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ABSTRACT
Modeling high-order nonlinear systems is an important issue in audio signal processing. It may be employed
in real-time emulation of analog nonlinear systems, such as guitar distortion and amplifiers or other vintage
electronic audio systems. This paper proposes a new method for obtaining an economical black-box model of
nonlinear systems using the swept-sine technique, which extracts the harmonic distortion at each frequency
by separating them in time. In the proposed model the swept-sine technique is used to obtain the time-
frequency representation of a nonlinear system, and the principal component analysis is used to reduce the
complexity of the model. It is shown that the proposed method reduces the computational cost by 66%
when compared to traditional swept-sine models.

1. INTRODUCTION
Nonlinear analog audio systems have an important con-
tribution to the timbre of musical instruments. This is
the case for the amplifiers and effect boxes used with
guitars, as well as for the circuits used in analog syn-
thesizers. For that reason, many musicians would benefit
from computer simulation of this type of system. How-
ever, this is not a trivial task, and it is a common belief
that musicians often prefer the original analog products
due to their sound quality. The objective of this paper
is to provide an efficient black-box method for modeling
high-order nonlinear systems.

Modeling of nonlinear audio systems follows one of two
basic approaches. The first one consists of physical mod-
els [1, 2]. In this approach the physical phenomena in-
volved in the nonlinear system is described and used to
obtain a digital counterpart of an audio system. Exam-
ples of this type of approach include solving ordinary dif-
ferential equations of the system [3, 4], state-space mod-
els [5, 6], the K-method [7, 8], behavioral models [9] and
wave digital filters [10, 11, 12, 13]. This type of mod-
eling approach provides an excellent way for obtaining
accurate models whose parameters can usually be modi-
fied in a simplified manner. However, physical modeling

requires a detailed knowledge of the system being mod-
eled, which will not always be possible in practice.

The second approach for modeling nonlinear audio sys-
tems is a black-box approach. In this approach no phys-
ical knowledge of the system is required, and a model
that emulates the same input/output relationship is ob-
tained. This approach includes Volterra models [14],
which are capable of representing any kind of nonlin-
ear system with memory. However, the kind of nonlinear
systems generally used in analog audio processing of-
ten have large orders, which would yield very complex
Volterra filters. Some simplifications on the Volterra fil-
ters can be obtained using the Wiener or Hammerstein
models, in which a static nonlinear function is used in
series with a linear filter [15]. However, there are no
good methods available for identification of this type of
system suitable for this kind of simplification in an auto-
matic manner.

Other black-box methods emerge from the use of swept-
sine analysis methods. The swept-sine method was orig-
inally used for the analysis of the harmonic components
that are generated by nonlinear systems [16]. The swept-
sine was then further extended for obtaining a black-box
model of nonlinear systems consisting of several poly-
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nomial Hammerstein models in parallel [17, 18, 19]. Al-
though this method provides a simplified approach for
obtaining a nonlinear model of audio systems, it would
be prohibitively expensive when high-order nonlineari-
ties are used, which is often the case of guitar distortion
circuits.

This work presents a new solution for modeling high-
order audio nonlinearities using a black-box approach.
In the proposed method, the swept-sine analysis is used
to obtain the frequency response of each harmonic of
the nonlinear system [16]. As a second step, the pro-
posed method improves the swept-sine analysis by sim-
plifying its result through the use of the principal compo-
nent analysis (PCA) method. PCA is traditionally used
for information compression [20]. Hence, the combina-
tion of PCA and the swept-sine analysis yields a black-
box model with lower computational complexity. The
great advantage of this method is that high-order nonlin-
ear systems can be represented with a small number of
components, whereas traditional swept-sine approaches
would need the same number of components as the order
of the system. The results shown in this paper prove that
systems of order 30 can be represented with three to eight
components, while other swept-sine methods require 30
components.

This paper is organized as follows. Sec. 2 presents a re-
view on the swept-sine method. Sec. 3 presents the im-
provement over the swept-sine method using PCA. Sec. 4
describes the system under measurement and the method
for measuring its response. Sec. 5 shows the model-
ing results, and the advantages of the proposed method.
Sec. 6 presents the interpretation of the results and dis-
cussion on the compromise between the accuracy and
the computational complexity of the model. Sec. 7 con-
cludes the paper.

2. NONLINEAR SYSTEM IDENTIFICATION
WITH SWEPT-SINE
The swept-sine technique is used for determining the

nonlinear response of a system [17]. With this technique,
it is possible to analyze the nonlinear response of a sys-
tem, or to obtain a black-box model of the analyzed sys-
tem, such as in Fig. 1.

In this method, one chirp signal excites the system while
the response to this signal is measured at the output. The
swept-sine excitation is obtained as [17, 18]

xe(n) = sin
[

2πT
(

e
f1n
T fs −1

)]
(1)
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Figure 1: Generalized polynomial Hammerstein model
(adapted from [18]).

where T is the total length of the signal xe(n), fs is the
sampling frequency, and f1 is the initial frequency of the
swept-sine.

The total length of the signal T needs to be determined
in order to obtain phase coherency between the harmonic
responses obtained with this method. A known prop-
erty of the swept-sine signal is that the phase difference
between points of xe(n) with integer multiple instanta-
neous frequency is constant. For that reason, T is chosen
such that the phase shift for the kth harmonic is 2πM, or,
equivalently [19]

T =

(
2πM
k−1

− π
2

)
ln f2/ f1

2π f1
, (2)

where f2 is the final frequency of the sweep. In this work,
it was observed that it is sufficient to guarantee the phase
shift for the second harmonic, hence k = 2 and M is cho-
sen to approximate the desired swept-sine length in sec-
onds.

Once the excitation signal xe(n) is calculated as in Eq. 1,
this signal is fed into the system under test. The response
to xe(n) is measured at the output of the system ye(n),
which is then inverse filtered [19] by

Xi( f ) =
X∗e ( f )

|Xe( f )|2 + ε( f )
, (3)

where Xi( f ) =F (xi(n)) is the frequency response of the
inverse filter, ε( f ) is a function used for regularization
of the inverse of the excitation signal Xe( f ) = F (xe(n))
outside the band f1 < f < f2. The resulting signal
yi(n) = ye(n)∗ xi(n) contains the composition of the im-
pulse responses gk(n) of the kth harmonics, which are
shifted by

Δnk =
T fs lnk

ln( f2/ f1)
(4)
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samples. Notice that the values Δnk will have fractional
sample times. Thus, the impulse responses gk(n) are ob-
tained by windowing the yi(n) at the time instants Δnk.
Finally, the impulse responses hk(n) for each kth polyno-
mial nonlinearity, are obtained using Chebyshev polyno-
mials [18, 19].

3. IMPROVED SWEPT-SINE USING PRINCIPAL
COMPONENT ANALYSIS
The swept-sine method provides a good automatic way

of obtaining a black-box model of a nonlinear system.
However, when high-order nonlinear systems are used,
the decomposition of Fig. 1 yields a very complex model.
Hence, for a nonlinear system with order N, it is desir-
able to obtain a simplified computational model in which
M waveshaper/filter pairs are used, with M < N, as in
Fig. 2. A possible solution for that problem is achieved
through the use of principal component analysis (PCA).
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Figure 2: Simplified Hammerstein model using princi-
pal component analysis.

Once the impulse responses of each harmonic gk(n) are
obtained as in Section 2, they are grouped in a matrix G
as

G =

⎡
⎢⎢⎢⎣

g1(0) g1(1) . . . g1(L)
g2(0) g2(1) . . . g2(L)

...
...

. . .
...

gN(0) gN(1) . . . gN(L)

⎤
⎥⎥⎥⎦ , (5)

where L is the maximum length of the impulse responses
gk(n).

In a second step, a matrix C with an estimative of
the covariance between the impulse responses ck,l =
E [(gk− ḡk)(gl− ḡl)] is obtained as

C =
(
G− Ḡ

)(
G− Ḡ

)T (6)

=

⎡
⎢⎢⎢⎣

c1,1 c1,2 . . . c1,N
c2,1 c2,2 . . . c2,N

...
...

. . .
...

cN,1 cN,2 . . . cN,N

⎤
⎥⎥⎥⎦ ,

where the superscript T denotes matrix transposition, and
Ḡ is a N × L matrix with the averages of gk(n). If the
eigendecomposition is applied to the covariance matrix
C, we obtain

C = QAQT , (7)

where Q is an orthogonal matrix with the eigenvectors
qk of C in its k columns,

qk =
[

qk(1) qk(2) . . . qk(N)
]T (8)

and A is a diagonal matrix with eigenvalues ak corre-
sponding to each eigenvector qk.

Each eigenvector qk can be understood as one principal
direction in which the data on G varies. This can be used
for mapping G into this direction as

hPk = qT
k G (9)

=
[

hPk(0) hPk(1) . . . hPk(L)
]
,

where the energy of hPk is given by the eigenvalue ak.
Hence, since the eigenvectors are normalized, the eigen-
vectors with larger eigenvalues represent the principal di-
rections of G [20]. This result can be used to compress
the information contained in G, by using only the main
M impulse responses hPk(n) with large ak to represent a
nonlinear system as in Fig. 5, or equivalently

y(n) =
M

∑
k=0

Sk (x(n))∗hPk(n), (10)

where Sk (x) is a waveshaper responsible for generating
the harmonics in the eigenvector qk, and ∗ denotes con-
volution. The shape of Sk (x) is calculated as

Sk(x) =
N−1

∑
l=0

ql(k)Tl(x), (11)

where Tk(x) is the Chebyshev polynomial of order k with
x as input argument.

In practice, the energy of each harmonic response gk(n)
decays as the order k increases. For that reason, if the
principal components decomposition is directly applied
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on the matrix G, the resulting principal components will
be biased for modeling only the harmonic components
with more energy. In order to mitigate this problem, it is
possible to normalize the energy of the responses gk(n).
However, low-energy responses gk(n) may be corrupted
by noise and may not be perceptually important for the
final model. This may be the case of even harmonics
in some distortion circuits. Hence, an alternative solu-
tion was developed. Firstly, the energy of each harmonic
component in dB is calculated

Ek = 10log10

(
1
L

L

∑
l=0
|gk(l)|2

)
. (12)

The envelope energy decay is approximated with a third
order polynomial p(k). This is done in order to avoid
increasing the energy of low energy harmonics close to
high energy harmonics, i.e. harmonics with Ek−1 �
Ek 	 Ek+1. Finally, each impulse response is multiplied
by an energy dependent factor, yielding the normalized
impulse responses as

g̃k(n) = gk(n)10
p(k)
10γ , (13)

where γ is the normalization factor. In the example
shown in Section 5 the practical value of the normaliza-
tion factor was γ = 4. Hence, a normalized impulse re-
sponses matrix is obtained as G̃, which is used to obtain
the normalized correlation matrix C̃ and its correspond-
ing normalized eigenvector Q̃ and eigenvalue Ã matrices,
with eigenvectors q̃k and eigenvalues ãk.

Additionally, another useful simplification of the method
can be obtained by ignoring low energy elements of the
correlation matrix C or C̃. This approach is particularly
interesting in systems that have low energy at even or
odd harmonics. In that case, even and odd harmonics
are artificially decorrelated by changing the correlation
matrix C as

Ceo(k, l) =
{

C(k, l), if k+ l iseven,
0, otherwise . (14)

If normalization is used, the normalized correlation ma-
trix C̃ can be modified as

C̃eo(k, l) =
{

C̃(k, l), if k+ l is even,
0, otherwise . (15)

Some practical aspects need to be considered when ap-
plying this method. In order for the PCA method to be

able to consistently detect the correlation between the
impulse responses gk(n), it is important that they are per-
fectly synchronized in G. For that purpose, the fractional
center of the impulse response Δnk in Eq. 4 needs to be
compensated using a fractional delay filter [21]. As the
analysis phase is performed off-line, the computational
complexity was not considered important for the analy-
sis. Hence, a 91-samples long windowed sinc function
was used as the fractional delay filter. Additionally, the
phase-shift between the harmonic responses gk(n) needs
to be guaranteed using swept-sine excitation length as
in Eq. 2. If any of these aspects are ignored, the PCA
method will fail, and the principal components obtained
will contain most of their energy on a single harmonic
component. In that case, no complexity reduction is
achieved.

4. MEASUREMENT SETUP
Measurements of a practical distortion circuit were per-

formed in order to demonstrate the behavior of the pro-
posed modeling approach. A Tube Screamer TS9 dis-
tortion circuit was measured as in Fig. 3. For that pur-
pose, an excitation signal xe(n) was used as the input
of the system, while the response of the system ye(n)
was measured at the output. The excitation signal xe(n)
consisted of a swept-sine signal calculated as in Eq. 1,
with minimum frequency f1 = 10 Hz, maximum fre-
quency f2 = 20 kHz, sampling frequency fs = 48 kHz,
and length of T = 10.4512 s. The input signal was gener-
ated using a computer connected to the distortion circuit
under test through its sound-card output. The output of
the system was obtained using the microphone input of
the sound-card. The distortion effect parameters were
kept constant during the measurement, with the volume,
distortion and tone controls at their maximum levels.

�����������	
��

����
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Figure 3: Measurement setup.

5. RESULTS
This section presents the measurement results obtained

for a Tube Screamer TS9 distortion circuit, and compares
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it to the results obtained with the proposed model. In
this section, the normalized harmonic impulse response
matrix G̃ is obtained using the swept-sine method with
normalization factor γ = 4, and truncated so that it has
99.97% of the energy. The swept-sine response was over-
sampled at 96 kHz. This yielded finite impulse response
(FIR) filters with 1435 coefficients. Additionally, since
even harmonics have low energy in this system, the cor-
relation between even and odd harmonics was ignored,
as in Eq. 15. Fig. 4 shows the time-frequency represen-
tation of the excitation signal and the measured output
signal, in Fig. 4 (a) and (b) respectively.

(a)

(b)

Figure 4: Spectrogram of the (a) swept-sine excitation
signal and (b) the measured output signal in dB. Spec-
trogram generated using 300 logarithmically spaced fre-
quencies between 10 Hz and 20 kHz, 4800 samples long
Hanning window with 50% overlap.

The magnitude of the main six principal components q̃k
is represented in Fig. 5. In Fig. 5 it is possible to observe
that each principal component is responsible for repre-
senting a different set of harmonic components. The first
component has energy concentration mainly at the fun-
damental frequency, with attenuated energy at the third,
fifth and seventh harmonic components, while the other

principal components have increased energy for higher
order harmonic components. Additionally, it is possible
to observe that none of the represented principal compo-
nents q̃k represents the even harmonics. This indicates
that the generation of even harmonics is not as important
as that of the odd harmonics in this particular circuit.
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Figure 5: Magnitude of each harmonic component ob-
tained for the distortion circuit under analysis with PCA
for the (a) first, (b) second, (c) third, (d) fourth, (e) fifth
and (f) sixth components.

The resulting nonlinear shapes obtained with PCA are
represented in Fig. 6. The shapes are obtained by us-
ing the Chebyshev polynomials for mapping the princi-
pal components q̃k into nonlinear functions Sk(x), as in
Eq. 11. The first principal component waveshaper S1(x)
in Fig. 6 (a) is a smooth nonlinearity with odd symme-
try, which is in line to the harmonic content observed in
Fig. 5 (a). The other waveshapers have increased com-
plexity as the principal component number increases, in
Fig. 6 (b-f) for the second to the sixth components. This
result is also in line with the results in Fig. 5 (b-f), where
higher order harmonics are mostly observed in the fourth
to the sixth principal components.

In addition to the waveshapers, each principal compo-
nent of the nonlinear system has a corresponding filter
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Figure 6: Nonlinear functions Sk(x) obtained for the dis-
tortion circuit under analysis with PCA for the (a) first,
(b) second, (c) third, (d) fourth, (e) fifth and (f) sixth
components.

hPk(n), as indicated in Fig. 2. The impulse response of
this filter is obtained using q̃k and G as in Eq. 9. The
magnitude of the frequency response for the correspond-
ing filter of the first six principal components is presented
in Fig. 7. It is possible to observe that the magnitude
of the first principal component hP1(n) is larger than for
the others. Additionally, the frequency response of each
component presents a different frequency pattern. The
combination of the nonlinear functions in Fig. 6 with the
filters in Fig. 7 completes the nonlinear model of Fig. 2.

The result of the combination of the waveshapers and fil-
ters is presented in Fig. 8. In this figure, the response
of a single principal component is illustrated, where the
swept-sine signal of Fig. 4 (a) excites a nonlinear model
with a waveshaper Sk(x), and a filter hPk(n). This time-
frequency representation shows that each principal com-
ponent is responsible for modeling a group of harmonics.
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Figure 7: Frequency response of the first six principal
components.

Additionally, it is also possible to observe that the energy
of the responses is larger for the first principal compo-
nents. Some aliasing can be observed in Fig. 8, which is
handled in practice by oversampling.

One indication of how many principal components are
needed for representing this nonlinear system is given in
Fig. 9. In this figure, the percentage of energy that is rep-
resented with a number of principal components is given.
Two energy measures are presented in this figure. The
first one is the normalized energy, which is obtained with
the cumulative sum of the eigenvalues ãk of the normal-
ized correlation matrix C̃. The second one is obtained
with the absolute value of the represented energy when
using the first M eigenvectors q̃k, for k = 1 . . .M. In both
cases 99% of the energy is represented with two to eight
components, which indicates that it is possible to reduce
the complexity of the nonlinear model using PCA.

The comparison results of the measured nonlinear sys-
tem (called Ref. in the results), and the models with
three, five and eight principal components are shown in
Fig. 10. The results show the swept-sine analysis for the
odd harmonics, up to the 27th harmonic. The results for
the even harmonics are omitted, due to their lower en-
ergy in comparison to the odd ones. When using three
principal components the modeled nonlinear system is
able to represent the reference nonlinear system up to the
ninth harmonic for excitation signals with fundamental
frequency bellow 1.5 kHz. When five principal com-
ponents are used, 13 to 15 harmonics are represented
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(a) (b) (c)

(d) (e) (f)

Figure 8: Spectrogram of the PCA waveshaper/filter pairs obtained with a swept-sine input of 10.4512 s for the
distortion circuit under analysis for the (a) first, (b) second, (c) third, (d) fourth, (e) fifth and (f) sixth components in
dB.
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Figure 9: Percentage of the energy represented when us-
ing different number of principal components.

with some oscillation at low frequencies. When using
eight principal components, the model is able to repre-
sent the nonlinear system up to the 27th harmonic. How-
ever, some random oscillation is observed for high order
harmonics.

6. COMPARISON AND DISCUSSION
In all the presented examples, the proposed method

provides a less expensive model when compared to the
model obtained with the swept-sine method without
PCA. In order to represent nine harmonics, the swept-
sine method requires nine nonlinear functions followed
by nine filters. When using PCA, the proposed system
reduces 66% of the computational cost, since it uses three
principal components. Moreover, when using five and
eight principal components, the resulting nonlinear sys-
tem reduces 66% of the computational cost for represent-
ing 15 and 27 harmonics, respectively. Hence, with the
proposed model it is possible to obtain high-order non-
linear systems with reduced computational complexity.

The balance between the number of represented harmon-
ics and how accurate the resulting system will be is con-
trolled when selecting the number of principal compo-
nents, and the normalization factor γ in Eq. 13. With
a small normalization factor, i.e. γ = 1, the energy en-
velope of the harmonics is compensated and the higher
harmonics will have the same weight as the lower ones.
However, the estimation of the impulse responses for the
higher order harmonics is not as accurate as for the lower
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ones, making the system more susceptible to noise, and
leading to numerical problems when obtaining Q̃.

On the other hand, the larger the number of principal
components, the more accurate will be the impulse re-
sponse of each harmonic component gk(n). This leads
to a compromise between the desired modeling accuracy
and the available computation capacity for running the
model.

Finally, the application of PCA can simplify model in-
terpolation when representing different parameter sets of
the modeled system. In order to represent different pa-
rameters of a nonlinear analog system, the swept-sine
model has to be derived considering different values for
these parameters. Since all possible values cannot be
measured, interpolation between the models correspond-
ing to different parameter sets is necessary. When PCA is
applied, the number of impulse responses that need to be
interpolated is reduced. This can greatly reduce the num-
ber of operations required when changing parameters of
the original analog system.

7. CONCLUSIONS
This paper has presented a solution for obtaining a

black-box model of high-order nonlinear system using
the swept-sine method. In the proposed approach the
swept-sine method is used for estimating the frequency
responses of each harmonic generated by the nonlinear
system, and the principal component analysis (PCA) is
used to derive a low order model that represents this
system. The PCA is used to obtain the similarities be-
tween the impulse responses of each harmonic compo-
nent, yielding nonlinear functions and filters that repre-
sent each of these components.

The proposed method has shown that it is possible to re-
duce by 66% the computational cost required for model-
ing high-order nonlinear systems. This results in a sys-
tem that is better suited for real-time implementation in
plugins and applications emulating high-order distortion
circuits than the original system.

This method may be used not only for models of nonlin-
ear systems, but also for obtaining compact representa-
tions for analyzing these systems. The swept-sine anal-
ysis has been used also for comparing the frequency re-
sponse of nonlinear systems. However, this analysis is
practical only for a limited number of harmonics. Hence,
after obtaining the principal components of that system,
the frequency response of some principal components

can be analyzed individually instead of the frequency re-
sponse for a large number of harmonics.
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[1] V. Välimäki, J. Pakarinen, C. Erkut, and M. Kar-
jalainen, “Discrete-time modelling of musical in-
struments,” Reports on Progress in Physics, vol. 69,
no. 1, pp. 1–78, January 2006.

[2] J. Pakarinen and D. T. Yeh, “A review of digital
techniques for modeling vacuum-tube guitar ampli-
fiers,” Computer Music Journal, vol. 33, no. 2, pp.
85–100, 2009.

[3] D. T. Yeh, J. S. Abel, A.Vladimirescu, and J. O.
Smith, “Numerical methods for simulation of gui-
tar distortion circuits,” Computer Music Journal,
vol. 32, no. 2, pp. 23–42, 2008.

[4] J. Macak and J. Schimmel, “Real-time guitar tube
amplifier simulation using an approximation of dif-
ferential equations,” in Proc. of the DAFx’10, 13th
International Conference on Digital Audio Effects,
Graz, Austria, September 2010.

[5] K. Dempwolf, M. Holters, and U. Zölzer, “Dis-
cretization of parametric analog circuits for real-
time simulations,” in Proc. of the DAFx’10, 13th
International Conference on Digital Audio Effects,
Graz, Austria, September 2010, pp. 1–8.
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Figure 10: Swept-sine analysis results of the distortion circuit (Ref.) and the modeled versions of the circuit with
three, five and eight principal components.
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