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Abstract—Spatial reuse is a key aspect of wireless network
design, and the choice of an appropriate interference model
is important for capturing the intrinsic characteristics of such
a network. We address the problem of finding optimal trans-
mission modes, and their capacities, in a network consisting
of nodes distributed as a spatial Poisson process in an infinite
plane, i.e., such combinations of transmitting links that max-
imize the instantaneous forwarding capacity of the network.
A stochastic optimization method called simulated annealing is
used to obtain the results. The approach is applied to a SINR
threshold interference model that treats the sum of all the other
simultaneously transmitted signals as noise. We find out how
the maximum capacity behaves for different network densities,
signal attenuation coefficients, and thresholds for the required
SINR. These numerical results shed light on the spatial reuse
problem in wireless multihop networks. We further characterize
the asymptotic behavior of the sum capacity of the optimal
combination of transmitting links and the fraction of transmitting
nodes in the low and high interference regimes.

I. INTRODUCTION

Characterizing the exact capacity of a large wireless network
is notoriously hard due to the complexity of analyzing the
impact of the interference from simultaneously transmitting
nodes. So far, the analysis has mostly focused on the scaling of
the network capacity [5], [6]. To fully understand the formation
of the capacity of networks comprising of a plethora of nodes,
it is also important to know the magnitude of the capacity, or
in other words, the constant in front of the scaling part. When
possibly hundreds of nodes transmit over the same channel,
a realistic modeling of the impact of wireless interference
requires taking into account its additive nature. Hence, we
study an SINR-based interference model where the interaction
between the links can no longer be described using a simple
interference graph.

We formulate the problem as follows. A network in an
infinite plane is given with node locations obeying a planar
Poisson process. The nodes communicate with each other
through the wireless medium. Simultaneous transmissions
interfere with each other according to the rules of a given
interference model. In the SINR threshold model, if the signal-
to-interference-and-noise-ratio (SINR) of a link is above a
given threshold, a transmission is possible with a fixed rate.
We assume that the origin nodes transmit with constant power
and that the transmitted signal attenuates according to a power
law as a function of distance from its transmitter. A set of links
that transmit at the same time is called a transmission mode.

The target is to find the transmission mode that maximizes the
value of an objective function per area.

As an objective function we use the instantaneous forward-
ing capacity. With the term forwarding capacity, we refer
to the capability of the network to relay information. The
capacity is measured in bits per second or bit-meters per
second depending on the used link weight. The weight of
the link is either one (unweighted) or the length of the
projection of the link in a given direction, to represent the
progress of information in that direction. We use the word
instantaneous to emphasize that we are considering only a
single transmission mode (individual time slot) whose capacity
is a natural, although rather loose, upper bound for continuous
multihop flows.

The results are obtained by simulated annealing (SA), a
probabilistic method for solving difficult optimization prob-
lems. It is based on the work of Metropolis et al. in 1953
[15], and was later formulated as a more general optimization
technique by Kirkpatrick et al. in 1983 [13]. The suitability
of SA for this kind of a problem stems from the fact that the
method is able to process a wide variety of objective functions
and constraints. It is statistically guaranteed to find an optimal
solution though, on a negative side, finding the optimum may
be time consuming. The main merit of the method is that it
permits the transition from graph based interference models to
a more realistic modeling of the underlying wireless medium
using SINR-based interference models. The reader should keep
in mind that though simulated annealing is usually described
as a minimization algorithm, our text is written from the
maximization point of view.

In this paper, we aim to broaden the knowledge on the
theoretical maximum capacity of the SINR threshold model.
In the analysis, we establish a so-called neighborhood-size
parameter, that captures all the dependencies of the model,
and characterize the asymptotic behavior of the system as a
function of the parameter. A simple theoretical analysis on the
capacity is also conducted to serve as a point of comparison.
The simulated annealing algorithm and its parameter selection
process are presented, and we illustrate the suitability of
different cooling schedules for the problem. The approach is
used to determine the weight of the optimal transmission mode
as a function of the neighborhood-size parameter for differ-
ent combinations of the attenuation coefficient of the power
law and the threshold required for the SINR. Corresponding
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values from a model where the data rate of an active link
is determined using Shannon’s formula (from [20]) are given
as a point of comparison. The results are the most accurate
ones available for the SINR threshold model thus far. The
methodology extends the knowledge of the properties of the
theoretical maximum capacity of large-scale wireless networks
and supports the known asymptotic scaling characteristics
when the number of nodes approaches infinity. It can be used
to compare the performance of more practical implementations
to the optimal transmission configurations that offer the upper
bound of the capacity.

The remainder of this paper is organized as follows. In
Section II, we present the related work. Section III describes
the network model and the associated objective functions
whose behavior is analyzed in Section IV. In Section V, we
outline the main principle of the SA method, while Section VI
is dedicated to some implementation aspects and to the effects
of the choice of simulation parameters. The numerical results
are presented in Section VII. We conclude with some closing
remarks in Section VIII.

II. RELATED WORK

The question of optimal transmission modes appears in
wireless networking, e.g., in the context of large scale sensor
networks of the future. An extensive network is often modeled
as a massively dense network [4], [8], [10], [12] that from a
single node’s perspective appears as an infinite network of
randomly placed wireless nodes. The solution of a maximum
weight transmission mode problem gives the maximum instan-
taneous forwarding capacity in the neighborhood of the con-
sidered node, which in turn sets an upper bound for the local
sustainable mean forwarding capacity, i.e., the average rate at
which information can be “moved” in a given direction [17],
[19]. Note that the maximum weight independent set cannot
be used repeatedly for forwarding traffic because it consists
of independent, isolated links that do not form a connected
network. The concept is similar to density of progress, see
[1], [21]. Results like these yield useful information about the
achievable gains from utilizing optimal global coordination in
multihop communications, and thus they complement the well-
known scaling results for the capacity of multihop networks,
see [5], [6]. The maximum weight independent set problem
is also related to the challenging global optimization phase of
the original maximum weight scheduling algorithm [22] and
its distributed variants [11] and [16].

We consider the maximum weight independent set problem
assuming that interference between the links is represented
by the SINR threshold model. The SINR-based interference
models are of interest as an inapt interference model can
lead to unjustified structural decision as there are qualita-
tive differences in the predictions of different interference
models [9]. Furthermore, an experimental comparison study
[14] shows the accuracy of SINR-based interference in real-
life applications. The significance of the interference model
selection has been discussed widely in the literature (see [3]
for a survey).

In this paper, we extend the work of [20] and further develop
stochastic optimization algorithms based on simulated anneal-
ing for tackling the maximum weight independent set problem,
which essentially corresponds to determining the maximal
spatial reuse. Our objective is to determine the total weight
of the maximum weight transmission mode per unit area (or
node) in an infinitely large wireless network as a function of
an appropriately defined neighborhood-size parameter using
the much used and in practice relevant SINR threshold model.
More specifically, comparing with [20], which focused on a
model where the link weights were given by the Shannon
capacity of the link, (i) we derive for the threshold model
a new analytical model of the capacity, (ii) we analyze the
impact of the cooling strategies and show the robustness of
the used linear strategy and (iii) we produce numerical results
on the forwarding capacity as a function of the various param-
eters. These numerical results are unknown in the literature,
as far as we know, and also enable a comparison between the
SINR threshold model and our previous results on the Shannon
capacity-based model.

III. NETWORK MODEL

The network consists of nodes, v ∈ V , distributed randomly
over a plane according to a spatial Poisson point process
with density n. Each node has one transceiver and can thus
participate in only one transmission at any time. A pair of
nodes, a transmitter and a receiver, may according to the rules
of the interference model form a directed link l ∈ L. Link l
has a weight, wl, that is either

• one (unweighted) or
• the x-progress of the link (length of the projection of the

link onto the x-axis)
Note that x-axis represents an arbitrary direction, the direction
in which the information is moved. Links that can successfully
transmit at the same time form a transmission mode m ∈ M.

A. SINR threshold model

We assume that all the nodes transmit with the same con-
stant power P0. The attenuation factor between the transmitter
of link l and the receiver of link l′ is assumed to follow power
law

g(l, l′) =
(
|tl − rl′ |

ρ0

)−α

, (1)

where ρ0 is a reference distance, and α is a given attenuation
coefficient.

Under the SINR interference model, there exists a link l =
(u, v) ∈ L, u, v ∈ V if the signal to interference and noise
ratio (SINR) is greater than or equal to a given threshold, θ.
The SINR at rl for link l in transmission mode m is

SINR(rl,m) =
P0 · g(l, l)∑

l′∈m\{l}
P0 · g(l′, l) + σ2

, (2)

where σ2 is the thermal noise power. The spectral efficiency of
links with SINR(rl,m) ≥ θ is assumed constant irrespective
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α = 3 α = 4 α = 5

Fig. 1: The areas where a reception is possible for three transmitters (dots) under the Boolean interference model (dashed lines)
and the SINR threshold model with threshold 1 (outermost solid lines). The inner solid lines are contours for SINR values 7
and 31.

of the SINR,

Rl(m) = R(θ) = log2(1 + θ), (3)

i.e., the spectral efficiency at the threshold according to
Shannon’s formula.

As the attenuation coefficient α and the threshold θ (and
possibly also the thermal noise power, σ2) are given constants,
we can define a length unit

ρ(P0) = ρ0
α
√
P0/θσ2, (4)

that is, the maximum distance at which a reception is possible
if there are no competing transmissions (zero interference).

The difference between the SINR threshold model and the
Boolean interference model in an example scenario with three
active transmitters is illustrated in Figure 1. The areas where
a reception is possible from each of the transmitters are
drawn in the figure. Under the simple Boolean interference
model, a node is able to receive a transmission if it is inside
the (fixed) transmission radius of only one active node. The
main difference between the SINR interference model and the
Boolean interference model is that, although the border of the
reception area approaches the one of the Boolean interference
model when α grows, the SINR interference model is more
realistic in always allowing a reception near the transmitter.

B. Objectives

Our goal is to find the instantaneous forwarding capacity,
i.e, the maximum capacity of a transmission mode per unit
area, Î , as a function of the system parameters. The capacity
of a transmission mode is measured either in bits per second
(link weight one) or bit-meters per second (weighted by x-
progress). Hence, the unit of Î is either 1/s/m2 or 1/s/m
respectively. The link weights one (unweighted) and the x-
progress of the link (length of the projection of the link onto
the x-axis) are denoted by subindices 1 and x in the context of
Î (and its dimensionless counterpart u introduced next), while
subindex ∗ refers to either of the weights.

According to the Buckingham π theorem [2], any physi-
cally meaningful equation is equivalent to another equation

involving all1 the independent dimensionless parameters that
can be constructed from the original variables. In our case, in
addition to Î , only one independent parameter can be formed,
and hence Î can be expressed in terms of it. The most natural
choice for this dimensionless parameter is

ν(n, ρ) = πnρ2, (5)

which has the interpretation as the mean neighborhood size.
All unknown functions of the system parameters can be
reduced to functions of this single variable.

Depending on the definition of the link weight, Îα,θ(ν) can
be expressed as

Îα,θ1 (ν) = C0 nuα,θ
1 (ν(n, ρ)), or (6)

Îα,θx (ν) = C0

√
nuα,θ

x (ν(n, ρ)), (7)

where C0 denotes the bandwidth [Hz], and uα,θ
1 (ν) and

uα,θ
x (ν) are dimensionless functions of the independent dimen-

sionless parameter ν. Note that functions uα,θ
∗ (ν) are different

for different values of α and θ.

IV. ANALYSIS

In order to gain a better understanding of how the dimen-
sionless functions uα,θ

∗ (ν) behave, it is useful to consider them
analytically. The asymptotic analysis studies the performance
in small densities, ν � 1, and in high densities, ν � 1.
See [18], [20] for other interference models. With a simple
analytical model, we study if or when it is possible to
reproduce the results of the well-chosen transmission modes
with a naive model.

A. Asymptotic characterization

Let us rewrite (2) as follows,

SINR(rl,m) =
ḡ(l, l) να/2∑

l′∈m\{l}
ḡ(l′, l) να/2 + 1

, (8)

1If there are a physical variables that are expressed in terms of b indepen-
dent physical units, the number of dimensionless parameters is a− b.
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where ḡ is the dimensionless function

ḡ(l, l′) =
(√

πn |tl − rl′ |
)−α

. (9)

An important observation is that, because of insertion of the
factor

√
πn, for any realization of the spatial Poisson process

the function ḡ(l, l) is independent of the scale. That is, if all
the distances are stretched or contracted by some factor, the
value of ḡ(l, l′) remains unchanged for any pair of links {l, l′}.
Thus, the dependence on the density is fully incorporated in
the factors να/2 in (8). Since this factor controls the ratio of the
two terms in the denominator, the low and high density limits
may equivalently be called the noise-limited and interference-
limited cases, respectively.

Curves uα,θ
∗ (ν) defined in (6) and (7) are increasing func-

tions of ν. This stems from the fact that SINR(rl,m) of
(8) is an increasing function of ν. The total capacity of any
transmission mode m is constant, but the maximizing mode,
and thus the maximum capacity, may change as ν increases
and makes more transmission modes feasible.

Let us now consider the interference-limited case ν � 1. In
this case, the one in the denominator of (8) may be neglected,
whence the factors να/2 cancel out. Therefore, provided that ν
is large enough, the problem becomes completely scale-free,
independent of ν. No matter how the scale is stretched or
contracted, it is always the same mode of active links that
realizes the optimum.

Next we turn our attention to the noise-limited case ν � 1.
Now, the interference term in the denominator of (8) may be
neglected, whence the SINR(rl,m) reduces to the numerator
of the expression on the right hand side. Without interference,
reception is possible anywhere in the transmission region, and
a higher SINR threshold θ directly leads to better spectral
efficiency (3) as the system is studied as a function of ν, given
by (5).

Under a reasonable assumption that θ > 1, a reception is
only possible from the closest transmitting node. Now, strong
attenuation (large α) increases the capacity independent of ν.
As α tends to infinity, the interference is dominated by the
interfering transmitter closest to the receiver of the link (or the
noise if there are no interfering transmitters within the distance
of ρ) that is still farther than the transmitter of the link. Hence,
the SINR (8) tends to infinity as α → ∞. The effect is stronger
when ν is large, and there are more competing transmissions.

B. Simple model for the unweighted case

Here we consider the unweighted case and derive a rough
approximation for the dimensionless capacity uα,θ

1 (ν). With-
out loss of generality, we consider a Poisson process with
intensity n = 1, ρ0 = 1 and σ2 = 1, and study the dimension-
less capacity as a function of the power P0, which corresponds
to a specific value of ν. Two modeling assumptions are made.
First, we assume that every node is able to form a link with its
nearest neighbor without conflicts, and that links are indeed
formed starting from the nearest pair of nodes up to a node
pair at the maximum distance r̂ from each other. Then, the
fraction F (r̂) = 1−e−πr̂2 of nodes is used to form links, and
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α = 3, θ = 1

Fig. 2: The dimensionless capacity in the unweighted case as
a function of ν for (α, θ)-pairs (3,1), (4,1) and (3,7).

the density of transmitters is F (r̂)/2. Second, the interference
power to a receiver with its nearest neighbor at distance r,
coming completely from transmitters farther than r from the
receiver, is represented by its expectation,

I(r) =
F (r̂)

2

∫ ∞

r

P0s
−α2πs ds =

P0πr
2−α

α− 2
(1− e−πr̂2).

It is easy to reason that it is advantageous to increase r̂ up to
the point where the receiver of a link of this maximum length
experiences a SINR equaling the threshold value θ. Thus, r̂ is
determined from the equation

P0 r̂
−α = θ (I(r̂) + 1),

and the dimensionless capacity is (F (r̂)/2) log2(1 + θ). In
Figure 2, we illustrate uα,θ

1 (ν) as a function of ν for (α, θ)-
pairs (3,1), (4,1) and (3,7). As will be seen later, in spite of the
heuristic nature of the model, these estimates are surprisingly
accurate for the cases with θ = 1. However, as soon as θ
becomes larger the model underestimates the capacity, as the
example with θ = 7 shows. In order to obtain more precise
results, we next develop a technique based on simulated
annealing that correctly captures the spatial dependencies of
the active links.

V. SIMULATED ANNEALING

In order to determine the instantaneous forwarding capacity
of a large network (that represents the entire plane), we want
to find the transmission mode that maximizes the capacity per
unit area. This is done using simulated annealing (SA).

The idea of the method comes from the physical process of
annealing, where a material cooled slowly enough approaches
the ground state of the system, i.e., the state with minimum
energy (maximum of the negative energy). As the name indi-
cates, SA tries to simulate this kind of process. In this method,
the current solution is randomly moved to a “neighboring”
solution with a probability that depends on the height of the
ascent/descent and a parameter called temperature. By allow-
ing the algorithm to move to a worse solution, it is possible
to avoid being stuck at local optima. When the temperature
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parameter is properly modified during the optimization, the
algorithm also eventually reaches the optimal solution.

The SA algorithm uses the following elements in its oper-
ation (physical analogues in parentheses):

1) A finite set of possible states.
2) A real-valued target function (energy) that defines the

set of optimal states.
3) A set of neighboring states for each state and the rule

for randomly choosing the next state from the neighbors
of the current state.

4) A cooling schedule (temperature) that “freezes” the
probability distribution of the states to the set of optimal
states over time.

Also required are the initial state and the termination condi-
tion. In our case, the set of transmission modes forms the state
space of the system. The order of the states is determined by
the weight of the transmission mode w(m), and neighboring
states are those transmission modes that differ only by one
link.

Let us consider a Markov chain with the state space
composed of the different transmission modes and with the
steady-state distribution

π(m) ∼ exp{w(m)/T}, (10)

where T is a constant. When T is small, the probability mass
is concentrated to the maximum we are interested in,

m∗ = argmax
m∈M

w(m). (11)

The time needed for the Markov chain to reach the steady-
state with small T can, depending on the heights of the local
maxima, be inordinate. The idea of simulated annealing is to
avoid this problem by slowly decreasing the temperature T .
Even then, the cooling schedule has to be slow enough for the
system to avoid being quenched in a local extremum [7].

A. Algorithm

A Markov chain Mτ with state space M is formed, and the
steady-state probability of a transmission mode m is chosen
to be

π(m) =
ew(m)/T∑

m′∈M
ew(m′)/T

, (12)

where T , i.e, the temperature, is a positive parameter and
w(m) is the weight of transmission mode m equal to

w(m) =
∑
l∈m

wlRl(m), (13)

where wl is the weight of link l, and the spectral efficiency,
Rl(m), under the Boolean interference model is one. As
mentioned, we study two different link weights

wl =

{
1, unweighted
|[tl]1 − [rl]1|/ρ0, x-progress. (14)

When T is small, the probability of the transmission mode
with the highest capacity is close to one.

To assure the required steady-state distribution, the tran-
sition probabilities, p(m′,m), are chosen so that π shows
detailed balance, i.e., p(m′,m)π(m′) = p(m,m′)π(m). This
is achieved using a proposal distribution q(m′,m) along with
an acceptance/rejection procedure. The proposal distribution
q(m′,m) gives the probability that transmission mode m is the
candidate to be selected as the next transmission mode when
the current transmission mode is m′. When a proposal m with
a higher capacity is accepted with probability 1, a transition to
a lower capacity, w(m) < w(m′), is accepted with probability,
r, that can be solved from the detailed balance equation,

p(m′,m)π(m′) = p(m,m′)π(m)

⇔ r · q(m′,m)π(m′) = 1 · q(m,m′)π(m)

⇔ r =
q(m,m′)π(m)

q(m′,m)π(m′)
,

and is rejected otherwise. Note that r is always defined since
a transition from m′ to m can only occur if both q(m′,m)
and π(m′) are nonzero.

When the proposal m is obtained by randomly choosing a
link, l ∈ L, and adding it to m′ if l is feasible and does not
belong to m′ and removing it from m′ if it does, we have
q(m′,m) = q(m,m′) = 1/|L|, and

r = e−(w(m′)−w(m))/T . (15)

This equation is referred to as Metropolis (acceptance) crite-
rion.

Markov chain Mτ with known steady-state distribution
is simulated to find transmission modes with near optimal
capacity. As the temperature T is decreased, the samples come
from a process that more and more heavily favors modes with
a large capacity.

VI. IMPLEMENTATION ASPECTS

In this section, we discuss implementation aspects of the
simulated annealing algorithm and some considerations that
need to be taken into account in setting up the simulations.

A. General parameters

A key parameter of the simulated annealing algorithm is the
temperature of the system. When the temperature parameter is
properly modified during the optimization, the algorithm also
eventually reaches the optimal solution. One way to properly
modify the temperature is to use logarithmic cooling, T (t) =
c/ log(1+t), where t is the time and c is a constant that needs
to be large enough [7].

In order to avoid being stuck at local optima, the initial
temperature, that depends on c, needs to be large enough.
On the other hand, in order to find the true optimum, the
simulation time has to be long. That is, the temperature at
the end of the simulation needs to be very small. Using
the logarithmic cooling schedule this might take a long time
(depending on c).

A linear cooling schedule, T (t) = c/t, is faster than the
logarithmic cooling schedule and is not guaranteed to “freeze”
the process to the optimal state. However, by using a linear
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cooling schedule, it is easier to choose an initial temperature
that is large enough for the process to explore the search
space and still have a low end temperature that “freezes” the
process to a good pseudo-optimal solution. This is a desired
property especially when the simulation time is limited, and
the discovery of the optimum cannot be guaranteed (even using
logarithmic cooling).

Figure 3 illustrates the performance of the two cooling
schedules, logarithmic and linear, as a function of the final
temperature when the simulation time is fixed to one million
steps. From the figure one can see that, though both schedules
give nearly the same performance with correctly chosen c, that
fixes the end temperature, the linear schedule is much less
sensitive to the selection of the parameter. The larger error
bars of the logarithmic schedule indicate that some simulation
runs have been unable to escape local maxima and have thus
resulted in much worse performance.

10
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Fig. 3: The curves uα,θ
x (Tend) for the logarithmic and linear

cooling schedules in a one million step simulation with pa-
rameters α = 3, θ = 7, ν = 6.

It is to be noted that when the simulation time is limited, the
simulated annealing algorithm cannot be guaranteed to find the
optimal solution. Since both the initial and the end temperature
are significant to the end result, the parameter selection is
easier with a linear cooling schedule. Hence, we use a fixed
simulation length and linear cooling, and the temperatures of
the system form a harmonic sequence.

For the results to be generalizable to a plane, the simulated
network needs to be large enough. To eliminate border effects,
we identify the top and the bottom of the square and the circu-
lar edges of the formed cylinder to form a torus. Additionally,
we allow an interfering signal to travel around the torus for a
given number of rounds as explained in the next subsection.
Figure 4 depicts the capacity uα,θ

x as a function of the expected
network size for ν = 6. It shows that the difference in the
capacity becomes negligible for network sizes greater than
600.

B. Handling residual interference

To estimate the amount of interference that is not covered by
considering a network with a finite number of nodes, we do the

0 200 400 600 800 1000
0.126

0.128

0.13

0.132

0.134

0.136

0.138

N

uα
,θ

x

Fig. 4: The effect of the expected network size (number of
nodes) on the network capacity in the simulations.

following calculation. Let B = [0,
√
A]× [0,

√
A] be a square

of a plane with nodes placed according to a Poisson point
process of density n. Now, the fraction of interference coming
from outside a circle that can be fitted into B compared to the
interference coming from outside a circle with a radius that
equals the mean distance of a node to its nearest neighbor,
1/2

√
n, is ∫ ∞

√
A/2

z n r−α 2πr dr∫ ∞

1/2
√
n

z n r−α 2πr dr

=
1√
nA

=
1√
N

, (16)

where N is the total number of nodes in the simulation area
and z is the fraction of transmitting nodes.

For example, if N = 600, less than 4 % of the interference
is caused by nodes outside the square. We take such a
residual interference approximately into account by letting an
interfering signal to travel around the torus for a given number
of rounds. Essentially, this is the same as adding copies of B
around it in a network that has not been wrapped up to a torus
(our implementation has 201×201 squares). This way, we are
able to accurately take into account most of the interference
coming from outside B.

VII. NUMERICAL RESULTS

This section presents the results for different combinations
of α and θ that have been obtained using simulated annealing.
The SA algorithm produces as a result the maximum weight
of a transmission mode w(m) (13) for a finite network
realization. When the reference distance is chosen suitably,
ρ0 = 1/

√
n, the dimensionless functions can be calculated

simply as u∗(ν) = w(m)/N , where N is the expected number
of nodes in the network.

First, we consider the unweighted case. Figure 5 shows
the curve uα,θ

1 (ν) for different combinations of α and θ. The
results are averages over 10 network realizations with the mean
network size of 600 nodes. The 95 % confidence intervals
are shown as error bars. The end value of the temperature
parameter T was chosen to be 0.1 after the 10-million-step
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simulation. As predicted in Section IV-A, the curves are
increasing functions of ν. The figure also matches with the
deductions for the dependence on α and θ.

When parameter α grows, the interference attenuates faster,
and more links can be activated. The threshold parameter has
an opposite effect, but higher θ also increases the link capacity.
When the threshold grows, a higher SINR value is required
for a successful transmission, and a smaller fraction of the
links can be activated. However, the spectral efficiency (3) of
the links is higher. When the model of Section IV-B is set
against these values, the results for θ = 1 are similar, but the
difference when θ is greater is evident, see also Figure 2.
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Fig. 5: The results for the unweighted SINR threshold model.

Next, we consider the case weighted by the x-progress.
Figure 6 shows the curve uα,θ

x (ν) for different combinations
of α and θ. The results are averages over 5 network realiza-
tions with the mean network size of 800 nodes. The 95 %
confidence intervals are shown as error bars. The end value
of the temperature parameter T was chosen to be 0.01 after
the 20-million-step simulation. These curves also match the
predictions of Section IV-A.

Threshold θ has a notable significance when ν is small while
α has almost no importance. When ν is small, interference
has very little role in constituting the capacity as the problem
revolves around being able to form the links. Thus, the
attenuation coefficient α is less important than θ that directly
affects the spectral efficiency of the links that can be formed.

When the mean number of neighbors, ν, grows, the effect
of α increases as the interfering signals and their attenuation
becomes more important. In this case, higher α naturally leads
to higher capacities. The effect of θ with larger ν is not straight
forward, but the SINR threshold value that maximizes the
capacity depends on the neighborhood size. Figure 7 depicts
the curve uα,θ

x (θ) for different values of ν when α is equal to
three. From the figure, it can be seen that when ν is small a
higher threshold leads to better performance, but the optimal
θ becomes smaller as ν grows.

The percentage of transmitting nodes in the optimal trans-
mission mode as a function of ν is illustrated Figure 8.
It is comparable with Figure 5 after the effect of spectral
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Fig. 6: The results for the SINR threshold model weighted by
the x-progress.
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Fig. 7: The curve uα,θ
x (θ) for the SINR threshold model

weighted by the x-progress when α = 3 and ν varies.

efficiency has been eliminated (divide the values of Fig. 5
by log2(1 + θ)) and shows the same behavior with respect
to α and θ. Naturally, the tendency towards using longer
links means that a smaller fraction of nodes can be activated.
The curves start leveling off when ν grows indicating that
the asymptotically optimal transmission mode starts to be
established already with relatively small values of ν.

The previous results are upper bounded by results from a
model where the spectral efficiency of a link is calculated
according to Shannon’s formula. That is, instead of (3), the
spectral efficiency at the threshold, the actual SINR is used
to calculate the spectral efficiency log2(1 + SINR(rl,m)).
The Shannon model represents what is achievable with perfect
adaptive coding and modulation and corresponds to a (graded)
model with infinitely many thresholds. Table I represents
comparable values for ν = 10 with 95 % confidence intervals.

VIII. CONCLUSIONS

Finding and using efficient combinations of transmitting
links is crucial to the performance of a wireless network. In
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Fig. 8: The fraction of transmitting nodes under the SINR
threshold model weighted by the x-progress.

TABLE I: Results for the Shannon model with ν = 10

α uα
1 uα

x
3 1.15 ± 0.02 0.252 ± 0.002
4 1.83 ± 0.03 0.431 ± 0.003
5 2.46 ± 0.04 0.598 ± 0.005

this paper, we studied producing (near) optimal transmission
modes with stochastic optimization technique called simulated
annealing. The approach is suitable for determining the be-
havior of the theoretical maximum capacity of a large-scale
wireless network. The obtained results illustrate the formation
of the overall capacity of a wireless network and support the
known asymptotic laws that tell how the capacity scales as
the network size grows to infinity by providing an accurate
estimate of the capacity. The results also serve as a point of
comparison for practical medium access control protocols.

The simulated annealing algorithm and its parameter se-
lection process were presented, and a linear cooling schedule
was selected for its robustness compared with a logarithmic
one in finite simulation time. We studied extensively how the
maximum capacity behaves for different network densities,
attenuation coefficients, and thresholds. The numerical results
show that the capacity exhibits the deduced asymptotic behav-
ior with respect to the model parameters; the threshold, the
attenuation coefficient, and the mean neighborhood size. The
results were compared with the results from a model where
the data rate of an active link is determined using Shannon’s
formula.

The aforementioned Shannon model offers an upper bound
for the threshold model with the same attenuation coefficient,
and illustrates the gain that can be achieved with perfect
adaptive coding and modulation. Hence, it also gives an upper
bound for graded models that allow the use of multiple thresh-
olds to better utilize the potential of the links. The optimal
selection of multiple thresholds remains as a field of future
work, as well as the study of other interference models that fall
between the two extremes of the simple Boolean interference
model and the complex SINR-based additive interference.
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