Errata

Publication I

page 4, column 2, paragraph 5, lines 30-32:

The risk of injury is described by a cost $C>0$, which affects both agents. The constant C is called the cost of conflict.

Correction (to be replaced by):

The risk of injury is described by a cost of conflict $C \triangle T$ that affects both agents. Here, $C>0$ is a constant.

page 4, column 2:

Table I. The game matrix for the spatial evacuation game.

	Impatient	Patient
Impatient	C, C	$-\triangle u\left(T_{i j}\right), \Delta u\left(T_{i j}\right)$
Patient	$\triangle u\left(T_{i j}\right),-\triangle u\left(T_{i j}\right)$	0,0

Correction (to be replaced by):

Table I. The game matrix for the spatial evacuation game.

	Impatient	Patient
Impatient	$C \triangle T, C \triangle T$	$-\triangle u\left(T_{i j}\right), \Delta u\left(T_{i j}\right)$
Patient	$\triangle u\left(T_{i j}\right),-\triangle u\left(T_{i j}\right)$	0,0

page 5, column 1, paragraph 1, lines 1-8:

Then the game matrix only depends on the parameter $C / \Delta u\left(T_{i j}\right)$. When $0<C / \Delta u\left(T_{i j}\right) \leq 1$, the game played is PD, and the only Nash equilibrium is (Impatient, Impatient). If $C / \Delta u\left(T_{i j}\right)>1$, the game played is HD, and there are two pure strategy Nash equilibria (Impatient, Patient) and (Patient, Impatient). There is also a mixed strategy equilibrium, where the strategy Impatient is played with probability $\triangle u\left(T_{i j}\right) / C$, and the strategy Patient with probability $1-\triangle u\left(T_{i j}\right) / C$.

Correction (to be replaced by):

Note from Eq. (3) that $u^{\prime}\left(T_{i j}\right) \simeq \triangle u\left(T_{i j}\right) / \Delta T$. Then the game matrix only depends on the parameter $C / u^{\prime}\left(T_{i j}\right)$. When $0<C / u^{\prime}\left(T_{i j}\right) \leq 1$, the game played is PD, and the only Nash equilibrium is (Impatient, Impatient). If $C / u^{\prime}\left(T_{i j}\right)>1$, the game played is HD, and there are two pure strategy Nash equilibria (Impatient, Patient) and (Patient, Impatient). There is also a mixed strategy equilibrium, where the strategy Impatient is played with probability $u^{\prime}\left(T_{i j}\right) / C$, and the strategy Patient with probability $1-u^{\prime}\left(T_{i j}\right) / C$.

page 5, column 2, paragraph 1, lines 2-8:

We will suppose that $\triangle T=1 \mathrm{~s}$. Then the parameter $C / \triangle\left(T_{i j}\right)$ appearing in the game matrix is

$$
\begin{equation*}
\frac{C}{\triangle u\left(T_{i j}\right)} \simeq \frac{T_{0}}{T_{i j}-T_{A S E T}+T_{0}} . \tag{7}
\end{equation*}
$$

Note that whether the game played is PD or HD, depends only on the value of $T_{0} /\left(T_{i j}-\right.$ $T_{A S E T}+T_{0}$). Thus the game only depends on the estimated evacuation time $T_{i j}$, since T_{0} and $T_{A S E T}$ are constants. When $T_{i j}$ increases, the game turns from HD to PD.

Correction (to be replaced by):

Then the parameter $C / u^{\prime}\left(T_{i j}\right)$ appearing in the game matrix is

$$
\begin{equation*}
\frac{C}{u^{\prime}\left(T_{i j}\right)}=\frac{T_{0}}{T_{i j}-T_{A S E T}+T_{0}} . \tag{7}
\end{equation*}
$$

Note that whether the game played is PD or HD, depends only on the value of $T_{0} /\left(T_{i j}-\right.$ $T_{A S E T}+T_{0}$). Thus the game only depends on the estimated evacuation time $T_{i j}$, since T_{0} and $T_{A S E T}$ are constants. When $T_{i j}$ increases, the game turns from HD to PD.

Publication II

page 2, column 2, paragraph 6, lines 27-30:
The risk of injury is described by a cost $C>0$, which affects both agents. The constant C is called the cost of conflict.

Correction (to be replaced by):

The risk of injury is described by a cost of conflict $C \triangle T$ that affects both agents. Here, $C>0$ is a constant.
page 2, column 2:

	Impatient	Patient
Impatient	C, C	$-\triangle u\left(T_{i j}\right), \Delta u\left(T_{i j}\right)$
Patient	$\triangle u\left(T_{i j}\right),-\triangle u\left(T_{i j}\right)$	0,0

Correction (to be replaced by):

page 3, column 1, paragraph 3, lines 18-20:
Let us now go back to Eq. (2). If we for simplicity assume $\triangle T=1$, we have $\triangle u\left(T_{i j}\right) \cong u^{\prime}\left(T_{i j}\right)$. So, the cost of being overtaken is approximately $u^{\prime}\left(T_{i j}\right)$. Let's make another assumption about $u\left(T_{i j}\right)$.

Correction (to be replaced by):

Let us now go back to the cost of being overtaken $u^{\prime}\left(T_{i j}\right) \triangle T$.

page 3, column 1, paragraph 6, lines 36-39:

Now, substitute $\triangle u\left(T_{i j}\right)=u^{\prime}\left(T_{i j}\right)$ in the game matrix, and divide it by $u^{\prime}\left(T_{i j}\right)$. This does not affect the equilibria of the game. Finally, substitute $u^{\prime}\left(T_{i j}\right)=T_{i j} / T_{A S E T}$.

Correction (to be replaced by):

Now, divide the game matrix by $\triangle u\left(T_{i j}\right)$, and substitute $\triangle u\left(T_{i j}\right) / \triangle T=u^{\prime}\left(T_{i j}\right)$. This does not affect the equilibria of the game. Finally, substitute $u^{\prime}\left(T_{i j}\right)=C T_{i j} / T_{A S E T}$.

page 5, column 2, paragraph 2:

$$
\begin{equation*}
\sum_{j \in N_{i}} \frac{T_{A S E T}}{T_{i j}}+\left(\left|N_{i}\right|-\left|N_{i}^{I m p}\right|\right) \leq\left|N_{i}^{I m p}\right|, \tag{5}
\end{equation*}
$$

Correction (to be replaced by):

$$
\begin{equation*}
\sum_{j \in N_{i}^{I m p}} \frac{T_{A S E T}}{T_{i j}}+\left(\left|N_{i}\right|-\left|N_{i}^{I m p}\right|\right) \cdot(-1) \leq\left|N_{i}^{I m p}\right|, \tag{5}
\end{equation*}
$$

Publication III

page 9 , paragraph 4 , lines 16-19:

The random force $\boldsymbol{\xi}_{i}$ in Eq. (4) is decomposed $\boldsymbol{\xi}_{i}=\xi_{i} \boldsymbol{\eta}_{i}$, where the magnitude ξ_{i} is drawn from a truncated Gaussian distribution with mean zero, standard deviation of $0.1 m_{i} \mathrm{~m} / \mathrm{s}^{2}$, and it is truncated at three times of the standard deviation. The components of the direction vector $\boldsymbol{\eta}_{i}=\left(\eta_{i}^{1}, \eta_{i}^{2}\right)$ are drawn from uniform distributions on the intervals $[\cos (0), \cos (2 \pi)]$ and $[\sin (0), \sin (2 \pi)]$, respectively.

Correction (to be replaced by):

Finally, the components of the random force vector ξ_{i} follow a truncated normal distribution with zero mean, standard deviation $0.1 m_{i} \mathrm{~m} / \mathrm{s}^{2}$, and are truncated at three times of the standard deviation.

