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1. Introduction

Electrical impedance tomography (EIT) is a noninvasive imaging method
that is based on current and voltage measurements on the boundary of an
examined physical body. Typically, conducting surface electrodes drive low-
frequency currents into the object under examination, the corresponding
voltages are recorded and the measurement is repeated for a specified set
of current patterns. Such boundary measurements depend on the interior
conductivity of the object, and the aim of any algorithm designed for EIT
is to reconstruct useful information about its distribution by (partially)
inverting this dependence.

Applications of EIT arise from the fact that the values of the internal elec-
trical conductivity vary considerably depending on the different materials
or the anatomical tissues of the body under investigation, and reconstruct-
ing this spatial distribution allows one to detect changes and possible
abnormalities. For instance, the conductivity of air, blood, bone, cancer and
healthy tissues can differ significantly, enabling EIT to be well-suited for
various medical applications, among which are pulmonary imaging, breast
cancer detection and brain imaging [17]. In addition to diagnostics, EIT
has several other applications, for example in nondestructive testing of
materials in industrial environments and imaging of geologic structures.
For further information about the potential uses of EIT, we refer to the
review articles [13, 23, 95] and the references therein.

The introduction of EIT as a medical imaging technique dates back to
1978 and it is documented in a publication by Henderson and Webster
[49]. However, the first practical realization of a clinical impedance to-
mography system was developed only in 1984 by David C. Barber and
Brian H. Brown [10]. EIT provides several potential advantages over
other imaging methods. It is a relatively inexpensive, noninvasive and
fast technique, and there are no established dangers connected to its use.
The major drawback that characterizes this method is, however, its low
spatial resolution. Previous and more conventional imaging modalities,
such as X-ray computed tomography (CT) and magnetic resonance imaging
(MRI), are capable of imaging anatomical structures with an extremely
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high accuracy, an advantage that in many diagnostic cases outweighs the
expense and the inflexibility of these methods. Unlike X-rays traveling
linearly through an object, the electric currents used in EIT propagate
throughout the whole (three-dimensional) subject, a characteristic that
makes the inverse problem related to EIT less well defined than those of
CT or MRI, hence resulting in a relatively poor spatial resolution. Nonethe-
less, its advantages enable EIT to be of potential importance for bedside
monitoring, alongside other imaging modalities, for emergency use, or in
locations where large scanners are too expensive or impractical.

The lack of spatial resolution is explained by the ill-posedness of the
inverse problem of EIT, i.e. the so-called inverse conductivity problem.
According to the definition given by Jacques Hadamard in 1923 [40], a
mathematical model of a physical problem is well posed if it has a unique
solution that depends continuously on the data. Conversely, in an ill-posed
problem the solution may not exist or there could be several (possibly
infinitely many) of them. Moreover, even if a solution exists, it may not
depend continuously on the data in any reasonable metric. In the setting
of EIT, the last condition means that there are arbitrarily many conductiv-
ity distributions that can produce (almost) equivalent electrode voltages.
Therefore, a complete knowledge of electrode measurement data does not
necessarily yield enough information on the underlying conductivity distri-
bution, causing EIT to be extremely sensitive to measurement noise and
modeling errors, which are unavoidable in practical applications.

For these reasons, one research direction in this field is developing inver-
sion algorithms capable of handling mismodeling of the domain, geometric
inaccuracies and errors in the measurement setup. To deal with the
inherent ill-posedness of the problem, one can introduce (ad-hoc) prior
information in order to constrain the solution so that the uncontrolled
variations causing the instability are ruled out. To be more precise, the
numerical challenges are usually managed by resorting to regularization
techniques designed for inverse problems or Bayesian methods applied to
a statistical formulation of the considered problem.

On the other hand, one can address the inverse conductivity problem
of EIT from some different perspectives, depending on the application at
hand. In some cases, simplifying the assumptions and thus reducing the
complexity of the problem may well be a way to circumvent some of the
aforementioned issues. One possible strategy is to resort to the easier prob-
lem of inclusion detection, with the goal of retrieving information on (the
location of) an unknown conductivity perturbation in a known background.
Another feasible research direction is the exploration of machine learning
techniques to either speed up the reconstruction process or to provide a
simple tool for determining if the examined body presents an anomaly.
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Outline of the dissertation

In this work we focus specifically on applying EIT as a brain imaging
modality aimed at stroke detection. Stroke, a serious and acute cerebrovas-
cular disease, can be of two types: hemorrhagic, when caused by a blood
vessel rupture and the consequent accumulation of blood in the tissue
around it, or ischemic, if provoked by lack of blood flow to the brain tis-
sue caused by a blood clot [30, 83, 100]. Due to the difference in blood
concentration in the tissues affected by a stroke, mapping the conductiv-
ity distribution of the brain represents a potential tool to quickly detect,
localize and classify the ongoing seizure.

To this end, the main research topics of this dissertation are: (i) to imple-
ment a 3D head model acting as the studied domain for stroke detection
and allowing variations in head shapes and sizes, (ii) to develop absolute
EIT reconstruction algorithms able to tolerate uncertainty in the measure-
ment geometry, and (iii) to investigate, under simplifying assumptions,
other computational approaches aimed at stroke classification. While in-
troducing a model for the forward problem is by no means a trivial task, it
falls outside the scope of this thesis, and we will therefore consider some
well-established forward models.

In order to simulate electrode measurements and numerically solve the
associated inverse problem, we introduce in Publication I a novel computa-
tional head model, where we utilize a library of fifty human heads from
[71] and form a principal component model for the associated geometric
variations. The model is successively refined in Publication III and IV to
consider a more sophisticated head anatomy, where scalp and skull layers
are also included.

Full reconstruction of the conductivity distribution for stroke detection
is investigated in Publications I and IV, where the aim is to exploit EIT
without accurate information on the electrode positions or the geometry of
the examined patient’s head. The functionality of some Newton-type recon-
struction algorithms is investigated, together with two alternative methods
designed to deal with geometric mismodeling. In Publication I, we em-
ploy the derivatives of the electrode potentials with respect to the exterior
boundary shape and the electrode locations in a regularized Newton-type
output least squares algorithm that simultaneously reconstructs all rele-
vant unknowns in the measurement setup. In Publication IV, we include
the error caused by the mismodeling as an extra additive noise process
in the measurement model, which is then taken into account within the
Bayesian inversion paradigm.

The monotonicity method for inclusion detection is studied in Publica-
tion II, under the (unrealistic) assumption of infinite-dimensional boundary
data. This study is more theoretically oriented, as we prove how to extend
the method to detect extreme inclusions, that is, parts of the studied domain
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that are either perfectly conducting or perfectly insulating. However, due
to its simplicity, the method also adapts in a natural way to more realistic
electrode models, allowing for a straightforward numerical implementation
[32, 33, 34, 47] applicable in principle to the aforementioned computational
head model. Inclusion detection comprises a potential paradigm for appli-
cations that consider locating inhomogeneities inside objects with known
background conductivities, for instance when considering bedside monitor-
ing in the presence of previously acquired complete reconstructions.

Finally, in Publication III we explore a pure application-oriented scenario,
with the study of some specifically designed neural networks trained to
perform a binary stroke classification (hemorrhage and no hemorrhage).
Utilizing these methods clearly limits the application of EIT to just stroke
detection, without providing any information on its location. Nonetheless,
the application of such techniques can considerably expedite the detection
process and could be valuable in emergency use, if the reported symptoms
clearly indicate the onset of a stroke and immediate treatment is needed,
but the type of the stroke remains unknown.

14



2. Electrical impedance tomography

This section is devoted to presenting an overview of the mathematical
fundamentals of EIT, with a particular focus on the application to head
imaging; for more details about the existing theory and mathematical
models, we refer to [13, 23, 95] and the references therein.

The mathematical description of the measurement setting is as follows.
Let Ω ⊂ R

d, d = 2, 3, be a bounded domain representing the body under ex-
amination. We assume that Ω has a connected complement and a Lipschitz
boundary ∂Ω.

Our mathematical model for the propagation of currents in the body can
be derived from Maxwell’s equations for time-harmonic electromagnetic
fields, under the assumption that the electric response of the body is linear
and isotropic. Because in EIT applications the employed frequencies are
relatively low, the quasi-static approximation of Maxwell’s equations can
be used to model the physical effects. It is also assumed that no internal
current sources are present.

Under these assumptions, Ohm’s law can be exploited to express the
absence of current sources in an isotropic conductive medium, resulting in
the conductivity equation

∇ · [σ(x)∇u(x)] = 0, x ∈ Ω, (2.1)

where σ(x) > 0 models the spatial conductivity distribution and u(x) the
interior electric potential. In the following, it is assumed that σ is a real-
valued function, although most of the presented theory naturally extends
to a complex-valued admittivity as well.

2.1 Continuum model

Several mathematical models have been developed to describe the EIT
forward problem and to incorporate appropriate boundary conditions, in-
cluding those introduced in [25, 89]. The simplest one is the continuum
model (CM), which assumes infinite-dimensional boundary data. This
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model formulation is useful for theoretical considerations, as in Publica-
tion II, but it does not typically result in accurate reconstructions as such
because practical EIT measurement devices employ only a finite number
of electrodes (with finite precision).

The idea behind the continuum model is that the application of a current
density f on the boundary ∂Ω of the domain leads to the elliptic Neumann
boundary value problem

∇ · (σ∇u) = 0 in Ω, σ
∂u

∂ν
= f on ∂Ω, (2.2)

where ν ∈ L∞(∂Ω,Rd) is the outward unit normal of ∂Ω and the essential
infimum of the conductivity inside the domain is assumed to be larger than
zero, meaning that current can flow anywhere within Ω, i.e.

σ ∈ L∞
+ (Ω) =

{
σ ∈ L∞(Ω) : ess inf

x∈Ω
σ(x) > 0

}
. (2.3)

By applying standard theory of elliptic partial differential equations [38],
it can be shown that for any given current density f in

H
−1/2
� (∂Ω) =

{
g ∈ H−1/2(∂Ω) : 〈g, 1〉∂Ω = 0

}
,

the problem (2.2) has a solution u ∈ H1(Ω) that is unique up to an additive
constant, which is equivalent to choosing an earth point. The conservation
of electrical charge, which states that the current density is conserved over
the boundary, is accounted for in the "zero-mean" condition on f .

The ideal complete data for the EIT reconstruction problem corresponds
to the knowledge of the full set of Cauchy data (pairs of current densities
and voltages),{

(f, u|∂Ω) : u solves (2.2) for f ∈ H
−1/2
� (∂Ω)

}
,

which can be characterized by the Neumann-to-Dirichlet (ND) map

Λ(σ) : H
−1/2
� (∂Ω)→ H

1/2
� (∂Ω)/R, Λ(σ) : f �→ uσf |∂Ω,

where uσf |∂Ω is the Dirichlet trace of the solution to (2.2). Λ(σ) is a compact
self-adjoint operator in L (L2�(∂Ω)), with its inverse Λ(σ)−1 being the cor-
responding Dirichlet-to-Neumann (DN) map. Notice that the roles of Λ(σ)
and Λ(σ)−1 are often reversed in the literature on the inverse conductivity
problem.

The purely theoretical inverse conductivity problem consists of recovering
the conductivity σ when Λ(σ) is given. Note that, while the ND map is a
linear operator, the actual reconstruction problem is nonlinear due to the
nonlinearity of the forward map σ �→ Λ(σ), which relates the conductivity
to the ideal boundary measurements. In the following section, we present
a brief survey on the fundamental results addressing the inverse problem
of determining σ from the knowledge of Λ(σ).
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2.2 Inverse conductivity problem

The inverse conductivity problem has inspired an impressive amount of
pure and applied research in the last few decades ever since the publication
of [21] by A. Calderón. To depict the nature of the problem, we analyze
in this section the characteristic conditions proposed by Hadamard: the
unique existence and the stability.

There have been numerous results addressing and (partially) solving the
problem of uniqueness, at least in the limiting case of infinite-dimensional
boundary data. Global uniqueness, that is, the injectivity of the map
σ �→ Λ(σ), was first shown under certain regularity assumptions on the
(isotropic) conductivity σ in [93] for d ≥ 3, and in [75] for d = 2. More recent
results in two dimensions have substantially relaxed the assumptions on
σ to measurable conductivities [8], later further generalized in [7, 76]. For
dimensions d ≥ 3, on the other hand, higher regularity is still required
for both the conductivity and the domain boundary [18, 22, 39, 79]. The
uniqueness results for d > 2 mainly follow from Calderón’s work in that
they construct special "complex geometric optics" solutions, essentially
relating the boundary data to the Fourier transform of the conductivity.
The two-dimensional results are more closely related to complex analysis
and the ∂̄, i.e. D-bar, operator. Note that for anisotropic conductivities the
inverse conductivity problem is not uniquely solvable [9, 65, 92]. Recent
works have also concentrated on problems with limited data, that is, cur-
rent and voltage measurements available only on a subset of the boundary;
see, e.g., [58, 62].

The practical problem, however, lies with the stability condition, namely
the continuous dependence of the unknown σ on the data Λ(σ). In fact,
without accurate prior information about the conductivity, the inverse
problem Λ(σ) �→ σ is extremely unstable in the presence of noise, with the
situation compounded in practical cases by the fact that the measurements
are discrete and often available only on parts of the boundary. However,
even in the purely theoretical case with infinite-dimensional data, it has
been shown that such continuous dependence does not hold in general [3].
Only under sufficient smoothness constraints on the conductivity, it is
possible to obtain a logarithmic type stability estimate between the topolo-
gies of L (H−1/2(∂Ω), H1/2(∂Ω)) and L∞(Ω) [3, 11]. For a recent review of
stability issues in EIT see [4, 95].

Finally, there also exist a few uniqueness and stability results for finite-
dimensional boundary measurements, assuming also a finite-dimensional
parametrization for the unknown conductivity. See, e.g., [1, 2] for such
results employing the continuum model and [45] for the complete electrode
model.
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2.3 Complete electrode model

In real-life measurements with electrodes, one can only control the net
currents and measure the corresponding potentials on some electrodes
Em, for m = 1, . . . ,M . Moreover, an electrochemical effect between an
electrode and the object causes the formation of a thin and highly resistive
layer at each electrode-object interface, usually characterized by a contact
resistance zm > 0.

The conductivity equation (2.1) combined with the contact resistance
effect and the boundary conditions for the current density and electric
potential on and off the electrodes leads to the following boundary value
problem, known as the complete electrode model (CEM):

∇ · (σ∇u) = 0 in Ω,

ν · σ∇u = 0 on ∂Ω \ E,

u+ zmν · σ∇u = Um on Em, m = 1, . . . ,M,∫
Em

ν · σ∇u dS = Im, m = 1, . . . ,M.

(2.4)

Here Im and Um define the net current and the electrode potential on
the mth electrode, and E is the union of all electrodes. The isotropic
conductivity distribution σ, describing the electric properties of Ω, is still
assumed to belong to L∞

+ (Ω) (cf. (2.3)).
The existence and uniqueness for the model (2.4) have been established

in [89]. More precisely, for any given I = {Im}Mm=1 ∈ R
M� , there is a unique

solution (u, U) ∈ H1(Ω)⊕ R
M� , where R

M� denotes the mean-free subspace
of RM . In Publications III and IV we adopt CEM, since it has been shown
to be the mathematical model that most accurately reproduces real-life
EIT measurements [25]. The CEM can actually be seen as a Galerkin
approximation of the continuum model forward problem [52]; in fact, one
can obtain the forward solutions for both the CM and the CEM by using
different function spaces for the same variational formulation.

Smoothened CEM

The smoothened CEM was introduced in [54] to overcome the problem
of limited regularity of the electromagnetic potential arising from the
discontinuous Robin boundary condition in the standard CEM. The CEM
traditionally assumes that contact conductances (the reciprocals of contact
resistances) are constant on all electrodes and vanish in the gaps between
them. This discontinuous Robin boundary condition limits the regularity
of the electromagnetic potential to less than two square-integrable weak
derivatives, hence deteriorating the convergence of, e.g., higher order finite
element method (FEM).
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It was shown in [54] that, by modeling the contact conductance as a
smooth function over the whole object boundary, higher Sobolev regularity
can be achieved for the forward solution and, as a result, faster convergence
for some finite element (FE) forward solvers is obtained. This represents a
major advantage especially for iterative algorithms that require repetitive
and accurate solutions of the forward problem, as well as for the compu-
tation of certain quantities derived from forward solutions and needed
when computing derivatives of electrode measurements with respect to
geometric parameters (cf. Publication I). According to numerical tests, the
smoothened version has the potential to be computationally more efficient
than the standard CEM, with comparable accuracy for modeling electrode
measurements. We do not verify these advantageous numerical properties
of the smoothened CEM in this thesis but settle for referring to [54] for
more information.

In the smoothened CEM, the contact conductance between the electrodes
and the imaged object Ω is interpreted as a single function ζ ∈ L∞(∂Ω)

such that
ζ ≥ 0, ζ∂Ω\E ≡ 0, ζ|Em �≡ 0 (2.5)

for all m = 1, . . . ,M in the topology of L∞(∂Ω). This means that the contact
conductance cannot be negative, it vanishes outside the electrode patches,
and on each electrode there must be a region of nonzero measure where it
is positive, hence allowing current to flow.

Under these assumptions the electromagnetic potential u inside Ω and
the piecewise constant electrode potential U weakly satisfy [54]

∇ · (σ∇u) = 0 in Ω,

ν · σ∇u = ζ(U − u) on ∂Ω,∫
Em

ν · σ∇u dS = Im, m = 1, . . . ,M.

(2.6)

The forward problem of the standard CEM (2.4) can be easily derived from
(2.6) if one constrains ζ to be constant on each electrode and defines the
contact resistance on the mth electrode as zm := (1/ζ)|Em , m = 1, . . . ,M . As
for the standard CEM, also the forward problem (2.6) for the smoothened
version is uniquely solvable up to a ground level of potential [54].

2.4 Applications to stroke detection

The development of EIT for brain imaging has been relatively limited
heretofore. The first published impedance scanning system appeared in
the work of Benabid et al in 1978 [12], and in 1987, Holder proposed EIT
as a novel means for imaging conductivity changes in the brain [51].

Although EIT for brain imaging has not yet been included into rou-
tine clinical use, considerable improvements have occurred over the past
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decades in several areas, particularly in stroke detection and classification.
It should be noted, however, that implementing EIT for brain imaging
comprises a particularly difficult problem, since the brain is encased by a
conductive covering, the cerebrospinal fluid (CSF), two layers with high
resistivity, the pia mater and the skull, and finally the scalp, which has a
moderate resistivity.

The ultimate goal in stroke detection by EIT is to be able to reconstruct
an image of the conductivity distribution (or some partial information
about it) from measurements performed with electrodes attached to the
scalp.

Discretization and FEM

To practically solve the inverse problem, the capability to (numerically)
solve the forward problem is typically required. In some simple cases, such
as in a circular geometry with homogeneous conductivity distributions, an
analytical solution for the forward problem with the continuum model can
be found [81, 82]. However, in most realistic settings this is not the case,
and one must necessarily resort to numerical methods. The FEM is one of
the most feasible techniques for solving partial differential equations in
complex geometries and with non-trivial boundary conditions [16, 26].

The basic idea in FEM is to decompose the (three-dimensional) domain
into a finite number of elements (usually tetrahedra), and on each element
the unknown potential is represented by a polynomial of a finite order. The
FE discretization of the forward model is then derived from the variational
formulation of the problem, and it converges to the exact solution as the
number of elements becomes higher (under certain geometric assumptions)
or as the order of the polynomial is increased [90].

In the following, the fundamentals of the FEM for the complete electrode
model are presented, but we refer to [96] for further details. The FE
approximation uh of the solution u to (2.4) over an approximate FE mesh
Ωh ≈ Ω can be written in the form

uh =

N∑
i=1

uiϕi, (2.7)

where ϕi are the employed FE basis functions, N indicates their number,
and ui are the coefficients that are to be determined. In this work, piecewise
linear basis functions are employed, which means that N coincides with
the number of nodes in the FE mesh. The electrode voltages U on the M

electrodes are approximated as

Uh =
M−1∑
j=1

Ujηj , (2.8)

with η1 = (1,−1, 0, . . . , 0), η2 = (1, 0,−1, . . . , 0), . . . , ηM−1 = (1, 0, . . . ,−1).
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This choice ensures that
∑M

m=1 Um = 0, which corresponds to a certain
systematic way of choosing the ground level of potential. In the same
fashion as in (2.7), Uj represent the to-be-determined coefficients.

In [89] it has been shown that the variational formulation of (2.4) is to
find (u, U) ∈ H1(Ω)⊕ R

M� such that

B
(
(u, U), (v, V )

)
=

M∑
m=1

ImVm (2.9)

for all v ∈ H1(Ω) and V ∈ R
M� . Here the bilinear form B is defined as

B
(
(u, U), (v, V )

)
=

∫
Ω
σ∇u ·∇v dx+

M∑
m=1

1

zm

∫
Em

(u−Um)(v−Vm) dS. (2.10)

Applying the basic theory of finite elements [16] and plugging the FEM
basis functions from (2.7) and (2.8) in the variational formulation (2.10), a
matrix equation for defining the unknown coefficients can be straightfor-
wardly constructed

Sb = g. (2.11)

Here, b = (u, U)T ∈ R
N+M−1 contains the coefficients u = [ui]

N
i=1 and

U = [Ui]
M−1
j=1 that are to be determined, S ∈ R

(N+M−1)×(N+M−1) is a sparse
block matrix of the form

S =

(
S1 S2

ST
2 S3

)
, (2.12)

and the data vector g is given as

g =

(
0
Ĩ

)
, (2.13)

with 0 = (0, . . . , 0)T ∈ R
N and Ĩ = (I1 − I2, I1 − I3, . . . , I1 − IM )T ∈ R

M−1.
To be more precise, the blocks in (2.12) are defined as follows:

(S1)i,j =

∫
Ω
σ∇ϕi · ∇ϕj dx+

M∑
m=1

1

zm

∫
Em

ϕiϕj dS,

i, j = 1, 2, . . . , N,

(S2)i,j =−
(

1

z1

∫
E1

ϕi dS −
1

zj+1

∫
Ej+1

ϕi dS

)
,

i = 1, 2, . . . , N, j = 1, 2, . . . ,M − 1,

(S3)i,j =
M∑

m=1

1

zm

∫
Em

(ηi)m(ηj)m dS

=

⎧⎨
⎩

|E1|
z1

, i �= j
|E1|
z1

+
|Ej+1|
zj+1

i = j
, i, j = 1, 2, . . . ,M − 1.
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The very same basic approach can be used for the discretization of the
smoothened CEM and the Fréchet derivatives used in Publications I and
IV. See [54, 69, 98] for more details.

In all reported numerical tests, the employed current patterns are such
that a fixed electrode drives the current into the examined object, and it
is let out in turns through the other electrodes. This is not the only, or
arguably the most optimal, choice, but it is anyway used often in practice
(cf., e.g., [29, 43]).

Mesh generation for the head model

The construction of the parametrized head model is extensively explained
in Publications I, III and IV. However, for completeness, we present here
some details about the mesh generation and the insertion of the electrodes
onto the surface mesh.

To generate a head sample in our computational framework, one first
needs a parametrization of a (three-layer) head, provided by the principal
component model in Publication I. The employed model covers the upper
part of the human head, sometimes referred to as the portion above the
nasion-to-inion line. The number of anatomical layers as well as the
number of the to-be-inserted electrodes and their angular positions (i.e. the
polar and azimuthal coordinates of their centers) can be tuned depending
on the application in hand.

Figure 2.1. A spherical mesh is deformed k = 6 times to create the head surface mesh.
The unit of length is centimeter.

The initial surface mesh along the exterior boundary of the considered
head parametrization is constructed by subdividing k times a coarse sur-
face partition consisting of four triangles, where k ∈ N can be tuned
according to the level of precision that is aimed to be achieved. The initial
surface triangulation is based on a spherical mesh, deformed to fit the
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head shape parametrization (Figure 2.1).
Each electrode Em is inserted onto the surface mesh via the workflow

illustrated in Figure 2.2. We first find the surface triangles within a fixed
radial distance R from an electrode center xm, with R larger than the
corresponding electrode radius Rm. The nodes in the selected patch are
then projected onto the tangent plane at xm. For further details on the
projection and the exact definition of the electrodes we refer to Publication I.
The actual electrode boundaries are inserted on the two-dimensional mesh
in the tangent plane, and a dense mesh for the resulting polygonal domain
is generated using the Triangle software [86]. Subsequently, the newly
generated dense mesh containing the electrode boundary is re-attached to
the surface mesh by utilizing a local third order polynomial representation
of the surface.

After inserting all M electrodes, the process is completed by generating
a tetrahedral partition for the whole volume by TetGen [87] starting from
the formed surface mesh.

Figure 2.2. Workflow for inserting the electrodes on the boundary of the mesh. See text
for more details.

For the three-layer model adopted in Publications III and IV, the bound-
aries of the layers are taken appropriately into account when generating
three initial surface meshes; see Figure 2.3. The electrodes are then in-
serted onto the outermost mesh, i.e. the one corresponding to the scalp
layer. The process is once again completed with the generation of a tetra-
hedral mesh, obeying the layer boundaries.
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Figure 2.3. Initial (refined) surface meshes for a three-layer head model.
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3. Computational approaches

Reconstruction methods for EIT can be devised according to the level of
information one aims to retrieve when solving the inverse conductivity
problem. In this thesis we consider the reconstruction problem using three
different approaches that are presented in the following sections.

Those reconstruction methods that produce a full image of the conduc-
tivity distribution inside the examined object can be divided into itera-
tive and direct algorithms. An iterative method generates a sequence of
approximations for the unknown parameter(s) of interest, with the algo-
rithm terminating when some pre-selected stopping criterion is satisfied
[24, 68, 97, 98]. Conversely, direct reconstruction algorithms usually de-
rive from constructive proofs, such as the widely employed ∂̄-method [88]
that provides a numerical implementation of Nachman’s uniqueness proof
in two dimensions [75]. A more detailed survey on this broad topic can
be found in the review articles [13, 23] and the references therein. In
this thesis we employ iterative methods when aiming for full conductivity
reconstructions.

When considering easier problems (for instance with more prior informa-
tion) one can resort to inclusion detection methods or pure classification
techniques that come in handy due to their easy and fast applicability.

3.1 Iterative methods

Let us assume, for the sake of simplicity, that the conductivity σ inside
our domain Ω is the only parameter to be reconstructed, and let us denote
by y ∈ Y the available boundary data (measurement), by X = L∞

+ (Ω) the
appropriate function space for σ, and by F : X → Y the problem-dependent
forward operator.

We consider the often employed approach of finding a solution σ that
minimizes a least-squares functional

Φ(σ) =
1

2
‖F (σ)− y‖2Y (3.1)
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accompanied by suitable regularization that reflects our prior information
on the conductivity. There are multiple ways to form the regularized cost
functional in (3.1). Here we present the Bayesian approach along the lines
of [60, 91]; for the so-called regularization theory, see, e.g., [31]. We consider
a discretized version of the conductivity σ ∈ R

N and a discretized/discrete
measurement F (σ) ∈ R

k, corrupted by additive noise

y = F (σ) + η, (3.2)

where η ∈ R
k is a zero-mean Gaussian random variable with a covariance

matrix Γη ∈ R
k×k. For other noise models we refer to [60]. Assuming

that the noise η and the parameter σ are independent, the likelihood,
i.e. the probability density of the measurement given the parameter, is
also Gaussian with the same covariance Γη and with its mean shifted by
F (σ). The resulting probability density function has the form

p(y|σ) ∝ exp
(
− 1

2

(
y − F (σ)

)T
Γ−1
η

(
y − F (σ)

))
,

where the factor ((2π)k det(Γη))
−1/2 has been omitted since it does not

depend on σ. In our analysis, the a priori information is given a density of
the form

p(σ) ∝ exp
(
− aR(σ)

)
, (3.3)

where a > 0 is a free parameter and R is a penalty function describing the
expected behaviour of σ. From Bayes’ formula, we then get the posterior
density

p(σ|y) ∝ p(y|σ)p(σ)

∝ exp
(
− 1

2

(
y − F (σ)

)T
Γ−1
η

(
y − F (σ)

)
− aR(σ)

)
, (3.4)

where we have again neglected the multiplicative terms independent of σ.
Solving an inverse problem in the Bayesian framework requires address-

ing the following matters: (i) devise a prior probability density p(σ) that
reflects the qualitative information on the unknown σ, (ii) find the likeli-
hood function p(y|σ) according to the problem-specific mathematical model,
and (iii) develop and/or apply methods to explore the posterior probability
density p(σ|y).

Since in practical settings the dimension of the to-be-reconstructed pa-
rameter is usually relatively high, thus preventing a direct visualization
of the posterior distribution, one typically needs to resort to point esti-
mates for practical purposes. One of the statistical estimates which is most
commonly used is the maximum a posteriori (MAP)

σMAP = arg max
σ∈RN

p(σ|y),
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provided that such a maximizer exists (and even if it exists, it may not
be unique). Computing a MAP estimate for (3.4) corresponds to finding a
minimizer for a nonlinear Tikhonov-type functional of the form

Φ(σ) =
1

2

(
y − F (σ)

)T
Γ−1
η

(
y − F (σ)

)
+ aR(σ), (3.5)

which is usually done by using iterative methods.
In Publication I and IV there are more than one unknown parameters,

namely the conductivity distribution, the contact resistances (or conduc-
tances), the electrode positions and the shape parameters defining the
head geometry. As an example, in the case of two independent parameters
that need to be reconstructed (here the conductivity σ and the contact
resistances z), the Tikhonov functional (3.5) should be modified into

Φ(σ, z) =
1

2

(
y − F (σ, z)

)T
Γ−1
η

(
y − F (σ, z)

)
+ a1R1(σ) + a2R2(z), (3.6)

where the corresponding prior information has been accounted for via
appropriate choices for the penalty functions R1 and R2, and the free pa-
rameters a1 and a2.

Choice of priors

Selecting a suitable prior density (3.3) corresponds to translating the
qualitative prior knowledge on the unknowns into a quantitative form.
In statistical inverse problems the most common probability densities
are arguably Gaussian, as they are computationally easy to handle and
they may also give good approximations even for inherently non-Gaussian
distributions. In our setting, the choice of prior corresponds to selecting a
suitable function R(σ) in (3.3). Choosing

R(σ) =
1

2a
(σ − σ0)

TΓ−1
σ (σ − σ0) (3.7)

gives the parameter of interest σ a Gaussian prior density with the mean
σ0 ∈ R

N and the positive definite covariance Γσ ∈ R
N×N .

The choice of the covariance matrix Γσ can be handled in many ways, but
it should always be related to prior or expert information on the studied
measurement setup. In the numerical studies of Publication I this choice
depends on the character of the parameter in question. As an example, the
penalty function R(θ) associated to the prior density for the electrode polar
angle is defined by

Γθ = γ2I, (3.8)

where I ∈ R
M×M is the identity matrix and γ determines the standard

deviation in the polar direction; γ is chosen so that it reflects typical errors
in the positioning of the electrodes. On the other hand, it is natural to as-
sume that there is some correlation between the values of the conductivity
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evaluated at nodes lying close to one another in the utilized FE mesh. To
this end, we introduce the distance-dependent covariance matrix

(Γσ)i,j = γ2 exp

(
− ‖xi − xj‖2

2l2

)
, i, j = 1, . . . , N, (3.9)

where γ > 0 is the pointwise standard deviation, xi, xj ∈ R
3 are coordinates

of the FE nodes in the head mesh, and l > 0 is the correlation length.

In Publication IV we aim to incorporate a different qualitative feature in
the prior for the conductivity: the imaged object is assumed to contain well
localized inclusions with approximately constant conductivity levels. In
other words, this characterization means that the conductivity is expected
to exhibit local jumps in an otherwise homogeneous background. In such
cases, one can consider a non-Gaussian prior density with the function R

being a discretized version of a regularizer

R(σ) :=
∫
Ω
r
(
|∇σ(x)|

)
dx, (3.10)

where r : R+ → R+ is a suitable continuously differentiable, monotonically
increasing function [5]. An example of such a function is provided by the
smoothened total variation (TV) prior [80] for which

r(t) =
√

T + t2 ≈ |t|, (3.11)

where T > 0 is a small parameter that ensures the differentiability of r.
Other suitable choices are, e.g., a Perona-Malik or a smoothened TVq

prior [50].

Modeling errors

We mentioned in Section 2.2 the instability of the inverse problem of
EIT with respect to measurement and modeling errors, arising, e.g., from
uncertainty about model parameters such as the electrode locations, the
contact resistances, and the shape of the imaged object. The simplest
way to tackle inaccurate geometric modeling is difference imaging [10],
that is, electrode measurements are performed at two separate times with
the aim of reconstructing the corresponding difference in the conductivity.
The obvious advantage is that the modeling errors partially cancel out,
but unfortunately reference measurements are not available in many EIT
applications, such as stroke detection in the case of emergency.

If we limit ourselves to absolute imaging, where EIT measurements
are available at a single time frame and at a single frequency, there ex-
ist a few algorithms for handling geometric uncertainties. In the one
introduced in [66, 67] mainly for two-dimensional EIT, reconstruction of
anisotropic conductivities is considered to compensate for the domain mis-
modeling. Moreover, [53] built a polynomial surrogate for the dependence
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of the boundary measurements of EIT on several unknowns, including
the parametrized measurement geometry, and employed this surrogate in
straightforward Tikhonov regularization in two spatial dimensions.

In [14, 29, 59, 98], the estimation of certain model parameters is included
as a part of iterative algorithms designed originally for mere conductivity
reconstruction; in these works the dimensions of the to-be-reconstructed
parameters are reasonably low and the computation of the corresponding
derivatives relatively cheap, which means that the efficiency of the con-
sidered algorithms does not considerably suffer from the incorporation of
the extra unknowns. In the setting of head imaging, it is also possible
to develop and utilize differentiability results that are well-suited for nu-
merical applications. It is well-established that the electrode potential
pattern U is Fréchet differentiable with respect to the conductivity and the
contact resistances; see, e.g., [33, 68, 98]. Certain differentiability results
have also been previously developed for the dependence of the electrode
measurements on the electrode locations and the shape parameters defin-
ing the object boundary [27, 28]. These results and ideas are employed in
Publication I for reconstructing the head shape and the electrode locations
at the same time as the conductivity inside the examined head (without the
skull layer). To be quite precise, the differentiation formulas introduced in
[27, 28] are only employed for computing derivatives with respect to the
electrode locations, while the derivatives with respect to the head shape
are approximated via central differences.

Finally, the so-called approximation error approach introduced in gen-
eral by [60] and for EIT in [77, 78] is used for recovering from geometric
mismodeling in Publication IV. In the approximation error method, the
modeling error is represented as an additive stochastic noise term whose
(second order) statistics are approximated via simulations. In our work
these statistics are estimated in advance based on extensive simulations
and prior knowledge on the unknown parameters; subsequently, the ap-
proximation error noise is combined with the actual measurement noise
and accounted for within the Bayesian inversion paradigm. The actual
inversion is performed by reconstructing the deviation of the conductivity
(inside the examined head) from an expected conductivity using an "aver-
age" head model as a fixed reference domain. The studies in Publication IV
account for uncertainties in head and skull shapes, electrode positions and
contact resistances.

Minimization schemes

A minimization scheme for the functional in (3.5) requires solving the
necessary condition∇Φ(σ) = 0, which leads to different methods depending
on the required accuracy and the nature of the penalty term R(σ) in (3.5).

If R(σ) is quadratic (as in Publication I), the minimization of Φ corre-
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sponds to a nonlinear least square problem, efficiently solvable with a
Gauss–Newton type algorithm. Resorting to FEM, we evaluate approxi-
mations for the forward solution F (σ(l)) and the Jacobian J

(l)
σ = JF

σ (σ(l)) of
the map σ �→ F (σ) at a given point σ(l). We then approximate the forward
solution around σ(l) by its linearization

F (σ) ≈ F (σ(l)) + J (l)
σ (σ − σ(l)),

and use it to write the to-be-minimized functional (3.5) in an approximate
form

Φ(l)(σ) :=
1

2
(y(l) − J (l)

σ σ)TΓ−1
η (y(l) − J (l)

σ σ) + aR(σ),

where y(l) = y − F (σ(l)) + J
(l)
σ σ(l). The condition ∇Φ(l)(σ) = 0 is then

equivalent to the equation

(J (l)
σ )TΓ−1

η J (l)
σ σ + a(∇R)(σ) = (J (l)

σ )TΓ−1
η y(l). (3.12)

In the quadratic case (3.7), we have (∇R)(σ) = Γ−1
σ (σ − σ0) and (3.12)

thus becomes

ATAd(l) = AT

[
Lη(y − F (σ(l)))
√
aLσ(σ0 − σ(l))

]
, A =

[
LηJ

(l)
σ

√
aLσ

]
, (3.13)

with LT
η Lη = Γ−1

η and LT
σLσ = Γ−1

σ being Cholesky factorizations of the
inverse covariance matrices, and d(l) = σ − σ(l). In other words, (3.12) be-
comes a standard quadratic Tikhonov functional, and (3.13) is the normal
equation corresponding to the associated least squares problem. Now σ(l+1)

can be defined based on (3.13), and the iteration continued until the chosen
stopping criterion is satisfied.

When several parameters are included in the estimation process, the
derivatives of the electrode potentials with respect to each of them must
be approximated, and the corresponding Jacobians and prior covariance
matrices must be appropriately incorporated in (3.13). More specifically,
the Jacobian matrices can be computed explicitly by sampling their rows
using suitable variational formulations [27, 54, 55, 98].

If R(σ) originates from a regularizer of the form (3.10) (as in Publica-
tion IV), the lagged diffusivity method [99] can be used in connection to
linear forward operators F (σ) = Fσ. The algorithm is based on the fact
that the contribution of the penalty term R(σ) to the necessary condition
for a minimizer of (3.5) can be written as (∇R)(σ) = H(σ)σ, where H is a
parameter-dependent regularization matrix defined via

Hi,j(σ) :=

∫
Ω

r′(|∇σ(x)|)
|∇σ(x)| ∇ϕi(x) · ∇ϕj(x) dx, i, j = 1, . . . , N, (3.14)
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with the help of the employed piecewise linear FE basis functions ϕi. The
condition ∇Φ(σ) = 0 is then equivalent to

ATAσ = AT

[
Lηy

0

]
, A =

[
LηF
√
aLσ

]
, (3.15)

where LT
η Lη = Γ−1

η and LT
σLσ = H(σ) are again Cholesky factorizations1.

The basic idea is then to solve (3.15) iteratively, with Lσ always evaluated
at the previous estimate for σ, thus making (3.15) a linear equation for the
next iterate.

In case of nonlinear forward operators, combined algorithms can be
utilized as in [43], where the authors combine sequential linearizations of
the forward map in a Gauss–Newton iteration with lagged diffusivity steps
for the linearized inverse problems with an edge-promoting penalty term.
This is also the key idea for the optimization approach in Publication IV.

3.2 Inclusion detection methods

The goal of inclusion detection methods is retrieving information on an
unknown conductivity perturbation in a known background. Such a set-
ting is considered in numerous imaging applications, including detecting
inhomogenitites in some building material and, within medical applica-
tions, distinguishing anomalies (cancerous tissue or hemorrhages) from a
(known) healthy background.

Among the first of such methodologies was the factorization method,
introduced for inverse scattering by Kirsch [63] and modified for EIT by
Brühl and Hanke [20, 19]. The method is applicable in settings where the
conductivity levels of the inclusions are either higher or lower than the
background [35, 37, 44, 52, 64]. As another example, the enclosure method
of Ikehata [56, 57, 15] aims to recover the convex hull of an inclusion,
based on the asymptotics of a certain indicator function.

The approach we consider in this work is the monotonicity method, orig-
inating from and numerically tested in a paper of Tamburrino and Ru-
binacci [94], and rigorously proven to function later on by Harrach and
Ullrich [44, 46, 47] with the help of the theory of localized potentials [36].
Although the monotonicity method is closely related to the factorization
method, it is in addition capable to simultaneously reconstruct both con-
ductive and insulating inclusions, and it also has a natural interpretation
for electrode measurements [33, 47].

1The positive definiteness of H(σ) is ensured by including suitable boundary
conditions or shifting its spectrum slightly right away from the origin.
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Monotonicity method

The monotonicity method exploits the physically intuitive monotonicity
principles for the Neumann-to-Dirichlet map Λ

σ ≤ τ implies Λ(σ) ≥ Λ(τ), (3.16)

where the latter inequality is to be understood in the sense of positive
definiteness. In other words, the power needed for maintaining any (direct)
boundary current pattern increases if the conductivity inside the imaged
object decreases. In mathematical terms, current-voltage measurements
in EIT can be partially ordered with respect to the definiteness of the asso-
ciated self-adjoint Neumann-to-Dirichlet operators, so that an almost ev-
erywhere larger conductivity leads to less positive definite current-voltage
measurements, and vice versa. A converse of this monotonicity relation can
be used to solve the inclusion detection problem in EIT (also referred to as
shape reconstruction) by simply comparing the acquired measurements to
those related to carefully chosen (computational) test inclusions. The basic
ideas of the method are described in some more detail in what follows; we
refer to [46, 47] for more information.

Let Ω contain inclusions in which the conductivity σ differs from an
otherwise known background conductivity σ0, which is required to carry
a suitable unique continuation property. For simplicity, let us consider
the (unrealistic) setting where continuum measurements are available
on the complete boundary ∂Ω. Under certain geometric assumptions, the
inclusion shape, defined as the set supp(σ − σ0), can be reconstructed
by so-called monotonicity tests that compare Λ(σ) to ND operators Λ(τ),
defined by certain test conductivities τ , in the sense of positive definiteness.
Moreover, the test ND operators Λ(τ) can be replaced, without losing any
information, by their linear approximations using the Fréchet derivative
Λ′(σ0) of Λ(σ) at the background conductivity.

For a better understanding of the monotonicity method, let us state its
results in two example configurations that correspond to two frequently
considered special cases: the definite case (1), in which all inclusions have
a higher (or lower) conductivity than the background, and the indefinite
case (2), where the conductivity may differ in both directions from the
background value. In both examples, the considered conductivity values
are bounded away from zero and infinity. However, the main result of Pub-
lication II shows how to also handle extreme inclusions, which correspond
to some parts of the domain being either perfectly conducting (σ =∞) or
perfectly insulating (σ = 0).

Examples with σ0 = 1 [46]:

1. Let σ = 1 + χD where D is open, with χD being its characteristic
function, and D ⊂ Ω has a connected complement. Then, for every
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open ball B ⊂ D

B ⊆ D if and only if Λ(1 + χB) ≥ Λ(σ)

if and only if Λ(1) +
1

2
Λ′(1)χB ≥ Λ(σ).

2. Let σ = 1 + χD+ − 1
2χD− where D+, D− ⊆ Ω are open, D+ ∩D− = ∅,

and D+ ∪ D− ⊂ Ω has a connected complement. Then, for every
closed C ⊂ Ω with connected complement

D+ ∪D− ⊆ C

if and only if Λ(1 + χC) ≤ Λ(σ) ≤ Λ
(
1− 1

2
χC

)
if and only if Λ(1) + Λ′(1)χC ≤ Λ(σ) ≤ Λ(1)− Λ′(1)χC .

Note that the constant conductivity values inside the inclusions D, D+ and
D− have been chosen arbitrarily. In fact, such values need not be constant,
and the assumptions on the geometry of the inclusions can also be relaxed.
See, e.g., [46] for more details.

The first case exemplifies that a definite inclusion D can be recovered
as the union of all balls B that satisfy the monotonicity tests in (1), by
either comparing ND maps for different conductivities or by using the
corresponding linearized condition. The latter option may often be advan-
tageous as it does not require solving the forward problem for multiple
conductivities. The result for the indefinite case works in the opposite
way: the monotonicity tests in (2) show how to deduce whether a larger
set C contains the inclusions D+ and D−, the combination of which can
eventually be obtained as the intersection of all such larger sets C.

The monotonicity method is easily applicable to practical setting since
both tests (1) and (2) allow stable implementations, although the one for
the definite case is considerably simpler [33, 34, 47]. Also, the presented
results naturally extend to the case of partial boundary measurements
[46]. More recently, the monotonicity method has also been applied to the
reconstruction of piecewise constant layered conductivities [32].

3.3 Machine learning-based classification

Machine learning is a branch of artificial intelligence that utilizes methods
and algorithms for the automatic creation of data models. Contrary to
standard mathematical methods that execute tasks by following explicit
and predefined algorithms, a machine learning model constantly "learns"
from data and experience. This means that, on the one hand, it can
always improve its performance by learning from newly acquired data,
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but, on the other hand, predictions may not always be fully accurate
and one should pay particular attention to the reliability of the results.
Nevertheless, the use of such algorithms is vast among a wide variety
of fields, among which are computer science, economics and medicine.
Machine learning techniques can be considered particularly attractive if
the studied phenomenon is not easily modellable or if traditional models
are computationally unfeasible.

In recent years, machine learning has brought about advances in ill-
posed and inverse problems [6, 73, 74], and, in particular, it has been
successfully applied in EIT imaging [41, 42, 72, 85]. In the specific case of
stroke detection, such methods can be used for classification of stroke as
such but also as a support tool to improve the full image reconstructions.

There is a tremendous number of machine learning algorithms available
in the literature, and it is not always clear which is the most suitable for the
considered problem. Among them, Neural Networks (NNs) are algorithms
designed to capture underlying relationships in a set of data through a
process that mimics, to a certain extent, the neurological functions. In
Publication III we investigate the potential of Neural Networks for classi-
fication of stroke. All classification tasks fall under so-called supervised
learning, that is, they require the preparation of labeled datasets in order
for the considered neural networks to learn the correlation between data
and labels.

Neural Networks

A neural network is composed of a collection of connected nodes or neu-
rons organized in different layers (see Figure 3.1). To put it short, each
neuron receives a set of inputs (the data), which are multiplied with ran-
dom weights and added to a bias value. The result is transmitted to an
appropriate activation function, which provides the final output value that
exits the neuron. Once the output is generated from the final neural net
layer, a loss function is calculated based on the training set and the weights
are adjusted to minimize the loss. Finding optimal weights is the aim of
this type of classification learners.

There are countless neural network architectures available and just
as many choices for the related hyperparameters. For a comprehensive
review on this broad topic we refer to [70, 84]. A Fully Connected Neural
Network (FCNN) consists of a series of layers in which all neurons have
complete connections to all neurons in the previous layer, with a weight
specific to each connection (Figure 3.1). These networks are very broadly
applicable, since they do not require any assumptions on the features in
the data. However, they can be computationally expensive in terms of
memory and computation time, and also can exhibit a weaker performance
than networks specifically tuned to the problem at hand.
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Figure 3.1. An illustration of the architecture of a FCNN, with n neurons in the input
layer (n being the size of our data), m neurons in the hidden layer and one
output neuron for classification purposes.

In contrast, in a layer of a Convolutional Neural Network (CNN) each
neuron is connected to a (usually) small number of neighboring neurons
in the previous layer, and the input values are multiplied with the same
set of weights (see the first connections in Figure 3.2). This option usually
makes sense for cases where the data are assumed to have spatial rela-
tions, with the typical application being processing image data. Compared
to the computational aspects of fully connected networks, convolutional
layers are relatively cheap thanks to the lower number of connections and
weights, but their performance strongly depends upon underlying spatial
assumptions.

Figure 3.2. An illustration of the architecture of a CNN. The convolutional and the pooling
layers are typically applied to consistently reduce the size of the problem,
which is then transferred to a fully connected structure.

Defining the architecture of a neural network is in itself a difficult task,
since for the choice of many hyperparameters there are no universally
established criteria. A (partial) solution to this shortcoming is presented
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by automatic machine learning (AutoML) algorithms, which have been
designed to systematically test different models and automatically opti-
mize the hyperparameters [48]. AutoML can be, however, extremely time
consuming and computationally expensive. In the following, we report
some of the most important design issues to consider when implementing
a fully connected or a convolutional neural network [61].

While characterizing the general structure of a FCNN only requires the
specification of the number of layers and the number of neurons in each
layer, CNNs require a more thought-through process. Convolutional layers
need to be defined with additional hyperparameters, such as the kernels
(described by a width and a height), the number of input and output chan-
nels, and the parameters related to the convolution operation, i.e. stride
and padding. Convolutional layers are used to convolve the inputs with
different kernels and transfer the result to the next layer. Pooling layers
typically reduce the dimensions of data by combining (according to a speci-
fied criterion) the outputs of neuron clusters from one layer into a single
neuron in the next layer. Finally, flattening is the operation of converting
the data into a one-dimensional array for inputting it to the next layer.

In addition to the network macro structure, there is a collection of other
parameters and functions to be defined.

• The activation function defines the output of a node given a set of
inputs. The modern default activation function for hidden layers is
the Rectified Linear Unit (ReLU) activation function (denoted below
by h), while for output layers a conventional choice is a sigmoid
function (denoted by s)

h(x) = max(0, x), s(x) = 1/(1 + e−x). (3.17)

• The loss function (or cost function) measures the performance of
a classification model whose output is a probability value. Among
the binary classification loss functions, one common choice is the
Binary Cross Entropy (BCE) function, which defines the way in which
network training penalizes for the deviations between the predicted
and the true labels. If we denote by ϑ the set of weights and biases,
then

L(ϑ) = −
∑
j

(
yj log(pj) + (1− yj) log(1− pj)

)
, (3.18)

where yj is a binary value (0 or 1) indicating if the predicted class
label is correct, and pj is the corresponding output probability, im-
plicitly dependent on the training data and on the set of network
parameters ϑ.

• The optimization algorithm (or optimizer) provides the method for
changing the weights and the biases to minimize the loss. Many
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optimizers are based on gradient descent, a well known family of
optimization algorithms requiring (only) the first order derivatives of
the loss function. The corresponding general procedure for updating
the weights so that the loss function can reach a (possibly local)
minimum is

ϑ = ϑ− μ∇ϑL(ϑ), (3.19)

where μ > 0 is a step size or learning rate.

• The learning rate μ is a tuning parameter that determines the step
size at each iteration of the optimization algorithm while descending
toward a minimum of a loss function. It can be thought as the "speed"
at which a machine learning model "learns".

• When dealing with large datasets, as is usually the case, the batch
size defines the number of samples from the training data that are
propagated through the network. With small batch sizes training is
faster and requires less memory, but the estimate for the gradient of
the loss function is less accurate than with larger batches.

• One epoch corresponds to an entire dataset passing forward and
backward through the neural network only once, which is usually
not enough for defining the optimal weights (underfitting). As the
number of epochs increases, the weights are updated more times
and better optimality is hopefully reached. With too many epochs,
however, the network tends to overfit to the learning data.

• In supervised machine learning, the available data set is usually
divided into subsets for the training, validation and testing phases.
Training is typically performed based on the training dataset and
prediction is carried out based on the validation dataset at the end
of each epoch. Errors for the validation dataset can be used to iden-
tify stopping criteria and to fine-tune hyperparameters. Above all,
errors for the validation dataset can help to find out if the model has
overfitted to the training data. Prediction against the test dataset is
typically performed only on the final model. Another common tech-
nique for data splitting is cross-validation, where the initial data set
is repeatedly mixed and split at the begin of each epoch into training
and validation dataset.
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4. Summary of results

I: Computational framework for applying electrical impedance to-
mography to head imaging

Publication I introduces a computational framework for applying abso-
lute EIT to practical head imaging. The idea is to utilize the derivatives of
the electrode potentials with respect to the exterior boundary shape and
the electrode locations in a regularized Newton-type output least squares
algorithm that simultaneously reconstructs all relevant unknowns.

To build a parametrization for the natural variations in head shapes and
sizes over the human population, we employ a library of human heads and
form a principal component model for the associated geometric variations.
We also present a robust and efficient way to mesh the parametrized head
model to enable fast forward solutions by FEMs. We use the smoothened
CEM presented in Section 2.3 as the forward model and employ relatively
dense FE meshes in order to overcome a certain instability in the computa-
tion of the Fréchet derivatives with respect to geometric parameters.

The functionality of the method is tested via numerical experiments on
simulated noisy data with noise levels comparable to those reported for
standard EIT systems. Each unknown parameter is assigned a Gaussian
prior, and a MAP estimate is computed iteratively, as explained in Sec-
tion 3.1. Our numerical experiments demonstrate that strong enough
variations in the conductivity of an imaged head can be reconstructed
in this manner even under moderate geometric uncertainties. Moreover,
there is some evidence that mismodeling of the head shape can be partially
compensated by only including the estimation of the electrode positions in
a reconstruction algorithm implemented in a fixed average head geometry.
The effect of the insulating skull layer is not considered in this study.

II: Monotonicity-based reconstruction of extreme inclusions in
electrical impedance tomography

The main topic of this work is to generalize the monotonicity method
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overviewed in Section 3.2 to allow extreme inclusions inside the domain of
interest; by "extreme" we mean perfectly conducting or perfectly insulating.
This is achieved by establishing suitable monotonicity principles for the
ND map (cf. Section 2.1) in the presence of extreme inclusions. For this
purpose, we first show that any ND map that corresponds to extreme
inclusions can be reached in the natural operator topology as a limit of a
sequence of standard ND maps, i.e. ones without extreme inclusions, when
the conductivity coefficient decays to zero and/or grows to infinity in the
appropriate parts of the domain.

Combining this result with the standard monotonicity relations for the
ND maps corresponding to finite and positive conductivities, we demon-
strate that both definite and indefinite inclusions can be reconstructed
with the monotonicity method in the presence of extreme inclusions. In
particular, our result on the indefinite case covers a wide class of inclu-
sions: the perturbed conductivity can simultaneously have parts that are
perfectly insulating and parts that are perfectly conducting, as well as
other perturbed parts bounded away from zero and infinity.

Although this thesis does not implement the monotonicity method as a
practical algorithm for stroke detection, the presented results pave the
way for such considerations by enabling detection of inclusions under very
mild assumptions on their geometry and conductivity levels.

III: Neural networks for classification of strokes in electrical
impedance tomography on a 3D head model

This work applies neural networks to the detection of brain hemorrhages
from simulated absolute EIT data on the 3D head model from Publication I,
extended in a natural way to handle more complicated anatomical struc-
tures. To this end, we simulate large datasets that are used to train and
test a fully connected and a convolutional neural network (see Section 3.3).

The training and test datasets are composed of pairs of synthetic noisy
electrode measurements and a label indicating whether the data are asso-
ciated with a hemorrhagic stroke or not. This classification is motivated by
the assumption that detecting the presence or absence of a hemorrhage is
sufficient for initiating appropriate medical treatment. The measurements
are simulated with the CEM (Section 2.3) and generated by varying the
conductivity distribution, the electrode positions, the measurement noise,
the shape of the head, and the interior and exterior surfaces of the skull.
The testing of the networks is performed on several datasets of unseen EIT
data, with more complex stroke modeling (different shapes and volumes),
higher levels of noise and different amounts of electrode misplacement.

Despite the use of simple neural network architectures, the obtained
results are promising and motivate the testing of EIT-based classification
methods on real phantoms and ultimately on human patients. In fact, our
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numerical tests show that the probability of detecting a hemorrhagic stroke
is reasonably high, even when the electrodes suffer from considerable mis-
placement and the geometric model for the head is notably inaccurate.
In our experiments, a shallow fully connected neural network exhibits
superior performance compared to a convolutional one.

IV: Approximation error method for imaging the human head by
electrical impedance tomography

In this work we combine the principal component head model from Pub-
lications I and III with the approximation error method. The second order
statistics of the approximation error are estimated by following the ideas of
Publication III. To be more precise, the learning data is formed by comput-
ing simulated EIT measurements with the CEM for an ensemble of random
head and skull shapes, electrode locations, contact resistances and tissue
conductivities. The needed statistics are then simulated by considering
the deviation of these measurements from the ones corresponding to the
intended electrode positions and the mean anatomy inside the average
head of the employed principal component model.

The actual inversion is performed by reconstructing the deviation of the
conductivity (inside the examined head) from the expected conductivity
in the average head model, accounting for both the actual measurement
noise and the approximation error noise within the Bayesian paradigm
(cf. Section 3.1). An edge-preferring prior density is considered for the
(discretized) change in the conductivity, which means that computing a
MAP estimate thus corresponds to finding a minimizer for a Tikhonov-type
functional that is non-quadratic in both the discrepancy and the penalty
term.

The algorithm is tested on simulated noisy data with and without in-
cluding the approximation error process in the measurement model. With
approximation error modeling, our algorithm produces useful informa-
tion on the stroke, and it clearly outperforms reconstructions with the
conventional measurement error model if the information on the measure-
ment geometry is incomplete. These results indicate that the presented
method can be a potential alternative for stroke classification in emergency
care, where one would practically always lack the exact knowledge on the
electrode locations and the geometry of the patient’s head.
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