
Aalto University

School of Science

Master’s Programme in Mathematics and Operations research

Miikka Tiainen

Computational entropy from distribu-
tional hardness

Master’s Thesis
Espoo, November 9, 2021

Supervisor: Professor Christopher Brzuska
Advisor: Professor Christopher Bruzska

Aalto University
School of Science
Master’s Programme in Mathematics and Operations research

ABSTRACT OF
MASTER’S THESIS

Author: Miikka Tiainen

Title:
Computational entropy from distributional hardness

Date: November 9, 2021 Pages: 69

Major: Mathematics Code: SCI3054

Supervisor: Professor Christopher Brzuska

Advisor: Professor Christopher Bruzska

A central problem in cryptography is the construction of basic primitives, or low-
level algorithms, from computational complexity-based assumptions. One way of
viewing the hardness of a problem from the view of a computationally bounded
adversary is via the notion of entropy. Much like the toss of a normal coin is
considered random due to limitations of human observers, the real entropy, or
uncertainty, of a system can be much higher or lower than the entropy that is
“observable” by an efficient adversary.

In this thesis we establish results obtaining this type of computational entropy
from distributionally hard primitives. This notion of distributional hardness cap-
tures that it is hard for an adversary to output a uniform pre-image of a randomly
sampled image value. We use this computational entropy from distributional
hardness to expand on existing results constructing pseudorandom generators
from next-block pseudoentropy, and statistically hiding commitment schemes from
accessible entropy. Although the existence of such constructions were implicit in
existing literature, we establish much more efficient constructions with tighter
bounds on the computational entropy than has previously been considered. Fur-
thermore, the current known optimal construction of pseudorandom generators in
terms of input (or seed) length appears to hold with equivalent parameters for the
much more general notion of distributional hardness, establishing that the much
more general notion of distributional hardness may in itself yield conceptually
interesting constructions.

We improve on existing results using known known information theoretic inequal-
ities. Most centrally we use an inequality due to Bretagnolle and Huber relating
the statistical distance and relative entropy of distributions in a much tighter way
in the context of highly disjoint distributions than the famous Pinsker bound.

Keywords: One-way functions, Hash-functions, Statistical distance,
Computational entropy, Relative entropy, Tightness

Language: English

2

Aalto-universitetet
Högskolan för teknikvetenskaper
Magisterprogrammet i matematik

SAMMANDRAG AV
DIPLOMARBETET

Utfört av: Miikka Tiainen

Arbetets namn:
Computational entropy from distributional hardness

Datum: Den 9 november 2021 Sidantal: 69

Huvudämne: Matematik Kod: SCI3054

Övervakare: Professor Christopher Brzuska

Handledare: Professor Christopher Brzuska

Ett centralt problem inom kryptografi är konstruktionen av kryptografiska pri-
mitiv, eller enkla algorimtmer, fr̊an kompleksitetsteoretiska antaganden. Ett sätt
att uppfatta sv̊arhetsgraden av ett problem för en motst̊andare med begränsade
beräkningsresurser är genom begreppet entropi. Liksom deterministiska (och
därmed förutsägbara) myntkast behandlas som slumpmässiga för mänskilga ober-
vatörer, kan den äkta entropin, eller osäkerheten, av ett kryptosystem vara mycket
lägre eller högre än vad en begränsad motst̊andare klarar av att observera.

I detta diplomarbete härleder vi resultat som etalberar denna typs beräknelig
entropi fr̊an distributionellt sv̊ara primitiv. Distributionell sv̊arhet innebär att det
är sv̊art för en motst̊andare att hitta jämndistribuerade urbilder för slumpmässiga
bildelement. Detta inkluderar även funktioner som alltid har en enkel urbild. Via
beräknelig entropi fr̊an distributionellt sv̊ara problem bygger vi p̊a existerande
resultat inom litteraturen och p̊avisar konstruktioner av pseudoslumpgenerato-
rer fr̊an pseudoentropi, och statistiskt gömmande lojalitetssystem fr̊an tillgänglig
entropi. Dessa konstruktioner är implicita i den existerande litteraturen, men v̊ara
resultat etablerar mycket stramare konstruktioner via mera optimala olikheter för
beräknelig entropi fr̊an distributionell sv̊arhet. Intressant nog, verkar den just nu
mest optimala konstruktionen av pseudoslumpgeneratorer fr̊an envägsfunktioner
h̊alla med ekvivalenta parametrar för den mycket mer generalla klassen av distri-
butionellt h̊arda funktioner, allts̊a kan distributionellt sv̊ara primitiv redan i sig
möjligen ge interessanta konstruktioner.

Vi bygger p̊a existerande resultat via kända informationsteoretiska olikheter, mest
centralt en olikhet av Bretagnolle och Huber som etablerar ett samband mellan
statistisk distans of relativ entropi.

Nyckelord: Envägsfunktioner, hashfunktioner, statistisk distans,
beräknelig entropi, relativ entropi, stramhet

Spr̊ak: Engelska

3

Contents

1 Introduction 6
1.1 Background . 8

1.1.1 Pseudoentropy . 8
1.1.2 Accessible entropy . 11
1.1.3 Distributional one-way functions 13
1.1.4 Distributionally collision resistant hash-functions . . . 17
1.1.5 Bretagnolle-Huber’s inequality 19

1.2 Contribution . 20

2 Preliminaries and definitions 23
2.1 Cryptography . 24
2.2 Information Theory . 27
2.3 Transformations of computational entropy 29

3 Pseudorandom generators from distributional OWFs 36
3.1 Vadhan-Zheng PRG . 37

3.1.1 One-way function to next-bit pseudoentropy 41
3.1.2 Next-bit pseudoentropy to Z-seeded generator 43
3.1.3 Z-seeded generator to PRG 45

3.2 PRG via DOWF . 46

4 Statistically hiding commitments from distributional colli-
sion resistance 49
4.1 SHC from inaccessible entropy generator 50

4.1.1 SHC from an arbitrary block generator 50
4.1.2 SHC from a constant block generator 53

4.2 Accessible entropy generator from dCRHF 55
4.3 SHC from distributional collision resistance 59

5 Open problems and implications 61

4

A Proof of Lemma 1.1.3 68

5

Chapter 1

Introduction

The strongest notion of security achievable by a cryptographic system or
protocol is that of information theoretic security, where all adversaries are
assumed to be computationally unbounded. This however places inherent
limitations on what type of cryptography is possible. For example, private
key encryption is impossible with information theoretic security, and symmet-
ric encryption always requires keys as long as the message. Much of modern
cryptographic security is instead based on complexity theory based assump-
tions of hardness, where adversaries are assumed to have bounded computa-
tional resources. The simplest, most foundational property which separates
computational security from information theoretic security appears to be that
of one-wayness. Impagliazzo and Luby showed that one-way functions are
necessary for much of complexity based cryptography [22]. Namely, one-way
functions are easy to compute but infeasible to invert for any (polynomially)
bounded adversary, whereas one-wayness is plainly impossible against an un-
bounded adversary. On the other hand the existence of one-way functions
has been shown to imply the existence, among other things, pseudorandom
generators [21], pseudorandom functions [16], signature schemes [26], coin
flipping protocols [22] and further useful primitives. These constructions
are also necessary from a foundational perspective, as one-way functions by
themselves provide little security guarantees. They may leak large (indeed
any constant fraction) parts of their input, contain trivial constant substrings
in their output or ignore large parts of the input, and nevertheless be infea-
sible to invert. Thus there is a need to construct primitives with more con-
crete/specific security guarantees to obtain building blocks for practically
useful cryptography.

In the past decade, a line of research ([18, 19, 17, 37, 1]) has culminated
in constructions of primitives from one-way functions via means of compu-
tational entropy. Intuitively, from the computational hardness of a one-way

6

CHAPTER 1. INTRODUCTION 7

function it is possible to obtain uncertainty, or entropy, from the perspec-
tive of computationally bounded adversaries. For example, for a bijective
function f that is infeasible to invert, knowing any image f(x) fixes the
pre-image x information theoretically, but by definition no computationally
bounded adversary can return this value with noticeable probability. That is
to say, the entropy of x given f(x) is in reality zero, but x appears uncertain
given f(x) to any adversary. Computational entropy can then be structured
and transformed to obtain new random variables (i.e. cryptographic prim-
itives) with strong properties, such as pseudorandomess, which we want for
pseudorandom generators, and unforgeability, which we want for statistically
hiding commitments.

The focus of this thesis will be the study of (next-block) pseudoentropy
and its connection to pseudorandom generators (PRGs), as well as accessible
entropy and its connection to the construction of statistically hiding com-
mitments. The notions of both accessible entropy and pseudoentropy also
seem to have a fundamental connection to that of relative entropy ([1],) an
f -divergence (cf. [33]) used in information theory to measure closeness of
distributions. Namely, the underlying uniform distribution given as input to
any standard one-way function can be shown to have high relative entropy
with respect to the output distribution of a bounded adversary trying to find
a valid pre-image behind the one-way function, i.e. the divergence between
the distributions (x, f(x)) and (A(f(x)), f(x)) is high when f is sufficiently
hard to invert. Using amplification techniques, bounds on the relative en-
tropy can then further be used to obtain bounds on both accessible entropy
and pseudoentropy. In other words, the closeness of the uniform and adver-
sarial distributions allows us to obtain computational entropy from hardness
assumptions.

Our central question will be whether the connection between compu-
tational hardness and relative entropy also to generalizes to distributional
hardness where we quantify the advantage of an adversary in terms of the
statistical distance. Phrased differently, we demand that the adversary should
be able to sample unifromly from the set of valid solutions. For example,
can a function be always easy to invert, and still yield useful entropy bounds
as long as the function has sufficiently strong distributional hardness guar-
antees? Intuitively, if a function always has one easy pre-image, but say 9
infeasible ones, an adversary should still fail to sample roughly 9

10
of the pre-

image distribution. In other words, even though the support of the adversary
is fully contained in the input distribution, the support of the adversary is
skewed. We will show that the distributional hardness yields very strong
bounds on relative entropy, implying a construction of PRGs from distribu-
tional one-way functions that is equivalent to the best known from standard

CHAPTER 1. INTRODUCTION 8

one-way functions in terms of input (or seed) length, as well as an improve-
ment on the accessible entropy obtainable from distributionally collision re-
sistant hash functions. Additionally we present a central inequality due to
Bretagnolle and Huber [8], which has yet to attract much use in cryptogra-
phy, that is our main inequality for relating statistical distance to relative
entropy. We address the full scope, specific results and research questions of
the thesis more thoroughly in Section 1.2.

We proceed by giving brief background to the notions of pseudoentropy,
accessible entropy and distributional one-way functions as well as distribu-
tionally collision resistant hash functions. These four notions are the foun-
dational definitions for the thesis.

1.1 Background

1.1.1 Pseudoentropy

We first recall the notions of Shannon entropy and relative entropy that are
necessary for formally defining both next-block pseudoentropy and accessible
entropy. Throughout this thesis we refer to the entropy of random variables
when meaning the entropy of their induced probability distributions. This
terminology is standard is cryptographic literature.

Definition 1.1.1 (Shannon Entropy). The Shannon entropy H(X) of a ran-
dom variable X is defined as

H(X) = EX
[
log

1

Pr[X = x]

]
=

∑
x∈Supp(X)

Pr[X = x] · log
1

Pr[X = x]
.

Intuitively, Shannon entropy can be understood as the average uncer-
tainty of an outcome. We also require the notion of conditional entropy :

Definition 1.1.2 (Conditional entropy). The conditional entropy of X given
Y is defined as

H(X |Y) = Ey[H(X|Y = y)].

Conditional entropy can also be used to characterize the entropy of a joint
random variable, often referred to as the chain rule:

Lemma 1.1.1 (Chain rule of Shannon entropy). For a joint random variable
X = (X1, ..., Xm) it holds that the entropy of X is the sum of the conditional
entropies:

H(X) =
n∑
i=1

H(Xi |X<i),

CHAPTER 1. INTRODUCTION 9

this is known as the chain rule of conditional entropy.

Compared to Shannon entropy, which is a functional of the underlying dis-
tribution, the relative entropy of random variables instead formalizes close-
ness of two random variables:

Definition 1.1.3 (Relative entropy/KL divergence). For random variables
X and Y on a discrete and finite sample space we define the relative entropy
(or Kullback-Leibler divergence) from X to Y as

KL(X‖Y) =
∑

x∈Supp(X)

Pr[X = x] · log
Pr[X = x]

Pr[Y = x]
,

where by convention KL(X‖Y) =∞ if Pr[Y = x] is zero when Pr[X = x] is
nonzero.

Note that the KL divergence is not symmetric, and is as such not a proper
metric, as it ignores probabilities of Y on events when X has zero probability.
We now proceed by presenting the basic definitions of pseudoentropy and
accessible entropy.

1.1.1.1 HILL pseudoentropy

One-way functions (OWFs) are efficiently computable functions that are
computationally infeasible to invert (see Def. 2.1.1). A seminal result due
to due to H̊astad, Impagliazzo, Luby and Levin [21] establishes that one-way
functions imply pseudorandom generators (PRGs). In essence, they show
that from computational hardness it is possible to obtain “random-looking”
strings. Formally, PRGs are defined as efficient length extending functions,
whose output is indistinguishable from a random string (see Def. 2.1.2). The
main tool introduced by HILL is the notion of (HILL) pseudoentropy, a pre-
cursor of the notion of next-block pseudoentropy that we will use in this thesis.
The central idea is that when interacting with a computationally bounded
adversary a random variable may appear to have more entropy than it does in
reality. This idea is formally defined via computational indistinguishability.

Definition 1.1.4 (Computational Indistinguishability). We say random vari-
ables X and Y are computationally indistinguishable if for all probabilistic
polynomial time distinguishers D it holds that

AdvD(n) := |Pr[D(X, 1n) = 1]− Pr[D(Y, 1n) = 1)]| = negl(n).

CHAPTER 1. INTRODUCTION 10

We also write X
c
≈ Y to denote computational indistinguishability of

the random variables X and Y . The function negl(n) denotes a negligible
function, i.e. a function that is defined as being asymptotically smaller than
the inverse of any positive polynomial in n. Note that X and Y can be taken
as single random variables, but we will mainly consider them as sequences of
random variables indexed by some function of n.

Definition 1.1.5 (HILL Pseudoentropy). A random variable X has pseu-
doentropy k if there exists some random variable Y such that

X
c
≈ Y , and H(Y) ≥ k.

In other words, since no efficient distinguisher D can distinguish X from
Y , and Y has entropy k, then X will also appear to have entropy k. Par-
ticularly interesting is the case when the pseudoentropy threshold k is larger
than the real entropy of X. This difference k − H(X) is called the gap in
pseudoentropy.

1.1.1.2 Pseudoentropy and next-block pseudoentropy

The notion of pseudoentropy was further generalized by Haitner, Reingold
and Vadhan [18] to that of next-block pseudoentropy (nbpe), where we di-
vide a random variable into blocks X = (X1, ..., Xm), and demand that
conditioned on all previous blocks up to some index i, one should not be able
to distinguish the i-th block from a high entropy random variable.

Definition 1.1.6 (Next-block pseudoentropy (nbpe)). An m-block random
variable X = (X1, ..., Xm) has next-block pseudoentropy (at least) k if it holds
that for i ∈ [m] each Xi is computationally indistinguishable from some Yi
when conditioned on previous blocks X1, ..., Xi−1, where Y = (Y1, ..., Ym) is
jointly distributed with X and

m∑
i=1

H(Yi|X1, ..., Xi−1) ≥ k.

We can analogously extend the definition to a conditional random variable
X = A|B and say that A has conditional next-block pseudoentropy at least k
given B. In the case of one bit blocks we refer to next bit pseudoentropy. We
will be particularly interested in the next-block pseudoentropy of the induced
output distribution G(x) of functions G with m-block outputs on uniformly
random inputs x, formalized as next-block pseudoentropy generators. Note
that as evaluating a deterministic function on a uniformly random input is

CHAPTER 1. INTRODUCTION 11

itself a random variable, the notion of dividing a random variable X into m
blocks X = (X1, ..., Xm) is directly applicable for the output values of the
generator.

Definition 1.1.7 (Next-block pseudoentropy generator). A polynomial time
computable function G : {0, 1}n → ({0, 1}l(n))m(n) with m(n) output blocks of
(possibly varying) length l(n) is called a next-block pseudoentropy generator if
it has next-block pseudoentropy at least k = H(G(x))+δ for uniformly random
bitstrings x and some noticeable δ. The function δ is called the pseudoentropy
gap of the generator.

A pseudorandom generator from n bits to m bits for example has real entropy
at most n (based on the input being uniformly random bitstrings of length
n), but is by definition computationally indistinguishable from a uniform
bitstring of length m > n, meaning it can be shown to have next-block
pseudoentropy m.

Pseudoentropy was shown by Vadhan and Zheng to be equivalent to the
notion of relative pseudoentropy, in that X has relative pseudoentropy ∆
given Y if and only if X has an pseudoentropy H(X|Y) + ∆ given Y . We
define relative pseudoentropy as follows:

Definition 1.1.8 (relative pseudoentropy [37] definition 3.4, [1] Definition
3.5). For a jointly distributed random variable (Y,X) with security parameter
n, we say that X has ∆(n) := ∆ relative pseudoentropy given Y if for all PPT
adversaries A it holds that

KL((Y,X)‖(Y,A(Y))) > ∆.

In other words X has relative pseudoentropy given Y if every efficient
adversary fails to approximate the conditional distribution of X given Y up
to some lower bound ∆ when measured in relative entropy. This notion was
introduced as KL-hardness for sampling [37], but later papers following this
line of results have adopted the term relative pseudoentropy, which we also
use in this thesis (e.g. [1]).

1.1.2 Accessible entropy

Whereas the pseudoentropy of an m-block generator G is defined as a dis-
tinguishing problem between the output and some high entropy variable, the
accessible entropy of G is instead defined via adversary trying generate (or
emulate) the distribution induced by G. The accessible entropy of a genera-

tor G is the maximal entropy of any adversarial emulator G̃ trying to emulate

CHAPTER 1. INTRODUCTION 12

G, whose output is always in the support of G (defined as “G-consistent”
in the original work by Haitner, Reingold, Vadhan and Wee [19]). We note
that in the context of accessible entropy, when writing m-block generator we
simply mean a deterministic function taking as input a public parameter p
and some seed s that outputs m blocks of arbitrary length. In turn, in order
to output the i-th block G̃[i], the emulator (or adversarial generator) G̃ is
further allowed to sample new randomness for the seed, conditioned on its
previous output blocks (i.e. it is allowed to “cheat” in an online fashion).
The i-th output block only depends on the previous internal coin tosses.

The gap between the real entropy of G (i.e. the Shannon entropy of the
induced output distribution) and its accessible entropy is called inaccessible
entropy, due to the fact that no poly time adversary trying to pass itself
off as G can successfully “access” the full entropy of the distribution. Any
generator G that has noticeable inaccessible entropy is called an inaccessible
entropy generator. Accessible entropy of G̃ is meaningful when it is noticeably
smaller than the real entropy of G. Due to computational hardness, we may
construct generators G with a gap in real and accessible entropy.

Definition 1.1.9 (Accessible entropy of generator G). Let G : {0, 1}n →
({0, 1}∗)m be a function with m output blocks and denote the the output of
G(x) on a uniformly random x by Y = (Y1, ..., Ym) .

Let G̃ be a poly time probabilistic algorithm that on public parameter P
and some internal coin tosses (R1, ..., R2) outputs Ỹ = (Ỹ1, ..., Ỹm) such that

the support of G̃ is contained in that of G . The accessible entropy of G̃ is
defined as

m∑
i=1

H
(
G̃[i]

∣∣∣P,R<i

)
=

m∑
i=1

H
(
Ỹi|P,R1, ..., Ri−1

)
If the accessible entropy of all poly time G-consistent emulators is bounded
from above by some kacc(n) > 0 we say that G has accessible entropy kacc(n).

The public parameter P could be, for example, a description for a hash
function used in the generator.

Note that the requirement of the emulator being consistent is vital, as
otherwise an adversary that outputs arbitrarily long strings could be used to
obtain arbitrarily large accessible entropy, despite it producing outputs that
are unrelated to the underlying generator.

A simple illustrative example that is given by Haitner, Reingold, Vadhan
and Wee [19] is that of the two block generator x 7→ (h(x), x), where h
is a target collision resistant hash function (where given a value h(x) it is
computationally infeasible to sample two values that map to h(x)) on a

CHAPTER 1. INTRODUCTION 13

uniformly random bitstring x of length n. The real entropy of x given h(x)
is at least n−|h(x)|. Regardless, due to the collision resistance no poly-time
algorithm (outputting strings in the support of h(x), x) can have more that
a negligible amount of entropy for the second block given the first. This is
due to that the first block effectively determines the second, as finding more
than one valid pre-image of h(x) under h is computationally infeasible. Thus
even though the real entropy is at least n− |h(x)|, no efficient algorithm can
access this entropy.

1.1.3 Distributional one-way functions

A relaxation of one-way functions as originally defined by Impagliazzo and
Luby [22] is the notion of a distributional one-way function where the ad-
vantage of the adversary is measured as the statistical distance between the
joint distributions (f(x), x) and (f(x),A(f(x))), for a uniformly random x.
For two discrete probability distributions p and q, their statistical distance
(also called total variation distance) is defined as

SD(p, q) =
1

2

∑
x∈Ω

|p(x)− q(x)| = 1−
∑
x∈Ω

min(p(x), q(x)).

An ideal adversary against a distributional one-way function returns uniform
pre-images for every image f(x), and has statistical distance equal to zero.
Some global lower bound on the statistical distance on the other hand implies
that there is a some fraction of correct pre-images that no efficient adversary
can put significant probability mass on given the image.

Definition 1.1.10 (Distributional one-way function). We say that an ef-
ficiently computable function f is δ(n)-distributionally one-way if for ev-
ery probabilistic polynomial time adversary A it holds for some noticeable
δ := δ(n) and large enough n we have that

SDx←$ {0,1}n((f(x), x), (f(x),Af)) > δ,

where we denote Af = A(f(x)) (note that the randomness of the adversary
also affects the statistical distance).

If f is 1− negl(n)-distributionally one-way we say it is a strong distribu-
tional one-way function.

As discussed earlier, a distributional notion of hardness allows a func-
tion to have a lot of hardness, even if we can always invert it, as long as
a significant portion of the input distribution remains hard for any efficient
adversary to return.

CHAPTER 1. INTRODUCTION 14

1.1.3.1 Distributionally one-way problems

It is immediate that any (standard) one-way function has 1 − negl(n) sta-
tistical distance in the above sense, as all but a negligible amount of the
adversarial mass has to be on invalid pre-image/image pairs 1, implying high
statistical distance from the uniform distribution over valid pre-images. Be-
low, we define a folklore example of a strong distributional OWF. Namely,
we define a function f ′ : {0, 1}n → {0, 1}n/2 such that

f ′(xl||xr) =

{
xr, if xl = 0...0

f(xr), for some strong one-way function f otherwise
(1.1)

The function f ′ is clearly 1 − negl(n) distributionally one-way, as the easy
pre-images make up an exponentially small fraction of the input distribu-
tion, while f is also invertible for each image by prepending zeros to the
image. On the other hand the example is not very satisfactory − it assumes
a strong one-way function and introduces easy pre-images, rather than being
a “natural” problem that admits to some easy solutions, but does not allow
an adversary to sample uniform pre-images. Thus, we now discuss two sce-
narios where distributional one-way functions come up naturally, and then
review distributional OWF in literature.

Computationally indistinguishable but statistically distinguishable
distributions (as shown in eg. [27, 5]). In this case we define a function
using a pair of statistically close, but computationally far apart distributions
D0, D1 that are efficiently samplable. On input (b, r) the function outputs the
distribution b sampled using randomness r, i.e. Db(r). It is possible to show
that if this is not a distributional one-way function then an assumed adver-
sary can be used to efficiently distinguish between the distributions. Namely,
if given a random distribution an adversary finds close to uniform pre-images
it is possible to obtain a good predictor for the distributions D0, D1 by sam-
pling enough pre-images and taking the majority 2.

Unsupervised learning (cf. Boaz Barak’s survey on one-way functions [3]).
Consider a one-way function based on the hardness of learning parity with
noise (LPN) as defined in Pietrzak [30]: define a public expanding matrix
A mapping short vectors to long vectors, and let f(s, e) = (A,As + e),

1Therefore, if a strong distributional one-way function is injective then it is a standard
one-way function.

2In simple cases outputting the pre-image bit usffices, but as shown by Berman, Deg-
wekar, Rothblum and Vasudevan in some regimes it is necessary to take many samples to
obtain a good estimate [5]

CHAPTER 1. INTRODUCTION 15

where + denotes bitwise XOR. If we place no strict upper bound on the
Hamming weight of the noise e, we may invert any valid image (A, y) using
zero secret s = (0, ...0) and noise vector e = y. This nonetheless doesn’t
affect the conceptual hardness of the LPN problem. Similarly to the function
f ′ in the pathological example in eq. (1.1), even though the function f ′

is invertible with probability 1, all the mass is on an exponentially small
fraction of the pre-images. If we suppose towards contradiction that f is
not distributionally one-way, then this immediately implies that there exists
an adversary that places some non-negligible mass on the “hard” LPN pre-
images with a nontrivial, nonzero secret s.

1.1.3.2 Distributional one-way functions in the literature

Definition. The original definition of distributional one-way functions is
due to Impagliazzo and Luby [23], who also show the equivalence of one-
way functions and distributional OWFs. The central use in the original
paper is showing that a wide variety of cryptographic primitives directly
imply distributional OWFs (and thus OWFs are necessary for complexity
based cryptography). Similar use of distributional OWFs, namely showing
that some hardness assumption implies or is equivalent to OWFs, remains a
(or even the) central use of distributional one-wayness in current literature.
Several constructions of primitives also make use of distributional OWFs
directly instead of standard OWFs. Establishing that a primitive can either
be directly used as a distributional OWF, or that one can transform it into a
distributional OWF implicitly also means that the primitive is existentially
equivalent to standard OWFs. Beimel, Ishai, Kushilevitz and Malkin [4] show
that the existence of a Single-Server Private Information Retrieval protocol
implies OWFs in this way. Similarly a line of results regarding coin-flipping
protocols (see cf. [6]), shows that secure coin-flipping protocols must be
secure against uniform inversion. Appelbaum, Ishai and Kushilevitz [2] show
that a robust OWF (where a function remains hard to invert even if for
a random subset of output bits the effective input bits are revealed) can be
transformed into a distributional OWF by semi-randomized private encoding,
which is then further fashioned into a OWF by the results of Impagliazzo and
Luby. Pietrzak and Sjödin [31] use the notion of a distributional one-way
function sampling inputs to a weak PRF that does not have secret coins 3 to
establish that a secret-coin (used to sample the inputs) weak PRF that is not
a weak PRF with public coins implies the existence of public key encryption.

3A PRF is weak when indistinguishable from a random function on uniformly random
inputs, as opposed to arbitrary adversarially chosen inputs

CHAPTER 1. INTRODUCTION 16

This in turn means, that if OWFs exist, but public key encryption does not,
then the notions of public- and secret- coin weak PRFs are equal.

Statistical zero knowledge. In the area of statistical zero-knowledge
languages (SZK) 4, one way to establish relations between SZK to other
complexity classes is via assuming a distributional inverter (which is then
equivalent to one-way functions not existing). This ties the existence of zero
knowledge proofs for a given language to the existence of one-way functions.
Ostrovsky [28] showed that a hard on average SZK language L implies a
distributional one-way function in this fashion. In follow-up work, Ostrovsky
and Widgerson show that if a very weak form of OWFs that they call auxiliary
input OWFs do not exist, then only languages in BPP have zero-knowledge
proofs. [29].

Inversion oracle. In another language context, Bogdanov and Brzuska
in turn assume a distributional inverter in their proof of the impossibility of
basing size-verifiable one-way functions on NP-hardness. Specifically their
reduction makes use of an oracle U , that on input y returns uniformly from
the set f−1(y), which in turn is used to argue that if there exists a black-box
reduction which turns this inverter against a OWF to a decision algorithm
for some language L, then L is contained in AM ∩ coAM. By widely believed
complexity assumptions, this means L can not be NP-complete. Another use
of dOWFs in the context of languages is by Pass and Venkitasubramaniam,
who show that it is just as hard to find witnesses for efficiently sampled true
statements, as opposed to sampling statements not even guaranteed to have
a valid witness. They achieve this via connecting the existence of OWFs (and
thus dOWFs) and k-round interactive puzzles (which are further equivalent
to hard-on-the-average languages in NP).

Statistical versus computational distinguishability. Distribu-
tional one-way functions also appear in literature whenever there appears
some gap between statistical and the end of Section 1.1.3.1. Goldreich origi-
nally established that one-way functions exist if and only if there exist fam-
ilies of distributions that are statistically far (i.e. the statistical distance is
bounded from below by an inverse polynomial) but computationally indis-
tinguishable in this fashion [15]. Similarly Naor and Rothblum provide a
tighter result for the same claim [27]. Berman, Degwekar, Rothblum and
Vasudevan use a similar proof to establish that the average case hardness of
the so-called Statistical Distance Problem (SDP), where one is asked to dis-
tinguish if a pair of distributions D0, D1 are α-far or β-close, directly implies

4A language is said to be in SZK if there exists a pair of algorithms called prover and
verifier, where the prover reveals no information other than the fact that the proof is cor-
rect, such that the probability distribution of the prover-verifier interaction is simulatable
by unbounded adversaries.

CHAPTER 1. INTRODUCTION 17

distributional one-way functions for certain pairs (α, β). This is again done
(essentially) via choosing a random bit b, and sampling from the distribution
Db. Any distributional adversary can then be used to solve the SDP problem.
In his PhD thesis Vadhan showed that SDP is a complete problem for SZK.

Unsupervised learning. As mentioned previously, distributional-one
way functions can also be connected to learning problems (cf. [3]). Namely,
Xiao shows that “Learning to create is as hard as learning to appreciate”
[40]. Learning to create or LTC is referred to as such due to the fact that
given access to samples from a distribution D, an algorithm is is supposed to
construct a circuit mimicking D as closely as possible. If LTC is solvable for
circuits of size n2, then no family of circuits is distributionally one-way. Thus
if one-way circuits exist, then LTC is hard. Furthermore, one can transform
a Probably Approximately Correct (PAC) learning problem (learning to ap-
preciate), where given samples of a function an algorithm should be able to
predict the value of unseen values, into an instance of the “circuit agnostic
learning problem”, which can be solved via a distributional inverter. Thus
LTC is as hard as PAC learning. This connection is also pointed out in the
PhD thesis of Xiao [39], which includes the aforementioned paper.

Computational entropy. Distributional one-way functions have also
been discussed in the context of computational entropy. Namely, Vadhan
and Zheng note that the notion of KL-hardness for sampling is similar to
that of dOWFs [37], tying dOWFs to their construction of PRGs implicitly.
Distributional one-way functions are also used to argue that the mere ex-
istence of an inaccessible entropy generator implies OWFs (again due to a
distributional inverter breaking the accessible entropy bounds) [19]. Direct
constructions and connections between the entropy notions and distributional
one-way functions are not noted however.

1.1.4 Distributionally collision resistant hash-functions

Recently, the generalization of distributional collision resistance has also at-
tracted some attention [12, 25, 7]. The notion of distributional collision resis-
tance was originally defined by Dubrov and Ishai [12]. They relax the notion
of collision resistance, the fact that it should be hard to sample collisions un-
der a hash function h, to that it should be hard to sample uniform collisions.
Dubrov and Ishai show that if it is not possible to efficiently sample any effi-
ciently samplable distribution with as much randomness as the output, then
given a one-way permutation, one can construct a distributionally collision
resistant hash functions (dCRHF). Recently, constructions of dCHRFs have
been obtained from both multi collision resistance and SZK [25]. Bitansky,
Haitner, Komargodski and Yogev show how construct a statistically hiding

CHAPTER 1. INTRODUCTION 18

commitment scheme from a dCRHF[7]. For a dCRHF we measure the suc-
cess as the statistical distance between the adversarial distribution and ideal
collision distribution.

The distribution Col is a distribution defined by a hash familyH such that
Col(h, 1n) outputs a pair (x1, x2), where x1 is sampled uniformly at random
from bitstrings of length 1n, and x2 is a uniformly random element of the
pre-image set h−1(h(x)).

Definition 1.1.11 (Ideal collision distribution). Let H be a family of hash
functions. The ideal collision distribution with respect to h←$H is defined
as Col(h) = {(x1, x2) : x1←$ {0, 1}n, x2←$h−1(h(x))}.

The definition is originally due to Simon [34], but was used specifically
in the context of dCRHFs in BHKY. We note that by Simon’s separation of
collision resistant hash functions and OWFs also holds for dCRHFs (as colli-
sion resistance implies distributional collision resistance). As such, dCRHFs
can not be constructed from OWFs in a black-box way. Note that Col may
not be (and indeed in interesting cases is not) efficiently constructible.

Definition 1.1.12 (Distributionally collision resistant hash function family).
A family of functions H is said to be a secure distributional collision resistant
hash function family if there exists a polynomial p, such that for any PPT
adversary A and h←$H it holds that

SD((h,A(h, 1n), (h,Col(h)) = Eh←$H[SD(A(h, 1n),Col(h)] >
1

p

for large enough n. 5

We say h is a distributionally collision resistant hash function (dCRHF)
if it is sampled at random from such a family. Note that we may equivalently
use a global lower bound written as 1− 1

q(n)
for some polynomial q(n), which

allows us to analyze the setting where the function becomes harder as n tends
to infinity.

BHKY show that although distributional collision resistance implies dis-
tributional one-wayness (and therefore OWFs), we can construct a constant
round statistically hiding commitment (SHC) from dCRHF, whereas a known
lower bound of O(n/ log n) round commitment exists for OWF due to [LB
SOURCE]. This is notably the first example of an application where dCRHF
go beyond the power of one-way functions. The exact limitations of distribu-
tional collision resistance compared to stronger collision resistance assump-
tions such as multi-collision resistance or plain collision resistance are not yet

5To see that the equality holds conditioning the sum on the choice of h allows us to
derive exactly the expectation on the left-hand side.

CHAPTER 1. INTRODUCTION 19

fully understood. Nonetheless, distributional collision resistance provides an
additional way of defining hardness via statistical distance, aside from just
distributional one-wayness.

1.1.5 Bretagnolle-Huber’s inequality

Recall that we wish to establish bounds on the computational entropy ob-
tainable from distributional hardness via relative entropy. These compu-
tational entropies will then further yield constructions of more practically
useful primitives. When relating relative entropy and statistical distance,
most commonly the famous Pinsker’s inequality is used.

Lemma 1.1.2 (Pinsker’s inequality). For two random variables X, Y it holds
that

SD(X, Y) ≤
√

ln 2

2
KL(X‖Y)

In the cases of our constructions however, the bound provided by Pinsker’s
inequality is problematic. It yields, at best a constant lower bound on the
relative entropy. Especially when we have a high bound on the statistical
distance (i.e. close to 1), Pinsker’s inequality yields a very low bound for
the relative entropy, and thus low bounds on computational entropy. This
holds despite the fact that the distributions involved are almost disjoint (and
thus should have high relative entropy). On the other hand, the following
inequality due to Bretagnolle and Huber yields very useful bounds even in
this high probability regime:

Lemma 1.1.3 ([8] Lemma 2.1, cf. [35], [33] Thm. 19). For any two proba-
bility distributions p, q defined on a common space it holds that

SD(p, q) ≤
√

1− 2KL(p‖q).

This inequality is also known as high probability Pinsker in some sources
. In particular, if we can lower bound the statistical distance by 1− 1/p(n)
for some polynomial p, we obtain a lower bound on the relative entropy
that grows with p(n). This is the central inequality for our analysis in both
improvements to existing constructions we aim to present in Chapter 3 and
4, as it allows for relative entropy bounds, yielding in turn computational
entropy bounds, that grow as a function of n. As such we include it here and
provide a separate proof in Appendix A.

CHAPTER 1. INTRODUCTION 20

1.2 Contribution

Our central question is whether current results obtaining computational en-
tropy (pseudo- or inaccessible entropy) from distributionally hard primitives
can be tightened or made explicit. Currently the most efficient construc-
tion of a PRG from a distributional OWF first goes from a distributional
OWF to a weak OWF, which in turn implies a PRG. On the other hand, ob-
taining computational entropy from distributional primitives directly would
mean skipping the intermediate steps. Furthermore, currently distributional
one-way functions are mainly used as a stepping stone to establish standard
one-way functions, but can we construct these primitives directly from dis-
tributional hardness? How efficient are such direct constructions, and can
computational entropy be useful in this context? How much entropy can we
obtain from distributional hardness, and how tightly does this relate to the
entropy obtainable from “standard” hardness?

dOWF to PRG. We consider the current best black box construction
of PRGs from OWFs due to Vadhan and Zheng, where a standard one-way

function (invertible with probability at most γ) can be shown to have log
(

1
γ

)
relative pseudoentropy, i.e.

KLx←$ {0,1}n(f(x), x‖f(x),A(f(x))) > log
1

γ
.

for all probabilistic polynomial time adversaries A. We show that the same
bound is achievable when f is only distributionally one-way, where the lower
bound on the achievable statistical distance is 1− γ.

From the bound on relative entropy, Vadhan and Zheng further show in
particular that for a function that is invertible with negligible probability
(i.e. γ = negl(n)) on inputs of length n, it holds that there exists a PRG
with seed length

s = O
(
n3 log n

)
.

Although Vadhan and Zheng note that relative pseudoentropy also gener-
alizes to distributional one-way functions, in this thesis we show that the
relative pseudoentropy obtainable from merely a distributionally-one way
function is asymptotically equivalent, thus yielding an identical construction
of PRGs with identical parameters from the much more general assump-
tion of distributional one-way functions. Although PRGs and distributional
OWFs were already known to be existentially equivalent, the fact that the
bounds and resulting construction are in fact equivalent is of conceptual in-
terest. Namely, the construction does not require one-wayness to obtain the

CHAPTER 1. INTRODUCTION 21

optimal seed length, and distributional hardness suffices. Furthermore, this
yields the current best known conversion of (strong) distributional OWFs to
strong OWFs, as the current best conversion in literature is seemingly still
the original result die to Impagliazzo and Luby [22]. Impagliazzo and Luby
show that a 1

nc distributional OWF for any constant c yields a 1 − 1
n4c+10 -

weakly one-way function, with inputs of length O(n). Even for a strong
distributional OWF this incurs a cost of n−10.

We establish our results via information theoretic arguments from the
distributional hardness bound on statistical distance, and relating this to
relative entropy via Bretagnolle-Huber’s inequality. Relative entropy can
then further be used to obtain next-block pseudoentropy, which can then
further be used to obtain a PRG.

dCRHF to SHC. Additionally, we consider the construction of statis-
tically hiding commitments from distributional collision resistance due to
BHKY, using the construction of staistically hiding commitments (SHCs)
from inaccessible entropy due to Haitner, Reingold, Vadhan and Wee, and
provide an explicit analysis of the number of parallel rounds needed in the
construction of BHKY. Also here, we show that by using Bretgnolle-Huber’s
inequality we may tighten the bound on inaccessible entropy from distribu-
tional collision resistance established by BHKY. Specifically, BHKY obtain
that the generator G(h, x) = (h(x), x) has accessible entropy at most n− 1

4p2 ,
where p is the positive polynomial bounding the statistical distance of h.
Using Bretagnolle-Huber instead of Pinsker, we improve this bound to acces-
sible entropy at most n−log(p) (ignoring constants). This in turn also implies
a much smaller number of needed parallel instances in the construction of
SHCs.

Outline Chapter 2 covers both mathematical and information theoretical
definitions and preliminaries, as well as necessary cryptographic definitions.
Chapter 2 also covers the aforementioned transformations of computational
entropies (Section 2.3) which make up the central lemmas for understand-
ing the actual constructions for sake of brevity. We will only sketch the
proofs of the transformation lemmas fo computational entropy. Chapters 3
and 4 include presentations of both the constructions of PRGs and SHCs
respectively from computational entropy as well as a summary of the main
arguments, adding to the few existing unified treatments of accessible and
pseudoentropy (see Haitner and Vadhan [20] and Vahan [36]). Chapters 3
and 4 also contain the main novel contributions and analysis with regards
to constructions from distributional hardness. We omit the equivalence of

CHAPTER 1. INTRODUCTION 22

next-block pseudoentropy and relative entropy due to Vadhan and Zheng,
and the full proof of an inaccessible entropy generator yielding a SHC will
due to their complexity. The final chapter seeks to contextualize the results
of Chapter 3 and Chapter 4, and points out open questions and points we feel
the thesis raises, tbuilding on the technicl content established in the chapters
before.

Chapter 2

Preliminaries and definitions

Notations and conventions Throughout this thesis we are concerned with
random variables drawn from some distribution over bitstrings. For simplic-
ity we thus always assume a discrete probability space. The length (measured
in the number of bits) of a string x is denoted |x|. For a set S the notation
|S| refers to its cardinality. The support of a random variable is defined as
the set {x ∈ Ω : Pr[X = x] > 0} and is denoted by Supp(X).

Given two strings x and y we write x, y or (x, y) for a tuple of the strings
and x<i for the bits from 1 o i− 1 of x (with x≤i being analogous). We say
a random variable X is and m-block random variable if it is defined as a
sequence of m blocks of strings, i.e. X = (X1, X2, ..., Xm), where |Xi| ≥ 1
for all i. For example, we can see the random variable B = (b1, b2) as one
random variable consisting of two bits, or as a two-block random variable
with two single bit blocks. The i-th block of X is denoted by X[i], and the
i− 1 first blocks of X are denoted by X[< i].

Sampling an element x uniformly at random fromD is denoted by x←$D.
For example sampling a uniformly random bit b←$ {0, 1} means that b takes
either the value 0 or 1 with equal probability, whereas b←$ {0, 1}n means b
takes any of the 2n possible values for bitstrings of length n with probability
equal to 2−n. We use the Kleene star to denote the set of all bitstrings (of
unspecified length) {0, 1}∗. This notation will only be used in definitions
of cryptographic primitives that need to work with arbitrary length inputs
and outputs, as opposed to being defined for some fixed domain and range.
Logarithms are always in base 2. For n ∈ N the set of integers ranging from
1 to n is denoted by [n] = {1, ..., n}.

We use O(·),Ω(·), ω(·) in their standard asymptotics meaning of a tight
upper bound, tight lower bound and non-tight lower bound for a given func-
tion. A function is negligible if it tends to zero faster than any positive inverse
polynomial (i.e. the function is of the class n−ω(1)), and use negl(n) to denote

23

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 24

an arbitrary negligible function.
We say the reduction from (the security of) a primitive A to (the security

of) primitive B is black-box if it only uses the input-output behaviour and
security properties of A, and assumes nothing about the structure (or “code”)
of A. Black box constructions allow us to consider the relationship between
the properties of two primitives, rather than comparing structures of actual
functions or algorithms, which is much harder to generalize. For a rigorous
definition of the notion of black box reductions, cf. Notions of Reducibility
between Cryptographic Primitives by Reingold, Trevisan and Vadhan [32].

2.1 Cryptography

Complexity based cryptography relies on the idea of computational infeasi-
bility, in that an adversary should be unable to break some security property
given only finite computational resources. The running time of all functions,
protocols and adversaries is measured as a function of an integer known as
the security parameter n. All algorithms receive the security parameter as
input, encoded as a string 1n of n ones. Encoding the security parameter in
unary is a practice originating from complexity theory where the complexity
of an algorithm is defined as a function of its input length. All adversar-
ial algorithms are assumed to run in probabilistic polynomial time (PPT),
and are always uniform. We think of the adversary as a uniform algorithm
receiving the security parameter as an input, and consider the output as a
random variable.

Definition 2.1.1 (OWF). We say that an efficiently computable function
f : {0, 1}∗ → {0, 1}∗ is δ(n)-one-way for some function δ := δ(n) if for
every probabilistic polynomial time adversary A it holds for all large enough
n that

Prx←$ {0,1}n
[
A(f(x)) ∈ f−1(f(x))

]
< δ.

If f is negl(n)-one-way we say it is a strong one-way function. When f is
1
p
-one-way for some postivie polynomial p it is (1

p
)-weakly-one-way.

Definition 2.1.2 (PRG). An efficiently computable function G : {0, 1}∗ →
{0, 1}∗ is a pseudorandom generator if it has positive stretch s, i.e. s(|x|) :=
|G(x)| > |x| for all large enough lengths of x, and its output is indistinguish-
able from the uniform distribution, i.e. for every PPT distinguisher D it
holds that the advantage AdvD,PRG(n) :=

|Pry ←$ {0,1}s(n) [D(y, 1n) = 1]−Prx←$ {0,1}n [D(G(x), 1n) = 1)]| is negligible in n.

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 25

2.1.0.0.1 Commitment schemes A commitment scheme is a protocol
where a sender S commits to a secret message m (in our case a single bit)
and sends this commitment c to a receiver R. Separately, in the so-called
reveal (or decommitment) phase, S reveals the original message (and possibly
some additional randomness used in the commitment) and R can check the
revealed message to be certain that the message is unaltered from what was
originally committed to. In other words, S is bound to the original value by
the commitment z. In turn S can be certain that until revealing the secret
message m, R had no information about the original message m (i.e. the
message is hidden from R).

We define the notion of a statistically hiding and computationally bind-
ing commitment scheme similarly to the formulation by Haiter, Reingold,
Vadhan and Wee [19]. More formally, a commitment scheme is a two party
protocol Com = (S,R) consisting of two phases:

On common security parameter 1n:

Commit: The sender S commits to its private input b using some internal
randomness r. At the end of the phase both parties (S,R) have a
common commitment value c, and S has the triple (b, r, c).

Reveal: Both parties receive as input a commitment c, and S receives its
original input b and the internal randomness used in the commitment
stage. The parties interact, with S revealing the message, after which
the receiver R accepts or rejects message-commitment pair.

The notion of a commitment scheme can either be viewed simply as a pair
of algorithms, or as an interactive protocol at the end of which the receiver
either accepts or rejects the interaction. We further define the security of a
commitment scheme as follows:

Definition 2.1.3 (Statistically hiding (bit) commitment scheme). A com-
mitment scheme is statistically hiding and computationally binding if it holds
that

Hiding: For b = 0 and b = 1, the distributions Com(b, 1n) returned by
the sender at the end of the commitment phase are statistically indis-
tinguishable (i.e. indistinguishable for even unbounded adversaries) by
any receiver R.

Binding: For any PPT sender S which can find two triples (b, r, c), (b′, r′, c)
where b′ is the negation of the input bit, the probability that the receiver
accepts the false bit b′ in the reveal phase is negligible.

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 26

The hiding and binding properties can be said to hold both for compu-
tationally bounded and unbounded adversaries, in which case the commit-
ment scheme is said to be computationally or statistically binding/hiding
respectively. It is not possible to achieve a statistically hiding and binding
commitment scheme, as the scheme being statistically binding implies that
the commitment c determines the message m information theoretically, while
statistically hiding implies that given c all messages m are equiprobable.

We will also use the notion of a weakly binding commitment scheme,
which is defined analogously, except for the fact that the success of the sender
against the binding property is at most 1−Θ(1

p
) for some polynomial p(n).

2.1.0.0.2 Hash functions A hash function is a function which maps
arbitrary sized inputs to fixed length outputs (usually compressing). In both
constructions central to Chapter 4 and 5 we require sampling of a random
hash function from a family of functions with some useful mathematical
property. Specifically we use the notions of k-wise independent hash families,
universal hash families and universal one-way hash functions (UOWHFs).

Definition 2.1.4 (k-wise independent hash function family). Let H be a set
of hash functions H = {h : {0, 1}d → R ⊆ {0, 1}r} . We say H is a k-wise
independent hash function family if it holds that

Prh←$H[(h(x1), ..., h(xk)) = (y1, ..., yk)] =
1

|R|k
,

for distinct (x1, .., xk) ∈ {0, 1}d and any (y1, ..., yk) ∈ Rk, i.e. (h(x1), ..., h(xk))
is uniform on its range.

Definition 2.1.5 (Universal hash function family). Let H be a set of hash
functions H = {h : {0, 1}d → R ⊆ {0, 1}r} . We say H is a universal hash
function family if it holds that for distinct pairs (x1, x2) ∈ {0, 1}d two distinct
inputs on a random hash function h collide with low probability, i.e.

Prh←$H[h(x1) = h(x2)] ≤ 1

|R|
.

Note that if H is a 2-wise independent hash function family, then it
is also a universal hash function family. On the other hand, a universal
hash function family is not necessarily 2-wise independent, if for example the
inequality in Definition 2.1.5 is strict and h is compressing.

Definition 2.1.6 (UOWHF, [24]). An efficient function familyH = {Hn}n∈N,
where Hn = {h : {0, 1}i(n) → {0, 1}l(n)} is called a universally one-way hash

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 27

function family if it is compressing, and it is hard to find a collision for a ran-
dom hash function h on a pre-image chosen by the adversary independently
of the hash function, i.e. for any two-stage PPT adversary A = (A1,A2) the
probability

Pr[h(x) = h(x′) such that x′ 6= x when x←$A1(1n) : h←$H : x′←$A2(x, h)]

is negligible in n.

Note that in Defintion 2.1.6 the function family is defined as a collection
of families indexed by the security parameter n, where each family is defined
by a collection of functions from i to l bits. Thus when sampling a hash
function h we first choose the correct family Hn, and then sample a random
function.

It is known (cf. [24]) how to construct UOWHFs from arbitrary one-
way functions. As such, since the thesis considers constructions of primitives
from one-way functions (or the stronger notion of distributional collision re-
sistance), we require no additional complexity assumptions for the existence
of UOWHFs. In this thesis the exact efficiency of this construction is not
meaningful as universal UOWHFs are merely used as a part of the construc-
tion of SHCs, we merely underline the fact that this use is justified since we
already assume the existence on OWFs.

2.2 Information Theory

In this section we state Jensen’s inequality and the chain rule of relative
entropy, and introduce the notions of min- and max-entropy, as well as next-
block pseudo min-entropy.

Recall that a twice differentiable real-valued function is convex if and only
if its second derivative is non-negative, and that a function is concave if and
only if it is the negative of a convex function.

Lemma 2.2.1 (Jensen’s inequality). Let X be a random variable and f be
a convex function. Then it holds that

E[f(X)] ≥ f(E[X]).

Conversely for a concave function g it holds that E[g(X)] ≤ g(E[X])

In addition to the chain rule defined in Section 1.1, we also use the chain
rule of relative entropy.

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 28

Lemma 2.2.2. For random variables (X, Y) and (X ′, Y ′) it holds that

KL((X, Y)‖(X ′, Y ′)) = KL(X‖X ′) + Ex←$X

[
KL(Y ‖Y ′)|x1

]
,

where KL(Y ‖Y ′)|x1 denotes the conditional divergence

KL((Y |X = x1)‖(Y ′|X ′ = x1)).

A random variable X where Pr[X = x] = 0.999 for some x can still have
“high” Shannon entropy with a large enough support, even though the ran-
dom variable itself is almost constant. The notions of min-entropy is used as
a more conservative estimate of uncertainty compared to Shannon entropy.
The notion of max-entropy of a random variable X is defined via the size of
the support of X.

Definition 2.2.1 (Min- and max-entropy). The min-entropy of X is denoted
by H∞(X) and is given by

H∞(X) = min
x

log
1

Pr[X = x]
= log

1

maxx Pr[X = x]
.

We define the max-entropy of X by H0(X) = log | Supp(X)|.
Intuitively high min-entropy means all values of X have small probability

mass, and low max-entropy means the random variable has small support.
One can show that in general it holds

H∞(X) ≤ H(X) ≤ H0(X)

with equality when X is uniform on its support. Conditional min-entropy
is defined analogously to conditional Shannon entropy, as originally due to
Dodis, Ostrovsky, Reyzin and Smith [11]

Definition 2.2.2. For jointly distributed random variables (Y,X) we define
the conditional min-entropy of X given Y as

H∞(X|Y) = log

(
1

Ey[maxx Pr[X = x|Y = y]]

)
Conditional pseudo-min-entropy is defined analogously to pseudoentropy:

Definition 2.2.3 (Next-block pseudo min-entropy). An m-block random
variable X = (X1, ..., Xm) has next-block pseudo min-entropy (at least) k
for each block if it holds that for i ∈ [m] each Xi is computationally indis-
tinguishable by oracle aided distinguishers from some Yi when conditioned on
previous blocks X1, ..., Xi−1, where Y = (Y1, ..., Ym) is jointly distributed with
X and that

H∞(Yi|X≤i−1) ≥ k.

for all i ∈ [m]

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 29

The crucial difference between Definition 2.2.3 and 1.1.6 is that Definition
2.2.3 specifically captures that every block appears to have min-entropy at
least k.

When using pseudoentropy notions, we thus far omitted that the uniform
distinguishers need to have an oracle that allows for efficient sampling from
joint distributions in the nbpe definitions. For all adversarial algorithms
against pseudoentropy we must implicitly assume such an oracle against the
random variable and the joint indistinguishable variable, as given in Defi-
nition 2.2.3. We generally omit this technical detail in the exposition. Al-
ternatively one can formulate very similar results by considering nonuniform
adversaries with the samples as nonuniform advice (where we instead con-
sider our adversarial algorithms as families of circuits indexed by the length
of the input).

2.3 Transformations of computational entropy

We devote this final section to entropy transformation lemmas introduced in
the context of PRG constructions by Haitner, Reingold and Vadhan [18] and
commitment scheme constructions by Haitner, Holenstein, Reingold, Vadhan
and Wee [19].

A central property of both pseudoentropy (Def. 1.1.6) and accessible en-
tropy (Def. 1.1.9) is that known information theoretic transformations of
entropy, such as taking independent copies, also yields similar results for
computational entropies. More specifically, given an m-block random vari-
able with some computational entropy we may equalize the entropy over
the blocks via random truncation and serial repetition, flatten Shannon en-
tropy to min-entropy via parallel repetition, and use hash functions on high
min-entropy variables to obtain a close to uniform output. This means that
we can go from a bound on the total computational entropy to high com-
putational min-entropy such that all strings have “low” probability mass.
This in turn means applying a hash function will yield a relatively even out-
put distribution, a fact that is used in both constructions in Chapter 3 and
4 respectively. Recall that we defined pseudo-min-entropy analogously to
next-block pseudoentropy (Def. 2.2.1).

We also recall from Section 2.1 that the distinguishers against pseudoen-
tropy are assumed to be oracle aided, in that they have access to an oracle
sampling from the joint distribution (X, Y), where Y is the random variable
achieving the pseudoentropy of X (recall Def. 1.1.6).

The first problem we will need to deal with when using variables with

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 30

some form of computational entropy is that even though the total entropy of
a random variable may be known, it is not in general possible to know the
entropies of individual blocks. For example, the first 1, 10 or 100 bits of any
variable could be trivial zeros depending on the application, and thus have
zero entropy. Since estimating entropy thresholds is expensive (cf. Valiant
and Valiant [38]), we instead opt to equalize the entropies. In entropy equal-
ization, we define a new random variable via taking w independent copies of
an m-block variable X and removing the first j blocks of the first copy of
X and last m − j blocks of the last copy for a uniformly random j ∈ [m],
leaving us with m ·(w−1) blocks. The effect this has is that each block of the
original random variable is now uniformly distributed in the resulting Xw. It
is then possible to show (cf. [18]) that the entropy of each individual block
is simply the average of the original total entropy (real or computational).

Lemma 2.3.1 (Equalization Lemma). Let X = (X1, ..., Xm) be an m-block
random variable with. Define the (w − 1) ·m-block random variable Xw by
(X1[j], ..., Xw[j−1]) where Xi[j] denotes the j-th block of the i-th independent
copy of X and j is a uniformly random element of [m] (see Fig. 2.1 below).
Then conditioned on j and previous blocks it holds that:

1. Real entropy If X has total real entropy at least k, each block of Xw

has real entropy at least k/m.

2. Pseudoentropy If X has total pseudoentropy at least k+∆, each block
of Xw has next-block pseudoentropy at least k+∆

m
.

3. Accessible entropy If X has total accessible entropy at most k − δ,
Xw has accessible entropy at most (w− 2) · (k− δ) + 2 ·H0(X) + logm
where each X is the output of an efficient m-block1 generator G on
independent uniformly random inputs.

We include a visualization of the concrete construction of Xw in Figure
2.1 below:

Remove first bits Remove last bits

Figure 2.1: Entropy Equalization

1Here m is assumed to be a power of two to allow for efficient construction of Gw.

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 31

Proof sketch. Let X be an m-block random variable with entropy bounds
as given in Lemma 2.3.1. The bound on real entropy and next-block pseu-
doentropy follow by almost identical arguments, while the accessible entropy
proof is very different.
Real entropy For the real entropy we use Lemma 1.1.1, as conditioning on
more information can only decrease the entropy. This implies the inequality

H(Xw[i]|Xw[< i]) ≥ H
(
~X[i+ j − 1]| ~X[< i+ j − 1], j

)
,

where ~X = (X1[1], ..., Xw[m]) is the untruncated version of Xw. The proof
then proceeds by writing the conditional entropy as the expectation over j,
and the fact that the entries are circular, meaning ~X[i+ j− 1] = X[i+ j− 1
mod m] in distribution. Then, since i′ := i+ j− 1 mod m is uniform in [m]
we obtain bounds on the expectation

Ei′ mod m←$ [m][H(X[i′]|X[< i′])] =
1

m

∑
i′∈[m]

H(X[i′]|X[< i′]),

and similarly for Y [i′] in place of X[i′]. We note that in the case that X
is an m-block generator HRVW further condition on a possible public seed
parameter given to the generator, but this has no effect on the proof.
Pseudoentropy The pseudoentropy version is analogous to the real en-
tropy case, except we estimate the conditional entropy of Y w, where Y is the
variable that realizes the next-block pseudoentropy of X.
Accessbile entropy For the accessible entropy we assume that there exists
some Gw-consistent simulator G̃w that contradicts the bound on the acces-
sible entropy. From this it is possible to show that a random substranscript
(i.e. a random input of the simulator against Gw) will have accessible entropy
greater than k−δ. It follows that outputting the blocks of this subtranscript
will be both in the support of the original generator G, and achieves ac-
cessbile entropy greater than k − δ, contradicting the accessible entropy if
G.

Recall that to get meaningful lower bound on entropy, such that all possi-
ble values have low probability mass, we need the notion of min-entropy (see
Def. 2.2.1). This process of obtaining min-entropy from Shannon entropy is
done via parallel amplification, where we take a t-fold parallel product of the
original random variable.

Lemma 2.3.2 (Flattening Lemma). Let X be an m-block random variable
X = (X1, ..., Xm), such that each block is of length l. Let X<t> be the t-
fold parallel repetition of X, such that the i-th block equals the t-fold parallel
repetition X<t>[i] = (X1[i], ..., X t[i]), where X i are i.i.d. Then it holds that:

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 32

1. Real min-entropy If each block of X has real entropy k, then the
blockwise real min-entropy of X<t> is at least

t · k −O
(

(log n+ l) · log n+
√
t
)

2. Pseudo min-entropy If each block of X has real entropy kpseudo,
then the blockwise pseudo min-entropy of X<t> is at least t · kpseudo −
O
(
(log n+ l) · log n+

√
t
)

3. Accessible entropy If X has total accessible entropy at most kacc,
then the total accessible entropy is at most t ·kacc, when X is the output
of an m-block generator G.

We include a visualization of the concrete construction of X<t> in Figure
2.2 below:

 parallel repetitions

Figure 2.2: Entropy Flattening

Proof sketch. Let X be an m-block random variable with entropy bounds
as given in Lemma 2.3.2, and Y be the joint random variable realizing the
pseudoentropy of X.
Real min-entropy The bounds on real and pseudoentropy again follow in
very similar fashions. Define the sample entropy of a random variable X as

HX(x) = log
(

1
Pr[X=x]

)
, i.e. the entropy functional of a single realization of

X. The sample entropy of X<t> (and Y <t> conditioned on previous blocks of
X) can be bounded such that with probability at least 1− ε over a random

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 33

realization of x←$X<t>[1, ..., i] (and (X<t>[< i], Y <t>[i]) respectively) it
holds that

HX<t>(x)− t · H(X) ≥ −O
(

(log n+ l) · log n+
√
t
)
.

The above bound can be established via concentration bounds on the sample
entropy, cf. Theorem 3.14 of Guang [41]. Given the bound

HX<t>(x)− t · H(X) ≥ −O
(

(log n+ l) · log n+
√
t
)
.

it is then straightforward to set ε = 2−(logn)2
to obtain the bound on real

entropy.
Pseudo min-entropy For Y <t>[i] we further need the fact that (X<t>[<
i], Y <t>[i]) is ε-close (in statistical distance) to some random variable (X<t>[<
i],W [i]) that achieves the min-entropy (such that the concentration bound
holds with probability 1), i.e. there exists a random variable achieving
the claimed pseudo-min entropy of (X<t> for each block. The closeness
of (X<t>[< i], Y <t>[i]) to (X<t>[< i],W [i]) follows from the fact that the
concentration bound holds with probability at least 1− ε.

The proper reduction against the next-block pseudo min-entropy then
proceeds by distinguishing (X[< i], X[i]) from (X[< i], Y [i]) by sampling a
realization of (X<t>[< i], Y <t>[i]) (recall that our distinguishers are assumed
to be oracle aided w.r.t sampling), and replacing a random prefix of a sin-
gle row with the candidate value ((X[< i], Z)), and using the distinguisher
against the claimed min-entropy. By a standard hybrid argument this then
yields a distinguisher against the original blockwise pseudoentropy.
Accessible min-entropy The bound on the accessible entropy follows by
assuming an efficient simulator G̃ contradicting the accessible entropy, which
then implies that, as the total accessible entropy is at least t · kacc, a random
column G̃[i] = (X̃1[i], ..., X̃ t[i]) of the simulator has to have more than kacc
accessible entropy. Otherwise, the average accessible entropy will be less than
t ·kacc. This then further implies an efficient consistent generator against the
original accessible entropy bound, by simply choosing a random j ∈ [t] and

outputting the j-th column of the simulator G̃. This can then be shown to
contradict the bound on the original accessible entropy.

The above conversion from Shannon to min-entropy is essentially a quan-
titative version of the asymptotic equipartition property from information
theory (cf. [10]). In essence when taking a large number of independent
samples of a random variable, the joint variable will be in a so-called typi-
cal set with probability 1 − ε, with all probabilities in the typical set being

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 34

roughly equal. This can then be directly translated to a bound on the min-
entropy, as with high probability all values have “equal” probability mass.
Note that the necessary number of independent samples are a source of huge
loss in all constructions from computational entropy due to going from Shan-
non to min-entropy. On the other hand Chen, Göös, Vadhan and Zhang [9],
show that Ω(n2) invocations to the original random variable are necessary
for black-box entropy flattening.

We note that the randomness of j in Lemma 2.3.1 can actually be voided,
if Lemma 2.3.1 is applied together with Lemma 2.3.2. This is due to the fact
that if we instead equalize the variables deterministically from j = 1 to j = m
each block will appear an equal number of times in each parallel variable.
This means that the total min-entropy will again be exactly the average. We
will turn to this in Chapter 3.

We conclude by the block source extraction lemma that allows us to ob-
tain (computationally indistinguishable from) uniform random bits given a
bound on the pseudo-min-entropy. The heart of Lemma 2.3.3 relies in the
Leftover Hash Lemma due to H̊astad, Impagliazzo, Levin and Luby [21],
which roughly states that a random variable with sufficient min-entropy will
yield close to uniformly random bits when hashed. This then also yields
computational randomness (i.e pseudorandomness) — namely if the compu-
tational min-entropy does not yield indistinguishably random bits, then the
original random variables are distinguishable, contradicting the pseudo-min-
entropy. The central idea is that using a hash function on a random variable
with some min-entropy allows us to obtain a string that appears uniformly
distributed:

Lemma 2.3.3 (Block source extraction). Let X = (X1, ..., Xm) be an m-
block random variable such that each block of X has pseudo-min-entropy
(at least) kpseudo. Then for Ext(h,X) = (h, h(X1), ..., h(Xm)), where h is
a random hash function mapping strings of length t to strings of length
bkpseudoc −

⌈
log2 n

⌉
, it holds that

Pr[D(h,Ext(h,X), 1n) = 1]− Pr
[
D(h, Um·|h|, 1

n) = 1
]
< negl(n)

for any oracle aided PPT distinguisher D, where Um·|h| denotes a uniformly
random string of length m · |h|.

The exact nature of the hashing in relation to the previous manipulations
is illustrated below in Figure 2.3.

Proof sketch. The proof against the pseudorandomness follows via a standard
hybrid argument. The i-th hybrid is defined as

Hi(Z) = (h, h(X1), ..., h(Xi−1), h(Z), U(kpseudo−κ)(m−i)).

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 35

Indistinguishable from uniformly random bits

Figure 2.3: Block source extraction

The PRG-advantage will then directly be the extreme hybrids. Two sub-
sequent hybrids can then be bounded by the distinguishing advantage of
Hi(Xi−1) and Hi(Yi). This is due to the fact that the distance from

Hi(Yi) = (h, h(X1), ..., h(Xi−1), h(Yi), U(kpseudo−κ)(m−i))

to
Hi(Xi−1) = (h, h(X1), ..., h(Xi−1), U(kpseudo−κ)(m−i+1))

is exactly the statistical distance between h(Yi) and U(kpseudo−κ) by definition.

By the leftover hash lemma this distance is at most 2−κ/2. Telescoping over
all indices yields that the distinguishing advantage of the extreme hybrids
(the PRG advantage) is bounded by m times the distinguishing advantage
against Xi and Yi conditioned on previous blocks, plus 2−κ/2. This then
yields that the distinguishing advantage for any PPT distinguisher against
the the pseudorandomness of Ext(h,X) is negligible.

Chapter 3

Pseudorandom generators from
distributional OWFs

As mentioned in the introduction, we now to present the current best (in
terms of seed length) fully black box construction of a PRG from an arbi-
trary OWF due to Vadhan and Zheng [37]. After covering the construction
and its underlying proof, we will then analyze the more general case when the
underlying function is merely distributionally one-way. Since distribtuionally
one-way functions imply OWF, distributional OWFs also imply PRGs. The
exact tightness (and indeed resulting equivalence) under more general func-
tions has not been studied in current literature.

Vadhan and Zheng also note in their original paper that relative pseu-
doentropy (or KL-hardness for sampling) allows for constructions of PRGs
from a much more general class of functions. Although the fact that PRGs
can be constructed from dOWFs is in a sense implicit in the original paper,
we find the fact that distributional one-way functions allow for an equiva-
lent construction highly nontrivial and an observation worthy of interest. In
fact, we may take a function that is invertible with probability 1, such as
the example in eq. (1.1), and obtain an asymptotically optimal (to current
knowledge) PRG, despite having a function with no one-wayness whatsoever.

We summarize the original result of Vadhan and Zheng result as follows:

Theorem 3.0.1 (OWF =⇒ PRG [37] Corollary 5.8). Let f be a strong one-
way function. There then exists a pseudorandom generator G : {0, 1}s →
{0, 1}2s with seed length

s = O
(
n3 log n

)
making black-box calls to the one-way function f on inputs of length n.

This improves on the original nbpe-based construction of PRGs from
OWFs due to Haitner, Reingold and Vadhan [18], which needs a seed of

36

CHAPTER 3. PRGS FROM PSEUDOENTROPY 37

length O(n4 log n). The factor n improvement in the construction of Vadhan
and Zheng is due to using extracted bits as new inputs to our next-block pseu-
doentropy generator, reducing the number of uniformly random bits needed
as input.
We arrive at the theorem via the following steps:

1 - PEG : Show that (f(x), x1, ..., xn) is a next-bit pseudoentropy generator
(PEG) with n+ ω(log n) next-bit pseudoentropy (nbpe).

2 - PRGZ: Establish that the output of a next-bit pseudoentropy generator
can be equalized, flattened and extracted to obtain a generator whose
distribution that is computationally indistinguishable from the input
distribution concatenated with random bits, known as a Z-seeded PRG

3 - PRG: Show that iterating a Z-seeded PRG PRGZ yields a PRG. The
proof is a standard hybrid argument.

Moreover, it suffices to assume that f is distributionally one-way in Step 1 to
establish that Gnb = (f(x), x1, ..., xn) is a next-bit pseudoentropy generator.
Indeed, if there is a (1−negl(n)) gap between the uniform distribution and the
distribution (measured in total variation distance) produced by any efficient
inverter for f (cf. Definition 1.1.10), then the Bretagnolle-Huber bound 1.1.3
allows us to conclude that Gnb is a next-block pseudoentropy generator with
n+ ω(log n) total next-bit pseudoentropy.

We will first provide a self contained summary of Theorem 3.0.1 and
its central lemmas in Section 3.1, after which we turn to the distributional
construction in Section 3.2, which is the main novel technical contribution
included in this chapter.

3.1 Vadhan-Zheng PRG

We now formalize the three previously outlined steps that yield the proof of
Theorem 3.0.1.

Lemma 3.1.1 (Step 1 - PEG :). Suppose f is a strong one-way function.
Then Gnb(x) = (f(x), x1, ..., xn) is a next-bit pseudoentropy generator with
n+ ω(log n) total next-bit pseudoentropy.

To formalize Step 2, we need the following construction of a Z-seeded
generator given by Vadhan and Zheng. The generator PRGZ takes as input
a variable z that is strucured as

z = (h, (Gnb(x
i)<i mod n)ti=1, (Gnb(x

t+i))ti=1),

CHAPTER 3. PRGS FROM PSEUDOENTROPY 38

where we denote X<i mod n := (X1, ..., Xi mod n−1) as the first i mod n bits
(or blocks) of the random variable. In other words we cyclically remove 1
to n bits for the first n realizations of i, after which we again remove 1 to n
cyclically until we reach i = t. We fix the parameter t = O(n2 log n), which,
as we will see in Section 3.1.2, is determined by the necessary number of
parallel repetitions needed for sufficient min-entropy to allow for randomness
extraction via h. the The random variable z consists of

h: A universal hash function h drawn from a universal hash function family
(see Def. 2.1.6) mapping t bit inputs (meaning h is also samplable with
t bits) to t′ bit outputs (where t′n− tn = |z| · log n/n)1,

Gnb(x
i): t evaluations of the next-bit pseudoentropy generator Gnb on uni-
formly random and independent inputs xi. For the first t generator
outputs the algorithm PRGZ receives truncated evaluations

(Gnb(x
i)<i mod n)ti=1,

where we truncate in order from i = 1 to i = n bits cyclically. Without
loss of generality we assume t is a multiple of n.

Gnb(x
t+i): t evaluations of the next-bit pseudoentropy generator Gnb on uni-
formly random inputs without truncation.

To sample one realization of the random variable z we need |h| + 2t|x| =
t+ 2nt = O(n · t) bits of randomness, where |h| is the descritption length of
h. The pseudocode for PRGZ is presented below.
Note that PRGZ does not apply equalization identically to the formulation
in Lemma 2.3.2, where we would instead sample a random integer jr ∈ [m]
and remove the first jr and last n− jr bits. Instead in the pseudocode above
for each row we deterministically set jr = i = 1 to i = n cyclically. These
two yield equivalent entropy bounds, which formalize as the following claim:

Claim 3.1: The average blockwise next-bit pseudoentropy of yi in the code
of PRGZ when truncating the pairs (Gt+i

nb , G
i
nb) deterministically is equivalent

to the blockwise nbpe of yi if we truncated randomly with a unique jr ∈ [m]
for each pair.

1The difference is due to known optimality bounds due to Gennaro, Gertner, Katz and
Trevisan [14] whose result implies bounds on the possible obtainable stretch per invocation
of the underlying OWF.

CHAPTER 3. PRGS FROM PSEUDOENTROPY 39

PRGZ(z, 1n)

(h, ((Gi
nb)<i mod n)ti=1, ((G

t+i
nb)ti=1))← parse z

for i ∈ [t] do

yi ← (Gt+i
nb)i mod n,...,n, (G

i
nb)<i mod n

// set two generator outputs as row and cut off ends

for j ∈ [n] do

y′j ← (y1[j], ..., yt[j])

// Set the j-th bits of each row as columns

xj ← h(y′j) // hash each column

x̂1, ..., x̂t, x̂← (xj)
m
j=1 // parse randomness

return ((h, ((Gt+i
nb)<i mod n))ti=1, (G(x̂i))

t
i=1, x̂)

Figure 3.1: Z-seeded generator PRGZ

Proof sketch of Claim 3.1. The proof of the claim follows by noting that with
deterministic offsets the first n bits of each column (y1[j], ..., yn[j]) will have
n + ∆ total bits of next-bit pseudoentropy (as every block appears exactly
once, and all blocks in total have nbpe at least n+∆ by assumption on Gnb),
meaning the total pseudoentropy in a full column is

(n+ ∆) · t/n = t · (n+ ∆)/n.

The right hand side is exactly the next-bit pseudoentropy of each column us-
ing random truncation (as equalizing yields (n+∆)/n bitwise pseudoentropy
for each block, multiplied by the number of parallel repetitions t to obtain
column-wise pseudoentropy). Thus similarly every block has on average the
same pseudoentropy as in the random offset case when using determinis-
tic offsets, yielding equivalent min-entropy bounds when invoking Lemma
2.3.2.

Due to the convenient modularity of the random truncation we will still
use the Equalization Lemma in our analysis, as it allows us to consider the
equalization and flattening steps as separate entropy manipulations. We
present the deterministic version as pseudocode to simplify notation and due
to the smaller sampling complexity (as we avoid the necessary t · logm bits
needed to sample all random jr).

2

2Equivalently the reader may disregard the deterministic version and replace each i
mod n with a unique random jr ∈ [m] at each row.

CHAPTER 3. PRGS FROM PSEUDOENTROPY 40

The analysis of construction PRGZ very closely follows Lemmas 2.3.1,
2.3.2, and 2.3.3 as mentioned earlier. Heuristically the idea is to equalize,
flatten and extract our original next-bit pseudoentropy into pseudorandom-
ness, and use some extracted bits as inputs to the underlying next-bit pseu-
doentropy generator Gnb. This allows one to effectively skip sampling all
the necessary random bitstrings needed for entropy equalization, as the rows
are then instead filled by extracted bits, rather than by needing to provide
them all as input. Since the amount of extractable bits in the Extraction
Lemma (2.3.3) is effectively a function of t, n and the pseudoentropy gap ∆,
it suffices to choose t large enough to obtain sufficient min-entropy, and thus
enpugh pseudorandom bits.

We claim that output of PRGZ is indistinguishable from its own input
distribution concatenated with uniform randomness. Note that if the input
is uniformly random this is exactly the definition of a PRG.

Lemma 3.1.2 (Step 2 - PRGZ :). Suppose Gnb is a next-bit pseudoentropy
generator with n + ω(log n) pseudoentropy. Then PRGZ is a Z-seeded PRG,
i.e. for all PPT distinguishers D it holds that

|Prz ←$Z [D(PRGZ(z), 1n) = 1]− Prz′ ←$Z [D((z′, uσ), 1n) = 1]| < negl(n),

where uσ is a uniformly random string of length σ = |z| · log n/n.

Iterating the Z-seeded generator ”enough” times will then yield a PRG,
as each round we run PRGZ we obtain some extra bits of randomness, and
use the the rest to initialize a new call to PRGZ .

To obtain the claimed stretch of Theorem 3.0.1 we set the number of
iterations l as l := 2n/ log n:

Lemma 3.1.3 (Step 3 - PRG:). Let PRGZ be a Z-seeded PRG defined as in
Lemma 1.1.2, i.e. for all PPT D it holds that,

|Prz ←$Z [D(PRGZ(z), 1n) = 1]− Prz′ ←$Z [D((z′, uσ), 1n) = 1]| < negl(n),

where uσ is uniform bitstring of length σ and Z is a distribution efficiently
samplable with s random bits. Then the function Gl : {0, 1}s → {0, 1}lσ is a
pseudorandom generator, where G = PRGZ and

Gk(z) = (Gk−1(z′), uσ)),

when G(z) = (z′, uσ) and l = 2n/ log n.

CHAPTER 3. PRGS FROM PSEUDOENTROPY 41

Proof of Theorem 3.0.1. Given Lemmas 3.1.1 — 3.1.3, we proceed by estab-
lishing Theorem 3.0.1. Suppose f is a strong one-way function secure on
inputs of length n, and define the next-bit pseudoentropy generator Gnb as

Gnb := (f(x), x1, ..., xn).

It follows by Lemma 3.1.1 the generator Gnb is a next-bit pseudoentropy
generator with n+ω(log n) total next-bit pseudoentropy. Further, by Lemma
3.1.2 the construction PRGZ using Gnb is a Z-seeded generator, taking as
input a variable z distributed according to

Z = (h, (Gnb(x
i)<i mod n)ti=1, (Gnb(x

t+i))ti=1),

consisting of a universal hash function h on t bits and evaluations of the
pseudoentropy generator Gnb for 2t i.i.d copies of x←$ {0, 1}n, where t =
O(n2 log n). Consequently the input for the generator PRGZ is samplable
with |z| = t+2nt = O(n · t) = O(n3 log n) bits of randomness, and its output
is computationally indistinguishable from (z′, uσ), where z′←$Z, and uσ is a
uniformly random string of length σ = |z| · log n/n. Finally, by Lemma 3.1.3
using PRGZ iteratively ` = 2n/ log n times yields a PRG with seed length
|z| = O(n3 log n) (required to initialize the first call to the Z-seeded generator
PRGZ) , and output length lσ = (2n/ log n)(|z| · log n/n) = 2|z|.

We devote the rest of Section 3.1 to proving the three main lemmas.
Lemma 3.1.1 follows from an equivalence of relative pseudoentropy and next-
block pseudoentropy for short blocks, Lemma 3.1.2 is implied by the entropy
manipulation lemmas of Section 2.3, and Lemma 3.1.3 is proved via a stan-
dard hybrid argument.

3.1.1 One-way function to next-bit pseudoentropy

To prove Lemma 3.1.1 we recall three Lemmas presented in [37] [1]. First we
obtain relative pseudoentropy from a OWF.

Lemma 3.1.4 (OWF has relative pseudoentropy [37] Lemma 4.2). For a
γ-one-way function f , x has log 1

γ
relative pseudoentropy given f(x), i.e. for

all PPT adversaries A it holds that

KLx←$ {0,1}n(f(x), x‖f(x),A(f(x))) > log
1

γ
.

In particular if f is a strong one-way function it has ω(log n) relative pseu-
doentropy.

CHAPTER 3. PRGS FROM PSEUDOENTROPY 42

The proof of Lemma 3.1.4 follows by supposing towards a contradiction
and applying the deterministic binary test where T (y, x) = 1 ⇐⇒ y = f(x)
and the data processing inequality (cf. Cover and Thomas Section 2.8 [10]).

We then use the fact that relative pseudoentropy of a uniformly random
block given the previous blocks is the arithmetic mean of the total relative
pseudoentropy:

Lemma 3.1.5 (Chain rule for relative pseudoentropy [37] Lemma 4.3.). Let
X = (Xj)

m
j=1 be an m-block random variable jointly distributed with Y . If

X has relative pseudoentropy ∆ given Y , then the expected relative pseu-
doentropy of Xi given Y,X1, ..., Xi−1 is ∆/m taken over uniformly random
i.

The final and perhaps most central step in showing Lemma 3.1.1 holds is
the fact that relative pseudoentropy is equivalent to a gap in next-block pseu-
doentropy for short (i.e. logarithmic length) blocks, as originally established
by Vadhan and Zheng.

Lemma 3.1.6 (Relative pseudoentropy equivalence - Theorem 3.21 [37],
Lemma 1.6 [1]). Let (Y,X) be a random variable where |X| = O(log n) and
Y has polynomial length. Then X has relative pseudoentropy at least ∆ given
Y if and only if X has conditional pseudoentropy at least H(X|Y) + ∆ given
Y, i.e. for all PPT A it holds that

(KL(f(x), x‖f(x),A(f(x))) > ∆) ⇐⇒
(

(Y,X)
c
≈ (Y, Z)

)
,

for some Z jointly distributed with Y,X and H(Z|Y) = H(X|Y) + ∆

Proof of Lemma 3.1.1. Suppose f is a strong one-way function and define
Gnb(x) = (f(x), x1, ..., xm) , where we split the input x = (x1, ..., xm) into
logarithmic blocks, such that |xi| = logm for i ∈ [m]. We want to show that
the generator Gnb(x) = (f(x), x1, ..., xm) has total next-block pseudoentropy
equal to n + ω(log n), i.e. that there exists some random variable Z =
(Z0, ..., Zm) jointly distributed with Gnb(x), such that

m∑
i=1

H(Zi|Gnb(x)<i) ≥ n+ ω(log n),

and Zi each indistinguishable from the i-th block of Gnb(x) conditioned on
previous blocks.

By Lemma 3.1.4 the relative pseudoentropy of x given f(x) equals log n
(we drop the asymptotic notion of ω(log n) wlog) . By directly applying

CHAPTER 3. PRGS FROM PSEUDOENTROPY 43

Lemma 3.1.5 we then obtain blockwise relative entropy equal to ∆/m =
log n/m for the i-th block of Gnb(x) = (f(x), x) (that is to say xi), given
(f(x), x1, ..., xi−1) for a random index i ∈ [m]. Furthermore the relative
pseudoentropy is then equivalent to log n/m extra bits of pseudoentropy
for each individual block in next-block pseudoentropy by Lemma 3.1.6, i.e.
Gnb(x)i|Gnb(x)<i is computationally indistinguishable from some Zi|Gnb(x)<i,
where

H(Zi|Gnb(x)<i) = H(Gnb(x)i|Gnb(x)<i) + log n/m. (3.1)

Now for some Z = (Z1, ..., Zm) jointly distributed with Gnb it holds that

m∑
j=1

H(Zj|Gnb(x)<j) = m ·
m∑
j=1

H(Zi|Gnb(x)<i, i = j)
1

m

= mEi[H(Zi|Gnb(x)<i, i)]

= mEi[H(Gnb(x)i|Gnb(x)<i, i) + log n/m]

=
m∑
j=1

H(Gnb(x)i|Gnb(x)<i) + log n = n+ log n

where the second equality is by the definition of conditional entropy and
conditioning on a random i ∈ [m], the third equality by eq. 3.1, and the
final equality again by the definition of conditional entropy and by linearity
of expectation. Thus Gnb(x) = (f(x), x1, ..., xm) has total next-block pseu-
doentropy n+ log n, as we wanted to show.

3.1.2 Next-bit pseudoentropy to Z-seeded generator

We now show that, given a next-bit pseudoentropy generator, the construc-
tion PRGZ is a Z-seeded generator. We do this by showing that given the
initial next-bit pseudoentropy over the entire output of Gnb, applying equal-
ization, flattening and block-source extraction gives us pseudorandom bits,
which in turn yields that for any efficient distinguisher D the advantage

|Prz ←$Z [D(PRGZ(z), 1n) = 1]− Prz′ ←$Z [D((z′, uσ), 1n) = 1]| < negl(n),

is negligible. Informally, the equalization Lemma (2.3.2) combined with
Claim 3.1 yields that all variables in the first loop of PRGZ have equal nbpe
n+logn

n
. Then taking the parallel repetition in the second loop of Figure 3.1

allows us to obtain min-entropy by the flattening lemma (2.3.2). Finally, by
the block source extraction Lemma (2.3.3) hashing each column with given
min-entropy allows us to extract (almost) uniformly random bits. This allows
us to argue that PRGZ is a Z-seeded PRG. Details follow.

CHAPTER 3. PRGS FROM PSEUDOENTROPY 44

Proof of Lemma 3.1.2. Suppose Gnb(x) is an n-block next-bit pseudoentropy
generator with total next-bit pseudoentropy (nbpe) equal to n + log n. In
the pseudocode of PRGZ (Fig. 3.1), it holds by Lemma 2.3.1 and Claim 3.1
that at each step i ∈ [t] in the first loop that the blocks of each

yi ← Gnb(x
t+i)i mod n,...,n, Gnb(x

t)<i mod n,

have equal nbpe n+logn
n

, when conditioned on the hash function and previous
bits.

Then, in the second loop it holds for each

y′j ← (y1[j], ..., yt[j])

by directly applying Lemma 2.3.2 and parallel amplification, that each y′j has
conditional next-bit min-entropy at least

hmin := t · n+ log n

n
−O

(
(log n+ l) · log n+

√
t
)

conditioned on the hash and previous columns.
Finally, by the Block Source Extraction Lemma 2.3.3 it holds that apply-

ing hash functions with output length t′ = bhminc−
⌈
log2 n

⌉
it holds that we

extract t′ random bits with each xj, implying we extract a total of t′n bits
of randomness. Thus it holds that (h, x̂1, ..., x̂t, x̂) is computationally indis-
tinguishable from (h, utn, u) when |x̂| = |u|, which holds equivalently when
passing through the deterministic function Gnb. Phrased differently, we have
that

(h, x̂1, ..., x̂t, x̂)
c
≈ (h, u1, ..., ut, u),

which directly implies that the output of the generator PRGZ on input z
satisfies

PRGZ(z) = (h, ((Gt+i
nb)<i mod n))ti=1, (Gnb(x̂i))

t
i=1, x̂)

c
≈ (h, ((Gt+i

nb)<i mod n))ti=1, (Gnb(ui))
t
i=1, u),

meaning PRGZ is a Z-seeded generator.
Finally, to ensure that |x̂| > 0 it remains to set t such that t′n− tn > 0,

where t′ = bhminc−
⌈
log2 n

⌉
. We actually set the difference as log n to obtain

optimal stretch per invocation of the underlying function f . To do this it
suffices to set t such that

t′n− tn > Ω(
s log n

n
) ⇐⇒ (bhminc −

⌈
log2 n

⌉
)n− tn > Ω(

s log n

n
),

where hmin = t · n+logn
n
− O

(
(log n+ l) · log n+

√
t
)
. This is satisfied when

choosing t = O(n2 log n). This then also directly implies the seed length of
our Z-seeded generator, namely s = |z| = t+2tn = O(nt) = O(n3 log n).

CHAPTER 3. PRGS FROM PSEUDOENTROPY 45

3.1.3 Z-seeded generator to PRG

We conclude by proving Lemma 3.1.3 and show that the existence of a Z-
seeded generator implies a PRG. This is acheived via a standard hybrid argu-
ment; an efficient adversary against the resulting pseudorandom generator is
used to construct an adversary against our Z-seeded PRG by considering the
advantage against a sequence of distributions Hi with the PRG distributions
and uniform distribution as the extreme of two hybrid games.

Recall that given a Z-seeded generator G we define Gi(z) = (Gi−1(z′), u′σ)
iteratively, such that (z′, u′σ) = G(z) and G0 is the empty string. In other
words we apply G iteratively on part of its own output. For stretch it suf-
fices to set i = l such that lσ > |z|. Thus it suffices to show that Gl is
pseudorandom.

Proof of Lemma 3.1.3. Let G be a Z seeded PRG on inputs from an effi-
ciently samplable distribution Z. Suppose that for all PPT distinguishers B
it holds that

|Prz ←$Z [B(G(z), 1n) = 1]− Prz′ ←$Z [B((z′, uσ), 1n) = 1]| < negl(n).

We omit the security parameter in the sequel for conciseness of notation.
Suppose towards a contradiction that Gl has an efficient distinguisher D
such that for a non-negligible function ε(n) it holds that

|Pr[D(Gl(z)) = 1]− Pr[D(Ulσ) = 1]| = E[D(Gl(z))−D(Ulσ)] ≥ lε.

Define for i ∈ [l] hybrids Hi, such that Hi = (Gi(z), u(l−i)σ), i.e.

H0 = ulσ,

H1 = (G1(z), u(l−1)σ),

...

Hl = Gl(z).

We now define a distinguisher DG against G by

DG(z, u) := D(Gi−1(z), u, u(l−i)σ).

where i ∈ [l] and u(l−i)σ are sampled uniformly at random by DG. Note that
when (z, u) equals the output of G(z) = (z′, u′σ) it holds by definition of Gi

that (Gi−1(z′), u′σ) = Gi(z), implying

DG(z′, u′σ) = D(Gi−1(z′), u′σ, u(l−i)σ) = D(Gi(z), u(l−i)σ) = D(Hi).

CHAPTER 3. PRGS FROM PSEUDOENTROPY 46

Then it holds that

DG(z, u) = D(Gi−1(z), u, u(l−i)σ) = D(Hi−1)

DG(G(z)) = DG(z′, u′σ) = D(Hi),

which directly yields that the distinguishing advantage of DG on (z, u) and
G(z) is

|Pr[DG(G(z)) = 1]− Pr[DG(z, u) = 1]| = |E[DG(G(z))−DG(z, u)]| (3.2)

= |E[D(Hi)−D(Hi−1)]|, (3.3)

where the probability is over z and the internal randomness of the distin-
guisher DG. Note that i is a uniformly random integer in [l]. It now holds
by the law of total expectation

E[D(Hi)−D(Hi−1)] = E[E[D(Hi)−D(Hi−1) | i]] (3.4)

=
1

l

l∑
k=1

E[D(Hk)−D(Hk−1)] (3.5)

=
1

l
E[D(Hl)−D(H0)] (3.6)

≥ lε

l
= ε (3.7)

where (3.4) follows from the law of total expectation conditioned on i, (3.5)
from the fact that i is uniform in [l] and linearity of expectation. Equation
(3.6) follows from cancellation by the hybrids leaving only the end terms. The
final equation (3.7) then follows by the noticeable distinguishing advantage
against Gl. Combined with (3.2) this contradicts the indistinguishability of
(z, u) and G(z). Thus the assumption that D has non-negligible advantage
can not hold, and Gl is a PRG.

3.2 PRG via DOWF

We now show that, in fact, the PRG construction holds when assuming only
(1 − γ) distributional one-way functions, as opposed to the much stricter
property of standard γ one-wayness. Recall the main steps in the PRG
construction:

1 - PEG : Show that (f(x), x1, ..., xn) is a next-bit pseudoentropy generator
(PEG) with n+ ω(log n) next-bit pseudoentropy.

CHAPTER 3. PRGS FROM PSEUDOENTROPY 47

2 - PRGZ: Establish that a next-bit pseudoentropy generator can be ma-
nipulated with the lemmas of Chapter 4 to arrive at a Z-seeded PRG.

3 - PRG: Showby a standard hybrid argument that iterating a Z-seeded
PRG PRGZ yields a PRG.

Since the PRG construction of Vadhan and Zheng is modular, we only use in
Lemma 3.1.2 that f is a OWF. In fact, for any function where we can show
that

KLx←$ {0,1}n(f(x), x‖f(x),A(f(x), 1n)) > log
1

γ

the proof of a next-bit pseudoentropy gnerator to Z-seeded PRG to PRG
follows identically. It thus suffices to establish the following theorem to obtain
a tight construction of a PRG from a distributional OWF.

Theorem 3.2.1 (Distributional one-way functions have Nbpe). Let f be a
(1 − γ) distributional one-way function. Then Gnb(x) = (f(x), x) has next-
block pseudoentropy at least n+log 1

γ
−log(2−γ). In particular if f is a strong

distributional one-way function, the generator Gnb has conditional next-block
pseudoentropy at least n+ ω(log n)− 1.

Note that setting γ = negl(n) we thus obtain a generator asymptotically
equal to the one obtained via a strong one-way function in [37].

The proof of Theorem 3.2.1 follows directly from the following lemma.

Lemma 3.2.2 (Distributional one-way functions have relative pseudoen-
tropy). Let f be (1− γ) distributionally one-way. Then it holds that

KLx←$ {0,1}n(f(x), x‖f(x),A(f(x), 1n)) > log
1

γ
− log(2− γ).

Proof of Lemma 3.2.2. Let f be a (1 − γ) distributional one-way function.
The proof follows from applying Bretgnolle-Huber’s inequality (1.1.3), with
setting the distributions as p = (f(x), x), and q = (f(x),A(f(x)). By defini-
tion it holds for f that SD(p, q) > 1− γ, and thus

KLx←$ {0,1}n((f(x), x)‖(f(x),A(f(x)))) > log
1

1− (1− γ)2
= log

1

γ
−log(2−γ).

In particular if a function f is a strong distributional one-way function
it has ω(log n) − 1 relative pseudoentropy. This directly yields an identical
PRG construction as from standard OWFs by replacing Lemma 3.1.2 with
the above distriutional version. This result is due to the fact that as the

CHAPTER 3. PRGS FROM PSEUDOENTROPY 48

notion of next-block pseudoentropy is equivalent to relative entropy for short
blocks, meaning that a bound on statistical distance can be used to obtain a
bound on pseudoentropy directly. We will discuss the relationship between
distributional primitives and computational entropy-based constructions fur-
ther in Chapter 6.

Chapter 4

Statistically hiding commitments
from distributional collision re-
sistance

In this chapter our central goal is to tighten the construction of a statistically
hiding commitment scheme (SHC) from a distributionally collision resistant
hash function (dCRHF) that is presented by Bitansky, Haitner, Komargodski
and Yegev [7], which uses the construction of SHCs from inaccessible entropy
generators due to Haitner, Reingiold, Vadhan and Wee [19]. Recall that for
a hash function to be distributionally collision resistant it should be hard to
sample uniform collisions, i.e. it holds that

SD((h,A(h, 1n), (h,Col(h)) = Eh←$H[SD(A(h, 1n),Col(h)] >
1

p
,

for some positive polynomial p > 1. The core argument in the proof of the
original construction, Lemma 4 of the original paper, establishes that given
a dCRHF h←$H and a uniformly random x, the function (h(x), x) is a two-
block inaccessible entropy generator (Def. 1.1.9), which directly implies the
construction of a constant round SHC by the results of HRVW. We improve
the core Lemma via applying the tighter Bretagnolle-Huber bound 1.1.3,
instead of Pinsker’s inequality as in [7] to obtain an upper bound on the
statistical distance in the definition of h.

Compared to the accessible entropy of at most n− (p−1)2

4p2 from a
(

1− 1
p

)
-

dCRHF, where p > 1 is a positive polynomial, achieved by Bitansky, Haitner,
Komargodski and Yegev, we obtain that the accessible entropy is at most n−
log
(√

p2

2p−1

)
. For concreteness, when the statistical distance in the definition

of the dCRHF h is close to 1 (i.e. h is “hard”), then the original bound tends
to 1

4
, while our bound tends to roughly log(p) (ignoring constants).

49

CHAPTER 4. SHC FROM INACCESSIBLE ENTROPY 50

In Section 4.1 we review the construction of SHCs from an inaccessible
entropy generator. Although we use the original result in a black box way,
we give an outline of the construction to contextualize the concrete improve-
ments obtainable by a tighter dCRHF accessible entropy bound. Afterwards
we present the new bound on inaccessible entropy from a dCRHF in Section
4.2 and analyze the resulting commitment scheme in Section 4.3. We note
that a precise analysis of the complexity of the SHC from dCRHF is not
included in the original BHKY construction, meaning we can’t simply use
their results in a black-box way. Thus we also need the HRVW construc-
tion of commitments from accessible entropy to understand the effect of an
improved bound.

4.1 SHC from inaccessible entropy generator

4.1.1 SHC from an arbitrary block generator

For completeness, we provide a self-contained overview of the core argu-
ments in the analysis of the construction of a SHC from and inaccessible
entropy generator presented by HRVW [19], which is almost analogous in
structure to the PRG construction presented in Chapter 3. The outline of
the construction is roughly as follows: Let G be an m-block inaccessible en-
tropy generator (i.e. G has real entropy k(n) and accessible entropy at most
kacc = k(n)− δ(n)).

(1). Equalize: Given an inaccessible entropy generator G, we equalize the
real and accessible entropy by taking several independent copies and
concatenating the outputs. By Lemma 2.3.1 this yields accessible, real

(2). Flatten: Then, parallel repetition flattens the equalized blockwise en-
tropy bounds to min-entropy.

(3). Hash in parallel: Finally, we obtain a weakly binding commitment

scheme Com via a hashing protocol, which when run with t = log(n)2m
δ

independent parallel instance of the weakly yields a statistically hiding
and computationally binding commitment.

Note that the only real differences compared to the Z-seeded PRG construc-
tion of Chapter 3 are the different notions of entropy in the analysis, and
the different hashing methods in the last step. This is why the third step is
presented as a single step rather than two smaller steps — we wish to under-
line the fact that constructions from PRGs and SHCs are fundamentally very
similar. Indeed the operations performed are equivalent, with a final hashing

CHAPTER 4. SHC FROM INACCESSIBLE ENTROPY 51

based argument as the last step. The full proof of the construction along
with analysis is contained in [19], with a simpler version being available in
[20]. We present the pseudocode for the weakly binding commitment scheme
Com in Figure 4.1, and then review the construction in the special case when
G is a constant block generator (i.e. the number of blocks m does not grow
with the security parameter n), as is the case when working with a dCRHF
based generator.

We define an m-block generator as follows:

Definition 4.1.1 (m-block generator). We say a polynomial-time computable
(deterministic) function G : {0, 1}p(n)×{0, 1}s(n) → ({0, 1}l(n))m(n) is an m-
block generator with blocks of length l on the public parameter p and seed
s.

Note that the functions determining the input and output lengths of the
generator G are assumed to be functions of the underlying security parameter
n. We will be particularly interested in the entropy thresholds k := k(n) of
the individual blocks of G. We stress that all functions are in terms of n.

Let G be a an m-block generator, where each block of G has real min-
entropy at least k(n) ≥ 3n, and the total inaccessible entropy of G is at least
4mn. Suppose that H1,H2 are efficient l-wise and 2-wise independent hash
function families respectively (see Definition 2.1.4), with H1 mapping strings
of length n to strings of length k − 3n and H2 mappings strings of length n
to n. Let F be a family of universal one-way hash functions (see Definition
2.1.6) mapping strings of length n to strings of length n.1 All three families
are assumed samplable and public in the subsequent protocol. Furthermore,
recall that variables distributed according to the Bernoulli distribution Ber(p)
are 0-1 variables taking the value 1 with probability p.

We define the weakly binding commitment scheme (see the discussion
after Def. 2.1.3) between parties S and R using standard protocol syntax.
All computation on either party’s side is done in private with the other party
only gaining information via communication denoted by the message arrows.
Recall that y[i] denotes the i-th block of the random variable y. In other
words, the receiver samples a public parameter p and sends it to S. The
sender then computes in private a random execution of G using this public
parameter and a secret random value x. Looping through the blocks, the
receiver requests at round i either the i-th block of the generator output, or
the i-th block processed through a hashing protocol. In the subsequent case
the sender then masks its input bit via XORing it with y[i] by extracting

1All three families are efficiently constructable and efficiently samplable as shown by
Carter and Wegman, and Katz and Koo.

CHAPTER 4. SHC FROM INACCESSIBLE ENTROPY 52

Com(1n)

Sender S Receiver R

private: b ∈ {0, 1}

p p←$ {0, 1}c

x←$ {0, 1}s

y ← G(p, x)

. for i = 1 to m .

ci ci←$ Ber(
1

m + 1− i
)

if ci == 0 y[i] next loop

. else .

h1
h1←$H1

y1 ← h1(y[i]) y1

h2
h2←$H2

y2 ← h2(y[i]) y2

f f ←$F

yf ← f(y[i]) yf

u←$ {0, 1}l

(〈u, y[i]〉 ⊕ b, u) end execution

Figure 4.1: Weakly binding commitment Com

CHAPTER 4. SHC FROM INACCESSIBLE ENTROPY 53

a weakly random bit from it by taking the inner product with a random,
public string u. After this the parties end the execution. Then taking t =
log(n)2m

δ
parallel and independent executions of Com yields a SHC consistent

with Definition 2.1.3, as shown in the proof of Lemma 6.5 in HRVW [19].
The intuition behind the protocol is that, when conditioned on the previous
blocks, after the hashing interaction y[i] has high real min-entropy, but ”low”
accessible entropy.

In the opening phase of the resulting commitment scheme the sender
simply reveals the private bit b and its sampled x, and the receiver checks
whether this yields the same as the final calculation

〈u, y[i]〉 ⊕ b, u),

as well as checking the generated blocks y[i]. Intuitively, hiding is due to
the real min entropy of each block y[i] being “high” when conditioned on
the previous transcript, whereas the binding is due to an upper bound on
the accessible entropy implying that y[i] is fixed (from a computational per-
spective) for all bounded senders. Specifically, any computationally bounded
sender can not cheat by picking a new secret x and computing a valid tran-
script y[1], ..., y[i], as any bounded algorithm can only access a small subset
of the support of G.

We include a visualization for the concrete SHC from the weakly binding
commitment in Fig 4.2 below:

Run weakly binding commitment in parallel

for independent instances

Commitment

Figure 4.2: SHC from weakly binding commitment

4.1.2 SHC from a constant block generator

As we will later focus use the two-block generator (h(x), x) for the construc-
tion, we can further improve on the previous commitment scheme construc-
tion. Namely, when the generator has a constant number of blocks (i.e. when

CHAPTER 4. SHC FROM INACCESSIBLE ENTROPY 54

then input grows with n the number if blocks stays the same) we obtain an
almost identical commitment scheme construction, with a few tweaks.

The largest difference compared to the general case is that we can skip
the entropy equalization step (Step 1). Centrally, knowing the number of
blocks is constant allows us to directly use parallel repetition and Lemma
2.3.2. The problem then becomes that the per-block entropy thresholds are
not known in general, and not equal as in the “standard” construction. Since
we have constant blocks however, we can instead use a variant of Com for all
possible values for the blockwise entropies (up to accuracy determined by the
inaccessible entropy) independently in parallel. This ends up saving in the
round complexity however, as only a constant number of rounds is required.
HRVW show that one may thus obtain polynomially many commitments
where all are binding and at least 1 is hiding, yielding a SHC when combining
all commitments by taking the bitwise XOR.

We define the constant block weakly binding commitment as C̃om(k̃, 1n)
with the following differences compared to Com:

• C̃om takes as input an advice string k̃ = (k1, k2, ..., km) denoting a
“guess” for the blockwise min-entropies of G.

• Instead of using the hash family H1 from n to k−3n bits in each round
of the loop, C̃om instead uses separate Hi mapping strings of length n
to ki − 3n bits (if ki = 0 C̃om simply skips the round).

That is to say C̃om uses the advice string it gets as input to choose the correct
hash function at each round of its execution. This process is repeated for
each possible tuple k̃ = (k1, k2, ..., km), where

1. ki ∈ {0, δ
2m
, ..., blcδ/2m}, since the maximal entropy of each block is the

total length, and

2.
∑
ki ∈ [(1− δ/2) · k, k], as the total entropy has to be k (up to additive

error).

We say such tuples are (δ,m)-valid. Other than these two details the con-
structions (and indeed the proofs) of the both protocols are identical. Note
that if the chosen tuple k̃ = (k1, k2, ..., km) corresponds with the real block-
wise entropies, then the resulting protocol is equivalent to the standard case
up to some polynomial loss due to the accuracy.

Thus, to construct a SHC from a constant block inaccessible entropy gen-
erator, we take the parallel repetition of G to obtain min-entropy and amplify
the weakly binding commitment C̃om in parallel for each possible value of
blockwise min-entropies k̃. The number of necessary parallel instances to

CHAPTER 4. SHC FROM INACCESSIBLE ENTROPY 55

construct a SHC from a generator with a constant number of blocks is deter-
mined entirely by the number of all (δ,m)-valid tuples k̃, which we denote by
Kn. As the accuracy δ yields a smaller number of (δ,m)-valid tuples (as the
number of possibilities in the first constraint becomes smaller), an improved
bound on inaccessible entropy of G will yield improved complexity in terms
of parallel instances. We analyze the exact improvement in Section 4.3 after
establishing an improved bound compared to that of BHKY on inaccessible
entropy of G(h, x) = (h(x), x) in Section 4.2.

4.2 Accessible entropy generator from dCRHF

In this chapter we present our improvement on the original construction of
a SHC from distributional collision resistance due to BHKY. Recall that we
are interested in establishing a tighter bound on the accessible entropy of
the generator (h(x), x), where h is a dCRHF, which will further improve the
resulting SHC construction. We define a simple two-block generator using
any dCRHF h as follows:

Definition 4.2.1. Let the function G : {0, 1}s×{0, 1}n → {0, 1}m×{0, 1}n
be defined as

G(h, x) = (h(x), x).

Bitansky, Haitner, Komodorski and Yegev show that G for a random h
as public parameter is a two block inaccessible entropy generator with non-
negligible inaccessible entropy. We slightly reword Lemma 4 from the original
paper as the following theorem:

Theorem 4.2.1. There exists a non-negligible function δ(n) such that for

any G-consistent generator G̃ as defined in 1.1.9 conditioned on its internal
coin tosses R1, R2, it holds that

m∑
i=1

H
(
G̃[i]

∣∣∣S,R<i

)
= H

(
G̃[1]

)
+ H

(
G̃[2]

∣∣∣R1

)
≤ n− δ(n),

i.e. the accessible entropy of G is at most n− δ(n).

Specifically BHKY show by using Pinsker’s inequality that for a 1/p dCRHF
choosing δ = 1

4p2 and assuming the contrapositive to Theorem 6.2.1 yields to
the inequality

SD((h,A(h, 1n), (h,Col(h)) < 1/p,

contradicting the definition of the dCRHF h, where A and Col are as in Def.
1.1.12. This in turn implies that G is an inaccessible entropy generator with

CHAPTER 4. SHC FROM INACCESSIBLE ENTROPY 56

1
poly(n)

inaccessible entropy. We present a slightly tighter bound on δ that

is approximately log(p) for any 1 − 1/p dCRHF (compared to the at most
constant bound of the original result).

Corollary 4.2.1.1. Suppose h is a 1 − 1
p

dCRHF. Then we may set δ =

log
(√

p2

2p−1

)
as the function in Theorem 6.2.1.

We prove Theorem 4.2.1 following the line of reasoning outlined by BHKY,
with the main difference being using Bretagnolle-Huber instead of Pinsker’s
inequality to relate the statistical distance and relative entropy. Then Jensen’s
inequality together with bounds on the relative entropies shown by BHKY
yield the result.

Proof. Let H be a (1 − 1/p) dCRHF family and H be a collision resistant
hash family. Suppose towards a contradiction that there exists some G-
consistent generator G̃ using public parameter P and internal randomness
R = (R1, ..., Rm) that contradicts the upper bound on the accessible entropy
of G(h, x) = (h(x), x) for infinitely many n, i.e.

m∑
i=1

H
(
G̃[i]

∣∣∣P,R<i

)
> n− δ.

We denote the number of bits needed to sample internal randomness Ri by
{0, 1}s. We use G̃ to break the security of H as defined in Def. 1.1.12 as
follows:

A(h, 1n)

r←$ {0, 1}s

y ← G̃(h, r)

r1←$ {0, 1}s

r2←$ {0, 1}s

x1 ← G̃(h, r, r1)

x2 ← G̃(h, r, r2)

return (x1, x2)

In other words, given a hash function h as input the adversary runs G̃ to
obtain a hash value y (corresponding to the first block), then runs G̃ twice to
obtain two strings x1, x2 that are mapped to y (two separate instances of the

second block). We claim that due to the consistency of G̃ (i.e. the outputs
of the emulator are always in the support of G) the adversary succeeds in

CHAPTER 4. SHC FROM INACCESSIBLE ENTROPY 57

sampling close to uniformly from the pre-image distribution h−1(y) if the
accessible entropy is too large.

We denote by x1, x2 the outputs of the adversary, and by c1, c2 the sam-
ples from the ideal collision distribution (Def. 1.1.11). By definition of the
adversary and the ideal collision distribution it holds that

SD((x1, x2), (c1, c2)) = SD(A(h, 1n),Col(h).

Taking expectations and conditioning on the randomness of h allows us to
write

Eh←$H[SD(A(h, 1n),Col(h)] = SD((h,A(h, 1n), (h,Col(h)),

meaning that the expectation E[SD((x1, x2), (c1, c2))] taken over the hash
family is exactly the statistical distance in the definition of the distributional
collision resistance.

By the Bretagnolle-Huber inequality 1.1.3 it holds that

SD((x1, x2), (c1, c2)) ≤
√

1− 2−KL((x1,x2)||(c1,c2))

=

√
1− 2−KL(x1||c1)−E[KL(x2||c2)|x1],

where the last inequality is due to the chain rule of relative entropy (which
follows from the chain rule of Shannon entropy in Lemma 1.1.1 and condi-
tioning on x1). Taking expectations over H and the internal randomness of
the adversary then yields

E[SD((x1, x2), (c1, c2))] ≤ E
[√

1− 2−KL(x1||c1)−E[KL(x2||c2)|x1]
]

≤
√

E
[
1− 2−KL(x1||c1)−E[KL(x2||c2)|x1]

]
(4.1)

=

√
E[1]− E

[
2−KL(x1||c1)−E[KL(x2||c2)|x1]

]
≤
√

1− 2−E[KL(x1||c1)]−E[KL(x2||c2)|x1] (4.2)

<
√

1− 2−2δ (4.3)

where (4.1) follows from Jensen’s inequality and (4.2) follows from applying
Jensen’s inequality on the exponential function and the expectation of a
constant (recall that square root is concave, and the exponential function
is convex thus in turn the negative exponential function is concave). The
inaccessible entropy bound in (4.3) follows from the bounds derived on both

CHAPTER 4. SHC FROM INACCESSIBLE ENTROPY 58

relative entropy terms by BHKY (Claim 1 and Claim 2 in the original paper
[7], namely if the accessible entropy is greater than n− δ then it holds that

E[KL(x1||c1)] < δ, and

E
[
KL(x2||c2)|x1

]
< δ.

Although a multiplicative constant 1
4

seems to be missing from the claims in
the final inequalities of the paper (as they conclude ≤ 1/q = 1/p2, despite
setting q = 4p2), the actual derived inequalities in terms of the inaccessible

entropy do yield the above bounds. Setting δ = log
(√

p2

2p−1

)
in (4.3) allows

us to conclude

E[SD((x1, x2), (c1, c2))] <

√
1− 2p− 1

p2

=

√
p2 − 2p+ 1

p2

=

√
(p− 1)2

p2
= 1− 1/p

which is a contradiction against the statistical distance of h.

It therefore follows that the generator G has accessible entropy at most

n− log
(√

p2

2p−1

)
when h is (1− 1/p) distributionally collision resistant. The

quantitative difference in entropy can be observed from figure 4.3 below, with
the bounding function 2

√
δ by BHKY in blue, and our bounding function√

1− 2−2δ in red. We observe that in order to contradict some (1−1/p) lower

Figure 4.3: Accessible entropy bounds

bound on the statistical distance, the function
√

1− 2−2δ necessitates larger
δ, whereas to obtain a contradiction 2

√
δ ≤ 1− 1/p it holds that δ ∈ (0, 1

4
).

CHAPTER 4. SHC FROM INACCESSIBLE ENTROPY 59

4.3 SHC from distributional collision resis-

tance

Combining the results of the two previous sections allows us to analyze the
number of tuples in the set of all advice strings Kn needed in the constant
block SHC construction of Section 4.1. Let G be as in Section 4.2 and H
be a (1 − 1/p) dCRHF family. Note that the first block of G is of length
l = |h(x)| by definition. Recall thatKn denotes the set of possible (δ,m)-valid

tuples k̂ = (k1, ..., km) of candidate entropies for each block of the underlying
inaccessible entropy generator with real entropy k and accessible entropy at
most k − δ, where it holds that

ki ∈
{

0,
δ

2m
, ..., blcδ/2m

}
, and∑

i∈[m]

ki ∈ [(1− δ/2) · k, k].

As G only consists of two blocks, choosing k1 ∈
{

0, δ
2m
, ..., blcδ/2m

}
fixes k2,

due to the fact that ∑
i∈[m]

ki = k1 + k2 ∈ [(1− δ/2) · k, k].

In other words since the total entropies sum to k (with additive error), choos-
ing the value of k1 fixes the value of k2. The number of tuples in Kn is
then determined completely by the total number of possible values of k1, i.e.
bl(n)cδ/2m = bl(n) · 2m

δ
c, where l is the output length of the hash function h.

Setting m = 2 and δ = log
(√

p2

2p−1

)
by Corollary 4.2.1.1 yields

|Kn| = bl(n) · 2m

δ
c =

 4l

log
√

p2

2p−1

,
which we will denote

|Kn| =b·c
4l

log
√

p2

2p−1

.

The same analysis applied to the polynomial bound δ = (p−1)2

4p2 of BHKY

(which is obtained when considering a (1−1/p) dCRHF by using their meth-

ods) we instead obtain |Kn| =b·c 16lp2

(p−1)2 , which is asymptotically greater than

the logarithmic bound δ = log
(√

p2

2p−1

)
.

CHAPTER 4. SHC FROM INACCESSIBLE ENTROPY 60

We may note that relatively simple calculus suffices to show that the
inequality

16lp2

(p− 1)2
>

4l

log
√

p2

2p−1

always holds when p > 1. As polynomials smaller than 1 yield a contradictory
bound on the statistical distance in the definition of dCRHF it is already an
implicit assumption that p > 1. More specifically if we have a 1/p dCRHF
setting p < 1 yields statistical distance greater than 1, and if we have a
(1− 1/p) dCRHF setting p < 1 yields negative statistical distance. Ignoring
the 4l factor common in both expressions we obtain the following graph:

Figure 4.4: Parallel instances in SHC construction

where we observe that the logarithmic bound of 1

log

√
p2

2p−1

yields com-

plexity asymptotically tending to zero, whereas the polynomial bound 4p2

(p−1)2

tends to 4. This is simple to confirm by taking limits. Note that the 4l fac-
tor should in reality not be ignored, so “realistic” parameter choices should
still yield large (and not close to 0) number of parallel instances. Choosing
e.g. l = 256, p = 10 (i.e. the statistical distance against achievable against
a dCRHF with output length l = 256 is at least 1 − 1/p = 0.9) yields par-
allel rounds numbering 427 with the logarithmic bound and 2904 for the
polynomial bound.

Chapter 5

Open problems and implications

Accessible entropy from distributional one-way functions The pre-
viously presented results in Chapter 3 and 4 establish that distributional
one-wayness implies next-block pseudoentropy, and that distributional colli-
sion resistance implies accessible entropy. An immeidate question that arises
is whether accissible entropy can also be shown to exist based on distribu-
tional one-wayness rather than distributional collision resistance. As pointed
out by Agrawal, Chen, Horel and Vadhan [1] the notions of accessible en-
tropy and pseudoentropy seem “dual” in current constructions. Namely, the
constructions of SHCs from accessible entropy and PRGs from pseudoen-
tropy have almost identical structure: having some bound (n + log n and
n− log n respectively) on the computational entropies, then by equalization,
flattening and some kind of hashing. ACHV further show that via a notion
they define as hardness in relative entropy it is indeed possible to get log n
in both pseudo- and inaccessible entropy from (standard) OWFs, providing
some further justification for the connection.

Additionally, as observed in the article constructing universal one-way
hash function based on accessible entropy by Haitner, Holenstein, Reingold,
Vadhan and Wee [17], a distributional one-way function suffices for the con-
struction of a universal one-way hash function. It is an interesting question
whether the construction of statistically hiding commitments based on ac-
cessible entropy can also be shown to hold nearly equivalently for strong dis-
tributional one-way functions. The approach by either ACHV [1] or HRVW
[19] for establishing inaccessible entropy of (f(x), x) might be possible to re-
lax via similar statistical distance bounds as for the PRG case to apply for
distributional one-way functions. This would again “unify” the notions of
computational entropy that we see in the existing paradigm, but for distri-
butional OWFs. If even accessible entropy from distributional OWFs were
possible to obtain, then all three primitives based on inaccessible entropy and

61

CHAPTER 5. OPEN PROBLEMS AND IMPLICATIONS 62

pseudoentropy (PRGs, SHCs, UOWHFs) would hold equivalently to their
standard OWF versions. If not, then we have a property pointing to a differ-
ence in the notions of computational entropy. Another option, which might
be more reasonable to expect, is that standard one-way functions admit to
notably more efficient black-box constructions compared to distributional
one-way functions. A possible stumbling block may be that average case no-
tions of entropy can not capture this expected efficiency improvement as they
only model the hardness on the average taken over the entire distribution,
hiding the worst-case pathology of distributional one-way functions.

Similarity and separation results Another interesting direction w.r.t.
distributional OWFs is establishing exact results in constructions from dis-
tributional OWFs to standard OWFs, and tight bounds on how known OWF
results translate to the distributional setting. It is perhaps reasonable to con-
jecture that amplification of a somewhat hard function to a hard function
that is possible for OWFs also holds distributionally. An example would
be showing that Yao’s seminal result establishing that concatenating a 1

p
-

weakly OWF polynomially many times yields a strong OWF, should also
work similarly for distributional OWFs. Here a large issue in the reduction
is (seemingly) that an adversary can not in general know which pre-images
are easy and which are hard, causing issues for the standard repetition argu-
ment.

Furthermore, it is perhaps interesting to note that the construction of
PRGs due to Vadhan and Zheng using a distributional OWF is seemingly
more efficient than the current way of obtaining a strong one-way function
from a strong distributional one-way function by going from a distributional
OWF to a weak OWF using Impagliazzo and Luby [22], and from weak to
strong by Yao’s amplification results. Notably both transformations proceed
in a remarkably similar way, in that they take independent repetitions, ran-
dom truncations and perform random hashing. How tightly do the notions
of distributional one-wayness and one-wayness relate, and is it possible to
improve on the Vadhan-Zheng result for amplification?

Finally there exist applications where distributional OWFs will not ad-
mit to equivalent constructions. For a simple example, Lamport’s signature
scheme using OWFs [26] will not remain secure when using a distributional
OWF. Understanding the exact relation between distributional OWFs and
OWFs would perhaps also allow for further separations, and allow for bet-
ter understanding of which types of problems can yield useful computational
hardness.

Bibliography

[1] Agrawal, R., Chen, Y.-H., Horel, T., and Vadhan, S. P.
Unifying computational entropies via kullback-leibler divergence. In
CRYPTO 2019, Part II (Aug. 2019), A. Boldyreva and D. Micciancio,
Eds., vol. 11693 of LNCS, Springer, Heidelberg, pp. 831–858.

[2] Applebaum, B., Ishai, Y., and Kushilevitz, E. Cryptogra-
phy with constant input locality. In CRYPTO 2007 (Aug. 2007),
A. Menezes, Ed., vol. 4622 of LNCS, Springer, Heidelberg, pp. 92–110.

[3] Barak, B. The complexity of public-key cryptography. Cryptology
ePrint Archive, Report 2017/365, 2017. https://ia.cr/2017/365.

[4] Beimel, A., Ishai, Y., Kushilevitz, E., and Malkin, T. One-way
functions are essential for single-server private information retrieval. In
Proceedings of the Thirty-First Annual ACM Symposium on Theory of
Computing, May 1-4, 1999, Atlanta, Georgia, USA (1999), J. S. Vitter,
L. L. Larmore, and F. T. Leighton, Eds., ACM, pp. 89–98.

[5] Berman, I., Degwekar, A., Rothblum, R. D., and Vasudevan,
P. N. Statistical difference beyond the polarizing regime. In Theory of
Cryptography - 17th International Conference, TCC 2019, Nuremberg,
Germany, December 1-5, 2019, Proceedings, Part II (2019), D. Hofheinz
and A. Rosen, Eds., vol. 11892 of Lecture Notes in Computer Science,
Springer, pp. 311–332.

[6] Berman, I., Haitner, I., and Tentes, A. Coin flipping of any con-
stant bias implies one-way functions. In 46th ACM STOC (May / June
2014), D. B. Shmoys, Ed., ACM Press, pp. 398–407.

[7] Bitansky, N., Haitner, I., Komargodski, I., and Yogev, E.
Distributional collision resistance beyond one-way functions. In EU-
ROCRYPT 2019, Part III (May 2019), Y. Ishai and V. Rijmen, Eds.,
vol. 11478 of LNCS, Springer, Heidelberg, pp. 667–695.

63

https://ia.cr/2017/365

BIBLIOGRAPHY 64

[8] Bretagnolle, J., and Huber, C. Estimation des densités : risque
minimax. Séminaire de probabilités de Strasbourg 12 (1978), 342–363.

[9] Chen, Y., Göös, M., Vadhan, S. P., and Zhang, J. A tight
lower bound for entropy flattening. In 33rd Computational Complexity
Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA (2018),
R. A. Servedio, Ed., vol. 102 of LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, pp. 23:1–23:28.

[10] Cover, T. M., and Thomas, J. A. Elements of Information Theory
(Wiley Series in Telecommunications and Signal Processing). Wiley-
Interscience, USA, 2006.

[11] Dodis, Y., Ostrovsky, R., Reyzin, L., and Smith, A. D. Fuzzy
extractors: How to generate strong keys from biometrics and other noisy
data. SIAM J. Comput. 38, 1 (2008), 97–139.

[12] Dubrov, B., and Ishai, Y. On the randomness complexity of efficient
sampling. In Proceedings of the 38th Annual ACM Symposium on The-
ory of Computing, Seattle, WA, USA, May 21-23, 2006 (2006), J. M.
Kleinberg, Ed., ACM, pp. 711–720.

[13] Gao, Z., Han, Y., Ren, Z., and Zhou, Z. Batched multi-armed
bandits problem, 2019.

[14] Gennaro, R., Gertner, Y., Katz, J., and Trevisan, L. Bounds
on the efficiency of generic cryptographic constructions. SIAM J. Com-
put. 35, 1 (2005), 217–246.

[15] Goldreich, O. A note on computational indistinguishability. Inf.
Process. Lett. 34, 6 (1990), 277–281.

[16] Goldreich, O., Goldwasser, S., and Micali, S. On the crypto-
graphic applications of random functions. In CRYPTO’84 (Aug. 1984),
G. R. Blakley and D. Chaum, Eds., vol. 196 of LNCS, Springer, Heidel-
berg, pp. 276–288.

[17] Haitner, I., Holenstein, T., Reingold, O., Vadhan, S. P., and
Wee, H. Universal one-way hash functions via inaccessible entropy. In
EUROCRYPT 2010 (May / June 2010), H. Gilbert, Ed., vol. 6110 of
LNCS, Springer, Heidelberg, pp. 616–637.

[18] Haitner, I., Reingold, O., and Vadhan, S. P. Efficiency improve-
ments in constructing pseudorandom generators from one-way functions.

BIBLIOGRAPHY 65

In 42nd ACM STOC (June 2010), L. J. Schulman, Ed., ACM Press,
pp. 437–446.

[19] Haitner, I., Reingold, O., Vadhan, S. P., and Wee, H. Inacces-
sible entropy I: inaccessible entropy generators and statistically hiding
commitments from one-way functions. CoRR abs/2010.05586 (2020).
https://arxiv.org/abs/2010.05586 A preliminary version appeared in
STOC 2009.

[20] Haitner, I., and Vadhan, S. The Many Entropies in One-Way
Functions. Springer International Publishing, Cham, 2017, pp. 159–217.

[21] Håstad, J., Impagliazzo, R., Levin, L. A., and Luby, M. A
pseudorandom generator from any one-way function. SIAM Journal on
Computing 28 (1999), 12–24.

[22] Impagliazzo, R., and Luby, M. One-way functions are essential
for complexity based cryptography (extended abstract). In 30th An-
nual Symposium on Foundations of Computer Science, Research Trian-
gle Park, North Carolina, USA, 30 October - 1 November 1989 (1989),
IEEE Computer Society, pp. 230–235.

[23] Impagliazzo, R., and Luby, M. One-way functions are essential
for complexity based cryptography (extended abstract). In 30th FOCS
(Oct. / Nov. 1989), IEEE Computer Society Press, pp. 230–235.

[24] Katz, J., and Koo, C.-Y. On expected constant-round protocols for
byzantine agreement. In CRYPTO 2006 (Aug. 2006), C. Dwork, Ed.,
vol. 4117 of LNCS, Springer, Heidelberg, pp. 445–462.

[25] Komargodski, I., and Yogev, E. On distributional collision resis-
tant hashing. In CRYPTO 2018, Part II (Aug. 2018), H. Shacham and
A. Boldyreva, Eds., vol. 10992 of LNCS, Springer, Heidelberg, pp. 303–
327.

[26] Lamport, L. Constructing digital signatures from a one way function.
Tech. rep., October 1979.

[27] Naor, M., and Rothblum, G. N. Learning to impersonate. In
Proceedings of the 23rd International Conference on Machine Learning
(New York, NY, USA, 2006), ICML ’06, Association for Computing
Machinery, p. 649–656.

https://arxiv.org/abs/2010.05586

BIBLIOGRAPHY 66

[28] Ostrovsky, R. One-way functions, hard on average problems, and sta-
tistical zero-knowledge proofs. In Proceedings of the Sixth Annual Struc-
ture in Complexity Theory Conference, Chicago, Illinois, USA, June 30
- July 3, 1991 (1991), IEEE Computer Society, pp. 133–138.

[29] Ostrovsky, R., and Wigderson, A. One-way functions are essen-
tial for non-trivial zero-knowledge. In [1993] The 2nd Israel Symposium
on Theory and Computing Systems (1993), IEEE, pp. 3–17.

[30] Pietrzak, K. Cryptography from learning parity with noise. In
SOFSEM 2012: Theory and Practice of Computer Science - 38th Con-
ference on Current Trends in Theory and Practice of Computer Sci-
ence, Špindler̊uv Mlýn, Czech Republic, January 21-27, 2012. Proceed-
ings (2012), M. Bieliková, G. Friedrich, G. Gottlob, S. Katzenbeisser,
and G. Turán, Eds., vol. 7147 of Lecture Notes in Computer Science,
Springer, pp. 99–114.

[31] Pietrzak, K., and Sjödin, J. Weak pseudorandom functions
in minicrypt. In Automata, Languages and Programming, 35th In-
ternational Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11,
2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory
of Programming & Track C: Security and Cryptography Foundations
(2008), L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson,
A. Ingólfsdóttir, and I. Walukiewicz, Eds., vol. 5126 of Lecture Notes
in Computer Science, Springer, pp. 423–436.

[32] Reingold, O., Trevisan, L., and Vadhan, S. P. Notions of re-
ducibility between cryptographic primitives. In TCC 2004 (Feb. 2004),
M. Naor, Ed., vol. 2951 of LNCS, Springer, Heidelberg, pp. 1–20.

[33] Sason, I., and Verdú, S. Bounds among f-divergences. CoRR
abs/1508.00335 (2015).

[34] Simon, D. R. Finding collisions on a one-way street: Can secure hash
functions be based on general assumptions? In Advances in Cryptology
- EUROCRYPT ’98, International Conference on the Theory and Ap-
plication of Cryptographic Techniques, Espoo, Finland, May 31 - June
4, 1998, Proceeding (1998), K. Nyberg, Ed., vol. 1403 of Lecture Notes
in Computer Science, Springer, pp. 334–345.

[35] Tsybakov, A. B. Introduction to Nonparametric Estimation, 1st ed.
Springer Publishing Company, Incorporated, 2008.

BIBLIOGRAPHY 67

[36] Vadhan, S. P. Computational entropy. In Providing Sound Founda-
tions for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali, O. Goldreich, Ed. ACM, 2019, pp. 693–726.

[37] Vadhan, S. P., and Zheng, C. J. Characterizing pseudoentropy and
simplifying pseudorandom generator constructions. In 44th ACM STOC
(May 2012), H. J. Karloff and T. Pitassi, Eds., ACM Press, pp. 817–836.

[38] Valiant, G., and Valiant, P. Estimating the unseen: an n/log(n)-
sample estimator for entropy and support size, shown optimal via new
clts. In Proceedings of the 43rd ACM Symposium on Theory of Comput-
ing, STOC 2011, San Jose, CA, USA, 6-8 June 2011 (2011), L. Fortnow
and S. P. Vadhan, Eds., ACM, pp. 685–694.

[39] Xiao, D. New Perspectives on the Complexity of Computational Learn-
ing, and Other Problems in Theoretical Computer Science. PhD thesis,
Princeton University, 2009.

[40] Xiao, D. Learning to create is as hard as learning to appreciate. In
COLT 2010 - The 23rd Conference on Learning Theory, Haifa, Israel,
June 27-29, 2010 (2010), A. T. Kalai and M. Mohri, Eds., Omnipress,
pp. 516–528.

[41] Yang, G. Cryptography and Randomness Extraction in the Multi-
Stream Model. PhD thesis, Tsinghua University, 2016.

Appendix A

Proof of Lemma 1.1.3

. We proceed by presenting a version of the Lemma using mainly Lemma 2.6
in Tsybakov’s Introduction to non-parametric estimation [35], and a gener-
alization of Tsybakov’s result available in e.g. [13].

For the Bhattacharyya coefficient
∑

x∈Ω

√
p(x)q(x) it holds that(∑

x∈Ω

√
p(x)q(x)

)2

≥ 2−KL(p‖q).

This is a simple consequence of Jensen’s inequality. First note that we may
write (∑

x∈Ω

√
p(x)q(x)

)2

= 22 log
∑

x∈Ω

√
p(x)q(x)

= 22 log
∑

x∈Ω p(x)
√
q(x)/p(x)

= 2
2 logEp

[√
q(x)
p(x)

]
Noting that log is concave, using Jensen’s inequality we obtain that

2 logEp

[√
q(x)

p(x)

]
≥ 2Ep

[
log

√
q(x)

p(x)

]

= Ep
[
− log

p(x)

q(x)

]
= −KL(p‖q)

To obtain the lemma, note that
∑

x∈Ω min(p(x), q(x))+
∑

x∈Ω max(p(x), q(x)) =
2 and

SD(p, q) = 1−
∑
x∈Ω

min(p(x), q(x)) ⇐⇒
∑
x∈Ω

min(p(x), q(x)) = 1− SD(p, q),

68

APPENDIX A. PROOF OF LEMMA 1.1.3 69

allowing us to bound the Bhattacharyya coefficient using Cauchy-Schwartz:
(denote max := max(p(x), q(x)) and min := min(p(x), q(x)))(∑

x∈Ω

√
p(x)q(x)

)2

=

(∑
x∈Ω

√
max min

)2

≤
∑
x∈Ω

max
∑
x∈Ω

min

= (1 + SD(p, q))(1− SD(p, q))

Combining this with the bound on relative entropy yields

1− SD(p, q)2 ≥

(∑
x∈Ω

√
p(x)q(x)

)2

≥ 2−KL(p‖q),

which when rearranged gives us

SD(p, q) ≤
√

1− 2−KL(p‖q) ⇐⇒ KL(p‖q) ≥ 1

1− SD(p, q)2
.

	Cover page
	Contents
	1 Introduction
	1.1 Background
	1.1.1 Pseudoentropy
	1.1.2 Accessible entropy
	1.1.3 Distributional one-way functions
	1.1.4 Distributionally collision resistant hash-functions
	1.1.5 Bretagnolle-Huber's inequality

	1.2 Contribution

	2 Preliminaries and definitions
	2.1 Cryptography
	2.2 Information Theory
	2.3 Transformations of computational entropy

	3 Pseudorandom generators from distributional OWFs
	3.1 Vadhan-Zheng PRG
	3.1.1 One-way function to next-bit pseudoentropy
	3.1.2 Next-bit pseudoentropy to Z-seeded generator
	3.1.3 Z-seeded generator to PRG

	3.2 PRG via DOWF

	4 Statistically hiding commitments from distributional collision resistance
	4.1 SHC from inaccessible entropy generator
	4.1.1 SHC from an arbitrary block generator
	4.1.2 SHC from a constant block generator

	4.2 Accessible entropy generator from dCRHF
	4.3 SHC from distributional collision resistance

	5 Open problems and implications
	A Proof of Lemma 1.1.3

