
 v
ok

i
nr

u
K

yn
es

r
A

g

ni
t

u
p

m
o

C
d

u
ol

C
ni

 s
t

n
e

m
n

or
iv

n
E

n
oi

t
uc

ex
E

d
et

s
ur

T
 y

ti
sr

ev
i

n
U

otl
a

A

 1202

 ecneicS retupmoC fo tnemtrapeD

noitucexEdetsurT
duolCnistnemnorivnE

gnitupmoC

vokinruKynesrA

LAROTCOD
SNOITATRESSID

 seires noitacilbup ytisrevinU otlaA
SNOITATRESSID LAROTCOD 171 / 1202

ni stnemnorivnE noitucexE detsurT
 gnitupmoC duolC

 vokinruK ynesrA

fo rotcoD fo eerged eht rof detelpmoc noitatressid larotcod A
eht fo noissimrep eht htiw ,dednefed eb ot)ygolonhceT(ecneicS

ta dleh noitanimaxe cilbup a ta ,ecneicS fo loohcS ytisrevinU otlaA
 .ma21 ta 1202 rebmeceD 12 no loohcs eht fo 1UT llah erutcel eht

 ytisrevinU otlaA
 ecneicS fo loohcS

 ecneicS retupmoC fo tnemtrapeD
 smetsyS eruceS

Printed matter
4041-0619

N
O

R
DIC

 SWAN ECOLAB
E

L

Printed matter
1234 5678

 rosseforp gnisivrepuS
 dnalniF ,ytisrevinU otlaA ,nakosA .N rosseforP

 rosivda sisehT

 dnalgnE ,hcraeseR tfosorciM ,drevaP werdnA rotcoD

 srenimaxe yranimilerP
 dnalgnE ,yerruS fo ytisrevinU ,nehC nuqiL rosseforP
 dnaltocS ,needrebA fo ytisrevinU ,markA ajaR rotcoD

 tnenoppO

 dnalniF ,uluO fo ytisrevinU ,alittnailY akiM rosseforP

 seires noitacilbup ytisrevinU otlaA
SNOITATRESSID LAROTCOD 171 / 1202

 © 1202 vokinruK ynesrA

 NBSI 3-8160-46-259-879)detnirp(
 NBSI 0-9160-46-259-879)fdp(
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

:NBSI:NRU/if.nru//:ptth 0-9160-46-259-879

 yO aifarginU
 iknisleH 1202

 dnalniF

 tcartsbA
 otlaA 67000-IF ,00011 xoB .O.P ,ytisrevinU otlaA if.otlaa.www

 rohtuA
 vokinruK ynesrA

 noitatressid larotcod eht fo emaN
 gnitupmoC duolC ni stnemnorivnE noitucexE detsurT

 rehsilbuP ecneicS fo loohcS

 tinU ecneicS retupmoC fo tnemtrapeD

 seireS seires noitacilbup ytisrevinU otlaA SNOITATRESSID LAROTCOD 171 / 1202

 hcraeser fo dleiF ytiruces erawdraH

 dettimbus tpircsunaM 1202 rebotcO 92 ecnefed eht fo etaD 1202 rebmeceD 12

)etad(detnarg ecnefed cilbup rof noissimreP 1202 rebmevoN 21 egaugnaL hsilgnE

 hpargonoM noitatressid elcitrA noitatressid yassE

 tcartsbA
morf :sresu fo yteirav a yb desu ylediw gnieb ,suotiuqibu emoceb evah seigolonhcet duolC

meht ekam taht stfieneb rojam reffo sduolc ,tbuod a tuohtiW .snoitaroproc egral ot slaudividni
ycavirp atad 'sresu ,revewoH .ytilibailer dna ,ytilibaliava ,ytilibalacs ,yticitsale sa hcus ,evitcartta
ot evah sresu ,yltnerruC .duolc eht ni dessecorp si atad nehw snrecnoc niam owt era ytiruces dna
ylsuoicilam seitrap driht ot ti gnisolcsid ton ,yleruces atad rieht gnissecorp rof sredivorp duolc tsurt

duolc eht no desab si tsurt siht ylegraL .secitcarp ytiruces tseb gniylppa dna ,ekatsim yb ro
,esiwrehto ;ylsuoires ytiruces ekat ot sredivorp duolc fo tseretni eht ni si ti :noitatuper s'redivorp

fo snaem lacinhcet eht edivorp ton seod ledom tsurt siht revewoH .sremotsuc esol yam yeht
 .ecnarussa ytiruces

yrev a si tI .noitautis eht egnahc ot desu eb nac)sEET(stnemnorivnE noitucexE detsurT

duolc ot sEET gniylppA .tsoh etomer a no noitatupmoc eruces selbane taht ygolonhcet gnisimorp
eht fo noitatuper eht no yler ot deen regnol on sremotsuc :ledom tsurt eht segnahc stnemnorivne

ni edoc yrartibra etucexe ot ytiliba eht sedivorp EET a taht si nosaer niam ehT .redivorp duolc
ot elbissop si ti ,yllanoitiddA .rosivrepyh eht ro metsys gnitarepo gniylrednu eht morf noitalosi

dna erawdrah eht no desab si tsurt ehT .EET a edisni gninnur si edoc tahw yfirev yletomer
 .rerutcafunam erawdrah eht ot redivorp duolc eht morf devom si ti yllacinhcet

gniyolped dna snoitacilppa EET gnipoleved nehw segnellahc gniwollof eht sesserdda krow sihT

ytiruces EET gniniatniam elihw snoitacilppa elbalacs dliub ot woh ,tsriF .duolc eht ni sEET
,drihT ?secitcarp duolc gnitsixe htiw sEET desab-erawdrah elicnocer ot woh ,dnoceS ?seetnaraug

 ?duolc eht ni stnemerusaem ecruoser yhtrowtsurt edivorp ot sEET ezilitu ot woh

duolc rof snoitacilppA detsurT elbalacs owt gnipoleved era noitatressid siht fo snoitubirtnoc ehT
dna ,duolc eht ni noitargim enihcaM lautriV troppus ot krowemarf noitargim EET a ,stnemnorivne
tnatropmi na mrof snoitubirtnoc ehT .sEET no desab krowemarf tnemerusaem ecruoser eruces a
duolc rof seitinutroppo snepo taht duolc eht ni sEET fo tnemyolped rediw a sdrawot drawrof pets

ytiruces regnorts dna erawdrah no desab ecnarussa morf tfieneb ot stneilc rieht dna sredivorp
 .seetnaraug

 sdrowyeK noitatsetta etomer ,gnitupmoc duolc ,EET

)detnirp(NBSI 3-8160-46-259-879)fdp(NBSI 0-9160-46-259-879

)detnirp(NSSI 4394-9971)fdp(NSSI 2494-9971

 rehsilbup fo noitacoL iknisleH gnitnirp fo noitacoL iknisleH raeY 1202

 segaP 331 nru :NBSI:NRU/fi.nru//:ptth 0-9160-46-259-879

Preface

This dissertation is a result of the research conducted at the Department
of Computer Science at Aalto University under the supervision of Prof. N.
Asokan.

I would like to thank Prof. N. Asokan for his guidance, encouragement,
patience, and support during these years. Also, I would like to thank Prof.
Jörg Ott for giving me the opportunity to start the academic research at
Aalto University. This work would not be possible without the great help of
my advisor, Dr. Andrew Paverd. Our fruitful discussions on various ideas
made solving research problems look easy.

I would like to express my gratitude to my co-authors: Fritz Alder,
Klaudia Krawiecka, Prof. Mohammad Mannan, Dr. Michael Steiner.
Working with them was a great learning experience, I have received a lot
of help with implementation and testing the ideas in this work.

I thank my preliminary examiners, Dr. Raja Akram and Prof. Liqun
Chen, for agreeing to review this dissertation and providing valuable
feedback. I also thank Prof. Mika Ylianttila for being my opponent.

My gratitude goes to my colleagues who created a warm atmosphere at
work and many nice moments at informal events.

If it were not for my friends with all their support and kindness, complet-
ing the dissertation would be ten times harder. Adriana, Anastasiia, Asel,
Emilio, Gautam, Jayaprakash, Karthik, Kaustuv, Laurits, Lina, Maria,
Michail, Neelabh, Olga, Pramod, Riju, Rohit - you were always believing
in me, motivating and encouraging me.

Finally, I would like to express a warm word of appreciation to my family
and relatives. To my aunt, my grandmother, my father, and my mother -
thank you for looking after me, being there with me and for your love.

Helsinki, November 18, 2021,

Arseny Kurnikov

1

Contents

Preface 1

Contents 3

List of Publications 7

Author’s Contribution 9

List of Figures 11

Abbreviations 13

1. Introduction 15
1.1 Motivation . 15

1.1.1 Cloud computing 15
1.1.2 Trusted Execution Environments 16
1.1.3 TEE security . 17
1.1.4 TEEs on the server side 17

1.2 Research questions . 18
1.2.1 Scalable server-side TEE applications 18
1.2.2 Infrastructure support 19
1.2.3 Secure resource measurements 19

1.3 Contributions . 20
1.3.1 Chapter 3: Developing scalable TAs 20
1.3.2 Chapter 4: Migrating TAs 20
1.3.3 Chapter 5: Trustworthy resource measurements 20
1.3.4 Chapter 6: Cross-cutting concerns in using TEEs

in the cloud . 20

2. Background 23
2.1 Cloud computing . 23

2.1.1 Cloud service architectures 23
2.1.2 Resource measurements 24

3

Contents

2.1.3 Virtual machine migration 25
2.2 Trusted Execution Environments 25

2.2.1 Intel SGX . 26
2.2.2 SGX security . 28

2.3 Other hardware features 29
2.3.1 TPM . 29
2.3.2 TSX . 29

3. TEE assisted services 31
3.1 Protecting passwords in the web 32

3.1.1 Adversary model 32
3.1.2 Motivation . 33
3.1.3 Server-side TEE service 34
3.1.4 Browser extension 35

3.2 Cloud key store . 37
3.2.1 Motivation . 38
3.2.2 Application workflow and features 38
3.2.3 Cloud-hosted keystore novel features 39
3.2.4 CKS scalability. 39

3.3 Discussion . 40
3.3.1 Remote attestation 40
3.3.2 State Management 41
3.3.3 Conclusion . 42

4. Cloud infrastructure TEE challenges 43
4.1 Motivation . 44

4.1.1 Adversary model 44
4.1.2 VM migration . 44
4.1.3 Challenges of TA migration 44
4.1.4 Applications and persistent state. 45

4.2 Migrating TEEs with architectural state 46
4.2.1 Migration framework 46
4.2.2 Migratable sealing 47
4.2.3 Migratable counters 47
4.2.4 Migration process 48
4.2.5 Framework evaluation 48
4.2.6 Related work . 49

4.3 Discussion . 49
4.3.1 Trusted storage 49
4.3.2 Migrating to a trusted destination 50
4.3.3 Non-cooperative TEE 50
4.3.4 Conclusion . 51

5. TEE-supported cloud resource consumption measurements 53
5.1 Motivation . 54

4

Contents

5.1.1 Adversary model 54
5.1.2 Resource measurements 54

5.2 FaaS with TEE . 55
5.2.1 S-FaaS design . 55
5.2.2 Transitive attestation 56
5.2.3 TEE resource measurement 56

5.3 Discussion . 58
5.3.1 In-enclave sandboxing 58
5.3.2 Units of work . 58
5.3.3 Measurements granularity 59
5.3.4 Conclusion . 60

6. Discussion 61
6.1 Remote attestation . 61

6.1.1 Remotely attesting clients and servers 61
6.1.2 Transparency of the attestation 62
6.1.3 Transitive attestation 64

6.2 Scalability . 64
6.2.1 Horizontal explicit scalability 64
6.2.2 Scalability and security 65

6.3 Trust and risk management 65
6.3.1 Trusting a TEE manufacturer 65
6.3.2 Designing trusted applications 66
6.3.3 What if a TEE fails? 67

6.4 Conclusion . 68

References 69

Publications 79

5

List of Publications

This thesis consists of an overview and of the following publications which
are referred to in the text by their Roman numerals.

I Klaudia Krawiecka, Arseny Kurnikov, Andrew Paverd, Mohammad Man-
nan, N. Asokan. SafeKeeper: Protecting Web Passwords using Trusted
Execution Environments. In Proceedings of the 2018 World Wide Web
Conference, Lyon, France, pp. 349-358, April 2018.

II Arseny Kurnikov, Andrew Paverd, Mohammad Mannan, N. Asokan.
Keys in the Clouds: Auditable Multi-device Access to Cryptographic
Credentials. In Proceedings of the 13th International Conference on
Availability, Reliability and Security, Hamburg, Germany, pp. 40:1-40:10,
August 2018.

III Fritz Alder, Arseny Kurnikov, Andrew Paverd, N. Asokan. Migrat-
ing SGX Enclaves with Persistent State. In IEEE/IFIP International
Conference on Dependable Systems and Networks, Luxembourg City, pp.
195-206, June 2018.

IV Fritz Alder, N. Asokan, Arseny Kurnikov, Andrew Paverd, Michael
Steiner. S-FaaS: Trustworthy and Accountable Function-as-a-Service
using Intel SGX. In CCSW 2019: The ACM Cloud Computing Security
Workshop, London, UK, pp. 185-199, November 2019.

7

Author’s Contribution

Publication I: “SafeKeeper: Protecting Web Passwords using
Trusted Execution Environments”

Both student authors Klaudia Krawiecka and I are the main authors of
the paper. Klaudia Krawiecka and Andrew Paverd developed the original
idea. Klaudia Krawiecka implemented the client-side extension and the
server-side password hashing functionality and carried out the user study.
I designed and implemented the remote attestation functionality between
the server and the client, evaluated the performance of the system, and
wrote a few sections of the paper. I created the demo that was published
as an additional paper in the same conference. My overall contribution to
this research was approximately 50 per cent.

Publication II: “Keys in the Clouds: Auditable Multi-device Access to
Cryptographic Credentials”

I am the main author and the sole student author of the paper. All 4
authors came up with the original idea. Andrew Paverd and I designed
the main features of the application for storing private keys in the cloud. I
implemented the application, performed its evaluation from performance
and security perspectives, and wrote multiple sections of the paper. My
overall contribution to this research was approximately 90 per cent.

Publication III: “Migrating SGX Enclaves with Persistent State”

Both student authors Fritz Alder and I are the main authors of the pa-
per. Andrew Paverd and I developed the original idea and designed the
migration framework for Intel SGX enclaves. Fritz Alder implemented

9

Author’s Contribution

major parts of the framework. I implemented remote attestation between
the framework’s enclaves, participated in the evaluation of the framework,
and wrote multiple sections of the paper. My overall contribution to this
research was approximately 60 per cent.

Publication IV: “S-FaaS: Trustworthy and Accountable
Function-as-a-Service using Intel SGX”

Both student authors Fritz Alder and I are the main authors of the paper.
The original idea was proposed by Michael Steiner. Andrew Paverd, Fritz
Alder, Michael Steiner and I designed the resource measurement frame-
work for SGX enclaves. Fritz Alder implemented the key management,
memory measurements, and Javascript sandboxing parts of the framework.
I implemented the CPU measurements part using Intel TSX. Fritz Alder
and I performed the evaluation tests, with work equally split between us.
All authors participated in writing the paper. My overall contribution to
this research was approximately 50 per cent.

Language check

The language of my dissertation has been checked by the Institute of
Language Checks. I have personally examined and accepted/rejected the
results of the language check one by one. This has not affected the scientific
content of my dissertation.

10

List of Figures

2.1 Intel SGX attestation. 27

3.1 Password hash creation. Random salt protects against
rainbow tables attacks. 33

3.2 Password check at login. The salt values are stored along
with the hashes and used when computing the hash at
login time. 34

3.3 Figure 3 in Publication I. The states of SafeKeeper. 1. Safe-

Keeper is not supported or the attestation has failed. 2.
SafeKeeper is supported and the attestation has succeeded.
3. Protected input fields are highlighted. 36

4.1 Figure 1 in Publication III. Migration framework. 47
4.2 Figure 2 in Publication III. Migration process. TA’s data

is copied from the source to the destination by MEs over a
secure channel after a successful attestation. 48

5.1 Figure 2 in Publication IV. S-FaaS architecture. 57

11

Abbreviations

API Application Programming Interface

BFT Byzantine Fault Tolerance

CaaS Container-as-a-Service

CPU Central Processing Unit

DoS Denial-of-Service

EPC Enclave Page Cache

FaaS Function-as-a-Service

IaaS Infrastructure-as-a-Service

IAS Intel Attestation Service

HMAC Hash-Based Message Authentication Code

HSM Hardware Security Module

HTTP Hypertext Transfer Protocol

KDE Key Distribution Enclave

ME Migration Enclave

MEE Memory Encryption Engine

OS Operating System

PaaS Platform-as-a-Service

PKI Public Key Infrastructure

QE Quoting Enclave

RA Remote Attestation

13

Abbreviations

RAM Random Access Memory

RoT Root of Trust

SGX Software Guard Extensions

SGX Software Guard Extensions

SSA Save State Area

SaaS Software-as-a-Service

TA Trusted Application

TCB Trusted Computing Base

TEE Trusted Execution Environment

TLS Transport Layer Security

TPM Trusted Platform Module

TSX Transactional Synchronization Extensions

VM Virtual Machine

14

1. Introduction

1.1 Motivation

The focus of this dissertation is to study how Trusted Execution Environ-
ments (TEEs) can be utilized in cloud environments, what benefits they
provide, and what challenges arise when using them in the cloud setting.
In this section, I will outline the security and privacy concerns in cloud
computing and consider how TEEs can help address those concerns, along
with the various challenges that must be overcome.

1.1.1 Cloud computing

Cloud computing became ubiquitous for outsourcing the management
of IT infrastructures, due to the many advantages it provides including
elasticity, scalability, robustness, and availability [81]. The computing
resources in the cloud are virtualized, so it is easy to provision more
resources when the demand is high and reduce unnecessary consumption
when the demand is low. Failed components can be easily replaced due
to the abundance of resources. Being often geographically distributed,
clouds do not significantly increase the response time and delays because
the computing infrastructure can be located in the region closest to the
clients [2]. Thus the benefits of using cloud computing are considerable.

When using public clouds, data is processed remotely by the cloud
provider. Clients of the cloud providers necessarily share their data with
the cloud provider. The nature of the data depends on the required services,
but ultimately the cloud provider and its client make an explicit or an
implicit contract about how the data is processed and how it is protected [4].
The results of the data processing are then available to the client.

Sharing data with remote entities poses security risks. Privacy-sensitive
data, such as medical records, genome data, or other private information,
is crucial to protect from being accessed by unauthorized parties [1]. Usu-

15

Introduction

ally, cloud providers pay a lot of attention to securing their premises and
applying best security practices to data processing units [52]. However,
trusting the cloud provider itself is typically based on the assumption
that the cloud provider implements all the necessary measures to protect
against external attacks and it has to maintain its reputation and hence
cannot become an adversary [91].

By trusting the provider the clients make assumptions about what actions
the provider will do. In particular, it is assumed that the clients’ data will
not be shared with unauthorized third parties and the providers will
take care that the data is protected when it is processed. The providers
are assumed to follow best practices in ensuring the security of their
infrastructure. Finally, a provider should execute the computation that it is
requested to execute. Since the clients do not generally have any assurance
of what the provider will do, they have to trust the cloud provider based on
its reputation.

The reputational trust assumption includes two aspects. The first one is
that the cloud provider does not become a malicious adversary. Secondly,
the best security practices that protect both from external attackers and
insider threats must be in place. Hence, even if the cloud provider is not
malicious (i.e. by stealing user data or performing other activities that
can harm users in any way), it may not meet the security requirements by
not following best security practices (e.g. not updating the software stack
as often as needed) [58]. The second scenario is more realistic, but both
scenarios break the reputational trust.

1.1.2 Trusted Execution Environments

If the reputational trust assumption does not hold, the fundamental ques-
tion becomes how to establish trust in a remote entity. A promising ap-
proach is remote attestation (RA) in which a prover provides evidence to
a verifier about some property that is true on the prover side [40]. This
evidence could consist of a signed hash of the software running on the
prover’s device and this allows the verifier to make a trust decision about
the prover’s device software and hardware by verifying the signature. In
some realizations, the verifier needs to communicate with the hardware
vendor to verify the signature. In other types of architectures, the verifier
can validate the signature by itself.

The verifier needs to know that the RA evidence is trustworthy. A prover
should have a Root of Trust (RoT) – a small component that must be
trusted. If the verifier trusts the RoT, then the verifier and the prover
can build up a protocol to establish trust in other parts of the prover’s
system. In modern systems, the RoT is usually realized as a hardware
component and software protected by this component because hardware is
much harder to tamper with than software.

16

Introduction

To build trust starting from the hardware requires that the platform
contains special hardware that provides certain functionality to enable
security features that cannot be achieved by software only. An early
example of such platform security hardware is a Trusted Platform Module
(TPM) [57]. A TPM can store cryptographic keys and provides an API to
perform operations using these keys. It provides a way to record a tamper-
evident log of all software executed on the system (RoT for measurement).
It can also use this log during the remote attestation (RoT for reporting).
The collection of RoTs bound to the same piece of hardware is called a trust
anchor [97].

However, TPM-style attestation encompasses all software on the platform
and might make it difficult for a verifier to make a trust decision [46].
Besides, the software can contain vulnerabilities that are not known to the
cloud provider but can be used by adversaries.

More recently, TEEs have become prevalent [104, 80, 45]. They allow
the execution of an arbitrary piece of code in isolation from all other
software on the system. Applications running in a TEE are called trusted
applications (TAs). In TEE attestation, only TAs are attested, not the
whole software stack. It is easier to make trust decisions based on the
TEE attestation because that codebase that must be analyzed is smaller.
TEEs are becoming popular and there are cloud providers that support
them [83].

1.1.3 TEE security

As TEEs are becoming more widespread, many attacks against TEEs are
being discovered, as introduced in Section 2.2.2. In some cases, these
attacks undermine the security guarantees provided by current TEE im-
plementations. However, hardware manufacturers continue to implement
defenses against the attacks and improve the TEEs implementations con-
stantly ??. Future TEE implementations are likely to be secure against
these types of attacks.

1.1.4 TEEs on the server side

Traditionally, TEEs were used on the client side [112, 44]. An example
scenario for TEE usage on the client side is the following. A device with
a TEE is remotely attested to make sure that it has a genuine hardware-
based TEE and is running a specific TA. For example, a bank can attest a
client’s smartphone and only after a successful attestation send a secret
authentication token to the bank’s TA on the client’s device. Later, the
client presents the token to the bank to authenticate itself.

In this work, I explore the idea of using TEEs in the context of cloud
computing. The ability to securely execute arbitrary code opens new possi-

17

Introduction

bilities for cloud applications, but its realization brings various challenges
that give rise to the following research questions.

1.2 Research questions

In this dissertation, I address the challenges and contribute to the research
in the area of supporting TEEs on the cloud provider side. This dissertation
focuses on the following three important aspects of using TEEs in the
context of cloud computing.

1.2.1 Scalable server-side TEE applications

There are two main considerations when building scalable server-side TEE
applications: the scalability of the remote attestation and the scalability of
the application itself across multiple TEEs.

Attestation scalability. Remote attestation is typically designed for
client-side scenarios, where there is one verifier that attests many provers.
In the example above, the bank is the verifier and the client devices are the
provers. If the verifier needs to communicate with the hardware vendor to
validate the attestation presented by the client devices (like, for example,
in case of Intel SGX - see Section 2.2.1), this is possible, because one verifier
can establish a relationship with the hardware vendor. When attesting
server-side TEEs, the clients of the cloud provider or the users of the
cloud-hosted application are the verifiers. Thus, there are many verifiers
and it is not feasible for all verifiers to establish relationships with the
hardware vendor, if this is needed to perform the attestation. Also, due to
deployability reasons, the attestation protocol should be as lightweight as
possible.

Application scalability. One of the main benefits of using the cloud
infrastructure is achieving scalability by running a computation on many
machines in parallel [120]. Hence the TAs should be developed to en-
able this type of horizontal scalability. When designing scalable TAs the
security guarantees of the application should not be undermined, espe-
cially when applications are stateful because the replication of state might
lead to undesired effects (such as double transactions in case of the bank
application). Often the coordination between TEE instances should be
explicit.

Attestation is crucial to establish trust in a remote entity, and scalability
is important for cloud-based applications. The research question that is
being investigated is:

18

Introduction

Research Question 1: How to build scalable cloud-based TEE appli-
cations while still providing strong assurance via remote attestation?
(RQ1)

1.2.2 Infrastructure support

Deploying TEEs on the cloud provider side encounters infrastructure
challenges because the virtualized nature of the cloud conflicts with binding
to the hardware trust anchor. Cloud practices such as virtual machine
(VM) migration assume that the software can be moved between different
physical machines seamlessly [89]. In cloud environments, migration is an
essential technology that allows cloud providers to balance the load and
provide robustness guarantees.

However, the TEE functionality breaks if the software is moved as is
because TAs are bound to the hardware trust anchor. When a VM with
a TA is migrated to another physical machine, the trust anchor changes
and the TA’s data cannot be accessed by the TA anymore. The research
question to that end is:

Research Question 2: How to reconcile hardware-based TEEs with
existing cloud practices such as VM migration? (RQ2)

1.2.3 Secure resource measurements

One important area of cloud computing is resource usage measurement [107]
because the clients are billed based on the amount of resources they use.
Currently, the measurements are provided by the cloud provider and clients
have to rely on the provider’s reputation to trust the measurements. If the
cloud provider is not trusted to measure the resource consumption of the
applications correctly, a mechanism to do it securely should be deployed.
This applies especially to smaller cloud providers or new entrants into the
cloud provider market that might not have enough time or resources to
establish the reputational trust. In certain scenarios like edge computing
where individuals share their spare computational resources, there is no
single entity to trust to begin with [99].

TEEs can be utilized to not only protect the confidentiality of clients’
data and the integrity of clients’ computation, but also to support other
aspects of cloud computing, such as resource measurements. I investigate
the following research question:

19

Introduction

Research Question 3: How to utilize TEEs in the cloud to produce
trustworthy resource usage measurements? (RQ3)

1.3 Contributions

Table 1.1 describes the relationships between research questions, chapters
and publications.

1.3.1 Chapter 3: Developing scalable TAs

To answer RQ1, Publication I and Publication II present the design,
implementation, and evaluation of two applications that use TEEs in the
cloud. The differences between server-side TEE attestation and client-side
TEE attestation are analyzed. This leads to designing a novel server-side
TEE attestation protocol presented in Chapter 3 that takes into account
scalability requirements when TAs are deployed in the cloud.

Both applications developed in Publication I and Publication II share
common design principles for scalable TAs. These are general principles
that can be applied to other cloud-based TAs as discussed in Chapter 3.

1.3.2 Chapter 4: Migrating TAs

To answer RQ2, Publication III focuses on the challenges of migrating
TAs in cloud environments since VM migration is a crucial functionality for
cloud providers. The publication presents a framework and protocols for
migrating VMs containing TEEs. Chapter 4 summarizes this framework
and shows how it is a key enabler for using TEEs in the cloud.

1.3.3 Chapter 5: Trustworthy resource measurements

Publication IV serves to answer RQ3 by describing the design, implemen-
tation, and evaluation of a novel resource measurement framework using
TEEs. Although this publication considers the specific case of Function-as-
a-Service (FaaS), the underlying principles can be used to build trustwor-
thy resource measurement for other types of outsourced computation as
explained in Chapter 5.

1.3.4 Chapter 6: Cross-cutting concerns in using TEEs in the
cloud

Building on the above contributions, Chapter 6 summarizes the disserta-
tion results. It discusses cross-cutting concerns of using TEEs in the cloud

20

Introduction

setting: server-side remote attestation, developing scalable secure applica-
tions, trust and risk management for hardware security technologies. The
chapter analyses future challenges and discusses the directions for future
work.

Table 1.1. Dissertation structure.

Chapter 3 Chapter 4 Chapter 5
Publication I RQ1, RQ2
Publication II RQ1
Publication III RQ2
Publication IV RQ3, RQ1

21

2. Background

This dissertation focuses on the use of Trusted Execution Environments
(TEEs) technologies in cloud computing. In this chapter, I give the back-
ground for the topics and discuss work related to the use of TEEs in cloud
computing, the challenges involved, and the possible solutions to those
challenges that have been proposed.

2.1 Cloud computing

Cloud computing in general means that there is a cloud provider who
owns computation resources and allows clients to rent them. Cloud com-
puting emerged as a result of rapid advances in virtualization technology
(both software and hardware) that enable the execution of many virtual
machines (VMs) on the same physical host. Cloud providers build data
centers and provide services at scale. The benefits to cloud providers’
clients are many-fold: there is no need to maintain the infrastructure,
while robustness and scalability are improved. Cloud providers’ clients
provide services to end users.

2.1.1 Cloud service architectures

The different types of cloud provider services are Infrastructure-as-a-
Service (IaaS), Platform-as-a-Service (PaaS), Software-as-a-Service (SaaS),
and more recently, Container-as-a-Service (CaaS) and Function-as-a-Service
(FaaS) [16].

At the base level, IaaS cloud computing serves clients with bare comput-
ing nodes [5, 49, 82, 43]. This means that the clients are provided with
the VMs and operating systems (OSes), but apart from that the rest of the
software stack should be maintained by the clients themselves. On one
hand, IaaS gives the clients a lot of flexibility in configuring the VMs and
applications, but on the other hand, the full stack software management is
the client’s responsibility.

23

Background

In the PaaS architecture, in addition to VMs and OSes, the cloud provider
manages the platform for deploying applications [64]. This can include
the software runtime stack for a particular programming language, web-
servers, load balancers, etc. The clients can focus on developing applica-
tions without the need to maintain the software, though the clients depend
on the cloud provider maintaining the stack and the applications should
be developed in a certain fashion.

The SaaS architecture means that the cloud provides an application for
end users to work with [86]. The users can configure applications but
cannot install their own software in the cloud.

CaaS and FaaS architectures have recently emerged. CaaS is similar to
IaaS but instead of VMs, the cloud provider establishes an infrastructure
for launching containerized applications [53]. Containers can be seen as a
lightweight alternative to VMs where isolation happens on the OS kernel
level, and applications share the kernel but are isolated into namespaces.
In FaaS, the clients develop functions to be executed by the end users [39].

A common trend in cloud computing is to move towards microservices
instead of monolithic applications [94]. A microservice is a part of the
applications that has a well-defined functionality and scope and exposes
Application Programming Interface (API) to interact with it. The mi-
croservice architecture allows to develop, deploy and scale microservices
independently. A microservice is often stateless, so that new instances can
be easily deployed and terminated.

2.1.2 Resource measurements

Resource measurements are essential for cloud computing since they usu-
ally form the basis for billing. These measurements must be trustworthy
and accurate from both the client’s perspective and the cloud provider’s
perspective. Often clients must rely on the reputational trust of the cloud
provider to accurately perform resource measurements.

In the IaaS architecture, the cloud provider tracks the uptime of the VMs,
and the clients can verify the reported resource measurements by calculat-
ing the uptime themselves. However, verifying that the VM CPU frequency
is as manifested by the cloud provider is more challenging. Besides, for
example, cloud providers might deploy VMs in such a way that the required
cumulative number of CPUs is more than the physical machine actually
has. This can result in underperforming VMs on high loads, i.e. when
all VMs are performing intensive computations and demand a lot of CPU
resources.

In the PaaS architecture, resource accounting focuses on application
resource consumption, so it is more granular than in the case of IaaS.
The clients need to trust the cloud provider to run the applications on the
machines with characteristics claimed by the provider.

24

Background

In the SaaS scenario, the cloud provider is interested in providing a
good user experience, so there is an incentive for the provider to run the
application at a high performance level. Clients cannot verify performance
characteristics and have to rely on the reputational trust model.

In the FaaS architecture, the FaaS functions can be small snippets of code
and one execution might not consume a lot of resources, so the resource
accounting mechanism should be precise and at a fine granularity. Cur-
rently, FaaS solutions report resources consumed at a coarse granularity
(see Table 1, Publication IV).

2.1.3 Virtual machine migration

VMs need to be moved between physical machines due to various reasons,
such as load balancing, machine failures, or performance requirements [65].
Non-live migration stops the VM on one physical host and starts it on the
destination physical host [122].

During live migration, the VM does not need to be stopped [89]. During
the migration procedure, the hypervisor reads the VM’s memory and copies
it and the CPU state of a VM from one physical machine to another. During
the copy process, the modifications to the memory pages are monitored.
When only modified pages remain, the machine is paused and they are
copied as well. This procedure minimizes the downtime and makes the
live migration transparent to applications running inside the VM.

The migration is controlled by the hypervisor [113, 78], so to copy the
VM memory, the hypervisor runs at a higher privilege level that allows it
to read the VM memory and CPU state.

2.2 Trusted Execution Environments

Trusted Execution Environment (TEE) is a technology that allows exe-
cuting workloads in a securely isolated execution environment [10, 41].
Other applications, the OS, and the hypervisor do not have access to the
applications running inside TEEs. Application memory is encrypted and
the access is restricted on the hardware level. The code that is executed
inside a TEE is called a trusted application (TA). The TEE and the TA
form a Trusted Computing Base (TCB). Typically, the TCB needs to be
minimized to reduce the attack surface.

Attestation is a process of verifying the state of a remote host. Two
parties participate in attestation: a prover and a verifier. The goal of
the verifier is to identify what software (and hardware) is running on the
prover. The prover generates signed evidence (a measurement) that it runs
a particular software. The measurement is bound to the Root of Trust
(RoT) – the part of the system that has to be trusted in the first place and

25

Background

on top of which the rest of the trustworthiness is built up. The verifier
attests the prover by verifying the signature of the measurement.

In software-based attestation, the RoT is not protected by the hardware.
For example, Google provides a framework called SafetyNet for Android-
based devices that allows application developers to verify that the ap-
plication is running on a device that was previously approved [54]. In
hardware-based attestation, the RoT is bound to the hardware. In this
dissertation, when the term remote attestation (RA) is used, it refers to
hardware-based attestation unless mentioned otherwise.

Sealed storage is a functionality provided by TEEs to enable non-
volatile secure storage of TA data. TAs request sealing and unsealing
operations to store and load data in encrypted form and only the TA that
has sealed some data will be able to unseal it later.

Monotonic counters are integer counters that can only be increased.
I.e. if at some point in time the value of a monotonic counter is n then it
is guaranteed that later it will never become smaller than n. Monotonic
counters are used to protect sealed data from replay attacks (see 2.2.2).

2.2.1 Intel SGX

The publications in this dissertation use Software Guard Extensions (SGX),
one of the TEE realizations by Intel, because it is widely available and
suitable for research. SGX provides the following main features:

• isolated execution;

• remote attestation;

• sealed storage;

• monotonic counters.

The isolated execution is based on a concept called a secure enclave [41].
An enclave is part of the application that is protected by SGX. Enclaves
can only be run in unprivileged CPU mode (ring 3). Each enclave has an
identity MRENCLAVE calculated as a hash of its code. The same enclaves
have the same MRENCLAVE. An enclave is also signed by the enclave’s
author and the hash of the author’s public key is called MRSIGNER.
Enclaves of the same author have the same MRSIGNER.

The enclave memory pages are allocated from the Enclave Page Cache
(EPC). The CPU prevents non-enclave code from reading EPC memory
and the Memory Encryption Engine (MEE) encrypts EPC memory when it
leaves the CPU boundary.

The CPU securely handles the transitions of the execution from the

26

Background

untrusted parts of the system to the enclave and vice versa. The transitions
can be synchronous when the code itself requests the transition via special
SGX CPU instructions: EENTER and EEXIT. The state of the CPU is
saved into the Save State Area (SSA) at EEXIT and restored from SSA at
EENTER. The OS can interrupt the enclave execution at any time and in
this case, the transition is asynchronous, but the CPU handles the SSA in
the same way.

In SGX, there are two types of attestations: local and remote. Local attes-
tation occurs between enclaves running on the same physical host. Remote
attestation (see Figure 2.1) is based on the local attestation between the
enclave that is being attested and a special enclave, called the quoting
enclave (QE). The measurement of an enclave is called a report [7]. The
QE attests the enclave locally and signs the reports with a private key
derived from a secret embedded into the hardware by the manufacturer,
producing a quote. The quote can be verified by sending it to the Intel
Attestation Service (IAS).

Intel Attestation Service

Verifier

Prover Enclave

Quoting Enclave

1. Local Attestation

2. Quote Q 3. Quote Q

4. Verification result

Figure 2.1. Intel SGX attestation.

SGX sealing is implemented in the following way. The enclave code
requests the sealing keys from the CPU. The keys can be based on MREN-
CLAVE or MRSIGNER. If the sealing is performed based on MRENCLAVE,
only the same enclave will be able to unseal the data. The data sealed with
keys based on MRSIGNER can be unsealed by other enclaves of the same
author. This can be used, for example, when there is a new version of the
enclave that needs to access the data sealed by the previous version.

SGX supports 256 monotonic counters per enclave that are implemented
as virtual counters in a special platform enclave. Since the monotonic
counters rely on writing to non-volatile memory, the increment rate is
limited by the firmware.

27

Background

2.2.2 SGX security

Security guarantees (confidentiality and integrity) provided by Intel SGX,
in theory, would protect the code and data of the enclave from a malicious
application, OS, or hypervisor. However, when designs are implemented in
real systems, the theoretical assumptions underlying the design may not
hold. This has resulted in many attacks discovered against SGX.

Side-channel attacks. One class of attacks includes side-channel at-
tacks that utilize implementation weaknesses to retrieve the information
that otherwise should not be available to the attacker. For example, cache
side-channel attacks are based on the timing differences when data is
cached compared to when it has to be fetched from the memory [55]. Lee
et al. [75] present another type of side-channel attack that infers the con-
trol flow inside an enclave via branch shadowing. Typical mitigation of
side-channel attacks is to randomize access patterns [25].

Speculative execution attacks. Another wide range of attacks is
based on the transient execution feature of modern processors. In short,
transient execution means that some execution paths are executed in
advance to improve performance. If a certain path would not be needed
in the final result, then the results of the computation along this path
are discarded. However, before they are discarded they might be leaked
to the attacker through a side-channel. One example of these attacks
is Meltdown [79], where the transient execution results are discarded
because an exception occurs and a side-channel is cache-based. Another
broad class of transient execution attacks is called Spectre Attacks [73]
and its variants, which have been found to attack against Intel SGX as
well [35, 119].

Fault-injection attacks. Another class of attacks is based on faults
injection in the computation. Probably the most well-known attack of this
type is a row hammer attack against volatile memory [106]. Fault injection
in TEEs can lead to modifying the results of cryptographic computations.
Plundervolt [87] utilizes voltage drops to bypass the security guarantees
of Intel SGX.

Rollback, replay, and fork attacks. A rollback attack occurs when a
system is reverted to an old state while preserving the confidentiality of the
system. A replay attack occurs when a previously executed transaction is
executed again. A fork attack occurs when the system instance is duplicated
for malicious purposes. These attacks can result in an incorrect state of
the system (for example, if it is a bank account, then it has to be protected
from these types of attacks, otherwise some transactions might execute
twice or be deleted).

It is important to make sure that applications do not introduce new
attack surfaces. In particular, rollback and replay attacks on TEEs must
be prevented by utilizing monotonic counters. The value of the monotonic

28

Background

counter must be sealed along with the sealed data so that the enclave can
detect when the data provided for unsealing is stale.

When developing TAs presented in this dissertation, side-channel, specu-
lative execution, and fault-injection attacks were not included in the model,
because they can be considered flaws in implementation. Intel provided
mitigations against the attacks [67] and correct implementations that
are resistant to side-channel attacks are possible. TAs presented in this
dissertation are based on Intel SGX but in general, they could be developed
for other TEE implementations.

2.3 Other hardware features

2.3.1 TPM

Trusted hardware is a common term that covers various technologies, such
as Trusted Platform Modules (TPMs) and TEEs.

A TPM contains hardware-protected keys and can perform cryptographic
operations using those keys [57]. A TPM contains various private keys
that serve as the basis for verification procedures. Like TEEs, a TPM
serves as an RoT as well. Results of the TPM cryptographic operations can
be verified to originate from a particular TPM based on the RoT.

TPMs were proposed to be used in cloud environments. Bleikertz et
al. [22] describe Cryptography-as-a-Service where TPM functionality is
provided by the cloud. Memoir [8] presents a rollback protection framework
for TPMs. Van Dijk et al. [118] describe an offline storage system that
utilizes TPMs to detect rollback attacks. Danev et al. [42] describe a
migration framework for virtualized TPMs.

2.3.2 TSX

Intel Transactional Synchronization Extensions (TSX) [62] are a set of
CPU instructions designed to optimize parallel workloads. In TSX, a
thread can start a transaction instead of relying on mutexes and locks for
thread synchronization. Memory addresses that are read from during the
execution of the transaction form its read set. Memory addresses that are
written to during the execution of the transaction form its write set.

If one thread modifies memory that corresponds to a read set of another
thread, then the transaction is aborted. Accordingly, if one thread tries to
read the memory from another thread’s write thread, the transaction is
aborted.

This forms a communication channel between the threads which can be
utilized for various notification events from one thread to another. One

29

Background

application of this communication channel is to protect SGX enclaves from
side-channel attacks [116, 108].

30

3. TEE assisted services

The main motivation for introducing TEEs in the cloud is to enhance the
security of cloud applications. There are two broad categories of cloud
applications that can benefit from the use of TEEs: existing applications
where adding TEE support can improve the security guarantees that the
applications provide, helping to defend against attacks by a malicious or
compromised cloud provider; and new applications that can be developed
only because the data is processed inside TEEs.

For example, an existing web application that requires users to authen-
ticate needs to process users’ passwords. If the cloud provider is not
trusted, then introducing a TEE would allow users to attest the password
processing TA to make sure that the passwords are not leaked.

New applications can heavily rely on the TEE to protect sensitive user
data; without a TEE, a comparable level of security cannot be provided
cost-effectively. For example, managing users’ private keys with multiple
devices is challenging. If a device is lost or compromised, the keys need to
be revoked. Users’ private keys can be stored in the cloud and users would
request cryptographic operations using those keys. These keys are very
high-value assets and users might not entrust them to the cloud provider
without additional protection. Without a TEE, an application that stores
users’ private keys in the cloud would rely on cryptographic algorithms
(e.g. homomorphic encryption) with very low performance [47].

Both existing applications and new applications share common design
patterns. In particular, a common workflow is the following:

1. A user makes a trust decision about the TA via remote attestation (RA).

2. The user and the TA establish a secure channel between themselves.

3. The client sends input, requests operations from the TA, and gets re-
sults.

When developing TAs, the common challenges are scalability, minimizing

31

TEE assisted services

the Trusted Computing Base (TCB), and side-channel resistance.
Scalability. This chapter addresses RQ1: how to build scalable cloud-

based TEE applications while still being able to provide strong assurance
via RA? Taking scalability considerations into account when building TAs
has to be done in a way that does not compromise security. In particular,
RA guarantees must remain intact. In certain scenarios, this means that
the RA protocol needs to be re-worked. Other scalability aspects such as
synchronizing the state between the TA instances are discussed in this
chapter as well.

Minimizing TCB. The TCB should be minimized because it reduces
the attack surface and allows verifying the code that needs to be trusted
more thoroughly [110]. There have been proposals to execute entire ap-
plications inside a TEE [105]. While this approach does protect the code
and data from the cloud provider, and does not require developing parts
of the application to work specifically inside a TEE, its main limitation is
the large TCB. Without being able to verify the correctness of the whole
application, it is not possible to ensure the security guarantees when the
application is run inside a TEE because the application’s behavior is not
determenistic and it is not clear whether the application contains security
vulnerabilities.

In this chapter, the TAs are developed from scratch, with best security
practices in mind. However, the formal proof of TAs correctness is left out
of scope.

Side-channel resistance. Side-channel resistance means that the op-
erations performed inside a TEE should not leave traces outside of the TEE
that could lead to potential information leakage [26, 92]. As discussed in
Section 6.3, the security risks for new applications may be higher than for
existing ones, because new applications may solely rely on the functionality
provided by a TEE for security, while the existing applications may use
TEEs only for additional security features.

This chapter focuses on two examples of TAs and describes common
design patterns when building scalable TAs for the cloud. Also, the impli-
cations cloud-based TAs have on the RA process are discussed.

3.1 Protecting passwords in the web

In this dissertation, I focus on Intel SGX as one implementation of TEEs.

3.1.1 Adversary model

The adversary model for TAs in the cloud assumes that the cloud provider
is not trusted. The cloud provider’s hypervisor, host OS and other software
running along with the TA on the same machine can be tampered with

32

TEE assisted services

by an adversary. Network communications can be monitored and altered
by an adversrary. The adversary model does not include Denial-of-Service
(DoS) attacks, because the cloud provider can always stop the TA execution.

3.1.2 Motivation

Let us assume that there is a cloud application that performs some op-
erations on privacy-sensitive data. In SGX, system calls involve con-
text switches that are expensive operations from a performance point of
view [115]. Legacy applications might perform a lot of system calls, so
porting unmodified legacy applications to run inside a TEE would drasti-
cally harm the performance. The goal of enhancing the application is to
isolate parts of it that are directly working with sensitive data into TAs and
establish interfaces between the isolated secure parts and the rest of the
application. An example of such a design is presented in Publication I,
where I study the case of enhancing an existing application.

The application concerns password-based authentication on the web.
Password-based authentication is the most common form of authentication
mechanisms due for several reasons [23]:

• Strong passwords provide good protection for user accounts.

• Passwords are easy to change in case of compromise.

• The mechanism is understood by most users.

Plain text passwords are generally not stored on the servers of web
service providers. Instead, the passwords are hashed and the password
hashes are stored along with the salt values (Figure 3.1). At login, the salt
value is extracted from storage, the password hash is calculated and then
compared to the value from storage (Figure 3.2).

Storage
One-way function

Salt

Password
Hash

Figure 3.1. Password hash creation. Random salt protects against rainbow tables attacks.

33

TEE assisted services

Storage
One-way function

Salt

Password Comparison

Figure 3.2. Password check at login. The salt values are stored along with the hashes and
used when computing the hash at login time.

Salt values are used to protect against attacks using pre-computed rain-
bow tables on leaked password hashes: they ensure that even if two users
have the same password, their corresponding salted hashes will be differ-
ent. Hence the attacker has to mount a brute-force attack against each
user, rather than trying the guesses against the whole database at once.
However, since the salts are usually stored with the hashes, an adversary
can perform a brute-force attack if they obtain a database of password
hashes [98]. Obtaining a user password allows the adversary to gain
access to other accounts of the same user because passwords are often
re-used [68, 63].

Password databases are often stolen [121, 100]. Passwords can also be
obtained via phishing attacks, where the user is tricked into entering
the password on a malicious website [9]. Hence, a better mechanism for
protecting user passwords is desirable. The challenge is how to strengthen
password-based user authentication with minimal deployment cost.

3.1.3 Server-side TEE service

In Publication I, we improve the authentication application in two as-
pects: we use a TEE on the server to replace hashing of the password by
computing a keyed one-way function; we encrypt the password on the user’s
side via a browser extension and send it directly to the TEE after attesting
the TA. This improved authentication framework is called SafeKeeper.

On the server, the TA computes a keyed one-way function of the password
and the resulting value is stored in the database. The TA inputs are
the user password and the salt value, and the output is the Message-
Authentication Code (MAC) of the password. Since the key is protected
by the TEE, an adversary who obtained the database cannot perform a
brute-force attack to get the original passwords. The SafeKeeper application
has a small TCB and its correctness can be verified formally.

Secure channel. Performing a single cryptographic operation could

34

TEE assisted services

be done by the TPM as well. The advantages of using a TEE over a
TPM include an end-to-end secure channel and additional features such
as a rate-limiting mechanism, that can be implemented because TEEs
are programmable. Typically, the secure channel is established via a
Transport Layer Security (TLS) connection. In the case of TPMs, the TLS
termination happens before a call to the TPM [32]. With TEEs, the TLS
termination can happen inside the enclave, improving the security of the
communication [13, 72].

Rate-limiting mechanism. Since the adversary can also launch the
TA, the TA itself can act as a helper in brute-forcing the passwords. If the
TA computes MACs without any rate limits, the attacker would be able
to use it to obtain the passwords. Hence, the rate at which the MACs are
computed should be limited.

From the deployability perspective, the application inputs must remain
the same as for the original password hashing mechanism because then
the TEE version can be easily deployed by substituting the call to the
hashing algorithm with the call to the TA. These inputs are a password
and a salt value. Hence, the rate limit cannot be based on the usernames,
since they are not part of the input to the TA.

In Publication I, a novel idea is introduced to address this problem: to
limit the rate of computing MACs based on the salt value. Indeed, the salt
value should be randomly chosen and be unique to a particular user, so it
can be seen as a replacement for the username. If the adversary generates
the same salt values for all the users, it only limits the number of attempts
further.

A related work by Birr-Pixton [21] suggests using TEEs to perform
password hashing. SafeKeeper protects against rogues servers by utiliz-
ing remote attestation and offline attacks by introducing a rate-limiting
mechanism.

3.1.4 Browser extension

On the end user’s side, users can either be notified that the server sup-
ports TEE-protected password MACs, or the interaction with the TA can
be transparent. From the usability perspective, it would be better if no
user interaction was required. If users are not aware of the TEE on the
server side, then legitimate servers still benefit from utilizing SafeKeeper

to protect users’ passwords (hashes are substituted by MACs resulting
from the MAC function). However, this allows servers to claim that they
support SafeKeeper without users being able to verify that, since the verifi-
cation has to be done via remote attestation (RA) and web browsers do not
support it. Hence, if there is no user-side software that supports RA, users
might be giving their passwords to rogue servers, that either mishandle
the passwords or were broken into and the password-handling code was

35

TEE assisted services

replaced by an adversary.
User awareness is achieved by the SafeKeeper browser extension that

identifies if the website supports SafeKeeper via RA. The design of the

Figure 3.3. Figure 3 in Publication I. The states of SafeKeeper. 1. SafeKeeper is not
supported or the attestation has failed. 2. SafeKeeper is supported and the
attestation has succeeded. 3. Protected input fields are highlighted.

extension was driven by the requirement to secure against malicious
websites.

If the RA fails or the website does not support SafeKeeper, the extension
displays a corresponding icon (the first icon in Figure 3.3). If the RA
succeeds, the extension shows a lock icon, that, on being clicked, highlights
the fields on the website that will be sent to the TEE. A phishing site can
claim that it supports SafeKeeper and can even successfully pass the RA.
However, instead of encrypting the text from the password field for the
TEE, it could encrypt some other field, and obtain the clear-text password.
That is why the highlighting of the field that is going to be sent to the TEE
is necessary.

If a malicious website attempts to spoof the highlighting, it can be de-
tected by repeatedly clicking on the SafeKeeper icon because when the icon
is clicked again the highlighting is disabled. Spoofing prevention could be
also achieved by disabling Javascript on the page but that would harm
usability.

Usability, performance, deployability. Security solutions should al-
ways take usability and performance requirements into consideration.
Testing SafeKeeper on the server side showed that a TEE computes pass-
word MACs at a similar rate as the original hashing, and sometimes even
faster. This can be explained by the fact that the hashing algorithms are
slow by design to prevent brute-force attacks [98]. There is no need to slow
down the MAC computation inside the TEE because without knowing the
key used to compute the MAC, it is not possible to perform a brute-force
attack. So SafeKeeper provides adequate performance.

36

TEE assisted services

From the deployment perspective, SafeKeeper can be deployed incremen-
tally, because it only requires substituting one function call to execute a TA
function instead of a normal hashing function. If not all the cloud provider
machines support SGX, then the ones without SGX support can still rely
on the normal hashing and upgrade later.

User study. The browser extension was the subject of a user study
with 86 participants (Section 6.2 in Publication I) from 18 to 39 years
old. The basic demographic information (Section 6.2.1 in Publication I)
about participants is presented in Table 3.1. One group consisting of
64 participants was given instructions on how to use SafeKeeper in the
browser and asked a question if the website provides extra security for
the password. The results showed that 80% of the users understood and
managed to use the browser extension successfully. The control group of
22 users who were not given any instructions at all managed to use the
browser extension to detect if the webserver supports SafeKeeper in 74%
cases. The user study showed that the SafeKeeper browser extension is
usable by a majority of the users.

Table 3.1. User study participants demographic information.

Gender
Male 70%

Female 30%

Education
Education unspecified 14%

High school diploma 9%

Bachelor’s degree 41%

Master’s degree 34%

PhD’s degree 2%

3.2 Cloud key store

SafeKeeper is an example of using cloud-hosted TEEs to strengthen the
security of an existing usage scenario. But cloud-hosted TEEs can also
enable applications for new usage scenarios that cannot be realized other-
wise with the same level of security and performance. An example of such
an application is the storage of private user keys in the cloud as presented
in Publication II. Storing users’ private keys on the server without TEE
would not be possible if the cloud provider is not trusted. TEEs provide
sufficient security guarantees to implement the centralized storage of user
private keys.

37

TEE assisted services

3.2.1 Motivation

The main motivation for storing user private keys in the cloud is that there
are usually multiple devices from which the user wishes to use the keys.
Having multiple copies of private keys on multiple devices has security
implications because it increases the probability of losing a private key.
One solution is to use a hardware token [126] but it needs to be always
with the user and if it is lost the key on the token must be revoked. Another
solution is to copy the private keys on to all the devices of the user. But
if there are multiple copies of a private key on user’s devices, then if one
device is lost or compromised the key has to be revoked. Moving the key
to a newly acquired device is difficult as well because it must occur over
a secure channel and the key should not leak during the process. Storing
private keys in the cloud is beneficial both from usability and security
perspectives.

Using TEEs to store private keys was proposed in [33]. Barbican [33] is
a key-management solution for VMs in the cloud utilizing TEEs to seal
cryptographic keys.

Cloud Key Store (CKS), introduced in Publication II, is the cloud ap-
plication that stores user private keys and allows users to perform crypto-
graphic operations, such as signing or decrypting, using those keys. Each
user is authenticated with their credentials: a username and a password.
Essentially, CKS allows performing cryptographic operations that require
strong secrets (such as private keys) with access control based on a weak
secret (the password). For the end users, working with CKS looks the same
as working with private keys on a smartcard.

3.2.2 Application workflow and features

The session with the CKS server starts with RA. When the end user’s device
verifies the quote and establishes a secure channel, it sends the username
and the password to the server. The user also sends the requested operation
and the required input for the operation. The CKS TA authenticates
the user, and if the authentication succeeds, the CKS TA performs the
operation and returns the results to the user.

The authentication attempts are rate-limited, similar to the SafeKeeper

rate-limiting mechanism. In CKS, the rate-limiting can be based on the
username because the protocol between the end user and the server is
developed from scratch. The TA gets both the username and the password
and makes the authentication decision based on that.

38

TEE assisted services

3.2.3 Cloud-hosted keystore novel features

Storing private keys in the cloud enables new features that are not possible
to implement when the keys are stored locally. These features are: auditing
the key usage and key delegation.

Audit. The key usage logging is an important feature of CKS. Whenever
a cryptographic operation is performed, CKS logs it so that it can be
audited later. This helps to detect password compromises and allows to
change the password in case of compromise. Another advantage of storing
keys centrally is the ability to log all operations, since they are performed
on the server. Also, in case of password compromise, only the password
needs to be changed and the keys do not need to be revoked.

Key delegation. Since all the users are managed centrally, implement-
ing other features such as key delegation is easy to enable. A user can
delegate the use of their private key to another user and limit the usage
by specifying a key usage policy. The policy can specify a period and/or the
allowed number of uses.

3.2.4 CKS scalability.

One instance of the CKS TA might not be enough to handle the load on the
server. If there are several instances, they should be aware of each other,
otherwise an attacker would be able to increase its password-guessing
rate by running multiple instances of CKS. Indeed, assuming two CKS
instances serve the same set of users, the rate-limiting cap should be split
between the two. When a new CKS instance is launched, it can join the
cluster by sending a request to an existing instance. After performing
mutual attestation, the existing instance can reduce its maximum number
of attempts per user and authorize a new instance to serve the users with a
given maximum number of attempts. When the instance goes offline, it can
be revoked, and the maximum number of attempts of existing instances in
the cluster can be adjusted accordingly.

A more sophisticated rate-limiting protocol is presented in [109]. It
utilizes the Raft protocol [93] to achieve consensus between TA replicas on
the number of guesses left. A rate-limiting mechanism is essential for the
operation of SafeKeeper, CKS, and similar applications.

The rate-limiting mechanism does not hinder usability because it is
developed to protect against malicious servers, not against remote pass-
word guessing attempts. An honest server will implement an additional
rate-limiting mechanism against remote password guessing. The retry
count of a TA is much higher than the retry count of the remote password
guessing protection. This means that users would never reach the CKS
internal retry count and even when there are multiple CKS instances,
the retry count of any individual instance would not prevent users from

39

TEE assisted services

authenticating.
To summarize, CKS is a TA that stores users’ private keys, allowing them

to perform cryptographic operations with those keys by authenticating
with a password, with logging and key delegation features. The CKS
scalability is a challenge that should be explicitly taken into account.

3.3 Discussion

In general, both SafeKeeper and CKS follow the same design pattern: per-
form a remote attestation, establish a secure channel between the end
user’s device and the TA, and execute the requested operation. SafeKeeper

and CKS address research question RQ1 by employing novel techniques
for remote attestation and state management to ensure that the scalability
requirements are met.

3.3.1 Remote attestation

Remote attestation is the main mechanism that enables establishing trust
in remote TEEs. In the SGX attestation protocol, during the attestation
process, a secure channel between the end user’s device and the TA is
established based on Diffie-Hellman ephemeral key exchange protocol. All
the sensitive data is protected by the secure channel when being trans-
ferred between the verifying application and the TA, and it is protected by
the TEE when being processed on the server side.

Server-side remote attestation (both SafeKeeper and CKS are running on
the server side) imposes new requirements compared to client-side remote
attestation. First of all, in the case of client-side remote attestation, there
is usually one verifier that is attesting many devices. With server-side
remote attestation, many users verify one server-side application. The
original protocol for SGX RA better suited client-side TEE scenarios (i.e.
when the verifier is the service provider and the prover’s TEE is on the
client-side). Indeed, first the verifiers have to establish relationships with
Intel by requesting certificates to communicate with Intel Attestation
Service. It does not scale when the verifier is not the service provider but
users of the service.

Secondly, the original SGX RA protocol consists of four messages, result-
ing in two round trips. In web communication, the attestation itself should
ideally be a zero round trip protocol. The quote should be sent back with
the server response, and the verifier should be able to verify the quote
without being registered with Intel.

In SafeKeeper, we introduce a novel two-message protocol (described in full
detail in the technical report version of the publication [74]). It does not
compromise security if the server uses a static Diffie-Hellman key instead

40

TEE assisted services

of an ephemeral one. Hence the server key does not need to be generated
each time a client connects to the server. Instead, the server includes the
public part of its static key into the quote. The client can verify that it is
indeed the genuine TA that owns the corresponding private key.

The quote is sent to the client along with the server response (a web page
in the case of SafeKeeper). The original HTTP request-response protocol
does not need to be changed to incorporate remote attestation.

Since it is not viable for every web browser user to establish a relationship
with Intel, the attestation in SafeKeeper is achieved via an attestation proxy.
Only the proxy needs to be registered with Intel Attestation Service (IAS,
see Section 2.2.1). The proxy does not need to be trusted by verifiers since
the IAS returns a signed result of the verification. The verifiers can check
the Intel signature on the resulting message of the attestation. However,
using the proxy is not the only possible solution. Another possibility is for
the quote to be sent to the IAS by another enclave that is running on the
same machine as the TA being attested. This way, there is no need for the
proxy because the verifiers will get the IAS response directly from the TA
instead of the quote.

3.3.2 State Management

It is a common trend in cloud computing to move towards stateless mi-
croservices. Cloud TAs should be stateless, too, because it is easier to man-
age applications if they can be easily deployed and terminated. Crashes
and failures can be dealt with by simply restarting the application.

However, both SafeKeeper and CKS have to maintain a state: the number
of login attempts for the rate-limiting mechanism. Additionally, CKS stores
user private keys. Rate limiting is an important aspect of an authentication
mechanism when it comes to weak secrets (like passwords). Authentication
based on strong credentials like public keys and certificates does not need
to implement the rate-limiting mechanism. The authenticating party will
need to store a database where common names from the certificates define
the users’ access rights. Thus, it can be assumed that any application that
requires authentication will have to maintain a state. Even if the state
data is stored in a central location, applications will need access to the
keys to authorize themselves within the central storage.

More specifically, if there are multiple instances of SafeKeeper or CKS
running in the cloud, they have to be aware of each other. Otherwise, an
attacker could simply deploy more TAs to increase his password-guessing
rate. So, if there is one instance of a rate-limiting application running, and
a cloud provider wants to deploy another instance, the rate limit should be
split between the instances. This can be achieved by mutual attestation
between the TEEs when a new instance is deployed, as described in the
technical report version of Publication I [74]. In an application-specific

41

TEE assisted services

protocol, the TA instances agree on how to split the remaining retry counts.
When an instance is removed, the remaining TA instances can run the
same protocol to re-distribute the retry counts among themselves.

3.3.3 Conclusion

This chapter answers RQ1 by describing two TAs that solve the problems
of scalable remote attestation and state management with multiple TA
instances. A novel remote attestation protocol can be utilized in server-side
scenarios. One possible solution for state management between several TA
instances is described. These solutions can be applied to other TAs: for
example, various databases can be protected with TEEs [15, 71, 96], and
the state synchronization is an important aspect for these TAs.

State management is necessary even for the simplest applications. The
infrastructure implications of using TEEs in the cloud and maintaining a
state are discussed in Chapter 4. In particular, since TAs have to maintain
a state, the migration of TAs must take this into account. Simply moving
a TA instance from one physical machine to another will break the TA,
because the migrated instance will not have access to the state that was
sealed on the physical source machine. The detailed problem description
and the solution proposed are described in the next chapter.

42

4. Cloud infrastructure TEE challenges

To deploy TAs in the cloud, the cloud infrastructure must provide suitable
TEEs. However, since TEEs are a hardware-backed mechanism, TA execu-
tion is bound to a particular physical machine. This binding contradicts
one of the main cloud practices: virtualization. Virtual machines (VMs) do
not have direct access to the hardware, rather, they run on top of hypervi-
sors that provide VMs with hardware abstractions [101]. This allows the
VM to be run on and migrated between different physical machines.

There are virtualization technologies for trusted hardware as well [18,
19]. But even though applications inside a VM get access to trusted
hardware functionality, the VM itself cannot be migrated seamlessly from
one physical host to another. The migration is not possible because the
virtualized trusted hardware relies on the hardware trust anchor. For
example, TAs can utilize the virtualized trusted hardware to encrypt data
with keys that are bound to the hardware trust anchor. Decrypting the
data encrypted with these keys is not possible if the trust anchor changes
due to migration.

VM migration is a core cloud functionality and disabling it by binding
to a particular physical host prevents TA deployment in the cloud. Before
TAs can be widely used in the cloud, the problem of migrating VMs with
TAs from one physical host to another should be solved.

This chapter addresses RQ2: how to reconcile hardware-based TEEs
with existing cloud practices such as VM migration? It presents a mi-
gration framework that meets the following requirements. Firstly, the
migration solution should provide the same security guarantees as the
original trusted hardware does. Secondly, it should have acceptable perfor-
mance and a minimal increase in Trusted Computing Base (TCB).

43

Cloud infrastructure TEE challenges

4.1 Motivation

4.1.1 Adversary model

The adversary model for the VM migration is similar to the TAs adversary
model: the cloud provider’s hypervisor, host OS and other VMs and appli-
cations are not trusted. The TA itself that needs to be migrated is assumed
to be trusted (see Section 4.3.3).

4.1.2 VM migration

The VM migration process involves moving a VM from one physical host to
another. During non-live migration, the VM is stopped (e.g. shut down) on
the source physical machine, its persistent state (e.g. virtual disk) is copied
to the destination machine, and the VM is restarted. Stateful applications
have to persist their state on the persistent storage, like the VM’s disk.
Since the VM is shut down, the contents of its Random Access Memory
(RAM – non-persistent state) are lost and not copied from the source to
the destination. The VM may also be shut down when not in use to reduce
costs and save resources. After the VM is restarted, there is no guarantee
that it will start on the same physical machine. This is a form of non-live
migration with additional time between shut down and restart.

During live migration, the VM does not need to be stopped [37, 89, 124].
Its memory is copied from the source machine to the destination while the
machine is running, and the VM is only paused for a short time to finish
the copying process. The data that is stored on disks inside a VM is copied
as well.

4.1.3 Challenges of TA migration

There are three main challenges with the migration of a TA.
Encrypted memory. When a TA is running inside a VM, its migration

is not possible as per the normal live migration process. In SGX, the mem-
ory of the TA cannot be read by the hypervisor to copy it to the destination
machine because it is encrypted by the CPU. If the memory is copied with-
out re-encryption, the destination machine CPU will not be able to decrypt
it because the encryption keys are bound to the hardware trust anchor.
Hence, migrating a VM that contains a TA from one physical machine to
another will result in the TA not being able to continue execution.

Sealed data. Even in the case of non-live migration, TAs that persist
state on disk (i.e. sealed data) will not function properly when the VM is
migrated. Since data is sealed using a key bound to the hardware trust
anchor, the migrated TA will not be able to unseal it on the destination ma-

44

Cloud infrastructure TEE challenges

chine. Ignoring this aspect results in a Denial-of-Service for the migrated
TA.

Architectural support. In certain TEE architectures, software TCB
might be split between the TA itself and architectural parts that reside on
the machine. For example, in the case of SGX, there is a platform services
enclave that maintains rollback-protected counters [41]. If a TA relies on
this functionality (and TAs that seal data have to include the counter into
the sealed data to protect against rollback attacks), and this is not taken
into account, then migration would allow forking and rollback attacks.

In the fork attack [24], the goal of the attacker is to get two copies of the
enclave running at the same time. Migration might make this easier for
the attacker by starting an enclave on the destination machine and not
stopping the enclave on the source. This would result in two instances
of the TA that might have undesirable side effects. For example, if the
enclave performs some transactions, then the attacker could first route the
user to one copy of the enclave and later show another copy, tricking the
user to perform the same transaction again.

In the rollback attack, the goal of the attacker is to roll back the state
of the enclave [24]. Since the TA’s state should be persisted during the
migration, the attacker could resume the execution of the TA from an older
state. Since the state is obsolete, the attacker can benefit, for example,
from repeating operations that were supposed to be executed just once,
using revoked resources, and so on.

4.1.4 Applications and persistent state.

Even though there might exist TAs that do not require persistence of state,
most of the time an application does need to store data at rest. For example,
both SafeKeeper and Cloud Key Store have to maintain the counter for the
rate-limiting mechanism. These counters represent the architectural state
that has to be maintained during migration.

To tackle the problem of maintaining the application state (that exists
even without TAs, for example in container-based cloud solutions [70]),
cloud providers introduce the cloud pattern for managing storage that
includes a centralized storage server. This can be a distributed storage
system over multiple physical machines, but the access is centralized for
simplicity from the storage client’s perspective [125]. In this case, VMs or
containers do not store data locally but upload it to the centralized storage.
However, this still does not allow for completely stateless VMs, because to
mutually authenticate with the centralized storage VMs need to use some
secret authentication credential. This secret is essentially the state that
needs to be maintained along with the VM.

For TAs, the problem of using centralized storage includes not only
mutual authentication but also maintaining a key for secure storage (to

45

Cloud infrastructure TEE challenges

encrypt data before it is written out to centralized persistent storage)
and having access to a monotonic counter to ensure the freshness of the
data coming from the storage service. So a TA utilizing the centralized
storage needs to maintain some state as well, as long as the centralized
storage is not trusted. Fully trusted centralized storage is not a reasonable
assumption in cloud environments since this requires trusting the cloud
provider [90].

4.2 Migrating TEEs with architectural state

4.2.1 Migration framework

Publication III defines a set of security and design requirements for
TA migration mechanisms. From the security perspective, the migration
framework should maintain the guarantees provided by the TEE while
making TAs migratable, as well as prevent possible fork and rollback
attacks. This is achieved by providing migratable versions of the TEE
primitives that are based on the underlying TEE functionality, such as
remote attestation, data sealing, and monotonic counters.

Other design requirements include performance and usability. The mi-
gration overhead should be small when the VM contains a TA, both during
the migration process and when the VM is running. The development
of TAs with migration capability should not be significantly harder than
developing TAs without such capability. Ideally, it should be transparent
to the TA developers and the migratable versions of the TEE primitives
should look and work the same as the original primitives.

In Publication III, a framework for migrating TAs that meets the above
security and design requirements is presented. The migration framework
depicted in Figure 4.1 is designed for SGX TAs, but in principle, the design
can be applied with other trusted hardware technologies.

The framework consists of two parts: the migration library and the
migration enclave (ME). MEs are deployed on the physical machines and
communicate with each other during the migration process. MEs attest to
each other and the migrating enclaves, and during the attestation process,
they establish the secure channel to copy the migration data over from the
source machine to the destination.

The migration library is part of the enclave that needs to be migrated.
The library provides migratable primitives for trusted hardware operations
that are otherwise dependent on the hardware trust anchor.

46

Cloud infrastructure TEE challenges

Physical Machine (source)

User VM

Management VM

Migration Enclave

User Enclave

Migration LibraryMigration Library

Local Attestation

Physical Machine (destination)

User VM

Management VM

Migration Enclave

User Enclave

Migration LibraryMigration Library

Local Attestation

Remote Attestation

Figure 4.1. Figure 1 in Publication III. Migration framework.

4.2.2 Migratable sealing

Instead of using the platform data sealing functionality, the migrating
enclave relies on the migratable sealing provided by the migration library.
Migratable sealing uses the key that is generated by the migration library.
This key is protected by encrypting it with the original TEE data sealing
key, but since the migratable sealing key is not bound to the hardware trust
anchor, it is possible to transfer it to the destination migration library via
the MEs so that the TA data can be accessed by the TA on the destination
machine. For example, in SafeKeeper and Cloud Key Store, the number of
remaining authentication attempts should be sealed with the migratable
sealing key, so that an attacker will not be able to reset it by migrating the
TAs to another physical machine.

4.2.3 Migratable counters

Another primitive that is provided by the library is the support for mono-
tonic counters. The library keeps the state of counters used by the ap-
plication and transfers it to the destination machine along with the data
sealing key. One possible approach to restore the state of counters on the
destination machine would be to increase the hardware-backed monotonic
counters on the destination machine from zero to the value used by the
application on the source machine at every migration. However, increasing
the hardware-backed monotonic counter is a slow operation. The library
optimizes the handling of the counters by introducing an offset and adding
this offset to the hardware-backed counters when returning the library
counter. The state of the library counters is rollback-protected by the

47

Cloud infrastructure TEE challenges

platform monotonic counters. As one possible usage scenario, in SafeKeeper

and Cloud Key Store, the number of remaining authentication attempts
should be rollback-protected with migratable counters.

4.2.4 Migration process

During the migration process presented in Figure 4.2 - Figure 2 in Pub-
lication III, MEs mutually attest to each other and establish a secure
channel to transfer the migration data. The migrating enclave attests the
local ME on the source machine and also establishes a secure channel with
it. This way, the enclave data is always protected while being transferred
from the source to the destination, and there is no need for the hypervisor
to read the encrypted memory or to copy it from one machine to another.
During the migration process, the migrating enclave has to be stopped
on the source machine and restarted on the destination; however, the
downtime is small, because the state that needs to be copied is constant:
the data sealing key and an array of counter values. In combination with
the approach from [59], the memory of the enclave can be copied as well, so
that the enclave can be paused and resumed without the need to restart.

Migration
Library

Migration
Enclave

Migration
Enclave

Migration
Library

DONE
DONE

restoredata
attestdata

attest init(migrate) migrate

init(new)

Figure 4.2. Figure 2 in Publication III. Migration process. TA’s data is copied from the
source to the destination by MEs over a secure channel after a successful
attestation.

4.2.5 Framework evaluation

The proposed migration framework addresses the challenges of TA mi-
gration while providing the same security guarantees as the underlying
TEE does and introducing small overhead during the migration and TA

48

Cloud infrastructure TEE challenges

execution. The maximum overhead is observed for counters operations and
they are 12% slower than the platform native counters. The TA migration
process takes on average 0.47(±0.035) seconds more compared to the VM
migration without TAs due to attestation, secure channel establishment,
and sending of the enclave data to the destination. Since the migration
library provides a similar API analogous to the platform primitives, the
development effort of including the library and making the enclave migrat-
able is small.

4.2.6 Related work

One of the first approaches to migrating SGX enclaves is presented in [59].
The main idea of the approach is to pause the source enclave by entering
into busy loops with all its worker threads. Then, a special control thread
can transfer the enclave memory to the destination. In the destination
enclave, the execution resumes by breaking out of busy loops.

This method addresses the first challenge of TA migration by reading
and transferring the enclave memory from within the enclave. However, if
the VM contained sealed data of the enclave, it will not be able to decrypt it
on the destination machine. Additionally, this approach does not take into
account the state of other architectural components, such as monotonic
counters.

TEEnder [61] describes a framework utilizing Hardware Security Mod-
ules (HSM) that makes the migration process more efficient. Emotion [95]
proposes to extend the SGX architecture to support the migration opera-
tion.

Containers as a more lightweight alternative to VMs can be run in-
side TEEs [11]. Liang et al. [76] present a solution for migrating SGX
containers.

4.3 Discussion

4.3.1 Trusted storage

If the storage provider is trusted, there is no need to rely on counters for
freshness guarantees. However, applications still need to persist some
data to mutually authenticate with the storage provider. Essentially, the
authentication data needs to be migratable, thus even if the storage is
trusted, the migration framework is still needed.

49

Cloud infrastructure TEE challenges

4.3.2 Migrating to a trusted destination

It should not be possible for an attacker to migrate an enclave from the
cloud provider machine to an attacker-controlled machine. Even if the
attacker is migrating to another genuine SGX-capable machine, taking
control over the enclave significantly increases the attack surface. For
example, the attacker-controlled machine may not have the latest security
patches, and the attacker can perform offline attacks on the sealed data.

Thus, the destination of the migration should be able to prove that it
belongs to the same cloud provider as the source machine. The attesta-
tion process does not include the authorization of the destination: the
destination should be verified by other means. One possible mechanism
to perform the authorization of the destination is based on verifying a
certificate belonging to the cloud provider.

When a new physical machine is added to the cluster of the cloud provider,
the migration enclave of this machine should generate a key pair. The
certificate that contains the public key should be transferred to other
migration enclaves so that they become aware of the new machine. Alter-
natively, the migration enclaves themselves could have the cloud provider’s
public key included with their code. This way, the source ME can provide
its certificate at migration time, and the destination ME can verify that
this was signed by the cloud provider.

Clients might use several cloud providers at the same time. To support
migration between different clouds cloud providers can agree to trust
certificates issued by one another. An alternative solution can be based on
the client performing the authorization. For example, a client can provide
its own certificate to be included into the list of certificates trusted by
migration enclaves. The corresponding private key can be provisioned to
the client’s enclave over a secure channel.

Note that the migration enclave itself should not be migratable, i.e. it
should not contain the migration library and it should be bound to a
particular physical machine. The generated private key has to be sealed
with SGX primitives to prevent the migration enclave from executing on
other physical machines.

To securely generate the key pair and transfer the certificate to another
migration enclave, a trusted setup phase can be assumed when the new
physical machine is disconnected from the network and is provisioned by
the software verified by the cloud provider.

4.3.3 Non-cooperative TEE

The migration framework assumes that the migrating enclave does not
try to attack the migration library. A malicious enclave can pretend to
be migratable and secure by including the migration library, but then

50

Cloud infrastructure TEE challenges

it could ignore the migration library’s primitive restrictions and allow a
rollback attack to be executed. For example, in the case of a malicious
operator in either SafeKeeper or Cloud Key Store who is willing to reset
the rate-limiting counter, the operator could include the migration library
but after the migration, ignore the counter offset (see Section 4.2.3) and
perform a rollback attack.

However, the problem of malicious enclaves (that try to mislead the veri-
fier that they are checking the counter values but allow rollback attacks)
does not get worse by introducing the migration library. Indeed, an enclave
might pretend to store the counter values with the data, but then “forget”
to check those values, thus opening themselves to rollback attacks. Not
checking the counter value is equivalent to ignoring the counter offset
when the migration library is present. Both situations are detectable from
the attestation. It should not be assumed that if the enclave includes the
migration library it uses it in a way that prevents rollback attacks.

In general, the problem of isolating parts of a TA from each other is
important, since a TA might be executing third-party code that cannot be
verified beforehand. A possible solution to this problem is described in the
next chapter.

4.3.4 Conclusion

This chapter answers RQ2 by introducing a framework for TA migration.
Reconciling cloud practices with hardware binding nature of TEEs required
developing migratable alternatives of the TEE primitives, such as sealing
and monotonic counters. An RA-based protocol verifies that both source
and destination machines run genuine TEEs and belong to the same cloud
provider. Developing migratable TAs does not require significant developer
efforts, and the performance overhead for migratable TAs is acceptable.

Currently, major cloud providers do not support live migration of TAs [83,
50]. But migration is not the only cloud practice that needs to be taken
into account when deploying TAs in the cloud. For example, deploying
multiple instances of a TA at scale is addressed in [111]. It is important
to resolve infrastructure challenges so that TEEs in the cloud would see a
wider adoption.

51

5. TEE-supported cloud resource
consumption measurements

Different ways of providing cloud services offer different levels of infras-
tructure abstractions: from full-stack applications to bare metal machines.
Generic computation services let the clients run arbitrary code on cloud
provider premises. Several types of cloud architectures realize different
variants of remote computing. The main difference between these types
is the software level at which the clients are provided access to the cloud
provider machines.

There is a tendency to reduce the amount of code considered as a single
execution unit. Virtualization enabled cloud providers to host many clients’
VMs on the same physical machine [69]. Container technologies allowed
for isolation within a VM [20]. One of the more recent developments,
called Function-as-a-Service (FaaS), utilizes containers to execute a single
function from the client.Examples of FaaS are Amazon Lambda [6], Google
Cloud Functions [51], and Microsoft Azure Functions [84].

The business model of cloud providers is based on measuring the com-
putational resources that are consumed by the clients: for example, the
type of VM and the amount of time for which it is running in IaaS setups.
Resource measurements are essential for cloud providers and their clients
as they serve as the basis for the business relationships between the par-
ties, and therefore must be trustworthy from both the cloud provider’s
and clients’ persepctives. In FaaS setups, the resource measurements
should not only be trustworthy, but must also have finer granularity than
in traditional settings.

Trustworthy resource measurements are especially important in cases
where cloud providers cannot rely on reputational trust. In theory, even
individuals could give access to their computational resources for small
computations and get paid based on the resources consumed. For example,
a peer-to-peer cloud architecture was proposed in [14] and Gridcoin [56]
project rewards users that share their computation resources for scientific
projects. In this case, the clients have to be sure that the reported resource
consumption was not tampered with by the provider.

This chapter addresses RQ3: how can cloud providers use TEEs to pro-

53

TEE-supported cloud resource consumption measurements

duce trustworthy resource usage measurements? It describes a TEE-based
framework that enables fine-grained trustworthy resource measurements
in the clouds. Additionally, executing functions inside TEEs provides a
secure isolated execution environment. Practically, when TEEs are de-
ployed in the cloud, this creates a new cloud offering for the clients: secure
computing. TEE functionality, isolated execution, and attestation enable
new features that would not be possible without TEEs.

5.1 Motivation

5.1.1 Adversary model

The cloud provider is not trusted to provide trustworthy resource measure-
ments or to even execute the function submitted by the client. TEEs can
provide guarantees of secure remote computing when the cloud provider is
adversarial.

Since cloud providers are billing clients based on consumed resources,
both parties need to obtain trustworthy resource measurements. If the
cloud provider is adversarial, then its goal is to increase the reported re-
sources consumed by the clients without actually performing the requested
amount of work, whereas the goal of the adversarial clients is to tamper
with the resource measurement mechanism of the cloud provider to de-
crease the reported consumed resources. Hence, proper isolation between
the resource measurement mechanism and the client’s code should be in
place.

5.1.2 Resource measurements

Resources that should be measured usually include CPU and memory con-
sumption. Depending on the nature of the executed computation, network
bandwidth could also be one of the resources to measure.

Currently, the granularity of the resource measurements is coarse. For ex-
ample, cloud providers measure the execution time of the function and the
allocated memory. By multiplying these two values an integral represent-
ing both CPU and memory consumption is computed. This measurement
serves as the basis for the billing plan. The number of function invocations
also contributes to the cost. Table 5.1 shows what quantities different
cloud providers use for billing.

More precise and trustworthy resource measurements would be ben-
eficial both for cloud providers and clients by reducing the costs, and
allowing better resource utilization for cloud providers. TEEs enable more
granular, attestable resource measurement mechanisms. Publication IV

54

TEE-supported cloud resource consumption measurements

Table 5.1. Table 1 in Publication IV. Billing policies of some current FaaS services. Calcu-
lating the memory time-integral implicitly requires measuring compute time
(indicated by ◦).

Service Provider Runs Time Memory Network
Amazon [6] � ◦ �
Microsoft [84] � ◦ �
Google [51] � � � �
IBM [66] � ◦ �

introduces S-FaaS (Secure Function-as-a Service) that applies TEEs for
providing generic FaaS computation and allows performing fine-grained
resource measurements.

Brenner et al. [27] propose Javascript-based frameworks for sandboxing
and evaluate them from a performance perspective, but does not address
the resource measurements aspect of secure FaaS. Goltzsche et al. [48] in-
troduce WebAssembly-based sandbox with resource accounting. It requires
code instrumentation to count the number of WebAssembly instructions
executed by the workload.

5.2 FaaS with TEE

5.2.1 S-FaaS design

S-FaaS utilizes Intel SGX to execute functions provided by the clients
inside secure enclaves. The functions are written in JavaScript, but in
general, they can be developed in any interpreted language. As described
in Section 2.1, cloud providers’ clients provide services to end users. In
FaaS architectures, end users invoke the functions provided by the clients.

When end users invoke the function, they provide the inputs for the
function. Since cloud providers are not trusted, both the inputs of the
function and the results of the invocation have to be encrypted so that they
are accessible only within the enclave to protect their confidentiality and
integrity. The S-FaaS framework consists of several components and seeks
to address the following two main technical challenges.

Fast, scalable attestation. Since in FaaS scenarios it is not known
beforehand what particular worker node will execute the workload, tra-
ditional SGX attestation does not scale well. It is infeasible to attest the
worker enclave before every function invocation, therefore, a different
attestation mechanism is necessary to attest many worker nodes and scale
well with an increasing number of worker nodes.

Isolated resource measurements. On one hand, it is necessary to

55

TEE-supported cloud resource consumption measurements

isolate the resource measurements from the clients’ workloads so that the
clients cannot tamper with the resource measurements. On the other hand,
the resource measurement mechanism should be able to track when the
client’s workload is interrupted by the OS so that the client is charged only
for the time when the workload is executing.

To address the above challenges, S-FaaS makes two main contributions:
transitive attestation, and trustworthy TEE resource measurement, as
explained in the following subsections.

5.2.2 Transitive attestation

The architecture of S-FaaS is presented in Figure 5.1.
When an end user executes a function, they need to attest the enclave

that is going to execute the function and establish a secure channel with
the enclave to provide function inputs. Since it is not viable to perform
the standard SGX remote attestation for each function invocation, S-FaaS
introduces a transitive attestation scheme. There is a centralized enclave
called Key Distribution Enclave (KDE) that attests worker enclaves and
serves as a key management service. The clients attest KDE and KDE
attests the worker enclaves, so the clients can be sure that the function
will be invoked by a trusted worker thread and establish an end-to-end
trust.

KDE generates the following key pairs for worker enclaves and the client.

• Clients use a key agreement key to generate the symmetric encryption
key for the input to the worker enclave.

• The worker enclave uses an output signing key to sign the output of
the function.

• A resource measurement signing key is used to sign the resource
measurement receipt.

5.2.3 TEE resource measurement

The main challenge in measuring the CPU consumption of a TA is the
fact that the enclave can be interrupted by the OS at any time. These
interruptions are transparent to the TA. Obtaining time measurements
by calling APIs like sgx_get_trusted_time is not secure within our adver-
sary model because the calls can be arbitrarily delayed by an untrusted
OS. The resource measurement mechanism of S-FaaS is based on Intel
Transactional Synchronization Extensions (TSX) that allow the resource
measurement mechanism and the workload executor to synchronize and

56

TEE-supported cloud resource consumption measurements

S-FaaS service provider

Key Distribution

Enclave

Publish

keys

Worker

Worker

Sandbox

Function

Resource

measurement

mechanisms

Distribute keys

Figure 5.1. Figure 2 in Publication IV. S-FaaS architecture.

be aware of OS interruptions.
The main idea of S-FaaS for resource measurements is to run two threads

inside the enclave. One of the threads, called the worker thread, executes
the client’s workloads. Another thread, the timer thread, is dedicated
to resource measurements. The timer thread runs a busy loop and the
measurements are based on the number of cycles the loop is executed,
while the worker thread executes the workload. TSX is utilized to enable
“notifications” from the worker thread to the timer thread about worker
thread interruptions by OS.

The enclave needs to obtain information about interruptions. When
the OS interrupts a thread running inside an enclave, the SGX runtime
stores the state of the CPU registers in a memory region called the State
Save Area (SSA) inside the enclave. By monitoring this area from another
thread in the enclave, it is possible to determine when the interruption
occurs.

The monitoring mechanism is based on TSX. As described in Chapter 2,
TSX was originally developed to optimize concurrent execution solutions,
so that locking mechanisms are not needed. A transaction has a read-
set – a memory region, writing to which from another thread aborts the
transaction. This can be used as a communication channel from one thread
to another. If the timer thread includes the SSA of the worker thread into
a read-set of the transaction, and the transaction aborts, that means that
SSA was written to, hence the worker thread got interrupted. At this point,
the timer thread stops counting its busy loops.

When the worker thread resumes its execution, it executes a resume
handler. The default resume handler restores the CPU state from SSA and
continues the execution from the next instruction. The timer thread needs

57

TEE-supported cloud resource consumption measurements

to be notified about the resuming of the worker thread execution. At the
time of interruption, the timer thread substitutes the SGX default resume
handler with a custom version to get a notification when the worker thread
continues the execution. This way, the timer thread can restart counting
CPU cycles when the worker thread resumes.

5.3 Discussion

Publication IV, presenting S-FaaS, constitutes an affirmative answer to
RQ3. The performance overhead of the framework is below 7%, which
is an acceptable price for authenticated and integrity-protected resource
measurements. The framework provides accurate resource measurements
(when the parameters are chosen correctly, see 5.3.3 below). This work has
raised the following fundamental questions, and while Publication IV
provides possible answers for each, there is scope for further research in
each of the following areas.

5.3.1 In-enclave sandboxing

The worker thread in S-FaaS uses a Javascript interpreter as a sandbox
for functions submitted by the client. Since there is a sandbox inside the
enclave, the enclave itself does not need to be sandboxed. Therefore, it is
no longer necessary from a security perspective to run the enclaves inside
separate VMs or containers. This can result in reducing the overhead of
executing enclaves.

However, potential bugs in the interpreter could result in functions
escaping the sandbox. In this case, the cloud provider could introduce
worker enclaves that only execute a specific function or functions from a
specific client (see Section 8.1.4 in Publication IV).

5.3.2 Units of work

CPU consumption can be measured in CPU cycles, or in the number of
instructions that are executed. For example, S-FaaS measures work in
terms of CPU cycles, whereas in [127], the work is measured in terms of
the number of instructions executed.

Different approaches can result in different measurements of the same
workload. Modern CPUs are not deterministic, meaning that one instruc-
tion can take different numbers of CPU cycles based on many factors. For
example, an instruction can spend CPU cycles waiting for cached data.
Compilers attempt to re-order instructions to optimize the execution time.
CPU features, such as speculative execution and branch prediction can
also affect the number of CPU cycles that a particular instruction takes.

58

TEE-supported cloud resource consumption measurements

The client is interested in executing instructions, not in how many CPU
cycles they take. However, the cloud provider sees the resources spent
as the number of CPU cycles because practically CPUs consume energy
proportionally to the number of executed cycles. Hence, if the client submits
a workload that is not optimized, requiring more CPU cycles than ncessary,
it is logical that the client should be penalized. But if the cloud provider
executes many workloads from different (or the same) clients that compete
for cache access, then the clients are paying more for CPU cycles that are
caused by the cloud provider actions.

The cycle counting and instruction counting approaches can be combined.
This would give clients the average number of CPU cycles per each instruc-
tion in the workload. Using this scaling factor clients can measure the
reference time it takes to execute their workload and compare the mea-
surements provided by the cloud provider with the reference time to detect
the situations when the cloud provider executes many workloads from the
clients. The cloud provider Service Level Agreement (SLA) can have a
statement that the cloud provider does not hinder the client’s workload’s
performance. If the cloud provider does hinder the client’s performance
and this is detected by the client, the situation can be resolved through a
business process.

5.3.3 Measurements granularity

The granularity of the measurements can be adjusted by changing the
maximum value of the timer thread’s busy loop. To calibrate measure-
ments, cloud providers could execute an example workload on an unloaded
machine.

If the value is too high, then it is more likely that the worker thread
gets interrupted in the middle of a timer thread loop, and this increases
the probability of underreporting because S-FaaS does not count partially-
completed timer thread transactions. In this way, the cloud providers
cannot benefit from interrupting the worker thread. The opposite choice
(to include the partially-completed timer thread transactions into the final
measurement) would result in over-reporting. If the value is too small,
then the overhead of setting up the TSX transaction might also result in
under-reporting.

Hence under-reporting can occur for different reasons, as explained above.
However, there is an optimal maximum value for a timer thread’s busy loop
that minimizes under-reporting. The cloud provider should find the value
that produces time estimates closest to how much time the computation
actually takes (see Figure 5 in Publication IV).

If the timer thread and the worker thread execute with different CPU
clock frequencies, the resulting measurements can be different. So it is
important to make sure that the worker thread and the timer thread share

59

TEE-supported cloud resource consumption measurements

the same CPU core. It is also beneficial to execute a trusted sibling thread
on the same core as the main enclave thread to defend against several
attacks on SGX enclaves [92, 36]. Utilizing such a dedicated thread for the
resource measurement does not waste one thread of execution.

5.3.4 Conclusion

This chapter answers RQ3 by introducing a resource accounting frame-
work for TAs in the cloud. Resource accounting is an essential part of the
cloud providers’ business model, and the S-FaaS framework provides a
mechanism to obtain trustworthy resource measurements when the repu-
tational trust assumption does not hold. The framework has an acceptable
performance overhead and does not require code instrumentation by the
clients.

60

6. Discussion

This chapter discusses three cross-cutting aspects that arise from the
research presented in the preceding three chapters:

• Server-side remote attestation.

• Developing scalable secure applications.

• Trust and risk management for hardware security technologies.

6.1 Remote attestation

6.1.1 Remotely attesting clients and servers

Client-side TEE. Traditionally, remote attestation was used in scenarios
where there are multiple provers and a single verifier. A service provider
that had distributed many devices containing TEEs to end-users had to
verify each device. In this case, there is one verifier and many devices to
be attested, i.e. provers.

The service provider that acts as a verifier has to make sure that the
user’s device is genuine. For example, the provider can provision the device
with secret data only after a successful attestation. Each device does
not have to be individually authenticated by the service provider. Group
signature schemes can serve the purpose of attesting a device without
individually authenticating it [28, 29].

In the case of SGX, Intel has designed the attestation so that the verifier
has to be registered with Intel, because only Intel Attestation Service (IAS)
can verify the quotes from SGX enclaves. This emphasizes the fact that
there is assumed to be one verifier that is registered with IAS.

On the other hand, the provers need to authenticate the verifier. For

61

Discussion

example, the devices have to be sure that they are obtaining secrets from
(or enrolling secrets to) the correct service provider. Typically, this is
done via asymmetric cryptography. The service provider deploys its public
key to the devices and they run a challenge-response protocol to achieve
authentication of the service provider. This works well if there is one
verifier with a known public key and many devices to be attested where
this key can be deployed to.

Server-side TEE. When deploying TEEs on the server, the situation
is different. The clients need to attest the TEE running in a server. In
this case, there are many verifiers and one TEE to be attested. In many
client-server use cases, the server does not need to authenticate the users
(e.g. a public website). For example, in SafeKeeper, it is enough that the
users authenticate the server, because the TEE is only used to calculate
the password hash and the users do not provide the TEE with any data
that can change its behavior.

Since there is no requirement for the TEE to authenticate the verifier,
the challenge-response protocol used in the client-based attestation is not
needed. Thus, the server-based remote attestation does not need two
round-trips to complete. Indeed, the measurements of the TEE can be
provided to the user along with the TEE response to the user’s request.

A novel contribution of Publication I is to pre-generate the Diffie-
Hellman key pair when the enclave starts up. Though there is no challenge-
response protocol run to authenticate the verifier, during the attestation
protocol a secure channel between the verifier and the prover is established.
The quote provided by the prover includes its pre-generated Diffie-Hellman
public key. The verifier has to generate a fresh Diffie-Hellman key pair
each time it attests the prover to mitigate replay attacks.

Taking into account deployability considerations, the fact that there is
no need for a challenge-response protocol provides ways to extend current
client-server architectures with TEE-based server applications gradually.
In particular, the remote attestation can run on top of the most widely used
client-server HTTP protocol by including the quote into HTTP headers.
This does not require changes to existing clients and servers at the same
time – they can be updated independently of each other.

6.1.2 Transparency of the attestation

Another aspect related to remote attestation is its transparency. When
attesting a server-side TEE that resides on some physical machine of
the cloud provider, the cloud provider would not want to reveal which
exact physical machine houses the TEE. Group signatures schemes with
unlinkable signatures serve this purpose. However, it is still necessary to
ensure that the TEE in question belongs to the correct cloud provider.

Binding to the cloud provider. The clients should be able to verify

62

Discussion

that the TEE is running on a machine that belongs to the cloud provider.
For example, in Publication III, when migrating a TEE from one physical
platform to another, both the source and destination platforms must be able
to establish that they are controlled by the same cloud provider to prevent
an attacker from migrating enclaves into or out of the cloud provider’s data
center.

To provide machine identities, the cloud provider can provision each
physical machine in its data center with a private key and certificate which
asserts that the machine is part of the data center. Other schemes based
on group signatures [31] are possible as well, but in general they share the
same principle: a TA must contain a secret to prove that it belongs to the
cloud provider.

One possible machine identities scheme is for each TEE to generate a key
pair and the cloud provider to generate a certificate verifying the public key
with the cloud provider’s Certificate Authority (CA). During an attestation
a TA signs a nonce value generated by the verifier. Then the verifier can
check the signature against a public key of the TA and verify the certificate
against the cloud provider’s CA.

Signature-based revocation. Another related TEE cloud infrastruc-
ture problem is signature-based revocation. When an enclave running on
one physical machine gets migrated, the quotes that it generates change.
If later on the source physical machine is compromised and needs to be
revoked, currently it is not possible to track where the enclaves that were
running on it at some point were migrated. It is necessary for the cloud
provider to explicitly track the locations of the running enclaves. The
enclave migration and remote attestation thus have to fulfill contradictory
requirements:

• Transparent to verifying clients.

• Belong to the same cloud provider.

• Track the history of where the enclave was running.

Perhaps the cloud providers do not have to support the last requirement
since if one machine is compromised, it might be necessary to revoke others
as well because there is no guarantee that other machines in the network
are not compromised. In general, after a compromise, no assumptions
can be made about what an attacker was able to achieve on a particular
compromised machine as well as what consequences the attack had on
other machines – it depends on the level of privileges that and attacker
was able to gain and the auditing capabilities of the cloud provider [123].

63

Discussion

6.1.3 Transitive attestation

Directly attesting a TEE might not be always possible. As already men-
tioned, in server-based attestation there are many verifiers and one TEE to
be attested. But due to scalability requirements, it might be necessary to
deploy a TA to several TEEs in the cloud. In this case, the client requests
might get dynamically load-balanced to different TEEs. Attesting a TEE
each time can take too long: ideally, for the clients it should look like the
application is running in a single TEE. To deal with such a situation, there
is an approach that introduces several layers of attesting parties.

In layered attestation or transitive attestation, two entities participate in
the attestation process. First, the verifiers attest the parent entity to make
sure that it will correctly perform the attestation of the children [12]. The
parent is then used to provide children with secret data.

The verifiers can be sure that the data is processed by the correct chil-
dren’s TEEs because the parent TEE passes the children’s measurements
back to the verifiers when provisioning children. Thus, the attestation
is transitive but the trust is not. However, if the parent TEE fails to
pass the attestation, its children become untrusted as well: the distrust is
transitive, too.

6.2 Scalability

6.2.1 Horizontal explicit scalability

The horizontal scalability of applications is achieved by deploying them to
multiple machines. If the application is stateless, then this is a straight-
forward process. It is enough to load balance requests from the clients
to several application instances. However, in developing stateful secure
applications, scalability requirements must be considered.

If an application has a state of some sort, it is not possible to simply
deploy multiple instances of it to several machines. The state has to be
synchronized. For example, both SafeKeeper and Cloud Key Store need to
maintain a counter of login attempts from each user. To synchronize the
state between instances, they need to be aware of each other. This means
that scalability has to be explicitly taken into account when developing
TAs.

In recent years, cloud computing has moved from monolithic applications
to microservices. One the key features of microservices is that they are
stateless. It is assumed that the services can accept requests and serve
them no matter how many other service replicas exist. But still, even in
this architecture, there is usually a service (typically, a database) that

64

Discussion

contains the persistent state.
To authenticate to that service, other applications, including TAs that

need to persist state, need to have credentials for the authentication.
But credentials themselves should be persisted, because they must be
provisioned to the TA by the TA owner. Another alternative would be to
hardcode the credentials into the TA code, but it is not a viable option from
a security perspective. Hence, stateless applications are stateless only to
some extent (see Section 1 in Publication III).

6.2.2 Scalability and security

Replicating the state of the TAs must take into account security require-
ments. In particular, rollback protection is important. When there are
multiple copies of the application state, rollback protection becomes more
challenging. Indeed, for example, when the enclave is migrated from one
machine to another, and then migrated back, the migration process must
ensure that the old state was invalidated.

Rollback protection is not the only issue to take care of when allowing
multiple instances of the trusted application. In the example of a rate-
limiting application, the maximum number of allowed attempts has to stay
the same regardless of the number of application instances. This means
that the application instances should be aware of one another. When
a new instance is created, it should explicitly join the other instances.
When the application is scaled down, the remaining instances should
re-distribute the load. The deleted instances can be revoked to make
sure that an attacker cannot utilize them to increase the guessing rate.
This protocol is described in more detail in the technical report version
of Publication I [74], but there is still scope for further research on this
topic.

6.3 Trust and risk management

6.3.1 Trusting a TEE manufacturer

TEEs are not guaranteed to be absolutely secure. First, there are several
attacks against TAs that can be used to retrieve secrets from TEEs. Second,
even if the application is carefully designed to mitigate the attacks, the
platform itself can contain bugs that leave all TAs vulnerable to attacks.
For example, SGX side-channel attacks described in Section 2.2.2 break
SGX security guarantees of integrity and confidentiality. Section 6.3.3
describes this scenario and discusses its implications. Furthermore, if
a hardware manufacturer introduces a security vulnerability into the

65

Discussion

hardware it is much harder to detect and mitigate [114]. In the case of
Intel SGX, remote attestation was provided by Intel. There are third-party
attestation verifiers as well [85], but technically, Intel or a third party could
verify malicious enclaves, or introduce backdoors into the implementation.

It is a valid assumption that the manufacturer producing TEEs is in-
centivized to increase the security of its product. There are proposals on
how to develop processors that are more robust to speculative execution at-
tacks [60]. To mitigate the risk of trusting only one hardware manufacturer,
solutions from multiple hardware manufacturers can be combined [3].

Without using a TEE, one has to trust both the cloud provider and the
hardware manufacturer. Introducing a TEE is an example of separation
of privileges: in order to attack a specific client a malicious cloud provider
needs to cooperate with a malicious hardware manufacturer. The hardware
manufacturer does not have the information about cloud provider’s clients,
but the cloud provider does, hence it is beneficial to remove the cloud
provider from the TCB. Introducing TEEs will not decrease the level of
security guarantees anyway, because the hardware manufacturer is trusted
regardless of whether TEEs are used or not.

6.3.2 Designing trusted applications

There are SGX research proposals to run entire unmodified applications
inside a TEE [105, 34]. The benefits of this approach are that it reduces
the development time and effort and provides TEE security guarantees
for legacy applications. However, it goes against one of the main concepts
of a TEE: the goal is to minimize the Trusted Computing Base (TCB). If
the entire operating system or an operating system library is run inside
a TEE, then the TCB includes the code of the OS or the library. First,
it is hard to attest complicated software. Second, the software may be
vulnerable to side-channel attacks because it was not designed specifically
to run inside a TEE. So the TAs need to be designed carefully and provide
specific security-critical functionality.

Designing and implementing TAs is challenging [38]. Not only should
the application not contain bugs, but it should be side-channel resistant. It
was also shown that TEE SDKs themselves are often vulnerable to various
attacks [117]. Minimizing application functionality can potentially lead to
more secure applications. Smaller applications are easier to attest as well.

Even when the application is small and designed and implemented to
be resistent to side-channel attacks, there is still a possibility that it will
be vulnerable to other attacks. In this case, deploying a TA should be
considered more from a risk management perspective. This means that
running an application inside a TEE decreases the risks of data exposure,
but does not eliminate them. Depending on the type of data that a TA
is processing, utilizing a TEE might be a sufficient measure to protect

66

Discussion

the data. If the risk is still considered too high, other activities should
take place, for example, isolating the machine from external connectivity
altogether. Another approach would be to run multiple instances of a TA
and use a Byzantine fault-tolerant consensus protocol between them [102].

6.3.3 What if a TEE fails?

There are several ways in which a particular TEE can fail. When one
physical machine turns out to be vulnerable and it is detected, the solution
is straightforward: the machine should be revoked. The enclaves that were
running on it can no longer be trusted. If the enclaves were provisioned
with sensitive data it should be assumed that the data has been leaked. The
revocation process should take into account the enclaves that were running
on the vulnerable machine and those that were migrated. Additionally, if
a machine contained enclaves that were instances of a scaled application,
the other instances should be notified of the failure to re-synchronize the
state.

On the other hand, new attacks against TEE implementations, and SGX
in particular, emerge [30]. When we consider the possibility that a TEE
might fail, there are different degrees of damage that applications can
take. There are two distinct classes of applications.

TEE-enhanced applications. In one type of application, the usage of
TEEs provides additional security. Essentially, the same application can be
run without a TEE but then the security level would be lower. SafeKeeper is
an example of such an application because it enhances the functionality
of the existing application and only moves its functionality inside a TEE.
If the TEE fails, this type of application falls back to the same level of
security it had without the TEE.

TEE-dependent applications. On the other hand, another class of
applications includes the ones designed specifically for TEEs. In particular,
the Cloud Key Store (CKS) is one such application. Indeed, without a TEE,
a user would probably store the key locally on the device. Moving the key
to the cloud is secure only if the TEE works correctly. If the TEE fails,
the applications and the users are left in a worse situation compared to
TEE-enhanced applications. For example, in the case of CKS, if the TEE is
compromised users’ keys are leaked and need to be revoked.

Understanding potential risks and identifying the application type is
important when providing TAs to end-users. If one application is riskier
than the other, it should be explicitly stated, and the users should be able
to make the right risk management decision. Server-side TAs are arguably
more high-risk than client-side TAs because they could be centralized
repositories of credentials (e.g. SafeKeeper and CKS). This should be fac-
tored into the risk calculation when deciding whether a particular TEE
technology is suitable for server-side use.

67

Discussion

6.4 Conclusion

Utilizing TEEs in the cloud is a promising approach to improve security
and privacy guarantees provided by the cloud. Many applications have
been developed in the recent years: TEE-enhanced databases [15, 71, 96],
utilizing TEEs in blockchains [77, 103], securing network protocols [17, 88].
In this dissertation, we showed what design considerations need to be
taken into account when developing TAs.

Major cloud providers started offering TEE-based services [83, 50]. Often
infrastructure challenges are not considered and it limits the usage of
TEEs in some scenarios. For example, live migration of TEE-enabled
VMs is not supported. As the usage of TEEs in the cloud becomes more
widespread, these challenges need to be addressed. Ideally, they should be
addressed by TEE vendors, so that they introduce frameworks, similar to
the one presented in the dissertation to support TAs live migration.

An example of how to obtain trustworthy resource measurements with
TEEs in the cloud shows that TEEs in the cloud can be beneficial to both
cloud providers and their clients. Future work can identify other areas
where TEEs can enhance services provided by the cloud providers.

68

References

[1] Mete Akgün, A Osman Bayrak, Bugra Ozer, and M Şamil Sağıroğlu. Privacy
preserving processing of genomic data: A survey. Journal of biomedical
informatics, 56:103–111, 2015.

[2] A. Albeshri, C. Boyd, and J. G. Nieto. GeoProof: Proofs of geographic
location for cloud computing environment. In 2012 32nd International
Conference on Distributed Computing Systems Workshops, pages 506–514,
2012.

[3] Fritz Alder. TEE-Squared - Combining Trusted Hardware to Enhance the
Security of TEEs, 2018.

[4] M. Alhamad, T. Dillon, and E. Chang. SLA-based trust model for cloud
computing. In 2010 13th International Conference on Network-Based Infor-
mation Systems, pages 321–324, 2010.

[5] Amazon. Amazon Web Services, 2021. https://aws.amazon.com. Accessed:
18-06-2021.

[6] Amazon. AWS Lambda, 2021. https://aws.amazon.com/lambda/. Accessed:
18-06-2021.

[7] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative
technology for CPU based attestation and sealing. In Proceedings of the
2nd International Workshop on Hardware and Architectural Support for
Security and Privacy, volume 13, 2013.

[8] Jay and Lorch, John (JD) Douceur, , and Jonathan M. McCune. Memoir:
Practical state continuity for protected modules. In Proceedings of the IEEE
Symposium on Security and Privacy, 2011.

[9] APWG.org. Phishing activity trends report (2nd quarter), 2020. http://docs.
apwg.org/reports/apwg_trends_report_q2_2020.pdf. Accessed: 18-06-2021.

[10] ARM. TrustZone. https://developer.arm.com/ip-products/security-ip/

trustzone. Accessed: 18-06-2021.

[11] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Mar-
tin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe,
Mark L. Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter
Pietzuch, and Christof Fetzer. SCONE: Secure Linux containers with In-
tel SGX. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 689–703. USENIX Association, 2016.

69

References

[12] N. Asokan, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza Sadeghi,
Matthias Schunter, Gene Tsudik, and Christian Wachsmann. SEDA: Scal-
able embedded device attestation. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15, page
964–975. Association for Computing Machinery, 2015.

[13] Pierre-Louis Aublin, Florian Kelbert, Dan O’keeffe, Divya Muthukumaran,
Christian Priebe, Joshua Lind, Robert Krahn, Christof Fetzer, David Eyers,
and Peter Pietzuch. TaLoS: Secure and transparent TLS termination inside
SGX enclaves. Imperial College London, Tech. Rep, 5, 2017.

[14] Ozalp Babaoglu, Moreno Marzolla, and Michele Tamburini. Design and
implementation of a P2P cloud system. In Proceedings of the 27th Annual
ACM Symposium on Applied Computing, SAC ’12, page 412–417, New York,
NY, USA, 2012. Association for Computing Machinery.

[15] Maurice Bailleu, Jörg Thalheim, Pramod Bhatotia, Christof Fetzer, Michio
Honda, and Kapil Vaswani. SPEICHER: Securing LSM-based key-value
stores using shielded execution. In 17th USENIX Conference on File and
Storage Technologies (FAST 19), pages 173–190. USENIX Association, 2019.

[16] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Alek-
sander Slominski, and Philippe Suter. Serverless Computing: Current
Trends and Open Problems, pages 1–20. Springer Singapore, 2017.

[17] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. Hybrids on steroids:
SGX-based high performance BFT. In Proceedings of the Twelfth European
Conference on Computer Systems, EuroSys ’17, 2017.

[18] Stefan Berger, Ramón Cáceres, Kenneth A. Goldman, Ronald Perez, Reiner
Sailer, and Leendert van Doorn. vTPM: Virtualizing the trusted platform
module. In Proceedings of the 15th Conference on USENIX Security Sym-
posium - Volume 15, USENIX-SS’06, pages 305–320. USENIX Association,
2006.

[19] Stefan Berger, Ramón Cáceres, Dimitrios Pendarakis, Reiner Sailer, En-
riquillo Valdez, Ronald Perez, Wayne Schildhauer, and Deepa Srinivasan.
TVDc: managing security in the trusted virtual datacenter. ACM SIGOPS
Operating Systems Review, 42(1):40–47, 2008.

[20] David Bernstein. Containers and cloud: From LXC to docker to kubernetes.
IEEE Cloud Computing, 1(3):81–84, 2014.

[21] Joseph Birr-Pixton. Using SGX to harden password hashing, 2016. https:

//jbp.io/2016/01/17/using-sgx-to-hash-passwords.

[22] Sören Bleikertz, Sven Bugiel, Hugo Ideler, Stefan Nürnberger, and Ahmad-
Reza Sadeghi. Client-controlled Cryptography-as-a-Service in the cloud. In
Proceedings of the 11th International Conference on Applied Cryptography
and Network Security, ACNS’13, pages 19–36. Springer-Verlag, 2013.

[23] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano. The quest to replace
passwords: A framework for comparative evaluation of web authentication
schemes. In 2012 IEEE Symposium on Security and Privacy, pages 553–567,
2012.

[24] Marcus Brandenburger, Christian Cachin, Matthias Lorenz, and Rüdiger
Kapitza. Rollback and forking detection for Trusted Execution Environ-
ments using lightweight collective memory. In 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2017,
pages 157–168, 2017.

70

References

[25] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Fras-
setto, Kari Kostiainen, and Ahmad-Reza Sadeghi. DR.SGX: Automated
and adjustable side-channel protection for SGX using data location random-
ization. In Proceedings of the 35th Annual Computer Security Applications
Conference, ACSAC ’19, page 788–800. Association for Computing Machin-
ery, 2019.

[26] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software Grand Exposure:
SGX cache attacks are practical. In 11th USENIX Workshop on Offensive
Technologies (WOOT 17). USENIX Association, 2017.

[27] Stefan Brenner and Rüdiger Kapitza. Trust more, serverless. In Proceed-
ings of the 12th ACM International Conference on Systems and Storage,
SYSTOR ’19, page 33–43. Association for Computing Machinery, 2019.

[28] E. Brickell and J. Li. Enhanced privacy ID from bilinear pairing for hard-
ware authentication and attestation. In 2010 IEEE Second International
Conference on Social Computing, pages 768–775, 2010.

[29] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous at-
testation. In Proceedings of the 11th ACM Conference on Computer and
Communications Security, CCS ’04, page 132–145, New York, NY, USA,
2004. Association for Computing Machinery.

[30] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and
Raoul Strackx. Foreshadow: Extracting the keys to the Intel SGX kingdom
with transient out-of-order execution. In 27th USENIX Security Symposium
(USENIX Security 18), page 991–1008. USENIX Association, 2018.

[31] Jan Camenisch and Markus Stadler. Efficient group signature schemes for
large groups. In Advances in Cryptology — CRYPTO ’97, pages 410–424,
Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[32] Emanuele Cesena, Hans Löhr, Gianluca Ramunno, Ahmad-Reza Sadeghi,
and Davide Vernizzi. Anonymous authentication with TLS and DAA. In
Trust and Trustworthy Computing, pages 47–62. Springer Berlin Heidel-
berg, 2010.

[33] Somnath Chakrabarti, Brandon Baker, and Mona Vij. Intel SGX enabled
key manager service with OpenStack Barbican, 2017. https://arxiv.org/

abs/1712.07694.

[34] Chia che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX: A prac-
tical library OS for unmodified applications on SGX. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages 645–658. USENIX
Association, 2017.

[35] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. SgxPectre:
Stealing Intel secrets from SGX enclaves via speculative execution. In
2019 IEEE European Symposium on Security and Privacy (EuroS P), pages
142–157, 2019.

[36] G. Chen, M. Li, F. Zhang, and Y. Zhang. Defeating speculative-execution
attacks on SGX with HyperRace. In 2019 IEEE Conference on Dependable
and Secure Computing (DSC), pages 1–8, 2019.

[37] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration
of virtual machines. In Proceedings of the 2nd conference on Symposium
on Networked Systems Design & Implementation-Volume 2, pages 273–286,
2005.

71

References

[38] Tobias Cloosters, Michael Rodler, and Lucas Davi. TeeRex: Discovery and
exploitation of memory corruption vulnerabilities in SGX enclaves. In
29th USENIX Security Symposium (USENIX Security 20), pages 841–858.
USENIX Association, 2020.

[39] Cloudflare. What is FaaS?, 2021. https://www.cloudflare.com/learning/

serverless/glossary/function-as-a-service-faas/. Accessed: 18-06-2021.

[40] George Coker, Joshua Guttman, Peter Loscocco, Amy Herzog, Jonathan
Millen, Brian O’Hanlon, John Ramsdell, Ariel Segall, Justin Sheehy, and
Brian Sniffen. Principles of remote attestation. International Journal of
Information Security, 10(2):63–81, 2011.

[41] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptology
ePrint Archive, 2016(086):1–118, 2016.

[42] Boris Danev, Ramya Jayaram Masti, Ghassan O. Karame, and Srdjan Cap-
kun. Enabling secure VM-vTPM migration in private clouds. In Proceedings
of the 27th Annual Computer Security Applications Conference, ACSAC ’11,
pages 187–196. ACM, 2011.

[43] Digital Ocean. Digital Ocean Cloud Computing, 2021. https://www.

digitalocean.com. Accessed: 18-06-2021.

[44] Jan-Erik Ekberg, Kari Kostiainen, and N. Asokan. Trusted Execution
Environments on mobile devices. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 1497–1498, 2013.

[45] Jan-Erik Ekberg, Kari Kostiainen, and N Asokan. The untapped potential
of trusted execution environments on mobile devices. EEE Security &
Privacy, 12(4):29–37, 2014.

[46] Paul England. Practical techniques for operating system attestation. In
Trusted Computing - Challenges and Applications, pages 1–13, 2008.

[47] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the Forty-First Annual ACM Symposium on Theory of Computing,
STOC ’09, page 169–178. Association for Computing Machinery, 2009.

[48] David Goltzsche, Manuel Nieke, Thomas Knauth, and Rüdiger Kapitza.
AccTEE: A WebAssembly-based two-way sandbox for trusted resource ac-
counting. In Proceedings of the 20th International Middleware Conference,
Middleware ’19, page 123–135. Association for Computing Machinery, 2019.

[49] Google. Google Cloud, 2021. https://cloud.google.com. Accessed: 18-06-2021.

[50] Google. Google Cloud Confidential Computing, 2021. https://cloud.google.

com/confidential-computing. Accessed: 18-06-2021.

[51] Google. Google Cloud Functions, 2021. https://cloud.google.com/functions.
Accessed: 18-06-2021.

[52] Google. Google Infrastructure Security Design Overview, 2021. https:

//cloud.google.com/security/infrastructure/design/. Accessed: 18-06-2021.

[53] Google. Google Kubernetes Engine, 2021. https://cloud.google.com/

kubernetes-engine. Accessed: 18-06-2021.

[54] Google. SafetyNet Attestation API, 2021. https://developer.android.com/

training/safetynet/attestation.html. Accessed: 18-06-2021.

[55] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller.
Cache attacks on Intel SGX. In 10th European Workshop on Systems
Security, 2017.

72

References

[56] Gridcoin. Rewarding Volunteer Distributed Computing, 2021. https://

gridcoin.us/. Accessed: 18-06-2021.

[57] Trusted Computing Group. TPM main specification Level 2, version 1.2,
revision 116. Technical report, National Institute of Standards and Tech-
nology, 2011.

[58] Nils Gruschka and Meiko Jensen. Attack surfaces: A taxonomy for attacks
on cloud services. In 2010 IEEE 3rd International Conference on Cloud
Computing, pages 276–279, 2010.

[59] J. Gu, Z. Hua, Y. Xia, H. Chen, B. Zang, H. Guan, and J. Li. Secure
live migration of SGX enclaves on untrusted cloud. In 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pages 225–236, 2017.

[60] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. Hardware-
software contracts for secure speculation, 2020. https://arxiv.org/abs/2006.

03841.

[61] João Guerreiro, Rui Moura, and João Nuno Silva. TEEnder: SGX enclave
migration using HSMs. Computers & Security, 96:101874, 2020.

[62] Per Hammarlund, Alberto J Martinez, Atiq A Bajwa, David L Hill, Erik
Hallnor, Hong Jiang, Martin Dixon, Michael Derr, Mikal Hunsaker, Rajesh
Kumar, et al. Haswell: The fourth-generation Intel core processor. IEEE
Micro, 34(2):6–20, 2014.

[63] Weili Han, Zhigong Li, Minyue Ni, Guofei Gu, and Wenyuan Xu. Shadow
attacks based on password reuses: A quantitative empirical view. IEEE
Transactions on Dependable and Secure Computing, 2016.

[64] Heroku. Cloud Application Platform, 2021. https://www.heroku.com. Accessed:
18-06-2021.

[65] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. Post-copy live
migration of virtual machines. SIGOPS Oper. Syst. Rev., page 14–26, 2009.

[66] IBM. IBM Cloud Functions, 2021. https://cloud.ibm.com/functions/. Ac-
cessed: 18-06-2021.

[67] Intel. Speculative Execution Side Channel Mitigations,
2021. https://www.intel.com/content/www/us/en/developer/articles/

technical/software-security-guidance/technical-documentation/

speculative-execution-side-channel-mitigations.html. Accessed: 28-10-2021.

[68] David Jaeger, Chris Pelchen, Hendrik Graupner, Feng Cheng, and
Christoph Meinel. Analysis of publicly leaked credentials and the long
story of password (re-)use. In Conference on Passwords, Bochum, Germany,
2016.

[69] Raj Jain and Subharthi Paul. Network virtualization and software de-
fined networking for cloud computing: a survey. IEEE Communications
Magazine, 51(11):24–31, 2013.

[70] H. Kang, M. Le, and S. Tao. Container and microservice driven design for
cloud infrastructure DevOps. In 2016 IEEE International Conference on
Cloud Engineering (IC2E), pages 202–211, 2016.

[71] Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun Jeon, and Jae-
hyuk Huh. ShieldStore: Shielded in-memory key-value storage with SGX.
In Proceedings of the Fourteenth EuroSys Conference 2019, EuroSys ’19.
Association for Computing Machinery, 2019.

73

References

[72] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric
Xing, and Mona Vij. Integrating remote attestation with transport layer
security, 2019.

[73] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre
attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 1–19, 2019.

[74] Klaudia Krawiecka, Arseny Kurnikov, Andrew Paverd, Mohammad Man-
nan, and N. Asokan. SafeKeeper: Protecting web passwords using trusted
execution environments, 2017. https://arxiv.org/abs/1709.01261.

[75] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and
Marcus Peinado. Inferring fine-grained control flow inside SGX enclaves
with branch shadowing. In USENIX Security Symposium, 2017.

[76] H. Liang, Q. Zhang, M. Li, and J. Li. Toward migration of SGX-enabled
containers. In 2019 IEEE Symposium on Computers and Communications
(ISCC), pages 1–6, 2019.

[77] Joshua Lind, Ittay Eyal, Peter R. Pietzuch, and Emin Gün Sirer. Teechan:
Payment channels using Trusted Execution Environments, 2016. https:

//arxiv.org/abs/1612.07766.

[78] Linux. Kernel Virtual Machine, 2021. https://www.linux-kvm.org/page/Main_

Page. Accessed: 18-06-2021.

[79] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In 27th USENIX Security Symposium (USENIX
Security 18), 2018.

[80] Brian McGillion, Tanel Dettenborn, Thomas Nyman, and N. Asokan. Open-
TEE–an open virtual Trusted Execution Environment. In 2015 IEEE
Trustcom/BigDataSE/ISPA, volume 1, pages 400–407, 2015.

[81] Peter M. Mell and Timothy Grance. SP 800-145. The NIST Definition of
Cloud Computing. Technical report, National Institute of Standards and
Technology, Gaithersburg, MD, USA, 2011.

[82] Microsoft. Azure, 2021. https://azure.microsoft.com/en-us/. Accessed: 18-06-
2021.

[83] Microsoft. Azure Confidential Computing, 2021. https://azure.microsoft.

com/en-us/solutions/confidential-compute/. Accessed: 18-06-2021.

[84] Microsoft. Azure Functions, 2021. https://azure.microsoft.com/en-us/

services/functions/. Accessed: 18-06-2021.

[85] Microsoft. Microsoft Azure Attestation, 2021. https://docs.microsoft.com/

en-us/azure/attestation. Accessed: 18-06-2021.

[86] Microsoft. What is SaaS?, 2021. https://azure.microsoft.com/en-us/overview/
what-is-saas/. Accessed: 18-06-2021.

[87] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss,
and Frank Piessens. Plundervolt: Software-based fault injection attacks
against Intel SGX. In 41st IEEE Symposium on Security and Privacy
(S&P’20), 2020.

74

References

[88] Yoshimichi Nakatsuka, Andrew Paverd, and Gene Tsudik. PDoT: Private
DNS-over-TLS with TEE support. In Proceedings of the 35th Annual
Computer Security Applications Conference, ACSAC ’19, page 489–499.
Association for Computing Machinery, 2019.

[89] Michael Nelson, Beng-Hong Lim, Greg Hutchins, et al. Fast transparent
migration for virtual machines. In USENIX Annual Technical Conference,
pages 391–394, 2005.

[90] NIST. Zero Trust Architecture. https://csrc.nist.gov/publications/detail/

sp/800-207/final. Accessed: 18-06-2021.

[91] Talal H Noor, Quan Z Sheng, Lina Yao, Schahram Dustdar, and Anne HH
Ngu. CloudArmor: Supporting reputation-based trust management for
cloud services. IEEE Transactions on Parallel and Distributed Systems,
27(2):367–380, 2015.

[92] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and
Christof Fetzer. Varys: Protecting SGX enclaves from practical side-channel
attacks. In 2018 USENIX Annual Technical Conference (USENIX ATC 18),
pages 227–240. USENIX Association, 2018.

[93] Diego Ongaro and John Ousterhout. In search of an understandable con-
sensus algorithm. In 2014 USENIX Annual Technical Conference (USENIX
ATC 14), pages 305–319. USENIX Association, 2014.

[94] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Ley-
mann. Service-oriented computing: State of the art and research challenges.
Computer, 40(11):38–45, 2007.

[95] Jaemin Park, Sungjin Park, Brent Byunghoon Kang, and Kwangjo Kim.
eMotion: An SGX extension for migrating enclaves. Computers & Security,
80:173 – 185, 2019.

[96] C. Priebe, K. Vaswani, and M. Costa. EnclaveDB: A secure database using
SGX. In 2018 IEEE Symposium on Security and Privacy (SP), pages 264–
278, 2018.

[97] Graeme Proudler, Liqun Chen, and Chris Dalton. Trusted Platform Archi-
tecture, pages 109–129. Springer International Publishing, 2014.

[98] Niels Provos and David Mazieres. A future-adaptable password scheme.
In USENIX Annual Technical Conference, FREENIX Track, pages 81–91,
1999.

[99] Ioannis Psaras. Decentralised edge-computing and IoT through distributed
trust. In Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services, pages 505–507, 2018.

[100] Have I Been Pwned. Pwned websites. https://haveibeenpwned.com/

pwnedwebsites. Accessed: 18-06-2021.

[101] M. Rosenblum and T. Garfinkel. Virtual machine monitors: current tech-
nology and future trends. Computer, 38(5):39–47, 2005.

[102] Mark Russinovich, Edward Ashton, Christine Avanessians, Miguel Cas-
tro, Amaury Chamayou, Sylvan Clebsch, Manuel Costa, Cédric Fournet,
Matthew Kerner, Sid Krishna, Julien Maffre, Thomas Moscibroda, Kar-
tik Nayak, Olya Ohrimenko, Felix Schuster, Roy Schwartz, Alex Shamis,
Olga Vrousgou, and Christoph M. Wintersteiger. CCF: A Framework for
Building Confidential Verifiable Replicated Services. Technical Report
MSR-TR-2019-16, Microsoft, April 2019.

75

References

[103] Mark Russinovich, Edward Ashton, Christine Avanessians, Miguel Cas-
tro, Amaury Chamayou, Sylvan Clebsch, Manuel Costa, Cédric Fournet,
Matthew Kerner, Sid Krishna, Julien Maffre, Thomas Moscibroda, Kartik
Nayak, Olya Ohrimenko, Felix Schuster, Roy Schwartz, Alex Shamis, Olga
Vrousgou, and Christoph M. Wintersteiger. CCF: A framework for building
confidential verifiable replicated services. Technical Report MSR-TR-2019-
16, Microsoft, 2019.

[104] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah.
Trusted Execution Environment: what it is, and what it is not. In 2015
IEEE Trustcom/BigDataSE/ISPA, volume 1, pages 57–64, 2015.

[105] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3: Trustworthy
data analytics in the cloud using SGX. In Proceedings of the 2015 IEEE
Symposium on Security and Privacy, SP ’15, pages 38–54. IEEE Computer
Society, 2015.

[106] Mark Seaborn and Thomas Dullien. Exploiting the DRAM rowhammer bug
to gain kernel privileges. Black Hat, 15:71, 2015.

[107] Vyas Sekar and Petros Maniatis. Verifiable resource accounting for cloud
computing services. In Proceedings of the 3rd ACM workshop on Cloud
computing security workshop, pages 21–26, 2011.

[108] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-SGX:
Eradicating controlled-channel attacks against enclave programs. In Net-
work and Distributed System Security Symposium 2017 (NDSS’17). Inter-
net Society, 2017.

[109] Signal. Secure value recovery. https://signal.org/blog/

secure-value-recovery. Accessed: 18-06-2021.

[110] Lenin Singaravelu, Calton Pu, Hermann Härtig, and Christian Helmuth.
Reducing TCB complexity for security-sensitive applications: Three case
studies. In Proceedings of the 1st ACM SIGOPS/EuroSys European Confer-
ence on Computer Systems 2006, EuroSys ’06, page 161–174. Association
for Computing Machinery, 2006.

[111] C. Soriente, G. Karame, W. Li, and S. Fedorov. ReplicaTEE: Enabling
seamless replication of SGX enclaves in the cloud. In 2019 IEEE European
Symposium on Security and Privacy (EuroS P), pages 158–171, 2019.

[112] Sandeep Tamrakar. Applications of Trusted Execution Environments (TEEs).
Doctoral thesis, School of Science, 2017.

[113] The Linux Foundation. Xen Project, 2021. https://xenproject.org/. Accessed:
18-06-2021.

[114] Ken Thompson. Reflections on trusting trust. Commun. ACM,
27(8):761–763, August 1984.

[115] Dan Tsafrir. The context-switch overhead inflicted by hardware interrupts
(and the enigma of do-nothing loops). In Proceedings of the 2007 Workshop
on Experimental Computer Science, ExpCS ’07. Association for Computing
Machinery, 2007.

[116] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx. Telling
your secrets without page faults: Stealthy page table-based attacks on
enclaved execution. In USENIX Security Symposium, 2017.

76

References

[117] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D.
Garcia, and Frank Piessens. A tale of two worlds: Assessing the vulner-
ability of enclave shielding runtimes. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’19,
page 1741–1758. Association for Computing Machinery, 2019.

[118] Marten van Dijk, Jonathan Rhodes, Luis F. G. Sarmenta, and Srinivas
Devadas. Offline untrusted storage with immediate detection of forking
and replay attacks. In Proceedings of the 2007 ACM Workshop on Scalable
Trusted Computing, STC ’07, pages 41–48. ACM, 2007.

[119] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom.
SGAxe: How SGX fails in practice. https://sgaxeattack.com/, 2020.

[120] Luis M Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. Dynamically
scaling applications in the cloud. ACM SIGCOMM Computer Communica-
tion Review, 41(1):45–52, 2011.

[121] Vigilante.pw. The breached database directory. https://vigilante.pw. Ac-
cessed: 18-06-2021.

[122] William Voorsluys, James Broberg, Srikumar Venugopal, and Rajkumar
Buyya. Cost of virtual machine live migration in clouds: A performance eval-
uation. In Cloud Computing, pages 254–265. Springer Berlin Heidelberg,
2009.

[123] Brent R Waters, Dirk Balfanz, Glenn Durfee, and Diana K Smetters. Build-
ing an encrypted and searchable audit log. In Network and Distributed
System Security Symposium (NDSS), volume 4, pages 5–6, 2004.

[124] Timothy Wood, Prashant J Shenoy, Arun Venkataramani, Mazin S Yousif,
et al. Black-box and gray-box strategies for virtual machine migration. In
Symposium on Networked Systems Design and Implementation (NSDI),
volume 7, pages 17–17, 2007.

[125] J. Wu, L. Ping, X. Ge, Y. Wang, and J. Fu. Cloud storage as the infrastruc-
ture of cloud computing. In 2010 International Conference on Intelligent
Computing and Cognitive Informatics, pages 380–383, 2010.

[126] Yubico. YubiKey Strong Two Factor Authentication, 2021. https://www.

yubico.com/. Accessed: 18-06-2021.

[127] Fan Zhang, Ittay Eyal, Robert Escriva, Ari Juels, and Robbert Van Renesse.
REM: Resource-efficient mining for blockchains. In 26th USENIX Security
Symposium (USENIX Security 17), pages 1427–1444. USENIX Association,
2017.

77

-o
tl

a
A

D
D

17
1

/
 1

2
0

2

 +d
ibga

e*GM
FTSH

9

 NBSI 3-8160-46-259-879)detnirp(

 NBSI 0-9160-46-259-879)fdp(

 NSSI 4394-9971)detnirp(

 NSSI 2494-9971)fdp(

ytisrevinU otlaA

ecneicS fo loohcS

ecneicS retupmoC fo tnemtrapeD

 fi.otlaa.www

+SSENISUB
YMONOCE

+TRA
+NGISED

ERUTCETIHCRA

+ECNEICS
YGOLONHCET

REVOSSORC

LAROTCOD
SNOITATRESSID

	Aalto_DD_2021_171_Kurnikov_verkkoversio

