Errata

Publication I

page 4, column 2, paragraph 5, lines 30-32:

The risk of injury is described by a cost C>0, which affects both agents. The constant C is called the cost of conflict.

Correction (to be replaced by):

The risk of injury is described by a cost of conflict $C\triangle T$ that affects both agents. Here, C>0 is a constant.

page 4, column 2:

Table I. The game matrix for the spatial evacuation game.

	Impatient	Patient
Impatient	C, C	$-\triangle u(T_{ij}), \triangle u(T_{ij})$
Patient	$\triangle u(T_{ij}), -\triangle u(T_{ij})$	0,0

Correction (to be replaced by):

Table I. The game matrix for the spatial evacuation game.

	Impatient	Patient	-
Impatient	$C\triangle T, C\triangle T$	$-\triangle u(T_{ij}), \triangle u(T_{ij})$	-
Patient	$\triangle u(T_{ij}), -\triangle u(T_{ij})$	0,0	

page 5, column 1, paragraph 1, lines 1-8:

Then the game matrix only depends on the parameter $C/\triangle u(T_{ij})$. When $0 < C/\triangle u(T_{ij}) \le 1$, the game played is PD, and the only Nash equilibrium is (Impatient, Impatient). If $C/\triangle u(T_{ij}) > 1$, the game played is HD, and there are two pure strategy Nash equilibria (Impatient, Patient) and (Patient, Impatient). There is also a mixed strategy equilibrium, where the strategy Impatient is played with probability $\triangle u(T_{ij})/C$, and the strategy Patient with probability $1 - \triangle u(T_{ij})/C$.

Correction (to be replaced by):

Note from Eq. (3) that $u'(T_{ij}) \simeq \triangle u(T_{ij})/\triangle T$. Then the game matrix only depends on the parameter $C/u'(T_{ij})$. When $0 < C/u'(T_{ij}) \le 1$, the game played is PD, and the only Nash equilibrium is (Impatient, Impatient). If $C/u'(T_{ij}) > 1$, the game played is HD, and there are two pure strategy Nash equilibria (Impatient, Patient) and (Patient, Impatient). There is also a mixed strategy equilibrium, where the strategy Impatient is played with probability $u'(T_{ij})/C$, and the strategy Patient with probability $1 - u'(T_{ij})/C$.

page 5, column 2, paragraph 1, lines 2-8:

We will suppose that $\triangle T=1$ s. Then the parameter $C/\triangle(T_{ij})$ appearing in the game matrix is

$$\frac{C}{\triangle u(T_{ij})} \simeq \frac{T_0}{T_{ij} - T_{ASET} + T_0}. (7)$$

Note that whether the game played is PD or HD, depends only on the value of $T_0/(T_{ij}-T_{ASET}+T_0)$. Thus the game only depends on the estimated evacuation time T_{ij} , since T_0 and T_{ASET} are constants. When T_{ij} increases, the game turns from HD to PD.

Correction (to be replaced by):

Then the parameter $C/u'(T_{ij})$ appearing in the game matrix is

$$\frac{C}{u'(T_{ij})} = \frac{T_0}{T_{ij} - T_{ASET} + T_0}. (7)$$

Note that whether the game played is PD or HD, depends only on the value of $T_0/(T_{ij}-T_{ASET}+T_0)$. Thus the game only depends on the estimated evacuation time T_{ij} , since T_0 and T_{ASET} are constants. When T_{ij} increases, the game turns from HD to PD.

Publication II

page 2, column 2, paragraph 6, lines 27-30:

The risk of injury is described by a cost C > 0, which affects both agents. The constant C is called the *cost of conflict*.

Correction (to be replaced by):

The risk of injury is described by a cost of conflict $C \triangle T$ that affects both agents. Here, C > 0 is a constant.

page 2, column 2:

	Impatient	Patient	
Impatient	C,C	$-\triangle u(T_{ij}), \triangle u(T_{ij})$	
Patient	$\triangle u(T_{ij}), -\triangle u(T_{ij})$	0,0	

Correction (to be replaced by):

	Impatient	Patient	
Impatient	$C\triangle T, C\triangle T$	$-\triangle u(T_{ij}), \triangle u(T_{ij})$	
Patient	$\triangle u(T_{ij}), -\triangle u(T_{ij})$	0,0	

page 3, column 1, paragraph 3, lines 18-20:

Let us now go back to Eq. (2). If we for simplicity assume $\triangle T = 1$, we have $\triangle u(T_{ij}) \cong u'(T_{ij})$. So, the cost of being overtaken is approximately $u'(T_{ij})$. Let's make another assumption about $u(T_{ij})$.

Correction (to be replaced by):

Let us now go back to the cost of being overtaken $u'(T_{ij})\triangle T$.

page 3, column 1, paragraph 6, lines 36-39:

Now, substitute $\triangle u(T_{ij}) = u'(T_{ij})$ in the game matrix, and divide it by $u'(T_{ij})$. This does not affect the equilibria of the game. Finally, substitute $u'(T_{ij}) = T_{ij}/T_{ASET}$.

Correction (to be replaced by):

Now, divide the game matrix by $\triangle u(T_{ij})$, and substitute $\triangle u(T_{ij})/\triangle T=u'(T_{ij})$. This does not affect the equilibria of the game. Finally, substitute $u'(T_{ij})=CT_{ij}/T_{ASET}$.

page 5, column 2, paragraph 2:

$$\sum_{j \in N_i} \frac{T_{ASET}}{T_{ij}} + (|N_i| - |N_i^{Imp}|) \le |N_i^{Imp}|, \tag{5}$$

Correction (to be replaced by):

$$\sum_{j \in N_i^{Imp}} \frac{T_{ASET}}{T_{ij}} + (|N_i| - |N_i^{Imp}|) \cdot (-1) \le |N_i^{Imp}|, \tag{5}$$

Publication III

page 9, paragraph 4, lines 16-19:

The random force ξ_i in Eq. (4) is decomposed $\xi_i = \xi_i \eta_i$, where the magnitude ξ_i is drawn from a truncated Gaussian distribution with mean zero, standard deviation of $0.1m_i$ m/s², and it is truncated at three times of the standard deviation. The components of the direction vector $\eta_i = (\eta_i^1, \eta_i^2)$ are drawn from uniform distributions on the intervals $[\cos(0), \cos(2\pi)]$ and $[\sin(0), \sin(2\pi)]$, respectively.

Correction (to be replaced by):

Finally, the components of the random force vector ξ_i follow a truncated normal distribution with zero mean, standard deviation $0.1m_i$ m/s², and are truncated at three times of the standard deviation.