the analysis frequency in rad/s and
j = √−1 is the imaginary unit. Hence, the pickup position
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Fig. 5. Effect of pickup position for a pickup positioned at the
(a) bridge, (b) middle, and (c) neck positions, and (d) an image
showing the response for intermediate positions.

effect is given by a minimum value in |HP(ωm)| = 1 − β at
harmonic frequencies ωm = πk

T3
, with k = 0, 1, . . ., and a

maximum value |HP(ωM )| = 1 + β at ωM = π(k+0.5)
T3

, with
k = 0, 1, . . ..

Typical pickup positions in a Stratocaster guitar are the
bridge, middle, and neck positions located at 4.1 cm, 9.8 cm,
and 16.2 cm from the bridge, respectively, for a string of
64.8 cm [31]. For these positions different magnitude re-
sponses will be observed, which are shown in Fig. 5 for
a normalized frequency f/f0, where f0 is the fundamental
frequency of the open string and β = 1. In Fig. 5, horizon-
tal arrows are drawn to visualize the location of the first,
second, and third harmonics for the 24 frets of the guitar.

The pickup response at the bridge is shown in Fig. 5(a),
where the fundamental frequency is seen to be attenuated
for most of the notes, as there is a 14-dB and a 7-dB atten-

Fig. 6. Comb filter implementation for pickup position and width
modeling using the filter HPW(z).

uation at f0 and 2f0, respectively. Additionally, the second
and third harmonics have their amplitudes increased in rela-
tion to the first harmonic for a large fundamental frequency.
This results in a bright perceived sound at the bridge pickup.
The middle pickup response, shown in Fig. 5(b), has a lower
attenuation for the first harmonic. For most of the fret posi-
tions, the second harmonic is enhanced since the main lobe
of the frequency response has a maximum between about
2f0 and 5f0, while the third harmonic has its amplitude de-
creased for high pitches with more than 5 dB attenuation
when the fundamental frequency lies between 1.6f0 and
2.6f0. This leads to a darker response for the middle pickup
when compared to the bridge pickup. The neck pickup re-
sponse, shown in Fig. 5(c), on the other hand presents a
pronounced first harmonic. Now, the second and third har-
monics vary between this pickup’s responses’ maximum
and minimum depending on the fundamental frequency.
Hence the neck pickup has the darkest response.

The pickup position effect may be approximated in a
discrete-time model by taking the impulse-invariant trans-
form of Eq. (9)

HP(z) = 1 − βz−2N3 , (11)

where z−1 represents the unit delay in the z transform do-
main; N3 = round(T3fs) is the equivalent discrete time delay
in samples, to approximate a delay of T3 seconds, which is
proportional to the pickup distance to the bridge; and fs is
the sampling frequency. The implementation of the comb
filter described by Eq. (11) is presented in Fig. 6, which
includes a delay line of length 2N3 samples and the reflec-
tion coefficient β [14]. Cascaded with this position model
is HPW(z), which is discussed in Section 3. This model can
be further improved by using a fractional delay filter to
approximate the delay of T3fs samples instead of using an
integer sampling period delay [32].

2 PICKUP MIXING EFFECT

In addition to choosing the pickup position, most electric
guitars offer the possibility of mixing pickup signals. Since
the pickups capture traveling waves in the string at different
positions, they have different delays relative to each other.
Hence, by combining the signals of two pickups the phase
differences may boost or attenuate certain frequencies [22].

In order to determine the mixing effect, the pickup re-
sponse with the total delay needs to be considered as in Eq.
(8), whose Fourier transform is given by

HP(ω) = (
1 − βe−2T3jω

)
e−(T0−T1−T3)jω

= (
1 − βe−2T3jω

)
eT3jωe−(T0−T1)jω,

(12)
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Fig. 7. General delay-line-based string model for pickup mixing
evaluation.

which can be simplified into the following non-causal
model, ignoring the linear delay element e−(T0−T1)jω:

HP(ω) = eT3jω − βe−T3jω. (13)

If the same pickups with the same circuit response are
assumed to be used, the joint response can be determined as
the sum of both responses HP(ω) with different pickup-to-
bridge delays T3. For two pickups with frequency responses
given by HPa(ω) and HPb(ω) whose signals are mixed in-
phase, the response is determined as

HPa+b (ω) = HPa (ω) + HPb (ω)

= eTajω − βe−Tajω + eTbjω − βe−Tbjω

= 2
(

e
Ta+Tb

2 jω − βe− Ta+Tb
2 jω

)
cos

( Ta−Tb
2 ω

)
,

(14)

where Ta and Tb are the delays between pickups a and b
and the bridge, as shown in Fig. 7. For β = 1, Eq. (14) can
be simplified as

HPa+b (ω) = 4j sin

(
Ta + Tb

2
ω

)
cos

(
Ta − Tb

2
ω

)
. (15)

A similar response is found when pickups in opposite
phase are considered, given by

HPa−b (ω) = HPa (ω) − HPb (ω)

= eTajω − βe−Tajω − eTbjω + βe−Tbjω

= 2j
(

e
Ta+Tb

2 jω + βe− Ta+Tb
2 jω

)
sin

( Ta−Tb
2 ω

)
,

(16)

which can also be simplified, when perfect reflection (β =
1) is assumed, to

HPa−b (ω) = 4j cos

(
Ta + Tb

2
ω

)
sin

(
Ta − Tb

2
ω

)
. (17)

It should be noted that although the in-phase wiring of
the pickups is a far more commonly used option, the out-
of-phase connection is sometimes used in order to produce
a hollow nasal tone. Notice that the magnitude responses in
Eqs. (15) and (17) depend on the average and differences
of times Ta and Tb. In both cases, the response is modeled
by two out-of-phase comb filters, whose lobes have widths
Ta+Tb

2 or Ta−Tb
2 .

A digital implementation for the pickup mixing effect
is shown in Fig. 8. The digital model can be devised by
using two comb filters, one representing the average pickup
position and the other representing the position difference,
as illustrated in Fig. 8. The differences for in-phase and
out-of-phase configurations in Figs. 8(a) and (b) are only

(a)

(b)

Fig. 8. Comb filter implementation for equal pickup mixing for
(a) in-phase and (b) out-of-phase configurations.

in the summation signs. In this digital implementation, the
discrete delay times are given by Na = round(Tafs) and Nb

= round(Tbfs). In order to avoid non-causal delay in Fig. 8,
the relation between the pickups should be such that Na >

Nb. Again, this model can be improved by using fractional
delay filters instead of an integer sampling period delay
[32].

The responses for typical configurations in electric gui-
tars are shown in Fig. 9. The in-phase configurations in
Fig. 9(a), (c), and (e) show little attenuation for the first
harmonic at the lowest octave. For the middle plus bridge
configuration in Fig. 9(a), the second harmonic also fits
mostly within the main lobe of the frequency response. In
the bridge plus neck configuration in Fig. 9(e), the second
harmonic is situated mostly at a notch in the frequency
response.

All the responses for opposite phase configurations in
Fig. 9(b), (d), and (f) show a large attenuation for the main
lobe in the frequency response. This provides a strong at-
tenuation of the fundamental frequency, which can also be
easily visualized by analyzing the standing wave configu-
rations of Fig. 3. Since the fundamental frequency standing
wave is always in phase for different pickups, by mixing
pickup signals out of phase the amplitude of first harmonic
will be the difference between the amplitude at both pick-
ups. The second harmonic is in all cases mostly in the
second lobe of the frequency response, which is enhanced
significantly in the neck minus bridge configuration in Fig.
9(f). In all cases, the higher frequencies are following com-
plex patterns given by the combination of both comb filters.

3 PICKUP WIDTH EFFECT

In addition to the comb filter effect caused by different
locations of the pickup, the sensitivity width also influences
the pickup frequency response [31]. Pickup sensitivity can
be understood in an intuitive way by observing Fig. 10,
where the pickup is sensitive to an area of the string instead
of to a single point, in which some vibration modes may
change polarization. Hence, the width effect is expected
to cause a low-pass filtering effect. The pickup sensitivity
may be assumed to be given by the function gPW(x), where
x represents the displacement about the pickup center P,
and may be related to the framework given in Fig. 4 by
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Fig. 9. Effect of mixing pickup signals at different positions for pickups at the (a) bridge and middle, (b) bridge and middle with opposite
phases, (c) neck and middle, (d) neck and middle with opposite phases, (e) neck and bridge, (f) neck and bridge with opposite phases.

Fig. 10. Pickup width effect based on standing waves.

changing T3 by its equivalent time delay τ = xT0/L, where
L is the string length and T0 = 1/(2f0).

The pickup response may thus be represented as a sum of
the string time-domain output y(t, p) at different infinitesi-
mal pickup positions p around its sensitivity area P − W/2
< p < P + W/2, where W is the sensitivity width:

yPW(t) =
∫ W/2

−W/2
gPW(x)y(t, P − x)dx . (18)

In Fig. 4 it is possible to observe that y(t, P − x) =
o1(t, P − x) + o2(t, P − x), where o1(t, P) and o2(t, P)
are the incoming and outgoing waves in the time domain
at the observation point P. Moreover, when considering
that the delay line in Fig. 4 is ideal, the observation position
differences x are mapped into time delays τ, i.e.,

{
o1 (t, P − x) = o1 (t + τ, P)
o2 (t, P − x) = o2 (t − τ, P)

, τ = xT0

L
. (19)

Hence, by replacing the position sensitivity function by
an equivalent time function gPW(x) = hPW(τ), Eq. (18) can
be rewritten as

yPW(t) =
∫ W/2

−W/2
gPW(x) (o1(t, P − x)

+ o2(t, P − x)) dx

=
∫ TW/2

−TW/2
hPW(τ)o1(t + τ, P)dτ

+
∫ TW/2

−TW/2
hPW(τ)o2(t − τ, P)dτ,

(20)

where TW = WT/L is the time spread given by the sensi-
tivity width W. If the pickup sensitivity is considered to be
symmetric around its center, hPW(τ) = hPW( − τ), then

yPW(t) =
∫ TW/2

−TW/2
hPW(τ) (o1(t + τ, P)

+ o2(t + τ, P)) dτ

=
∫ TW/2

−TW/2
hPW(τ)y(t + τ, P)dτ,

(21)

which can be interpreted as the convolution between hPW(t)
and the time response of the pickup at a single point yP(t)
= y(t, P). By using the convolution theorem, Eq. (21) can
be written in the Laplace domain as

YPW(s) = HPW(s)YP(s), (22)

indicating that the sensitivity width has a linear filtering
effect.

The pickup width response can be obtained by ap-
proximating the sensitivity function gPW(x). A rectangular
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Fig. 11. Warped comb-filter responses caused by string dispersion.

window is indicated as an approximation in [31], but a
Hamming or a truncated exponential window would prob-
ably be better modeling candidates, since the sensitivity is
the highest at the center of the pickup. The sensitivity width
response modeled by a Hamming window is given by

hPW(τ) = a + (1 − a) cos

(
2πτ

TW

)
, (23)

with TW
2 ≤ τ ≤ − TW

2 . Thus, pickup sensitivity width results
in a low-pass filtering effect, given by HPW(ω).

Implementation of a model for the pickup width is ob-
tained by taking the z transform of Eq. (22):

YPW(z) = HPW(z)YP(z), (24)

where HPW(z) can be implemented with a discrete-time
finite-impulse-response (FIR) filter approximating the
continuous-time impulse-response hPW(τ). Fig. 6 shows
how the width model would be implemented in cascade
with the position model.

4 EFFECT OF STRING DISPERSION

In real strings, stiffness makes the wave speed frequency-
dependent. Although this effect is small for high-pitched
strings of guitars, it is important for the low-pitched strings
[33]. This kind of effect is often responsible for the inhar-
monicity of strings [34], and will cause the notches in the
pickup position response HP(ω) to be at inharmonic fre-
quencies [29]. In this case, the delays represented in Fig. 4
and the phase delay of the string are modified by a correc-
tion factor given by (adapted from [35, 36])

τφ(ω) = 1√
1 + B

(
ω
ω0

)2
, (25)

where ω0 is the string fundamental frequency in radians per
second and B is related to the inharmonicity constant [34].

When the total delay at a certain frequency is modified by
the result in Eq. (25), the continuous-time Fourier transform
for a delay operation is modified as

D(ω, T0) = e−jωT0τφ(ω), (26)

where T0 represents the delay at ω = 0. Hence, the comb
filter that was derived in Eq. (10) is modified by the variable
τφ(ω) as

|HP(ω)|2 = 1 − 2β cos
[
2ωT3τφ (ω)

] + β2. (27)

The effect derived in Eq. (27) is shown in Fig. 11, where
an example of magnitude responses of comb-filters with

(a)

(b)

Fig. 12. (a) Pickup equivalent circuit, adapted from [23, 24].
(b) The equivalent circuit as a voltage divider.

typical values of B for low-pitched guitar strings are given
[33]. This example is generated with β = 1, open string
fundamental frequency f0 = 82 Hz and T3 = 0.29 ms,
representing a bridge pickup located at 4.1 cm from the
bridge for a string of 64.8 cm. As B is increased, the notches
in the magnitude response are shown in Fig. 11 to deviate
more from the ideal response with B = 0.

The implementation of a discrete-time model considering
the dispersive string behavior can be obtained by using all-
pass filters [37, 38, 35, 39]. In one approach, an all-pass
filter is included after a delay line in order to distort the
group delay to obtain the desired string inharmonicity [37,
38]. In this approach, a single all-pass filter may be used
[35, 29] or a cascade of first-order filters [39] to model the
desired string inharmonicity.

In another approach, a discrete-time model is obtained by
substituting the delay units by all-pass filters implementing
the dispersion [37, 38, 40]. One common structure of the
all-pass filter which is used for frequency-warped signal
processing is given by

z̃−1 = z−1 − a

1 − az−1
, (28)

where a is the warping factor [41]. The all-pass filter in Eq.
(28) has a phase delay given by

τW (ω̂) = 1 + 2

ω̂
arctan

(
a sin(ω̂)

1 − a cos(ω̂)

)
, (29)

where ω̂ represents the discrete-time angular frequency in
radians per sample (adapted from [42, 43]). With a proper
choice of the warping parameter a, it is possible to fit
the phase delay to that caused by a given inharmonicity
factor B.

5 PICKUP IMPEDANCE

Pickups are built with a permanent magnet to create the
magnetic flux and a winding around it to transform the mag-
netic flux variations into voltage [11]. This can be designed
in various ways, and alternative constructions can provide
a modified pickup timbre. A pickup equivalent circuit is
shown in Fig. 12(a), where Vi and Vo are the pickup circuit
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input and output voltages, respectively [23, 24]. This circuit
affects the pickup timbre, since the combination of the in-
ductance L and capacitance C forms a resonant filter.

As any winding around a magnetic core, the pickup has an
inductance L, whose value depends on the magnetic prop-
erties of the core and the number of turns of the winding.
The winding is built using thin wires in order to increase
the number of possible turns in the available space and
increase the pickup inductance. The usual values for in-
ductance are in the range 1 H ≤ L ≤ 10 H [23, 24]. Also,
due to the high number of turns and the small thickness of
wire, the pickup has a pronounced resistance accounting
for ohmic losses. This is represented in the pickup model
as a series resistance R in Fig. 12(a), whose typical values
are in the range 5 k� ≤ R ≤ 15 k� [24].

Again, the small insulation separating the wire between
each turn creates a parasitic capacitance. This capacitance
per turn combines for a large number of turns forming
C in Fig. 12(a). Although this capacitance is usually small,
it creates a resonance with the inductance L in the audible
range, which affects significantly the timbre of each pickup.
Typical values for this capacitance are 15 pF ≤ C ≤ 200 pF
[23, 24], and a minor variation in the pickup construction
can significantly affect its value. Additionally, the capac-
itance of different circuits connected to the pickup output
will affect its timbre.

Finally, the resistance Rl is used to represent the magnetic
losses present in the permanent magnet. Its value is large,
300 k�≤ R ≤ 3000 k� [24], and it influences the amplitude
of the resonance peak caused by C and L.

The transfer function of the pickup due to the circuit
elements Hc(s) can be calculated by observing that the
equivalent circuit in Fig. 12(a) is a voltage divider, as in
Fig. 12(b). Hence [24]

Vo(s)

Vi(s)
= Hc(s) = Z2

Z1+Z2

= 1(
1 + R

Rl

)
+ s

(
L
Rl

+ RC
)

+ s2LC
,

(30)

where a resonance will be observed around ωR = 1/
√

LC
[11]. Rewriting this equation to obtain the Fourier transform
gives

Hc(ω) = 1(
1 + R

Rl

)
+ jω

(
L
Rl

+ RC
)

− ω2LC
. (31)

It should be observed that at low frequencies

lim
ω→0

Hc(ω) = 1(
1 + R

Rl

) = Rl

R + Rl
, (32)

which indicates that the low-frequency response is only
limited by the resistors R and Rl. On the other hand, at high
frequencies

lim
ω→∞ Hc(ω) = lim

ω→∞
1

ω2LC
= 0, (33)

which indicates that Hc(ω) has a low-pass characteristic.
A study of how each circuit element alters the pickup

circuit frequency response is shown in Fig. 13, where a
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Fig. 13. Verification on the effect of variation of circuit elements
on the magnitude response of the pickup circuit for a baseline
pickup with L = 2 H, R = 10 k�, Rl = 1000 k�, and C = 50 pF
with variation of (a) R, (b) Rl, (c) L, and (d) C.

baseline pickup with L = 2 H, R = 10 k�, C = 50 pF, and
Rl = 1000 k� is considered, and each component is varied
independently. A small variation in the DC resistance R,
shown in Fig. 13(a), has little effect on the overall frequency
response, affecting mostly the magnitude of the resonance
peak at ωR. Additionally, with the component values that
were considered, Rl � R, the response at low frequencies
is Hc(0) ≈ 1 in Eq. (32).

The effect of the core loss resistor Rl in Fig. 13(b) is also
shown to be small when small variations are considered.
With 500 k� < Rl < 2000 k�, the changes, compared to
the reference case Rl = 1000 k�, are only on the damping
of the resonant peak at ωR, where large values of Rl are
shown to make the resonance peak more pronounced.

In a typical connection for the guitar volume control, a
parallel resistor is connected to the pickup output as in Fig.
14. As the volume control resistor is in parallel with the loss
resistor Rl, the total resistance is smaller, thus affecting the
magnitude at low frequencies as in Eq. (32). Additionally, in
Fig. 13(b), extremely small values of Rl, namely Rl = 1 k�

and Rl = 10 k�, can be observed to not only reduce the
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Fig. 14. Typical configuration of tone and volume control in
electric guitars. Adapted from [24].

output level, but also damp the resonant peak. Hence, the
volume control of a guitar also changes the coloration of
the output signal.

The effect of the pickup inductance L is shown in Fig.
13(c). In this figure, L is shown to have an effect on the res-
onant frequency, since larger values of L push the resonance
to lower frequency values. On the other hand, L also has an
effect on the magnitude of the resonance peak. Addition-
ally, by changing the resonant frequency ωR, the energy at
high frequencies is also changed since the low-pass decay
starts at ωR.

Just like the pickup inductor L, the output capacitance C
shows a major effect on the pickup magnitude response in
Fig. 13(d), which is also related to the resonant frequency
ωR and to the peak magnitude.

The tone control in a guitar connection is often imple-
mented with a capacitance and a potentiometer, as shown
in Fig. 14, which has the effect of increasing the equivalent
output capacitance. As the typical value for the tone control
capacitance is about 1 nF, Fig. 13(d) shows also the magni-
tude response with C = 1 nF. When the tone-control resistor
is zero, the tone-control capacitor adds to C in Fig. 12(a),
the resonance appears at a much lower frequency, and there
is a significant decrease in the energy at high frequencies.

A practical measurement of the equivalent circuit is pos-
sible by analyzing the pickup impedance [24]. Additionally,
a measurement setup is possible by using a second core with
the magnetic field driven by a controlled external signal [24,
23, 44]. With this measurement setup it would be possible to
determine the pickup transfer function, although the mea-
surement will be also influenced by the impedance of the
second core used in the measurement.

The digital model for this effect can be obtained in dif-
ferent manners. One approach is to obtain the discrete-time
transfer function by applying the bilinear transform to Eq.
(30) [4]. In this case, substituting s = 2fs(1 − z−1)/(1 + z−1)
in Eq. (30) gives the discrete-time transfer function of the
pickup circuit

Hc (z) = 1 + 2z−1 + z−2

c0 + c1z−1 + c2z−2
, (34)

where

c0 = 1 + R/Rl + 2 fsL/Rl + 2 fs RC + 4 f 2
s LC (35)

(a)

(b)

Fig. 15. Equivalent circuits for (a) series and (b) parallel connec-
tions of two pickups.

c1 = 2 + 2R/Rl − 8 f 2
s LC (36)

c2 = 1 + R/Rl − 2 fs L/Rl − 2 fs RC + 4 f 2
s LC. (37)

In another approach, a model using wave digital filters
[45, 46] can be obtained. In this case, the magnetic behavior
of the pickup permanent magnet can also be included as for
power amplifier transformers [6]. In both approaches, note
that when close to the Nyquist limit fs/2, the resonance of
the pickup fR will be distorted due to the frequency warping
caused by the bilinear transform.

5.1 Two Pickups in Parallel or in Series
The pickup combinations affect not only the guitar timbre

through the phase differences, as shown in Section 2, but
also the equivalent circuit. In addition to connecting two
pickups in- or out-of-phase, the pickups may be connected
in series or in parallel. This additional connection option
not only varies the signal magnitude at the output jack but
also affects the tone coloration.

Traditionally, the two coils on a humbucker pickup are
connected in series to produce a loud “punchy” tone. The
combination of two single-coil pickups (pickup selector
positions 2 and 4 in a Stratocaster-style guitar) have tradi-
tionally been connected in parallel, resulting in a brighter
tone while retaining the hum-canceling effect. Some gui-
tars even offer the musician the choice of selecting the type
of pickup connection (series/parallel and in-phase/out-of-
phase) via electrical switches. The series and parallel pickup
combinations are presented in Figs. 15(a) and (b), respec-
tively, where pickups are modeled with circuit components
Lx, Cx, Rx, and Rlx, where x is the pickup number.
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If the sensed voltage in both pickups Vi is equal, which
means that they are placed at the same position, the equiva-
lent circuit for the parallel and series connection is obtained
in order to evaluate the pickup combination effect. For both
parallel and series connections, the equivalent circuits pre-
sented in Fig. 15 can be translated into the transfer function

Hcc(s) = a0 + sa1 + s2a2

b0 + sb1 + s2b2 + s3b3 + s4b4
. (38)

The transfer function coefficients for the series connec-
tion of Fig. 15(a) are

a0 = 2Rl1 Rl2 + R1 Rl2 + Rl1 R2 (39)

a1 = Rl1 (L2 + R2 Rl2C2) + Rl2 (L1 + R1 Rl1C1) (40)

a2 = Rl1 Rl2 (L1C1 + L2C2) (41)

b0 = (R1 + Rl1) (R2 + Rl2) (42)

b1 = (R1 + Rl1) (L2 + R2 Rl2C2)
+ (R2 + Rl2) (L1 + R1 Rl1C1)

(43)

b2 = (R1 + Rl1) Rl2L2C2 + (R2 + Rl2) Rl1L1C1

+ (L1 + R1 Rl1C1) (L2 + R2 Rl2C2)
(44)

b3 = (L1 + R1 Rl1C1) Rl2L2C2

+ (L2 + R2 Rl2C2) Rl1L1C1
(45)

b4 = Rl1 Rl2L1L2C1C2. (46)

For the parallel connection of Fig. 15(b)

a0 = R1 + R2 (47)

a1 = L1 + L2 (48)

b0 = R1 R2
Rl1 + Rl2

Rl1 Rl2
+ R1 + R2 (49)

b1 = L1 + L2 + R1 R2 (C1 + C2)

+ Rl1 + Rl2

Rl1 Rl2
(R1L2 + R2L1)

(50)

b2 = (R1L2 + R2L1) (C1 + C2)
Rl1 + Rl2

Rl1 Rl2
L1L2 (51)

b3 = L1L2 (C1 + C2) (52)

a2 = b4 = 0. (53)

When two pickups with the same equivalent circuit com-
ponents are connected, the transfer function for the com-
bined pickups can be simplified. In this case, a series con-
nection would have the same transfer function as a single
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Fig. 16. Circuit frequency response for (a) a combination of two
different pickups, and (b) a combination of identical pickups.

pickup, but with a gain of two, inductance 2L, series re-
sistance 2R, core resistance 2Rl, and capacitance C/2. The
resulting transfer function

Hcc(s) = 2
1(

1 + R
Rl

)
+ s

(
L
Rl

+ RC
)

+ s2LC
(54)

is the same as Hc(s) in Eq. (30), but with a different gain. In
the case of a parallel connection, no additional gain appears,
and the equivalent components are inductance L/2, series
resistance R/2, core resistance Rl/2, and capacitance 2C,
resulting in the same transfer function as Hc(s) in Eq. (30).

The frequency responses for various combinations of
pickups are shown in Fig. 16. Two different pickups are
considered in Fig. 16(a). Pickup 1 has the following equiv-
alent components: L1 = 2 H, R1 = 10 k�, C1 = 50 pF, and
Rl1 = 1000 k�. Pickup 2 is modeled with L2 = 4 H, R2

= 20 k�, C2 = 100 pF, and Rl2 = 2000 k�. In this case,
pickups 1 and 2 have different resonant frequencies at fR, 1

= 16 kHz and fR, 2 = 8 kHz with a gain of 12 dB and 14 dB,
respectively.

The result for two different pickups combined in series
is shown in Fig. 16(a). In this case an increase of 6 dB
is observed at low frequencies and two resonant peaks are
present at the same frequencies as the ones observed in pick-
ups 1 and 2. The behavior at higher frequencies is similar
to the one observed for pickup 1, which has the highest res-
onant frequency fR, 1. At frequencies between the resonant
peaks, a minimum is observed, with an attenuation of 6 dB
in relation to the gain at low frequencies. It is interesting to
notice that for the series combination of different pickups,
the resonant peaks have an equivalent lower gain, since in
most of the frequency range the gain is 6 dB, whereas at
the resonant peak the gain reaches 15 dB, which indicates
an increase of 9 dB.

When two different pickups are combined in parallel,
as shown in Fig. 16(a), a single resonant peak is present
in the frequency response, which is located at a frequency
between the resonances of pickups 1 and 2. In this case,
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Fig. 17. Finite element simulation of a magnet and a string, where
the magnetic flux density in Tesla was measured at the center of the
magnet. The simulation result for (a) string displacement normal
to the magnet face and (b) along the magnet face.

the behavior at low frequencies is not affected much, and
the combined pickup resembles a single pickup with an
intermediate resonant frequency.

The response for the combination of two identical pick-
ups is shown in Fig. 16(b), with L = 2 H, R = 10 k�,
C = 50 pF, and Rl = 1000 k�. A series combination of
equal pickups is observed to provide the same frequency
response with a gain of 6 dB. In the case of a parallel con-
nection, the same frequency response is obtained as for the
original pickups. Differences may be noticed in these cases
when taking into account the interaction with the compo-
nents connected to the pickup. Although no great difference
is observed in the frequency response, as the equivalent out-
put capacitance is lower for the series connection and higher
for the parallel, the sensitivity to the components connected
to the pickup will be changed. In the case of the series con-
nection, the sensitivity to the impedance of the cables and
other circuitry connected to the pickups will be increased,
whereas the parallel connection will be more robust.

6 PICKUP NONLINEARITY

A pickup captures string motion by changes caused in the
magnetic flux depending on the proximity of the string to
the magnet [30]. Pickups are built using permanent magnets
having fixed magnetizing force H, and as the string moves,
the magnetic permeability μ is changed. This change in
permeability is mapped into a change in the magnetic flux
�, which is converted into an electrical voltage by the
pickup winding. The mapping between the string position
and the magnetic flux is nonlinear, which enhances the
string harmonics. Both [25] and [26] describe methods to
determine the pickup magnetic flux.

A finite element simulation using Vizimag [47] was per-
formed for a theoretical pickup, with results shown in
Fig. 17. The two-dimensional simulation was performed

0 0.5 1 1.5 2 2.5 3
0.788

0.79

0.792

Normalized time t/T
0

M
ag

ne
tic

 fl
ux

 (
T

es
la

)

Output
Input

(a)

0 0.5 1 1.5 2 2.5 3

0.7884

0.7886

0.7888

0.789

Normalized time t/T
0

M
ag

ne
tic

 fl
ux

 (
T

es
la

)

Output
Input

(b)

0 2 4 6 8 10 12

−40

−20

0

Normalized Frequency f/f
0

M
ag

ne
tic

 fl
ux

 (
dB

)

Vertical
Horizontal

(c)

Fig. 18. Response for a sinusoidal signal with nonlinear inter-
polation of points in Fig. 17. (a) The time response for string
displacement normal to the magnet face, (b) the time response for
string displacement along the magnet face, and (c) the frequency
response for both kinds of displacement. A small frequency off-
set is used in (c) to the make visualization of the vertical and
horizontal spectra easier.

considering a rectangular magnet 17 mm x 5 mm, repre-
senting a cross section of the permanent magnet, and a disk
of high permeability material with a 2-mm diameter, which
represents the cross section cut of the string. The results in
Fig. 17(a) show an exponential decay of the magnetic flux
as the string moves away from the permanent magnet in the
vertical direction. On the other hand, Fig. 17(b) shows a
bell-shaped curve for horizontal displacements around the
center of the magnet.

The nonlinear flux response for a sinusoidal string vibra-
tion is shown in Fig. 18, where a scaled version of the input
signal is also presented to improve visualization. This ex-
ample was generated by interpolating the nonlinear function
described in Fig. 17. The response for displacement normal
to the face of the magnet is shown in Fig. 18(a). Since the
response for this kind of signal is asymmetric, the frequency
content shown in Fig. 18(c) for vertical polarization reveals
that both odd and even harmonics are generated, with a high
emphasis up to the third harmonic.

On the other hand, the response for displacement par-
allel to the magnet face, shown in Fig. 18(b), has twice
the frequency of the original signal. From Fig. 17(b) the
horizontal vibrations are observed to be rectified by the
pickup nonlinearity, since both the maximum and the min-
imum values of the input signal are mapped onto minimum
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values in the output signal. The result of this effect is shown
in Fig. 18(c), where only even harmonics are present for the
horizontal polarization.

The results shown in Fig. 18 indicate that different po-
larization patterns in the string will have different col-
oration impacts. When more energy is present in the hor-
izontal polarization, odd harmonics will be suppressed.
Additionally, time-varying polarization of the string will
lead to a varying harmonic pattern, with either more
odd or even harmonics, which can enhance the guitar
timbre.

7 CONCLUSION

This work has presented the properties of the physical
phenomena and modeling techniques related to guitar pick-
ups. The importance of modeling the pickup phenomena
is related to proper synthesis of steel string instruments,
such as the guitar or bass guitar, and emulation of different
pickups in digital audio effects processing.

The pickup position was modeled by using a waveguide
framework. With this approach it is possible to describe the
frequency coloration with relation to the pickup position,
as well as to design a digital filter that emulates it. A com-
parison of different pickup positions have explained why
guitar pickups placed next to the bridge have a bright sound,
while neck and middle positions have a darker sound. The
pickup sensitivity width is explained and a novel model is
proposed by using the same waveguide approach, which
has shown that the pickup sensitivity has a low-pass effect
on the output signal.

The results for the pickup position were used to deter-
mine the effect of mixing different pickup signals when
identical pickups are used. It was shown that for some con-
figurations with opposite pickup phase, the first harmonic
was mostly suppressed. For configurations with in-phase
mixing, a wider first lobe in the frequency response was
observed, which enhances the response for the fundamen-
tal frequency over most of the string pitches. Additionally,
the response when mixing pickup signals shows a more
complex pattern, which depends on the difference and the
average of the positions of the pickups. For pickups with
different resonant frequencies, the mixing response will
very likely differ significantly from that found in this work,
since phase differences between pickup circuit responses
will change the constructive and destructive interactions
between frequencies.

The effect caused by non-ideal wave propagation
in strings is analyzed by considering dispersion, or a
frequency-dependent propagation speed. In the analysis
performed, for the dispersive string behavior, the comb-
filter effect caused by the pickup position was seen to have
its maxima and notches at inharmonic positions. Two mod-
eling approaches are presented, both including all-pass fil-
ters to emulate the frequency-dependent propagation speed
of waves in stiff strings.

An analysis of the equivalent circuit elements was per-
formed, where the influence of each element was observed
individually. The inductance and capacitance in the model

have been shown to have a major effect on the position of
the resonance peak the pickups usually have in their transfer
function. This resonance peak is responsible for the distinc-
tive sound of each individual pickup. The DC resistance has
little effect on the pickup transfer function but has some ef-
fect on the damping of the resonance peak. The core loss
resistance is seen to influence the amplitude of the reso-
nance peak. Additionally, typical volume control circuits
for guitar were shown to interact with this resistance, and
at extreme values a damping of the pickup resonance was
observed.

The nonlinear behavior of the pickup was demonstrated
using a finite element simulation. The results show that
the polarization of the string movement affects the output
timbre by adding more even harmonic content for high
energy in horizontal polarization, or odd harmonic content
for vertical polarization.

The results and new models presented here can be used
both in musical sound synthesis and in the implementa-
tion of digital effects. Since most of the models are string
dependent, their application to synthesis models is straight-
forward, since they often use a waveguide approach. For
the implementation of audio effects for real guitar signals,
non-magnetic hexaphonic pickups (such as piezoelectric
ones) separating the signal streams for each string would
be needed. Several commercial implementations of such
pickup systems currently exist.
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U. K. Laine, “Splitting the Unit Delay – Tools for Fractional
Delay Filter Design,” IEEE Signal Processing Magazine,
vol. 13, no. 1, pp. 30–60 (January 1996).
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