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1. Introduction

This thesis covers selected topics in Bayesian statistics and graph neural net-

works (GNNs). In the realm of Bayesian statistics, we aim to extend the ap-

plicability of Bayesian methods by addressing computational issues and other

fundamental limitations. In the scope of GNNs, our goal is to revisit well-

established concepts to better understand which design choices are beneficial to

build state-of-the-art GNNs.

The contributions of this thesis are organized into three self-contained chap-

ters, addressing individual research questions. Each chapter motivates our

research directions, briefly covers the necessary background, and addresses the

main contributions therein. Each chapter also contains a section assessing the

extent to which we answered the research questions. The thesis closes with a

discussion of broader impacts and directions for future works. The remainder of

this introduction presents our research questions and provides an overview of

their respective chapters.

Research Question 1: Real-world computing systems are often linked by un-

reliable communication networks, making communication costs a bottleneck for

many applications. Can we design efficient methods for distributed Bayesian

inference under severe communication constraints?

Chapter 2 focuses on using distributed computations to scale-up Bayesian

inference while adhering to communication constraints, covering Publication I

and Publication II. Publication I employs normalizing flows [Papamakarios et al.,

2021] to improve embarrassingly parallel Markov chain Monte Carlo, which

uses a divide-and-conquer strategy to speed-up posterior sampling. Publication

II proposes an extension of stochastic gradient Langevin dynamics [Welling and

Teh, 2011] for federated learning, a novel setting in which data are inherently

distributed and privacy concerns prevent its disclosure to a centralizing server.

Research Question 2: The natural outcome of a Bayesian analysis is a pos-

terior distribution. However, Bayesian meta-analysis traditionally depends on

9
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summaries extracted from data. Can we combine the results of multiple Bayesian

studies, i.e. posterior distributions, into a meta-analysis in a principled manner?

Chapter 3 presents a framework for meta-analysis that allows the combination

of Bayesian posteriors, proposed in Publication III. Despite posteriors being

the natural outcome of a Bayesian study, Bayesian meta-analysis traditionally

combines results summarized as point estimates. To the best of our knowledge,

Publication III is the first work addressing the combination of full posteriors.

Research Question 3: GNNs are often based on intuitions from traditional

deep learning models (e.g. Convolutional neural networks). As a consequence,

they might inherit unnecessary complexities, which may not be useful for graph

domains. Can simple GNNs, with minimalist designs, perform as well as state-

of-the-art models?

Chapter 4 revisits two basic concepts in GNNs: spectral graph convolutions

and graph pooling. We first cover Publication IV, which shows it is possible to

achieve state-of-the-art performance by adding a minimal set of features to the

most basic formulation of polynomial spectral GNNs. Subsequently, we cover

Publication V which revisits popular pooling methods and shows they usually

do not contribute to the performance of successful GNNs.

10



2. Scalable Bayesian inference

Markov Chain Monte Carlo (MCMC) algorithms are a cornerstone of practical

Bayesian analysis. Nonetheless, accommodating large and distributed data is

still a challenge, especially when communication is a premium. Publication I

proposes an embarrassingly parallel MCMC strategy using normalizing flows.

Publication II develops a stochastic gradient Langevin dynamics (SGLD) sampler

for federated learning.

The remaining of this chapter is organized as follows. Section 2.1 provides a

brief background of embarrassingly parallel MCMC [Neiswanger et al., 2014]

and an overview of Publication I. Section 2.2 reviews serial and distributed

SGLD and shows how Publication II adapts it for federated data.

2.1 Embarrassingly parallel MCMC using normalizing flows

Embarrassingly parallel MCMC methods employ a divide-and-conquer strategy

to obtain samples from the Bayesian posterior

p(θ|D)∝ p(θ)p(D|θ), (2.1)

where p(θ) is a prior, p(D|θ) is a likelihood function and D denotes the data.

The general idea is to break the global inference into smaller tasks and combine

their results, requiring coordination only in the final aggregation stage. First,

we partition D into S shards D1, . . . ,DS. Then, we factorize our target posterior

as

p(θ|D)∝
S∏︂

s=1

p(θ)1/S p(Ds|θ), (2.2)

and sample from the right-hand-side factors, referred to as subposteriors, in

parallel using an MCMC algorithm of choice. Subsequently, we send the sub-

posterior samples to a coordinating server for an aggregation step. The core

challenge in this framework is devising combination/aggregation strategies that

are both accurate and computationally efficient.
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Scalable Bayesian inference

The pioneering work of Scott et al. [2016] uses weighted averages of subpos-

terior samples to approximate the target posterior. Neiswanger et al. [2014]

propose parametric, semi-parametric and non-parametric strategies, the two

former depend on fitting kernel density estimators to subposterior samples.

Wang et al. [2015] use random partition trees to approximate the posterior

with a multidimensional histogram. Nemeth and Sherlock [2018] fit Gaussian

process approximations to the log-subposteriors and take the product of their

expected values. Except for the parametric method, which imposes overly sim-

plistic local approximations that generally result in poor approximations of

the posterior, all of the aforementioned approaches require the subposterior

samples to be centralized, incurring extensive communication costs. In fact,

communication costs have been altogether ignored in the literature before Pub-

lication I. Furthermore, sampling from the approximate posterior can become

difficult, requiring expensive additional MCMC steps to obtain samples from

the combined posterior.

Contribution. To alleviate these problems, Publication I proposes i) using real

non-volume-preserving transformations (NVP) [Dinh et al., 2014] to approxi-

mate the subposteriors, and ii) a simple importance sampling scheme to combine

subposteriors. Notably, since we only send the real NVPs to the server, our

strategy results in communication costs that are constant in the number of sub-

posterior samples. This is an especially appealing feature when communication

between machines holding data shards and the server is expensive or limited.

Real NVPs are a special case of normalizing flows [Papamakarios et al., 2021],

a family of invertible generative models that can also be used for density esti-

mation. While normalizing flows are easy to sample from, evaluating densities

can be arbitrarily expensive. Real NVPs are specially useful to us since they are

both easy to sample from and to evaluate.

Once we obtain the sets of samples M1, . . . ,MS from each of the S subpos-

teriors, we use them to fit a series of normalizing flows p
⋀︁

1, . . . , p
⋀︁

S. Then, we

use their product p
⋀︁=∏︁S

s=1 p
⋀︁

s to approximate the posterior. While normalizing

flows are easy to sample from, there is no straightforward recipe to sample from

their product. Therefore, we propose an Importance Sampling (IS) algorithm

[Geweke, 1989] to compute the expectation of an arbitrary test function h. More

specifically, given a set of T samples drawn from any p
⋀︁

s, we build our IS estimate

as:

h(θ)=
T∑︂

t=1

wth(θt), (2.3)

12
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where w1, . . . ,wT are self-normalized importance weights such that

wt ∝
∏︁S

s′=1 p
⋀︁

s′(θt)
p
⋀︁

s(θt)
∀t = 1. . .T. (2.4)

Our IS framework exploits two key properties of real NVP transformations —

ease of evaluation and sampling — and avoids the overhead of running still more

MCMC chains to sample from the aggregated posterior p
⋀︁

(θ), which might be a

challenging target due to the neural networks parameterizing the normalizing

flows.

While importance sampling estimates can be unreliable if their variance is

very high or infinite, we prove that, under mild assumptions, our importance

sampling scheme is stable, i.e., h(θ) has finite variance. Additionally, we can use

the same importance weights to sample from the approximate posterior using

Sampling Importance Resampling [SIR Rubin, 1987].

Experimental results show that our method outperforms the previous state-of-

the-art in several settings, including heterogeneous subposteriors and intricate-

shaped, multi-modal or high-dimensional posteriors.

2.2 Stochastic-gradient MCMC for federated data

Langevin dynamics [Neal, 2011] is a family of MCMC methods which utilizes

the gradient of the log-posterior

∇ log p (θ|D = (x1, . . . , xN ))=∇ log p(θ)+
N∑︂

i=1

∇ log p(xi|θ), (2.5)

to generate proposals in a Metropolis-Hastings sampling scheme. A problem

with this approach, however, is that the exact computation of the gradient in

Equation 2.5 can be prohibitive for large datasets. To mitigate this problem,

Welling and Teh [2011] propose stochastic gradients Langevin dynamics (SGLD),

a method that uses a mini-batch Bt of size m to approximate the full-data

gradient at each time-step t.

SGLD draws samples from the target distribution using a stochastic gradient

update of the form

θt+1 = θt + ht

2
v(θt)+ηt, (2.6)

in which ht is the step size, ηt is a noise variable sampled from N (0,htI) and

where the velocity function v is given by

v(θt)=∇ log p(θt)+ N
m

∇ log p(Bt|θt). (2.7)

To extend SGLD to distributed settings – where D is partitioned into shards

13
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D1, . . . ,DS – Ahn et al. [2014] propose an extension of SGLD coined distributed

SGLD (DSGLD).

The main idea in DSGLD is to sample each mini-batch within a single shard

Dst at each time-step t. The shard index st itself is sampled by a scheduler with

probability fs, with
∑︁S

s=1 fs = 1 and fs > 0 for all s. This results in the update

θt+1 = θt + ht

2
vst (θt)+ηt, (2.8)

in which vst is an unbiased gradient estimator given by

vst (θt)=∇ log p(θt)+ Nst

fst m
∇ log p(Bt|θt), (2.9)

and where Nst denotes the size of shard Dst , chosen at time t. Intuitively, if we

choose the mini-batch Bt of m data points uniformly at random from Dst , then

Nst /m scales ∇ log p(Bt|θt) to be an unbiased estimator for ∇ log p(Dst |θt). In

turn, f −1
st

further scales this gradient to be an unbiased estimator of ∇ log p(D|θt).

It is worth noting that, while data are distributed, we can still understand

DSGLD chains as entirely serial procedures. In practice, however, distributed

settings are naturally amenable to running multiple chains simultaneously.

A downside of this approach is that the chain state θt needs to be transferred

between workers at each time-step t. To avoid this constant communication,

Ahn et al. [2014] propose taking multiple update steps within the same shard

before moving to another computing node. Nonetheless, this reduction in com-

munication costs comes at the expense of some loss in asymptotic accuracy.

Contribution. In Publication II, we propose an extension of SGLD for federated

scenarios [Konecný et al., 2016]. Notably, federated data arise independently

in different devices, and communication or privacy constraints prevent it from

being disclosed to a server. As a consequence, data are often partitioned in a

non-IID fashion.

We show that distributed methods such as vanilla DSGLD are inappropriate

for the federated non-IID regime. In practice, this regime significantly amplifies

the variance of stochastic gradients (e.g. Figure 2.1). In turn, this can lead to

poor mixing rates and slow convergence[Dubey et al., 2016]. Additionally, in

federated settings, we want to avoid frequent communication, which can cause

DSGLD to diverge from the target posterior even for very simple models [Ahn

et al., 2014].

To alleviate both these problems, we propose conducive gradients, a simple

mechanism that combines local likelihood approximations to correct gradient up-

dates. Given the approximations q1(θ), . . . , qS(θ) for the likelihood contributions

14
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Figure 2.1. Comparison between gradient estimators using centralized (SGLD) and distributed
data (DSGLD) for a model with Bernoulli likelihood and uniform prior. We computed
gradients using 5 samples from a total of 30 observations generated from fair coin
tosses. For DSGLD, we simulate the federated non-IID regime splitting data between
3 equally-available shards of same size but distinct means – 0.1, 0.5 and 0.9. The
confidence bars correspond to one standard deviation. DSGLD shows higher variance
than SGLD even for this simple case.

p(D1|θ), . . . , p(DS|θ), we define the conducive gradient for a shard s as

gs(θ)=∇ log q(θ)− 1
fs
∇ log qs(θ), (2.10)

where q(θ)=∏︁s qs(θ) can be seen as a crude approximation of the posterior.

We then add the conducive gradient gs to the unbiased estimate in Equa-

tion 2.8 to a novel method, which we call federated SGLD (FSGLD). More

specifically the FSGLD update equation is defined as:

θt+1 = θt + ht

2

(︂
vst (θt)+ gst (θt)

)︂
+ηt. (2.11)

To avoid computational overhead, we must choose tractable approximations

qs for which gradient computations are inexpensive. Exponential family distri-

butions are especially convenient for this purpose. Furthermore, they are closed

under product operations, enabling us to compute ∇ log q(θt) in a single gradient

evaluation instead of S. This keeps the additional cost of our method negligible

even when S ≫ m.

In Publication II, we compute qs by first drawing from ps(θ)∝ p(Ds|θ) locally

using SGLD, and then using the resulting samples to compute the parameters

of an exponential family approximation. To avoid communication overhead, we

compute q1, . . . , qS in parallel for each data shard and send the approximations

to the coordinating server once, before the FSGLD iterations take place.

Our experiments show that FSGLD outperforms DSGLD in federated non-IID

scenarios, and that it converges to the true posterior in cases where DSGLD

fails. We also provide convergence bounds for FSGLD and use these results

to gain further insight on how to weight the quality of the local likelihood

approximations. Furthermore, we provide analysis for DSGLD since no formal

analysis is available in the literature. We use well-established analyses of

convergence for SGLD in serial settings [Chen et al., 2015, Nagapetyan et al.,
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2017, Baker et al., 2019, Teh et al., 2016, Vollmer et al., 2016] as a starting point

due to their relatively straightforward formulation.
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2.3 Revisiting research question I

— Can we design efficient methods for distributed Bayesian inference under severe

communication constraints?

The contributions in this chapter show two efficient inference schemes for set-

tings with strong communication constraints. Besides making embarrassingly

parallel MCMC capable of handling more complex posteriors, Publication I fur-

ther reduces its communication cost. More specifically, we only send normalizing

flows to the server — instead of the entire subposterior chains — detaching the

communication cost from the number of subposterior samples. Also, Publication

II extends the well-known SGLD to cope with federated settings, where data is

often distributed in non-IID fashion and communication is a premium.

17





3. Bayesian meta-analysis

Meta-analysis encompasses a collection of approaches that aim to combine

results from multiple related statistical analyses. In the standard formulation,

these results are summary statistics computed from data, a typical example

being point estimates for some treatment’s effect size. For the combination of

point estimates, there exists a well-established Bayesian methodology and a

large body of literature [see e.g. Higgins et al., 2009, and references therein].

However, while a Bayesian analysis’ natural outcome is a posterior distribution,

the analogous task of combining posteriors has received little attention.

Publication III presents a principled framework for meta-analysis of Bayesian

posteriors. From a broader perspective, this contribution can also be seen as a

strategy to handle uncertain or ’soft’ evidence [Diaconis and Zabell, 1982, Jeffrey,

2004, Smets, 1993, Zhao and Osherson, 2010]. Section 3.1 provides a review of

Bayesian random effects meta-analysis (REMA) and shows how we extend it to

combine posterior distributions instead of summary statistics.

3.1 Meta-analysis of Bayesian analyses

In standard Bayesian REMA, we observe a summary statistic D j, designed to

provide information about the local effect θ j, for each study j = 1, . . . , J. Further-

more, it is common to translate the relatedness between studies as exchangeabil-

ity between local effects [Gelman et al., 2013], conditioning them on the overall

effect ϕ. Denoting by Q the prior distribution over ϕ, this leads to the following

hierarchical model:

ϕ∼Q

θ j ∼ Pϕ

D j ∼ Fθ j ,
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where Pϕ is the conditional distribution of θ j given ϕ, and Fθ j ’s is typically

modeled as N (θ j, σ̂2
j ), with σ̂2

j estimated from data. One of the primary goals

of the above model is to estimate the overall effect ϕ, for which the marginal

posterior density is given by

q(ϕ|D1, . . . ,DJ)∝
J∏︂

j=1

[︃∫︂
f (D j|θ j)p(θ j|ϕ)dθ j

]︃
q(ϕ). (3.1)

Contribution. Publication III considers the setting where, instead of summary

statistics D j, we have posterior distributions with densities π j(θ j) from each

of J studies, based on which we wish to update our prior knowledge about the

global effect ϕ, in analogy with Equation (3.1). Since π j informs us directly

about the local effect θ j, we propose marginalizing the uncertainty around these

effects as they appear in the likelihood, which leads us to update q(ϕ) as

q∗(ϕ)∝
J∏︂

j=1

[︃∫︂
p(θ j|ϕ)π j(θ j)dθ j

]︃
q(ϕ), (3.2)

which differs from Equation (3.2) only in the likelihood f (D j|θ j) being replaced

by the study-specific posterior π j(θ j).

To derive an update equation for the local effects, we first note that Equa-

tion (3.2) induces a joint distribution all effects:

p∗(θ1, . . . ,θJ ,ϕ)∝
J∏︂

j=1

[︁
p(θ j|ϕ)π j(θ j)dθ j

]︁
q(ϕ), (3.3)

and then marginalize with respect to all but the effect θ j′ we are interested to

get the update

π∗
j′(θ j′)∝

∫︂
p(θ j′ |ϕ)π j′(θ j′)

J∏︂

j=1, j ̸= j′

[︃∫︂
p(θ j|ϕ)π j(θ j)dθ j

]︃
q(ϕ)dϕ. (3.4)

A major advantage of this meta-analysis framework is its composability. In

particular, the study-specific inferences resulting in π j(θ j)’s can be carried inde-

pendently of the combination model, q(ϕ)
∏︁J

j=1 p(θ j|ϕ), which is designed by the

meta-analyst. This means that, unlike in conventional meta-analysis, all study-

level complexities are hidden ‘under the hood’ and need not explicitly be included

in the meta-analysis. For instance, in likelihood-free models [e.g. Lintusaari

et al., 2017, Marin et al., 2012], the data can typically be summarized by a num-

ber of different statistics but there is no closed-form likelihood to relate these to

the parameter of interest. In our framework, likelihood-free inferences can be

conducted separately for each study using approximate Bayesian computation,

after which the resulting posteriors are directly combined in a meta-analysis.
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With this, we are able to reuse results from computationally costly analyses and

update them without having to rerun the analyses themselves.

In addition to its intuitive nature, we prove that our update rule — in Equa-

tion (3.2) — retains some basic properties of standard Bayesian inference,

such as order-invariance in successive updates and posterior concentration

as J →∞. Publication III also demonstrates our framework combining results

from likelihood-free Bayesian analyses, which would be difficult to carry out

using standard methodology.

3.2 Revisiting reasearch question II

— Can we combine the results of multiple Bayesian studies, i.e. posterior distribu-

tions, into a meta-analysis in a principled manner?

Publication III provides a positive answer to this question. Our work builds

on exchangeability between local effects and guarantees fundamental properties

of the Bayesian framework. Furthermore, it allows statisticians to define their

meta-analysis model as if the local effects, over which the study posteriors are

defined, were observed quantities. Notably, Publication III is the first work

addressing the meta-analysis of posterior distributions.
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4. Graph neural networks

Graph neural networks (GNNs) are the de facto standard for machine learning

in graph domains. Similarly to Convolutional Neural Networks, GNNs are

primarily composed of convolutions and pooling layers. However, differently

from images, there is no unique characterization of these operations on graphs.

As a consequence, a flurry of works propose arbitrarily complex designs for

GNNs. Both contributions in this chapter strive for simpler architectures.

Publication IV revisits the basic formulation of GNNs based on spectral con-

volutions and proposes a simple method that outperforms previous spectral

GNNs and rivals state-of-the-art models on relevant large-scale benchmarks.

Publication V challenges the need for intricate pooling mechanisms and shows

that spurious strategies, e.g. random assignments, lead to similar performance.

After introducing notation, the remaining of this chapter is organized as

follows. Section 4.1 reviews spectral graph networks and covers Publication IV.

Section 4.2 reviews representative pooling methods and discusses the findings

from Publication V.

Notation We define a graph G , with nodes {1,2, . . . ,n}, as an ordered pair (A, X )

where A ∈ {0,1}n×n denotes a symmetric adjacency matrix and X ∈ Rn×d is a

matrix of d-dimensional node features. The matrix A defines the graph struc-

ture: two nodes i, j are connected if and only if A i j = 1. We denote by D the

diagonal degree matrix of G , i.e., D ii :=∑︁ j A i j. The normalized graph Laplacian

∆ := I −D−1/2 AD−1/2 is a symmetric positive semidefinite matrix. Naturally, this

Laplacian has eigendecomposition ∆=UΛU⊤, where U ∈Rn×n is an orthonor-

mal matrix with eigenvectors u1, . . . ,un and the matrix Λ= diag(λ1, . . . ,λn) com-

prises the corresponding eigenvalues (or spectrum) of G , with λ1 ≤λ2 ≤ ·· · ≤λn.
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Figure 4.1. Spectral polynomial convolutions. Polynomial convolutions of degree K com-
bines K-hop neighborhood information to update a node’s feature/signal. The picture
above illustrates how a quadratic polynomial filter g⋆ x =∑︁K

k=0 θk∆
kx. — with

K = 2 — updates the features xi of a node i. On the node level, the coefficient θ0
repeats part of the original signal. The first-order term θ1∆ aggregates information
from the immediate neighborhood of node i. Similarly, the second-order θ2∆

2 term
aggregates all nodes with distance at most two.

4.1 Spectral graph networks with constrained polynomials

Let x ∈ Rn be a column vector representing a signal on the nodes of G . The

graph Fourier transform of x is x̂ =U⊤x, and its inverse operation is x =Ux̂.

Furthermore, let g ∈ Rn be a graph filter. Using the graph Fourier transform

and the convolution theorem [Sandryhaila and Moura, 2013], we can write the

convolution between g and a signal x as

g⋆ x=U
(︁
(U⊤g)⊙ (U⊤x)

)︁=UĜU⊤x, (4.1)

where Ĝ = diag( ĝ1, ĝ2, . . . , ĝn) comprises the spectral filter coefficients ( ĝi)n
i=1.

The downside of this non-parametric characterization is that it ties the number

of filter coefficients to the number of nodes in G . Also, there is no guarantee that

Ĝ leads to localized filters [Bruna et al., 2014].

To circumvent both these problems, it is common to approximate Ĝ using

a polynomial of the eigenvalue matrix Λ. Without loss of generality, we can

represent polynomial spectral filters with base spectrum Λ as

Ĝ =
K∑︂

k=0

θkΛ
k, (4.2)

where θ0, . . . ,θK are the polynomial coefficients. Under this approximation, we

can rewrite the graph convolution in Equation 4.1 as

g⋆ x=
K∑︂

k=0

θk∆
kx. (4.3)

Note that this filtering operation does not explicitly require the eigendecomposi-

tion of the graph Laplacian. Hence, this approach is also known as spectrum-free.

Figure 4.1 illustrates the result of a polynomial spectral convolution with K = 2.

24



Graph neural networks

Spectral graph neural networks build upon graph convolutions to achieve a

multilayer design that resembles CNNs. Recall that the standard CNN layer

comprises: i) filtering operations; ii) a summation over channels; and iii) a

nonlinear activation function. Consider now a graph signal X ∈ Rn×d with d

channels. We can derive a generic polynomial spectral GNN using channel-wise

independent polynomial filters (Equation 4.2). Let H(0) := X . At layer ℓ, the

resulting GNN computes

H(ℓ) =φ
(︄

K∑︂

k=0

∆kH(ℓ−1)Θ(ℓ)
k

)︄
, (4.4)

where φ is a nonlinearity, such as the ReLU function, and Θ(ℓ) ∈Rdℓ−1×dℓ are the

coefficients of the spectral filters.

Despite its intuitive nature, the model in Equation 4.4 was only hinted at by

Defferrard et al. [2016], but never was explored in detail. The closest model

in the literature is ChebNet [Defferrard et al., 2016]. This network replaces

the monomials over ∆ by Chebyshev polynomials of a transformed Laplacian

∆̃ = (2/λn)∆− I. The idea behind this choice is to exploit the orthogonality of

Chebyshev polynomials to obtain more stable filters.

As a simplification of ChebNets, Graph Convolutional Networks (GCNs) [Kipf

and Welling, 2017] use first-order polynomial filters with a single parameter θ

each, such that θ = θ0 =−θ1. A GCN layer can be expressed as

H(ℓ) =ReLU
(︁
A′H(ℓ−1)Θ(ℓ))︁ , (4.5)

where A′ = (D+ I)−1/2(A+ I)(D+ I)−1/2 is the normalized adjacency matrix with

added self-loops.

Recent works on spectral GNNs aim to improve ChebNets and GCNs by

increasing model flexibility with rational filters. Nonetheless, the exact com-

putation of these filters involves matrix inversion. CayleyNets [Levie et al.,

2019] avoid this problem by solving a sequence of linear systems with the Jacobi

method. Bianchi et al. [2021] propose a design that approximates autoregressive

moving average filters based on recursions derived by Isufi et al. [2017].

Contribution. Departing from the search for flexible graph filters, Publication

IV pursues a simpler design for polynomial filters. Publication IV introduces

Polynomial Subspace Net (PSN), a spectral method that builds on the simplest

formulation of polynomial spectral GNNs (see Equation 4.4). Each PSN layer

filters all input channels using the same coefficients and combines the filtered

channels with a fully-connected feedforward network.

To derive convolutions for PSN, we introduce two simple modifications to the

general polynomial filters in Equation 4.2. First, we restrict the range of the
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polynomial coefficients to the interval [−1,1] using the tanh function. Second,

we take a convex combination between the constant component (0-th order)

and the higher-order terms. The motivation for these choices is, respectively, i)

improving training stability, and ii) allowing PSN to learn an importance for the

input signal at each layer. Formally, the resulting modified filter is

Ĝ =σ(θ0)I + (1−σ(θ0))
K∑︂

k=1

tanh(θk)Λk, (4.6)

where σ denotes the logistic function, and the θ0,θ1, . . . ,θK are learned filter

parameters. At first glance, these constraints seem to reduce the range of

polynomials we can express. However, we can overcome this following the

filtering operation with, e.g., a linear layer.

Like standard GNNs, PSN interleaves filtering operations and nonlinear

mappings in a multilayer fashion. Figure 4.2 shows the block diagram for a

PSN layer. The PSN filtering step applies the polynomial filter in Equation 4.6

to each graph input channel, independently. Subsequently, we apply a multi-

layer perceptron (MLP) to the filtered signals. Given the initial node features

H(0) := X , the output of the ℓ-th PSN layer can be recursively written as

S(ℓ) =σ(θ(ℓ)
0 )I + (1−σ(θ(ℓ)

0 ))
K∑︂

k=1

tanh(θ(ℓ)
k )∆k (4.7)

H(ℓ) =MLPℓ

(︁
S(ℓ)H(ℓ−1))︁. (4.8)

Despite its simplicity, experiments show that PSN outperforms complex spec-

tral GNNs and rivals state-of-the-art models on relevant large-scale benchmarks,

including datasets from the OGB suite Hu et al. [2020]. Notably, PSN can be

seen as an implicitly regularized (low-rank) version of the general convolution

presented in Equation 4.4. Publication IV also shows ablation studies supporting

our design choices.

4.2 Rethinking pooling in graph neural networks

Many GNN architectures interleave pooling operations between convolutional

layers. Intuitively, the convolutional layers aggregate neighborhood informa-

tion to capture local patterns. In turn, the pooling layers reduce the graph

representation while ideally preserving important structural information.

Although strategies for graph pooling come in varied flavors [Murphy et al.,

2019, Zhang et al., 2018, Lee et al., 2019, Ying et al., 2018], most GNNs follow a

hierarchical scheme in which the pooling regions correspond to graph clusters
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Figure 4.2. Polynomial Subspace Nets (PSNs). Each PSN layer applies the same polynomial
spectral filter across all input channels. This filter has constrained coefficients:
σ̃0 ∈ [0,1] and θ̃1, . . . , θ̃K ∈ [−1,1]. After the filtering, an MLP combines the filtered
signals. For clarity, we only denote the first layer (H(0) = X ) and omit layer indexes
in the model parameters.

that are combined to produce a coarser graph [Bruna et al., 2014, Defferrard

et al., 2016, Yuan and Ji, 2020, Ying et al., 2018, Khasahmadi et al., 2020, Fey

et al., 2018]. Intuitively, these clusters generalize the notion of local neighbor-

hood from traditional CNNs and enable us to coarsen graphs of varying sizes.

The cluster assignments can be computed using deterministic clustering algo-

rithms [Bruna et al., 2014, Defferrard et al., 2016] or be learned in an end-to-end

fashion [Ying et al., 2018, Khasahmadi et al., 2020]. Also, one can leverage node

embeddings [Khasahmadi et al., 2020], graph topology [Dhillon et al., 2007], or

both [Ying et al., 2018, Yuan and Ji, 2020], to pool graphs. We refer to these

approaches as local pooling.

Alongside attention-based mechanisms [Lee et al., 2019, Knyazev et al., 2019],

the notion that clustering is a Vital component of graph pooling has been

tremendously influential, resulting in an ever-increasing number of pooling

schemes [Ma et al., 2019, Gao and Ji, 2019, Huang et al., 2019, Yuan and Ji,

2020, Khasahmadi et al., 2020]. This reflects the implicit belief that the quality

of the cluster assignments, that underlie these pooling methods, is crucial for

the performance of GNNs.

Contribution. Publication V studies the influence of local pooling in the success

of GNNs. We select a number of models that are popular or claim to achieve

state-of-the-art performances and simplify their pooling operators, stripping

them of components that enforce clustering. To do so, we either use randomized
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Figure 4.3. Boxplots for DIFFPOOL (DP) and its random variants: Uniform U (0,1), Normal
N (0,1), and Bernoulli B(0.3). In all cases, at least one random variants achieves
higher average accuracy than DIFFPOOL. Also, random pooling does not consistently
lead to higher variance. Strikingly, learned pooling assignments do not contribute to
the performance of DIFFPOOL.

cluster assignments or operate on complementary graphs. Surprisingly, our

results reveal that the non-local GNN variants perform on par with or better

than the original methods.

As an illustrative example, consider DIFFPOOL [Ying et al., 2018], which

uses a GNN to learn cluster assignments for graph pooling. At each layer l,

DIFFPOOL computes the soft cluster assignment matrix S(l) ∈Rnl−1×nl as

S(l) = softmax
(︁
GNN(l)

1 (A(l−1), X (l−1))
)︁

with (A(0), X (0))= (A, X ), (4.9)

and then applies S(l) and a second GNN to compute the graph representation at

layer l:

X (l) = S(l)⊺GNN(l)
2 (A(l−1), X (l−1)) and A(l) = S(l)⊺A(l−1)S(l). (4.10)

To evaluate the true benefit of learning cluster assignments, we replace S(l) in

Equation 4.9 with a normalized random matrix softmax(S̃(l)), which we sample

before training starts. We do not propagate gradients thereafter. We experiment

with following distributions for the entries of S̃(l):

(Uniform) S̃(l)
i j ∼U (a,b) (Normal) S̃(l)

i j ∼N (µ,σ2) (Bernoulli) S̃(l)
i j ∼B(α)

(4.11)

Figure 4.3 compares DIFFPOOL against the randomized variants in four well-

established datasets [Dwivedi et al., 2020]. Note that a randomized approach

achieves the highest average accuracy in all datasets. Nonetheless, there is no

clear winner among all methods. Additionally, the variances for the random

pooling schemes are not significantly greater than the ones for DIFFPOOL.

Publication V shows similar experiments for graph memory network GMN [Khasah-

madi et al., 2020], GRACLUS [Dhillon et al., 2007], and MINCUTPOOL [Bianchi

et al., 2020]. For all these methods, results suggest that intricate pooling

strategies are often innocuous. The common explanation is that the initial

convolutional layers in GNNs tend to learn low-pass filters. As a consequence, it
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makes little difference how these representations are pooled. Publication V also

supports these findings with a series of additional experiments. For example,

we repeat experiments for different hyperparamter values and also evaluate the

role of unsupervised losses in GMN and DIFFPOOL.

4.3 Revisiting reasearch question III

— Can simple GNNs, with minimalist designs, perform as well as state-of-the-art

models?

The contributions in this chapter (Publication IV and Publication V) show

independent evidence that this is often the case. Publication IV develops a

constrained version of classical spectral GNNs which, in many cases, performs

as well as state-of-the-art architectures. Publication V shows that we can

generally swap intricate pooling methods with random partitioning without

decrease in performance.
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5. Discussion and Conclusions

This thesis covers topics in distributed Bayesian inference, meta-analysis, and

graph neural networks. Throughout the thesis, scalability is a cross-cutting

motivation. In all cases, the contributions herein are either geared towards ac-

commodating large datasets or avoiding unnecessary computational overheads.

In the context of distributed Bayesian inference, we propose using normalizing

flows to improve embarrassingly parallel inference (Publication I). We build

on the flexibility and tractability of these normalizing flows to beat the state-

of-the-art in a range of challenging scenarios, including high-dimensional and

heterogeneous subposteriors. Despite our advances, there is a major question

unaddressed in the literature: are subposterior samples reliable? We know this

is not the case and that MCMC chains often get stuck to modes, which can cause

parallel MCMC to wipe away regions of the combined posterior. We believe this

is an important issue and we plan to address it in upcoming work.

We also propose an extension of distributed SGLD for federated learning

(Publication II). In this setting, data are usually distributed in a non-iid manner

and privacy constraints prevent it from being disclosed to a server. Despite the

popularity of federated learning in the deep-learning community, Publication II

is the first work dedicated to MCMC for federated settings. With the renewed

interested in Bayesian deep learning, we believe future works could explore how

to leverage ideas from Publication II to sample from more complex models.

In the context of meta-analysis, we propose a framework to combine Bayesian

posteriors from a number of related studies (Publication III). Since it relaxes the

need to extract meaningful summary statistics from data, this work significantly

broadens the applicability of meta-analysis. For instance, we are able to combine

likelihood-free posteriors from arbitrarily complex simulator models. Besides

addressing a fundamental problem, this work also allows the reuse of posteriors

from computationally costly analyses. We also believe the framework we present

to handle uncertain evidence can be used for other applications, such as meta-
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learning or active knowledge elicitation.

In the realm of graph neural networks, our scalability bias translates to

simplicity. While the common trend in deep learning is to enrich models with

more complex components, we strive for minimal design choices. For example,

we show that it is possible to match the state-of-the-art for spectral GNNs with

small modifications to the simplest polynomial graph filter (Publication IV).

We also show that intricate and usually expensive graph pooling mechanisms

are often innocuous (Publication V). Both these works contribute to an ongoing

trend of skepticism towards wide-spread intuitions propagated at large in the

deep learning community. We hope these contributions help researchers and

practitioners better choose in which directions to employ their time and resources

to build more accurate GNNs.
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