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Abstract 
Enhancements in structural efficiency are central in reducing the carbon footprint of the transport 
industry. With recent manufacturing advances, sandwich panels became viable to reduce the 
structural weight in large plated structures. Methodologies for their structural modeling and 
optimization have, however, limitations, as simplified models cannot predict scale interactions that 
arise in lightweight settings. This dissertation proposes a scale-dependent modeling approach to 
predict the geometrically nonlinear response of elastic sandwich beams. The approach can predict 
size effects and the influence of local elastic buckling in the global beam response. 
   In this work, a computationally efficient multiscale approach is defined. A couple stress-based 
beam model is employed to describe the global behavior, with constitutive relations that represent 
unit-cell deformation modes. Scale transitions are embedded in the beam constitutive matrix. 
Terms associated with the axial behavior of the sandwich face sheets are progressively adapted 
according to the global strain-state and an associated local model. Stress recovery is pursued 
consistently with the averaging rules, including recovery of periodic terms. A finite element based 
on previous works is presented along with adapted nonlinear root-finding schemes to solve the 
equilibrium equations. Stiffness properties of selected sandwich cells are derived and presented in 
closed form. 
   The results reveal that the modeling approach succeeds in predicting the nonlinear response of 
elastic sandwich panels under quasi-static loads. Accurate stress distributions were obtained for 
linear and moderately nonlinear responses. Bending and progressive buckling geometric failure 
paths were successfully traced, including the effect of progressive local face sheet buckling. The 
approach was tested against different combinations of structural parameters, revealing a wide 
applicability range. 
   With the present approach, accurate elastic response predictions result with low modeling and 
computational costs. Reliable output is obtained, from beams with lightweight local-buckling-prone 
to denser size-effect-sensitive unit cell setups. The approach offers substantial improvements in 
relation to other low-complexity models available in the literature. Unlike Cauchy-based models, 
it is able to describe size-dependent behavior through the couple stress-related parameters. In 
relation to conventional single-layer models, it incorporates nonlinear local scale information to 
the average global continuum. In the linear scale-independent case and for an antiplane core, the 
model reduces to the textbook thick-face sandwich theory. 

Keywords Couple stress, sandwich structures, multiscale modeling, size effects, local buckling 
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Symbols

The main symbols utilized in the text are defined as follows. This list
serves as a general guide, yet it is not comprehensive. Other symbols or
modifications with sub- or superscripts are defined locally.

A, A Axial stiffness

B1, B2 Local buckling-related coupling stiffnesses

C1, C1 Stretch to stretch-bending couple stiffness

C2 Stretch to curvature coupling stiffness

C3 Stretch-bending to curvature coupling

D, D Stretch-bending stiffness

D f Combined bending stiffness of the face sheets

DQ Transverse shear stiffness

E, E Elastic modulus

Fh, Fv, Fθ Unit cell boundary forces

G Transverse shear modulus

Ks Shear correction factor

L Length

M Stretch-bending moment

N Normal force

Ng Critical global buckling load

Nw Critical wrinkling load

N̂ i Localized normal force over segment i

P Bending moment

P̂ i Localized bending moment over segment i

Q Shear force

Q i j Constitutive stress-to-strain coefficients
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Symbols

S Cell-bending stiffness

U Strain energy

Ux, Uz Two-dimensional displacement field

V Total shear force

V Work done by external forces

W Total work

b Width

d Vertical distance between centerline of the face sheets

h Height

kc Core rotational spring coefficient

kp Couple-stress distribution factor

kQ Shear distribution factor

kθ Rotational stiffness of the face sheet-core interface

l Length

l̂ Arc length

mi j Deviatoric part of the couple stress tensor

mxy Couple stress

p Core strut length

q Distributed load

r Iteration

s Unit cell length

t Step

t f Face sheet thickness

tc Core strut thickness

u,w Mid-height axial and transverse displacements

x, y, z Cartesian coordinate system

w0 Initial transverse displacement (imperfection)

B Linear strain-displacement matrix

Bσ Geometric strain-displacement matrix

C Constitutive matrix

F Nodal force vector

K, K i j Secant stiffness matrix

Kσ Geometric stiffness matrix

K0 Linear stiffness matrix
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Symbols

R Residual force vector

T̂ Transformation matrix

T,Ti j Tangent stiffness matrix

u Nodal displacement vector

α0 Imperfection amplitude

γ,γxz Shear angle

Γ Boundary

δ Variational operator

∆i Unit cell deformation case

ϵi j Components of the strain tensor

ϵx Axial strain

ϵ Mid-height axial strain

ε Percent error

θ Sectional slope

Θ Curvature

κ Stretch-curvature

λ Arc-length load multiplier

ν Poisson’s ratio

ρ Relative density

ϱ End-fixity factor

σi j Components of the Cauchy stress tensor

σx Normal stress

σxz Transverse shear stress

σ̂i Localized stress over segment i

φ Sectional rotation angle

φi Hermitian cubic interpolation polynomials

χi j Components of the curvature tensor

χxy Macro-curvature, couple-stress macro-rotation

ψi Lagrange linear interpolation polynomials

Ω Representative unit cell, element domain

ω Segment of a unit cell between hard points

ζ Elastic size-effect sensitivity parameter
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1. Introduction

1.1 Towards lightweight ship structures

1.1.1 Transport sector overview

The global energy consumption and greenhouse gas emissions have steadily
increased over the past decades (Figure 1.1). While in the developed world
the indicators plateaued in the 2000s, fast developing economies maintain
the upward trend. IEA projections [3] see a 25% global energy demand
increase by 2040, with new emerging markets expected to lead the growth
throughout the 2020s [20]. The transport sector is a major player in
this framework, amounting to over 20% of the energy demand worldwide
[73, 170]. Optimizing the energy performance in the transport of people
and goods is therefore a central challenge for our and next generations.
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Figure 1.1. (a) Global primary energy consumption (Data from Ref. [138]) and b) global
CO2 emissions (Data from Ref. [165]) with regional shares indicated.
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Several complementary changes are needed to impact the energy effi-
ciency of the transport sector. Transport planning is crucial to identify
and direct preferred transport modes (Figure 1.2) [157, 168]. Public reg-
ulations and taxation are tools that can induce the necessary behavioral
changes [27]. Technological advances in equipment, vehicle shape and
weight optimization are also central in reducing the energy footprint of the
transport modes.
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Figure 1.2. Energy consumption per unit load and ratio between vehicle and payload
energy for different transport modes. Data extracted from Ref. [168].

1.1.2 Energy efficiency in the maritime industry

Waterborne transport is fundamental for the functioning of our society.
It is estimated that circa 90% of the world trade volume is transported
through waterways [113]; seaborne freight alone reached 10.7 billion tons
in 2017, a more than two-fold increase from 1995 figures [169]. Waterborne
transport is also essential for the movement of people and leisure. In recent
times, over two billion ferry passengers have been carried every year [19],
corresponding to nearly half the yearly volume of the airline industry. The
last decades have also seen a surge in the recreational use of vessels. In
2017, 25.8 million cruise passengers were recorded worldwide, almost a
50% increase in a decade [45]. Improving the energy efficiency of water
transport modes is crucial in reducing emissions given the freight scales
involved and high specific energy consumption of passenger vessels (Figure
1.2).

Numerous recent studies addressed development areas towards energy-
efficient ships, in the context of both, cargo and passenger vessels [61, 40,
131]. Significant efficiency improvements can be obtained by simply reduc-
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ing the operational speed and designing larger, slenderer hulls [107, 131].
These basic strategies may be complemented by technological advances in
different areas as summarized in Table 1.1 [40].

Design Operation Procedures

Hull form optimization x
Propulsion efficiency devices x x

New materials x
Anti-fouling and coatings x x

Waste heat recovery x
Auxiliary engine’s economizers x

Engine/components tuning x x
Electrification and DC grids x

Operational optimization x x
Speed control of pumps, fans, etc. x x

Trim optimization x x
Weather routing x x

Speed optimization x x
Port/ship logistics x

Performance/energy monitoring x x
Improved power management x x x

Crew awareness x

Table 1.1. Strategic areas for increasing the energy efficiency of ship structures. Repro-
duced from Ref. [40].

In Table 1.1, Design has two main connotations: I) innovation and op-
timization of systems and devices, and II) improvements in structural
performance through design methodologies, manufacturing techniques
and higher-performance materials and shapes. Improved structural perfor-
mance can be obtained by optimizing the hull form to reduce the overall
resistance to movement through water and/or reducing the overall struc-
tural weight. Resistance minimization often relies on model testing and
computational tools such as the computational fluid dynamics [136, 137].
In turn, the overall structural weight can be reduced through novel materi-
als such as high-strength steels [172], various forms of composites [118, 97]
and by simply optimizing the structural topology according to the expected
load paths.

1.1.3 Lightweight ship design

Over their lifetime, ship structures are subjected to loads with influence
on one or more so-called structural levels (Figure 1.4). Hughes et al. [72]
categorize loads in terms of time as

– Static: such as pressures, weights, drydocking loads or thermal loads
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– Quasi-static: such as wave-induced pressures or sloshing

– Dynamic: such as slamming or forced vibrations

A structure with capacity R subjected to a load Q must be designed as to
have a sufficiently low failure probability (Figure 1.3). Limit state design
defines scenarios and criteria beyond which the structure no longer fulfills
its intended purpose [44]. Partial safety factors are utilized to quantify
uncertainties [132]. Capacity checks take the form

Qd < Rd, Qd = γ0
∑︂

i

Qki(Fki,γ f i), Rd = Rk/(γm ·γc) (1.1)

where Qd is the design demand (Fki is the characteristic load) and Rd the
design capacity. The factor γ0 accounts for the limit state seriousness,
whereas γ f i,γm and γc relate to uncertainties in load magnitude, material
properties and structural capacity, respectively.

Load, resistance

P
ro

b
ab

ili
ty
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en

si
ty

Failure

Figure 1.3. Probability density functions for the resistance and loads and their intersec-
tion implying structural failure.

Limit states are often classified into serviceability (SLS) and ultimate
(ULS) limit states [44], referring, respectively, to maintained functionality
under service loads and structural safety. In marine engineering, accident
(ALS) and fatigue (FLS) limit states are also often referred to, given the
utilization environment [132]. The limit states can be exemplified as [132]:

– Serviceability (SLS): local damage, excessive noise/vibrations, defor-
mations that affect equipment functioning or aesthetics

– Ultimate strength (ULS): Loss of stability, equilibrium (e.g. capsizing,
buckling) or attainment of the maximum strength capacity

– Accident (ALS): excessive structural damage due to collisions, fire,
grounding or explosions

– Fatigue (FLS): crack accumulation under repeated load

Limit state design requires clear identification of the load scenarios, a prob-
abilistic measure of uncertainties and methods to capture the structural
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response. Given the complexity of the structures involved, the analysis is
typically divided into levels, in which different structural scales are treated
separately as shown in Figure 1.4.

Slowly varying loadsRapidly varying loads

Dynamic analysis of
the hull girder

Hull girder analysis

Quasi-static analysis of the hull girder

Hull module analysis

Nodal displacements

Principal member analysis

Deflections, forces and stresses in all principal members:
beams, stiffened panels, composites, etc.

Local structural analysis

Detailed stress distribution at local level:
plate between stiffeners, sandwich face and core members, etc.

1. Equivalent hydrostatic

2. Point and distributed

structure and outfit

pressure

loads due to cargo,
Dynamic hull module
principal member and
local analysis

If required:

Loads acting on local structure

(Level I)

(Level II)

(Level III)

(Level IV)

Figure 1.4. Framework for response analysis of ship structures in different structural
scales. Adapted from Ref. [72].

Lightweight structures have particularities in their response when com-
pared to standard design solutions, in particular:

– Different vibratory response (SLS): different mass-stiffness ratios,
relevance of local vibration modes

– Proneness to instability (ULS): lower buckling capacity at different
structural scales, possible geometric instability failure well into the
elastic regime

– Influence from geometric imperfections: manufacturing-induced dis-
tortions have influence in buckling (ULS) and fatigue (FLS) capacities

In lightweight structures, the local member level often has significant
influence on the principal member structural response and vice-versa.
As a consequence of scale interactions, analysis methods for lightweight
structures require greater sophistication.

In recent years, sandwich panels have been identified as a viable alterna-
tive to reduce the structural weight of marine structures. The next sections
introduce lightweight sandwich panel design, applications and methods
for their structural analysis.
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1.2 Lightweight sandwich structures

Lightweight structural design implies employing novel materials and struc-
tural configurations to improve the weight-efficiency of a structure in terms
of key parameters such as stiffness, strength and ductility. Materials are
often compared through the ever-expanding Ashby performance diagrams
[11]. Figure 1.5 illustrates the Ashby diagrams for stiffness and strength
as function of density, as shown by Fleck et al. [50]. For structures primar-
ily undergoing bending, lattice-type sandwich composites are shown to be
a sensible material selection (Figure 1.5).

Figure 1.5. Material selection diagrams for elastic modulus and strength as function of
density. Adapted from Ref. [50].

1.2.1 Sandwich panels: an overview

Sandwich panels are lightweight composite structures comprising two
continuous thin face sheets separated by a comparatively thick low-density
core. The assembled structure has high specific bending stiffness provided
by the face sheets, which are positioned far from the neutral axis. The
core has complementary properties, providing transverse shear stiffness,
transverse compressive strength and stabilizing the face sheets. The
advantages of sandwich construction have been known for at least two
centuries [179], but their use only became widespread in the early-mid
1900s prompted by the aircraft industry’s weight efficiency demand [65].
Sandwich panels can be broadly classified based on their general core
setup as macro-homogeneous (for example, cellular foam or balsa wood),
honeycomb or corrugated [179], with common examples shown in Figure
1.6.

Corrugated sandwich panels are sandwich structures whose core con-
sists of interlaced lattice-type members as exemplified in Figure 1.7. The
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(a) (b) (c)

Figure 1.6. Sandwich structure classification according to general core setup (a) macro-
homogeneous (b) Honeycomb (c) Corrugated.

face sheets and core can be composed of equal or different materials. The
core can be either left void or incorporate macro-homogeneous filling for
improved functionality such as increased transverse stiffness and strength
[146, 17], or other functions, such as enhancing acoustic or thermal per-
formances, to name a few [180]. Seminal contributions to the analysis
and manufacturing of sandwich panels date back to the 1950s, and early
works relate to the United States space program [105, 158]. To this date,
structural applications are diverse, including marine/naval [97, 119] and
aerospace [178] structural components, civil bridge decks [77, 14, 123] and
corrugated cardboard for packaging [2, 129].

(a) (b) (c)

(d) (e) (f)

Figure 1.7. Common corrugated sandwich panel arrangements (a) Web-core (b) Hat core
(c) Y-core (d) X-Core (e) C-Core (f) Diamond core.

Corrugated sandwich panels can be constructed using different tech-
niques, which are based on either joining the face sheets to a core profile
or creating a monolithic entity. The first may be accomplished by adhesive
bonding [89], bolting or riveting [53, 54], spot welding [130], brazing [156]
or laser-welding [149], whereas the latter is made possible by extrusion
[109] and, more recently, various forms of additive manufacturing (3-D
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printing) [71, 29]. In non-monolithic cells, the connection stiffness and
strength may substantially influence the mechanical performance of the
structure. In the realm of laser-welded corrugated panels, the influence of
the joints has been object of extensive investigation in terms of transverse
shear stiffness and fatigue strength [149, 51, 123, 82].

In the past few years, substantial research has been devoted to optimizing
corrugated sandwich structures for pre-determined structural and non-
structural functions [161]. Selection of geometric ratios can greatly impact
their stiffness and quasi-static strength [18]. Their dynamic response such
as in impact and blast attenuation [103, 174] has been a recurring object of
study. Sandwich cores can also be optimized for superior thermal [60, 175]
and acoustic [153] performances, incorporate fire-resistant materials and
others. Improved functions can be obtained by optimizing the core shape
[91], density and face sheet thickness, as well as through sensible material
selection.

(a) (b)

Figure 1.8. Sandwich panels integrated to ship structures (a) web-core cruise ship deck
(b) X-core double side structure of a cargo vessel (ship images from Ref. [6]).

Multiple potential sandwich panel applications in marine engineering
have been investigated in the past. Several authors described the use of
laser-welded [97, 95] and adhesive bonded [89] sandwich panels as decks
and bulkheads, substituting the conventional ribbed plate setups (Figure
1.8a). Brazed and laser-welded sandwich panels have been investigated
for crashworthy hull designs [119]. In particular, Y-core [156, 152] and
X-core [41, 92] sandwich panels (Figure 1.8b) were described to have great
energy absorption capacity thanks to their hinged construction. Shape
optimization was shown to play a pivotal role in achieving the desired
performance [92].
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1.2.2 ULS analysis of corrugated sandwich panels

The ultimate limit-state design of corrugated sandwich panels requires
understanding of their critical failure modes. Failure under quasi-static
loads may have various geometric and/or material modes depending on
the core type and governing structural ratios. In lightweight corrugated
panels, geometric instability requires careful assessment.

In light of their shear-flexibility, two interacting global failure modes
are to be considered (Figure 1.9a): an Euler-type bending mode, and a
shear mode related to the flexibility of the core. Local buckling (Figure
1.9b) refers to instability of discrete members (face sheet or core), whereas
the global structure remains stable. Widespread local buckling is often
referred to as wrinkling; in corrugated panels, the wrinkling wavelength
is constrained by the core. Global buckling is observed in slender axially
compressed panels. Local buckling may be normative in stocky panels com-
posed of slender struts under axial or transverse compression. Geometric
instabilities may occur in conjunction with material nonlinearities (such
as plasticity or material rupture).

Global buckling Local buckling
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Figure 1.9. Buckling (elastic or plastic) modes of a typical corrugated sandwich beam.

Several studies investigated the progressive nonlinear response of cor-
rugated sandwich beams subjected to quasi-static loads and traced ana-
lytical failure maps. Valdevit et al. [171] studied the failure of prismatic
sandwich panels with different orders of corrugation under out-of-plane
loading. Biagi and Bart-Smith [16] investigated the failure of triangular
core sandwich columns under uniaxial compression and provided compar-
isons between experimental analyses and numerical models. Kooistra et
al. [91] proposed a hierarchical corrugated sandwich panel concept and
traced failure maps for the competing mechanisms. In Ref. [87], truss-type
sandwich members were subjected to transverse compression and horizon-
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tal shear and failure maps were traced. Progressive failure studies have
been conducted for other analogous sandwich panels with prismatic cores
[33, 39].

The failure analysis of corrugated sandwich panels often relies on analyt-
ical estimations and three-dimensional finite element analysis. Buckling
equations for sandwich beams presented in early sandwich construction
books [4, 139] and publications [68, 42] are still in use today. In this spirit,
Refs. [110, 171, 34] utilized analytical equations to predict the failure of cor-
rugated core and diamond-type core sandwich panels and compared them
with physical tests. Kazemahvazi and Zenkert [88] created a geometrically
nonlinear analytical approach for different failure modes of corrugated core
sandwich beams, while Ref. [78] developed analytical failure predictions
for woven corrugated cores. While analytical estimates have their practical
importance, there are limitations in predicting interactive progressive
failure modes.

1.3 Continuum models for corrugated sandwich panels

1.3.1 Overview

The structural performance assessment of corrugated sandwich panels
requires mathematical models to describe their physical behavior. Dis-
crete finite element models satisfactorily replicate physical tests; solid or
beam/shell representations are chosen based on the application. Given the
several scales involved, discrete modeling of large structures composed of
corrugated panels poses challenges. Homogenized models with effective
stiffness properties are thus preferred for preliminary response assess-
ment and optimization. Early works founded the models on the first-order
shear deformation theory (FSDT) [105, 104], as the shear deformation was
identified to be significant. Conventional first-order theories were then
extended to account for the effect of thick faces and horizontal sliding
[4, 139, 179]. Since then, numerous theories have emerged with different
degrees of complexity and accuracy.

In their generic sense, equivalent continuum models for sandwich struc-
tures can be categorized into single-layer or layerwise according to the
dependency of layer-level variables [26]. Further, single-layer models
may be classical (see [142] for Kirchhoff and FSDT theories for laminated
structures) or take various forms of higher-order formulations [114, 81].
Higher-order theories are refinements of the classical theories and in-
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clude additional kinematical terms, which can be determined for macro-
homogeneous [52] and corrugated sandwich structures [64, 150, 76]. Both,
single-layer and layerwise models can be modified to include zig-zag effects
to describe complex through-thickness behavior. Comprehensive reviews
on the computational modeling of sandwich structures are provided in Refs.
[26, 126, 69, 22, 96].

1.3.2 Equivalent single-layer (ESL) models

Low-complexity equivalent single-layer models are suitable for the analysis
of large structures composed of corrugated sandwich panels. Figure 1.10
shows a wide corrugated panel idealized into single-layer plate and beam
models with effective stiffness properties. The assumptions needed for a
meaningful model reduction in the context of a Timoshenko-type (FSDT)
model will be discussed in detail in Chapter 3.

Effective properties

ESL plate model

ESL beam model

e.g. classical Mindlin plate

e.g. classical Timoshenko beam

3-D (actual) structure

Figure 1.10. Idealization of wide corrugated sandwich panel as a single-layer plate or
beam with effective stiffness properties.

Besides defining suitable kinematical assumptions, a central feature in
the use of single-layer models is to derive effective properties. Stiffness
formulations have been proposed starting from Ref. [105], and models for
different sandwich cores are still under development today. In particular,
the determination of equivalent transverse shear stiffness for first-order
shear deformation theories has drawn substantial interest [53, 54, 109, 57,
124, 129]. Theoretical transverse shear formulations for discrete cores do
not require additional correction factors and can include features other
than the combined stiffness of the cell members, such as the effect of
semi-rigid connections [149, 124] and contact interactions [54]. While most
studies focus on analytical transverse shear derivations, some authors
provided experimental validations [129]. Classical first-order-founded
(FSDT) equivalent single-layer models can accurately describe the behavior
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of most sandwich cells. Yet, due to the lack of a cell-related deformation
measure, inaccuracies are observed once cell-structure scale interactions
are present (as for relatively large, shear-flexible cells). Non-classical
continua offer mechanisms to correct this limitation.

1.3.3 Non-classical continua

Non-classical theories increment the Cauchy continuum with additional
parameters to model length scale interactions. Figure 1.11 shows a the-
ory classification as proposed by Srinivasa and Reddy [155]. In the con-
text of elastic solids, non-classical continua often converge to the various
forms of couple stress [115, 90, 177, 62] and micropolar [43, 159] theories,
whose fundamental difference lies in the presence or absence of additional
kinematical variables other than the displacement field. Comprehensive
reviews of developments in this respect are presented in Refs. [155, 63].

Figure 1.11. General classification of non-classical continuum models. Reproduced from
Srinivasa and Reddy [155].

The seminal idea of a non-classical continuum was (presumably) first
presented in Cosserat and Cosserat [32], who supplemented the Cauchy
continuum with independent rotations. Decades later, the concepts gained
interest and were further developed in a theoretical level [115, 167, 116].
In recent years, the non-classical theories reemerged and reached the
spotlight prompted by size effect observations in micro- and nanoscale
devices [99, 100, 106, 102, 162, 163] and cellular structures of complex
topology [98, 108, 134]. Non-classical theories require the determination
of length-scale parameters, which are analytically derived or fitted based
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on experiments to describe scale interactions (see Ref. [101] for an experi-
mental procedure).

Under the umbrella of non-classical continua, the modified couple stress
theory (MCST) [177] has received great acceptance given its relative sim-
plicity. Contrary to the early non-classical theories, the MCST requires a
single length-scale parameter with sound physical interpretation. Euler-
Bernoulli [133] and Timoshenko [111, 9] beam models for isotropic mate-
rials have been proposed within the MCST framework. The models were
extended for the analysis of layered beams [143, 7, 10], in line with the
standard analysis of laminated structures. Several finite element formula-
tions were proposed for MCST-based beam and plates, some of which are
presented in Refs. [7, 58, 57, 38, 85].

In the 1960s, revival of non-classical continua led to analogies with lattice
structures [164] that prompted further research. In a seminal contribution,
Bazant and Christensen [13] proposed a micropolar continuum parallel to
describe large grid frameworks. Noor [127, 128, 125] developed micropolar
models for several lattice-type structures of various shapes and provided
basis for stiffness derivations through strain energy equivalence. In a
recent contribution, Penta [135] used a similar micropolar analogy in the
buckling analysis of Vierendeel trusses.

In the past few years, non-classical continua found application in the
single-layer modeling of corrugated sandwich structures. Cell-structure
stiffness interactions are observed in shear-flexible setups, and accurate
continuum description requires the development of size-dependent models.
Romanoff et al. [147] first proposed a MCST-based model for web-core
sandwich beams and provided experimental validation for the size effects.
Several studies then followed the condensed MCST perspective with ex-
tension to other sandwich unit cells [59, 58, 57, 148]. Karttunen and
colleagues [83, 84, 86] created micropolar beam and plate models for cor-
rugated sandwich panels, which provide more accurate transverse shear
description than in the MCST models. A finite element for the micropolar
beam model has been presented in [120]. A review on the utilization of
non-classical continua to model corrugated sandwich panels (with marine
applications) is provided in Ref. [145].

1.3.4 Multiscale models: failure and other local effects

Multiscale modeling incorporates interacting length scales into an aver-
age effective macroscopic continuum model. Multiscale methods require
three basic components: a physical model for the microscale, a downscal-
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ing rule as boundary condition for the microscale, and an upscaling rule
to determine macroscopic stresses [47, 79]. The microscopic averaging
rules and scale transitions must guarantee that the Hill-Mandel macro-
homogeneity condition [66, 67, 112] is met. That is, energy conservation
must be ensured.

Among the numerous multiscale methods available (see Refs. [80, 122]
for comprehensive reviews), the so-called computational homogenization
has received substantial attention [55]. A computational homogenization
scheme transfers kinematical information from the macroscale as bound-
ary conditions for the boundary value problem of a representative unit.
Displacements and boundary tractions are obtained at the microscopic
level, which are then averaged into a macroscopic stress tensor [55]. A FE2
method results if both scales are solved simultaneously using the finite
element method [49, 48]. In recent years, schemes that include higher-
order gradients of displacements have been defined. By Taylor expanding
the macroscopic deformation measure and truncating after the second-
order term, one obtains a second-order homogenization scheme [93, 94]. In
similar manner, higher-order schemes may be obtained.

103 102 101 100

10-110-210-3 100

Large ship structure
Sandwich deck Sandwich panel

Unit cell

Bolted connection

Facesheet, core strut

Laser-weld line

Figure 1.12. Scales involved in the design of a large ship structure constructed with
sandwich panels and their orders of magnitude.

Figure 1.12 demonstrates the multiple scales present in large structures
composed of corrugated sandwich panels. Microstructure-independent
models fail to capture localized mechanisms at homogenized sub-scales
[75, 120]. Multiscale concepts can be employed to condense nonlinearities
in sub-panel scales into an effective equivalent single-layer model. To this
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date, few authors attempted to derived corrugated sandwich panel models
with multiple nonlinear scales. Rabczuk et al. [140] created a three-layer
quasi-continuum that can handle nonlinear transverse behavior. In their
model, an unit cell is modeled as two conventional beams representing the
face sheets connected to a homogenized shell element that represents the
core. The core element has effective nonlinear properties to incorporate
member-level buckling in an average sense. Goncalves et al. [56] proposed
an ESL model with nonlinear stiffness properties to predict local buckling,
following the ideas of Byklum and colleagues for ribbed panels [24, 23, 25].
These models are, however, dissimilar from the conventional FE2 as the
microscopic behavior is pre-determined by subjecting a representative cell
of the structure to idealized displacement boundary conditions.

1.4 Scope and novel features of the work

Previous studies demonstrated the power of equivalent-single-layer models
in predicting the stiffness response of corrugated sandwich structures
under quasi-static loads. Classical first-order (FSDT) models are accurate
in the absence of significant scale interactions. Cauchy-based models are,
however, unable to describe the response of short, transversely shear-
flexible structures due to the lack of size-dependent parameters. Moreover,
models with linear microscale cannot predict local geometric instabilities
that can substantially affect the global structural response.

In this context, this doctoral dissertation provides an homogenized mod-
eling approach for corrugated sandwich beams that contains information
from interdependent nonlinear scales. The main objectives are

(I) To define a nonlinear size-dependent homogenized model for corru-
gated sandwich beams;

(II) To create a constitutive approach that includes unit cell geometric
parameters and nonlinear information from a sub-cell scale into the
homogenized beam equilibrium;

(III) To provide a finite element model, stiffness matrices and iterative
scheme for the scale transitions;

The macroscopic equivalent single-layer model is founded on a couple
stress-based (MCST) Timoshenko beam theory, providing theoretical basis
for a size-dependent formulation. The macroscopic constitutive equations
have analogy with boundary tractions on a structural cell (mesoscale) sub-
jected to idealized displacements. Scale transitions are enforced within the
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macroscopic stiffnesses, whose formulations are derived from a geometri-
cally nonlinear microscopic face sheet model. Predictor-corrector iterations
seek equilibrium between macroscopic and microscopic states.

The approach is validated in different configurations against equivalent
three-dimensional finite element models and analytical equations. A linear
version of the model is derived, compared with finite-element results and
other state-of-art homogenized beam models. Progressive nonlinear bend-
ing and post-buckling analyses demonstrate the relevance of the nonlinear
scale interactions and showcase the capability of the homogenized model
in predicting them. Sensitivity analyses are conducted to identify the
parameters governing the size-dependent response.

1.5 Structure of the dissertation

The doctoral dissertation is organized in chapters that are summarized as
follows

• Chapter 2 summarizes the main novel contributions of the work.

• Chapter 3 introduces a nonlinear modeling approach for corrugated
sandwich beams. The scales and their interrelationships are defined.
A macroscopic couple stress model is derived with constitutive re-
lations from unit cell analysis. The scale transitions are described
and an analytical microscopic model developed. A homogeneous-to-
discrete stress localization scheme is determined. A finite element is
provided, along with an implicit scheme to solve the set of algebraic
finite-element equations.

• Chapter 4 presents stiffness derivations for selected unit cells through
conventional plane frame analysis. In the general case, the stiffnesses
are function of the microscopic state. Core-related input parameters
for the microscopic model are derived.

• Chapter 5 presents a two-scale linear model simplification. Com-
parison with the conventional thick-face sandwich beam theory is
presented. Validations are conducted through bending (deflection
and stress) and linear buckling analyses.

• Chapter 6 utilizes the multiscale modeling approach to predict the
nonlinear response of corrugated sandwich beams. Nonlinear bend-
ing and buckling analyses are conducted to trace progressive failure
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paths. Comparisons with conventional models and closed-form equa-
tions are provided.

• Chapter 7 provides size-effect sensitivity studies based on the couple
stress model. The structural parameters that lead to size-dependency
are identified. The suitability of the model in capturing size effects is
assessed.

• Chapter 8 provides discussions on the assumptions, relevance, suit-
ability and limitations of the present modeling approach, along with
directions for future studies.

• Chapter 9 presents the main conclusions from the study.

1.6 Author contribution

The Author has carried out the research presented in this doctoral dis-
sertation independently. The dissertation supervisor and advisor have
contributed by providing constructive feedback and helped define the scope
and extent of research. The doctoral dissertation has been partially based
on journal publications by the Author. Minor direct reproductions from
these documents are presented in the dissertation, with the source explic-
itly disclosed. The concepts in the entire dissertation are extended from
Ref. [58], Ref. [59] and Ref. [57]. The treatment of geometric nonlinearities
is based on the conclusions of Ref. [56].
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2. Original features

As manufacturing evolves, lightweight corrugated sandwich panels become
a viable design solution. Their stiffness behavior is, however, not accurately
described with the conventional plane-stress theories. A modified couple
stress model with nonlinear scale interactions is employed to predict their
progressive bending and buckling response. In this context, the main
contributions of this work are:

1. A scale-dependent nonlinear model for bending and buckling anal-
ysis of corrugated beams. The homogenized description represents
superimposed two-dimensional cell deformation modes. The model
has a fully coupled constitutive matrix to describe normal stresses.
Stiffnesses are determined based on cell micromechanics. A finite
element based on previous works and related stiffness matrices are
provided.

2. A multiscale approach to incorporate micro-nonlinearities to the ho-
mogenized equilibrium equations. Nonlinear scale interactions are
obtained via macroscopic stiffness updates. The nonlinear stiffnesses
are function of the macroscopic strain state and of an embedded ana-
lytical microscopic model. Conventional implicit finite-element solvers
are modified to incorporate nonlinear stiffness behavior.

3. An analytical nonlinear microscopic model to extract the average
geometrically nonlinear stretch response of the sandwich face sheets.
Equivalent homogenized stiffness terms are derived as function of the
strain-state.

4. A stress localization scheme for the face sheets of corrugated sandwich
cells. In addition to the averaging of macroscopic quantities, recov-
ery of zero-average periodic terms and linear superposition of local
stresses.
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3. A multiscale modeling approach

In this chapter, a novel multiscale modeling approach for corrugated sand-
wich beams with arbitrary core is derived. The model supplements Ref. [57]
by the Author with nonlinear sub-structural information via a scale tran-
sition scheme. First, the general assumptions needed for an equivalent
model are discussed and the scale interrelationships are defined. The
macroscale is derived along with constitutive relations, which result from
mesoscale and microscale analyses. Localized stiffness effects are embed-
ded via coordinate-dependent nonlinear coefficients, which are extracted
from the microscale as function of the strain state. A homogeneous-to-
discrete localization scheme is then determined and discussed. A finite
element is provided in conjunction with iterative implicit schemes to attain
energetic scale equilibrium.

3.1 General assumptions

A sandwich beam is an idealization of a three-dimensional sandwich panel,
in which the response described by the Theory of Elasticity can be reduced
as independent of the width coordinate (Figure 3.1). The plane-strain
idealization applies to beam-like structures such as wide plates undergo-
ing cylindrical bending. Corrugated sandwich beams are geometrically
periodic, composed of two-dimensional repeating blocks named unit cells.

Figure 3.1 depicts a generic unit cell with horizontal and vertical di-
mensions s and h, respectively. Two continuous horizontal thin-walled
members, namely the face sheets or simply the faces, are positioned at the
vertical ends; in the present work, equal thickness tt = tb = t f is assumed
for a condensed presentation. The beam width b, that is, the y-axis dimen-
sion, is unity (b = 1.0) ; forces are then implied to refer to as per unit width.
The depth, namely the dimension between the centerline of the faces, is
defined as d = h− t f .
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Figure 3.1. Corrugated sandwich beam as an idealization of the three-dimensional struc-
ture, and unit cell with general dimensions and boundary forces indicated.

Corrugated cores have thin-walled members interlaced in a single direc-
tion, see Figure 1.7 for examples. The discrete connection points between
face sheets and core struts are denoted hard points. The local transverse
deformation at the hard points is negligible. Rectangular corrugated cells
are connected at least at their four outer corners, which transmit forces
between consecutive cells (Figure 3.1). In the derivations presented, the
core interface between neighboring cells is assumed to be void.

discrete
homogenized

(c)

(a)

(b)

Figure 3.2. Localized effects due to (a) local loads (b) local buckling, and (c) face sheet
discrete and homogenized bending descriptions.

Homogenization of two-dimensional cells into an one-dimensional contin-
uum requires kinematic compatibility and the definition of scale averaging
rules. The response is said purely global in the absence of localized loads
(such as patch loads, Figure 3.2a) and local nonlinearities (such as local
buckling, Figure 3.2b). As illustrated in Figure 3.2c, the global bending-
induced response of corrugated sandwich face sheets is discontinuous piece-
wise linear and can be averaged into a two-scale size-dependent model
through linear combination of unit cell representative modes. Localized
effects introduce stress concentrations leading to higher-order piecewise
response, and influence the global stiffness behavior. Their continuum
modeling requires the incorporation of nonlinear sub-cell scale information
into the homogenized description. For moderate localized effects, linear
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superposition may be employed to recover the local response provided that
the stiffness model is consistent.

The present approach describes the stiffness response of corrugated
sandwich beams through three interacting scales:

• Macroscale: a 1-D representation of a 2-D sandwich beam;

• Mesoscale: a 2-D repeating unit cell of the structure;

• Microscale: a sub-cell member; here, a 1-D face sheet segment;

Four cell deformation modes are utilized to determine macroscopic stiff-
ness and localize the averaged solution (Figure 3.3). Scale transitions are
enforced by modifying the macroscopic constitutive law with nonlinear
(coordinate- and state-dependent) stiffness terms. Small strains and mod-
erate rotations are incorporated at macroscopic and microscopic scales
through the von Kármán kinematics. Microscale-independency leads to a
two-scale (macro-meso) global model with constant stiffnesses.

(a) (b) (c) (d)

Figure 3.3. Cell deformation modes upon which constitutive relations are built (a) uniform
stretch (b) stretch-bending (c) periodic shear deformation (d) curvature.

In this work, nonlinear geometric information is extracted from the a
microscopic face sheet model to incorporate the effect of local buckling in
the homogenized solution. Stretch-related face sheet stiffness terms are
thus state-dependent. Nonlinearities are assumed to be sufficiently small
as not to strongly influence the internal force distribution due to transverse
loads. The effect of local loads is not object of this work; transverse loads are
assumed to produce a transversely incompressible state and consequent
periodic shear distribution. The validation models are built accordingly.

The approach is summarized in Figure 3.4. The macroscopic predictor
displacement field is averaged over equal stiffness intervals. The average
microscopic ϵi strain is utilized to compute internal forces Ni and Mi

from an analytical nonlinear microscopic model. The microscopic forces,
along with Ω unit cell-dependent geometric and core material information,
are used to obtain a macroscopic corrector constitutive matrix C. For
every load increment, iterations continue until the scales are in energetic
equilibrium. The macroscale is post-processed to predict discrete stresses
over the two-dimensional structure.
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Figure 3.4. A novel multiscale approach with scale transitions and interrelationships
indicated; iterations in a typical load increment.

3.2 Macroscale and mesoscale

The macroscale is based on the modified couple stress-based Timoshenko
beam theory [143, 111]. Modifications are made in line with the model
derived by the Author in Ref. [57], such that the constitutive relations
and stress resultants have a direct correspondence with the boundary
forces on an idealized corrugated two-dimensional sandwich unit cell. The
macroscale describes the nonlinear response in terms of the undeformed
configuration and does not consider changes in geometry in computing
equilibrium. Macroscopic geometric nonlinearities are described based on
the von Kármán assumption, implying validity limited to small strains
and moderate rotations.

 

Figure 3.5. Conventions upon which the macroscopic couple stress beam model is con-
structed. Adapted from Goncalves et al. [57].
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3.2.1 Macroscopic kinematics and static equilibrium

Figure 3.5 shows the general conventions of a couple stress beam of length
L and height h. The two-dimensional displacement field can be written as

Ux(x, z)= u(x)+ zφ(x) (3.1a)

Uz(x, z)= w(x) (3.1b)

where u, w and φ are the axial centerline and transverse displacements,
and the cross-sectional rotation about the y-axis, respectively. The kine-
matics of deformation of the Timoshenko model is summarized in Figure
3.6.

Figure 3.6. Kinematics of the Timoshenko-based beam model with 1-D and 2-D displace-
ment components indicated (displacements are exaggerated).

The nonzero strains, which include the von Kármán nonlinear term
in addition to the linear strains, as well as the curvature related to the
macro-rotation of the couple stress model, are [143]

ϵx = ∂u
∂x

+ 1
2

(︂∂w
∂x

)︂2
+ z

∂φ

∂x
= ϵ+ zκ (3.2a)

γxz ≡ γ=φ−θ (3.2b)

χxy = 1
4

(︂∂φ
∂x

− ∂2w
∂x2

)︂
= 1

4
(κ+Θ) (3.2c)

where

θ =−∂w
∂x

, κ= ∂φ

∂x
, Θ= ∂θ

∂x
=−∂

2w
∂x2 (3.3)

The principle of virtual displacements for the static case yields

δW = δU +δV = 0 (3.4)

where δW is the total virtual work, δU is the virtual strain energy and δV
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the virtual work done by applied forces.

The virtual strain energy of the modified couple stress theory [177] can
be written as the volume integral

δU =
∫︂

v
(σi jδϵi j +mi jδχi j)dv (3.5)

where mi j is the deviatoric part of the couple stress tensor and χi j the
components of the curvature tensor. Considering only the non-zero stress
and strain components, the virtual strain energy becomes [143]

δU =
∫︂ L

0

∫︂
A

(σxδϵx +σxzδγxz +2mxyδχxy)dA dx

=
∫︂ L

0

[︂
N
(︂∂δu
∂x

+ ∂w
∂x

∂δw
∂x

)︂
+M

∂δφ

∂x
+Q

(︂
δφ+ ∂δw

∂x

)︂
−P

∂2δw
∂x2

]︂
dx

(3.6)

The virtual work done by external forces in absence of body couples is
given by [143]

δV =−
∫︂ L

0
( f δu+ qδw)dx+ [N(0)δu(0)+V (0)δw(0)+M(0)δφ(0)

+P(0)δθ(0)−N(L)δu(L)−V (L)δw(L)−M(L)δφ(L)−P(L)δθ(L)]

(3.7)

where

V =Q+ ∂P
∂x

+N
∂w
∂x (3.8)

The axial N, shear Q and two independent bending stress resultants
(stretch-bending) M and (local bending) P utilized in Eq. 3.6 and Eq. 3.7
are the internal forces of the beam per unit width, defined as (Figure 3.5)
[57]

N =
∫︂

z
σx dz (3.9a)

Q = Ks

∫︂
z
σxz dz (3.9b)

M =
∫︂

z

(︂
σxz+ 1

2
mxy

)︂
dz (3.9c)

P = 1
2

∫︂
z

mxy dz (3.9d)

where Ks is the shear correction factor of the Timoshenko beam theory.
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The static equilibrium equations are obtained as

∂N
∂x

=− f (3.10a)

∂V
∂x

=−q (3.10b)

Q− ∂M
∂x

= 0 (3.10c)

The boundary conditions are one of each following duality pairs

N or u, V or w, M or φ, P or θ (3.11)

and must be specified at the beam end coordinates x = 0 and x = L.

3.2.2 Macroscopic constitutive relations

A nonlinear constitutive model is defined as proposed by the Author [57].
Stresses and strains are coupled by coefficients Q i j, which are, in the
general case, nonlinear

σx =Q11ϵx +Q13χxy (3.12a)

2mxy =Q31ϵx +Q33χxy (3.12b)

σxz =Q22γxz (3.12c)

The stresses have an analogy with the tractions at a representative section
of the structure. Homogenized constitutive relations are demonstrated for
a simplified antiplane core and extended for a generic structure.

Stretch-bending Cell-bending

Figure 3.7. Compatibility between displacement of the faces and homogenized cross-
sectional properties.
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Antiplane core

An antiplane sandwich cell has a negligible effective core elastic modulus
(Ec ≈ 0). As consequence, the transverse shear stresses are independent
of the height coordinate [4]. Consider the antiplane cell section with
E t = Eb = E and tt = tb = t f depicted in Figure 3.7. The homogenized normal
and couple-stress distributions are derived from independent conventional
Euler-Bernoulli beams.

The stretch (κ) and local (Θ) bending components of the couple stress
model are decoupled by enforcing

4Q13z+Q33 = 0 (3.13)

The coefficients Q11 and Q33 describe independent stretch- and cell bending-
related stress components based on the model in Fig. 3.7

Q11z2 − Q33

16
= E(z2 − zzi) (3.14a)

Q33 = 16Ezi z (3.14b)

where

zt = z− h
2
+ t f

2
, zb = z+ h

2
− t f

2 (3.15)

The constitutive coefficients reduce to

Q11 = E (3.16a)

Q13 =−4Ezi(z) (3.16b)

Q33 = 16Ezzi(z) (3.16c)

And the corresponding 2-D normal stress distribution becomes

σx = E
[︁
ϵ+ (z− zi)κ− ziΘ

]︁
(3.17a)

mxy = 2Ezi
[︁
zΘ−ϵ]︁ (3.17b)

where mxy is the cell-bending component. The stretch-related bending
component in Eq. 3.9 becomes

σxz+ 1
2

mxy = E(z− zi)(ϵ+ zκ) (3.18)

The transverse shear stress is represented by an independent linear equa-
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tion

σxz =Gγ, → Q22 =G (3.19)

where G is a core-dependent property that represents the effective com-
bined behavior of the composite phases.

Substituting Eq. 3.17 and Eq. 3.19 into Eq. 3.9, and solving the through-
thickness integrals, the constitutive matrix for a beam composed of an-
tiplane cells with equal face sheets is obtained

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N

M

Q

P

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎣
A 0 0 0

0 D 0 0

0 0 DQ 0

0 0 0 S

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϵ

κ

γ

Θ

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.20)

The antiplane stiffnesses are defined as

A =
∫︂ h

2

− h
2

E dz = 2Et f (3.21a)

D = DG −S =
∫︂ h

2

− h
2

Ez2 dz−
∫︂ h

2

− h
2

Ezzi(z)dz = 1
2

Et f d2 (3.21b)

S =
∫︂ h

2

− h
2

Ezzi(z)dz = 1
6

Et3
f (3.21c)

DQ =
∫︂ h

2

− h
2

G dz (3.21d)

where A is the axial, D the stretch-bending, S the unit cell bending, and DQ

the transverse shear stiffness. Integration of the bending stresses result
in zero axial couplings, as expected for a symmetric setup where neutral
axis and mid-plane coincide.

The constitutive matrix for a sandwich beam with antiplane core and
equal face sheets is diagonal. The linearized antiplane-core non-classical
model results equal to the thick-face sandwich theory [4, 139] as demon-
strated in Section 5.2.

Arbitrary corrugated core, linear microscale

For a generic corrugated cell where the core in-plane stress is non-zero,
Ec ̸= 0, macroscopic normal and couple stresses are fully coupled to the
axial strain and macro-rotation-related curvature (Eq. 3.12). In relation to
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Eq. 3.20, three coupling constitutive coefficients (Ci) emerge in the general
case. The macroscopic constitutive relations becomes

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N

M

Q

P

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎣
A C1 0 C2

C1 D 0 C3

0 0 DQ 0

C2 C3 0 S

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϵ

κ

γ

Θ

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.22)

The constitutive matrix is symmetric. Linear unit cells with a horizontal
symmetry line have C1 = 0. Direct height integration analogous to Eq. 3.21
is cumbersome for complex corrugated sandwich beams. A mesoscopic
unit cell analysis is generally preferred for stiffness computations, as
demonstrated in Section 3.2.3. The same stiffnesses could be defined by
energy considerations as described in Ref. [125].

Arbitrary corrugated core, nonlinear microscale

Local buckling is embedded into the macroscopic equilibrium by modifi-
cation of the constitutive coefficients. The constitutive matrix becomes

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N

M

Q

P

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎣
A C1 0 C2

C1 D 0 C3

0 0 DQ 0

C2 +B1 C3 +B2 0 S

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϵ

κ

γ

Θ

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.23)

where A, C1 and D are effective coefficients, which incorporate the axial
stiffness degradation of the face sheets based on a microscopic model.

The constitutive matrix has symmetric hyperelastic components and
two pseudo coefficients that yield asymmetry. The coefficients B1 and
B2 transfer the strain energy related to the secondary local bending to
the macroscopic equilibrium equations. In relation to Eq. 3.9d, the local
bending resultant P is supplemented by an artificial stress component

P = 1
2

∫︂
z

mxy dz+
∫︂

z
σx;2 dz (3.24)

where σx;2 denotes a secondary bending-related normal stress. Analogously,
an artificial force-displacement pair emerges in the macroscopic strain
energy (Eq. 3.6).
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Equilibrium in terms of displacements

The equilibrium equations, written as function of generalized displace-
ments and homogenized stiffnesses are, in the general case, given by

(i) :
∂

∂x

{︂
A
[︂∂u
∂x

+ 1
2

(︂∂w
∂x

)︂2]︂
+C1

∂φ

∂x
−C2

∂2w
∂x2

}︂
=− f (3.25a)

(ii) :
∂

∂x

{︂
A
[︂∂u
∂x

+ 1
2

(︂∂w
∂x

)︂2]︂∂w
∂x

+C1
∂φ

∂x
∂w
∂x

+DQ

(︂
φ+ ∂w

∂x

)︂
(3.25b)

−S
∂3w
∂x3 + (C2 +B1)

∂2u
∂x2 +B1

∂w
∂x

∂2w
∂x2 + (C3 +B2)

∂2φ

∂x2

}︂
=−q

(iii) : DQ

(︂
φ+ ∂w

∂x

)︂
− ∂

∂x

{︂
C1

[︂∂u
∂x

+ 1
2

(︂∂w
∂x

)︂2]︂
+D

∂φ

∂x
+C3

∂2w
∂x2

}︂
= 0 (3.25c)

For negligible microscopic stiffness, S,C2,C3,B1,B2 → 0, Eq. 3.25a-c reduce
to the equilibrium equations of the classical Timoshenko beam theory with
von Kármán nonlinearity.

3.2.3 Mesoscopic stiffness derivations

The micromechanics of an arbitrarily placed unit cellΩ= [xa, xb] is analyzed
to compute homogenized macroscopic stiffnesses. Figure 3.8 shows the
conventions adopted, consistent with the two-dimensional displacement
field of the macroscopic model. The four outer corners represent the cell
connectivity at the centerline of the face sheets. The outward normal vector
to the boundary ∂Ω is n. Displacements are assumed to be small relative
to the cell general dimensions. Constitutive relations are determined
from linear Euler-Bernoulli frame models, as demonstrated in Section
4.1 for selected corrugated cells. Macroscopic geometric nonlinearity (von
Kármán) is neglected to estimate stiffnesses.

Figure 3.8. Conventions adopted to determine equivalent macroscopic stiffnesses from a
2-D unit cell.
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Antiperiodic boundary displacements UΓ are enforced (Figure 3.9) in-
ducing modes ∆i that fulfill the Hill-Mandel macrohomogeneity condition
[66, 67, 112]. Unit cell average strains εΩ are computed from boundary
displacements Ui (Ux,Uz,∂Uz/∂x) and related to the macroscopic strains

εΩ = 1
2sd

∫︂ xb

xa

∫︂ zb

za

[Ui(xb, z)nb +Ui(xa, z)na]dz dx → ϵ,κ,γ,χ (3.26)

Boundary forces that are equal in magnitude and opposite in direction
emerge

F[v,h,θ](xb,d/2)=−F[v,h,θ](xa,d/2)= F t
[v,h,θ] (3.27a)

F[v,h,θ](xb,−d/2)=−F[v,h,θ](xa,−d/2)= Fb
[v,h,θ] (3.27b)

which translate into macroscopic stress resultants through

N = F t
h +Fb

h (3.28a)

M = (F t
h −Fb

h)
d
2
− (F t

v +Fb
v )s

2
(3.28b)

Q = F t
v +Fb

v (3.28c)

P = F t
θ+Fb

θ (3.28d)

The unit cell boundary conditions related to modes ∆i, equivalent macro-
scopic strains and resulting homogenized stiffnesses are presented in the
following sub-sections for each idealized mode.

Axial, bending and coupling stiffnesses, modes ∆1 and ∆2

Figure 3.9a and Figure 3.9b depict antiperiodic axial translations that
produce zero local curvature. The displacement conditions that define
modes ∆1 and ∆2 are

∆1 : UΓ =Ux(xb, z)=−Ux(xa, z) (3.29a)

∆2 : UΓ =Ux

(︂
xb,

d
2

)︂
=−Ux

(︂
xb,−d

2

)︂
(3.29b)

in either case subjected to

∂Uz

∂x
(xb, z)= ∂Uz

∂x
(xa, z)= 0 (3.30)

that is, the local curvature is zero. Vertical boundary displacement is free
to maintain the plane stress condition ∴ F t

v = Fb
v = 0.
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(a) (b)

(c) (d)

Figure 3.9. Mesoscopic displacement boundary conditions employed for macroscopic stiff-
ness computations (a) uniform stretch (b) stretch-bending (c) shear (d) unit
cell bending modes.

The strains, which represent relative changes in length (∆l/l0) uniformly
over the boundary ∂Ω (ϵ) or linearly varying over the depth d at ∂Ω (κ), can
be written as

∆1 : ϵ= 2UΓ

s
(3.31a)

∆2 : κ= 4UΓ

sd
(3.31b)

Combinations define equivalent axial, bending and coupling macroscopic
stiffnesses, in the general case, as

∆1 : A = N
ϵ

= (F t
h +Fb

h)s
2UΓ

, C1 = M
ϵ

= (F t
h −Fb

h)sd
4UΓ

(3.32a)

C2 = P
ϵ
= (F t

θ+Fb
θ )s

2UΓ
(3.32b)

∆2 : C1 = N
κ

= (F t
h +Fb

h)sd
4UΓ

, D = M
κ

= (F t
h −Fb

h)sd2

8UΓ
(3.32c)

C3 = P
κ
= (F t

θ+Fb
θ )sd

4UΓ
(3.32d)

Face sheet nonlinearities are embedded into the stretch-related stiffnesses
by progressively adapting the forces Fh and Fθ according to the microscopic
model. For linear microscale, the stiffnesses are denoted without overline
and the relations are solved in closed-form.
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Transverse shear stiffness, mode ∆3

Figure 3.9c shows a cell undergoing periodic transverse shear deformation
due to acting internal vertical forces. Vertical boundary displacements UΓ

are enforced

UΓ =Uz(xb, z)=−Uz(xa, z) (3.33)

The unit cell is subjected to zero-average forces that restore moment
equilibrium, which induce a periodic horizontal displacement without
stretch

Ux(xb, z)=Ux(xa, z), F t
h =−Fb

h = (F t
v +Fb

v )s
2d (3.34)

Zero local curvature is implied from the conditions proposed. The equiva-
lent transverse shear strain has vertical and horizontal components, which
are defined as

γ= 2UΓ

s
+ 1

d

[︂
Ux

(︂
x,

d
2

)︂
−Ux

(︂
x,−d

2

)︂]︂
(3.35)

The macroscopic transverse shear stiffness results into

DQ = Q
γ

= (F t
v +Fb

v )sd

2UΓd+
[︂
Ux

(︂
x, d

2

)︂
−Ux

(︂
x,− d

2

)︂]︂
s

(3.36)

Local cell bending and coupling stiffnesses, mode ∆4

Figure 3.9d shows an unit cell bending locally in absence of horizontal
stretch. The enforced displacements Γ are

UΓ = ∂Uz

∂x
(xb, z)=−∂Uz

∂x
(xa, z) (3.37)

subjected to the zero-stretch condition

Ux(xb, z)=Ux(xa, z)= 0 (3.38)

The average unit cell curvature is given by

Θ= 2UΓ

s
(3.39)

Vertical boundary displacement is free to maintain the plane stress condi-
tion ∴ F t

v = Fb
v = 0. The cell bending stiffness S and related couplings are

defined
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S = P
Θ

= (F t
θ+Fb

θ )s
2UΓ

, C2 = N
Θ

= (F t
h +Fb

h)s
2UΓ

C3 = M
Θ

= (F t
h −Fb

h)sd
4UΓ

(3.40)

The cell bending stiffness is also related to the local shear force ∂P/∂x.

3.3 Microscale

Figure 3.10 shows a microscopic beam model representing the ith face
between arbitrary consecutive hard points of the two-dimensional struc-
ture. The face sheet is assumed to be vertically supported on the core,
wi(xa) = wi(xb) = 0. Reaction forces Ni and Pi develop due to the imposed
macroscopic average stretch (Figure 3.10b).

 

(a) (b)

Figure 3.10. Idealization of an imperfect face segment as a simply supported 1-D beam
with end rotational springs.

Rotational springs represent attached core struts. Their effective behav-
ior is described via semi-rigidity factors [117]

ϱ=
(︂

1+ 3EI f

kcl i

)︂−1
(3.41)

where I f = t3
f /12 and kc is the effective core rotational restraint, which

depends on the core setup and expected load paths. The basic concept is
demonstrated in Figure 3.11. Estimates of kc for selected corrugated cores
are presented in Section 4.2.

Face sheet:

Core strut:

idealization

Figure 3.11. Concept of effective core bending stiffness in the derivation of nonlinear
microscopic relations.
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3.3.1 Kinematics and static equilibrium

Following the von Kármán nonlinear Euler-Bernoulli theory, the micro-
scopic two-dimensional displacement field is given by

Ux;i = ui(xi)+ ziθi(xi) (3.42a)

Uz;i = wi(xi) (3.42b)

where ui,wi are the axial and transverse micro-displacements, θi =− dwi
dx

the slope and zi the vertical coordinate. The axial strain, the only non-zero
component, is given by

ϵx;i = ∂ui

∂xi
+ 1

2

(︂∂wi

∂xi

)︂2
+ zi

∂θi

∂xi
(3.43)

The microscopic internal forces are defined as

Ni = Et f

[︂∂ui

∂xi
+ 1

2

(︂∂wi

∂xi

)︂2]︂
(3.44a)

Pi =−
Et3

f

12

(︂∂2wi

∂x2
i

)︂
(3.44b)

Vi = ∂Mi

∂xi
+Ni

∂wi

∂xi
(3.44c)

Employing the principle of virtual displacements (see e.g. Ref. [144] for
details) and assuming quasi-static conditions, the equilibrium equations
become, in absence of axial or transverse distributed loads

∂Ni

∂xi
= 0 (3.45a)

∂P2
i

∂x2
i
+ ∂

∂xi

[︂
Ni

(︂∂wi

∂xi
+ ∂w0

∂xi

)︂]︂
= 0 (3.45b)

where w0 is the initial micro-deflection, whose imposition is needed for
nonlinear buckling analysis. The boundary conditions are defined at the
beam end coordinates xa and xb

Ni or ui, Vi or wi, Pi or θi (3.46)

Equation 3.45 is solved using the slope-deflection method and second-order
coefficients to determine moment reactions [8, 166, 12]. Equation 3.45b is
evaluated separately, as it can be solved independently of ui. Derivations
for Pi(xb)=−Pi(xa) are then conducted.
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Integrating Eq. 3.45b twice and enforcing the support conditions, the
equilibrium expression obtained is

Ni(wi +w0)+Pi(xa)=
Et3

f

12

(︂∂2wi

∂x2
i

)︂
(3.47)

3.3.2 Local buckling analysis

The macroscopic stiffness implications of local face sheet buckling are esti-
mated by subjecting the microscopic model to unit stretch and recovering
the resulting internal forces. The internal forces are embedded into the
mesoscopic unit cell models as later described.

Figure 3.12. End-shortening microscopic boundary value problem, with nodal force con-
ventions and displacement boundary conditions indicated.

The average macroscopic stretch over the face sheet domain ϵi is enforced
at the beam boundaries as demonstrated in Figure 3.12. The macroscopic
curvature Θi has minor impact in the progressive instability and is thus
neglected.

The displacement boundary conditions for a typical periodic segment i

become

ui(xb)=−ui(xa)= ϵi l i

2
(3.48a)

wi(xb)= wi(xa)= 0 (3.48b)

θi(xb)= θ2;i(xb)+ Θi l i

2
≈ θ2;i(xb)= θΓ2;i (3.48c)

θi(xa)= θ2;i(xa)− Θi l i

2
≈ θ2;i(xa)=−θΓ2;i (3.48d)

where θ2;i is the secondary-bending (local buckling-related) slope. Equal
core rotational stiffness at xa and xb is implied.

The related boundary forces can be written as

Ni(xb)=−Ni(xa)= NΓ
i (3.49a)

Pi(xb)=−Pi(xa)= PΓi (3.49b)
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The assumed conditions are met in nearly all practical sandwich cells.

The face sheet is assumed to have an initial shallow half-sine imperfect
shape. The imperfection of amplitude α0 is described by

w0(x)=α0 sin
(︂πxi

l i

)︂
(3.50)

Auxiliary terms are defined as

η=
√︄

12
⃓⃓
NΓ

i

⃓⃓
l2

i

Et3
f

, ζ= PΓi
NΓ

i
(3.51)

In axial compression, NΓ
i < 0 and

∫︁
ϵidx < 0, the solution to Eq. 3.45b is

wi(xi)=A1 sin
(︂ηxi

l i

)︂
+ A2 cos

(︂ηxi

l i

)︂
+ η2w0

π2 −η2 sin
(︂πxi

l i

)︂
+PΓi (3.52)

Applying the boundary conditions wi(0)= wi(s)= 0 the deflection becomes,
in the general case

wi(xi)= ζ
{︂ [1−cos(η)]

sin(η)
sin

(︂ηxi

l i

)︂
+cos

(︂ηxi

l i

)︂
−1

}︂
+ η2w0

π2 −η2 sin
(︂πxi

l i

)︂
(3.53)

and the slope θi =−dwi/dxi

θi(xi)= ζ
{︂η[1−cos(η)]

l i sin(η)
cos

(︂ηxi

l i

)︂
− η

l i
sin

(︂ηxi

l i

)︂}︂
+ η2w0π

(π2 −η2)l i
cos

(︂πxi

l i

)︂
(3.54)

The bending moment distribution results in

Pi(xi)=
ζEt3

f
12

{︂
η2

l2
i

cos
(︂
ηxi
s

)︂
+ η2[1−cos(η)]

l2
i sin(η) sin

(︂
ηxi
l i

)︂
+ η2w0π

2

(π2−η2)ζl i
sin

(︂
πxi
l2

i

)︂}︂
(3.55)

where the boundary reaction is

PΓi =−
Et3

f ϱπη
3w0[1+cos(η)]

4l2
i (π2 −η2)[η(ϱ−1)cos(η)−3sin(η)ϱ+ (ϱ−1)η]

(3.56)

The strain due to micro-stretch is computed

ϵi = NΓ

Et f
− 1

2l i

∫︂ l i

0

(︂dwi

dx

)︂2
dx =−η[a1 cos(η)−a2ζ

2 sin(η)+a3η]
2a2l2

i (1+cos(η))
(3.57)

where
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a1 = 1
2
πη3w0(πw0 +8ζ), a2 = (π−η)2(π+η)2

a3 =π4ζ2 +η4ζ2 +η2
[︂
4ζπw0 +π2

(︂w2
0

2
−2ζ2

)︂]︂ (3.58)

The equivalent macroscopic normal force is given by

N i = NΓ
i = 1

l i

∫︂ l i

0
Ni dx (3.59)

The secondary-bending effect is transferred to the macroscale by defining
an energetically equivalent constant bending setup as (Figure 3.13)

P i =
√︄

1
l i

∫︂ l i

0
P2

i dx (3.60)

The relation between Eq. 3.57, and Eq. 3.59, Eq. 3.60 describes the force-
strain progressive local buckling response of a corrugated sandwich face
sheet segment. The microscopic support conditions w(xa) = w(xb) = 0 im-
ply non-zero vertical reactions arising along the secondary bending, but
these are not transferred to the macroscale given the plane stress condi-
tion, which requires σz = 0. As the domain-average bending moment is
transferred, energy conservation is not substantially violated.

equal strain energy

Figure 3.13. Determination of effective local face bending macroscopic stiffness term
based on the microscopic state.

The relations presented are valid for a typical periodic segment i. The
effect of local slope boundary conditions in the face sheet axial stiffness
may be incorporated by setting θi(xa) = 0, resulting in θ2;i(xb) ̸= θ2;i(xa) in
Eq. 3.48. The derivations that have been presented may be pursued
analogously.

In tension, the microscopic equations output an approximately constant,
state-independent response, with a generally minor imperfection straight-
ening effect. Stiffnesses derived from a tensioned microscale under the
boundary conditions of Eq. 3.48 usually result approximately equal to the
theoretically computed counterparts. Thus, a practical approach may only
consider geometric nonlinearities in compression.
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3.4 Nonlinear scale transitions

A scale interaction scheme incorporates nonlinear face sheet stiffness
effects due into the macroscopic equilibrium equations:

1. Macro-to-micro transition: average face sheet strains are computed
from the macroscopic solution and enforced as microscopic boundary
displacement conditions;

2. Micro-to-macro transition: effective face sheet resultants are derived
from the microscopic model and the related macroscopic stiffness
terms are updated;

A predictor-corrector scheme (see Figure 3.4) iterates the scales for ener-
getic equilibrium at every load increment.

3.4.1 Macro-to-micro scale transition

Figure 3.14a defines the internal segment ω of an arbitrary two-dimensional
corrugated beam, where face sheets j and k are located. A cross-sectional
cut shows the related internal forces (Figure 3.14b) in typical top and
bottom face sheet segments j and k.

(a) (b)

Figure 3.14. (a) Segment ω of a two-dimensional corrugated sandwich beam and (b) a
sectional cut in Ω with related internal forces indicated.

Recovering the average axial face sheet strains due to the cell stretch
modes in ω from the homogenized macroscopic solution

ϵ j = 1
l i

∫︂ x j+1

x j

(︂
ϵ+ d

2
κ
)︂

dx (3.61a)

ϵk =
1
l i

∫︂ xk+1

xk

(︂
ϵ− d

2
κ
)︂

dx (3.61b)

The strains are imposed to the microscopic model through displacement
boundary conditions (Eq. 3.48).
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3.4.2 Micro-macro scale transitions

The micro-macro transition consists in determining macroscopic stiffnesses
based on microscopic force-strain relations. The boundary force NΓ

i and
moment distribution Pi(xi) are obtained when solving Eq. 3.57 for the
boundary conditions of Eq. 3.48, and the segment averages are computed
using Eq. 3.59 and Eq. 3.60.

In compression, the effective axial modulus and pseudo-stiffness for the
secondary-bending energy are given by (i = j,k)

E i = 1
t f

N i

ϵi
(3.62a)

B̃i =
⃓⃓⃓⃓
P i

ϵi

⃓⃓⃓⃓
(3.62b)

In a pre-buckling compressive state, the microscopic equations yield E i ≈ E

and B̃i ≈ 0. In tension E i = E and B̃i = 0 may be taken.

The effective face sheet-related macroscopic stiffnesses associated with
the stretch-related mesoscopic modes ∆1 and ∆2 are computed for an inter-
nal segment ω

A(ϵ,ω)= (E j +Ek)t f (3.63a)

D(ϵ,ω)= (E j +Ek)
t f d2

4
(3.63b)

C1(ϵ,ω)= (E j −Ek)
t f d
2

(3.63c)

B1(ϵ,ω)=±(B̃ j + B̃k) (3.63d)

B2(ϵ,ω)=±(B̃ j + B̃k)
d
2

(3.63e)

to which the linear core contribution terms are added. Secondary bending
related to local buckling effectively stiffens the macroscopic beam, as it
offsets the energy balance by the portion spent in bending the related face
sheet. The pseudo-stiffness coefficients B1 (Eq. 3.63d) and B2 (Eq. 3.63e)
must have their signs chosen as to produce the desired effect. A practical
approach is to select B1 = 0 and B2 as positive, as κ≈Θ in local buckling-
prone structures.

The relations presented imply that the macroscopic beam is composed of
piecewise constant stiffness intervals that depend on the two-dimensional
geometry and strain state.
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3.5 Downscaling: face sheet stress recovery

In this section, a scheme to recover the discrete two-dimensional response
from the average homogenized solution based on the homogenization rules
and microscopic strain state is defined. In this section, face sheet stresses
are studied. Core strut stress distributions may be reasoned from equilib-
rium as exemplified in Section 5.3.2 for a web-core beam.

Segment i

Figure 3.15. Conventions adopted in the stress analysis of a sandwich face segment based
on the 1-D homogenized model.

Figure 3.15 shows the ith face sheet interval between hard points of the
two-dimensional structure. Segment conventions follow the microscopic
model of Section 3.3. Localized stresses denoted l are obtained by linear
mode superposition

• Stresses due to (i) stretch, (ii) stretch-bending and (iii) unit cell bend-
ing are extracted from the homogenized 1-D solution and averaged
over discrete face sheet intervals

• Macroscopic (iv) shear-induced stresses averaged in the macroscopic
level through the stiffnesses DQ and ∂P/∂x are recovered based on
the unit cell shear distribution

• Nonlinear (v) second-order face sheet stresses have their strain en-
ergy averaged into effective macroscopic stiffnesses; recovery is based
on the macroscopic state and microscopic relations

The discrete normal face sheet resultant is obtained by macroscopic
averaging as

N̂ i =
Et f

l i

∫︂ xb

xa

(︂
ϵ0 + d2

4di
κ0

)︂
dx (3.64)

where di is defined as d j = d/2 (top segment) and dk = −d/2 (bottom seg-
ment).
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The bending resultant has average cell-bending, local buckling and peri-
odic shear components

P̂ i(xi)=
Et3

f

12l i

∫︂ xb

xa

Θdx+Pi(xi)+PQ;i(xi) (3.65)

where Pi is extracted from the face sheet model of segment i as function of
the macroscopic strain (Eq. 3.61 and Eq. 3.55) and

PQ;i(xi)= xi

l i

∫︂ xb

xa

(︂
kQDQγ+kP S

∂Θ

∂x

)︂
dx (3.66)

The parameter kQ is a shear force distribution factor, which estimates the
share of shear forces Q carried by the face sheet i. In analogous manner,
kP is the shear distribution factor related to the first derivative of local cell
bending moment P.

4 3

1
2

5

(a) (b)

4
3

1
2

5

Classical shear-induced moment Non-classical shear force distribution

Figure 3.16. Shear analysis of a triangular core unit cell (a) concept of shear distribution
factor kQ and related shear-induced bending distribution (b) estimate of local
face sheet shear factor k∂P through an auxiliary frame model.

Assuming a linear transverse shear mechanism, kQ may be estimated in
an energy-consistent manner based on the mesoscopic mode ∆3. Figure 3.16
demonstrates the shear distribution factor for a triangular core cell and
related shear-induced bending moment. Distribution factors for selected
cells are presented in Chapter 4. The second term in the right-hand side of
Eq. 3.66 is the face sheet component of the cell bending-related shear. From
the macroscopic equations, kP = Et3

f /(12S) is implied, yet this estimate is
observed not to be generally accurate. An auxiliary model may be utilized
to determine a more consistent kP (Figure 3.16b), or alternatively kP ≈ kQ

may be taken for simplicity.

The total stress at segment i is computed assuming the face sheets to
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behave as conventional Euler-Bernoulli beams, that is

σ̂i(xi, zi)= N̂ i

t f
+ 12P̂ i zi

t3
f

(3.67)

where zi is the local face coordinate (see Figure 3.15). Writing the micro-
scopic stress distribution in the macroscopic coordinate system is straight-
forward by relating xi to x. This way, the face sheet stress equation may be
implemented as a direct macroscopic output.

3.6 Finite element scheme

The macroscopic equations of the present approach are solved using the
finite element method in conjunction with an implicit solver for nonlinear
algebraic equations. In the sections that follow, a finite element model is
presented along with a modified Newton-Raphson implementation that
includes scale iterations. Auxiliary finite element matrices and resulting
secant and tangent stiffness matrices are presented in Appendix A.

3.6.1 Finite element model

Consider the two-noded couple stress finite element Ωe(xa, xb) derived in
Ref. [57] as an extension of the element in Arbind and Reddy [7]. The
element is demonstrated in Figure 3.17.

Figure 3.17. Finite element model as utilized to solve the macroscopic equilibrium equa-
tions [57].

The generalized displacements at the elemental end nodes 1 and 2 are
given by

u1 = u(xa), u2 = u(xb) (3.68a)

φ1 =φ(xa), φ2 =φ(xb) (3.68b)

w1 =∆1 = w(xa), w2 =∆3 = w(xb) (3.68c)

θ1 =∆2 = θ(xa), θ2 =∆4 = θ(xb) (3.68d)
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and, similarly, the generalized forces are obtained [57]

N1 =−N(xa), N2 = N(xb) (3.69a)

M1 =−M(xa), M2 = M(xb) (3.69b)

V1 =−V (xa), V2 =V (xb) (3.69c)

P1 =−P(xa), P2 = P(xb) (3.69d)

The generalized displacement vector can be written as

ue =
{︁

u1 φ1 w1 θ1 u2 φ2 w2 θ2
}︁T (3.70)

whereas the generalized nodal force vector is given by

Fe = {N1 M1 V1 P1 N2 M2 V2 P2}T (3.71)

The primary variables u, w and φ are approximated within the elemental
domain as follows

u(x)=
2∑︂

i=1

uiψi, φ(x)=
2∑︂

i=1

φiψi, w(x)=
4∑︂

i=1

∆iϕi (3.72)

where ψi and ϕi are, respectively, the Lagrange linear polynomials and Her-
mitian cubic polynomials, whose definitions are reproduced in Appendix
A. The finite element equations are developed following the approach in
Wood and Zienkiewicz [176]. Only nodal forces are assumed to be present.

The strain vector is approximated from nodal displacements as

ϵ=
(︂

B+ 1
2

w′Bσ

)︂
ue (3.73)

where the prime denotes differentiation with respect to x. The elemental
secant stiffness matrix can be determined from the virtual work statement
(Eq. 3.4) as

Ke =
∫︂ xb

xa

(︂
B+w′Bσ

)︂T
Ce

(︂
B+ 1

2
w′Bσ

)︂
dx (3.74)

and shown element-wise in Appendix A. The force-displacement equilib-
rium is given by

Fe =Ke(ue)ue (3.75)

In the general case, the internal elemental force Keue is function of the
displacement vector due to macroscopic and/or microscopic nonlinearities.
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3.6.2 Nonlinear finite element solution

The nonlinear finite element equations depart from the notion that the
internal and external force vector balance fulfills global equilibrium

R=Fint −Fext → 0 (3.76)

Equilibrium is sought using the Newton iterative method. Time discretiza-
tion is employed and the residual expanded using Taylor series to the
first-order term. Based on the known solution u(r−1) the updated residual
at iteration r is estimated as [144]

R(u(r))=R(u(r−1))+ ∂R
∂u

⃓⃓⃓
u(r−1)

δu+O (∆u)2 (3.77)

where δu=u(r) −u(r−1). Therefore,

δu=−T−1R (3.78)

and

u(r) =u(r−1) +δu (3.79)

The tangent stiffness matrix is defined for the element Ωe(xa, xb) as

Te = ∂Re

∂ue
≡ ∂Fe

∂ue
=Ke + ∂Ke

∂ue
ue (3.80)

and shown in detail in Appendix A. Equation 3.80 implies that the exact
tangent stiffness matrix depends on constitutive matrix variations, which
are assumed to be small in consecutive iterations, ∂C/∂u→ 0.

The global finite element equations result from assembling individual
elements. Numerical integration (Gauss quadrature) is utilized to com-
pute the matrix elements. Membrane and shear locking are avoided by
utilizing selective Gauss quadrature for the affected terms. Details on
the element assembly procedure or numerical integration are omitted as
they follow concepts for conventional finite elements, see Ref. [144] for a
comprehensive description.

Algorithm 1 summarizes the main concepts for a Newton-Raphson im-
plementation of the approach with embedded scale transitions. The con-
stitutive matrix update procedure is summarized in Algorithm 2. In a
simplified methodology, constitutive updates are conducted once per incre-
ment based on the predictor solution, what may require small increments
for convergence.
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Algorithm 1: Arbitrary step of the Newton-Raphson iterative
method with scale transitions.

Data: Displacement vector u(t−1) and external force vector F(t−1)
ext at step t−1.

Result: Updated u(t), step t.

Do F(t)
ext =F(t−1)

ext +∆Fext, set iteration r = 1 ;
while ∥R∥ > εtol do

1. Compute elemental tangent stiffness Te(u(r−1)
e ,C(r−1)) and residual

Re(u(r−1)
e ,C(r−1)), assemble global T and R ;

2. Apply boundary conditions to global system, solve u(r) =u(r−1) −T−1R;
3. Update constitutive matrix C(r) = f (u(r),ω) (Algorithm 2) ;
4. Compute force vector Fint;e and assemble global Fint ;
5. Apply boundary conditions and evaluate residual R=Fint −F(t)

ext ;
5. Update r = r+1 ;

end
Write converged step parameters: u(t), C(t) ;
Obtain internal forces and post-process ωi stresses (Section 3.5)

Algorithm 2: Constitutive matrix update procedure

Data: Displacement vector u(r−1), 2-D geometry (ω(x)), unit cell stiffness relations
(Section 3.2.3, Section 4), microscopic equations (Section 3.3).

Result: Updated C(r) at increment r.

1. Compute strains ϵ based on the displacement field, average over intervals ϵ j and
ϵk (Eq. 3.61) ;

2. Compute average microscopic forces N i(u(r)) and P i(u(r)) (Eq. 3.59) ;
3. Update C(r)(u(r),ω) (Eq. 3.63) ;

Algorithm 3 summarizes an arc-length implementation based on the Riks
Method that can overcome limit points. The arc-length solver uses the Feng
continuation criterion to determine the increment direction, as described
in Refs. [37, 46]. Details of Newton-type solvers in their standard format
may be found, for instance, in Refs. [35, 36, 144]. The steps provided are
mainly based on Ref. [144] and Ref. [37].
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Algorithm 3: Arbitrary step of an arc-length method with scale
transitions.

Data: Displacement vector u(t−1), reference force vector Fext, load multiplier
λ(t−1).

Result: Updated u(t), step t.

Set iteration r = 1 ;
while ∥R∥ > εtol do

if r = 1 then
1. Compute elemental tangent stiffness Te(u(t−1)

e ,C(t−1)
e ) and assemble

global T. Set residual vector R due to load increment. Compute
load-controlled displacement increment δu(r) =−T−1R ;

2. Apply boundary conditions and compute the tangential displacement
increment δû(r) =T−1Fext;

3. Calculate the predictor increment δλ(r) =±l̂(δû(r)δû(r))−1, where
l̂ = l̂0

√︁
[δû(r)]Tδû(r) is the arc-length increment. Define the increment sign:

sign(δλ)=sign(δu(t−1)δû(r)) ;
4. Compute the displacement increment δu(r) = δu(r) +δλδû(r) ;
5. Update the global variables u(r) =u(t−1) +δu(r), λ(r) =λ(t−1) +δλ(r) ;
6. Update constitutive matrix C(r) = f (u(r),ω) (Algorithm 2) ;
7. Compute force vector Fint;e and assemble global Fint ;
8. Apply boundary conditions and evaluate residual R=Fint −λ(r)Fext ;
9. Update r = r+1 ;

else
1. Update the tangent stiffness matrix T(u(r−1),C(r−1)) ;
2. Compute δu(r) =−T−1R and δû(r) =T−1F ;
3. Compute the incremental load parameter a1(δλ)2 +2a2δλ+a3 = 0, where
a1 = [δû(r)]Tδû(r), a2 = [δu(r) +∆u(r−1)]Tδû(r) ,
a3 = [δu(r) +∆u(r−1)]T (δu(r) +∆u(r−1))− l̂2

. Select the root that provides
the largest dot product between previous and current solution
δλt,r = argmax {[∆u(r−1)]T (∆u(r−1) +δu(r) +δλiδû(r))} ;

4. Compute the displacement increment δu(r) = δu(r) +δλ(r)δû(r) ;
5. Update the global variables u(r) =u(t−1) +∆u(r−1) +δu(r) ;
5. Update constitutive matrix C(r) = f (u(r),ω) (Algorithm 2) ;
6. Compute force vector Fint;e and assemble global Fint ;
7. Apply boundary conditions and evaluate residual R=Fint −λ(r)Fext. ;
8. Update r = r+1 ;

end
Write converged step parameters: u(t), λ(t), C(t). Adjust arc-length ;
Obtain internal forces and post-process ωi stresses (Section 3.5)

end
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4. Analysis of selected unit cells

This chapter employs the definitions of Chapter 3 in the analysis of selected
corrugated sandwich cells. Conventional linear frame analysis is employed
along the mesoscopic relations and microscopic properties as to define
homogenized stiffnesses of semi-rigid web-core and rigid triangular core, X-
core, Y-core and hexagonal core cells. An approach extension for cells with
higher vertical corrugation order is discussed. Shear distribution factors
that result from the transverse shear boundary problems are provided.
The core rotational restraint that is input to the microscopic equations is
presented for selected unit cells.

4.1 Homogenized stiffness properties

Stiffness properties are determined for selected unit cells based on the
definitions and assumptions of Section 3.2.3. Unit cells with length s and
depth d are discretized with linear elastic Euler-Bernoulli frame elements.
All cells are symmetric about their mid-length vertical plane. Displacement
boundary conditions (Eq. 3.29, Eq. 3.34 and Eq. 3.39) are enforced to the
cell corner nodes 1-4 (Figs. 4.1-4.5), and the resulting boundary tractions
are utilized in conjunction with Eq. 3.32, Eq. 3.36 and Eq. 3.40 to compute
macroscopic stiffnesses. The unit cells are selected given their practical
relevance and relative simplicity, what allows short stiffness expressions to
be presented. Extension for other corrugated unit cells is straightforward
when applying the same basic principles.

Considering the idealized micromechanical modes ∆1−∆4 (see Figure 3.9),
boundary displacements are applied along conditions to prevent rigid-body
motion. In mode ∆3, horizontal forces Fh;i are enforced to the boundary
nodes as to fulfill moment equilibrium. The boundary conditions for unit
displacement UΓ = 1 can be summarized as
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Boundary conditions, idealized case ∆1:

Ux;3 =Ux;2 =−Ux;4 =−Ux;1 = 1 (4.1a)

Uz;5 = ∂Uz;1

∂x
= ∂Uz;2

∂x
= ∂Uz;3

∂x
= ∂Uz;4

∂x
= 0 (4.1b)

Boundary conditions, idealized case ∆2:

Ux;3 =Ux;1 =−Ux;2 =−Ux;4 = 1 (4.2a)

Uz;5 = ∂Uz;1

∂x
= ∂Uz;2

∂x
= ∂Uz;3

∂x
= ∂Uz;4

∂x
= 0 (4.2b)

Boundary conditions, idealized case ∆3:

Uz;3 =Uz;2 =−Uz;1 =−Uz;4 = 1 (4.3a)

Ux;5 =Uz;5 = ∂Uz;5

∂x
= 0 (4.3b)

Fh;2 = Fh;1 =−Fh;3 =−Fh;4 =
s(F t

v +Fb
v )

2d
(4.3c)

Boundary conditions, idealized case ∆4:

∂Uz;3

∂x
= ∂Uz;2

∂x
=−∂Uz;1

∂x
=−∂Uz;4

∂x
= 1 (4.4a)

Uz;5 = ∂Uz;5

∂x
=Ux;1 =Ux;2 =Ux;3 =Ux;4 = 0 (4.4b)

The reaction forces are defined according to Section 3.2.3. In relation to
the nodal numbering adopted, the forces become

F t
h = Fh;3 =−Fh;4, Fb

h = Fh;2 =−Fh;1 (4.5a)

F t
θ = Fθ;3 =−Fθ;4, Fb

θ = Fθ;2 =−Fθ;1 (4.5b)

In modes ∆1, ∆2 and ∆4, vertical forces Fv;i are zero, and vertical displace-
ments are unconstrained to fulfill the plane stress macroscopic condition.
In the transverse shear derivations (∆3), boundary forces Fθ;i are zero, and
rotations are unconstrained; the slopes are equal at opposite boundaries
due to the mid-length vertical symmetry. The face sheet-related reaction
force Fh; f is function of the effective axial modulus E i. The subscript j

refers to the top face sheet, while k refers to the bottom counterpart. In the
linear case E i = E, whereas for a geometrically nonlinear microstructure it
describes the axial stiffness reduction due to the progressive instability.

The following sections present stiffness analyses of selected unit cells.
Boundary forces Fh,Fv,Fθ are presented per unit displacement UΓ and per
unit width. Stiffness expressions obtained are simplified by acknowledging
that the members are thin-walled, that is, t f , tc ≪ s,d.
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4.1.1 Semi-rigid web-core unit cell

A web-core unit cell is analysed as a frame with 7 nodes and 6 elements.
The connection between face sheets and core struts at nodes 6 and 7 is
semi-rigid, implemented through a modification matrix (see, for example,
Eq. 23.11 in Ref. [28]). The additional independent variable kθ represents
the connection rotational stiffness per unit width. The reaction forces
related to the enforced displacement boundary conditions are provided as
follows.

1 2
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4 3
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1 6 2
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(2)
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Figure 4.1. Mesoscale analysis of a web-core cell with semi-rigid joints (a) geometry and
boundary forces (b) deformation modes.

Boundary reaction forces, idealized case ∆1:

F t
h = 2E j t f

s
, Fb

h = 2Ek t f

s
(4.6a)

F t
θ = Fb

θ = 0 (4.6b)

Boundary reaction forces, idealized case ∆2:

F t
h = 2E j t f

s
, Fb

h =−2Ek t f

s
(4.7a)

F t
θ = Fb

θ = 0 (4.7b)

Boundary applied and reaction forces, idealized case ∆3:

The force boundary conditions for moment equilibrium are given by

Fh;3 = Fh;4 =−Fh;1 =−Fh;2 =
2Ekθ t3

f t3
c

sd(Et3
f t3

c +3dkθ t3
f +kθst3

c
(4.8)
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The boundary vertical reaction forces are

F t
v = Fb

v =
2Ekθ t3

f t3
c

s2(Et3
f t3

c +3dkθ t3
f +kθst3

c
(4.9)

The face sheet shear distribution factor is kQ = 1/2.

Boundary reaction forces, idealized case ∆4:

F t
θ = Fb

θ =
Et3

f

6s
(4.10a)

F t
h = Fb

h = 0 (4.10b)

The stretch and local bending relations depend only on the face mechanical
properties, implying that the core is an antiplane. The normal and couple
stress-related stiffnesses can be written as

A = (E j +Ek)t f (4.11a)

D = (E j +Ek)
t f d2

4
(4.11b)

S =
Et3

f

6
(4.11c)

C1 = (E j −Ek)
t f d
2

(4.11d)

C2 = C3 = 0 (4.11e)

The transverse shear stiffness DQ [58] is given by

DQ =
2Ed2t3

f t3
c

s[k1d2t3
f t3

c +2d3t3
f + st3

c(d2 + t2
f )]

, k1 = E
kθ

(4.12)

The expression is function of face sheet and core strut bending stiffnesses.
The transverse shear-carrying mechanism involves bending of the mem-
bers, and the resulting stiffness is highly dependent on the rotational
rigidity of the connection.

For a rigid thin-walled cell (k1 →∞, t f ≪ d), the expression reduces to

DQ;rigid ≈
2Et3

f t3
c

s(2dt3
f + st3

c)
(4.13)

The transverse stiffness relations are function of t3
f , t3

c, indicating that the
shear deformation results entirely from bending of the face sheet and core
(web).
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4.1.2 X-core unit cell

A regular X-core unit cell is analysed as a rigid frame with 5 nodes and
6 elements as represented in Figure 4.2. The core strut length is defined
as p = (1/2)

⎷
d2 + s2. The boundary reaction forces related to the enforced

displacement boundary conditions are presented as follows.

(a) 4 3(1)

(2)
(3)

(5)
5

1
2(6)

(4)

4 3

5 5 5

1 2

5

(b)
4 3 4 3 4 3

1 2 1 2 1 2

Figure 4.2. Mesoscale analysis of a X-core cell with rigid joints (a) geometry and boundary
forces (b) deformation modes.

Boundary reaction forces, idealized case ∆1:

F t
h = 2E j t f

s
+ 4Ept3

c
d2 p2 + s2t2

c
, Fb

h = 2Ek t f

s
+ 4Ept3

c
d2 p2 + s2t2

c
(4.14a)

F t
θ =− Epdt3

c
p2d2 + s2t2

c
, Fb

θ = Epdt3
c

p2d2 + s2t2
c

(4.14b)

Boundary reaction forces, idealized case ∆2:

F t
h = 2E j t f

s
+ 4Ept3

c
d2 p2 + s2t2

c
, Fb

h =−2Ek t f

s
− 4Ept3

c
d2 p2 + s2t2

c
(4.15a)

F t
θ =− Epdt3

c
p2d2 + s2t2

c
, Fb

θ =− Epdt3
c

p2d2 + s2t2
c

(4.15b)

Boundary applied and reaction forces, idealized case ∆3:

The force boundary conditions for moment equilibrium are given by

Fh;3 = Fh;4 =−Fh;1 =−Fh;2 =
Etc(d2t3

f t2
c +4s2 p2t3

f +2ps3t3
c)

2p2sd(3pt3
f + st3

c)
(4.16)
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The boundary vertical reaction forces are

F t
v = Fb

v =
Etc(d2t3

f t2
c +4s2 p2t3

f +2ps3t3
c)

2p2s2(3pt3
f + st3

c)
(4.17)

The face sheet shear distribution factor for the X-core is obtained as

kQ =
2p2t3

f t2
c

(4s2 p2 +d2t2
c)t3

f +2ps3t3
c

(4.18)

Boundary reaction forces, idealized case ∆4:

F t
θ = Fb

θ =
Et3

f

6s
+ Et3

c(4d2 p2 + s2t2
c)

12p(s2t2
c +d2 p2)

(4.19a)

F t
h =−Fb

h =− Epdt3
c

d2 p2 + s2t2
c

(4.19b)

Stiffness relations

Simplifying the force-strain relations, the stretch- and curvature-related
stiffnesses result into

A = (E j +Ek)t f + Ac (4.20a)

D = (E j +Ek)
t f d2

4
+ Acd2

4
(4.20b)

S =
Et3

f

6
+ Est3

c
3p

(4.20c)

C1 = (E j −Ek)
t f d
2

(4.20d)

C2 = 0 (4.20e)

C3 =−Acd2

8
(4.20f)

where the face sheet terms are generally given in Eq. 4.11 and

Ac = 4Est3
c

pd2
(4.21)

In absence of geometric nonlinearities, couplings between stretch modes
∆1 and ∆2 are zero, as the unit cell is symmetric about the horizontal axis.
Coupling between stretch ∆1 and curvature ∆4 modes also become zero, as
the reaction forces at top and bottom nodes are equal in magnitude and
inverse sign, to a zero boundary average.
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The transverse shear stiffness DQ [59] may be simplified into

DQ = Esd2tc

4p3
(4.22)

a linear function of tc, implying a core strut stretch-dominated transverse
shear mechanism. The simplified shear stiffness is independent of the face
sheet properties, as the transverse shear-carrying core struts of consecutive
cells are directly connected.

4.1.3 Triangular core unit cell

A triangular core cell is analysed as a rigid frame with 5 nodes and 5
elements as represented in Figure 4.3. The core strut length is p =

⎷
c2 +d2.

The boundary reaction forces related to the enforced displacement bound-
ary conditions are presented as follows.
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5 4 3
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(a)
(1) (2)4 3

1
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(4)

(5)

5

(b)

Figure 4.3. Mesoscale analysis of a triangular core cell with rigid joints (a) geometry and
boundary forces (b) deformation modes.

Boundary reaction forces, idealized case ∆1:

F t
h = 2E j t f

s
, Fb

h = 2Ek t f

s
+ Ept3

c
d2 p2 + c2t2

c
(4.23a)

F t
θ = 0, Fb

θ = Epdt3
c

2(d2 p2 + c2t2
c)

(4.23b)

Boundary reaction forces, idealized case ∆2:

F t
h = 2E j t f

s
, Fb

h =−2Ek t f

s
− Ept3

c
d2 p2 + c2t2

c
(4.24a)
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F t
θ = 0, Fb

θ =− Epdt3
c

2(d2 p2 + c2t2
c)

(4.24b)

Boundary applied and reaction forces, idealized case: ∆3

The force boundary conditions for moment equilibrium are given by

Fh;3 = Fh;4 =−Fh;2 =−Fh;1 =−
E(2c3 pt3

c + c2 p2t3
f +d2t3

f t2
c)

c2dp2t2
c

(4.25)

The boundary vertical reaction forces are

F t
v =−

Et3
f

2c3 (4.26a)

Fb
v =−

E[2c2 p2t3
f + (d2 − c2)t2

c t3
c +4c3 pt3

c]

2c3 p2t2
c

(4.26b)

The shear distribution factor for the triangular core may be simplified as

kQ =
pt3

f t2
c

2c2(pt3
f +2ct3

c)
(4.27)

Boundary reaction forces, idealized case ∆4:

F t
θ =

Et3
f

12c
, Fb

θ =
Et3

f

12c
+ Et3

c(4d2 p2 + c2t2
c)

12p(c2t2
c +d2 p2)

(4.28a)

F t
h = 0, Fb

h = Epdt3
c

2(c2t2
c +d2 p2)

(4.28b)

Stiffness relations

Simplifying the force-strain relations, the stretch- and curvature-related
stiffnesses result into

A = (E j +Ek)t f + Ac (4.29a)

D = (E j +Ek)
t f d2

4
+ Acd2

4
(4.29b)

S =
Et3

f

6
+ Ect3

c
3p

(4.29c)

C1 = (E j −Ek)
t f d
2

− Acd
2

(4.29d)

C2 = Acd
2

(4.29e)

C3 =−Acd2

4
(4.29f)
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where

Ac = Ect3
c

pd2 (4.30)

Even at the linear case, all coupling stiffnesses are non-zero as the unit
cell does not have a horizontal symmetry plane.

The transverse shear stiffness DQ may be simplified into [59]

DQ = Ecd2t f tc

p3t f + c3tc
(4.31)

The resulting expression is a linear function of t f and tc, implying face
sheet and core stretch-dominated shear deformation.

4.1.4 Y-core unit cell

A Y-core cell with 6 nodes and 6 elements is shown in Figure 4.4. The
Y-core frame is said regular; the inclined core struts connect to neighboring
cells at nodes 3 and 4, and node 5 is located at z = d/2. In comparison with
a generic Y-core (see Figure 5.2), the amount of independent parameters is
reduced and closed-form equations are short. The reaction forces relate to
the enforced boundary displacements are presented as follows.
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Figure 4.4. Mesoscale analysis of a Y-frame cell with rigid joints (a) geometry and bound-
ary forces (b) deformation modes.

Boundary reaction forces, idealized case ∆1:

F t
h = 2E j t f

s
+ 4Ept3

c
d2 p2 + s2t2

c
, Fb

h = 2Ek t f

s
(4.32a)

F t
θ =

Epdt3
c

d2 p2 + s2t2
c
, Fb

θ = 0 (4.32b)
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Boundary reaction forces, idealized case ∆2:

F t
h = 2E j t f

s
+ 4Ept3

c
d2 p2 + s2t2

c
, Fb

h =−2Ek t f

s
(4.33a)

F t
θ =

Epdt3
c

d2 p2 + s2t2
c
, Fb

θ = 0 (4.33b)

Boundary applied and reaction forces, idealized case: ∆3

The force boundary conditions for moment equilibrium are given by

Fh;3 = Fh;4 =−Fh;2 =−Fh;1 =

E{3[4p2s2(4d+p)+4d2 t2
c(d+p)]t6

f +4[2ps3(3d+2p)+d2st2
c]t3

f t3
c+4ps4 t6

c}
s2d{(3[2p2s2(p+2d)+t2

c(d3+2d2 p+4p3)]t3
f +[st2

c(d2+4p2)+2ps3(2p+3d)]t3
c)}

(4.34)

The boundary reaction forces are given by

F t
v =

E{[6t2
c[d2(3d+p)−ps2]+12p2s2(6d+p)]t6

f +[2st3
c(2d2−s2)]t3

f t3
c+8ps4 t6

c)}
[3[ps2+d2(d+3p)]t2

c+6p2s2(2d+p)]t3
f +[2p(3d+2p)s3+st2

c(d2+4p2)]t3
c

(4.35a)

Fb
v =

2Et3
f

s3 (4.35b)

The shear distribution factor may be simplified as

kQ =
3p(2d+ p)t6

f + s(3d+2p)t3
f t3

c

6p(4d+ p)t6
f +4(3d+2p)st3

f t3
c +2s2t6

c
(4.36)

Boundary reaction forces, idealized case ∆4:

F t
θ =

Et3
f

6s
+ Et3

c(4d2 p2 + s2t2
c)

12p(d2 p2 + s2t2
c)

, Fb
θ =

Et3
f

6s
(4.37a)

Fb
h = 0, F t

h = Epdt3
c

d2 p2 + s2t2
c

(4.37b)

Stiffness relations

Simplifying the force-strain relations, the stretch- and curvature-related
stiffnesses result into

A = (E j +Ek)t f + Ac (4.38a)

D = (E j +Ek)
t f d2

4
+ Acd2

4
(4.38b)

S =
Et3

f

6
+ Est3

c
6p

(4.38c)
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C1 = (E j −Ek)
t f d
2

+ Acd
2

(4.38d)

C2 = Acd
4

(4.38e)

C3 = Acd2

8
(4.38f)

where

Ac = 2Est3
c

pd2 (4.39)

Even in a linear formulation, all coupling stiffnesses are non-zero as the
unit cell does not have a horizontal symmetry plane.

The transverse shear stiffness DQ may be simplified into

DQ = 8Et3
c

s

[︂ 3p(4d+ p)t6
f +2s(3d+2p)t3

f t3
c + s2t6

c

12pd(d+ p)t6
f +2s(3d2 +8dp+3p2)t3

f t3
c +4s2(d+ p)t6

c

]︂
(4.40)

The expression implies that the transverse shear mechanism is governed
by the bending of the face sheets and core struts. Connection semi-rigidity
may be relevant for the stiffness response, and may be incorporated in
analogous way as for the web-core cell.

4.1.5 Hexagonal cell

For a regular hexagonal cell with corrugation order n = 1 as shown in
Figure 4.5, the side length p is the only independent variable. The side
length relates to the general unit cell dimensions by s = 3p and d =⎷

3p.
Unlike the unit cells previously shown, the face sheet and core stiffnesses
are coupled due to the discontinuous core. The core struts have, however,
limited impact in the stretch- and curvature-related stiffnesses. The reac-
tion forces relate to the enforced boundary displacements are presented for
the linear case as follows. The geometric nonlinear case may be considered
based on an antiplane core approximation.

Boundary reaction forces, idealized case ∆1 (linear):

F t;l
h = Fb;l

h =
2Et f [(9p2+15t2

c)t4
f +12t3

f t3
c+(12p2+5t2

c)t2
c t f +4t6

c]
p[(27p2+45)t4

f +12t3
c t3

f +(36p2+15t2
f )t f t3

c+4t6
c] (4.41a)

F t;l
θ =−Fb;l

θ =
4
⎷

3Et4
f t3

c

(27p2+45t2
c)t4

f +12t3
f t3

c+(36p2+15t2
c)t f t3

c+4t6
c

(4.41b)
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Figure 4.5. Mesoscale analysis of a hexagonal cell with rigid joints (a) geometry and
boundary forces (b) deformation modes.

Boundary reaction forces, idealized case ∆2 (linear):

F t;l
h =−Fb;l

h =
2Et f [(45p2+6t2

c)t4
f +24t3

f t3
c+(48p2+t2

c)t f t3
c+4t6

c]
p[(135p2+18t2

c)t4
f +24t3

f t3
c+(144p2+3t2

c)t f t3
c+4t6

c
(4.42a)

F t;l
θ = Fb;l

θ =
12

⎷
3E4

f t3
c

(135p2+18t2
c)t4

f +24t3
f t3

c+(144p2+3t2
c)t f t3

c+4t6
c

(4.42b)

Boundary applied and reaction forces, idealized case ∆3:

The force boundary conditions for moment equilibrium are given by

Fh;3 = Fh;4 =−Fh;1 =−Fh;2 =

2
⎷

3Et3
f t3

c(16p2 t3
c+32p2 t3

f +3t3
f t2

c)
16p5 t6

c−96p5 t3
f t3

c−216p5 t6
f +51p3 t3

f t5
c+189p3 t6

f t2
c

(4.43)

The boundary vertical reaction forces are

F t
v = Fb

v =
2Et3

f t3
c(16p2 t3

c+32p2 t3
f +3t3

f t2
c)

16p5 t6
c−96p5 t3

f t3
c−216p5 t6

f +51p3 t3
f t5

c+189p3 t6
f t2

c
(4.44)

The shear distribution factor over the boundary segments is kQ = 1/2.

Boundary reaction forces, idealized case ∆4:

F t
θ = Fb

θ =
Etf 3[(45p2+6t2

c)t4
f +8t3

f t3
c+(144p2+3t2

c)t f t3
c+4t6

c]
6p[(135p2+18t2

c)t4
f +24t3

f t3
c+(144p2+3t2

c)t f t2
c+4t6

c] (4.45a)

F t
h = Fb

h =−
12

⎷
3Et4

f t3
c

(135p2+18t2
c)t4

f +24t3
f t3

c+(144p2+3t2
c)t f t3

c+4t6
c

(4.45b)

70



Analysis of selected unit cells

Stiffness relations

Considering a linear microscale, the stiffnesses may be approximated as

A ≈ 2Et f (4.46a)

D ≈ 3Et f p2

2
(4.46b)

S =
Et3

f (5t3
f +16t2

c)

30t3
f +32t3

c
(4.46c)

C1 = C2 = 0 (4.46d)

C3 =−
6Et3

f t3
c

15t3
f +16t3

c
(4.46e)

An order of magnitude analysis reveals that the face sheets strongly com-
mand the response under idealized stretches.

The transverse shear stiffness DQ may be simplified into

DQ =
48E(2t3

f + t3
c)t3

f t3
c

p2(63t6
f +48t3

f t4
c +8t6

c
(4.47)

which contains combinations of the bending stiffness of the face sheets
and core struts; the transverse shear mechanism is bending-dominated.
Connection semi-rigidity may be relevant for the stiffness response, and
may be incorporated in analogous way as for the web-core cell.

4.1.6 Cells with higher vertical corrugation order

The stiffness derivations as presented are valid for cores with a single
order of corrugation, n = 1, that is, connected to neighboring cells through
top and bottom corners with a void core interface. Stiffnesses for cells
with higher corrugation order (i.e. n > 1, see Figure 4.6) may be derived
following the same basic instructions, with few additional observations.

In relation to the micromechanical approach proposed, the boundary
displacements UΓ must be applied as to produce a constant displacement
(∆1,∆3,∆4) or linear variation (∆2) over the unit cell height. Analogously,
boundary forces or the induced moment are summed over the boundary.
Horizontal forces for moment equilibrium in ∆3 must be assessed over the
entire boundary. The general averaging rules presented are, in general,
equally applicable.
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(a)

(b)

n = 1 n = 2 n = 4 n = 8

Figure 4.6. (a) Diamond (X-core, ≥ 1) and (b) honeycomb (Hexagonal, ≥ 1) unit cells with
different vertical corrugation orders.

4.2 Core rotational stiffnesses

The nonlinear microscopic equations contain a core-dependent spring con-
stant kc, which accounts for the rotational restraint of the core. The
stiffness provided by the core is function of the strut length and connec-
tivity, and may be described using bounds, as it depends on the global
behavior of the structure. Generally, for a cell without internal hard points

kc = Mi(xa)
θi(xa)

= Mi(xb)
θi(xb)

(4.48)

where Mi is the bending moment and θi the slope at the core support,
respectively. The equality at the opposite ends results from a periodic or
antiperiodic behavior assumption.

The bound idealizations for three simple cores are shown in Figure
4.7 and a qualitative description presented next; lower-bounds may be
conservatively chosen in practical design. Derivation for other cores is
analogous.

Web-core cell

Figure 4.7a shows a web-core box cell . The webs act as pinned beams
with end-moments, with signs depending on the shear and second-order
deformations. When secondary bending is dominant, kc lies within

kasym ≤ kc ≤ ksym, kasym = 2EIc

d
= Et3

c
12d

, ksym = 6EIc

d
= Et3

c
4d

(4.49)

where Ic corresponds to half the bending stiffness of each web. The
bounds depend whether local buckling is symmetric (ksym, Fig. 4.7a;i),
anti-symmetric (kasym, Fig. 4.7a;ii) or present in a single face sheet (inter-
mediate case).
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( i )
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( ii )

Figure 4.7. Idealizations to estimate effective core spring constants kc (a) web-core (b)
X-core (c) triangular core.

X-core cell

The core rotational restraint kc is estimated by considering the central
node (Figure 4.7b) as a rigid due to the converging core struts (pinned-fixed)

kc ≈ 4EIc

p
= Et3

c
3p

(4.50)

Triangular-core cell

For case (i) in (Figure 4.7c, kc may be estimated based on the modes related
to the horizontal offset (average between symmetric and anti-symmetric)

kc ≈ 1
2

(︂6EIc

p
+ 2EIc

p

)︂
= 4EIc

p
= Et3

c
3p

(4.51)

If buckling is confined to a single face sheet (case ii)

kc ≈ 4EIc

p
= Et3

c
3p

(4.52)

a fixed-pinned idealization that leads to the same kc as Eq. 4.51.
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5. Linear model and validations

This chapter defines a macroscopically linear couple stress sandwich model
that is also independent of microscopic nonlinear effects. The macroscale
in Section 3.2 and the related finite element of Section 3.6 are simpli-
fied as defined in Ref. [57]. An eigenvalue problem is set up to predict
global buckling loads. Equivalence with the classical thick-face sandwich
beam model is discussed. Validations in linear bending (deflections and
stress distributions) and critical buckling loads are conducted along with
comparisons with other homogenized beam models.

5.1 Two-scale linear model

The approach presented in Chapter 3 contains three interacting scales,
two of which are nonlinear. Linearlization demands simplifications:

• The von Kármán nonlinear term is removed from the macroscopic
couple stress model;

• Strain-independent face sheet stiffness terms are analytically deter-
mined, implying a constant macroscopic constitutive matrix;

5.1.1 Macroscale and constitutive relations

The macroscopic changes for a linear model are summarized in this section;
all other derivations therein included remain equal to Section 3.2.

The axial strain of the couple-stress model (Eq. 3.2) becomes linear

ϵl
x =

∂u
∂x

+ z
∂φ

∂x
= ϵl + zκ (5.1)

and, consequently, the virtual strain energy (Eq. 3.6) reduces to
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δU l =
∫︂ l

0

[︂
N
∂δu
∂x

+M
∂δφ

∂x
+Q

(︂
δφ+ ∂δw

∂x

)︂
−P

∂2δw
∂x2

]︂
dx (5.2)

The total shear force (Eq. 3.8) becomes

V =Q+ ∂P
∂x

(5.3)

The linear constitutive relations for a linear macroscopic model with linear
microscale can be written as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N

M

Q

P

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎣
A C1 0 C2

C1 D 0 C3

0 0 DQ 0

C2 C3 0 S

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϵl

κ

γ

Θ

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.4)

The constitutive matrix is symmetric in the linear case, that is, C41 = C14

and C52 = C25.

5.1.2 Linear finite element equations

In the linear case, adaptations are required for the element of Section 3.6.
The generalized nodal shear force is based on Eq. 5.3 and terms containing(︁ dw

dx

)︁
are removed from the stiffness matrix. The definitions for quasi-static

linear elastic and linear buckling analyses are provided as follows.

Linear axial and bending analyses

The elemental stiffness matrix in the linear case results into

Ke
0 =

∫︂ xb

xa

BTCBdx (5.5)

as shown component-wise in Appendix A.4. The system of equations F=Ku
is solved for u upon assembling the global force vector and stiffness matrix.

Eigenvalue (linear) buckling

Assume that the sandwich beam is subjected to a constant axial force N

that induces transverse displacements. Following the basic steps in Ref.
[31], the geometric stiffness matrix becomes [57]

Ke
σ =

∫︂ xb

xa

N Bσ
TBσ dx (5.6)

The conventional eigenvalue buckling problem is then solved upon assem-
bling the global matrices
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(K0 −λKσ)dσ = 0 (5.7)

where the eigenvalues λ correspond to the buckling load factors and the
eigenvector dσ provides the buckling modes.

The linear buckling equations can be employed in the analysis of corru-
gated sandwich beams that display clear macroscopic failure.

5.2 Analogy with the thick-face sandwich theory

Consider the thick-face sandwich beam theory according to the conceptual
framework of Allen [4] and Plantema [139]. In their works, the effect of
thick faces is included by studying the shear deformation compatibility
between core and faces. Take the case where horizontal sliding, denoted γ0

in Allen [4] is zero. The global sandwich beam response is defined by a set
of forces 1 [4]

q1 =−∂Q1

∂x
(5.8a)

Q1 = ∂M1

∂x
(5.8b)

M1 =−Dg
∂2w1

∂x2 (5.8c)

Near discontinuities, the faces must bend to a finite curvature for the face
sheets and core to remain attached. Thus, they are locally subjected to a
set of loads, shear forces and bending moments denoted 2, that is [4]

q2 =−∂Q2

∂x
(5.9a)

Q2 = ∂M2

∂x
(5.9b)

M2 =−D f
∂2w2

∂x2 (5.9c)

where D f ≡ S for an antiplane-core cell. The corresponding total quantities
are given by

qg = q1 + q2 (5.10a)

Qg =Q1 +Q2 (5.10b)

Mg = M1 +M2 (5.10c)

wg = w1 +w2 (5.10d)
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Shear strain compatibility between face and core results in the following
relations [4]

−Q1 = Dg
∂3w1

∂x3 =−DQ
∂w2

∂x
+D f

∂3w1

∂x3 (5.11)

where DQ has the same meaning as in the present work and Dg = D+D f .
The face sheet-related stiffnesses for an antiplane core are defined in
Eq. 3.21. After some rearranging, the relations become

∂2Q1

∂x2 −a2Q1 =−a2Qg, a2 = DQDg

D f D
(5.12)

Recall the couple stress beam equilibrium equations, Eq. 3.25. Following
the modifications towards a linear model (Section 5.1.1), axial and bending
responses are decoupled; here only the latter is of interest.

Substituting the relations in Eq. 5.4 into the shear force equilibrium
(Eq. 3.25b, neglecting the von Kármán term), the relation between shear
angle and cross-sectional rotation angle becomes

γ= D
DQ

∂2φ

∂x2 (5.13)

Writing the equilibrium equation related to the shear force derivative
(Eq. 3.25b) in terms of displacements, and substituting the shear angle
definition of Eq. 3.2b, also reckoning that S ≡ D f for an antiplane core, the
following relation is obtained

−q = Dg
∂3φ

∂x3 −D f
∂3γxz

∂x3
(5.14)

Integrating Eq. 5.14 and recalling that
∫︁

q dx =−V

V = Dg
∂2φ

∂x2 +C−D f
∂2γ

∂x2 =Q+Qγ (5.15)

where the constant of integration obtained is included in the global shear
term defined as Q. Substituting Q into Eq. 5.13 and differentiating twice

∂2γ

∂x2 = D
DQDg

∂2Q
∂x2 (5.16)

Isolating ∂2γ/∂x2 in Eq. 5.15 and substituting in Eq. 5.16, the following
differential equation is obtained

D f D0

DgDQ

∂2Q
∂x2 =−V +Q → ∂2Q

∂x2 −a2Q =−a2V , a2 = DQDg

D f D0
(5.17)
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Eq. 5.17 is equal to the governing equation of the thick-face sandwich
theory, Eq. 5.12, acknowledging that Q =Q1 and V =Qa. Therefore, the two
theories are shown to be equivalent in bending for the basic assumptions
of Ref. [4]. The equivalence is lost when couplings are included in the
constitutive matrix (as in Eq. 5.4) or when geometric nonlinearities are
considered.

5.3 Numerical validations

The two-scale model is demonstrated through linear analyses of selected
elastic corrugated sandwich beams. The beams represent wide panels
along the y-axis, whose response is two-dimensional; results are shown
for a unit-width beam, b = 1.0 m. Plane strain is then assumed for the
panels, with elastic modulus set to E = Es/(1−ν2

s ). To simplify geometric
comparisons, the material properties Es = 206 GPa and νs = 0.3 are taken
for face sheets and core struts in all cases. Considering the linear micro-
scopic behavior, stiffnesses are computed using the relations presented in
Chapter 4 for E j = Ek = E.

The examples are validated using finite element models that represent
the three-dimensional geometry (denoted 3-D FE), which are constructed
with four-node reduced integration shell elements (Abaqus S4R) as il-
lustrated in Figure 5.1. Boundary idealizations are consistent with the
kinematics of the macroscopic homogenized beam.

Simple support (roller)
Symmetry

FixedPoint force

(plane strain)

Figure 5.1. Examples of boundary conditions utilized in the 3-D FE validation models.
Reproduced from [57].

Percent deflection error of a given homogenized beam model m is defined
with respect to an equivalent three-dimensional finite element reference
model

ε(%)= 100
(︂wm −w(3−D)

w(3−D)

)︂
(5.18)

Percent buckling load error is defined analogously (that is, substituting w
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by the constant axial force N in Eq. 5.18).

Relative core densities referred in this Chapter are taken as

Web-core : ρc = tc

s
(5.19a)

Triangular core : ρc = tc

s

[︂2(p− t f )
d− t f

]︂
(5.19b)

X-core : ρc = tc

s

[︂4(p− t f )
d− t f

]︂
(5.19c)

Y-core : ρc = tc

s

[︂ (4p+d−3t f )
2(d− t f )

]︂
(5.19d)

which are based on the cell geometric relations defined in Chapter 4.

5.3.1 Linear bending deflection analyses

Validation table

The linear bending response of sandwich beams composed of truss-core
cells of length s = 4a+2c = 0.2 m (Figure 5.2a) and corrugation angle defined
as α= arctan(d/c) is investigated in a parametric fashion. The boundary
conditions utilized in the validation models are sketched in Figure 5.3.
Deflections obtained with the present model are compared to the validation
models in Table 5.1 for a 2.0 m beam with d/tc = 20 under three-point
bending (F = 10 kN). The stiffnesses utilized in each cases are provided.
The results are also validated against the thick-face sandwich theory
solution (as defined in Ref. [4]).

(1) (3)

4 8 3

1 6 2

(4) (5)

(6) (8)

(2)

(7) (9)

5 7

9

(a)
4 10 3

1 2

5

9

(b)

(1) (2) (3)

(4) (5)
(6) (7)

(8)

(9) (10)

6 7 8

Figure 5.2. Frame unit cell models of a (a) generic truss-core (b) Y-core sandwich beam.

Setup A Setup CSetup B

Figure 5.3. Schematic view on validation model (3-D FE) details as utilized in the deflec-
tion analyses of Section 5.3.
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In the homogenized model, the following boundary conditions are valid
for a symmetric half-beam of length L = L0/2

x = 0 : w(0)= N(0)= M(0)= P(0)= 0

x = L/2 : u(L)=φ(L)= θ(L)= 0, V (L)= F/2= 5kN
(5.20)

Accurate predictions are obtained in all cases. The present model predicts
strictly the same deflections as the thick-face sandwich theory for the
antiplane setup A. Minor differences are seen in setups B and C due
to interactions between face sheets and inclined core struts, which are
neglected in the thick-face sandwich theory but included in the present
constitutive equations. The present model is slightly stiffer than the model
in Ref. [4].

Deflection analyses

Sandwich beams composed of four unit cells with geometric relations
defined in Section 4 are analyzed next in terms of deflection distributions.
The cells have dimensions s = d = 0.1 m, t f = d/20 and core relatively
densities ρc = 0.05 or ρc = 0.15. Twelve cell repetitions compose the beams
(L = 12s), which are subjected to three-point bending. Exploiting the beam
symmetry, the same general boundary conditions as in Eq. 5.20 are utilized
for F =−100 kN.

The deflection lines obtained are shown in Figure 5.4. For the trans-
versely asymmetric cores, values obtained from three-dimensional finite
element models are shown for top and bottom face sheets. Overall, the
present model is able to predict the average deflection accurately against
the validation models for all combinations of stiff, flexible, low- and high-
density cores. Changes in core density lead to limited response changes
in the shear-stiff X-core and triangular core cells. Web-core and Y-core
unit cells have their bending response highly influenced by ρc, as their
transverse shear moduli are function of t3

c. Local fluctuations seen in the
3D-FE lines could be retrieved from the homogenized model by localization
of the shear deformation.

5.3.2 Linear bending stress analyses

The following examples utilize the equations of Section 3.5 to predict face
sheet and core stress distributions. Different unit cell arrangements and
various loading conditions are studied.
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Table 5.1. Cell setups, dimensions, corresponding stiffness parameters and maximum
deflections predicted with present and validation models for L = 2.0 m beams
subjected to three-point bending (F = 10 kN).
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Figure 5.4. Three-point linear bending deflections with the present (linear two-scale)
model and validation (3-D FE) (a) X-core (b) triangular core (c) web-core (d)
Y-core.

Cantilevered X-core beam under end vertical force

A X-core sandwich beam of length L = 1.2 m is fixed at one end while free
and subjected to a vertical concentrated force F =−10 kN at the opposite
end. The unit cell dimensions are d = s = 0.12 m, and t f = tc = 0.006 m, see
Figure 4.2c for reference. The homogenized beam boundary conditions are

x = 0 : u(0)= w(0)=φ(0)= θ(0)= 0

x = L : N(L)= M(L)= P(L)= 0, V (L)= F
(5.21)

The maximum deflection obtained with the validation model is w(L0/2)=
−5.982 ·10−4 m, whereas the homogenized couple-stress model predicts
w(L0/2)=−5.975 ·10−4 m (ε≈ 0.1%).

The stress distribution within cell n = 1..10 at i = t,b face sheet is pre-
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dicted based on the homogenized macroscopic solution as

σ̂i = E
s

∫︂ ns

(n−1)s

{︂
ϵ0 + d2

di
κ0 + 12zi

t3
f

[︂
Θ+ s(n−1)

(︂kQDQ

E
γ+kP S

∂Θ

∂x

)︂]︂}︂
dx (5.22)

where the shear distribution factor is kQ = 7.32·10−4. For simplicity, kP = kQ

is assumed.

Figure 5.5 shows the stress distributions at the top surface of the top face
sheet (Figure 5.5a) and bottom surface of bottom face sheet (Figure 5.5b) as
predicted with the homogenized and validation models. The present model
is shown able to predict the stress distributions accurately. Deviations
are observed within the unit cell at the fixed end, related to the simplified
local cell shear description of the macroscopic model. As the unit cell
has a stretch-related transverse shear-carrying mechanism, axial normal
stresses at dominant. Bending stresses are observed mainly near the
fixed end and described by the cell bending parameter. Macroscopic shear-
induced bending stresses related to the Timoshenko shear description are
small over the entire domain.
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Figure 5.5. Stress distributions of a X-core sandwich cantilever beam as predicted with
present and (extrapolated) 3-D FE validation model (a) top surface of the top
face (b) bottom surface of the bottom face.

Fixed-fixed triangular core beam under mid-span force

A triangular core sandwich beam of length L = 2.0 m is fixed at both
ends and subjected to a vertical point force F =−50 kN at mid-span. The
following cell dimensions are taken: s = 0.125 m, d = 0.08 m, t f = 0.004 m
and tc = 0.002 m. The boundary conditions are utilized for the homogenized
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model, where L = L0/2 due to symmetry

x = 0 : u(0)= w(0)=φ(0)= θ(0)= 0

x = L : u(L)=φ(L)= θ(L)= 0, V (L)= F/2
(5.23)

The maximum deflection obtained with the validation model is w(L0/2)=
−8.680 ·10−5 m, whereas the homogenized couple-stress model predicts
w(L0/2)=−8.779 ·10−5 m (ε≈ 1.1%).

The bottom face sheet stress distribution within cell n = 1..8 is predicted
based on the homogenized macroscopic solution according to Eq. 5.22,
whereas for the top face sheet a phase shift of s/2 in the integration inter-
val is introduced. The parameter kQ = 4.43 ·10−4 is computed and kP = kQ

is taken as a simplification. Figure 5.6 shows the face sheet stress distri-
butions predicted by the present and validation models.

60

40

20

0

-20

-40

-60
0 0.25

x-coordinate [m]
0.5 0.75 1.0 0 0.25

x-coordinate [m]
0.5 0.75 1.0

60

40

20

0

-20

-40

-60

Present, membrane3-D FE Present, total Present, bending

(a) (b)

S
ur

fa
ce

 s
tr

es
s,

   
   

[M
P

a]

S
ur

fa
ce

 s
tr

es
s,

   
   

[M
P

a]

Figure 5.6. Stress distributions of a triangular core sandwich cantilever beam as predicted
with present and 3-D FE validation model (extrapolated) (a) top surface of the
top face sheet (b) bottom surface of the bottom face sheet.

Good agreement is generally observed. The shear-induced bending mo-
ment at the segment nearest fixed end segments somewhat deviates from
the validation model when kP = kQ is assumed. A more accurate descrip-
tion would require a macroscopic model with additional shear parameters,
or at least an auxiliary unit cell model to estimate the shear distribution
approximation. As in the X-core beam example, axial normal stresses
are dominant; away from the boundaries, average local cell bending and
periodic shear-induced bending components are negligible.
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Pinned-roller web-core beam under mid-span force

A web-core sandwich beam composed of ten unit cells, with general di-
mensions d = 0.042 m, t f = 0.003 m, tc = 0.004 m, s = 0.12 m, to a total
length L0 = 1.2 m, is assessed under three-point bending. The face sheets
and webs are semi-rigidly connected; four rigidity (per unit width) levels,
kθ = 10 kN, kθ = 50 kN, kθ = 100 kN and kθ = 10000 kN are considered. The
load F applied at mid-span is scaled to w(L0/2)=−0.01 m (3-D FE model) to
facilitate the response comparisons. The boundary conditions (symmetry,
L = L0/2) are the same as presented in Eq. 5.20.
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Figure 5.7. Bottom surface stress distribution at the bottom face sheet of web-core sand-
wich beams in three-point bending, present and 3-D FE models (extrapolated).
Face sheet-web joint rotational stiffness (a) kθ = 10000 kN, (b) kθ = 100 kN, (c)
kθ = 50 kN, (d) kθ = 10 kN.
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Stresses are evaluated by employing Eq. 5.22 for i = b and zi = −t f /2.
The shear distribution factor is kQ = kP = 1/2 in all cases. Figure 5.7 show
bottom surface stress distributions for the different kθ (bottom face sheet).
The vertical reaction forces obtained are also presented. Good agreement
is observed between the models in all conditions. The beam becomes
increasingly shear-flexible as the connection stiffness is decreased. Shear-
induced bending stresses (visualized as the zig-zag pattern) are reduced
as kθ → 0; the sandwich effect is progressively lost and cell local bending
becomes dominant.

Figure 5.8 shows the stress distribution over the core height obtained
with present and validation models. The sandwich effect is shown to
reduce as the joint rotational stiffness is lost; as the connection approaches
a pinned condition, kθ → 0, the assembly behaves as two separate beams
bending with the rigidity of each face sheet, whereas the stresses at the
webs tend to zero.
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Figure 5.8. Web stress distribution of web-core sandwich beams in three-point bending,
present and (extrapolated) 3-D FE models. Face sheet-web joint rotational
stiffness (a) kθ = 10000 kN, (b) kθ = 100 kN, (c) kθ = 50 kN, (d) kθ = 10 kN.
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5.3.3 Linear buckling analyses

The linearized model can predict the critical buckling load of sandwich
beams whose failure mechanism is exclusively due to elastic global buck-
ling, as demonstrated next through one example. In structures where local
buckling is relevant, the multiscale approach is required for maintained
accuracy, as discussed in the following chapter.

Axially compressed pinned-pinned and fixed-free Y-core beams

In this section, two Y-core setups are analyzed as presented in Ref. [57]
by the Author. In ships, Y-core sandwich panels are typically composed of
relatively few large, flexible cells and thus prone to exhibit size effects.

Consider Y-core unit cells with dimensions a = 0.002 m, d1 = 0.013 m,
d = 0.022 m, s = 0.026 m, t f = 0.001 m and tc = 0.0003 m (see Figure 5.2b),
which are similar to the dimensions adopted in Ref. [156]. The boundary
conditions considered are

Fixed-free (cantilever):

x = 0 : V (0)= M(0)= P(0)= 0, N(0)= F

x = L : u(L)= w(L)=φ(L)= θ(L)= 0 (5.24a)

Simply-supported:

x = 0 : w(0)= M(0)= P(0)= 0, N(0)= F

x = L : u(L)= w(L)=φ(L)= θ(L)= 0 (5.24b)

Figure 5.9 shows percent error comparisons between present and the
classical antiplane-core Timoshenko model as function of the relative unit
cell size s/L. The critical buckling loads predicted by the corresponding
validation models are also shown for reference; as expected, the linear
buckling capacity is larger for shorter beams.

Generally, the analyses show that the classical Timoshenko beam re-
sults progressively less accurate as the relative unit cell size is increased,
underpredicting the buckling capacity. The error is larger in the simply-
supported case than in the end-loaded cantilever due to the transverse
concentrate load effect. The present model in its linear format is accurate
for the entire unit cell size range and either boundary conditions as global
buckling dominates the response.
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Figure 5.9. Linear buckling analysis of Y-core sandwich beams under axial compression
(a) end-loaded cantilever (b) end-loaded simply-supported beam. Percent error
of present and classical Timoshenko (antiplane) model, and critical buckling
load (3-D FE).
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6. Multiscale analyses

This chapter validates the multiscale approach proposed in Chapter 3.
First, assumptions needed for the validations are recalled and discussed.
The nonlinear bending response of corrugated sandwich beams is pre-
dicted in terms of displacements and stresses. Their progressive failure
is discussed along the governing macroscopic parameters in the present
approach. Elastic buckling capacities are estimated and post-buckling
paths traced for setups with different characteristics. Results are vali-
dated against three-dimensional finite element models, and compared with
analytical predictions and the classical nonlinear Timoshenko model with
antiplane stiffnesses.

6.1 General assumptions

The analyses hold the same general assumptions presented in Section 3.1
and Section 5.3. As in the previous linear analyses, the beams represent
wide panels along the y-axis, with elastic modulus E = Es/(1−ν2

s ), Es = 206

GPa and νs = 0.3; results are shown per unit width. The material is
assumed to remain elastic in all cases. The validation models (3-D FE)
are constructed with Abaqus S4R shell elements (see Figure 5.1), and its
geometrically nonlinear response is obtained using the Riks method of the
Abaqus standard solver [154].

Nodal coordinates

Figure 6.1. Initial geometric imperfections assigned to a 3-D model as superposition of
microscopic (faces only) and macroscopic initial deflections (magnified).
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In the general case, initial global and local sinusoidal imperfections are
assumed to be present. Global imperfections are assigned by adjusting the
nodal coordinates in three-dimensional finite-element and homogenized
models. In the latter, the transformation matrix T̂ is utilized to rotate
the elements (Appendix A). In the validation models, local imperfections
are assigned by adjusting the face sheet nodal coordinates (Figure 6.1),
whereas in the multiscale approach they are embedded in the macroscopic
constitutive relations via nonlinear stiffnesses.

6.2 Nonlinear bending studies

Local face sheet buckling substantially affects the global bending response
of beams composed of corrugated cells with a stretch-dominated transverse
shear mechanism. The suitability of the present approach to predict their
progressive failure and stress distributions under moderate quasi-static
transverse loads is investigated in selected cases.

6.2.1 X-core beam with variable core relative flexibility

A X-core sandwich beam of length L0 = 16s = 0.8 m and cell dimensions
s = d = 50t f and t f /2 ≤ tc ≤ 2t f is studied in bending. The core rotational
stiffness kc = 4EIc/p depends on the t f /tc relation; three combinations are
considered as demonstrated in Figure 6.3.
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Figure 6.2. Core rotational restraints obtained for X-core unit cells with different t f /tc
ratios.

Globally, the beam is initially straight, whereas the face sheets have
a local sinusoidal imperfection of amplitude αl = t f /10. The nonlinear
stiffness relations obtained from the local buckling microscopic relations
are shown in Figure 6.3.
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Figure 6.3. Microscopic relations that define the nonlinear face response under compres-
sion (a) bending moment to axial strain (b) axial force to axial strain.

Two boundary conditions are studied, which in the homogenized model
are given by (symmetry, L = L0/2)

Pinned-symmetry:

x = 0 : u(0)= w(0)= M(0)= P(0)= 0

x = L/2 : u(L)= θ(L)=φ(L)= 0, V (L)= F/2 (6.1a)

Cantilever (pinned edge):

x = 0 : u(0)= w(0)= P(0)=φ(0)= 0,

x = L : N(L)= M(L)= P(L)= 0, V (L)= F (6.1b)

In the cantilever case, the boundary sectional rotation φ is constrained
but the slope θ is non-zero. The boundary conditions represent discrete
pinned top and bottom face sheets in the equivalent discrete structure.
The equilibrium equations are solved using the Newton-Raphson solver
(Section 3.6.2) with convergence tolerance set to εtol = 10−5.

Figure 6.4 and Figure 6.5 show the Load vs. maximum deflection relations
obtained with the present approach and equivalent three-dimensional
finite element models. Good agreement between the predictions is observed.
The pinned-pinned beam conserves considerable post-buckling stiffness,
which is activated by stretching the horizontally axially restrained faces.
Conversely, sudden collapse is observed in the cantilevered beam, and
limited post-buckling stiffness remains. The local buckling initiation load
is substantially influenced by the relative core thickness; the rotational
restraint kc, which has great influence in the face sheet response, is a
function of the core bending stiffness (thus, of t3

c).
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6.2.2 Progressive bending failure and stress analysis

The progressive nonlinear response of a triangular core sandwich beam
with dimensions L0 = 12s = 24d = 2.4 m and t f = tc = d/50 is considered. The
global beam is initially straight, whereas the face sheets have sinusoidal
imperfections of amplitude αl = t f /5. Following the analogy presented in
Section 4.2, the core rotational restraint is taken as kc = 4EIc/p = 4269 kN.
Force-to-strain relations describing the face sheet geometrically nonlinear
response are presented in Figure 6.6.
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Figure 6.6. Microscopic relations that define the nonlinear face response under compres-
sion (a) bending moment to axial strain (b) axial force to axial strain.

The macroscopic beam boundary conditions, considering the mid-length
symmetry at x = L/2, are given by

x = 0 : u(0)= w(0)= P(0)=φ(0)= 0

x = L/2 : u(L)= θ(L)=φ(L)= 0, V (L)=−F/2
(6.2)

The boundary sectional rotation is φ constrained but the slope θ is non-zero
to represent pinned top and bottom face sheets in the equivalent discrete
structure.

Figure 6.7 shows the nonlinear force vs. displacement relations obtained.
The predictions result accurate for the entire analysis. The percent er-
ror in maximum displacement is approximately 4-5% around Point (A),
progressively reducing as the failure progresses. The maximum displace-
ment percent error around Point (C) is less than 1%. In terms of stiffness
response, three major zones are distinguishable: an approximately ge-
ometrically linear range, onset and development of local buckles at the
highest-stressed regions, and progressive stretch-stiffening due to the hor-
izontal supports. Points (A)-(C) are, respectively, representative of each
zone.
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The multiscale approach relies on discretely modifying the macroscopic
stiffnesses as described in Section 3.4. Figure 6.8 shows the homogenized
stiffnesses obtained over the beam length at Point (A), Point (B) and Point
(C). Progressive axial and axial-bending stiffness reductions are highly
localized, affecting the first segment near the (doubly) pinned-end and
symmetry line. The coupling C1 describes the progressive asymmetry in
their axial response. The second internal segment at either end displays a
stiffness recovery due to the observed straightening effect.

The stress distributions over top and bottom face sheets at Point (A),
Point (B) and Point (C) are shown in Figure 6.9 and Figure 6.10, respec-
tively. The present homogenized model is shown to predict stress levels
satisfactorily when geometric nonlinearities are moderate. In the initial,
approximately linear zone, stress predictions are accurate. Past the onset
of local buckling, the predictions are somewhat less precise, yet a good
indicative level can be achieved. Error can be mainly attributed to:

• Face sheet-core nonlinear interactions, which are not captured by the
homogenized model.

• Interactions between neighboring cells, which can be described in
only a very limited manner.
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At Point (A) (Figure 6.9a and Figure 6.10a), secondary bending-induced
stresses are small yet widespread due to the initial imperfection effect.
At Point (B) (Figure 6.9b and Figure 6.10b), local buckles develop near
the beam ends and the local buckling-related secondary bending stress
becomes dominant over the other components. At Point (C) (Figure 6.9c
and Figure 6.10c), the local buckles at the boundary segments further
develop, while the nonlinear membrane stiffening effect straightens the
beam elsewhere.
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Figure 6.9. Top surface stress distribution at the top face sheet, (doubly) pinned-symmetry
sandwich beam under vertical force at the symmetry line (a) Point (A) (b)
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Figure 6.10. Bottom surface stress distribution at the bottom face sheet, (doubly) pinned-
symmetry sandwich beam under vertical force at the symmetry line (a) Point
(A) (b) Point (B) (c) Point (C).
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6.3 Nonlinear buckling studies

Local nonlinearities have great impact in progressive buckling response
of corrugated sandwich beams with stretch-dominated cores. Meanwhile,
as demonstrated in Section 5.3.3, unit cell stiffness effects may be signif-
icant in shear-flexible beams. The suitability of the present approach to
predict the buckling response of beams with different structural ratios is
investigated next. Comparisons with 3-D finite element validation mod-
els, classical Timoshenko antiplane model, and analytical equations are
provided.

6.3.1 Post-buckling analysis of a X-core and size effects

X-core sandwich beam structures with unit cell dimensions s = d = 0.1

m to a total length L = ns have their post-buckling response analyzed.
Face sheets and core struts have equal thickness t f = tc = t. Global and
local sinusoidal imperfections of amplitude w0

g = L/100 and w0
l = 0.001s,

respectively, are present.

Unit cell density is defined for the X-core setup with t f = tc as

ρ = 2(1+⎷
2)td

(d+ t)s
(6.3)

Three densities, named cases A-C, are taken for inspection. The thick-
nesses and core rotational restraint, computed according to Section 4.2
(κc = 4EIc/p), are given by

A : t = 0.01s → ρA = 0.05, κc = 1067 kN (6.4a)

B : t = 0.02s → ρB = 0.09, κc = 8537 kN (6.4b)

C : t = 0.04s → ρC = 0.19, κc = 68297 kN (6.4c)

The microscopic force vs. strain response for cases A-C is presented in
Figure 6.11. The boundary conditions of the homogenized model can be
written as

x = 0 : w(0)=φ(0)= P(0)= 0, N(0)= F

x = L : u(L)= w(L)= θ(L)=φ(L)= 0
(6.5)

The boundary sectional rotation is φ constrained but the slope θ is non-zero
to represent pinned top and bottom face sheets in the equivalent discrete
structure.
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The finite element shown in Section 3.6 is utilized in conjunction with the
adapted cylindrical arc-length method (Algorithm 3) to trace the nonlinear
equilibrium paths. The Feng criterion (see Ref. [37] for details) is utilized,
as observed to be a good continuation predictor. The convergence tolerances
are set to εtol ≤ 10−4 in all analyses.
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Figure 6.11. Microscopic internal forces that define the nonlinear face sheet response
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Size-effect analysis

The buckling loads obtained with the homogenized model for n-cell X-core
beam structures are compared with buckling equations obtained from the
literature [34, 4, 179], where analytical antiplane core stiffnesses (Eq. 3.21)
apply

Ng =
2k4

gπ
4D f D0

L4 + k2
gπ

2DgDQ

L2

k2
gπ

2D0

L2 +DQ

(global buckling) (6.6a)

Nw = 2
(︂klπ

2D f

s2

)︂
(wrinkling) (6.6b)

The factor kg in Eq. 6.6a is effective global column length, taken as kg = 4.0

(fixed-fixed). In Eq. 6.6b, the column length of the faces kl may be obtained
based on a modified Newmark approximation [121, 12]

kl =
(0.4+ksr)2

(0.2+ksr)2 = 2.34 (6.7)

where the semi-rigid coefficient ksr is obtained for the X-core as

ksr =
EI f

s

(︂4EIc

p

)︂−1
= 0.18 (6.8)

where EI f /EIc = 1. Eq. 6.6a includes the global contributions of Euler-type
and shear buckling [42].

Figure 6.12 shows buckling load comparisons as function of the relative
unit cell size for different cell densities. The buckling loads of the homog-
enized and three-dimensional validation models are estimated based on
the maximum force obtained from the nonlinear force-displacement curves.
The relative size ratio s/L and cell density ρ are governing parameters
describing the influence of a single unit cell in the global response.

The homogenized beam successfully predicts buckling loads regardless
of relative size or unit cell density. The median error among the n-cases
studied is 0.9% (ρ = 0.05), 0.7% (ρ = 0.09) and 0.7% (ρ = 0.19). The envelope
of analytical equations is only moderately accurate if the response is
clearly either global or local. That is, the analytical equations become
more accurate as the cell density increases, or for points in the ends of the
s/L spectrum. Generally, scale interactions govern the response; the scale
interaction zone is shown to be wider in beams composed of lower-density
unit cells. The present homogenized model succeeds as it incorporates
microscopic effects in the average macroscopic response through modified
stiffness parameters.
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Figure 6.12. Buckling loads predicted for X-core sandwich beams as function of relative
size s/L and cell density ρ with (present) homogenized beam, 3-D FE vali-
dation model and closed-form global buckling and wrinkling equations: (a)
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Response assessment

Detailed response assessment is conducted as follows for cases extracted
from Figure 6.12. Three contrasting configurations are selected: s/L = 0.1,
s/L = 0.01 and s/L = 0.00251. Figure 6.13, Figure 6.14 and Figure 6.15 show
load vs. end-shortening and load vs. maximum deflection relations obtained
for the selected cases with ρ = 0.05, ρ = 0.09 and ρ = 0.19, respectively.

Overall, the homogenized beam with nonlinear stiffnesses predicts the
progressive buckling responses with good accuracy against the validation
models. Thanks to the modified arc-length implementation, descending
post-buckling paths are also successfully described. Such description would
not succeed with a standard Newton-Raphson implementation.

For all densities considered, s/L = 0.1 depicts a local response, where
widespread wrinkling over the beam length is observed. The load vs. end-
shortening relations correlate with the nonlinear stiffness of both face
sheets combined, as may be verified by contrasting with Figure 6.11. Upon
the onset of buckling, the structure becomes a mechanism and deflections
increase with negligible incremental force.

For s/L = 0.00251, the response is majorly global for all densities assessed.
Local face sheet buckling at the most stressed unit cells reduces the global
capacity, effect which is more pronounced as the cell density is reduced.
Slight stiffness reserve is present after the buckling point in higher-density
cells.

In all s/L = 0.01 cases, scale interactions define the response. As implied
from Figure 6.12, the interactions lead to somewhat different response for
each density studied. The local buckling influence is inversely related to the
density. Figure 6.13b and Figure 6.14b show approximately linear paths
with a clear peak and descending branch. In the homogenized model, small
stiffness changes due to local buckling initiation (axial stiffness reduction
and increase in local bending parameters) are sufficient to trigger sudden
global instability. In Figure 6.15b the response is mostly global. The
homogenized beam stiffness reductions lead to gradual deterioration in
the global capacity as the strain increases.
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Figure 6.13. Load vs. end-shortening and Load vs. maximum deflection relations for
fixed-fixed X-core beams with cell density ρ = 0.05 under axial compression;
(a) s/L = 0.1, (b) s/L = 0.01 and (c) s/L = 0.00251.
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Figure 6.14. Load vs. end-shortening and Load vs. maximum deflection relations for
fixed-fixed X-core beams with cell density ρ = 0.09 under axial compression;
(a) s/L = 0.1, (b) s/L = 0.01 and (c) s/L = 0.00251.
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Figure 6.15. Load vs. end-shortening and Load vs. maximum deflection relations for
fixed-fixed X-core beams with cell density ρ = 0.19 under axial compression;
(a) s/L = 0.1, (b) s/L = 0.01 and (c) s/L = 0.00251.
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Influence of Bi parameters

A comparison of predicted responses using the general constitutive model
or a simplified symmetric constitutive model (B1 = B2 = 0) is presented
next. Unit cell density ρ = 0.05 and two relative cell ratios, s/L = 0.1 and
s/L = 0.025 are selected; in either case, the local nonlinear response is
relevant.

Figure 6.16 shows that the global buckling load predictions obtained are
similar. The simplified model yields an overly soft post-buckling path in
Figure 6.16a, as the strain energy due to secondary bending is significant
after the global stability is lost. In Figure 6.16b, both constitutive models
yield similar results due to the lower influence of local effects in the global
response.
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Figure 6.16. Comparisons between complete and simplified constitutive model. Density
ρ = 0.09 and (a) s/L = 0.1, (b) s/L = 0.025.

6.4 Comparison between classical and present models

Classical Cauchy and couple stress-based models with or without macro-
micro nonlinear scale interactions are compared in terms of buckling
prediction accuracy, having 3-D finite-element results as reference.

Web-core and X-core sandwich beams are selected as representative of
size-dependent and local buckling sensitive setups. For the comparisons,
beams with unit cell density ρ = 0.15 (15%) and different relative sizes s/L

are studied. The densities are attained with different thickness ratios t f /tc,
calculated as

Web-core : ρ = 2st f + (d− t f )tc

s(d+ t f )
(6.9a)

X-core : ρ = 2st f +2
⎷

2(d− t f )tc

s(d+ t f )
(6.9b)
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A total of nine combinations of s/L = 0.1, 0.0159, 0.0025 and t f /tc = 0.5, 1, 2,
is considered as summarized in Table 6.1. Figure 6.17 demonstrates the
size-effect and local buckling sensitivities obtained in each case.

Web-core X-core

t f [m] tc [m] L [m] t f [m] tc [m] L [m]

Ia 0.00398 0.00796 1.0 0.00203 0.00406 1.0
Ib 0.00398 0.00796 6.3 0.00203 0.00406 6.3
Ic 0.00398 0.00796 39.8 0.00203 0.00406 39.8
IIa 0.00536 0.00536 1.0 0.00327 0.00327 1.0
IIb 0.00536 0.00536 6.3 0.00327 0.00327 6.3
IIc 0.00536 0.00536 39.8 0.00327 0.00327 39.8
IIIa 0.00648 0.00324 1.0 0.00648 0.00324 1.0
IIIb 0.00648 0.00324 6.3 0.00648 0.00324 6.3
IIIc 0.00648 0.00324 39.8 0.00648 0.00324 39.8

Table 6.1. Cases proposed for a sensitivity analysis on the model suitability.
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Figure 6.17. Cases defined in Table 6.1 in terms of their local buckling sensitivity (i.e.
wrinkling to macro-buckling ratio) and size-effect sensitivity ratio.

The web-core sandwich beam has semi-rigid joints, with rotational stiff-
ness kθ = 100 kN (see Ref. [149] for experimental kθ values). The X-core
is assumed rigid, as the connection does not significantly influence the
stiffness behavior. The beams have global and local sinusoidal imperfec-
tions, with respective amplitudes αg = L/100 and αl = 0.0002 m. Figure 6.18
shows the microscopic relations of a periodic segment, while Figure 6.19
shows the relations for a boundary segment with θi(xa) = 0. Unlike the
previous examples, boundary microscopic relations are needed for accurate
predictions due to the discrete face sheet slope boundary conditions at
the fixed end. The relations are based on the core rotational restraints
kc = Et3

c/3p and kc = Et3
c/8d for X-core and web-core, respectively.
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The macroscopic beam boundary conditions, considering the mid-length
symmetry at x = L/2, are given by

x = 0 : u(0)= w(0)= θ(0)=φ(0)= 0

x = L/2 : u(L)= θ(L)=φ(L)= 0, V (L)=−P/2
(6.10)

In the equivalent discrete structure, the face sheet slopes are constrained.
The modified cylindrical arc-length method (Algorithm 3) with Feng con-
tinuation is utilized to trace the nonlinear equilibrium paths. Convergence
tolerances εtol ≤ 10−4 are used.

The critical buckling loads are computed using the following models

a) Classical Timoshenko model, macroscale only (TBT)

b) Classical Timoshenko model, macro-micro approach (TBT-M)

c) Couple stress-based model, macroscale only (CSST)

d) Couple stress-based model, macro-micro approach (CSST-M)

For the classical Timoshenko model, an antiplane core is assumed to define
the stiffnesses.
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Figure 6.18. Microscopic relations that define the nonlinear face sheet response under
compression (Cases I-III, X- and web-core).
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Figure 6.19. Microscopic relations that define the nonlinear face sheet response under
compression (Cases I-III, X- and web-core).

Figure 6.20 shows the buckling loads obtained with the present multi-
scale approach and classical antiplane Timoshenko model. Figure 6.21 and
Figure 6.22 show the percent errors obtained for each of the 18 cases, com-
puted in relation to the equivalent 3-D FE models. Very good agreement
between the predictions of the present approach and validation models is
observed. The median absolute errors are 0.2% and 0.8% for web-core and
X-core, respectively. The maximum error is 4% (Case IIIa). Slightly less
accurate predictions are observed in beams that fail due to wrinkling, as
are more sensitive to the correctness of the microscopic model assumptions
such as the kc estimate. Minor differences are seen in thin-faced cases Ia
and Ib due to the simplified shear description of the present model.

Figure 6.21 shows that the Cauchy models are less accurate when short,
thick-faced web-core beams are concerned due to the underlying size ef-
fects. The errors are proportional to the sensitivity parameters shown
in Figure 6.17. In the short beams, the face own-axis bending stiffness
accounts for a considerable portion of the buckling resistance, and thus the
classical Timoshenko model is inaccurate. For the web-core dimensions
here selected, one- and multiscale model output approximately the same
results; in all cases, local and global buckling are clearly separated, and
global buckling occurs with very minor local deformation of the faces.
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The X-core beams with relative sizes s/L = 0.1 and s/L = 0.0159 (cases a

and b, respectively) are prone to local buckling, as evident from their high
wrinkling to macro-buckling ratios in Figure 6.17. In Figure 6.22 and
Figure 6.20d-f, the effect of local face sheet buckling in the critical load
predictions is evident. The error obtained with microscale-independent
models is significant in most cases; it becomes larger as the face sheet
thickness is reduced and as the beams become shorter. For the shortest
beams (s/L = 0.0159), wrinkling failure is observed for all face-core thick-
ness ratios t f /tc. Given the low size effect sensitivity ratios, Cauchy and
couple stress-based models provide similar predictions overall.

B
uc

kl
in

g 
lo

ad
 [M

N
]

1.0

1.5

0.5

0

Relative size s / L
0.001 0.01 0.1

Relative size s / L
0.001 0.01 0.1

B
uc

kl
in

g 
lo

ad
 [M

N
]

1.0

1.5

0.5

0

B
uc

kl
in

g 
lo

ad
 [M

N
]

1.0

1.5

0.5

0

Relative size s / L
0.001 0.01 0.1

Relative size s / L
0.001 0.01 0.1

Relative size s / L
0.001 0.01 0.1

Relative size s / L
0.001 0.01 0.1

B
uc

kl
in

g 
lo

ad
 [M

N
]

1.5

3.0

0

6.0

4.5

B
uc

kl
in

g 
lo

ad
 [M

N
]

1.5

3.0

0

6.0

4.5

B
uc

kl
in

g 
lo

ad
 [M

N
]

1.5

3.0

0

6.0

4.5

(a) (b)

(c) (d)

(e) (f)

Classical TBT, macroscalePresent, multiscale3-D FE
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7. Size effect sensitivity analyses

Stiffness size-independence is a basic assumption upon which the classical
Cauchy continuum was constructed. In the classical continuum, struc-
tures have the same relative stiffness irrespective of their size, what has
been verified as a reasonable assumption for most engineering materials.
Certain low-density materials such as foams [5] or lattice grids [13], how-
ever, significantly violate this simplification and require more involved
theories for consistent analysis of differently sized structures. Like other
lattice-type materials, corrugated sandwich beams with shear-flexible cores
exhibit size effects [59] triggered by shear force discontinuities.

While the Timoshenko model describes the shear deformation through
a constant shear angle, the size-effect sensitivity can be related to its
derivatives. In the present model, the cells are assumed to bend to a
constant average curvature, and size effects are modeled through the first
shear angle derivative. In the analyses that follow, the size-dependent
response of linear elastic corrugated sandwich beams is investigated in
relation to governing parameters.

7.1 Effect of cell geometry and density

In the present model, the parameter ζ may be used to quantify the size
effect magnitude as function of the cell characteristics

ζa ≤ ζ ≤ ζb (C3 ≤ 0), ζa =
√︄

S+C3

DQL2 , ζb =
√︄

S
DQL2

(7.1)

where the changes in numerator delimit bounds. If the shear discontinuity
has a localized effect on the global response, φ≈ θ, the size effect sensitivity
tends to ζa and vice-versa. Typically, for practical cores, ζa ≈ ζb. Equation
7.1 implies that size effects in corrugated sandwich beams depend on
the core setup. The notion of stretch-dominated and bending-dominated
shear-carrying mechanisms is important to classify the core behavior.
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7.1.1 Governing ratios: a simple cell

Take as initial example a web-core beam with rigid joints. Assuming that
t2

f ≪ d2, ζ= ζa = ζb can be simplified as

ζ=
√︃

1
12

(︂ s
L

)︂2[︂
2
(︂d

s

)︂(︂ t f

tc

)︂3
+1

]︂
(7.2)

in which the governing ratios s/L, d/s and t f /tc are identified. Their signif-
icance in structural response predictions is studied in a simple example.
Consider the linear elastic analysis of web-core sandwich beams with tc

= 0.004 m and s = 0.012 m in three-point bending. The governing ra-
tios shown in Eq. 7.2 are varied one at a time, while the other two are
maintained constant.
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Figure 7.1. Percent error obtained with present and classical Timoshenko models as
function of web-core cell structural ratios.

Figure 7.1 shows the errors obtained with the present model and size-
independent classical Timoshenko beam as function of the governing ratios
of Eq. 7.2. The present model is accurate for all parameter combina-
tions, and eventual errors are not clear functions of the size-effect ratios.
Meanwhile, the classical Timoshenko beam results only converge to the
three-dimensional finite element solutions when ζ→ 0. Error magnitudes
obtained with the classical Timoshenko beam correlate with the powers of
the governing parameters as in Eq. 7.2.
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7.1.2 Effect of core setup and governing ratios

Corrugated beams with four core setups and nine structural ratio combi-
nations each are analyzed. Unity-length beams (L = 1.0 m) with d = L/10

have their governing ratios t f /d and s/d varied. Figure 7.2 shows the
corresponding size-sensitivity parameter ζb =

√︁
S/(DQL2) in each case.
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Figure 7.2. Size-effect sensitivity measure ζ as function of the core relative density for
different corrugated cell arrangements and dimensions.
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Figure 7.2 shows that, in the bending-dominated web-core and Y-core,
the size-effect sensitivity highly depends on the core relative density. Con-
versely, stretch-dominated X-core and triangular cores are almost size-
independent. The bending dominated cores have DQ as a cubic function of
the core thickness, whereas in stretch-dominated cores the dependency is
linear. In all cases, S → D f = EI f as tc → 0. The figures also indicate that
the ratio s/d influences the shear sensitivity as DQ is function of the core
strut angle and bending spans.

The core relative density effect on the size-dependency is further demon-
strated by analyzing beams with cell dimensions of case V (Figure 7.2)
under a centered point load and fixed ends (see Eq. 5.23). Figure 7.3 shows
percent errors as function of ρc, as well as the prescribed force F needed to
produce a maximum deflection of w(L)= 0.01 m. Overall, the present model
can predict deflections for all cores satisfactorily. Conversely, the classical
Timoshenko beam is only accurate when ζ→ 0. For cases where ζ→ 0, the
homogenized models do not necessarily predict the same deflections due to
the different assumptions on the core normal stress distribution.
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Figure 7.3. Percent error obtained with the present and classical Timoshenko antiplane
models for the maximum deflections of fixed-fixed corrugated sandwich beams
(varying core relative density) under a centered point force.
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7.1.3 Effect of stacking sequence

To investigate the effect of stacking sequence in the size-effect sensitivity of
multilayered cores, diamond and honeycomb core structures with different
corrugation orders n (see Figure 4.6) are studied in bending. A setup with
fixed-fixed boundary conditions and centered vertical force (see Eq. 5.23) is
selected. The beam length is L = 1.0 m, whereas s = L/10 and t f = s/20. The
setups are regular; for diamond core beams s = d, while for the hexagonal
core beams s =⎷

3p. Low core relative density is taken in all cases, ρc = 0.06,
and the thickness of core struts scaled accordingly.

Figure 7.4 shows the percent error obtained with present and classical
Timoshenko beam models as function of n. The force necessary to produce
unity (1 mm) displacement at mid-span is also depicted. Higher honeycomb
corrugation order relate to somewhat higher error of the classical model as
ζ increases slightly. Diamond core cells are not size-sensitive, regardless of
n. The present model predictions are shown to be accurate for both setups
regardless of the corrugation order.
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Figure 7.4. Percent error obtained with the present and classical Timoshenko antiplane
models for the maximum deflections of fixed-fixed corrugated sandwich beams
(varying stacking sequence) under a centered point force.

7.2 Effect of face-core connection stiffness

Bending dominated corrugated cores rely on the moment transfer capacity
at face sheet-core connections to carry shear loads. Yet, manufacturing
processes such as laser-welding may result in joints that are not nearly
rigid. The transverse shear stiffness of the assembly is progressively
reduced as the effectiveness of the connection reduces and, consequently,
size effects are observed as the joint approaches a pinned behavior.
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In this section, the effect of the joint rotational stiffness on the size-
dependency is investigated through a simple example. Consider a web-core
sandwich beam with overall length L = 2.0 m, composed of 10 cells with
dimensions s = 2d = 0.2 m and t f = tc = 0.005 m. The beam has semi-rigid
face sheet-core joints, modeled as rotational springs with stiffness per unit
width 30 ≤ kθ ≤ 3 ·108. The scale parameter of Eq. 7.2 (ζ = ζa = ζb) can be
written (approximately) as

ζ=
√︄

s(k1t3
f t3

cd2 +2d3t3
f +d2st3

c + st2
f t3

c

12d2t3
cL2

(7.3)

The following boundary conditions are considered

x = 0 : w(0)= θ(0)=φ(0)= 0, N(0)= F

x = L : u(0)= w(L)= θ(L)=φ(L)= 0
(7.4)

Figure 7.5 shows the critical buckling loads predicted with the present
model as function of kθ, which are validated against equivalent 3-D FE
models and compared with the classical Timoshenko model. The critical
buckling load yield by the classical model is given by

Fcr = 4π2(D+S)/L2

1+4π2(D+S)/(DQL2)
(7.5)
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Figure 7.5. Critical buckling load predictions for a fixed web-core sandwich beam under a
centered axial force as function of the joint rotational stiffness. Predictions
based on the present, classical Timoshenko and 3-D FE models. The scale
parameter ζ is also indicated.
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Size effect sensitivity analyses

Overall, Figure 7.5 shows that the classical Timoshenko model becomes
progressively less accurate as the scale parameter increases. The present
sandwich model successfully predicts the critical buckling load for the
entire range of kθ. The scale parameter tends to infinity as the joints
approached pinned-like conditions. The web-core sandwich assembly then
reduces to two unconnected beams, and the core becomes inactive. As
the joints approach a rigid condition, the scale parameter converges to a
constant, small yet non-zero value.

7.3 Effect of boundary conditions

Elastic size effects in sandwich beams are related to discontinuities that
induce lengthwise shear angle variations. In this section, different sets of
loading and boundary conditions are studied as to quantify their influence
onto the size-dependent response of corrugated sandwich beams with
different unit cell properties. Figure 7.6 shows four boundary conditions in
which shear discontinuities are present. The discontinuities are related to
point forces and slope boundary conditions that promote changes in the
shear distribution diagram.

(a) (b)

(c) (d)

Figure 7.6. Boundary conditions for the sensitivity analysis (a) simply-supported beam
under centered point force (b) fixed-fixed beam under centerd point force (c)
end-loaded cantilever (d) fixed-fixed zig-zag beam.

Setup Core t f [m] tc [m] ζb

A Web-core 0.006 0.004 0.0670
B Web-core 0.004 0.0035 0.0480
C Triangular core 0.00125 0.0025 0.0016
D Triangular core 0.01 0.002 0.0129
E Y-core 0.009 0.003 0.0780
F Y-core 0.004 0.004 0.0271

Table 7.1. Configurations proposed for the investigation on the influence of boundary
conditions in the size-dependent response of corrugated sandwich beams.
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Size effect sensitivity analyses

Six sandwich cell setups are proposed for the investigations as shown
in Table 7.1. The general cell dimensions are s = d = 0.1 m, whereas core
type and thickness, as well as face thickness are varied to obtain data
points in 0≤ ζb ≤ 0.08. (see Eq. 7.1). Figure 7.7 shows the errors obtained
with present and classical antiplane Timoshenko model for the setups of
Table 7.1 and boundary conditions of Figure 7.6. Error is defined as the
relative difference between deflections under the point force predicted with
the homogenized and equivalent 3-D FE validation models. In the zig-zag
beam, the forces result equal in magnitude given the geometric symmetry.
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Figure 7.7. Percent error (deflection under the point force) obtained with (a) classical
Timoshenko (antiplane) and (b) present model for different beam setups as
function of the upper-bound size-effect sensitivity parameter.
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Size effect sensitivity analyses

Figure 7.7a shows that the classical Timoshenko beam error scales with
the size-effect parameter ζ. The error is larger in the zig-zag setup as
multiple shear discontinuities are present, whereas it is the lowest for the
cantilever beam. The three-point bending case is equivalent to a cantilever
beam with length L/2, thus their errors are scaled by a factor of two,
approximately. Figure 7.7b shows that the present model is considerably
more accurate in all size-sensitive cases and no correlation between size-
effect sensitivity parameter and error is evident.
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8. Discussion

The present work defined a modeling approach for corrugated sandwich
beams that contains nonlinear information from consecutive scales. The
scales and their interrelationships were defined, along with application
to selected sandwich setups of practical relevance. Contrary to conven-
tional approaches, the macroscopic formulation provides basis to capture
size effects in simple fashion. Moreover, the approach is able to predict
microscopic nonlinearities such as local buckling by simple progressive
modification of the macroscopic constitutive matrix. In the following sub-
sections, the modeling assumptions, and relevance to response prediction
and practical application are discussed. Directions for future work are
then provided.

8.1 On the assumptions and approach

In contrast to other non-classical models, the modified couple stress Tim-
oshenko beam [143, 7, 111] provides a minimum amount of independent
parameters to describe the response of shear-flexible sandwich beams.
Micropolar-based models [84, 120, 86] are conceptually similar, yet convey
a more involved shear description. Other non-classical models could be
employed to describe the underlying physics. An advantage of the modified
couple stress model is the resemblance with the classical Timoshenko beam
theory.

Unlike Cauchy-based models, the couple stress-based macroscale has
a length-scale parameter, thus being capable of capturing size effects.
Stress resultants defined as in Ref. [57] include a parameter to describe
stiffening near structural discontinuities due to the cell own-axis inertia
[59]. The cell bending stiffness is an average description; greater accu-
racy, particularly in stress predictions, would require the introduction
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of higher-order displacement derivatives and related stiffnesses. In the
absence of coupling between cell bending and the other axial stress-related
stress resultants, the present model converges to the so-called thick-face
sandwich theory [4, 139, 179] (in the linear bending case). Couplings are,
however, necessary in fulfilling the Hill-Mandel condition (see e.g. Ref.
[1]) and predicting accurate stress distributions in the analysis of most
corrugated cores. Couplings are also utilized to include the strain energy
due to secondary bending into the macroscopic equilibrium equations.

Corrugated sandwich beams are transversely flexible and a homogenized
description requires a shear deformation measure. The Timoshenko-type
model as chosen condenses shear strains, which are generally different in
horizontal and vertical directions, into an average section slope. Higher-
order shear deformation theories [141] or models with additional measures
[84] can improve the shear description, yet an average section angle is
sufficiently accurate in virtually all practical cases. The shear stiffness
results from micromechanical analysis in similar manner as in Refs. [109,
54, 151]. As the strain energy is conserved in the averaging process, no
additional shear correction factor is required (i.e. Ks = 1.0 in Eq. 3.9b).
The transverse shear relations are linear; geometric nonlinearities are
assumed not to substantially influence the unit cell shear behavior.

Stiffness determination is based on the micromechanical analysis of a
repeating unit cell, wherein mesoscopic deformations are assumed small.
Cell-average stiffness relations follow the lines of Sun and Vaidya [160]
with a stress resultant level treatment as in Ref. [59]. Stiffness derivations
were conducted using linear plane frame analysis with Euler-Bernoulli
elements. Displacement boundary conditions and extraction of boundary
tractions ensure strain energy conservation among scales [66, 70]. The
plane-stress macroscopic assumption is maintained; in the derivation
of normal stress-related resultants, the vertical boundary tractions are
zero, while displacements (and related strain) are generally non-zero.
Stiffness derivations are analogous to previous works [105, 21, 109, 53,
54], while considering the enhanced macroscale and incorporating scale
transitions. Corrugated cells with core strut continuity have decoupled
normal and couple stress-related phase responses: the stiffnesses have
independent face sheet and core components. Meanwhile, unit cells with
discontinuous core have more intricate stiffness relationships, and the core
stretch-related stiffnesses are also function of the face sheet properties.
As the core is unable to transfer normal stresses directly, however, the
expressions tend to an antiplane state.
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Macroscopic stiffness updates due to cell nonlinearities are confined to
nonlinear stiffness coefficients in similar spirit as proposed by Byklum
and colleagues [24, 25] and Ref. [56]. These references, however, modified
stiffnesses element-wise and lack scale-dependent parameters. As meant
for relatively thick panels, the model in Refs. [24, 25] did not include the
effect of shear deformation. Nonlinear stiffnesses were also utilized in
Rabczuk et al. [140]; there, the core of each unit cell is homogenized into a
shell element with effective strain-dependent properties. The approach in
[140] was shown able to satisfactorily describe substantially nonlinear core
behavior. Unlike in a computationally-intensive FE2 method [47], in this
work the analysis of the coupled scales is uncoupled and the microscopic
equilibrium solved analytically based on slope-deflection equations [166, 8,
12].

As result of the pseudo-terms proposed, the macroscopic constitutive
matrix becomes unsymmetrical in presence of local nonlinearities. A more
conventional symmetric matrix implementation with B1 = B2 = 0 may be
employed as a further simplification. Setting Bi = 0 implies energy dissi-
pation in presence of local buckling-related secondary bending, yielding a
slightly overly soft global response.

The macroscopic equilibrium equations are solved using the displacement-
based finite element method. The nonlinear element is based on deriva-
tions in Ref. [7] with further manipulations as described in Ref. [57].
The approximate tangent stiffness matrix of the Newton method neglects
stiffness derivatives. Initial macroscopic imperfections are introduced via
transformation matrices. Implicit solvers, namely the modified Newton-
Raphson and cylindrical arc-length method [35] with the Feng continuation
criterion [46, 37] were utilized in the analyses. The arc-length method
was favored in the post-buckling analyses due to the occurrence of limit
points; it is capable of adjusting the external force when the tangent of the
equilibrium approaches a singularity point (see, for instance, Refs. [35, 36]
for details). With the present modifications, the progressive update of
stiffness parameters slows down the convergence rate, as the equations
to be solved dynamically change and have a predictor-corrector sense. In
constructing the stiffness matrices, reduced integration was utilized to
avoid membrane and shear locking phenomena [144, 31].

The dissertation is limited to the study of face sheet geometric nonlin-
earities, which are of greater concern under typical service loads [16].
Incorporation of core strut buckling as observed in accidental limit states
such as blast loading [181] and collisions [41] is left for future work. The
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introduction of material nonlinearities is not presented in this document,
but may be accomplished in analogous manner (yet, including thickness-
integration during the analysis).

8.2 On the structural response

Examples were selected as to validate and assess the performance of the
multiscale approach. In its linear form, the resulting two-scale (macro-
meso) homogenized model outperforms conventional single-layer counter-
parts and provides accurate deflection and stress distribution estimates.
Incorporation of nonlinear scale transitions was shown to enable the pre-
diction of progressive, interactive local-global buckling. Other local nonlin-
earities may be incorporated in an analogous manner.

As shown in Section 5.2, the two-scale linear model matches the thick-
face sandwich theory (see Refs. [4, 139, 179]) for an antiplane core. While
an antiplane assumption is generally accurate for deflection analyses, in-
corporation of coupling terms is central in determining stresses. Examples
have shown that the present model excels in predicting stress distribu-
tions. Local deviations due to higher-order cell bending, however, remain
near structural discontinuities. Their prediction would require a more in-
volved model with higher-order displacement gradients and corresponding
stiffnesses, what is hardly justifiable in practice.

In a geometrically nonlinear setting, the multiscale approach was utilized
to predict interacting elastic local-global buckling and post-buckling paths.
Imperfections were assumed for numerical soundness; in fact, global and
local imperfections may be substantial in corrugated sandwich structures
[30] and affect their load-carrying capacity as discussed in Biagi and Bart-
Smith [15], Jelovica [74] and Jelovica and Romanoff [75]. Laser-welding
as a common manufacturing process can induce substantial distortions to
thin-walled sections [30]. In the nonlinear studies, size-dependent behavior
was observed in scale-sensitive beams.

Shear-stiff beams with thin face sheets were shown prone to local buck-
ling, whereas global buckling is dominant for longer, shear-flexible setups.
A wide transition range exists, where interactive local-global buckling
occurs. In bending, face sheet buckles initiate at the highest bending stress
region, whereas under uniaxial compression this depends on cell charac-
teristics, structural length, imperfection shape and size. Local buckling
may occur well into the elastic regime and prompt failure of the entire
member in the absence of in-plane restraint (as in a simply-supported
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beam). Membrane stiffening reduces the severity of local buckling in the
overall integrity when in-plane displacement is restricted; local buckling
then progressively propagates.

Buckling equations from sandwich constructions books [4, 179, 173] are
often used to predict the critical buckling loads of corrugated sandwich
beams as described in Valdevit et al. [171]. Ref. [16] presented failure
maps based on these equations and showed that the elastic failure typically
occurs at lower loads than the predicted values. In fact, the present study
demonstrated that the envelope of analytical predictions fail to estimate
the critical buckling load when local-global buckling interaction is present.
In light of this, the present approach offers an inexpensive alternative to
incorporate scale interactions in stiffness response assessments. Figure
8.1 shows a rational model selection diagram, which is based on the global
buckling to wrinkling ratio PG /Pw and the size-effect sensitivity ratio bound
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Figure 8.1. Four-field for model selection in the nonlinear buckling analysis of corrugated
sandwich beams.

Size-sensitivity studies showed that short beams with low-density, bending-
dominated cores and relatively thick face sheets are prone to display
size effects. As in Ref. [59] and other studies on lattice-type structures
[108, 5, 125], a scale-dependent parameter was shown necessary for their
prediction. For equal boundary conditions, size effects lie within geometric
bounds, related to the shear flexibility of the cell and size of the structure.
Cores that transfer transverse shear loads through strut stretching have
low size-effect sensitivity and vice-versa. Thus, a size-dependent model is
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mostly relevant when bending-dominated sandwich cells are to be analyzed
for stiffness.

8.3 Practical relevance and implications

The homogenized model aims to simplify the analysis of corrugated sand-
wich panels subjected to quasi-static loads. The approach is relevant for
the preliminary analysis of complex lightweight structures, where de-
sign changes can be handled in the stiffness level and multiple analyses
conducted in a reasonable time frame. Progressive global failure can be
tracked accounting for member-level effects, such as local buckling. A ma-
terial failure condition may be incorporated via a stress envelope analysis
based on the upscaling rules that were shown.

Practical utilization would benefit from implementations of the concepts
into a plate model (thus, removing the plane-strain assumption). The
general ideas presented remain valid, and thus such extension is relatively
straightforward. Similar approach has been defined by the Author for a
classical first-order plate model [56].

8.4 Future work

The dissertation demonstrated the capabilities of single-layer modeling in
predicting the response of corrugated sandwich beams with nonlinearities
at consecutive structural scales. The work has revealed several areas for
future research.

A plate model implementation of the concepts defined would extend
the practical significance. Such model would require studying three-
dimensional unit cells in the same spirit as in Ref. [56]. To predict more
severe nonlinearities, extension to a large-strain setting as in Ref. [140]
could broaden the range of applicability.

Future work could focus on implementing other local nonlinearities
into the macroscopic constitutive matrix. Similar reasoning along with a
strain-dependent thickness-integration scheme can be employed to handle
moderate material nonlinearity. Core buckling may be described in a
simplified manner by progressively adapting the transverse shear stiffness.
The approach can be extended to include the effect of local loads within the
face segments. The introduction of additional displacement derivatives can
locally improve the stress prediction accuracy and allow the interaction
between neighboring unit cells to be accounted for.
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9. Conclusions

This dissertation presented a multiscale modeling approach for corrugated
sandwich beams. The approach defines three interacting scales and their
interrelationships. The macroscale represents the global structure through
a homogenized size-dependent sandwich model. The mesoscale is a unit cell
of the global structure, from which macroscopic constitutive information
is derived. The microscale describes sub-cell behavior; in this study, the
geometrically nonlinear response of the sandwich face sheets subjected to
an uniform stretch. An iterative scheme computes, for every load increment
and until energetic equilibrium, the macroscopic strains, updates the
microscopic state and determines macroscopic stiffnesses based on the
mesoscopic averaging rules. Small strains and moderate rotations are
assumed at structural and sub-structural scales; the undeformed structure
is the reference configuration. The approach can capture elastic size effects
due to interacting scales and predict the influence of local nonlinearities
in the global structural behavior. A recovery scheme based on linear
superposition can be utilized to predict discrete stress distributions for
moderately nonlinear response.

The macroscopic homogenized model is founded on the modified couple
stress theory with Timoshenko beam assumptions. Constitutive relations
describe four cell deformation modes that combined can describe the stiff-
ness behavior of sandwich beams with different corrugated cores. Normal
cell stresses are decomposed into three resultants: constant normal forces,
global bending-inducing normal forces and constant cell bending moments.
Three related strain components are defined: constant stretch, section dif-
ferential stretch (zero-average) due to bending and constant cell curvature.
The normal cell stress-related resultants and strains are coupled through
eight independent constitutive parameters in the general case. Unit cell
shear stresses are described by a linear equation as in the classical Timo-
shenko beam theory. A local shear component arises from the couple-stress
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equations as a cell-moment derivative.

In the mesoscopic scale, a micromechanics-based approach determines
the macroscopic stiffness averaging rules. Boundary displacements en-
forced to an unit cell model replicate the average macroscopic strains. The
resulting boundary tractions are used to compute equivalent macroscopic
stress resultants. The ratios between equivalent resultants and strains
provide the parameters of the macroscopic constitutive matrix. A linear
elastic mesoscopic model outputs constant stiffnesses that depend on cell
geometry and material properties, while a nonlinear model is also function
of the microscopic strain state and additional parameters influencing the
microscopic behavior. Stiffness relations were derived for selected corru-
gated cells using conventional frame analysis, resulting in closed-form
expressions that are function of the microscopic state. For a linear mi-
croscale, the expressions are functions of material and geometric unit cell
properties only.

Nonlinear local second-order effects are embedded in the constitutive
relations through a microscopic boundary value problem and a scale transi-
tion scheme. In the present work, the microscale describes the second-order
nonlinear response of compressed face sheets (local buckling). The micro-
scopic model is a conventional Euler-Bernoulli beam with von Kármán
kinematics, solved analytically with help of slope-deflection equations. The
macroscopic stretch-related strains are averaged and enforced as micro-
scopic boundary condition. The resulting reaction forces are utilized to
compute average macroscopic stiffnesses based on mesoscopic geometric
relations. In the macroscopic level, the stiffness degradation describes a
local load-carrying mechanism shift from face sheet stretching to bending -
a less effective mode.

A finite element model was defined in line with previous works on the
couple stress-based Timoshenko beam theory. Lagrangian linear and
Hermitian cubic functions interpolate the kinematical variables. Following
previous works, elemental secant and tangent stiffness matrices were
provided. A nonlinear solution scheme was defined based on the modified
Newton-Raphson method. To compute the post-buckling examples, an
extension was conducted to obtain an arc-length-type scheme that can
overcome limit points.

The approach was validated against equivalent three-dimensional finite
element models and compared to other homogenized beam idealizations.
Justification for a nonlinear scale-dependent sandwich model was provided
in a series of examples, in many of which conventional approaches are
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insufficient to provide a complete response description.

A macroscopically and microscopically deformation-independent model
was determined and employed for displacement and stress analyses. Broad
validity was demonstrated. Unlike the Cauchy-based antiplane Timo-
shenko model, the present model was shown to maintain good accuracy
when scale interactions are significant. Critical buckling loads were suc-
cessfully predicted with the linear model for a structure with dominant
global response. The examples also demonstrated the capability of the
stress localization scheme, which allows satisfactory predictions also when
moderate scale interactions are present. In shear-stiff structures, face
sheet stresses result mainly from direct integration of the macroscopic
quantities, implying an approximately piecewise constant distribution. In
shear-flexible structures, the response becomes piecewise linear due to
recovery of zero-average shear terms.

The multiscale approach was then employed to trace (elastic) failure
paths of beams undergoing geometric nonlinearities at different scales.
Parametric studies demonstrated soundness irrespective of the setup.
Stretch-stiffening in horizontally restrained beams was shown to be satis-
factorily captured through the macroscopic von Kármán term. Progressive
stiffness adaptations were shown successful in describing not only the first
buckling point, but also the load-displacement relations past the initial
failure as local buckling spreads to multiple cells. Linear superposition was
shown to output satisfactory stress descriptions of moderately nonlinear
beams. Nonlinear buckling of axially loaded beams was then studied and
shown to be a major application potential of the present approach. In most
cases, failures occur due to mode combinations, which cannot be predicted
neither by well-known buckling equations nor by scale-independent ho-
mogenized models. The present approach was shown to excel with this
respect, not only providing accurate buckling load estimates but also yield-
ing accurate progressive failure paths at low modeling and computational
costs.

In sensitivity studies, the parameters governing elastic size effects in
linear elastic sandwich structures were identified. Besides the beam length,
the effects of cell geometry, vertical stacking sequence (in multi-layered
lattice-type cores), core relative density, member connection stiffness and
macroscopic boundary conditions were assessed. It was shown that the
size effect sensitivity can be quantified in a similar spirit as the shear
deformation is quantified in sandwich construction textbooks.

Overall, the dissertation demonstrated the capability of homogenization
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in predicting complex stiffness behavior of corrugated sandwich beams.
The developed approach excels in conditions where well-known analytical
buckling equations and conventional beam theories fall out of their validity
range. It was shown that a nonlinear model for lattice-type materials such
as corrugated core sandwich beams must contain scale parameters and
nonlinear sub-scale information, which can be condensed into effective
stiffnesses.
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[46] Y. T. Feng, D. Perić, and D. R.J. Owen. Determination of travel directions in
path-following methods. Mathematical and Computer Modelling, 1995.

[47] F. Feyel. A multilevel finite element method (FE2) to describe the response
of highly non-linear structures using generalized continua. Computer
Methods in Applied Mechanics and Engineering, 192(28-30):3233–3244,
2003.

137



References

[48] F. Feyel. Multiscale FE2 elastoviscoplastic analysis of composite structures.
Computational Materials Science, 16(1-4):344–354, 2003.

[49] F. Feyel and J. L. Chaboche. FE2 multiscale approach for modelling the
elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Com-
puter Methods in Applied Mechanics and Engineering, 183(3-4):309–330,
2000.

[50] N. A. Fleck, V. S. Deshpande, and M. F. Ashby. Micro-architectured materi-
als: past, present and future. Proceedings of the Royal Society A, 466:2495–
2516, 2010.

[51] D. Frank, J. Romanoff, and H. Remes. Fatigue strength assessment of
laser stake-welded web-core steel sandwich panels. Fatigue and Fracture of
Engineering Materials and Structures, 36(8):724–737, 2013.

[52] Y. Frostig and M. Baruch. Bending of sandwich beams with transversely
flexible core. AIAA Journal, 28(3):523–531, 1990.

[53] T. C. Fung, K. H. Tan, and T. S. Lok. Elastic Constants for Z-Core Sandwich
Panels. Journal of Structural Engineering, 120(10):3046–3055, 1994.

[54] T. C. Fung, K. H. Tan, and T. S. Lok. Shear stiffness DQy for C-Core
sandwich panels. Journal of Structural Engineering, 122(8):958–966, 1996.

[55] M. G. D. Geers, V. G. Kouznetsova, and W. A. M. Brekelmans. Multi-
scale computational homogenization: Trends and challenges. Journal of
Computational and Applied Mathematics, 234(7):2175–2182, 2010.

[56] B. R. Goncalves, J. Jelovica, and J. Romanoff. A homogenization method
for geometric nonlinear analysis of sandwich structures with initial im-
perfections. International Journal of Solids and Structures, 87:194–205,
2016.

[57] B. R. Goncalves, A. T. Karttunen, and J. Romanoff. A nonlinear couple stress
model for periodic sandwich beams. Composite Structures, 212(20):586–597,
2019.

[58] B. R. Goncalves, A. T. Karttunen, J. Romanoff, and J. N. Reddy. Buckling and
free vibration of shear-flexible sandwich beams using a couple-stress-based
finite element. Composite Structures, 165:233–241, 2017.

[59] B. R. Goncalves and J. Romanoff. Size-dependent modelling of elastic
sandwich beams with prismatic cores. International Journal of Solids and
Structures, 136-137:28–37, 2018.

[60] S. Gu, T. J. Lu, and A. G. Evans. On the design of two-dimensional cel-
lular metals for combined heat dissipation and structural load capacity.
International Journal of Heat and Mass Transfer, 44(11):2163–2175, 2001.

[61] Z. Guangrong (editor). Ship energy efficiency technologies - now and the
future. Technical report, 2017.

[62] A. R. Hadjesfandiari and G. F. Dargush. Couple stress theory for solids.
International Journal of Solids and Structures, 48(18):2496–2510, 2011.

[63] A. R. Hadjesfandiari and G. F. Dargush. Evolution of generalized couple-
stress continuum theories : a critical analysis. arXiv preprint arXiv, 2014.

138



References

[64] L. He, Y.-S. Cheng, and J. Liu. Precise bending stress analysis of corrugated-
core, honeycomb-core and X-core sandwich panels. Composite Structures,
94(5):1656–1668, 2012.

[65] A. S. Herrmann, P. C. Zahlen, and I. Zuardy. Sandwich Structures Technol-
ogy in Commercial Aviation. In Sandwich Structures 7: Advancing with
Sandwich Structures and Materials, pages 13–26. Springer Netherlands,
2005.

[66] R. Hill. Elastic properties of reinforced solids: Some theoretical principles.
Journal of the Mechanics and Physics of Solids, 11(5):357–372, 1963.

[67] R. Hill. The essential structure of constitutive laws for metal composites
and polycrystals. Journal of the Mechanics and Physics of Solids, 15(2):79–
95, 1967.

[68] N. J. Hoff. The Buckling of Sandwich-Type Panels. Journal of the Aeronau-
tical Sciences, 3:285–297, 1945.

[69] J. Hohe and W. Becker. Effective stress-strain relations for two-dimensional
cellular sandwich cores: Homogenization, material models, and properties.
Applied Mechanics Reviews, 55(1):61–87, 2002.

[70] S. J. Hollister and N. Kikuchi. A comparison of homogenization and stan-
dard mechanics analyses for periodic porous composites. Computational
Mechanics, 10:73–95, 1992.

[71] Z. Hou, X. Tian, J. Zhang, and D. Li. 3D printed continuous fibre reinforced
composite corrugated structure. Composite Structures, 184:1005–1010,
2018.

[72] O. F. Hughes, J. K. Paik, and B. Dominique. Ship Structural Analysis and
Design. The Society of Naval Architects and Marine Engineers, 2010.

[73] International Energy Agency. Energy efficiency indicators, Highlights.
2018.

[74] J. Jelovica. Global buckling response of web-core steel sandwich plates
influenced by general corrosion. PhD thesis, Aalto University, 2014.

[75] J. Jelovica and J. Romanoff. Load-carrying behaviour of web-core sandwich
plates in compression. Thin-Walled Structures, 73:264–272, 2013.

[76] J. Jelovica and J. Romanoff. Buckling of sandwich panels with transversely
flexible core: Correction of the equivalent single-layer model using thick-
faces effect. Journal of Sandwich Structures & Materials, 22(5):1612–1634,
2018.

[77] H. S. Ji, W. Song, and Z. J. Ma. Design, test and field application of a GFRP
corrugated-core sandwich bridge. Engineering Structures, 32(9):2814–2824,
2010.

[78] F. Jin, H. Chen, L. Zhao, H. Fan, C. Cai, and N. Kuang. Failure mechanisms
of sandwich composites with orthotropic integrated woven corrugated cores:
Experiments. Composite Structures, 98:53–58, 2013.

[79] Ł. Kaczmarczyk, C. J. Pearce, and N. Bićanić. Scale transition and enforce-
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A. Finite element definitions

A.1 Lagrangian linear and Hermitian cubic polynomials

The interpolation polynomials utilized in the finite element model of Sec-
tion 3.6 can be written [144]

ψ1 = 1− xe

le
, ψ2 = xe

le
(A.1a)

ϕ1 = 1−3
(︂ xe

le

)︂2
+2
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[︂(︂ xe
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)︂2
− xe

le

]︂
with xe referring to the elemental local coordinate system and le denoting
the element length.

A.2 Strain-displacement interpolation matrices for the present
model

The strain-displacement matrices utilized in the sandwich model herein
shown are given by

B=

⎡⎢⎢⎢⎢⎢⎢⎣
ψ

′
1 0 0 0 ψ

′
2 0 0 0

0 ψ
′
1 0 0 0 ψ

′
2 0 0

0 ψ1 ϕ
′
1 ϕ

′
2 0 ψ2 ϕ

′
3 ϕ

′
4

0 0 −ϕ′′
1 −ϕ′′

2 0 0 −ϕ′′
3 −ϕ′′

4

⎤⎥⎥⎥⎥⎥⎥⎦ (A.2)
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Finite element definitions

Bσ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 ϕ

′
1 ϕ

′
2 0 0 ϕ

′
3 ϕ

′
4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (A.3)

with the prime ( ) denoting differentiation with respect to′ x.

A.3 Transformation matrix for the present model

The local-to-global transformation matrix for the couple stress-based model
is given by

T̂=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosαe 0 sinαe 0 0 0 0 0

0 1 0 0 0 0 0 0

−sinαe 0 cosαe 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 cosαe 0 sinαe 0

0 0 0 0 0 1 0 0

0 0 0 0 −sinαe 0 cosαe 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.4)

where αe is the angle to which the finite element is rotated with respect to
the global horizontal axis.

A.4 Linear stiffness matrix

The symmetric half (K ji = K i j) of the linearized couple stress stiffness
matrix for one-scale problems is given in component form as follows

K e
11 =

∫︂ xb

xa

A
∂ψ1

∂x
∂ψ1

∂x
dx (A.5)

K e
12 =

∫︂ xb

xa

C1
∂ψ1

∂x
∂ψ1

∂x
dx

K e
13 =−

∫︂ xb

xa

C2
∂ψ1

∂x
∂2ϕ1

∂x2 dx
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K e
14 =−

∫︂ xb

xa

C2
∂ψ1

∂x
∂2ϕ2

∂x2 dx

K e
15 =

∫︂ xb

xa

A
∂ψ1

∂x
∂ψ2

∂x
dx

K e
16 =

∫︂ xb

xa

C1
∂ψ1

∂x
∂ψ2

∂x
dx

K e
17 =−

∫︂ xb

xa

C2
∂ψ1

∂x
∂2ϕ3

∂x2 dx

K e
18 =−

∫︂ xb

xa

C2
∂ψ1

∂x
∂2ϕ4

∂x2 dx

K e
22 =

∫︂ xb

xa

(︂
D
∂ψ1

∂x
∂ψ1

∂x
+DQψ1ψ1

)︂
dx

K e
23 =

∫︂ xb

xa

(︂
DQψ1

∂ϕ1

∂x
−C3

∂ψ1

∂x
∂2ϕ1

∂x2

)︂
dx

K e
24 =

∫︂ xb

xa

(︂
DQψ1

∂ϕ2

∂x
−C3

∂ψ1

∂x
∂2ϕ2

∂x2

)︂
dx

K e
25 =

∫︂ xb

xa

C1
∂ψ1

∂x
∂ψ2

∂x
dx

K e
26 =

∫︂ xb

xa

(︂
D
∂ψ1

∂x
∂ψ2

∂x
+DQψ1ψ2

)︂
dx

K e
27 =

∫︂ xb

xa

(︂
DQψ1

∂ϕ3

∂x
−C3

∂ψ1

∂x
∂2ϕ3

∂x2

)︂
dx

K e
28 =

∫︂ xb

xa

(︂
DQψ1

∂ϕ4

∂x
−C3

∂ψ1

∂x
∂2ϕ4

∂x2

)︂
dx

K e
33 =

∫︂ xb

xa

(︂
DQ

∂ϕ1

∂x
∂ϕ1

∂x
+S

∂2ϕ1

∂x2
∂2ϕ1

∂x2

)︂
dx

K e
34 =

∫︂ xb

xa

(︂
DQ

∂ϕ1

∂x
∂ϕ2

∂x
+S

∂2ϕ1

∂x2
∂2ϕ2

∂x2

)︂
dx

K e
35 =−

∫︂ xb

xa

C2
∂2ϕ1

∂x2
∂ψ2

∂x
dx

K e
36 =

∫︂ xb

xa

(︂
DQψ2

∂ϕ1

∂x
−C3

∂ψ2

∂x
∂2ϕ1

∂x2

)︂
dx

K e
37 =

∫︂ xb

xa

(︂
DQ

∂ϕ3

∂x
∂ϕ1

∂x
+S

∂2ϕ1

∂x2
∂2ϕ3

∂x2

)︂
dx

K e
38 =

∫︂ xb

xa

(︂
DQ

∂ϕ1

∂x
∂ϕ4

∂x
+S

∂2ϕ1

∂x2
∂2ϕ4

∂x2

)︂
dx
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K e
44 =

∫︂ xb

xa

(︂
DQ

∂ϕ2

∂x
∂ϕ2

∂x
+S

∂2ϕ2

∂x2
∂2ϕ2

∂x2

)︂
dx

K e
45 =−

∫︂ xb

xa

C2
∂ψ2

∂x
∂2ϕ2

∂x2 dx

K e
46 =

∫︂ xb

xa

(︂
DQψ2

∂ϕ2

∂x
−C3

∂ψ2

∂x
∂2ϕ2

∂x2

)︂
dx

K e
47 =

∫︂ xb

xa

(︂
DQ

∂ϕ2

∂x
∂ϕ3

∂x
+S

∂2ϕ2

∂x2
∂2ϕ3

∂x2

)︂
dx

K e
48 =

∫︂ xb

xa

(︂
DQ

∂ϕ2

∂x
∂ϕ4

∂x
+S

∂2ϕ2

∂x2
∂2ϕ4

∂x2

)︂
dx

K e
55 =

∫︂ xb

xa

A
∂ψ2

∂x
∂ψ2

∂x
dx

K e
56 =

∫︂ xb

xa

C1
∂ψ2

∂x
∂ψ2

∂x
dx

K e
57 =−

∫︂ xb

xa

C2
∂ψ2

∂x
∂2ϕ3

∂x2 dx

K e
58 =−

∫︂ xb

xa

C2
∂ψ2

∂x
∂2ϕ4

∂x2 dx

K e
66 =

∫︂ xb

xa

(︂
D
∂ψ2

∂x
∂ψ2

∂x
+DQψ2ψ2

)︂
dx

K e
67 =

∫︂ xb

xa

(︂
DQψ2

∂ϕ3

∂x
−C3

∂ψ2

∂x
∂2ϕ3

∂x2

)︂
dx

K e
68 =

∫︂ xb

xa

(︂
DQψ2

∂ϕ4

∂x
−C3

∂ψ2

∂x
∂2ϕ4

∂x2

)︂
dx

K e
77 =

∫︂ xb

xa

(︂
DQ

∂ϕ3

∂x
∂ϕ3

∂x
+S

∂2ϕ3

∂x2
∂2ϕ3

∂x2

)︂
dx

K e
78 =

∫︂ xb

xa

(︂
DQ

∂ϕ3

∂x
∂ϕ4

∂x
+S

∂2ϕ3

∂x2
∂2ϕ4

∂x2

)︂
dx

K e
88 =

∫︂ xb

xa

(︂
DQ

∂ϕ4

∂x
∂ϕ4

∂x
+S

∂2ϕ4

∂x2
∂2ϕ4

∂x2

)︂
dx
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A.5 Nonlinear secant stiffness matrix

The nonlinear secant stiffness matrix elements are presented as follows.
For linear microscale, replace A, C1 and D with A,C1 and D.

K e
11 =

∫︂ xb

xa

A
∂ψ1

∂x
∂ψ1

∂x
dx (A.6)

K e
12 =

∫︂ xb

xa

C1
∂ψ1

∂x
∂ψ1

∂x
dx

K e
13 =

∫︂ xb

xa

(︂A
2
∂w
∂x

∂ψ1

∂x
∂ϕ1

∂x
−C2

∂ψ1

∂x
∂2ϕ1

∂x2

)︂
dx

K e
14 =

∫︂ xb

xa

(︂A
2
∂w
∂x

∂ψ1

∂x
∂ϕ2

∂x
−C2

∂ψ1

∂x
∂2ϕ2

∂x2

)︂
dx

K e
15 =

∫︂ xb

xa

A
∂ψ1

∂x
∂ψ2

∂x
dx

K e
16 =

∫︂ xb

xa

C1
∂ψ1

∂x
∂ψ2

∂x
dx

K e
17 =

∫︂ xb

xa

(︂A
2
∂w
∂x

∂ψ1

∂x
∂ϕ3

∂x
−C2

∂ψ1

∂x
∂2ϕ3

∂x2

)︂
dx

K e
18 =

∫︂ xb

xa

(︂A
2
∂w
∂x

∂ψ1

∂x
∂ϕ4

∂x
−C2

∂ψ1

∂x
∂2ϕ4

∂x2

)︂
dx

K e
21 = K e

12

K e
22 =

∫︂ xb

xa

(︂
D
∂ψ1

∂x
∂ψ1

∂x
+DQψ1ψ1

)︂
dx

K e
23 =

∫︂ xb

xa

(︂C1

2
∂w
∂x

∂ψ1

∂x
∂ϕ1

∂x
+DQψ1

∂ϕ1

∂x
−C3

∂ψ1

∂x
∂2ϕ1

∂x2

)︂
dx

K e
24 =

∫︂ xb

xa

(︂C1

2
∂w
∂x

∂ψ1

∂x
∂ϕ2

∂x
+DQψ1

∂ϕ2

∂x
−C3

∂ψ1

∂x
∂2ϕ2

∂x2

)︂
dx

K e
25 =

∫︂ xb

xa

C1
∂ψ1

∂x
∂ψ2

∂x
dx

K e
26 =

∫︂ xb

xa

(︂
D
∂ψ1

∂x
∂ψ2

∂x
+DQψ1ψ2

)︂
dx

K e
27 =

∫︂ xb

xa

(︂C1

2
∂w
∂x

∂ψ1

∂x
∂ϕ3

∂x
+DQψ1

∂ϕ3

∂x
−C3

∂ψ1

∂x
∂2ϕ3

∂x2

)︂
dx

K e
28 =

∫︂ xb

xa

(︂C1

2
∂w
∂x

∂ψ1

∂x
∂ϕ4

∂x
+DQψ1

∂ϕ4

∂x
−C3

∂ψ1

∂x
∂2ϕ4

∂x2

)︂
dx
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K e
31 =

∫︂ xb

xa

(︂
A
∂w
∂x

∂ψ1

∂x
∂ϕ1

∂x
−C2

∂ψ1

∂x
∂2ϕ1

∂x2 −B1
∂ψ1

∂x
∂2ϕ1

∂x2

)︂
dx

K e
32 =

∫︂ xb

xa

(︂
C1

∂w
∂x

∂ψ1

∂x
∂ϕ1

∂x
+DQψ1

∂ϕ1

∂x
−C3

∂ψ1

∂x
∂2ϕ1

∂x2 −B2
∂ψ1

∂x
∂2ϕ1

∂x2

)︂
dx

K e
33 =

∫︂ xb

xa

[︂A
2

(︂∂w
∂x

)︂2 ∂ϕ1

∂x
∂ϕ1

∂x
+DQ

∂ϕ1

∂x
∂ϕ1

∂x
+S

∂2ϕ1

∂x2
∂2ϕ1

∂x2

− 3C2

2
∂w
∂x

∂ϕ1

∂x
∂2ϕ1

∂x2 − B1

2
∂w
∂x

∂ϕ1

∂x
∂2ϕ1

∂x2

]︂
dx

K e
34 =

∫︂ xb

xa

[︂A
2

(︂∂w
∂x

)︂2 ∂ϕ1

∂x
∂ϕ2

∂x
+DQ

∂ϕ1

∂x
∂ϕ2

∂x
+S

∂2ϕ1

∂x2
∂2ϕ2

∂x2

−C2
∂w
∂x

(︂∂ϕ1

∂x
∂2ϕ2

∂x2 + 1
2
∂ϕ2

∂x
∂2ϕ1

∂x2

)︂
− B1

2
∂w
∂x

∂ϕ2

∂x
∂2ϕ1

∂x2

]︂
dx

K e
35 =

∫︂ xb

xa

(︂
A
∂w
∂x

∂ψ2

∂x
∂ϕ1

∂x
−C2

∂ψ2

∂x
∂2ϕ1

∂x2 −B1
∂ψ2

∂x
∂2ϕ1

∂x2

)︂
dx

K e
36 =

∫︂ xb

xa

(︂
C1

∂w
∂x

∂ψ2

∂x
∂ϕ1

∂x
+DQψ2

∂ϕ1

∂x
−C3

∂ψ2

∂x
∂2ϕ1

∂x2 −B2
∂ψ2

∂x
∂2ϕ1

∂x2

)︂
dx

K e
37 =

∫︂ xb

xa

[︂A
2

(︂∂w
∂x

)︂2 ∂ϕ1

∂x
∂ϕ3

∂x
+DQ

∂ϕ1

∂x
∂ϕ3

∂x
+S

∂2ϕ1

∂x2
∂2ϕ3

∂x2

−C2
∂w
∂x

(︂∂ϕ1

∂x
∂2ϕ3

∂x2 + 1
2
∂ϕ3

∂x
∂2ϕ1

∂x2

)︂
− B1

2
∂w
∂x

∂ϕ3

∂x
∂2ϕ1

∂x2

]︂
dx

K e
38 =

∫︂ xb

xa

[︂A
2

(︂∂w
∂x

)︂2 ∂ϕ1

∂x
∂ϕ4

∂x
+DQ

∂ϕ1

∂x
∂ϕ4

∂x
+S

∂2ϕ1

∂x2
∂2ϕ4

∂x2

−C2
∂w
∂x

(︂∂ϕ1

∂x
∂2ϕ4

∂x2 + 1
2
∂ϕ4

∂x
∂2ϕ1

∂x2

)︂
− B1

2
∂w
∂x

∂ϕ4

∂x
∂2ϕ1

∂x2

]︂
dx

K e
41 =

∫︂ xb

xa

[︂
A
∂w
∂x

∂ψ1

∂x
∂ϕ2

∂x
−C2

∂ψ1

∂x
∂2ϕ2

∂x2 −B1
∂ψ1

∂x
∂2ϕ2

∂x2

]︂
dx

K e
42 =

∫︂ xb

xa

[︂
C1

∂w
∂x

∂ψ1

∂x
∂ϕ2

∂x
+DQψ1

∂ϕ2

∂x
−C3

∂ψ1

∂x
∂2ϕ2

∂x2 −B2
∂ψ1

∂x
∂2ϕ2

∂x2

]︂
dx

K e
43 =

∫︂ xb

xa

[︂A
2

(︂∂w
∂x

)︂2 ∂ϕ1

∂x
∂ϕ2

∂x
+DQ

∂ϕ1

∂x
∂ϕ2

∂x
+S

∂2ϕ1

∂x2
∂2ϕ2

∂x2

−C2
∂w
∂x

(︂∂ϕ2

∂x
∂2ϕ1

∂x2 + 1
2
∂ϕ1

∂x
∂2ϕ2

∂x2

)︂
− B1

2
∂w
∂x

∂ϕ1

∂x
∂2ϕ2

∂x2

]︂
dx

K e
44 =

∫︂ xb

xa

[︂A
2

(︂∂w
∂x

)︂2 ∂ϕ2

∂x
∂ϕ2

∂x
+DQ

∂ϕ2

∂x
∂ϕ2

∂x
+S

∂2ϕ2

∂x2
∂2ϕ2

∂x2

− 3C2

2
∂w
∂x

∂ϕ2

∂x
∂2ϕ2

∂x2 − B1

2
∂w
∂x

∂ϕ2

∂x
∂2ϕ2

∂x2

]︂
dx
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K e
45 =

∫︂ xb

xa

[︂
A
∂w
∂x

∂ψ2

∂x
∂ϕ2

∂x
−C2

∂ψ2

∂x
∂2ϕ2

∂x2 −B1
∂ψ2

∂x
∂2ϕ2

∂x2

]︂
dx

K e
46 =

∫︂ xb

xa

(︂
C1

∂w
∂x

∂ψ2

∂x
∂ϕ2

∂x
+DQψ2

∂ϕ2

∂x
−C3

∂ψ2

∂x
∂2ϕ2

∂x2 −B2
∂ψ2

∂x
∂2ϕ2

∂x2

)︂
dx

K e
47 =

∫︂ xb

xa

[︂A
2

(︂∂w
∂x

)︂2 ∂ϕ3

∂x
∂ϕ2

∂x
+DQ

∂ϕ3

∂x
∂ϕ2

∂x
+S

∂2ϕ3

∂x2
∂2ϕ2

∂x2

−C2
∂w
∂x

(︂∂ϕ2

∂x
∂2ϕ3

∂x2 + 1
2
∂ϕ3

∂x
∂2ϕ2

∂x2

)︂
− B1

2
∂w
∂x

∂ϕ3

∂x
∂2ϕ2

∂x2

]︂
dx

K e
48 =

∫︂ xb

xa

[︂A
2

(︂∂w
∂x

)︂2 ∂ϕ4

∂x
∂ϕ2

∂x
+DQ

∂ϕ4

∂x
∂ϕ2

∂x
+S

∂2ϕ4

∂x2
∂2ϕ2

∂x2

−C2
∂w
∂x

(︂∂ϕ2

∂x
∂2ϕ4

∂x2 + 1
2
∂ϕ4

∂x
∂2ϕ2

∂x2

)︂
− B1

2
∂w
∂x

∂ϕ4

∂x
∂2ϕ2

∂x2

]︂
dx

K e
51 = K e

15

K e
52 = K e

25

K e
53 =

∫︂ xb

xa

(︂A
2
∂w
∂x

∂ψ2

∂x
∂ϕ1

∂x
−C2

∂ψ2

∂x
∂2ϕ1

∂x2

)︂
dx

K e
54 =

∫︂ xb

xa

(︂A
2
∂w
∂x

∂ψ2

∂x
∂ϕ2

∂x
−C2

∂ψ2

∂x
∂2ϕ2

∂x2

)︂
dx

K e
55 =

∫︂ xb

xa

A
∂ψ2

∂x
∂ψ2

∂x
dx

K e
56 =

∫︂ xb

xa

C1
∂ψ2

∂x
∂ψ2

∂x
dx

K e
57 =

∫︂ xb

xa

(︂A
2
∂w
∂x

∂ψ2

∂x
∂ϕ3

∂x
−C2

∂ψ2

∂x
∂2ϕ3

∂x2

)︂
dx

K e
58 =

∫︂ xb

xa

(︂A
2
∂w
∂x

∂ψ2

∂x
∂ϕ4

∂x
−C2

∂ψ2

∂x
∂2ϕ4

∂x2

)︂
dx

K e
61 = K e

16

K e
62 = K e

26

K e
63 =

∫︂ xb

xa

(︂C1

2
∂w
∂x

∂ψ2

∂x
∂ϕ1

∂x
+DQψ2

∂ϕ1

∂x
−C3

∂ψ2

∂x
∂2ϕ1

∂x2

)︂
dx

K e
64 =

∫︂ xb

xa

(︂C1

2
∂w
∂x

∂ψ2

∂x
∂ϕ2

∂x
+DQψ2

∂ϕ2

∂x
−C3

∂ψ2

∂x
∂2ϕ2

∂x2

)︂
dx

K e
65 = K e

56

K e
66 =

∫︂ xb

xa

(︂
D
∂ψ2

∂x
∂ψ2

∂x
+DQψ2ψ2

)︂
dx
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K e
67 =

∫︂ xb

xa

(︂C1

2
∂w
∂x

∂ψ2

∂x
∂ϕ3

∂x
+DQψ2

∂ϕ3

∂x
−C3

∂ψ2

∂x
∂2ϕ3

∂x2

)︂
dx

K e
68 =

∫︂ xb

xa

(︂C1

2
∂w
∂x

∂ψ2

∂x
∂ϕ4

∂x
+DQψ2

∂ϕ4

∂x
−C3

∂ψ2

∂x
∂2ϕ4

∂x2

)︂
dx

K e
71 =

∫︂ xb

xa

(︂
A
∂w
∂x

∂ψ1

∂x
∂ϕ3

∂x
−C2

∂ψ1

∂x
∂2ϕ3

∂x2 −B1
∂ψ1

∂x
∂2ϕ3

∂x2

)︂
dx

K e
72 =

∫︂ xb

xa

(︂
C1

∂w
∂x

∂ψ1

∂x
∂ϕ3

∂x
+DQψ1

∂ϕ3

∂x
−C3

∂ψ1

∂x
∂2ϕ3

∂x2 −B2
∂ψ1

∂x
∂2ϕ3

∂x2

)︂
dx

K e
73 =

∫︂ xb

xa

[︂A
2

(︂∂w
∂x

)︂2 ∂ϕ3

∂x
∂ϕ1

∂x
+DQ

∂ϕ3

∂x
∂ϕ1

∂x
+S

∂2ϕ3

∂x2
∂2ϕ1

∂x2

−C2
∂w
∂x

(︂∂ϕ3

∂x
∂2ϕ1

∂x2 + 1
2
∂ϕ1

∂x
∂2ϕ3

∂x2

)︂
− B1

2
∂w
∂x

∂ϕ1

∂x
∂2ϕ3

∂x2

]︂
dx

K e
74 =

∫︂ xb

xa

[︂A
2

(︂∂w
∂x

)︂2 ∂ϕ3

∂x
∂ϕ2

∂x
+DQ

∂ϕ3

∂x
∂ϕ2

∂x
+S

∂2ϕ3

∂x2
∂2ϕ2

∂x2

−C2
∂w
∂x

(︂∂ϕ3

∂x
∂2ϕ2

∂x2 + 1
2
∂ϕ2

∂x
∂2ϕ3

∂x2

)︂
− B1

2
∂w
∂x

∂ϕ2

∂x
∂2ϕ3

∂x2

]︂
dx

K e
75 =

∫︂ xb

xa

(︂
A
∂w
∂x

∂ψ2

∂x
∂ϕ3

∂x
−C2

∂ψ2

∂x
∂2ϕ3

∂x2 −B1
∂ψ2

∂x
∂2ϕ3

∂x2

)︂
dx

K e
76 =

∫︂ xb

xa

(︂
C1

∂w
∂x

∂ψ2

∂x
∂ϕ3

∂x
+DQψ2

∂ϕ3

∂x
−C3

∂ψ2

∂x
∂2ϕ3

∂x2 −B2
∂ψ2

∂x
∂2ϕ3

∂x2

)︂
dx

K e
77 =

∫︂ xb

xa

[︂A
2

(︂∂w
∂x

)︂2 ∂ϕ3

∂x
∂ϕ3

∂x
+DQ

∂ϕ3

∂x
∂ϕ3

∂x
+S

∂2ϕ3

∂x2
∂2ϕ3

∂x2

− 3C2

2
∂w
∂x

∂ϕ3

∂x
∂2ϕ3

∂x2 − B1

2
∂w
∂x

∂ϕ3

∂x
∂2ϕ3

∂x2

]︂
dx

K e
78 =

∫︂ xb

xa

[︂A
2

(︂∂w
∂x

)︂2 ∂ϕ3

∂x
∂ϕ4

∂x
+DQ

∂ϕ3

∂x
∂ϕ4

∂x
+S

∂2ϕ3

∂x2
∂2ϕ4

∂x2

−C2
∂w
∂x

(︂∂ϕ3

∂x
∂2ϕ4

∂x2 + 1
2
∂ϕ4

∂x
∂2ϕ3

∂x2

)︂
− B1

2
∂w
∂x

∂ϕ4

∂x
∂2ϕ3

∂x2

]︂
dx

K e
81 =

∫︂ xb

xa

(︂
A
∂w
∂x

∂ψ1

∂x
∂ϕ4

∂x
−C2

∂ψ1

∂x
∂2ϕ4

∂x2 −B1
∂ψ1

∂x
∂2ϕ4

∂x2

)︂
dx

K e
82 =

∫︂ xb

xa

(︂
C1

∂w
∂x

∂ψ1

∂x
∂ϕ4

∂x
+DQψ1

∂ϕ4

∂x
−C3

∂ψ1

∂x
∂2ϕ4

∂x2 −B2
∂ψ1

∂x
∂2ϕ4

∂x2

)︂
dx

K e
83 =

∫︂ xb

xa

[︂A
2

(︂∂w
∂x

)︂2 ∂ϕ1

∂x
∂ϕ4

∂x
+DQ

∂ϕ1

∂x
∂ϕ4

∂x
+S

∂2ϕ1

∂x2
∂2ϕ4

∂x2

−C2
∂w
∂x

(︂∂ϕ4

∂x
∂2ϕ1

∂x2 + 1
2
∂ϕ1

∂x
∂2ϕ4

∂x2

)︂
− B1

2
∂w
∂x

∂ϕ1

∂x
∂2ϕ4

∂x2

]︂
dx
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K e
84 =

∫︂ xb

xa

[︂A
2

(︂∂w
∂x

)︂2 ∂ϕ2

∂x
∂ϕ4

∂x
+DQ

∂ϕ2

∂x
∂ϕ4

∂x
+S

∂2ϕ2

∂x2
∂2ϕ4

∂x2

−C2
∂w
∂x

(︂∂ϕ4

∂x
∂2ϕ2

∂x2 + 1
2
∂ϕ2

∂x
∂2ϕ4

∂x2

)︂
− B1

2
∂w
∂x

∂ϕ2

∂x
∂2ϕ4

∂x2

]︂
dx

K e
85 =

∫︂ xb

xa

(︂
A
∂w
∂x

∂ψ2

∂x
∂ϕ4

∂x
−C2

∂ψ2

∂x
∂2ϕ4

∂x2 −B1
∂ψ2

∂x
∂2ϕ4

∂x2

)︂
dx

K e
86 =

∫︂ xb

xa

(︂
C1

∂w
∂x

∂ψ2

∂x
∂ϕ4

∂x
+DQψ2

∂ϕ4

∂x
−C3

∂ψ2

∂x
∂2ϕ4

∂x2 −B2
∂ψ2

∂x
∂2ϕ4

∂x2

)︂
dx

K e
87 =

∫︂ xb

xa

[︂A
2

(︂∂w
∂x

)︂2 ∂ϕ3

∂x
∂ϕ4

∂x
+DQ

∂ϕ3

∂x
∂ϕ4

∂x
+S

∂2ϕ3

∂x2
∂2ϕ4

∂x2

−C2
∂w
∂x

(︂∂ϕ4

∂x
∂2ϕ3

∂x2 + 1
2
∂ϕ3

∂x
∂2ϕ4

∂x2

)︂
− B1

2
∂w
∂x

∂ϕ3

∂x
∂2ϕ4

∂x2

]︂
dx

K e
88 =

∫︂ xb

xa

[︂A
2

(︂∂w
∂x

)︂2 ∂ϕ4

∂x
∂ϕ4

∂x
+DQ

∂ϕ4

∂x
∂ϕ4

∂x
+S

∂2ϕ4

∂x2
∂2ϕ4

∂x2

− 3C2

2
∂w
∂x

∂ϕ4

∂x
∂2ϕ4

∂x2 − B1

2
∂w
∂x

∂ϕ4

∂x
∂2ϕ4

∂x2

]︂
dx

A.6 Nonlinear tangent stiffness matrix

The nonlinear tangent stiffness matrix elements are presented as follows.

T e
11 = K e

11 (A.7)

T e
12 = K e

12

T e
13 = K e

13 +
∫︂ xb

xa

A
2
∂w
∂x

∂ψ1

∂x
∂ϕ1

∂x
dx

T e
14 = K e

14 +
∫︂ xb

xa

A
2
∂w
∂x

∂ψ1

∂x
∂ϕ2

∂x
dx

T e
15 = K e

15

T e
16 = K e

16

T e
17 = K e

17 +
∫︂ xb

xa

A
2
∂w
∂x

∂ψ1

∂x
∂ϕ3

∂x
dx

T e
18 = K e

18 +
∫︂ xb

xa

A
2
∂w
∂x

∂ψ1

∂x
∂ϕ4

∂x
dx

T e
21 = K e

21
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T e
22 = K e

22

T e
23 = K e

23 +
∫︂ xb

xa

C1

2
∂w
∂x

∂ψ1

∂x
∂ϕ1

∂x
dx

T e
24 = K e

24 +
∫︂ xb

xa

C1

2
∂w
∂x

∂ψ1

∂x
∂ϕ2

∂x
dx

T e
25 = K e

25

T e
26 = K e

26

T e
27 = K e

27 +
∫︂ xb

xa

C1

2
∂w
∂x

∂ψ1

∂x
∂ϕ3

∂x
dx

T e
28 = K e

28 +
∫︂ xb

xa

C1

2
∂w
∂x

∂ψ1

∂x
∂ϕ4

∂x
dx

T e
31 = K e

31

T e
32 = K e

32

T e
33 = K e

33 +
∫︂ xb

xa

{︂
A
[︂∂u
∂x

+
(︂∂w
∂x

)︂2]︂∂ϕ1

∂x
∂ϕ1

∂x
+C1

∂φ

∂x
∂ϕ1

∂x
∂ϕ1

∂x

+ (C2 +B1)
(︂∂2w
∂x2

∂ϕ1

∂x
∂ϕ1

∂x
+ 1

2
∂w
∂x

∂ϕ1

∂x
∂2ϕ1

∂x2

)︂}︂
dx

T e
34 = K e

34 +
∫︂ xb

xa

{︂
A
[︂∂u
∂x

+
(︂∂w
∂x

)︂2]︂∂ϕ1

∂x
∂ϕ2

∂x
+C1

∂φ

∂x
∂ϕ1

∂x
∂ϕ2

∂x

+ (C2 +B1)
(︂∂2w
∂x2

∂ϕ1

∂x
∂ϕ2

∂x
+ 1

2
∂w
∂x

∂ϕ2

∂x
∂2ϕ1

∂x2

)︂}︂
dx

T e
35 = K e

35

T e
36 = K e

36

T e
37 = K e

37 +
∫︂ xb

xa

{︂
A
[︂∂u
∂x

+
(︂∂w
∂x

)︂2]︂∂ϕ1

∂x
∂ϕ3

∂x
+C1

∂φ

∂x
∂ϕ1

∂x
∂ϕ2

∂x

+ (C2 +B1)
(︂∂2w
∂x2

∂ϕ1

∂x
∂ϕ3

∂x
+ 1

2
∂w
∂x

∂ϕ3

∂x
∂2ϕ1

∂x2

)︂}︂
dx

T e
38 = K e

38 +
∫︂ xb

xa

{︂
A
[︂∂u
∂x

+
(︂∂w
∂x

)︂2]︂∂ϕ1

∂x
∂ϕ4

∂x
+C1

∂φ

∂x
∂ϕ1

∂x
∂ϕ2

∂x

+ (C2 +B1)
(︂∂2w
∂x2

∂ϕ1

∂x
∂ϕ4

∂x
+ 1

2
∂w
∂x

∂ϕ4

∂x
∂2ϕ1

∂x2

)︂}︂
dx

T e
41 = K e

41

T e
42 = K e

42
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T e
43 = K e

43 +
∫︂ xb

xa

{︂
A
[︂∂u
∂x

+
(︂∂w
∂x

)︂2]︂∂ϕ1

∂x
∂ϕ2

∂x
+C1

∂φ

∂x
∂ϕ1

∂x
∂ϕ2

∂x

+ (C2 +B1)
(︂∂2w
∂x2

∂ϕ1

∂x
∂ϕ2

∂x
+ 1

2
∂w
∂x

∂ϕ1

∂x
∂2ϕ2

∂x2

)︂}︂
dx

T e
44 = K e

44 +
∫︂ xb

xa

{︂
A
[︂∂u
∂x

+
(︂∂w
∂x

)︂2]︂∂ϕ2

∂x
∂ϕ2

∂x
+C1

∂φ

∂x
∂ϕ2

∂x
∂ϕ2

∂x

+ (C2 +B1)
(︂∂2w
∂x2

∂ϕ2

∂x
∂ϕ2

∂x
+ 1

2
∂w
∂x

∂ϕ2

∂x
∂2ϕ2

∂x2

)︂}︂
dx

T e
45 = K e

45

T e
46 = K e

46

T e
47 = K e

47 +
∫︂ xb

xa

{︂
A
[︂∂u
∂x

+
(︂∂w
∂x

)︂2]︂∂ϕ3

∂x
∂ϕ2

∂x
+C1

∂φ

∂x
∂ϕ3

∂x
∂ϕ2

∂x

+ (C2 +B1)
(︂∂2w
∂x2

∂ϕ3

∂x
∂ϕ2

∂x
+ 1

2
∂w
∂x

∂ϕ3

∂x
∂2ϕ2

∂x2

)︂}︂
dx

T e
48 = K e

48 +
∫︂ xb

xa

{︂
A
[︂∂u
∂x

+
(︂∂w
∂x

)︂2]︂∂ϕ4

∂x
∂ϕ2

∂x
+C1

∂φ

∂x
∂ϕ4

∂x
∂ϕ2

∂x

+ (C2 +B1)
(︂∂2w
∂x2

∂ϕ4

∂x
∂ϕ2

∂x
+ 1

2
∂w
∂x

∂ϕ4

∂x
∂2ϕ2

∂x2

)︂}︂
dx

T e
51 = K e

51

T e
52 = K e

52

T e
53 = K e

53 +
∫︂ xb

xa

A
2
∂w
∂x

∂ψ2

∂x
∂ϕ1

∂x
dx

T e
54 = K e

54 +
∫︂ xb

xa

A
2
∂w
∂x

∂ψ2

∂x
∂ϕ2

∂x
dx

T e
55 = K e

55

T e
56 = K e

56

T e
57 = K e

57 +
∫︂ xb

xa

A
2
∂w
∂x

∂ψ2

∂x
∂ϕ3

∂x
dx

T e
58 = K e

58 +
∫︂ xb

xa

A
2
∂w
∂x

∂ψ2

∂x
∂ϕ4

∂x
dx

T e
61 = K e

61

T e
62 = K e

62

T e
63 = K e

63 +
∫︂ xb

xa

C1

2
∂w
∂x

∂ψ2

∂x
∂ϕ1

∂x
dx

157



Finite element definitions

T e
64 = K e

64 +
∫︂ xb

xa

C1

2
∂w
∂x

∂ψ2

∂x
∂ϕ2

∂x
dx

T e
65 = K e

65

T e
66 = K e

66

T e
67 = K e

67 +
∫︂ xb

xa

C1

2
∂w
∂x

∂ψ2

∂x
∂ϕ3

∂x
dx

T e
68 = K e

68 +
∫︂ xb

xa

C1

2
∂w
∂x

∂ψ2

∂x
∂ϕ4

∂x
dx

T e
71 = K e

71

T e
72 = K e

72

T e
73 = K e

73 +
∫︂ xb

xa

{︂
A
[︂∂u
∂x

+
(︂∂w
∂x

)︂2]︂∂ϕ1

∂x
∂ϕ3

∂x
+C1

∂φ

∂x
∂ϕ1

∂x
∂ϕ3

∂x

+ (C2 +B1)
(︂∂2w
∂x2

∂ϕ1

∂x
∂ϕ3

∂x
+ 1

2
∂w
∂x

∂ϕ1

∂x
∂2ϕ3

∂x2

)︂}︂
dx

T e
74 = K e

74 +
∫︂ xb

xa

{︂
A
[︂∂u
∂x

+
(︂∂w
∂x

)︂2]︂∂ϕ2

∂x
∂ϕ3

∂x
+C1

∂φ

∂x
∂ϕ2

∂x
∂ϕ3

∂x

+ (C2 +B1)
(︂∂2w
∂x2

∂ϕ2

∂x
∂ϕ3

∂x
+ 1

2
∂w
∂x

∂ϕ2

∂x
∂2ϕ3

∂x2

)︂}︂
dx

T e
75 = K e

75

T e
76 = K e

76

T e
77 = K e

77 +
∫︂ xb

xa

{︂
A
[︂∂u
∂x

+
(︂∂w
∂x

)︂2]︂∂ϕ3

∂x
∂ϕ3

∂x
+C1

∂φ

∂x
∂ϕ3

∂x
∂ϕ3

∂x

+ (C2 +B1)
(︂∂2w
∂x2

∂ϕ3

∂x
∂ϕ3

∂x
+ 1

2
∂w
∂x

∂ϕ3

∂x
∂2ϕ3

∂x2

)︂}︂
dx

T e
78 = K e

78 +
∫︂ xb

xa

{︂
A
[︂∂u
∂x

+
(︂∂w
∂x

)︂2]︂∂ϕ3

∂x
∂ϕ4

∂x
+C1

∂φ

∂x
∂ϕ3

∂x
∂ϕ4

∂x

+ (C2 +B1)
(︂∂2w
∂x2

∂ϕ4

∂x
∂ϕ3

∂x
+ 1

2
∂w
∂x

∂ϕ4

∂x
∂2ϕ3

∂x2

)︂}︂
dx

T e
81 = K e

81

T e
82 = K e

82

T e
83 = K e

83 +
∫︂ xb

xa

{︂
A
[︂∂u
∂x

+
(︂∂w
∂x

)︂2]︂∂ϕ1

∂x
∂ϕ4

∂x
+C1

∂φ

∂x
∂ϕ1

∂x
∂ϕ4

∂x

+ (C2 +B1)
(︂∂2w
∂x2

∂ϕ1

∂x
∂ϕ4

∂x
+ 1

2
∂w
∂x

∂ϕ1

∂x
∂2ϕ4

∂x2

)︂}︂
dx
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T e
84 = K e

84 +
∫︂ xb

xa

{︂
A
[︂∂u
∂x

+
(︂∂w
∂x

)︂2]︂∂ϕ2

∂x
∂ϕ4

∂x
+C1

∂φ

∂x
∂ϕ2

∂x
∂ϕ4

∂x

+ (C2 +B1)
(︂∂2w
∂x2

∂ϕ2

∂x
∂ϕ4

∂x
+ 1

2
∂w
∂x

∂ϕ2

∂x
∂2ϕ4

∂x2

)︂}︂
dx

T e
85 = K e

85

T e
86 = K e

86

T e
87 = K e

87 +
∫︂ xb

xa

{︂
A
[︂∂u
∂x

+
(︂∂w
∂x

)︂2]︂∂ϕ3

∂x
∂ϕ4

∂x
+C1

∂φ

∂x
∂ϕ3

∂x
∂ϕ4

∂x

+ (C2 +B1)
(︂∂2w
∂x2

∂ϕ3

∂x
∂ϕ4

∂x
+ 1

2
∂w
∂x

∂ϕ3

∂x
∂2ϕ4

∂x2

)︂}︂
dx

T e
88 = K e

88 +
∫︂ xb

xa

{︂
A
[︂∂u
∂x

+
(︂∂w
∂x

)︂2]︂∂ϕ4

∂x
∂ϕ4

∂x
+C1

∂φ

∂x
∂ϕ4

∂x
∂ϕ4

∂x

+ (C2 +B1)
(︂∂2w
∂x2

∂ϕ4

∂x
∂ϕ4

∂x
+ 1

2
∂w
∂x

∂ϕ4

∂x
∂2ϕ4

∂x2

)︂}︂
dx
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