

Master’s Programme in Computer, Communication and Information Sciences

Deep Learning for Virtual Metrology of
Chemical-Mechanical Polishing

Eero Hiltunen

Master’s Thesis
Espoo, September 20, 2021

Supervisor:

Prof. Alexander Ilin

Advisors:

D.Sc. Jukka-Pekka Salmenkaita
Ph.D. Antti Liski

Copyright ©2021 Eero Hiltunen

Author Eero Hiltunen
Title of thesis Deep Learning for Virtual Metrology of Chemical-Mechanical Polishing
Programme Computer, Communication and Information Sciences
Major Computer Science
Thesis supervisor Prof. Alexander Ilin
Thesis advisors D.Sc. Jukka-Pekka Salmenkaita, Ph.D. Antti Liski
Collaborative partner Elisa Oyj

Date 20.09.2021 Number of pages 60 + 6 Language English

 Abstract
The demand for semiconductor components in consumer products has increased

rapidly in the 2020s which has led to a shortage of electrical components and thus
breaks in availability of the products. For this reason, semiconductor manufactur-

ers are motivated to deploy machine learning and automation solutions, such as

virtual metrology, that increase the yield and quality of manufacturing. Regardless

of the clear benefits, there is an absence of comprehensive comparisons of current

state-of-the-art machine learning methods for virtual metrology.

This thesis presents and reviews multiple state-of-the-art machine learning

methods for virtual metrology of chemical-mechanical polishing – a crucial process
in semiconductor manufacturing. We compare typical virtual metrology pipelines

consisting of hand-crafted features and tree ensemble models to the current state-

of-the-art time series extrinsic regression models, such as InceptionTime and re-

current neural networks. In addition, we propose and evaluate several approaches

for including time-invariant extrinsic process variables to recurrent neural net-

works. Furthermore, we implement semi-supervised autoencoder models for a pre-

diction scenario where only a fraction of process runs are labeled. These autoencod-
ers are compared to other machine learning methods in a limited labeled data set-

ting. In addition, we evaluate the performance of tree ensemble models by analyzing

their feature importance scores. The experimental work is conducted on a public

dataset which allows simple comparison of our work to other recent publications

utilizing the same dataset.

Our experiments and comparison of different models show that hand-crafted

features combined with tree ensemble models are a strong choice for the virtual
metrology of chemical-mechanical polishing. We discovered, however, that semi-

supervised autoencoder models predict metrology results more accurately than su-

pervised machine learning methods in a limited labeled data setting. Furthermore,

our tree ensemble model feature importance analysis revealed that only a fraction

of the measurements in the process data are sufficient for accurate virtual metrol-

ogy of chemical-mechanical polishing tool. In fact, a gradient boosted trees model

utilized only 19% of the measurements and achieved an R2 score of 0.99 in the test-
ing set.

Keywords machine learning, semi-supervised learning, virtual metrology

Tekijä Eero Hiltunen
Työn nimi Syväoppiminen kemiallismekaanisen hiomisen virtuaalisessa metrologiassa
Koulutusohjelma Tietokone, kommunikaatio ja informaatiotieteet
Pääaine Tietotekniikka
Valvoja Prof. Alexander Ilin
Työn ohjaajat TkT Jukka-Pekka Salmenkaita, FT Antti Liski
Yhteistyötaho Elisa Oyj
Päivämäärä 20.09.2021 Sivumäärä 60 + 6 Kieli Englanti

 Tiivistelmä
Puolijohdekomponenttien kysyntä on kasvanut nopeasti 2020-luvulla, mikä on ai-

heuttanut pulaa komponenteista ja siten häiriöitä kuluttajatuotteiden saatavuu-

teen. Siksi puolijohdevalmistajat ovat motivoituneita ottamaan käyttöön koneoppi-

mis- ja automaatioratkaisuja - kuten virtuaalista metrologiaa - parantaakseen tuo-

tannon saantoa ja laatua. Selkeistä eduista huolimatta uusimpien koneoppimisme-

netelmien käytöstä virtuaaliseen metrologiaan ei ole saatavilla kattavia vertailuja.
Tässä diplomityössä esittelemme ja tarkastelemme monia hiljattain kehitettyjä

koneoppimismenetelmiä virtuaaliseen metrologiaan kemiallismekaanisessa hion-

nassa, joka on keskeinen prosessi puolijohdevalmistuksessa. Vertailemme tyypilli-

siä ratkaisuja, jotka koostuvat manuaalisesti muodostetuista muuttujista ja puuyh-

distelmämalleista, uusimpiin aikasarjaregressiomalleihin, kuten InceptionTimeen

ja takaisinkytkettyihin neuroverkkoihin. Esittelemme ja arvioimme myös useita lä-

hestymistapoja, joilla sisällytetään ajan suhteen muuttumattomat ulkoiset proses-
simuuttujat takaisinkytkettyihin neuroverkkoihin. Tämän lisäksi kehitämme puo-

liohjattuja autoenkoodaaja malleja ennustusskenaarioita varten, missä vain murto-

osalle prosessiajoista on tiedossa ulostulo. Näitä autoenkoodaajia verrataan muihin

koneoppimismenetelmiin asetelmassa, jossa tiedossa olevien ulostulojen määrä on

hyvin rajoitettu. Lisäksi arvioimme puuyhdistelmämallien suorituskykyä analysoi-

malla niiden ominaispiirteiden merkittävyysarvoja. Kokeellinen työ tehdään julki-

sella tietoaineistolla, mikä mahdollistaa työn vertaamisen muihin viimeaikaisiin
julkaisuihin, jotka käyttävät samaa aineistoa.

Kokeemme osoittavat, että manuaalisesti muodostetut muuttujat yhdistettynä

puuyhdistelmämalleihin ovat hyvä valinta kemiallismekaanisen hionnan virtuaali-

seen metrologiaan. Havaitsimme kuitenkin, että puolivalvotut autoenkoodaajapoh-

jaiset mallit ennustavat metrologia tuloksia tarkemmin kuin ohjatut koneoppimis-

menetelmät, kun tiedossa olevien ulostulojen määrä on hyvin rajoitettu. Lisäksi

merkittävyysanalyysimme puuyhdistelmämallien ominaispiirteistä paljasti, että
vain murto-osa prosessidatan mittauksista riittää kemiallismekaanisen hionnan

tarkkaan virtuaaliseen metrologiaan. Itse asiassa gradienttitehostettu usean puun

malli käytti vain 19 % mittauksista ja saavutti 0,99 selitysasteen testiaineistolla.

Avainsanat Koneoppiminen, tekoäly, virtuaalinen metrologia

iii

Contents

SYMBOLS AND ABBREVIATIONS ... IV

SYMBOLS ... IV
OPERATORS ... IV
ABBREVIATIONS ... IV

1 INTRODUCTION .. 1

2 VIRTUAL METROLOGY FOR CHEMICAL-MECHANICAL POLISHING 3

2.1 FUNDAMENTALS OF SEMICONDUCTOR MANUFACTURING ... 3
2.2 CHEMICAL-MECHANICAL POLISHING ... 4

2.2.1 Mechanical ... 5
2.2.2 Chemical ... 6

2.3 VIRTUAL METROLOGY ... 6
2.3.1 Modern applications .. 7
2.3.2 Chemical-mechanical polishing applications .. 9

3 MACHINE LEARNING ESSENTIALS .. 12

3.1 TREE-BASED ENSEMBLE MODELS .. 12
3.2 DEEP LEARNING... 15

3.2.1 Training neural networks ... 15
3.2.2 Neural network types ... 16
3.2.3 Deep autoencoders ... 20

3.3 TIME SERIES EXTRINSIC REGRESSION ... 22
3.3.1 Definition.. 22
3.3.2 Classical regression models ... 23
3.3.3 Deep learning models .. 23

4 DATA AND IMPLEMENTATION .. 26

4.1 PROCESS DATA .. 26
4.1.1 Variable descriptions ... 26
4.1.2 Prediction task description .. 27
4.1.3 Exploratory analysis ... 28

4.2 VIRTUAL METROLOGY SYSTEM ARCHITECTURE ... 31
4.2.1 Data preparation ... 32
4.2.2 Modelling and deployment .. 35

4.3 MACHINE LEARNING MODELS .. 35
4.3.1 Tree-based .. 36
4.3.2 Supervised deep learning... 37
4.3.3 Autoencoders and semi-supervised approach... 38

4.4 VALIDATION AND EVALUATION .. 39

5 RESULTS .. 41

5.1 GENERAL OVERVIEW .. 41
5.2 SUPERVISED RECURRENT NEURAL NETWORK VARIATIONS ... 45
5.3 LIMITED LABELED DATA AND SEMI-SUPERVISED LEARNING ... 46
5.4 RAW APPROACH ANALYSIS ... 49

6 CONCLUSIONS AND DISCUSSION .. 51

REFERENCES .. 54

 INTERRUPTED AND ABSURDLY LONG PROCESS RUNS .. 61

iv

Symbols and abbreviations
Symbols
 a Gradient threshold

𝒄𝒕 Hidden state vector of recurrent neural network at timestep t

D Number of variables

𝜺 Gaussian noise

F Number of aggregation functions

𝒈 Gradient

𝒉𝒕 Observed state vector of recurrent neural network at timestep t

𝒌 Kernel matrix

𝑲𝒑 Preston coefficient

𝜼 Step size coefficient

𝐏 Pressure

𝓡 Regression output

𝑹𝟐 coefficient of determination

𝐬𝒕 Sensor measurement vector at timestep t

𝓣 Time series

𝛖 Relative velocity

𝒘⃗⃗⃗ Model weight vector

x Input matrix

 𝒙̂ Reconstructed input matrix z Latent vector representation

 Operators

A × B multiplication of A and B scalar

← assignment of new value

∑ 𝒂𝑖,𝑗 sum over index i and j of matrix a

tanh(𝐀) hyperbolic tangent of matrix A

A・B element-wise product of matrix A and B

AB matrix multiplication of matrix A and B

σ(𝐀) sigmoid function of matrix A

‖𝒂‖ euclidean norm of vector a

argmin
𝑥

𝐹(𝑥) value of x for which F(x) is minimum

 Abbreviations

BEOL back-end-of-line

CMP chemical-mechanical polishing
CNN convolutional neural network

FCN fully convolutional neural network

FEOL front-end-of-line

GMDH group method of data handling

GRU Gated Recurrent Unit

GRU-AE Gated Recurrent Unit autoencoder

IC integrated circuit

v

IID independent and identically distributed

LSTM Long Short-Term Memory

LSTM-AE Long Short-Term Memory autoencoder

MART Multiple Additive Regression Trees

MLP multilayer perceptron

MLP-AE multilayer perceptron autoencoder

MSE mean squared error

NLP natural language processing

OES optical emission spectrometry

PCA principal component analysis

PHM Prognostic and Health Management

R2R run-to-run

ReLU Rectified Linear Unit

ResNet residual network

RMSE root-mean-square error

RNN recurrent neural network

SGD Stochastic Gradient Descent

SVR Support Vector Regression

VAE variational autoencoder
XGBoost Extreme Gradient Boosting

1

1 Introduction

The demand for semiconductor components in consumer products, such as cars,

smartphones, and laptops, has increased rapidly in the 2020s which has led to a shortage of

electrical components and breaks in availability of the products (Garcevic & Lidberg 2021).

To alleviate the shortage, semiconductor manufacturers are striving to find techniques to

increase the yield and quality of wafer fabrication. During fabrication, semiconductor de-

vices are built on a circular slice of semiconductor material, called wafer. Modern wafer pro-

duction is divided into front-end-of-line (FEOL) and back-end-of-line (BEOL) processing.
During FEOL processing, the devices are formed in the silicon by deposition, removal of

material and patterning. Consequently, in BEOL, the fabricated components are connected,

and the connections are isolated with dielectric layers. Both of these process stages consist

of dozens of individual processes that are repeated several times during the manufacturing.

After each time a new material layer is deposited on the wafer surface, planarization is

required. This is achieved with a process known as chemical-mechanical polishing (CMP)

process that utilizes both chemical and mechanical abrasive forces to achieve planarized wa-
fer surface with global uniformity and sufficient surface quality. The planarization rate may

vary from wafer to wafer due to uneven surfaces, environmental changes and tool operation.

Therefore, CMP process requires careful monitoring, which is costly, if physical measure-

ments are conducted frequently on the wafer. Usually, these physical measures are per-

formed only on lot-to-lot basis (Qin et al. 2006). A lot typically consists of 25 wafers which

means that only every 25th wafer is physically measured (Tu & Lu 2017).

To avoid frequent physical measurements, virtual metrology methods are commonly em-
ployed for wafer-to-wafer process control (Chen et al. 2005). Virtual metrology applications

aim to predict wafer properties based on historical process data without conducting the ac-

tual expensive and time-consuming physical measurements. These predictions are then uti-

lized in monitoring and controlling processes, such as CMP, to improve the final yield of the

manufacturing. Improved yield has motivated great interest in the topic, and machine learn-

ing-based virtual metrology solutions begun to emerge in the beginning of the 21st-century

(Yung-Cheng & Cheng 2005) (Lin et al. 2006). The data utilized in virtual metrology systems
often consists of multivariate time series data with hundreds of variables including sensor

and process information. In order to cast the time series data into a design matrix, the pro-

cess data is either flattened to rows or aggregated with statistical moments, such as mean,

variance, maximum and minimum. Both approaches result in numerous features which

make dimensionality reduction necessary for most machine learning models to predict me-

trology values accurately. These manual feature engineering steps require domain

knowledge and additional modeling efforts but may still often lead to information loss and
unscalability of the model.

To solve this problem, several recent papers (Terzi et al. 2017) (Maggipinto et al. 2018)

(Choi et al. 2019) propose the use of deep neural networks to automate the feature extraction

process and hence utilize the raw time series data without aggregation. Many of the proposed

models take influence from image recognition and natural language-processing (NLP) re-

search. Both supervised and unsupervised methods have been studied but especially deep

autoencoders have drawn high interest in virtual metrology research. Autoencoders are un-
supervised neural networks that attempt to learn lower dimensional representation of the

input data 𝒛 = 𝒇(𝒙) and reconstruct it back to the original dimensional representation

𝒈(𝒛) = 𝒙 with minimal loss 𝑳(𝒙, 𝒙). This bottleneck structure of the autoencoder neural

2

network forces the latent representation to learn informative features and properties of the

input data which can be then utilized in subsequent machine learning tasks. Autoencoders

can learn manifolds from unlabeled data which enables semi-supervised learning – an ap-

proach to machine learning where only a small subset of samples is labeled, and vast major-

ity is unlabeled.

The recently published virtual metrology papers have experimented on a variety of dif-

ferent machine learning methods on non-public process tools, but there is an absence of
comprehensive comparison of various state-of-the-art deep learning methods for virtual me-

trology of CMP. In addition, the autoencoder based virtual metrology publications we re-

viewed – address only the application of the methods to a fully labeled dataset.

Therefore, the goal of this thesis is to develop and compare different deep learning models

for virtual metrology of CMP and experiment how the ratio of labeled to unlabeled data af-

fects virtual metrology performance of different machine learning models. The experimental

work is conducted on a public CMP dataset1 which allows simple comparison to other recent
CMP publications utilizing the same dataset.

 This thesis is divided to six chapters. Chapter 2 provides a literature review on the rele-

vant background topics related to the application domain of virtual metrology and CMP.

Chapter 3 continues with the machine learning fundamentals, such as deep learning and

time series extrinsic regression that are utilized in our experimental work and implementa-

tion. Chapter 4 introduces the design and implementation of our work. In addition, we de-

scribe the dataset utilized in evaluation of our implementation and conduct exploratory data
analysis on it. Finally, experimental results and findings are presented in Chapter 5 where

we discuss and evaluate theme in detail. Chapter 6 concludes the thesis and provides sug-

gestions for future research.

1 https://phmsociety.org/conference/annual-conference-of-the-phm-society/annual-conference-of-the-prognostics-

and-health-management-society-2016/phm-data-challenge-4/

https://phmsociety.org/conference/annual-conference-of-the-phm-society/annual-conference-of-the-prognostics-and-health-management-society-2016/phm-data-challenge-4/
https://phmsociety.org/conference/annual-conference-of-the-phm-society/annual-conference-of-the-prognostics-and-health-management-society-2016/phm-data-challenge-4/

3

2 Virtual metrology for chemical-mechanical polishing

The process of manufacturing semiconductor devices consists of hundreds of complex pro-

cess steps and several process phases that utilize even more numerous tools that are engi-

neered to produce high-quality electrical components on the wafer surface. In this chapter,

we introduce the fundamentals of semiconductor manufacturing and focus on reviewing a

crucial process, chemical-mechanical polishing (CMP), that is repeated several times during

the manufacturing. Secondly, we introduce virtual metrology and describe its purpose in

semiconductor manufacturing. Lastly, we review current virtual metrology solutions devel-
oped for CMP.

 2.1 Fundamentals of semiconductor manufacturing

Semiconductor manufacturing is a multistep process where microelectronic devices for in-

tegrated circuits (ICs) are produced starting from raw material. After a wafer made of silica

is prepared, the metal-oxide-semiconductor microelectronic devices are formed on its sur-

face during wafer fabrication. The fabricated devices are utilized in integrated circuit chips

that are present in practically every modern electrical device. Even most mundane modern-

day objects, such as LED lamps and speakers, contain multiple semiconductor components.

 Figure 1: Fabrication of semiconductor devices consists of numerous process steps that are repeated in varying order depending on the fabricated product.

Semiconductor wafer fabrication begins from designing the circuit based on the desired

functionality and layout. The design of the circuit is crucial in creating masks that are utilized

in photolithography. After the design and mask are set, the devices are then formed on the

wafer surface layer by layer in a semiconductor factory, often referred as fab. A fab comprises
of multiple clean rooms that have low level of particles in the air, which reduces unnecessary

contaminations and defects in the devices. In the fab, physical device fabrication begins with

the front-end-of-line (FEOL) processing where the transistors of the devices are deposited

and formed on the wafer surface with photolithography and subsequent ion implantation.

Photolithography patterning is based on applying photoresist material on the wafer surface

4

and masking the surface before exposing it to UV light that develops the designed circuit

layer on the wafer. An etching process may supersede photolithography, if it is necessary to

remove unwanted oxide from the wafer surface. In modern device fabrication, wafer may

undergo photolithography up to 50 times (Grayson 2018).

Consequently, in back-end-of-line (BEOL) processing, the electrical components fabri-

cated during FEOL are connected by depositing metal layers on the wafer. These connections

are then isolated with dielectric layers. This is achieved with dual-damascene fabrication
process where photolithography is always followed by an etching step (Xiao 2012, p.19).

Each complete layer is typically polished with a CMP tool to achieve a uniform and planar-

ized wafer surface to ensure the quality of interconnections. Lastly, a passivation layer is

deposited and pads for wire bonding are exposed. The devices are then tested, sawed out of

the wafer, and packaged.

In the 1960s, the standard wafer diameter was 25 mm, whereas today in the 2020s the

state-of-the-art is 300 mm allowing more devices on a wafer and thus efficient device fabri-
cation. One 300 mm wafer may contain hundreds or even thousands of semiconductor de-

vices depending on the fabricated chip size. The fab equipment is designed to handle one

specific diameter size, and therefore the fabs are categorized by the wafer diameter they are

compatible to process. Contradict to wafer sizes, the devices have continuously shrunk from

the 1960s. A modern feature size of IC chip is around 10 nm, whereas 60 years ago in the

1960s the feature sizes were thousand-fold and were measured in micrometers (Wong et al.

2020). Decreased feature sizes create demanding requirements for advanced semiconductor
manufacturing tools, such as CMP, and surrounding technology to preserve good yield in

production.

 2.2 Chemical-Mechanical Polishing

 Figure 2: Overview of a chemical-mechanical polishing tool.

Chemical-mechanical polishing (CMP) is a planarization process that utilizes both chemical

and mechanical abrasive forces to achieve planarized wafer surface with global uniformity

5

and sufficient surface quality after a metal or dielectric layer is deposited on the wafer sur-

face. It was developed in 1990s when the number of deposited layers in devices increased

and dimensions reduced, which consequently meant that chemical etching nor abrasive

force-based planarization techniques alone could provide the desired planarization and

smoothness of wafer surfaces with high precision (Steigerwald et al. 1995) (Wang et al.

1998). Nowadays, CMP is a standard process step in semiconductor manufacturing that is

repeated multiple times during wafer fabrication, although initially direct physical contact
with the wafer surface was condemned by the industry. Later, it was observed that CMP

actually reduces defect density and improves yield besides planarizing the wafer surface

(Xiao 2012, p. 508). The operating principle of CMP is divided to two components: mechan-

ical and chemical.

 2.2.1 Mechanical

Mechanically, the polishing effect is achieved by directing pressure on the wafer with a pol-

ishing pad and rotating the wafer carrier and the polishing pad simultaneously creating rel-

ative velocity between the two surfaces. This transfer of mechanical energy breaks bonds of

atoms in the surface and results to material removal from the surface. The material removal

rate is described by Preston equation - an empirical model named after its developer:

𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 = 𝐾𝑝 × P × υ (1)

where 𝐾𝑝 refers to a Preston coefficient, P to pressure, and υ to relative velocity between the

pad and wafer surface (Nanz & Camilletti 1995). Preston equation describes the phenome-

non well - that higher areas on the wafer surface are polished with higher rate because the

pressure is higher - naturally - for smaller areas that are above majority of the surface. This

characteristic of pressure is a reason for CMPs success in achieving globally planarized sur-

faces (Babu 2016). The Preston coefficient is a scalar value that is determined empirically.

The exact material removal rate is obtained by physically measuring the wafer film thickness

before and after polishing.
The polishing pad is typically made of flexible polymer substance which has appropriate

hardness and roughness. An extremely hard polishing pad can cause scratches on the wafer

surface, but an excessively soft polishing pad removes material too slowly. The polishing pad

wears in use and smoothens, which affects its polishing properties. Hence, it is important

that a dresser is used regularly between or during process runs in order to condition the

polishing pad and clean excess slurry from the pad surface to maintain polishing properties

of the pad. The dresser is made of stainless steel that is coated with diamond. Like the pol-
ishing pad, also dresser material and composition are chosen according to the polishing pro-

cess specifications.

During polishing, the wafer is mounted on a wafer carrier and held in place with a vacuum

and a retainer ring. The downward force on the wafer is directed and applied uniformly with

a polishing membrane that is made of soft rubber-like material. The wafer carrier includes

several components, such as the retainer ring, with adjustable pressure to allow control of

the polishing process and wafer placement in the wafer carrier. The polishing membrane

6

wears in use which affects the polishing result. Therefore, the membrane is replaced around

every thousand wafers (Xiao 2012, p. 521).

 2.2.2 Chemical

The chemical component of the process is based on slurry that is dispensed on the polishing

pad. The slurry is typically colloidal silica that contains abrasives and wafer material specific
chemicals. Its main purpose is to dissolve and transport removed material from the wafer

surface. In addition, the slurry forms a film on the wafer surface which protects lower areas

of the surface that are not physically in touch with the polishing pad (Steigerwald et al. 1995).

The type of slurry is selected based on the specific CMP type and its consistency is engineered

to achieve desired material removal rate, uniformity and planarization. Different compo-

nents of the slurry are stored separately and only combined just before use. Several slurry

dispensers manage the rationing of the slurry based on process control parameters, which
naturally affects material removal rate and uniformity of the wafer. Another factor that re-

quires monitoring is the quality and age of the slurry, since they are under strict temperature

control and preserve their chemical properties for approximately a year (Xiao 2012, p. 523).

Eventually, the condition of various CMP tool components, such as the slurry, dresser

and polishing table, degrade and begin to affect the polishing results. This supports the com-

mon understanding (Nanz & Camilletti 1995) that Preston equation (1) is not sufficient to

describe the material removal rate that responses to numerous other factors. For example,
slurry dispensation might vary uncontrollably which introduces unintended variation to ma-

terial removal rate. Unfortunately, it is not economically feasible to physically inspect and

measure each wafer to control and monitor the material removal rate, which is why virtual

metrology of CMP process is a common topic in virtual metrology literature (Lee & Kim

2020).

 2.3 Virtual metrology

Process-quality assurance is an essential part of successful semiconductor manufacturing

because the production of a wafer may take up to 6 months2. As devices further shrank in

the beginning of 21st century, lot-to-lot metrology was no longer sufficient for critical process
steps. The reason for this, is that a lot consists typically of 25 wafers which means that only

every 25th wafer is physically measured when conducting metrology on lot-to-lot basis (Tu

& Lu 2017). Hence, wafer-to-wafer metrology was required which ultimately became impos-

sible to conduct physically as the number of devices and process steps increased. This cre-

ated the demand for virtual metrology applications which allow virtual “measurement” of

physical quality of every wafer. (Yung-Cheng & Cheng 2005)

Virtual metrology applications aim to predict wafer properties based on historical process
data without conducting expensive and time-consuming physical measurements on each

wafer. Commonly, the physical variable of interest is a defect pattern (classification) or a

quantifiable effect of the process (regression) prediction. Virtual metrology does not remove

the need for physical metrology completely but instead provides other significant economic

2 https://sea.pcmag.com/feature/19618/how-a-chip-gets-made-visiting-globalfoundries

https://sea.pcmag.com/feature/19618/how-a-chip-gets-made-visiting-globalfoundries

7

benefits, such as cost savings in metrology equipment and reduced physical metrology bot-

tlenecks in production line.

Virtual metrology predictions are utilized in monitoring and controlling processes which

are critical in semiconductor manufacturing. Monitoring processes with virtual metrology

predictions reduces spoilage by stopping early malfunctioning processes that are out of nor-

mal operating range. Normal operating range is defined as the area inside upper control

limit and lower control limit, which are computed based on the process output variation.
Virtual metrology predictions give the process operator an unbiased estimate of the process

quality without the time-delay that is present in lot-to-lot physical metrology (Kang et al.

2009). In addition, virtual metrology predictions and confidence levels are often utilized in

dynamic sampling strategy where the physical metrology is conducted more frequently on

wafers with risk to be out of control limits (Susto 2017).

Furthermore, virtual metrology-based process control allows high-frequency adjustment

of tool specifications on a run-to-run basis. A run-to-run controller (R2R) requires the out-
come of the process or metrology value to adjust the process parameters and thus retain the

process under control. Without virtual metrology, R2R controller can only adjust recipe pa-

rameters after physical metrology (Jebri et al. 2017). Both advanced monitoring and con-

trolling improve yield and general quality of manufacturing, which motivates the extensive

use of virtual metrology systems in production environments and makes it viable economi-

cally.

The efficient use of advanced virtual metrology systems set certain requirements on the
collected data. Firstly, the sampling frequency of the process parameters and process output

should be high enough. It is common that only aggregate values, such as mean and standard

deviation, are collected from the runs. Secondly, in addition to process sensor data, the col-

lected data should include necessary identifier variables that allow differentiation between

different process stages, wafers, and process tools (Orji et al. 2018). Lastly, the dates of sig-

nificant maintenance jobs and consumable changes should be available for the continuous

accurate modelling of the process. Process data naturally contains some noise and outlier
values, but they do not generally prevent the utilization of a virtual metrology system as is

the case with insufficient data collection practices.

Initially, virtual metrology was offered as a concept of finding process variables that cor-

related with the physical metrology, and estimating the metrology based on that. In fact,

Chen et al (2005) stated that “The correlation between process tool and final wafer result is

called virtual metrology.” However, they identified that an accurate estimation technique is

required for practical applications. Yung-Cheng & Cheng (2005) was one of the first to de-
scribe a virtual metrology application that utilized modern machine learning techniques.

They implemented a neural network that consisted of an input layer with 2356 neurons, 2

hidden layers, and 3 target neurons. Next, we further review virtual metrology systems pro-

posed in recent academic publications.

 2.3.1 Modern applications

Modern virtual metrology applications utilize machine learning and statistical methods. A

common pipeline consists of data acquisition, preprocessing, dimensionality reduction, and

regression model (Figure 3). In data acquisition, the process data, information and physical

metrology results are collected from the process tool and metrology equipment. Next, in the

preprocessing phase, the time-varying data is typically aggregated with summary statistics,

8

such as mean, variance, maximum and minimum, and the data is casted in matrix format.

This results to

𝐷 × 𝐹 (2)

candidate variables (D=no. original variables, F=no. aggregation functions) that require di-
mensionality reduction to be usable in most regression models. Dimensionality reduction

refers to utilization of feature selection or feature extraction methods, such as feature subset

search or principal component analysis (PCA), respectively.

 Figure 3: Overview of a basic virtual metrology pipeline.

Kang et al. (2009) reviews several combinations of dimensional reduction techniques and

state-of-the-art regression models. Initially, they have a dataset with 1536 and 1792 input

variables for two separate process tools, and only 118 and 241 wafers for those two tools.

They achieve the best overall accuracy with Support Vector Regression (SVR) prediction

model and stepwise linear regression feature selection. However, other prediction models,
such as neural networks and linear regression performed similarly to SVR.

Ragnoli et al. (2009) also recognize that a central challenge in virtual metrology systems

is the feature selection and extraction, from the numerous recorded variables, in a manner

that maximal relevant information for the process is preserved. The dataset in the study is

from Plasma etching optical emission spectroscopy (OES) and consists of 2000 etch rate

samples with 2048 time-varying channels. After using 6 summary statistics, they end up

with dataset with over 12 000 variables. They evaluate the performance of different feature
selection methods and regression models, but do not provide any alternative for using sta-

tistical moments in aggregation of the process data.

Maggipinto et al. (2018) propose an autoencoder approach for feature extraction in vir-

tual metrology of etch rate estimation. Their solution utilizes convolutional layers and sub-

sequent SVR model for generating predictions. The autoencoder approach outperforms

their baseline that consists of computing four statistical moments, PCA, and LASSO or SVR

9

regression model. Another autoencoder approach (Choi & Jeong 2019), proposes the use of

multi-layer perceptron neural networks for virtual metrology. Their solution outperforms

several different baselines in etching process virtual metrology but achieves an 𝑅2 score of

0.32 in validation experiments. Neither Maggipinto et al. (2018) or Choi & Jeong (2019)

mention the use of unlabeled data besides the labeled data in training their proposed solu-

tions. In addition to autoencoders, the use of supervised deep learning for virtual metrology

have been proposed (Terzi et al. 2017). This supervised convolutional model is trained with

OES data to predict etching results. Their proposed deep learning model achieves signifi-

cantly better results than simple Ridge regression model utilizing only mean values of each
wavelength.

Section 3.2 reviews basic deep learning concepts, such as autoencoders that are feature

learning neural networks that try to learn latent representations from the input data that

contains informative features and properties of the original representation. Next, we will

review previous virtual metrology solutions for CMP.

 2.3.2 Chemical-mechanical polishing applications

CMP process was adopted widely in industry during the early 2000s but most virtual me-

trology studies for the process were only published in 2019 – a couple years after a CMP

dataset became public through a Prognostic and Health Management (PHM) Data Chal-

lenge3. Previously, the proposed solutions for CMP virtual metrology had achieved low R2

values (75%-96%) and had not utilize modern machine learning methods (Kong et al. 2010)
(Rao et al. 2014). Most of the recent publications utilize the same PHM dataset in evaluating

the performance of the proposed solution, which allows easy comparison between proposed

solutions4. In addition, in all of these CMP virtual metrology publications the predicted me-

trology measurement is the average material removal rate. This section presents some of the

most relevant CMP virtual metrology publications that use the PHM dataset in their exper-

iments (Table 1).

Li et al. (2019) proposes a decision tree-based ensemble method for the prediction of the
average material removal rate. They utilize a stacking technique to combine the predictions

of three decision tree-based regression models that use aggregated feature space. They com-

pare the performance of the proposed method to individual regression models and evaluate

different ensemble meta-regressors. CART5-based stacking method achieves the smallest

root-mean-square error (RMSE) for the validation dataset with 4.035 average error for all

stages, whereas ELM6-based stacking method perform the best for the test dataset with 4.64

average error for all stages with the PHM dataset.
Yu et al. (2019) argues that both physics-based and data-driven models have advantages

and disadvantages, and hence propose a physics informed machine learning model in their

paper that uses PHM dataset as case study. They do not divide the dataset or use multiple

models for different part of the data. The proposed model combines a multi-scale

3 https://phmsociety.org/conference/annual-conference-of-the-phm-society/annual-conference-of-the-prognostics-

and-health-management-society-2016/phm-data-challenge-4/
4 NOTE: Some of the papers do not provide results for both validation and test set which may affect the performance

estimates. Otherwise, the results are well comparable.
5 Classification and regression tree
6 Extreme leaning machines

https://phmsociety.org/conference/annual-conference-of-the-phm-society/annual-conference-of-the-prognostics-and-health-management-society-2016/phm-data-challenge-4/
https://phmsociety.org/conference/annual-conference-of-the-phm-society/annual-conference-of-the-prognostics-and-health-management-society-2016/phm-data-challenge-4/

10

mechanical model with random forest and achieves RMSE of 16.908 for the validation and

15.770 for the test dataset.

Jia et al. (2018) propose a method based on group method of data handling (GMDH) type

polynomial neural networks. They conduct a manual feature extraction procedure for the

PHM dataset that differs from other papers. Besides statistical moment aggregation, they

handcraft two set of additional features: time neighbors and usage neighbors. Time neigh-

bors refer to metrology values of previous wafers and usage neighbors refer to past runs with
similar usage measures of consumables. The model is dynamic which means that the model

is trained after each timestep during validation, and new time and usage neighbors are in-

putted to the data. In addition, they divide the dataset into 3 distinct groups based on mate-

rial removal rate and train a model for each group separately. With these procedures they

achieve a test RMSE of 2.706 with linear regression and test RMSE of 2.606 with their

GMDH type polynomial neural networks.

 Table 1: CMP virtual metrology publication performances for PHM dataset.
 Authors Feature extraction Dimensionality reduction Model Performance (RMSE)

Li et al. (2019)
Four statistical mo-ments in time-domain and three statistical moments in fre-quency domain

Feature selection with random forest feature importance
Tree-based ensem-ble 4.035 (validation), 4.64 (test)

Yu et al. (2019) Physics-based fea-tures 1/3 of the variables used Physic-informed random forest 16.908 (valida-tion), 15.770 (test)

Jia et al. (2018)
Statistical moments, time and usage neighbors. Dataset divided to three groups

Integrated to pre-diction model
Group method of data handling type polynomial neural networks

2.606 (validation), result for test da-taset not specified

Wang et al. (2017)
Raw data of six man-ually chosen usage variables

Integrated to pre-diction model Deep belief network 2.7 (validation), result for test da-taset not specified

Di et al. (2020)
Statistical moments, time and usage neighbors. Dataset divided to three groups

Features selected with student’s T-test and out-of-bag feature importance

Ensemble including persistent model, KNN, linear regres-sion, tree bagging and SVR
2.66 (validation), result for test da-taset not specified

Wang et al. (2017) develop a static data-driven model based on deep belief network that

utilizes only 6 usage features of the PHM dataset that are manually chosen. They claim that

even though the pressure and rotational speed settings affect the material removal rate, they

do not improve the prediction accuracy as those parameters are controlled in the production

environment. Particle swarm optimization determines the final network structure and learn-
ing rate. Furthermore, they divide the dataset to two groups based on the processing cham-

ber and reach an average RMSE of 2.7 on the test dataset.

Di et al. (2020) propose a similar data-driven solution as Jia et al. (2018) with the main

difference being the feature selection and chosen regression model. They utilize same

11

feature extraction where hundreds of hand-crafted features are engineered with domain ex-

pertise. Di et al. solution incorporates a discrete feature selection step. The selected features

are fed into an ensemble regression model that consists of persistent model (predict same

material removal rate as last measurement), K-nearest-neighbor regression (KNN), linear

regression, tree bagging and SVR. The predictions of all these models are combined with a

weighted average based on cross-validation error. Their proposed solution achieved the low-

est error in PHM 2016 Data Challenge with an RMSE of 2.66.
In Chapter 3, we introduce the essentials of machine learning that enable these accurate

virtual metrology solutions. We cover the basics of deep learning including different types

of neural networks. In addition, we describe a specific machine learning task called time

series extrinsic regression, which is often present in virtual metrology.

12

3 Machine learning essentials

In modern manufacturing industry, machine learning predictions are utilized in the auto-

mation and operation of machinery and process equipment as well as in mining information

from data for manufacturing experts. Enriched information inferred from the data allows

process experts to make well-informed decisions and relieves the burden of conducting rou-

tine day-to-day tasks that rarely result in concrete actions. This is the case with virtual me-

trology that frees resources from physical metrology and informs the process operators, if

the physical properties of the wafers deviate from normal.
Machine learning allows the computer to learn rules and patterns from data automati-

cally that would otherwise be impossible for a human to infer. Furthermore, machine learn-

ing scales to huge data masses with computational resource that are available today and is

capable to produce predictions for samples rapidly. These advantages motivate the develop-

ment of more advanced machine learning solutions.

The performance of virtual metrology is significantly affected by the selection of the ma-

chine learning model. Nowadays, there is a wide selection of machine learning algorithms
that are suitable for virtual metrology but some perform better in a real production environ-

ment. Some of the models are based on cutting edge deep learning research, whereas others

are based on decades old studies of statistical modelling.

This chapter introduces the basic concepts of tree-based ensemble models and deep

learning – including different neural network types and training of these models. In addi-

tion, we review a machine learning research topic called time series extrinsic regression

which is the general field of research for a machine learning task that is encountered fre-
quently in industrial machine learning solutions. This chapter provides the background for

our experiments that are further described in Chapter 4.

 3.1 Tree-based ensemble models

Many of today’s state-of-the-art classification and regression models, such as random forest,

are based on an ensemble of decision trees (Rokach & Maimon 2008). These ensemble ma-

chine learning models utilize a committee of weak learners in learning a machine learning

task accurately. A weak learner is a learning algorithm that performs better in a prediction

task than random guessing or simple heuristic models, such as sample mean of the response

variable (Hastie et al. 2009, p. 383). A weak learner is typically trained with some random-
ness in order to introduce difference in the resulting set of weak learners. This is achieved

by training the weak learners with subsets of the original observations or variables. Further-

more, the predictions of the weak learners are combined with a majority vote (classification)

or averaging (regression) to produce the final prediction of the ensemble model. A typical

weak learner is a one-level decision tree that is essentially a decision threshold model.

13

 Figure 4: Example of a decision tree for predicting height of a person based on gender, age, and weight.

A decision tree is a divide-and-conquer type of machine learning model that splits the input

feature space to finite discrete regions starting from a root node and ending in leaf nodes

with different outputs. The average value of the response variable inside the leaf nodes re-

gion determines the decision tree output. Decision trees are applicable for both classification

and regression tasks with minor modifications on optimized loss functions. For a regression

tree, it is computationally infeasible to find a tree that guarantees to minimize the mean-
squared-error (MSE) of predictions in the training data. However, it is possible to find a

good solution with a greedy approach (Hastie et al. 2009, p. 308):

BuildDecisionTree(X, y, R0):

 𝑘 ∈ 𝐹, 𝑤ℎ𝑒𝑟𝑒 𝐹 𝑖𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑖𝑛 𝑋
𝑅1, 𝑅2 ⊂ 𝑅0
𝑋, 𝑦 ∈ 𝑅0

// Regions R1 and R2 inside R0 divided after a split at point p
𝑅1(𝑘, 𝑝) = {𝑋, 𝑦 | 𝑋𝑘 ≤ 𝑝},𝑅2(𝑘, 𝑝) = {𝑋, 𝑦 | 𝑋𝑘 > 𝑝}

// Find the best variable k with the best split point p by minimizing:

𝑚𝑖𝑛𝑐1 (∑ (𝑦𝑖 − 𝑐1)
2

𝑦𝑖 ∈𝑅1(𝑘,𝑝)

) + 𝑚𝑖𝑛𝑐2 (∑ (𝑦𝑖 − 𝑐2)
2

𝑦𝑖 ∈𝑅2(𝑘,𝑝)

),

// where 𝑐1 = 𝑚𝑒𝑎𝑛(𝑦𝑖|𝑅1(𝑘, 𝑝)) and 𝑐2 = 𝑚𝑒𝑎𝑛(𝑦𝑖|𝑅2(𝑘, 𝑝)).

// Call recursively and split in new regions to smaller regions

IF NOT stopping_criterion:
 BuidDecisionTree(X, y, R1)
 BuidDecisionTree(X, y, R2)

14

The stopping criterion indicated in the pseudocode is usually a threshold on the decrease of

MSE as a result of the split or a sufficiently small number of observations in the region to be

split. To control the size of the decision tree, a method called pruning is commonly used after

building the tree. This results to a subtree of the originally built tree which can prevent over-

fitting the model to the data. The maximum depth of the tree is often utilized as a stopping

criterion as well.

Random forest is one of the most encountered tree-based ensemble models. The modern-
day version of it was introduced by Leo Breiman in 2001. Random forest combines multiple

decision trees – typically hundreds - with bagging7 and the use of different random subsets

of variables for training the individual learners. This results to several uncorrelated decision

trees that are on average unbiased and reduce the ensemble model’s variance (Hastie et al.

2009, p. 587). A random subset of variables is sampled at each split and the best split is

searched from those features. The typical size of the random variable subset of variables is

√𝑝 where p is the number of original variables. In general, random forest performs better

than a single deep decision tree and is fast and reliable to train with little tunning required

(Hastie et al. 2009, p. 590).
Another state-of-the-art tree-based ensemble model besides random forest is gradient

boosted trees. It is based on boosting several decision trees to build an accurate ensemble

model. Boosting is an alternative ensemble meta-algorithm for bagging. Boosting is a broad

term for training multiple weak learners iteratively and weighting more inaccurate or mis-

classified predictions in the training of subsequent weak learners that form the ensemble

model. Gradient boosted trees incorporate this feature by training the subsequent weak

learners hm(X) with the residuals (y − F𝑚−1(X)) of the last iteration’s ensemble model
where y corresponds to observed responses and Fm to the current ensemble model. In prac-

tice, this means that the next weak learner hm+1(X) attempts to fix the errors of the previous

ensemble model Fm (Hastie et al. 2009, p. 342). Consequently, this results to iterations that

attempt to solve an arbitrary differentiable loss function ℒ𝑀𝑆𝐸. In the case of a regression

task, it means that

ℒ𝑀𝑆𝐸(𝑦, 𝐹𝑚(𝑋)) =
1

2
(𝑦 − 𝐹𝑚(𝑋))2 (3)

ℎ𝑚(𝑋) = 𝑦 − 𝐹𝑚(𝑋) = −
𝜕𝐿𝑀𝑆𝐸

𝜕𝐹𝑚
 (4)

describe the updates throughout iterations and that the updates are towards negative gradi-

ents. The size of a new correction step is adjusted after the iteration by optimizing the learner

weights 𝛾𝑚 to minimize the loss function ℒ across all observations. This is expressed as solv-

ing an optimization task:

𝛾𝑚 = 𝑎𝑟𝑔min
𝛾

∑ ℒ

𝑛

𝑖=0

(𝑦, 𝐹𝑚−1(𝑋𝑖) + 𝛾ℎ𝑚(𝑋𝑖)) , (5)

7 Bagging, also known as bootstrap aggregation, refers to a machine learning ensemble meta-algorithm where the

original observations are sampled uniformly with replacement and several bootstrap samples are formed in that way.

Each model is then trained with its own bootstrap sample and the model predictions are averaged to produce final

predictions.

15

where n is the number of observations. This is the general structure of training a gradient

boosted trees model, but there are a wide variety of implementations, such as Xtreme Gra-

dient Boosting (XGBoost) and Multiple Additive Regression Trees (MART) that include

other features as well. XGBoost, for instance, provides a regularized gradient boosting model

that is trainable on GPU to reduce training times on bigger datasets.

Although tree-based ensemble models abdicate the interpretability of simple decision

trees8, there are methods to explain the global feature importance in an ensemble tree
model. For a regression model, this feature importance score is computed by summing the

loss function reduction across all splits in the model by feature. Hence, this gives an inter-

pretation of the magnitude of a feature’s effect on the predictions in the ensemble model.

Typically, the sum of loss function reduction is normalized for reporting and comparability

purposes.

 3.2 Deep learning

Deep learning is another sub-field of machine learning that utilizes artificial neural networks

in computational modeling. The key idea in deep learning is to learn a representation of the

data in a way that makes the actual learning objective easier to reach. Desirably, this removes
the necessity for a separate feature extraction step that is prominent in any traditional ma-

chine learning system. Manual feature extraction steps require considerable amount of time

and domain expertise and do not guarantee generalization in the future. In fact, sometimes

finding decent hand-crafted features might prove out to be nearly impossible for human

(Goodfellow et al. 2016). Neural network expediate and automate adaptation to changes in

the task environment, which reduces the necessity for human intervention. However, train-

ing neural networks requires large amounts of data and computation power, and for this
reason the selection of an appropriate neural network architecture is crucial in achieving

satisfactory modeling results. This section describes some of the most encountered deep

learning concepts, such as neural network layer types, architectures and training procedure,

and outlines some of the application domains where these solutions are deployed in practice.

 3.2.1 Training neural networks

Neural networks, like any machine learning models, require a training procedure to learn

the desired machine learning task. Moreover, neural network models include hundreds of

parameters that require re-adjusting in order for the model to make accurate predictions.

The optimization of neural networks is based on iterative gradient descent similarly to train-

ing of some other machine learning models, such as logistic regression. A gradient descent

algorithm updates the model weights as

𝒘⃗⃗⃗ ← 𝒘⃗⃗⃗ − 𝜂𝒈 , (6)

where 𝒘⃗⃗⃗ is a model parameter vector, 𝜂 learning rate also known as the step length, and 𝒈

the error gradient. Due to the non-linearity of neural networks, the weights of the model

8 For instance, predictions are clearly explainable in the Figure 4.

16

cannot be estimated explicitly the same manner as with linear regression model where the

model weights are solvable, for example with an ordinary least squares estimation method:

𝒘⃗⃗⃗ ← (𝑿 𝑇𝑿)−1𝑿 𝑇𝒚 (7)

The optimization of neural network is non-convex which means that the initial weights of
the network affect the final learning result and convergence to globally optimal weights is

not guaranteed. However, appropriate optimization methods allow the neural networks to

reach closer to the global optimal region.

Stochastic Gradient Descent (SGD) or some variation of it is commonly used as an opti-

mization algorithm for minimizing the cost function, such as mean squared error (MSE) for

regression, or cross-entropy for classification task, during training of neural networks. SGD

updates the network parameters towards an estimated negative gradient and closer to a lo-
cally optimal region. The contribution of weights and biases on the error is distributed with

an algorithm called backpropagation, which is based on computing the gradient with respect

to each weight in the neural network by the chain rule. For long periods in the mid 20th-

century, training neural networks with backpropagation was considered computationally

too heavy, but when the amount of computational resources became sufficient - later in

2000s - backpropagation was widely adopted to use.

 3.2.2 Neural network types

Deep learning models consist of several layers that learn to extract a useful representation

from the data. Different neural network types are good for specific application domains and

thus the architecture of the deep learning model must be chosen according to the task the

network is desired to learn. Generally, more complex models require more data and training

time, whereas simpler models might not learn difficult tasks due to limited capacity but are
easier to train. The most common neural network types are feedforward, convolutional, and

recurrent networks. A neural network model may consist of several different types of net-

works, and therefore the division is not strict but rather descriptive in its nature.

Feedforward networks or multilayer perceptrons (MLPs) consist of several linear layers

that are stacked after each other. The layers between input and output layers are called hid-

den layers. Neurons on the same layer are not connected to each other, but each neuron is

connected to each neuron on the subsequent layer. For this reason, MLPs are considered
fully connected neural networks. An activation function is commonly used after each neuron

to introduce non-linear features to the next layer. Activation functions are scalar-to-scalar

functions that map the outputs of hidden neurons to a reasonable range. A good example of

this type of function is Rectified Linear Unit (ReLU), defined as

𝑓(𝑥) = max (0, 𝑥) , (8)

which is utilized frequently in MLPs. Activation functions and the depth of the MLP allows

the last linear layer to produce accurate predictions when the information is fed forward in

the network (Patterson & Gibson 2017). Information in the network moves only forward or

backwards and does not form a cycle through feedback loops. Feedforward networks at-

tempt to estimate a function f that maps inputs x to output y. In theory, MLPs can learn to

17

estimate any function f, if the number of layers and neurons is sufficient in the model (Good-

fellow et al. 2016). MLPs are prevalently utilized for tabular data that has no spatial structure

and consists of a fixed number of feature columns, but recently they have attracted attention

again in image recognition as well (Tolstikhin et al. 2021).

 Figure 5: Simplified example of a feedforward network.

Convolutional neural networks (CNNs) are a special type of feedforward networks that are

not fully connected as MLPs. CNNs utilize mathematical operations called convolutions at
least on some layer of the entire network. Convolution is a linear operation between two

functions or matrices and can be thought as a filtering operation of a signal. In CNNs, the

operation is usually a dot product between the specified convolution kernel with specific size

and different parts of the input matrix which then form the output of the layer (Figure 6).

CNNs are especially useful in applications using image or sequential data. This type of grid

data typically has a topological structure which allows convolutional layers to extract fea-

tures or patterns that appear in certain area of the data. For example, CNN may filter out the
color of the background of an image but still retain information on the character that is clas-

sified. Convolutional layers are usually stacked on top of each other to extract different types

of features in different granularity. Typically, each convolutional layer is followed by an ac-

tivation function and a pooling layer. Pooling layers compute the maximum value from each

segment in the representation based on the kernel size of the pooling layer. This reduces the

spatial size of the representation, and consequently, the likelihood of overfitting to the data

(Goodfellow, et al. 2016, p. 339). Pooling layers do not contain trainable parameters but are
instead fixed functions with configuration parameters, such as kernel size and stride. After

several convolutional layers, CNNs typically incorporate a fully connected linear layer to

compute the final output of the model.

18

 Figure 6: Simplified illustration of convolutional layer's computations.

Another neural network type specialized for handling sequential data (x0, x1,.., xT) is recur-

rent neural network (RNN). RNN, as its name suggests, utilizes recurrent architecture in
processing each step in a sequence which allows it to share parameters for different parts of

the sequences and thus process variable length sequences. An RNN cell usually receives a

piece (xt) of the sequence data and a hidden state (ht) as inputs, and the cell outputs a hidden

state (ht+1) after each step. This hidden state is recursively fed into the next computation

with the next value of the sequence (xt+1). The recurrent architecture of RNN allows it to

process longer sequences without increased model complexity which is inevitable when us-
ing an MLP for sequential data. Unfortunately, longer sequences result in a RNN specific

issue called vanishing gradient problem which refers to a phenomenon during the training

of the model where the gradients of the backward pass become vanishingly small

(Hochreiter 1991). Training models using gradient descent with small gradients is inefficient

and results in bad learning performance (Bengio et al. 1994).

As a solution to the vanishing gradient problem, Hochreiter & Schmidhuber (1997) pro-

posed a variation of RNN called Long Short-Term Memory (LSTM). LSTM consists of four
neural layers and three gates that control the information flow. It includes a “self-loop” and

cell state that allow the error gradients to flow in longer sequences. The self-loop is gated

which means that the unit learns to control information memorization optimally.

19

 Figure 7: Visualization of computations in a LSTM unit.

This structure and the hidden state allow LSTM to remember information and operate well

with longer sequences. LSTM outputs two states: observed (𝒉𝑡) and hidden (𝒄𝑡). These states

are computed for each step in the sequence with the following functions:

𝒉𝑡 = 𝒐𝑡 ∙ tanh 𝒄𝑡

(9)

𝒄𝑡 = 𝒇𝑡 ∙ 𝒄𝑡−1 + (1 − 𝒇𝑡) ∙ 𝒊𝑡 ∙ tanh(𝒘⃗⃗⃗ 𝑐𝒉𝑡−1 + 𝒖⃗⃗ 𝒄𝒙𝑡)

(10)

𝒐𝑡 = σ(𝒘⃗⃗⃗ 𝑜𝒉𝑡−1 + 𝒖⃗⃗ 𝑜𝒙𝑡)

(11)

𝒇𝑡 = σ(𝒘⃗⃗⃗ 𝑓𝒉𝑡−1 + 𝒖⃗⃗ 𝑓𝒙𝑡)

(12)

𝒊𝑡 = σ(𝒘⃗⃗⃗ 𝑖𝒉𝑡−1 + 𝒖⃗⃗ 𝑖𝒙𝑡) , (13)

where 𝒘⃗⃗⃗ 𝑐, 𝒖⃗⃗ 𝒄, 𝒘⃗⃗⃗ 𝑜 , 𝒖⃗⃗ 𝑜 , 𝒘⃗⃗⃗ 𝑓, 𝒖⃗⃗ 𝑓 , 𝒘⃗⃗⃗ 𝑖 𝑎𝑛𝑑 𝒖⃗⃗ 𝑖 are all trainable weight vectors, and σ denotes a sig-

moid function:

σ(𝑥) =
1

1 + 𝑒−𝑥
 . (14)

LSTM has performed well in industry-leading benchmarks and is one of the most used RNN
models (Patterson & Gibson 2017).

Gated Recurrent Unit (GRU) is a another RNN model that does not suffer from the van-

ishing gradient problem. It was proposed by Cho et al. (2014) as an alternative that is simpler

to compute and implement than LSTM. Unlike LSTM, GRU exposes its memory content

completely through its single update gate, which works as combined input and forget gate.

Instead of deciding separately what information to remember and what to forget, GRU de-

cides these two things at the same time. Furthermore, GRU has less parameters than LSTM

20

and thus is faster to train, whereas LSTM may beat GRU in performance with large training

sets (Chung et al. 2014). GRU contains only one state as opposed to two that are found in

LSTM. The state computation is conducted in a GRU cell as follows:

𝒉𝑡 = (1 − 𝒛𝑡) ∙ 𝒉𝑡−1 + 𝒛𝑡 ∙ 𝒉𝑡̃

(15)

𝒛𝑡 = σ(𝒘⃗⃗⃗ 𝑧𝒉𝑡−1 + 𝒖⃗⃗ 𝑧𝒙𝑡)

(16)

𝒉𝑡̃ = tanh(𝒘⃗⃗⃗ ℎ𝒙𝑡 + 𝒖⃗⃗ ℎ(𝒓𝑡 ∙ 𝒉𝑡−1))

(17)

𝒓𝑡 = σ(𝒘⃗⃗⃗ 𝑟𝒉𝑡−1 + 𝒖⃗⃗ 𝑟𝒙𝑡)
,

(18)

where 𝒘⃗⃗⃗ 𝑧 , 𝒖⃗⃗ 𝑧 , 𝒘⃗⃗⃗ ℎ, 𝒖⃗⃗ ℎ, 𝒘⃗⃗⃗ 𝑟 , 𝑎𝑛𝑑 𝒖⃗⃗ 𝑟 are all trainable weight vectors.

In addition to vanishing gradients, exploding gradients can appear with RNNs as well.
Pascanu et al. (2013) propose a simple yet effective solution for this problem called gradient

clipping. When clipping the gradient, the norm of the gradient is limited to a certain thresh-

old, and if exceeded then adjusted as in Equation (19 describes. This prevents excessive up-

dates to the model parameters and keeps the optimization in control.

𝑖𝑓 ‖𝒈‖ > 𝑎, 𝑎 > 0:𝒈 ← 𝑎
𝒈

‖𝒈‖
 (19)

This method also ensures that the update is towards the gradient even if it is reduced. The
threshold a is generally determined with trial and error.

 3.2.3 Deep autoencoders

The previous sections have focused mainly on supervised deep learning tasks for learning a

representation of the data to make accurate predictions. An alternative approach, for learn-

ing a representation of the data in a supervised manner, is to use unsupervised neural net-
works called deep autoencoders. An autoencoder attempts to learn a lower dimensional rep-

resentation of the input data, 𝒛 = 𝑓(𝒙), that it can reconstruct back to the original dimen-

sional representation 𝑔(𝒛) = 𝒙 with minimal loss ℒ(𝒙, 𝒙). An autoencoder consist of an

encoder 𝒇, bottleneck layer z, and decoder 𝒈. The bottleneck structure forces the latent rep-

resentation to contain informative features and properties of the input data, which is why
autoencoders are utilized for feature learning and dimensionality reduction. If not prevented

with sufficient bottlenecking or regularization, autoencoders may learn the direct mapping

(copying input to output without extracting informative features) 𝒙 = 𝒙 = 𝑔(𝑓(𝒙)) which is

in most cases not wanted (Goodfellow et al. 2016, p. 499). Autoencoder is called undercom-

plete when the dimensionality of the latent representation is smaller than of the input and

overcomplete when the relation is the other way around. Typically, overfitting of autoencod-
ers is not desirable - except when training autoencoders for anomaly detection in which case

the autoencoders should fail to reconstruct the input only when encountering samples not

similar to the training data (Malhotra et al. 2016).

21

 Figure 8: Basic autoencoder consisting of encoder and decoder.

Another reason for using autoencoders instead of supervised neural networks is their ability

to learn features from unlabeled data, and therefore they are highly beneficial in a semi-
supervised learning context (Goodfellow et al. 2016, p. 421). Semi-supervised learning refers

to a machine learning task where only a small subset of samples is labeled, and a vast ma-

jority is unlabeled. This is the case in many application domains where physical measuring

or manual labeling is impossible or expensive (Kingma et al. 2014), such as in virtual me-

trology or image recognition. In a semi-supervised setting, an autoencoder is trained with a

high amount of unlabeled data, and a subsequent classifier or regressor is trained with the
smaller labeled dataset.

Different variations of autoencoders, such as denoising (Vincent et al. 2008) and varia-

tional (Kingma & Welling 2014) autoencoders, have emerged to enhance the representation

performance of vanilla autoencoders. A denoising autoencoder attempts to denoise an input

𝒙 = 𝒙 + 𝜺, 𝜺 ~ 𝒩(0, 𝜎2) (20)

by minimizing the error ℒ(𝒙, 𝑔(𝑓(𝒙))). As a result, it learns optimal denoising and learns

the structure of 𝑝(𝒙) (Alain 2014). Denoising autoencoders are often overcomplete and have
high capacity. They can be thought also as a regularized version of a vanilla autoencoder.

Variational autoencoders differ from denoising and vanilla autoencoders since they do not

attempt to only minimize the reconstruction error. Instead, variational autoencoders try to

learn the latent probabilistic features generated by a prior distribution 𝑧𝑖 ~ 𝑝(𝒛) that with

maximum likelihood generated the data 𝑥𝑖 ~ 𝑝(𝒙│𝒛). The encoder part attempts to

22

approximate the posterior distribution 𝑝(𝒛 | 𝒙), whereas the decoder part is trained to ap-

proximate the distribution 𝑝(𝒙 | 𝒛). During training this is achieved by two output heads for

both encoder and decoder, where one is approximating mean and other variance for gauss-

ian distribution. Variational autoencoders typically minimize a cost function consisting of

negative Kullback-Leibler divergence

−∫𝑞(𝑧𝑖) log
𝑞(𝑧𝑖)

𝑝(𝑧𝑖)
 𝑑𝑧𝑖 (21)

and expected log-likelihood

∫𝑞(𝑧𝑖) log 𝑝(𝑥𝑖 | 𝑧𝑖)𝑑𝑧𝑖 . (22)

The prior distribution is often assumed multivariate gaussian 𝒩(0, 𝐈) although other distri-

butions have been studied as well (Partaourides & Chatzis 2017). Variational autoencoders

are generative in their nature which means that they learn meaningful features from the

data, and for that reason they can achieve better or comparable performance to vanilla au-
toencoders in most cases (Goodfellow et al. 2016, p. 502)

 3.3 Time series extrinsic regression

Time series extrinsic regression is defined as a regression task to learn the relationship be-
tween a time series and a continuous scalar value that is extrinsic to the time series (Tan et

al. 2021). It is similar to time series classification that has attracted lot of research interest

(Bagnall, et al. 2015). Besides Tan et al. (2021), there has been very little research on specif-

ically time series extrinsic regression models and most of the state-of-the-art methods for

the task are derived or adapted from time series classification research. Time series extrinsic

regression is a dominant machine learning task in industrial settings where a measurement

value is predicted based on multivariate sensor data - much like is the case with virtual me-
trology. Other examples of time series extrinsic regression task include heart rate estimation

based on sensor data (Reiss et al. 2019). This section introduces time series extrinsic regres-

sion and some of the current state-of-the-art models for the task.

 3.3.1 Definition

Tan et al. (2021) defines time series regression as learning the function 𝒯 → ℛ:

𝒯 = {(t0, 𝐬0), (t1, 𝐬1),… , (t𝑇 , 𝐬𝑇)} (23)

ℛ ∈ ℝ , (24)

where 𝐬i ∈ ℝD are measurements and ti are timestamps for those measurements. The meas-

urements describe the same process and are ordered in respect to time. For each time series

23

𝒯, there is a corresponding scalar value ℛ which have a relation for the regression model to

learn. This definition differs substantially from a typical machine learning regression where

the tabular feature space has no relation to time, and instead all samples are expected inde-

pendent and identically distributed (IID). There is also a significant difference to time series

forecasting where an autoregressive model is fitted on univariate scalar values to forecast

the future values for the same scalar variable.
 3.3.2 Classical regression models

A naïve approach - arguably the easiest - is to train a classical regression model, such as

random forest, XGBoost or SVR, on a time series extrinsic regression task. These algorithms

can only learn from tabular data, so the multivariate time series data is flattened to 𝐷 × 𝑇
feature columns. Therefore, each time series is considered a row in the tabular data set.

When a model is trained in this manner, it cannot consider the temporal structure of the

data and may become vulnerable to small variations in the input data. Regardless of the

simplicity of this approach, it works well on time series extrinsic regression tasks and the

model training times are short compared to deep learning models (Tan et al. 2021). How-

ever, in the case of variable length time series, the sequences shorter than the maximum

length need to be padded with a placeholder value such as -1. This affects the model perfor-
mance because the model is not any way informed of the padded values and separating them

from the actual data consumes the capacity of the model.

Another method to cast the multivariate time series data to tabular format is to manually

extract features, such as statistical moments as described in Section 2.3.1, from the process

data (Kang et al. 2017). This approach takes into account the temporal nature of the data

and variable length sequences are handled without a need for padding. However, the man-

ually extracted features are somewhat domain specific and result in numerous features
which might not describe the response variable well. Additionally, feature selection and di-

mensionality reduction become important for various regression models when the number

of features increases.

 3.3.3 Deep learning models

An advantage of neural networks is their adaptability to different data structures with minor
changes on the architecture. For this reason, neural networks are utilized on diverse fields

varying from NLP to image recognition. Many deep learning models for time series extrinsic

regression take influence from other domains not specifically related to time series data.

However, many of these algorithms have achieved great results in time series extrinsic re-

gression benchmarks (Tan et al. 2021).

For example, RNNs work well on a task called sentiment classification (Tang 2015) where

the goal is to learn to identify sentimental polarities such as positivity or negativity from a
sequence of words. A typical RNN sentiment classification model consists of an embedding

layer, an RNN unit, such as GRU or LSTM, and a consequent linear layer with SoftMax ac-

tivation. When the sequence is embedded, it resembles time series data because the data is

multidimensional and sequential. In fact, modifying the last linear layer to output scalar

values and removing the SoftMax activation transforms the model compatible for time series

extrinsic regression tasks (Hüsken & Stagge 2003). Yu et al. (2021) shows that such RNN

models transfer to autoencoder architecture and perform well on time series classification

24

as well. Besides good performance, RNNs can handle variable length sequences without

wasting computation power on padding values that are necessary for fixed size batches dur-

ing training. The reason for this is RNNs recursive nature that allows stopping computation

when the end of the sequence is reached without modifying the model architecture (Che et

al. 2018).

Another popular time series extrinsic regression model, residual network (ResNet), was

adopted from image recognition research. He et al. (2016) proposed ResNet in 2015 for im-
age recognition as an improvement over other image recognition models of that time. Res-

Net is a convolutional neural network with skip connections that allow easier optimization

for deeper networks. Skip connections prevent occurrence of the vanishing gradient problem

that was described in Section 3.2.2. Wang et al. (2017) experimented ResNet’s applicability

on time series classification and found its performance competitive compared to state-of-

the-art algorithms. The ResNet utilized in the experiments consists of 3 residual blocks fol-

lowed by a global average pooling layer and linear layer. These residual blocks consist of 3
convolutional layers that all have different kernel sizes.

 Figure 9: A ResNet with three residual blocks for time series extrinsic regression.

In addition to ResNet, Wang et al. (2017) first proposed the use of fully convolutional neural

networks (FCNs) for time series classification. FCN was introduced by Sun & Wang (2018)

for semantic segmentation of images. Wang et al. utilize FCN in feature extraction for time

series classification and produce the predictions with a global average pooling layer and a

linear layer. FCN consists of 3 convolutional layers that all have different kernel sizes and
number of channels. Wang et al. state that the FCN achieves “premium performance to other

state-of-the-art approaches” including ResNet. FCN and ResNet perform similarly in 20

time series extrinsic regression benchmark tasks conducted by Tan et al. (2021).

InceptionTime is another time series classification algorithm proposed by Ismail Fawaz

et al. (2020) which utilizes an ensemble of five deep learning models that are created from

multiple Inception modules. The original Inception model is an image recognition model

that consists of multiple stacked convolutional layers and residual connections between the
convolutional layers (Szegedy et al. 2017). The prediction is produced by a global average

pooling layer and linear layer. Tan et al. (2021) finds in their experiments the performance

of InceptionTime in time series extrinsic regression comparable to FCN and ResNet.

25

However, InceptionTime has much higher variation in performance in benchmark datasets

than other time series extrinsic models that were experimented in the paper. Similarly to

other convolutional models, InceptionTime requires padding of variable length time series

data, and the model does not transfer to for example datasets with longer sequences, without

changing the architecture of the model and re-training the network.

26

4 Data and implementation

In this chapter, we first review the CMP dataset utilized in the experiments and conduct

comprehensive exploratory data analysis on it. Then, we introduce the architecture of our

virtual metrology system and describe how it is deployed in production. Next, we define the

standard tree-based machine learning solutions for our metrology prediction task and out-

line the alternative model candidates that the tree-based models are compared to. Lastly, we

introduce the evaluation metrics and validation methods that allow us to compare the over-

all performance and generalization error of the candidate machine learning models.
 4.1 Process data

The process data we use in our experiments was collected by the Prognostics and Health
Management (PHM) society from a CMP process tool located in a real semiconductor man-

ufacturing facility during approximately a two-month period. The dataset contains 25 pro-

cess variables and one response variable. In total, the dataset consists of 2829 runs, which

were split in the 2016 PHM Data Challenge to training, validation and testing sets with 1981,

424, and 424 runs respectively. We use precisely the same split to allow easy benchmarking

and comparison to other publications and show visualization in this section based on the

same split. Furthermore, we conduct model development, hyperparameter tuning, and ini-
tial testing with the validation set and validate the results with the testing set. The evaluation

procedure is discussed in detail in Section 4.4.

 4.1.1 Variable descriptions

The 25 process variables in the dataset are categorized to identification, status, usage, pres-

sure, flow rate, and rotation rate types (Table 2). Identification variables are not useful as

inputs in the metrology prediction task but allow separation and identification of specific
process runs from each other with the combination of variable Stage that separates the runs

of the same wafer in different process stages. The stages consist of A and B stages that are

both conducted for each wafer. The wafers are processed in either chambers 1, 2, 3 or 4, 5,

6, which refer to a location inside the CMP tool. Six usage measures indicate the wear of

different process tool components, which affect the tool operating condition. Another six

variables contain the pressure measurements that are set according to process recipe and
controlled during the process run in order to achieve good polishing results even for uneven

wafer surfaces. Three variables indicate the flow rate of slurry that is dispensed on the pol-

ishing table during runs from different flow lines, and three variables describe the rotational

speed of different kinetic components of the CMP tool that are set to operate according to

the specifications in the process recipe.

27

Table 2: Process data variable descriptions and types.
 Variable name Type Description (adopted from9) Machine data Identification Numeric ID of wafer ring location in machine Machine ID Numeric ID of machine (matches Chamber) Wafer ID Number representing ID of wafer Chamber

Status
Chamber in CMP tool for wafer processing (123 or 456) Dressing water status Status of dressing water Stage A or B representing a different type of processing stage Timestamp Timestamp in seconds Usage of backing film

Usage

A usage measure of polishing pad backing film Usage of dresser A usage measure of dresser that is used after runs to condition the polishing pad Usage of dresser table A usage measure of dresser table Usage of membrane A usage measure of polishing membrane Usage of polishing table A usage measure of polishing table Usage of pressurized sheet A usage measure of wafer carrier flexible sheet Edge air bag pressure
Pressure

Pressure of bag on edge of wafer Center air bag pressure
Pressure related to wafer placement Main outer air bag pressure Retainer ring pressure Ripple air bag pressure Pressurized chamber pressure Chamber pressure Slurry flow line A Flow rate Flow rate of slurry type A Slurry flow line B Flow rate of slurry type C Slurry flow line C Flow rate of slurry type B Head rotation Rotation rate Rotation rate of head Stage rotation Rotation rate of stage Wafer rotation Rotation rate of wafer Average material removal rate Response variable The average rate of material removal in nm/min

The response variable or the metrology value to predict is the average material removal rate

from the wafer surface in nanometers per minute (nm/min) during the CMP processing. The
rate of the polishing is physically measured and consequently predicted because it is an es-

sential metric for determining the endpoint for the process and thus accurate predictions of

polishing rate enhance the quality and reliability of the polishing process.

 4.1.2 Prediction task description

The prediction task that the machine learning models attempt to learn is a time series ex-
trinsic regression task (see Section 3.3.1 for definition). This means that the machine learn-

ing solution receives the process data, described in Table 2, as input and predicts single sca-

lar value for each single time series of process data. A single time series, called run, contains

multivariate time series process data for one processed wafer. Each run is linked to a scalar

metrology value that the model attempts to predict.

9 https://phmsociety.org/conference/annual-conference-of-the-phm-society/annual-conference-of-the-prognostics-

and-health-management-society-2016/phm-data-challenge-4/

28

 Figure 10: Visualization of the machine learning task.

Figure 10 shows a visualization of a run (a sample) that is inputted to the machine learning

model and a scalar value that it outputs consequently. In the next section, we further analyze

the process data and explain characteristic of the data based on statistical analysis and vis-

ualizations.

 4.1.3 Exploratory analysis

The dataset consists of multivariate time series or runs with a metrology value for each of

these runs. This exploratory data analysis shows the data in various formats, such as in time

series and histogram format, which provides necessary information on the structure of the

data. The dataset contains process runs from two different polishing modes (low/high-

speed) where the process variables exhibit distinct characteristics for each mode, which is

visible in Figure 11 that shows heatmaps of four individual process runs. Each pixel repre-

sents a measurement of a single variable at a timestep in the heatmap where the time is
represented on the x-axis and the process variables on the y-axis. The runs in the first row

of the figure are from the high-speed mode and the second-row runs are from the low-speed

mode. Heatmap provides an overall illustration of the data structure and relative variance

of the variables. Immediately, it is evident that the two modes are clearly separable in the

heatmaps, and that the high-speed mode runs appear to have lower variance in several var-

iables. It is also somewhat obvious that the high-speed mode runs are generally shorter than

the low-speed mode runs because it takes less time to polish the wafer with high rotational
speeds and hence the higher material removal rates.

29

 Figure 11: Heatmaps of four process runs. First row is from the high-speed and second row from the low-speed polishing mode.

Next, a histogram of the length of the runs (Figure 12) shows that the lengths are divided

into high- and low-speed groups as well, and that most of the runs are around 300 timesteps

long.

 Figure 12: Histogram of process run lengths.

30

However, there are several outliers in all splits of the dataset which are most likely caused

by process runs that have stopped but data logging has nevertheless continued. This is visi-

ble in graphs (Appendix A) that show the rotational speeds during these outlier runs. After

around 300 timesteps, all the rotation variables go to zero (0) which indicates stopping of

the process run. The first row of Figure 12 shows histograms of sequence lengths in the entire

dataset, whereas the second row represents a zoomed-in image of the distributions in the

normal run length range.

 Figure 13: Histogram of average material removal rate by nm/min with outliers removed.

In Figure 13, the histogram of material removal rate is shown for all the split datasets. Four

clear outlier values are omitted from the training set histogram to enable clearer visualiza-

tion. The process of defining and removing outliers is discussed more in Section 4.2.1. Figure

13 shows the two separate material removal rate distributions in each split of the dataset,
which are a result of the two polishing modes in the tool: high-speed and low-speed. Fur-

thermore, the metrology distributions appear similar in all datasets, and it is clear that the

high-speed polishing mode is underrepresented in the dataset compared to the low-speed

mode. This may affect the difficulty of modeling the high-speed mode.

 Figure 14: Average material removal rates in time series format.

31

It is also important to note that the average material removal rate is univariate data with

time dimension, which means that it may have temporal structure itself that is not quantifi-

able from the other process variables. Figure 14 presents the average material removal rate

measurements in a temporally ordered time series. We can see that the response variables

have some temporal dependence which is expectable in industrial process data. It is also

visible from the Figure 14 that the training, validation and testing dataset splits are overlap-

ping and not split in regard to time.
The different modes of polishing speed are also apparent when dividing the data by cham-

bers. The chamber measurements for each run vary between either 1, 2 and 3, or 4, 5, and 6,

which is why we denote these as chambers 123 and 456. Evidently, the different modes are

operated with different chamber with different process recipes. Figure 15 shows this in a

boxplot where the average material removal rate is divided discretely by the chamber to

show the two different distributions that are apparent in the dataset. The standard devia-

tions in these distributions are small and there is no significant skew. Some outlier values
appear outside the whiskers of the boxplot, which is to be expected.

 Figure 15: Boxplot of the average material removal rate by the two different chambers.

The structure of the data is rather complex and manual feature engineering for CMP requires

lot of extra manhours. In addition, the data contains outliers, erroneously logged measure-

ment values and missing values which set demanding standards for the virtual metrology
system that handles the data. The next section covers the implemented architecture of our

virtual metrology system that is utilized in facilitating different predictive machine learning

models. The virtual metrology system enables successful and stable system operation in an

industrial environment.

 4.2 Virtual metrology system architecture

The design of the virtual metrology system aims to maximize accuracy and reliability of the

metrology predictions. This results to finer control and monitoring of the process in wafer-

to-wafer basis which leads to higher yield and production output in the end. Our virtual me-

trology system consists of data preparation, modeling, and deployment modules. During the
data preparation, the data is gathered, stored, and preprocessed in a format that the machine

learning models can utilize. This is an important step because the data from a semiconductor

process tool is usually low-quality containing outliers, missing values, and redundant varia-

bles. After data preparation, a model is trained and evaluated before it is deployed into

32

production. Production model quality is crucial because bad virtual metrology predictions

can cause unnecessary interruptions and unnecessary loss of wafers in the production line.

The architecture of the metrology system is shown in Figure 16 where components of data

preparation, modeling and deployment modules are included. Next, we introduce these

components of the pipeline in detail and describe the implementational aspects of them.

Later, we further review the modeling methodologies utilized in the system.

 Figure 16: The architecture of our virtual metrology system.
 4.2.1 Data preparation

Before the data is utilized in virtual metrology, it needs to be prepared accordingly. The

preparation begins with combining the process data from the CMP tool to the physical me-

trology results that are obtained only after measuring the wafer. This is conducted by joining

the datasets with the necessary identifiers - in this case with the Wafer ID and Stage varia-
bles. After the mapping is done, the matched data is stored in a database where it is accessi-

ble for the data preprocessing component. The raw PHM data is initially provided in several

files with average material removal rate measurement results in separate files. This reflects

the real-life virtual metrology scenario where the process tool and physical metrology gen-

erate the flows of data that are utilized in combination ultimately.

Preprocessing of the data begins with encoding of variables to a format interpretable to

the machine learning models. Firstly, the Chamber is encoded to 0/1 variable where 0 rep-
resents wafer that was processed in chamber 1,2, and 3, whereas 1 represents wafer pro-

cessed in chamber 4, 5, and 6. This encoding procedure results to one exogenous variable

not varying in time during individual runs. Autoencoder models utilize the exogenous vari-

ables in conjunction with the latent vectors in the virtual metrology task, whereas in the

supervised deep learning models, the exogenous variables are not separated from the rest of

the time-varying data but rather retained with the rest of the time-varying variables. Fur-

thermore, variables such as Stage that are in char format are converted to integers. Encoded
stage is utilized in the same manner in different models as the chamber encodings.

Semiconductor manufacturing tool data often contains several variables, such as addi-

tional identifiers or status variables, that have no variance or significance in virtual metrol-

ogy. These are removed in this stage of preprocessing to remove redundant data that is fur-

ther processed and utilized in modelling the process. Next, all the measurements inside the

runs are ordered in time and truncated to length 400. We chose 400 as the maximum length

33

because most of the runs are shorter than that and mostly outlier runs succeed it, which is

visible in Figure 12 that shows a histogram of the run lengths. The maximum sequence

length affects the model architectures and longer sequences cause increased computational

complexity, which is why truncating sequences to reasonable length is justifiable. This is a

common and accepted procedure in the field of machine learning (Goodfellow 2016).

Missing values are common in industrial data, and therefore our preprocessing compo-

nent is prepared to handle missing values by either removal or imputation based on the
amount of missing values. After all the missing data is handled, the data is stored in tensor

format by padding the sequences that are shorter than the maximum sequence length (400

timesteps) with Nan-values which results to sequences with equal array size. This is a pro-

cedure that allows to store the data in a single tensor and train the neural networks. Later in

the pipeline, the Nan-values are replaced with a padding value such as (0 or -1) which indi-

cates to the model that the sequence has ended at that time point.

Physical metrology is typically a slow but reliable method to determine properties of the
wafer that was processed. However, sometimes, the metrology tools fail, and erroneous data

is stored in the database. In the PHM dataset, there are four metrology outputs that exceed

the normal operating range by a factor of 40. These overshooting values outliers are removed

automatically based on Z-score, which is defined as

𝑧 =
𝑦 − 𝑦̅

𝑆𝑦
 , (25)

where y is a sample of measured average material removal rate, 𝑦̅ is sample mean, and 𝑆𝑦 is

the sample standard deviation. All samples with a Z-score higher than 3.0 are removed,

which in the training dataset corresponds to an average material removal rate higher than
660.77 nm/min. With this threshold, four outlier samples are omitted from the training da-

taset so that the model training would not suffer from them. Figure 17 shows these physical

metrology outliers in a histogram.

 Figure 17: Histogram of training data set outliers in physical metrology results.

34

Many machine learning algorithms such as neural networks require data that is scaled to

normalized scale in order to learn useful features from the data. Unscaled data can result in

exploding gradients and instability of learning. Hence, we scale the process data of the runs

sensor-wise to zero (0) mean and unit (1) variance. Sensor-wise scaling is utilized in most of

the virtual metrology publications, and it is preferred because it retains the temporal struc-

ture of a single run but scales the runs and process variables independently to the same scale.

Standardization to 0-1 range was also trialed but it did not affect the learning results signif-
icantly when compared to the chosen 0-mean-unit-variance scaling. The scaled data is com-

puted as:

𝑋𝑠𝑒𝑛𝑠𝑜𝑟_𝑖_𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋𝑠𝑒𝑛𝑠𝑜𝑟_𝑖 − 𝑋̅𝑠𝑒𝑛𝑠𝑜𝑟_𝑖

𝑆𝑋_𝑠𝑒𝑛𝑠𝑜𝑟_𝑖
 ∀𝑖 ∈ 0,1,… , 𝐷 , (26)

where X is the original data with D variables and T timesteps a run. The scaling is conducted

when the data still contains Nan-values inputted earlier, but after scaling the Nan-values are

replaced with a padding value (-1). The Nan-values are replaced only after the scaling so that

the padding values do not affect the scaling by changing the mean and standard deviation of

shorter runs that are padded.

 Figure 18: Visualization of two example process runs before and after conducting the scaling as described in Equation (26.

35

Looking at Figure 18, we can see that the described scaling procedure brings visible the char-

acteristics of single runs in the visualization because the sensors then vary in the same scale,

and thus variation in a sensor inside a run becomes visible more clearly. This scaling proce-

dure thus retains the temporal structure of single variable time series and allows neural net-

works to learn useful features from the data.

We compute the mean and standard deviation of process data for scaling only from the

training data and utilize it in scaling both validation and testing datasets. This practice pre-
vents undesirable peaking to the parts of the dataset that are utilized in evaluating the per-

formance of the model, and thus eventually leads to better modeling of the regression task.

This is a good practice, even if in practice the training, validation and testing dataset rarely

have drastically different mean and standard deviations.

After the data is preprocessed, it is in a format that the neural networks and other ma-

chine learning models can utilize efficiently. The preprocessing is conducted on all new data,

and the preprocessed data is saved to a permanent storage to avoid unnecessary re-compu-
tation. Next, we review the modeling and deployment module that supersedes the data prep-

aration module.

 4.2.2 Modelling and deployment

In the modelling module, the machine learning model for the virtual metrology is trained on

the prepared data. The model is trained and tuned with the validation dataset split from the
entire dataset and then the modeling results are validated with the testing dataset. Only a

model that achieves similar validation and testing performance is deployed. Training time

of the model needs to be reasonable as the computational resources in semiconductor facto-

ries are typically limited. After the model is trained, it is stored in a compact format to a

model database with a unique training id that allows other services or modules to utilize it

later.

Deployment of the model begins with fetching the trained model from the model database
and deploying it to use through an inference pipeline. When the model is in use, it predicts

the metrology results for every wafer and the predictions are compared to the available phys-

ical metrology results. If the model accuracy fluctuates or is insufficient, re-training of the

model is initiated. The predictions are utilized in monitoring the process behavior through

all processed wafers which means that malfunctions of the process tool are detected early.

Additionally, the predictions enable controlling of the process run parameters on wafer-to-

wafer basis rather than only lot-to-lot basis.
 4.3 Machine learning models

The choice of the machine learning model is a fundamental part of designing a virtual me-
trology system. The choice of the model affects multiple design aspects of the virtual metrol-

ogy pipeline, such as the preprocessing and dimensionality reduction. Hence, we propose,

experiment, and compare several deep learning model candidates for use in the CMP virtual

metrology system. These models include convolutional, recurrent and MLP neural networks

as well as autoencoder-based semi-supervised neural network models. In order to bench-

mark these models, we define two standard tree-based model approaches that we consider

the obvious and simple choices for conducting virtual metrology. In this section, we review
the design and implementation of all model candidates.

36

 4.3.1 Tree-based

The first tree-based model approach - called raw approach - consists of a tree ensemble

model, either random forest or XGBoost regressor, that receives the flattened process run

data with padded values included as input. This results to 8 400 variables for each sample

with the maximum sequence length of 400 and 21 original variables in the dataset. We use
the vanilla implementation of random forest with tree maximum depth of 100 from the latest

Scikit-learn10 library version 0.24.2, and XGBoost11 Python library version 1.4.2 with GPU-

acceleration enabled and number of estimators set to 100. Tree ensemble regressors are typ-

ically utilized for tabular data regression, but with flattened time series data, they have

achieved surprisingly good results in time series extrinsic regression benchmarks (Tan et al.

2021). For this reason, the raw approach sets a good baseline for more complex approaches

that require more effort in feature engineering or model tuning.
The second tree-based model approach – called Hand-crafted-features approach – is an

approach that is typical to a virtual metrology system in academic publications. The funda-

mental difference to the raw approach is that the time series data is first converted to tabular

data by hand-crafted features. The statistical moments this approach utilizes are mean,

standard deviation, median, minimum, maximum, kurtosis, and skew from the time-do-

main. Furthermore, three exogenous variables, Chamber-123, Chamber-456 and Stage,

without time variance are extracted from the time series data before aggregation. This re-
sults to

𝐷𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 × 𝐹𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡𝑠 = 19 × 8 + 3 = 155 (27)

variables in total. Typically, after aggregation, virtual metrology systems reduce the dimen-

sionality of the data with either a feature selection or feature extraction method. PCA-based

dimensionality reduction performed worse than feature selection methods in our initial

tests, and hence we chose to utilize 120 best variables based on the F-score that was com-
puted from the Pearson correlation coefficient between the average material removal rate

and input variable. Only 120 best variables were chosen based on empirical testing to filter

the worst input variables from reaching the machine learning model – not because tree en-

semble regressor could not handle high number of variables successfully. For this hand-

crafted-features approach, we chose to utilize random forest and XGBoost regressor as they

are the state-of-the-art algorithms for this type of tabular data in both general machine

learning and virtual metrology. The model implementations are the same as the ones utilized
in the first tree-based approach with the exception of random forest having a maximum

depth of 10 for a tree instead. Another difference to the first tree-based approach is that the

varying-length runs do not require padding because of the aggregation step that casts the

data to tabular data format.

10 https://scikit-learn.org/stable/about.html
11 https://xgboost.readthedocs.io/en/latest/index.html

https://scikit-learn.org/stable/about.html
https://xgboost.readthedocs.io/en/latest/index.html

37

4.3.2 Supervised deep learning

Supervised deep learning models that we benchmark to the two tree-based approaches are

various RNN models, ResNet, FCN, and InceptionTime. The RNN models are implemented

with PyTorch library version 1.8.112, whereas the other ones with tsai13 library that is a col-

lection of state-of-the-art time series deep learning models implemented with PyTorch. All

of the deep learning models are trained on Microsoft Azure Machine learning compute in-
stance with a NVIDIA Tesla K80 GPU.

 Figure 19: Different approaches for including exogenous variables in the RNN model.

We benchmark both LSTM and GRU based RNN models with three different approaches

(Figure 19). The first approach consists of a RNN cell which last hidden state is concatenated

with the three exogenous variables, and that concatenation is fed to a two-layer MLP net-
work. In the second approach, the initial hidden state of the RNN cell is initialized and filled

with repetitions of the exogenous variables, and a single linear layer is fed with the last hid-

den state of the RNN cell. The third approach is the simplest as the exogenous variables are

just left in the sequential data regardless of their invariability during runs. Then, the last

hidden state of the RNN is fed to a single linear layer which outputs the predictions. The

hidden size of the RNN cell for all the models is 150. We utilize the PyTorch’s built-in mech-

anism, pack_padded_sequence14, which causes the PyTorch implementation of RNN cell to
stop the computation of the sequence when the process run ends without considering the

padding values described in Section 4.2.1. However, we conduct experiments on this func-

tionality and report on how the use of it affects the model’s performance and training time.

12 https://pytorch.org/
13 https://github.com/timeseriesAI/tsai
14 https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.pack_padded_sequence.html

https://pytorch.org/
https://github.com/timeseriesAI/tsai
https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.pack_padded_sequence.html

38

The ResNet implementation we use in our tests is from the tsai library, and it is realized

from the proposal of Wang et al. (2017). The model consists of 3 residual blocks with three

convolutional layers (with 7, 5 and 3 as kernel size) each as described in Section 3.3.3. Con-

tradict to the RNN models, the ResNet is not informed of the real lengths of the sequences,

but rather it computes the padded values as if they were actual measurements. This means

that the model needs to learn the significance of the padded values, and changes to the data

sequence maximum length affects the model architecture and thus necessitates model re-
training. The source code for the model is available on tsai’s GitHub repository15.

The FCN we utilize in our tests is implemented as described in Wang et al. (2017) with

three convolutional blocks that all have different kernel sizes (7, 5, and 3) and number of

output channels (128, 256, and 128). The implementation of the FCN is similar to ResNet

but lacks the residual connections. The source code for the model is available from16.

Another supervised deep learning model we test for CMP virtual metrology is Inception-

Time that was also introduced in Section 3.3.3. We utilize the tsai implementation of Incep-
tionTime17 that is adopted from Ismail Fawaz et al. (2020). As with the other deep learning

models in our tests, the InceptionTime is adopted to regression task by excluding the acti-

vation function that would otherwise follow the last linear layer of network. Furthermore,

the architecture of InceptionTime is dependent on the maximum length of sequence in the

dataset.

 4.3.3 Autoencoders and semi-supervised approach

We review the performance of several deep autoencoder types for the virtual metrology of

CMP. Firstly, we develop a vanilla multi-layer perceptron autoencoder (MLP-AE) that con-

sists of 4 encoding and 4 decoding layers and utilize the latent representation in the regres-

sion task with a random forest regressor (Figure 20).

 Figure 20: Outline of MLP-AE architecture.

The encoder part of the network gets the padded time-varying process data as input and
compresses it to a latent representation of size 30, and that latent representation and

15 https://github.com/timeseriesAI/tsai/blob/main/tsai/models/ResNet.py
16 https://github.com/timeseriesAI/tsai/blob/main/tsai/models/FCN.py
17 https://github.com/timeseriesAI/tsai/blob/main/tsai/models/InceptionTime.py

https://github.com/timeseriesAI/tsai/blob/main/tsai/models/ResNet.py
https://github.com/timeseriesAI/tsai/blob/main/tsai/models/FCN.py
https://github.com/timeseriesAI/tsai/blob/main/tsai/models/InceptionTime.py

39

exogenous variables are then utilized in the subsequent virtual metrology task. During train-

ing, the decoder part of the network attempts to reconstruct the time series process data and

minimize the MSE. The MSE is computed without including padding values in the compu-

tation because reconstruction of the padded values would only consume the capacity of the

autoencoder.

Another autoencoder we experiment on is vanilla RNN autoencoder (GRU/LSTM-AE)

with either a GRU or LSTM cell. During encoding, the RNN cell first compresses the non-
padded variable-length time series data into its last hidden state with size 50 which is the

latent vector that is utilized in the subsequent virtual metrology prediction. These parame-

ters performed the best in our initial hyperparameter tuning with the validation dataset.

Furthermore, it is worth noting that by default the RNN cell is informed of the time series

lengths similarly as the supervised RNN model introduced earlier. During decoding, the la-

tent representation is fed to the RNN cell each time step and the output of the RNN cell

reconstructs the prediction of the original process data directly by minimizing the MSE er-
ror. To avoid exploding gradients, the gradients are clipped by a 0.25 threshold as described

in Equation (19 with PyTorch built-in function called clip_grad_norm_18.

In addition to the vanilla autoencoder, we develop a variational autoencoder (VAE)

model which consists of an encoder and decoder, each with 3 layers and 2 heads. During

training, the network minimizes the sum of negative KL-divergence and log-likelihood of the

reconstruction. Similarly to MLP-AE, the design of VAE is dependent on the maximum se-

quence length in the dataset and its complexity increases as the maximum sequence length
increases.

An interesting feature of autoencoders is their ability to learn features from the unlabeled

data. Therefore, our autoencoder models utilize all of the process data available regardless

of if it was labeled or not. We call this the semi-supervised approach where we train the

autoencoder with abundant unlabeled data and the subsequent regression model with scarce

labeled data. In theory, this improves performance as opposed to just training a supervised

deep learning model with a small labeled dataset. We experiment how the amount and ratio
of labeled and unlabeled data affects the learning results of different model candidate. We

consider this as an important aspect of virtual metrology system because acquiring labels

with physical metrology is fundamentally expensive and time-consuming in semiconductor

manufacturing.

 4.4 Validation and evaluation

We evaluate the performance of our candidate models with the validation and testing da-

tasets described earlier. The data is from the same time interval for all of the split datasets

and therefore there is no time-related distribution change between training, validation and

testing sets (Figure 14). This is representative because in manufacturing the actual metrol-
ogy is not conducted on every wafer, and therefore the testing and validation sets provide us

ground truth for those wafers that are not normally measured. Furthermore, it is worth not-

ing that physical metrology is only conducted approximately on every 25th wafer which

means that the ratio of labeled to unlabeled data is different from the ratio of training to

validation and testing set. For this reason, we experiment on the model performance on

18 https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html

https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html

40

different amount of labeled data and show which models perform the best with a realistic

labeled to unlabeled data ratio.

We use RMSE error as the main metric in performance evaluation and show residual plots

of the predictions in a format that is common in virtual metrology publications. Training

time of the models is another important metric that we want to assess because in semicon-

ductor manufacturing the training times of models cannot prolong endlessly as the produc-

tion is continuous. Finally, we analyze feature importance of our tree ensemble models to
evaluate variables that affect their predictions the most.

41

5 Results

This chapter presents the results of our virtual metrology experiments and discusses them

in detail. First, we show a general overview of the model candidates’ performance on the

CMP virtual metrology task. Secondly, we present results for various RNN model approaches

and compare them to formulate a recommended approach for including exogenous variables

to RNN models. Thirdly, we analyze the performance of the best model of each approach

type in a limited labeled data setting, which reflects the realistic labeled to unlabeled data

ratio in the operation environment of the virtual metrology. Lastly, we conduct feature im-
portance analysis on the raw approach tree models to review their operation and perfor-

mance. This analysis presents us variables and factors that affect the virtual metrology pre-

dictions the most in the raw approach model types.

 5.1 General overview

A general performance test is conducted on every model candidate where each model is

trained with the training dataset consisting of 1977 wafers and tuned with the validation

dataset. The model performance is evaluated with the testing dataset only after the develop-

ment of the model is seized. This provides us an unbiased estimate of the generalization

error of the model.

Table 3 presents RMSE and R2 for each model with the training time included grouped by

the model type. All the models converged well, but we acknowledge that the model perfor-

mance varies slightly from training to training due to the indeterministic nature of the opti-

mization algorithms and the models. Despite this, the Table 3 shows performance of the

models on a single training instance.

 Table 3: Performance of different virtual metrology models.

Type Method No. inputs / sample Training time (sec) Validation Testing RMSE R2 RMSE R2
Raw Random forest 8400 377 3.80 0.98 3.58 0.98 XGBoost 8400 24 3.85 0.98 3.50 0.99

Hand-crafted Random forest 155 7 3.52 0.98 3.42 0.98 XGBoost 155 1 3.64 0.98 3.36 0.99
Supervised deep learn-ing

LSTM 8400 257 4.37 0.98 4.46 0.98 GRU 8400 245 4.11 0.98 3.98 0.98 ResNet 8400 230 3.67 0.98 3.90 0.98 FCN 8400 213 3.66 0.98 3.93 0.98 InceptionTime 8400 401 3.79 0.98 3.93 0.98
Autoen-coder

MLP-AE 7602 144 4.47 0.98 4.20 0.98 MLP-VAE 7602 231 4.10 0.98 3.82 0.98 LSTM-AE 7602 576 4.34 0.98 4.26 0.98 GRU-AE 7602 580 4.37 0.98 4.10 0.98

Based on the R2 coefficient, both tree-based approaches (raw and hand-crafted model types)

perform sufficiently well when trained with the entire training dataset. This suggests that

prediction of the CMP tool’s average material removal rate is not a particularly difficult task

for tree ensemble models. Both raw and hand-crafted approach models perform slightly

42

better in the testing than in the validation dataset19. The training time of the hand-crafted

approaches is short because of the relatively small feature space compared to the raw ap-

proaches that consider each measurement of each variable as a feature. The training time of

both tree-based model approaches could further decrease with the use of GPU in training.

The supervised deep learning methods do not outperform the tree-based model ap-

proaches in general. Surprisingly, the supervised RNN based models that are informed of

the varying sequence lengths are performing the worst and are slow to train. The RNN mod-
els perform equally well for both validation and testing set which could indicate that the

RNN architecture models the phenomenon of CMP well but lacks absolute accuracy com-

pared to other models. The most accurate model of the supervised deep learning approaches

is ResNet which performs substantially well in both validation and testing sets. FCN per-

forms similarly to ResNet which is expected as the model architectures share similar com-

ponents. Both of these CNN based models are fast to train because of good computational

parallelization of convolutional layers with GPU.
The autoencoder based models are trained with the unlabeled process data and the

learned latent representation is utilized in the subsequent predictions task that is conducted

with a random forest regressor. We can notice that the autoencoder models perform by av-

erage worse than other models as can be seen in the

Table 3. This is expectable because the training of autoencoders aims to learn a repre-

sentative latent space of the original process data which might miss some of the information
necessary to predict the material removal rate accurately. Therefore, the use of autoencoders

on a fully supervised machine learning task as opposed to supervised deep learning models

is not advisable based on the results. Later, we compare the performance of the models with

limited labeled process data where the use of autoencoders is arguably more justified. The

RNN based autoencoders are the slowest to train out of all the model candidates, whereas

the MLP based autoencoders are relatively fast to train even compared to CNN based mod-

els.
Next, we further examine the virtual metrology performance of the models with the small-

est prediction error from each group (raw, hand-crafted, supervised deep learning, autoen-

coder). We illustrate the models’ performance with three visualizations of the residuals that

are typically used in virtual metrology publications. These visualizations include a residual

plot (true vs. predicted), residual histogram, and time series of true and predicted values.

The predictions are shown for the testing dataset because it reflects the unbiased real-life

performance of the models better than for example the validation dataset.

19 NOTE: Commonly, the machine learning model error is lower for the validation set than for the testing set due to

hyperparameter tuning, but unexpectedly the raw approaches perform better in the testing set. This could be due to a

random split where the validation set contains, for example, more outliers than the testing set.

43

 Figure 21: Raw approach with XGBoost regressor. The illustration shows performance on unseen testing dataset.

Figure 21 illustrates the performance of the raw approach with XGBoost as the regressor.
We notice that there is one prediction with a high error around 60 nm/min material removal

rate that was yet predicted 80 nm/min. Otherwise, the predictions are accurate, and resid-

uals are distributed evenly around zero. The time series plot shows no signs of fluctuated

performance around any specific time.

 Figure 22: Hand-crafted approach with XGBoost regressor.

The performance of the hand-crafted approach with XGBoost appears comparable to the

raw approach as is visible in Figure 22. The low-speed mode is more difficult to model as

expected and there are some predictions with significant error (maximum error of slightly

over 10 nm/min). The residuals are normally distributed around 0 mean and the model per-
forms equally well through the time period of the testing dataset.

44

 Figure 23: ResNet performs best in the testing dataset out of the supervised deep learning models.

ResNet performs slightly worse compared to both tree-based approaches. This is visible in
Figure 23, which shows visualizations of ResNet’s predictions on the testing dataset. There

are a few predictions with high error in both low- and high-speed modes, and the maximum

error reaches 25 nm/min which could affect tool operation in an undesirable way. The high-

est residuals are somewhat skewed to the left side of the distribution meaning that the aver-

age removal rate is predicted too high. From the time series plot we notice that the model

performance fluctuates significantly between timestamps 4.68 and 4.87 (x 108 sec).

 Figure 24: Visualization of MLP-VAE perfomance on the testing dataset.

The autoencoder based virtual metrology models perform slightly worse than other ap-

proaches in general. However, MLP-VAE outperforms even the best supervised deep learn-

ing model in the testing dataset error and models the metrology with only marginally higher

errors than the tree-based models. Figure 24 shows an illustration of the MLP-VAE’s

45

prediction results on the testing dataset. The high-speed mode is somewhat difficult for the

MLP-VAE to model, and there are some relatively high error predictions in the low-speed

mode as well. The residuals are quite evenly distributed around zero, and the predictions

remain equally accurate throughout the time period of the testing dataset as can be seen in

the time series plot.

Another significant aspect to compare - besides prediction performance - is the required

time for the development and implementation of these models. The implementation of raw
approach models took the least time to develop with 5 % of the total time spent on all of the

model development. The development of the hand-crafted approaches took the second least

time with 10 % of the total time. Both supervised deep learning and autoencoder based

model approaches took individually more time than the development of the tree-based ap-

proaches. For the development of the supervised deep learning models, we used 30 % of

total time, whereas the development of the autoencoder models took 40 % of our time. The

consumed time was high because deep learning models contain numerous hyperparameters,
optimization methods and architectural choices which may all affect the final model perfor-

mance unexpectedly. In addition, the training process of deep learning models takes more

time than of traditional machine learning models. This increases the time spent on trial-

and-error type of development which is necessary in machine learning research. Further-

more, these results reflect that the development of deep learning models might consume

more time but as a result automates the feature learning, whereas hand-crafted features are

fairly fast to craft but often fail to generalize to other use cases. The raw tree-based approach
gave great returns on the invested development time.

 5.2 Supervised recurrent neural network variations

We described in Section 4.3.2 the different approaches for implementing supervised RNNs.

This section discusses the performance and viability of these approaches for including time-

invariable exogenous variables, such as process stage, in supervised RNNs. In addition, we

review the applicability of RNN cells and computation of padded values to the virtual me-

trology prediction task.

Table 4 shows the training time and prediction error on the validation and testing da-

tasets for each RNN model version. It is evident from the table that the best performing
model is a GRU model where the exogenous variables are included in the initial hidden state

and the model computes the padded values. When the same model is informed of the se-

quence lengths (computation stops when sequence ends), the model performs significantly

worse on the virtual metrology task. Another approach that works well for the GRU cell is

the approach where all the variables are inputted to the network simultaneously on a single

tensor and the model is not informed of the sequence lengths. This approach reaches testing

RMSE of 3.79 that is significantly lower than the average error of all RNN models.
By average, the GRU based models perform better than the LSTM based models. Alt-

hough, the difference in testing errors is not drastic. This supports the understanding that

GRU and LSTM cells are both state-of-the-art RNN solutions that perform similarly when

compared to each other. Furthermore, neither RNN type models overfit to the data with

hyperparameter tuning which might also suggest that the validation part of the split is easier

to predict than the testing part as generally the error increases from validation to testing

dataset. This is, however, acceptable as it means that our RNN models react well to com-
pletely unseen observations.

46

 Table 4: Performance of different recurrent neural network virtual metrology models.

RNN

type

Exogenous variables

handling

Padding

values

computed

Training

time

(sec)

Validation Testing

RMSE R2 RMSE R2

GRU

Exogenous variables af-

terwards

Yes 247 4.39 0.98 4.50 0.98

No 236 4.26 0.98 4.24 0.98

Exogenous variables to
h0

Yes 247 3.68 0.98 3.66 0.98

No 240 4.19 0.98 4.11 0.98

All variables from the be-

ginning

Yes 247 3.85 0.98 3.79 0.98

No 245 4.11 0.98 3.98 0.98

LSTM

Exogenous variables af-

terwards

Yes 255 7.21 0.94 7.89 0.92

No 252 4.86 0.97 4.57 0.97

Exogenous variables to

h0

Yes 256 4.40 0.98 4.20 0.98

No 252 4.57 0.98 5.29 0.97

All variables from the be-

ginning

Yes 258 4.67 0.98 5.04 0.97

No 257 4.37 0.98 4.46 0.98

The least attractive approach for handling exogenous variables seems to be including exog-

enous variables after the RNN cell. This could be due to the additional layers that are re-
quired after the RNN cell to include the non-linear characteristics of exogenous variables on

the last hidden state of the RNN cell. In our experiments, these additional linear layers rarely

resulted to better performance on the validation dataset. The two other approaches for han-

dling exogenous variables perform similarly in terms of the validation and testing error.

Based on these results, including all variables in the same tensor and inputting them to the

RNN cell is the best choice because it performs competently and is simple to implement.

This suggests that time-invariant features are not a challenge for an RNN cell when com-
bined with time-variable multivariant data.

Generally, informing the RNN cell of the length of the sequence seems to have no signif-

icant advantage in our virtual metrology task. Informing the RNN cell of the sequence length

results to better performance in 3 out of 6 approaches and 1 out of 3 GRU based models. For

LSTM based models, not including padded values in the computation seems advantageous.

The low significance of informing the model of sequence lengths is unexpected for us be-

cause the use of RNN models is often motivated with the pure computation of the time series
values and not the padded values that have no actual meaning. However, the RNN models

that are informed of the sequence values are slightly faster to train, and thus we see inform-

ing the model of the sequence lengths beneficial because more extreme differences in se-

quence lengths could result in a more substantial decrease in the model training time.

 5.3 Limited labeled data and semi-supervised learning

This section discusses the performance of models in a modern manufacturing setting where

only a fraction of wafers is physically measured, and thus fewer labels are acquired. We show

results for different ratios of labeled to unlabeled wafers. Our supervised models can only

utilize labeled samples, whereas the autoencoder models utilize unlabeled samples as well.

47

Figure 25 shows the regression error of one model from each approach type introduced

earlier with 100, 500, 1000 and 1977 labeled wafers out of all the 1977 wafers. Firstly, it is

immediately evident that ResNet, a supervised deep learning model, does not perform well

with fewer labeled samples. Its error increases rapidly when approximately half of the la-

beled data is transmuted unlabeled. This supports the conception that supervised neural

networks require plenty of labeled data in order to perform sufficiently. Secondly, we can

notice that when the number of labeled wafers exceeds 500 – the raw and hand-crafted
XGBoost models perform the best.

 Figure 25: Model performance on the testing dataset with a different number of labeled samples of the 1977 wafers in the training dataset.
However, from the Figure 25, it is also evident that the autoencoder models outperform all

other approaches in a restricted labeled data setting where only 100 wafers are labeled.

MLP-VAE extracts useful features from unlabeled data that help the subsequent regression

model to predict the metrology values accurately. Learning from just 100 labeled wafers,
means that the model is capable of predicting the metrology results earlier than other mod-

els that require more labeled data to perform as effectively. This is valuable in semiconductor

manufacturing where each physical measurement consumes time and data collection for

virtual metrology cannot take too much time. Accurate predictions with little labeled data

allow control and monitoring of the process sooner after an event such as tool maintenance

or product recipe change.

A more detailed visualization of all the autoencoder models’ performance is visible in Fig-
ure 26. The figure shows that MLP-VAE performs overall best out of the autoencoders and

MLP-AE the worst. The RNN autoencoders perform adequately but do not provide signifi-

cant benefits over MLP autoencoders. LSTM-AE and MLP-VAE perform similarly with only

100 labeled wafers, and overall, the difference in error between autoencoders trained with

100 labeled wafers is minuscule (RMSE from 5.44 to 5.88). The overall performance of the

models improves with the number of labeled wafers, but the improvement is small compared

to other approaches such as raw and hand-crafted.

48

 Figure 26: Performance of autoencoder models on the testing dataset with different num-ber of labeled samples of the 1977 wafers in the training dataset.

Figure 27 shows the performance of MLP-VAE trained with only 100 labeled wafers. We

notice that the residuals are much higher than in the Figure 24 that shows the performance

of the MLP-VAE trained with more labeled samples. Nonetheless, the residuals are quite

evenly distributed around zero and there are no outliers. This would suggest that the MLP-
VAE is relatively robust in the virtual metrology task with limited labeled data. MLP-VAE

performs well throughout the time series without any major sections of the time period with

fluctuated performance.

 Figure 27: MLP-VAE trained with 100 labeled and 1877 unlabeled wafers.

Based on the results, autoencoder models work better than other approaches in the limited

labeled data setting for virtual metrology. When the number of measured wafers increases

significantly, other approaches become more accurate. This might, however, take a long time

and result in low quality wafers that wind up scrapped. It must also be noted that the hand-

49

crafted features with XGBoost regressor outperform other methods when the labeled data

reaches 1000 wafers. This suggests that the hand-crafted features are representative of the

runs.

 5.4 Raw approach analysis

Tree-based ensemble regressor’s criterion reduction-based feature importance gives an

overview of the variables’ impact on model predictions. This provides insight on the factors

or variables that have dependency with the model’s predictions and can help to analyze the

process’s behavior. The raw approaches consider each measurement of each sensor and pro-

cess information as a variable. A heatmap of the measurement’s importance shows the nor-
malized MSE reduction for each variable in the model.

Figure 28 shows the heatmap and histogram of XGBoost regressor’s feature importance

in the virtual metrology task. The most important feature in the model is the first measure-

ment of the Chamber variable. It varies only a little during runs and therefore the splits often

target the first measurement of that variable. This is expectable because the different modes

of polishing speed are processed in different chambers (Figure 15). Nevertheless, this high

feature importance value is clearly distinct in the histogram where all of the other variables
have significantly lower feature importance values20.

 Figure 28: Feature importance of raw approach with XGBoost.
Another prominent sensor based on the feature importance is Pressurized chamber pres-

sure at just before the timestep 150. The conspicuous group in the middle of the heatmap is

interesting as it is probably caused by a certain event that happens often approximately on

that period of the runs. For example, process operator’s conditional actions could cause the

importance of the time period in Pressurized chamber pressure. Another noteworthy aspect
in the figure is the slight increase in feature importance of Usage of dresser just before the

timestep 350. This might indicate a wearing event that often occurs in the end of the run.

Furthermore, only 19 % of the measurement variables have non-zero feature importance and

only a few are distinct from the heatmap where higher values dominate the visualization

color scale.

The feature importance of the random forest regressor variables are shown in Figure 29.

The results differ in some parts significantly from the XGBoost feature importance values.
20 NOTE: Figure 25 heatmap color scale does not consider the single high (0.52) feature importance of Chamber varia-

ble in the color scale for visualization purposes.

50

For instance, in the Chamber variable, the importance is divided between several timesteps

even though they are fully correlated. This happens because the SciKit-learn library imple-

mentation of the random forest selects subset of features randomly at each split21 and there-

fore the first split on Chamber variable occurs on random measurement of the variable. The

Pressurized chamber pressure is also prominent in the random forest even though the time

period is shorter than in the XGBoost regressor. In addition, with the random forest regres-

sor, approximately 90% of the variables have non-zero feature importance which is signifi-
cantly higher than with the XGBoost regressor. This is due to the random subset of features

that is sampled at each split. This is also visible in the histogram of the feature importance

values where the values are quantified in certain values and distributed with even gaps.

 Figure 29: Random forest feature importance.

The feature importance values of both XGBoost and random forest regressor are similar with

slight differences that are caused by each model’s individual splitting and subsampling
methods. However, with the feature importance values, we discovered that the characteris-

tics of Pressurized chamber pressure have an effect on the material removal rate in the CMP

tool or at least the behavior of the sensor is a proxy for another event that affects the polish-

ing. We also discovered that only a fraction of the measurements is required to predict the

material removal rate with a tree ensemble model.

21 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

51

6 Conclusions and discussion

In this thesis, we implemented and reviewed multiple state-of-the-art machine learning

models for virtual metrology of chemical-mechanical polishing. We compared typical virtual

metrology machine learning pipelines consisting of hand-crafted features and tree ensemble

models to the current state-of-the-art time series extrinsic regression models, such as Incep-

tionTime and recurrent neural networks. In addition, we proposed and evaluated several

approaches for including time-invariant extrinsic process variables to recurrent neural net-

works. Furthermore, we implemented semi-supervised autoencoder models for a prediction
scenario where only a fraction of process runs are labeled. These autoencoders were com-

pared to other machine learning methods in a limited labeled data setting which is common

in semiconductor manufacturing processes, such as chemical-mechanical polishing, where

physical measurements are rarely conducted on the wafer. In addition, we evaluated the

performance of tree ensemble models by analyzing the feature importance of the models.

Our extensive experiments and comparison of different models show that hand-crafted

features and tree ensemble models are a good choice for the virtual metrology of chemical-
mechanical polishing. These tree ensemble methods are relatively simple to implement and

perform best in a setting where there are a high number of labeled samples. Hand-crafted

features improve the performance compared to the raw values approach but require more

domain knowledge and development time. Our experiments on automating the feature ex-

traction with deep learning shows that supervised deep learning models are able to extract

useful features from the process data. They perform decently with a high number of labeled

samples, but as the amount of training data decreases - their performance decline rapidly.
This is the case for both RNN and time series extrinsic models, such as InceptionTime and

ResNet. However, these deep learning models automate the feature extraction process and

thus adapt to new process environments without additional effort on handcrafting features

from the data with domain knowledge. Nevertheless, initial development of deep learning

models may consume a considerable amount of time based on our experiments.

In our experiments on RNNs, we found that including time-invariant exogenous variables

with the rest of the variables - is a viable approach for supervised RNN models, since it is a
simple technique to implement, and it performs well compared to other approaches. An-

other viable approach according to our results, is to fill the initial hidden state of the RNN

cell with the exogenous variables to “condition” the model for different process stages or

chambers as an example. Including the exogenous variables after the RNN cell, at an inter-

mediate part of the neural network, was found to work the worst in our experiments. This is

in line with our discovery that additional layers after the RNN cell often result in overfitting

rather than improved performance. Furthermore, padding of variable length sequences did
not appear to affect the RNN models’ performance significantly which evident because the

models performed similarly when the padding values were not included in the computation

as they did when the padding values were included.

In our limited data setting, we discovered that autoencoder models can predict metrology

results accurately when trained with just 100 physically measured wafers. The semi-super-

vised approach allows the model to learn the structure and features of the data that a subse-

quent regression model can utilize in making predictions. Supervised regression models did
not achieve as good results on the same task but after 500 labeled wafers their performance

was comparable to that of autoencoders. This data collection may, however, take weeks in

semiconductor manufacturing and result in decreased yield and quality before accurate

52

predictions are available. Therefore, learning from fewer labeled samples with a semi-super-

vised approach brings significant benefits to the semiconductor manufacturing. In our ex-

periments, the variational autoencoder performed the best with both fully labeled and par-

tially labeled datasets. Recurrent autoencoders performed similarly to MLP-based models

but were considerably slower to train.

Our tree ensemble model feature importance analysis revealed that only a fraction of the

measurements in the process data are sufficient for an accurate prediction of average mate-
rial removal rate in a chemical-mechanical polishing tool. In fact, XGBoost utilized only 19%

of the measurements and achieved an R2 score of 0.99 in the testing set. The most important

features according to our analysis were the chamber the wafer was processed in and pres-

surized chamber pressure at a certain time period. The average removal rate is highly de-

pendent on the chamber because different polishing speed modes are operated in specific

chambers. In addition, we believe that the pressurize chamber pressure received high im-

portance because it acts as a proxy for an event that occurs during that time, which is not
visible otherwise in the sensor data. Based on the feature importance analysis, we believe

that the raw approaches perform well on the PHM dataset because the prediction problem

is fairly easy, and the data does not inherit complex temporal structure, such as autocorre-

lations. The performance of the raw approaches would likely decline in more complex pre-

diction tasks.

The main contribution of our work to the virtual metrology research field is the compar-

ison of state-of-the-art time series deep learning algorithms on the chemical-mechanical
polishing tool. Especially, our experiments on time series extrinsic regression models con-

tribute to the knowledge of their performance in semiconductor manufacturing which has

not been included in the benchmark datasets in recent publications (Tan et al. 2021). In

addition, our experiments on autoencoders are the first we have encountered that consider

a semi-supervised setting where the autoencoder utilizes unlabeled process data alongside

labeled data. These results extend the previous research on autoencoder use in virtual me-

trology (Maggipinto et al. 2018) (Choi & Jeong 2019). Furthermore, our standard tree-based
models outperform some of the more complex solutions (Li et al. 2019) encountered in pub-

lications that utilize the same dataset in their tests. This shows that even a simple solution

may prove out efficient in virtual metrology of chemical-mechanical polishing when imple-

mented correctly.

The most significant limitation of our work is the PHM dataset which was used in evalu-

ating the performance of our models. Firstly, the dataset portraits the operation of a single

process tool during a fixed time period which limits the experiments that would compare the
predictions on, for example, different tools or after tool maintenance. Secondly, it does not

contain unlabeled data from process runs where the physical metrology is not conducted,

which is why we need to synthetically limit the ratio of labeled to unlabeled data in our ex-

periments. Ideally, the data would contain unlabeled process data from the ~24 wafers that

were processed between physical measurements. This would result to data from ~50 000

processed wafers for training data in the case of PHM data that consists of ~2 000 measured

wafers. Moreover, this would allow training autoencoders with more data from a shorter
time period. Thirdly, our dataset contains only one measured response variable (average

material removal rate) that is inevitably restricted in its nature because it is an average of a

single variable across a two-dimensional surface. It would be beneficial for root-cause and

other analysis purposes to predict, for instance, the topology of the wafer from multiple

measured points. Lastly, we did not find any public datasets from different process tools that

53

we could use as an additional validation for general applicability of our models and imple-

mentations.

Future work could include the use of virtual metrology predictions on run-to-run control

of the process tool. This would allow to evaluate the actual benefits of accurate virtual me-

trology predictions because the virtual metrology model would affect the process parameters

and thus the yield and quality of manufacturing. Another interesting future topic would be

to study how to dynamically control the frequency of physical metrology based on certainty
estimates of a machine learning model and study the accuracy of the certainty estimates.

This way the models could reduce the need for physical metrology even further. Additionally,

the frequency of the model re-training and utilization of certainty estimates on triggering

the re-training procedure would be an interesting research topic. In addition to our feature

importance analysis, we could also research interpretable machine learning methods, such

as LIME22 or SHAP23, and try to find explanations for the predictions. These explanations

could be then further utilized in root cause analysis of the models and the process.

22 Local Interpretable Model-agnostic Explanations
23 Shapley Additive exPlanations

54

References
Alain, G., and Bengio, Y. (2014). What Regularized Auto-Encoders Learn from the Data-
Generating Distribution. The Journal of Machine Learning Research, [online] Volume
15(1), pp. 3563–3593. Available at: https://dl.acm.org/doi/10.5555/2627435.2750359 [Ac-
cessed 10 Jun. 2021].

Babu, S. V. (2016). Advances in chemical mechanical planarization (CMP). Waltham, MA:
Woodhead Publishing.

Bagnall, A., Lines, J., Hills, J., and Bostrom, A. (2015) Time-series classification with
COTE: the collective of transformation-based ensembles. IEEE Transactions on
Knowledge and Data Engineering, [online] Volume 27(9), pp. 2522–2535. Available at:
https://ieeexplore.ieee.org/document/7069254 [Accessed 15 May 2021].

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gra-
dient descent is difficult. IEEE Transactions on Neural Networks, [online] Volume 5(2),
pp. 157–166. Available at: https://ieeexplore.ieee.org/document/279181 [Accessed 27 May
2021].

Breiman, L. (2001). Random Forests. Machine Learning, [online] Volume 45, pp. 5–32.

Available at: https://link.springer.com/article/10.1023%2FA%3A1010933404324 [Ac-

cessed 10 Sep. 2021].

Che, Z., Purushotham, S., Cho, K., Sontag, D., and Liu, Y. (2018). Recurrent Neural Net-
works for Multivariate Time Series with Missing Values. Scientific Reports, [online] Vol-
ume 8, pp. 6085. Available at: https://www.nature.com/articles/s41598-018-24271-9 [Ac-
cessed 7 Jun. 2021].

Chen, P., Wu, S., Lin, J., Ko, F., Lo, H., Wang, J., Yu, C. H., and Liang, M. S. (2005). Virtual
metrology: A solution for wafer to wafer advanced process control. In: Proceedings of IEEE
international symposium on semiconductor manufacturing (ISSM 2005). [online] San
Jose, CA: IEEE. Available at: https://ieeexplore.ieee.org/document/1513322 [Accessed 1
Mar. 2021].

Cho, K., Merrienboer, B. V., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and
Bengio, Y.. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Sta-
tistical Machine Translation. In: Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP). [online] Doha: Association for Computa-
tional Linguistics, pp. 1724-1734. Available at: http://emnlp2014.org/pa-
pers/pdf/EMNLP2014179.pdf [Accessed 21 May 2021].

Choi, J., and Jeong, M. K. (2019). Deep Autoencoder With Clipping Fusion Regularization
on Multistep Process Signals for Virtual Metrology. In: IEEE Sensors Letters. [online]
Available at: https://ieeexplore.ieee.org/document/8556469 [Accessed 10 May 2021].

Chung, J., Caglar, G., Cho, K. H., and Bengio, Y. (2014). Empirical Evaluation of Gated Re-
current Neural Networks on Sequence Modeling. [online] arXiv. Available at:
https://arxiv.org/pdf/1412.3555.pdf [Accessed 20 May 2021].

https://dl.acm.org/doi/10.5555/2627435.2750359
https://ieeexplore.ieee.org/document/7069254
https://ieeexplore.ieee.org/document/279181
https://link.springer.com/article/10.1023%2FA%3A1010933404324
https://www.nature.com/articles/s41598-018-24271-9
https://ieeexplore.ieee.org/document/1513322
http://emnlp2014.org/papers/pdf/EMNLP2014179.pdf
http://emnlp2014.org/papers/pdf/EMNLP2014179.pdf
https://ieeexplore.ieee.org/document/8556469
https://arxiv.org/pdf/1412.3555.pdf

55

Di, Y., Jia, X., and Lee, J. (2020). Enhanced Virtual Metrology on Chemical Mechanical
Planarization Process using an Integrated Model and Data-Driven Approach. Interna-
tional Journal of Prognostics and Health Management, [online] Volume 8(2). Available
at: https://papers.phmsociety.org/index.php/ijphm/article/view/2641 [Accessed 6 Apr.
2021].

Garcevic, H., and Lidberg, E. (2021). COVID-19 effects on supply chain risk management
in the Swedish automotive industry. Chalmers University of Technology.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. 1st ed. [ebook]. MIT
Press. Available at: https://www.deeplearningbook.org/ [Accessed 25 Mar. 2021].

Grayson, K. (2018). Photolithography – The Role and Properties of Photosensitive Glass.
[online] Mo-Sci. Available at: https://mo-sci.com/photolithography-photosensitive-glass/
[Accessed 21 Jun. 2021].

Hastie, T., Tibhirani, R., and Friedman, J. The elements of statistical learning: data min-
ing, inference, and prediction. 2nd ed. [eBook]. Springer. Available at: https://web.stan-
ford.edu/~hastie/ElemStatLearn/printings/ESLII_print12_toc.pdf [Accessed 10 Sep.
2021].

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image Recogni-
tion. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[online] Las Vegas: IEEE, pp. 770-778. Available at: https://ieeexplore.ieee.org/docu-
ment/7780459 [Accessed 8 Jun. 2021].

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Technische
Universität München.

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation,
[online] Volume 9(8), pp. 1735–1780. Available at: https://pub-
med.ncbi.nlm.nih.gov/9377276/ [Accessed 27 May 2021].

Hüsken, M., and Stagge, P. (2003). Recurrent neural networks for time series classifica-
tion. Neurocomputing, [online] Volume 50, pp. 223-235. Available at: https://www.sci-
encedirect.com/science/article/abs/pii/S0925231201007068 [Accessed 4 Jun. 2021].

Ismail Fawaz, H., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D.F., Weber, J., Webb,
G.I., Idoumghar, L., Muller, P. A., and Petitjean, F. (2020). InceptionTime: Finding
AlexNet for time series classification. Data Mining and Knowledge Discovery, [online]
Volume 34(6), pp. 1936–1962. Available at: https://link.springer.com/arti-
cle/10.1007/s10618-020-00710-y [Accessed 3 Jun. 2021].

Jebri, M., El Adel, E., Graton, G., Ouladsine, M., and Pinaton, J. (2017). Virtual Metrology
applied in Run-to-Run Control for a Chemical Mechanical Planarization process. Journal
of Physics: Conference Series, [online] Volume 783(1), p. 12042. Available at: https://iop-
science.iop.org/article/10.1088/1742-6596/783/1/012042 [Accessed 23 Jun. 2021].

Jia, X., Di, Y., Feng, J., Yang, Q., Dai, H., and Lee, J. (2018). Adaptive virtual metrology for
semiconductor chemical mechanical planarization process using GMDH-type polynomial

https://papers.phmsociety.org/index.php/ijphm/article/view/2641
https://www.deeplearningbook.org/
https://mo-sci.com/photolithography-photosensitive-glass/
https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12_toc.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12_toc.pdf
https://ieeexplore.ieee.org/document/7780459
https://ieeexplore.ieee.org/document/7780459
https://pubmed.ncbi.nlm.nih.gov/9377276/
https://pubmed.ncbi.nlm.nih.gov/9377276/
https://www.sciencedirect.com/science/article/abs/pii/S0925231201007068
https://www.sciencedirect.com/science/article/abs/pii/S0925231201007068
https://link.springer.com/article/10.1007/s10618-020-00710-y
https://link.springer.com/article/10.1007/s10618-020-00710-y
https://iopscience.iop.org/article/10.1088/1742-6596/783/1/012042
https://iopscience.iop.org/article/10.1088/1742-6596/783/1/012042

56

neural networks. Journal of Process Control, [online] Volume 62, pp. 44–54. Available at:
https://www.sciencedirect.com/science/article/pii/S0959152417302263 [Accessed 16 May
2021].

Kang, P., Lee, H., Cho, S., Kim, D., Park, J., Park, C., and Doh, S. (2009). A virtual metrol-
ogy system for semiconductor manufacturing. Expert Systems with Applications, [online]
Volume 36(10), pp. 12554–12561. Available at: https://www.sciencedirect.com/science/ar-
ticle/abs/pii/S0957417409004746 [Accessed 4 May 2021].

Kang, Y., Hyndman, R. J., and Smith-Miles, K. (2017). Visualising forecasting algorithm
performance using time series instance spaces. International Journal of Forecasting,
[online] Volume 33(2), pp. 345–358. Available at: https://www.sciencedirect.com/sci-
ence/article/abs/pii/S0169207016301030 [Accessed 24 May 2021].

Khan, A. A., Moyne, J. R., and Tilbury, D. M. (2007). An Approach for Factory-Wide Con-
trol Utilizing Virtual Metrology. IEEE Transactions on Semiconductor Manufacturing,
[online] Volume 20(4), pp. 364-375. Available at: https://ieeexplore.ieee.org/docu-
ment/4369341 [Accessed 10 May 2021].

Kingma, D. P., and Welling, M. (2014). Auto-Encoding Variational Bayes. [online] arXiv.
Available at: https://arxiv.org/abs/1312.6114 [Accessed 12 Jun. 2021].

Kingma, D. P., Rezende, D. J., Mohamed, S., and Welling, M. (2014). Semi-supervised
Learning with Deep Generative Models. In: Advances in Neural Information Processing
Systems 27 (NIPS 2014). [online] Montreal: Curran Associates, Inc., pp. 3581-3589. Avail-
able at: https://papers.nips.cc/paper/2014/hash/d523773c6b194f37b938d340d5d02232-
Abstract.html [Accessed 12 Jun. 2021].

Kong, Z., Oztekin, A., Beyca, O., Phatak, U., Bukkapatnam, S., and Komanduri, R. (2010).
Process Performance Prediction for Chemical Mechanical Planarization (CMP) by Integra-
tion of Nonlinear Bayesian Analysis and Statistical Modeling. IEEE Transactions on Semi-
conductor Manufacturing, [online] Volume 23(2), pp. 316-327. Available at: https://ieeex-
plore.ieee.org/document/5433049 [Accessed 5 Apr. 2021].

Lee, K. B., and Kim, C. O. (2020). Recurrent feature-incorporated convolutional neural
network for virtual metrology of the chemical mechanical planarization process. Journal of
Intelligent Manufacturing, [online] Volume 31(1), pp. 73-86. Available at:
https://link.springer.com/article/10.1007/s10845-018-1437-4 [Accessed Apr. 2021].

Li, Z., Wu, D., and Yu, T. (2019). Prediction of Material Removal Rate for Chemical Me-
chanical Planarization Using Decision Tree-Based Ensemble Learning. Journal of Manu-
facturing Science and Engineering, [online] Volume 141(3). Available at:
https://doi.org/10.1115/1.4042051 [Accessed 21 Apr. 2021].

Lin, T., Hung, M., Lin, R., and Cheng F. (2006). A virtual metrology scheme for predicting
CVD thickness in semiconductor manufacturing. In: Proceedings 2006 IEEE International
Conference on Robotics and Automation, 2006. ICRA 2006. [online] Orlando, FL: IEEE.
Available at: https://ieeexplore.ieee.org/document/1641849 [Accessed 17 May 2021].

Lynn, S. A., MacGearailt, N., and Ringwood, J.V. (2012a). Real-time virtual metrology and
control for plasma etch. Journal of Process Control, [online] Volume 22(4), pp. 666–676.

https://www.sciencedirect.com/science/article/pii/S0959152417302263
https://www.sciencedirect.com/science/article/abs/pii/S0957417409004746
https://www.sciencedirect.com/science/article/abs/pii/S0957417409004746
https://www.sciencedirect.com/science/article/abs/pii/S0169207016301030
https://www.sciencedirect.com/science/article/abs/pii/S0169207016301030
https://ieeexplore.ieee.org/document/4369341
https://ieeexplore.ieee.org/document/4369341
https://arxiv.org/abs/1312.6114
https://papers.nips.cc/paper/2014/hash/d523773c6b194f37b938d340d5d02232-Abstract.html
https://papers.nips.cc/paper/2014/hash/d523773c6b194f37b938d340d5d02232-Abstract.html
https://ieeexplore.ieee.org/document/5433049
https://ieeexplore.ieee.org/document/5433049
https://link.springer.com/article/10.1007/s10845-018-1437-4
https://doi.org/10.1115/1.4042051
https://ieeexplore.ieee.org/document/1641849

57

Available at: https://www.sciencedirect.com/science/article/pii/S0959152412000157 [Ac-
cessed 12 May 2021].

Lynn, S. A., Ringwood, J., and MacGearailt, N. (2012b). Global and Local Virtual Metrol-
ogy Models for a Plasma Etch Process. IEEE Transactions on Semiconductor Manufactur-
ing, [online] Volume 25(1), pp. 94-103. Available at: https://ieeexplore.ieee.org/docu-
ment/6084764 [Accessed 26 Jun. 2021].

Maggipinto, M., Beghi, A., McLoone, S., and Susto, G.A. (2019). DeepVM: A Deep Learning-
based approach with automatic feature extraction for 2D input data Virtual Metrology. Jour-
nal of Process Control, [online] Volume 84, pp. 24–34. Available at: https://www.sciencedi-
rect.com/science/article/pii/S095915241930191X [Accessed 19 Mar. 2021].

Maggipinto, M., Masiero, C., Beghi, A., and Susto, G. A. (2018). A Convolutional Autoen-
coder Approach for Feature Extraction in Virtual Metrology. In: Procedia Manufacturing,
Volume 17. [online] Columbus, OH: Elsevier B.V, pp. 126-133. Available at: https://www.sci-
encedirect.com/science/article/pii/S2351978918311399 [Accessed 1 May 2021].

Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., and Shroff, G. (2016).
LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection. [online] arXiv. Avail-
able at: https://arxiv.org/pdf/1607.00148.pdf [Accessed 23 May 2021].

Nanz, G., and Camilletti, L. E. (1995). Modeling of chemical-mechanical polishing: a re-
view. IEEE Transactions on Semiconductor Manufacturing, [online] Volume 8(4), pp.
382-389. Available at: https://ieeexplore.ieee.org/abstract/document/475179 [Accessed 3
Mar. 2021].

Orji, N., Obeng, Y., Beitia, C., Mashiro, S., & Moyne, J. (2018). Virtual Metrology White Pa-
per. IEEE-International Roadmap for Devices and Systems (IRDS). [Whitepaper]. Availa-
ble at: https://www.nist.gov/publications/virtual-metrology-white-paper-international-
roadmap-devices-and-systemsirds [Accessed 24 Jun. 2021].

Partaourides, H. and Chatzis, S. P. (2017). Asymmetric deep generative models. Neuro-
computing, [online] Volume 241, pp. 90–96. Available at: https://www.sciencedi-
rect.com/science/article/abs/pii/S0925231217302989?via%3Dihub [Accessed at 6 Jun.
2021].

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent neu-
ral networks. In: Proceedings of the 30th International Conference on Machine Learning.
[online] Atlanta: JMLR.org, pp. 1310–1318. Available at:
https://dl.acm.org/doi/10.5555/3042817.3043083 [Accessed 15 May 2021].

Patterson, J., and Gibson, A. (2017). Deep Learning. 1st ed. [ebook]. O’Reilly Media, Inc.
Available at: https://www.oreilly.com/library/view/deep-learning/9781491924570/ [Ac-
cessed 25 Mar 2021].

Qin, S. J., Cherry, G., Good, R., Wang, J., and Harrison, C. A. (2006). Semiconductor man-
ufacturing process control and monitoring: A fab-wide framework. Journal of Process Con-
trol, [online] Volume 16(3), pp. 179-191. Available at: https://www.sciencedirect.com/sci-
ence/article/pii/S0959152405000600 [Accessed 3 Mar. 2021].

https://www.sciencedirect.com/science/article/pii/S0959152412000157
https://ieeexplore.ieee.org/document/6084764
https://ieeexplore.ieee.org/document/6084764
https://www.sciencedirect.com/science/article/pii/S095915241930191X
https://www.sciencedirect.com/science/article/pii/S095915241930191X
https://www.sciencedirect.com/science/article/pii/S2351978918311399
https://www.sciencedirect.com/science/article/pii/S2351978918311399
https://arxiv.org/pdf/1607.00148.pdf
https://ieeexplore.ieee.org/abstract/document/475179
https://www.nist.gov/publications/virtual-metrology-white-paper-international-roadmap-devices-and-systemsirds
https://www.nist.gov/publications/virtual-metrology-white-paper-international-roadmap-devices-and-systemsirds
https://www.sciencedirect.com/science/article/abs/pii/S0925231217302989?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0925231217302989?via%3Dihub
https://dl.acm.org/doi/10.5555/3042817.3043083
https://www.oreilly.com/library/view/deep-learning/9781491924570/
https://www.sciencedirect.com/science/article/pii/S0959152405000600
https://www.sciencedirect.com/science/article/pii/S0959152405000600

58

Ragnoli, E., McLoone, S., Lynn, S., Ringwood, J., and Macgearailt, N. (2009). Identifying
key process characteristics and predicting etch rate from high-dimension datasets. In:
2009 IEEE/SEMI Advanced Semiconductor Manufacturing Conference. [online] Berlin:
IEEE, pp. 106-111. Available at: https://ieeexplore.ieee.org/document/5155966 [Accessed
25 Jun. 2021].

Rao, P., Bhushan, M., Bukkapatnam, S., Kong, Z., Byalal, S., Beyca, O., Fields, A., and Ko-
manduri, R. (2014). Process-Machine Interaction (PMI) Modeling and Monitoring of
Chemical Mechanical Planarization (CMP) Process Using Wireless Vibration Sensors.
IEEE Transactions on Semiconductor Manufacturing, [online] Volume 27(1), pp. 1-15.
Available at: https://ieeexplore.ieee.org/document/6675842 [Accessed 20 Apr. 2021].

Reiss, A., Indlekofer, I., Schmidt, P., and Van Laerhoven, K. (2019). Deep PPG: Large-Scale
Heart Rate Estimation with Convolutional Neural Networks. Sensors, [online] Volume
19(14), p. 3079. Available at: https://www.mdpi.com/1424-8220/19/14/3079/html [Ac-
cessed 23 May 2021].

Rokach, L., and Maimon, O. (2008). Data mining with decision trees. 1st ed. [eBook].
World Scientific Publication Co. Available at: https://doc.lagout.org/Others/Data%20Min-
ing/Data%20Mining%20with%20Decision%20Trees_%20Theory%20and%20Applica-
tions%20%5bRokach%20%26%20Maimon%202008-04-01%5d.pdf [Accessed 9 Sep.
2021].

Steigerwald, J.M., Murarka, S.P., Gutmann, R.J., and Duquette, D.J. (1995). Chemical pro-
cesses in the chemical mechanical polishing of copper. Materials Chemistry and Physics,
[online] Volume 41(3), pp. 217–228. Available at: https://www.sciencedirect.com/sci-
ence/article/abs/pii/0254058495015167 [Accessed 26 Mar. 2021].

Sun, W., and Wang, R. (2018). Fully Convolutional Networks for Semantic Segmentation
of Very High Resolution Remotely Sensed Images Combined With DSM. IEEE Geoscience
and Remote Sensing Letters, [online] Volume 15(3), pp. 474-478. Available at: https://iee-
explore.ieee.org/document/8281008 [Accessed 7 Jun. 2021].

Susto, G. (2017). A dynamic sampling strategy based on confidence level of virtual metrol-
ogy predictions. In: 2017 28th Annual SEMI Advanced Semiconductor Manufacturing
Conference (ASMC). [online] Saratoga Springs: IEEE, pp. 78-83. Available at: https://iee-
explore.ieee.org/document/7969203 [Accessed 24 Jun. 2021].

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. (2017). Inception-v4, Inception-Res-
Net and the Impact of Residual Connections on Learning. In: Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence. [online] San Francisco: AAAI Press, pp.
4278-4284. Available at: https://dl.acm.org/doi/abs/10.5555/3298023.3298188 [Ac-
cessed 21 Jul. 2021].

Tan, C.W., Bergmeir, C., Petitjean, F., and Webb, G. (2021). Time series extrinsic regres-
sion. Data Mining and Knowledge Discovery, [online] Volume 35, pp. 1032–1060. Availa-
ble at: https://link.springer.com/article/10.1007/s10618-021-00745-9 [Accessed 15 May
2021].

Tang, T. (2015). Document Modeling with Gated Recurrent Neural Network for Sentiment
Classification. In: Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing. [online] Lisbon: Association for Computational Linguistics, pp.

https://ieeexplore.ieee.org/document/5155966
https://ieeexplore.ieee.org/document/6675842
https://www.mdpi.com/1424-8220/19/14/3079/html
https://doc.lagout.org/Others/Data%20Mining/Data%20Mining%20with%20Decision%20Trees_%20Theory%20and%20Applications%20%5bRokach%20%26%20Maimon%202008-04-01%5d.pdf
https://doc.lagout.org/Others/Data%20Mining/Data%20Mining%20with%20Decision%20Trees_%20Theory%20and%20Applications%20%5bRokach%20%26%20Maimon%202008-04-01%5d.pdf
https://doc.lagout.org/Others/Data%20Mining/Data%20Mining%20with%20Decision%20Trees_%20Theory%20and%20Applications%20%5bRokach%20%26%20Maimon%202008-04-01%5d.pdf
https://www.sciencedirect.com/science/article/abs/pii/0254058495015167
https://www.sciencedirect.com/science/article/abs/pii/0254058495015167
https://ieeexplore.ieee.org/document/8281008
https://ieeexplore.ieee.org/document/8281008
https://ieeexplore.ieee.org/document/7969203
https://ieeexplore.ieee.org/document/7969203
https://dl.acm.org/doi/abs/10.5555/3298023.3298188
https://link.springer.com/article/10.1007/s10618-021-00745-9

59

1422–1432. Available at: https://www.aclweb.org/old_anthology/D/D15/D15-1167.pdf
[Accessed 3 Jun. 2021].

Terzi, M., Masiero, C., Beghi, A., Maggipinto, M., and Susto, G. A. (2017). Deep learning for
virtual metrology: Modeling with optical emission spectroscopy data. In: 2017 IEEE 3rd
International Forum on Research and Technologies for Society and Industry (RTSI).
[online] Modena: IEEE, pp. 1-6. Available at: https://ieeexplore.ieee.org/docu-
ment/8065905 [Accessed 21 May 2021].

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung, J.,
Steiner, A., Keysers, D., Uszkoreit, J., Lucic, M., and Dosovitskiy, A. (2021). MLP-Mixer:
An all-MLP Architecture for Vision. [online] arXiv. Available at:
https://arxiv.org/abs/2105.01601v1 [Accessed 14 Jun. 2021].

Tu, Y. M., and Lu, C. W. (2017). The Influence of Lot Size on Production Performance in
Wafer Fabrication Based on Simulation. Procedia Engineering, [online] Volume 174, pp.
135–144. Available at: https://www.sciencedirect.com/science/arti-
cle/pii/S1877705817301807 [Accessed 22 Jun. 2021].

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.A. (2008). Extracting and Com-
posing Robust Features with Denoising Autoencoders. In: Proceedings of the 25th Inter-
national Conference on Machine Learning. [online] New York: Association for Computing
Machinery, pp. 1096–1103. Available at: https://dl.acm.org/doi/10.1145/1390156.1390294
[Accessed 13 Jun. 2021].

Wang, P., Gao, R. X., and Yan, R. (2017). A deep learning-based approach to material re-
moval rate prediction in polishing. CIRP Annals, [online] Volume 66(1), pp. 429–432.
Available at: https://www.sciencedirect.com/science/article/abs/pii/S0007850617300136
[Accessed 6 Apr. 2021].

Wang, Y.L., Wu, J., Liu, C.W., Wang, T.C., and Dun, J. (1998). Material characteristics and
chemical–mechanical polishing of aluminum alloy thin films. Thin Solid Films, [online]
Volume 332(1–2), pp. 397–403. Available at: https://www.sciencedirect.com/science/arti-
cle/abs/pii/S0040609098012000 [Accessed 27 Mar. 2021].

Wang, Z., Yan, W., and Oates, T. (2017). Time series classification from scratch with deep
neural networks: A strong baseline. In: 2017 International Joint Conference on Neural
Networks (IJCNN). [online] Anchorage: IEEE, pp. 1578-1585. Available at: https://ieeex-
plore.ieee.org/document/7966039 [Accessed 5 Jun. 2021].

Wong, H.S., Akarvardar, K., Antoniadis, D., Bokor, J., Hu, C., King-Liu, T.J., Mitra, S., Plum-
mer, J., and Salahuddin, S. (2020). A Density Metric for Semiconductor Technology [Point
of View]. In: Proceedings of the IEEE. [online] IEEE, pp. 478-482. Available at: https://iee-
explore.ieee.org/document/9063714 [Accessed 6 Jun. 2021].

Xiao, H. (2012). Introduction to Semiconductor Manufacturing Technology. 2nd Edition.
[eBook]. SPIE. Available at: https://doi.org/10.1117/3.924283 [Accessed 20 Jun. 2021].

Yu, T., Li, Z. and Wu, D. (2019). Predictive modeling of material removal rate in chemical
mechanical planarization with physics-informed machine learning. Wear, [online] Volume
426–427, pp. 1430–1438. Available at: https://www.sciencedirect.com/science/arti-
cle/abs/pii/S0043164819303229 [Accessed 20 Mar. 2021].

https://www.aclweb.org/old_anthology/D/D15/D15-1167.pdf
https://ieeexplore.ieee.org/document/8065905
https://ieeexplore.ieee.org/document/8065905
https://arxiv.org/abs/2105.01601v1
https://www.sciencedirect.com/science/article/pii/S1877705817301807
https://www.sciencedirect.com/science/article/pii/S1877705817301807
https://dl.acm.org/doi/10.1145/1390156.1390294
https://www.sciencedirect.com/science/article/abs/pii/S0007850617300136
https://www.sciencedirect.com/science/article/abs/pii/S0040609098012000
https://www.sciencedirect.com/science/article/abs/pii/S0040609098012000
https://ieeexplore.ieee.org/document/7966039
https://ieeexplore.ieee.org/document/7966039
https://ieeexplore.ieee.org/document/9063714
https://ieeexplore.ieee.org/document/9063714
https://doi.org/10.1117/3.924283
https://www.sciencedirect.com/science/article/abs/pii/S0043164819303229
https://www.sciencedirect.com/science/article/abs/pii/S0043164819303229

60

Yu, W., Kim, I.Y., and Mechefske, C. (2021). Analysis of different RNN autoencoder vari-
ants for time series classification and machine prognostics. Mechanical Systems and Sig-
nal Processing, [online] Volume 149, p. 107322. Available at: https://www.sciencedi-
rect.com/science/article/abs/pii/S0888327020307081 [Accessed 6 Jun. 2021].

Yung-Cheng, J. C., and Cheng, F. (2005). Application development of virtual metrology in
semiconductor industry. In: 31st Annual Conference of IEEE Industrial Electronics Society,
2005. IECON 2005. [online] Raleigh, NC: IEEE. Available at: https://ieeex-
plore.ieee.org/document/1568891 [Accessed 20 Mar. 2021].

https://www.sciencedirect.com/science/article/abs/pii/S0888327020307081
https://www.sciencedirect.com/science/article/abs/pii/S0888327020307081
https://ieeexplore.ieee.org/document/1568891
https://ieeexplore.ieee.org/document/1568891

61

 Interrupted and absurdly long process runs

 Figure A1: A typical “normal” run that is 357 timesteps long.

 Figure A2: An instance of an absurdly long sequence where the rotational speeds are zero (0) most of the time.

62

 Figure A3: Another instance of a long sequence where the rotational speeds are zero (0) most of the time.

 Figure A4: The longest sequence in the entire dataset is 14 678 timestep long.

	Symbols and abbreviations
	Symbols
	Operators
	Abbreviations
	2.1 Fundamentals of semiconductor manufacturing
	2.2 Chemical-Mechanical Polishing
	2.2.1 Mechanical
	2.2.2 Chemical

	2.3 Virtual metrology
	2.3.1 Modern applications
	2.3.2 Chemical-mechanical polishing applications

	3.1 Tree-based ensemble models
	3.2 Deep learning
	3.2.1 Training neural networks
	3.2.2 Neural network types
	3.2.3 Deep autoencoders

	3.3 Time series extrinsic regression
	3.3.1 Definition
	3.3.2 Classical regression models
	3.3.3 Deep learning models

	4.1 Process data
	4.1.1 Variable descriptions
	4.1.2 Prediction task description
	4.1.3 Exploratory analysis

	4.2 Virtual metrology system architecture
	4.2.1 Data preparation
	4.2.2 Modelling and deployment

	4.3 Machine learning models
	4.3.1 Tree-based
	4.3.2 Supervised deep learning
	4.3.3 Autoencoders and semi-supervised approach

	4.4 Validation and evaluation
	5.1 General overview
	5.2 Supervised recurrent neural network variations
	5.3 Limited labeled data and semi-supervised learning
	5.4 Raw approach analysis

	References
	A. Interrupted and absurdly long process runs

