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Abstract—We study the maximum forwarding capacity for
the relay traffic that can be transmitted through a wireless
multihop network in a single direction. The problem appears
as the microscopic level problem in a dense multihop network
where the routing and forwarding tasks can be considered
independently (separation of scales). Ultimately, the problem of
finding the maximum forwarding capacity involves solving a max-
flow problem in an infinite plane with an infinite dimensional
scheduling vector as an additional parameter to be optimized. In
this paper, we approximate the infinite network by a finite but
large network consisting of nodes distributed as a spatial Poisson
process, and give the problem an LP formulation assuming
a Boolean interference model. The computational complexity
is further reduced by relaxing the necessary and sufficient
constraints and solving the LP problem with a reduced set of
necessary clique constraints. This gives a new significantly tighter
upper bound on the achievable forwarding capacity compared
with our previous (non-achievable) upper bound corresponding
to the maximum capacity in one time slot.

I. INTRODUCTION

In the future applications of large wireless multihop net-
works, such as wireless sensor networks (WSNs), the size of
the network may rise to several thousands of nodes. The exact
modeling of large networks is problematic, and much of the
available results are limited into scaling laws like the seminal
work by Gupta and Kumar [7] and the recent results by
Franceschetti et al. in [5]. However the scaling laws leave the
constant of proportionality undetermined. We aim to provide
more concrete results that fix the constant of proportionality.

We consider a wireless network in a given domain in the
limit of a dense wireless network. In this limit, an elegant
separation of scales takes place, and the problem of maximiz-
ing the capacity separates into two independent problems: a
macroscopic and microscopic problem, see [9], [10]. At the
macroscopic level a continuum approach can be adopted where
routes are continuous geometric curves and the problem is
that of load balancing [9], [10]. Similar continuum models
have also been analyzed in [3], [11], [13]. At the microscopic
level, corresponding to the scale of individual nodes, the
network appears as an infinite random wireless network, and
the task is to maximize the so-called forwarding capacity of
the network. While practical wireless networks can not be
considered infinitely dense, the results obtained at this limit

offer useful information on efficient routing and coordination
schemes in finite networks as well.

The focus here is on the microscopic level problem. The
network consists of nodes distributed according to a spatial
Poisson process, and interference is modeled using the so-
called Boolean interference model. We operate in a parameter
area where most of the nodes are connected and form what
we call a transport network. Full connectivity is not required
at this level of operation. Assuming that the traffic flowing
in different directions can be handled via time sharing, the
specific task is to maximize the forwarding capacity of the
network in a given direction by optimal coordination of trans-
missions. The forwarding capacity of the system is expressed
as the mean density of progress, see [1], [16].

The problem has a similar fundamental nature as finding
the percolation threshold, which has been studied for wireless
networks recently under various interference models in [4].
The forwarding capacity remains zero until the network per-
colates, but instead of the point where the network becomes
connected, we are interested in the point where the forwarding
capacity is maximized.

In our previous paper [15], certain upper bounds on the for-
warding capacity were already established, of which the tight-
est represents the maximum achievable density of progress
in a single time slot. This (non-achievable) upper bound is
relatively loose, because it gives a positive value as soon as
links begin to emerge and before there is any kind of long
range connectivity in the network.

In this paper, the infinite network is approximated by
a large finite network where the capacity problem can be
formulated as a maximum flow problem. The flow problem
can be represented as an LP problem by using two different
approaches, i.e., by using the so called transmission mode or
the clique formulation. Both approaches are computationally
hard to solve due to their inherent NP completeness. While the
transmission mode formulation characterizes the necessary and
sufficient conditions for flow optimality, the clique formulation
only yields necessary conditions. Both approaches have been
used widely to analyze the capacity of finite wireless multihop
networks under different assumptions regarding, for example
interference models, routing and channel assignment, see, e.g.,
[12], [14]. Typically, the problems are solved using heuris-
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tics. Also, so called FPTAS algorithms have been developed
that guarantee a fully polynomial time complexity and that
the difference between the obtained solution and the actual
optimum is bounded by a given factor, see [14]. In [8],
algorithms applying so called scaled clique constraints have
been developed to yield necessary and sufficient conditions.

We specifically apply the LP formulation using the clique
constraints to address the forwarding capacity. This results in
a certain formulation for the maximal flow problem where
the sources and sinks lie at the opposite edges of a large but
finite square-shaped network, and traffic is relayed through the
network. A heuristic polynomial time algorithm is derived for
approximating the complete set of constraints resulting from
identifying all maximal cliques. The approximation still yields
an upper bound for the total achievable forwarding capacity.
This allows us to compare the single slot (non-achievable)
upper bound, as derived in our earlier paper [15], to the new
upper bound on the achievable forwarding capacity. The new
results significantly tighten the previous results on the upper
bounds of the forwarding capacity.

The remainder of this paper is structured as follows. In
Section II, we define the problem decomposition and in
more detail the microscopic level problem. Section III gathers
together the graph and LP formulations and presents the
heuristics used in determining the constraints. The numerical
results are in Section IV, while Section V concludes the paper.

II. PRELIMINARIES AND ASSUMPTIONS

This section ties the problem of finding the maximum
forwarding capacity of an infinite wireless multi-hop network
into a broader problem of maximizing the total data flow in
dense multihop networks.

A. Problem decomposition

In a large wireless multihop network, a path between a
sender and a receiver consists of a large number of hops. In
the limit of a dense network [9], [10], maximizing the capacity
of the network separates into two problems, as detailed below.

A dense network corresponds to a network in a closed
domain with nodes having an infinitesimal transmission range,
and the paths being smooth geometric curves allowing a
continuous representation of the network. The traffic demand
density profile t(r1, r2) [1/m4] is the fraction of the total
rate of packet flow Λ in the whole network that originates
from a differential area element about r1 and is destined to a
differential area element about r2. With a given traffic profile
and a set of paths P , the traffic load at r is denoted by
Ψ(r,P).

Forwarding capacity I sets the limit

ΛΨ(r,P) ≤ I ∀ r ⇒ Λ ≤ I

max
r

Ψ(r,P)
(1)

for the local traffic load, and in order to maximize the capacity
of the network, i.e., solve maxΛ, we have two separate
problems: 1) maximize the forwarding capacity, I∗ = max I ,
and 2) minimize the maximal load.

Minimizing the maximal load (problem 2 above) corre-
sponds to load balancing and is referred to as the macroscopic
problem. Determining the maximal forwarding capacity I∗

(problem 1 above) represents the microscopic level problem
capturing the properties of the underlying wireless network
from the point of view of a single node.

B. Microscopic level problem

In this paper we focus on the problem of determining I∗,
while the load balancing problem is discussed, e.g., in [9],
[10]. At the microscopic level, the assumption of a dense
network implies that from the local perspective the network
appears as an infinite network. Two randomly selected nodes
are, on the average, much further apart from each other than
two neighboring ones. If the nodes communicating with each
other are assumed to be random, a route between a source
and a destination typically consists of a large number of hops.
Therefore, the amount of relay traffic in a specific area of
the network is much higher than the amount of traffic that
originates from or terminates to the area.

When considering the relay traffic, we do not require full
connectivity, but the nodes that do not belong to the transport
network can be connected to it via an access network in neg-
ligible time, since the amount of originating and terminating
traffic in an infinite network is very small compared to the
amount of relay traffic, cf. [5]. This allows us to concentrate
purely on the relay traffic and omit the originating and termi-
nating traffic from the model. No traffic matrix or distribution
is needed for determining I∗, but we simply maximize the
amount of traffic that can be relayed through the network.
In a network there is traffic flowing in different directions.
However, assuming that time is slotted, the different directions
can be treated independently so that the maximal forwarding
capacity I∗ can be shared between the different directions
using appropriate scheduling.1 Thus, the microscopic level
problem considers maximizing the flow of traffic in a given
direction.

C. Forwarding capacity

The forwarding capacity I∗ is defined as the maximum
sustainable density of packet flow [1/m/s], i.e., the number
of packets crossing a unit length of a line perpendicular to
the flow per unit time. Alternatively, I∗ can be interpreted to
represent the maximum sustainable mean density of progress
[16], i.e., the density of packets times their mean velocity in a
given direction. The maximum sustainable density of flow (ob-
tained with optimal global coordination of the transmissions)
depends on the physical parameters at hand: density of nodes
λ [1/m2], transmission range R [m], and nominal capacity of
a link C [1/s]. By dimensional analysis, I∗ can be expressed
as any combination of the parameters having the dimension
1/m/s times a function of all the independent dimensionless
parameters that can be formed. A combination of parameters

1The direction distribution in different areas of the network might be
different. This mismatch becomes negligible when the size of the network
approaches infinity.
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of dimension 1/m/s is provided by C
√
λ, and there is only

one dimensionless parameter, namely the mean degree of a
node ν = πλR2 (the constant π is unimportant as it can be
absorbed in the definition of u below). Thus,

I∗ = C
√
λu(ν), (2)

where u is an unknown function referred to as the dimen-
sionless mean progress. Our task is to find this u(ν), or to
be more specific, an upper bound for it. Additionally, there is
a given value ν∗ (or, equivalently, for a given λ the optimal
transmission range R∗) that maximizes the function u.

Note that the famous scaling law O(1/
√
n) of the network

capacity per node [7] follows trivially from this relation
together with (1), noting that for a given domain and a given
traffic demand profile t(r1, r2) the denominator of (1) is a
given constant. However, the validity of (1) is based on the
physically intuitive notion of separation of scales at high node
densities, for which we have not given a rigorous proof.

III. LP FORMULATIONS

In this section, we define the notations required to formulate
the problem as a linear programming problem as well as the
actual LP formulations and the heuristics used to reduce the
computational burden.

The first LP formulation is the complete schedulable max-
flow problem for the transmission modes, while in the sec-
ond one these sufficient conditions have been replaced with
constraints for the clique capacities, or to be more exact the
flows through the cliques, that are necessary conditions any
feasible flow has to satisfy. Furthermore, a heuristic algorithm
is presented for limiting the set of these clique constraints.
With the smaller set of constraints, it is possible to obtain
results from finite network realizations. Finally, an example
illustrates the compromises that have to be done in order to
produce an upper bound for the forwarding capacity of the
network.

A. Max-flow problem

When the nodes correspond to the vertices, V , of a directed
graph G = (V,E), there exists an edge (u, v) ∈ E, u, v ∈
V if d(u, v) ≤ R, where d(u, v) is the Euclidean distance
between the nodes. In the Interference Graph, IG, the links
of the network correspond to vertices, and two vertices are
adjacent if the corresponding links interfere with each other,
that is, the links a and e are adjacent if

d(t(a), r(e)) ≤ R ∨ d(r(a), t(e)) ≤ R, (3)

where t(e) is the transmitting node of link e ∈ E and r(e)
the receiving node. This interference model is referred to as
the Boolean interference model which says that a node is only
capable to receive a transmission if it is the only one within
its transmission range.

With the term network we refer to a pair (G, c) of a graph
and a mapping c : E → R

+. In general, c(e) is called the
capacity of the edge e. In a wireless network, not all links can
be active simultaneously due to interference, and thus, in our

model for a given link e, the effective link capacity c(e) is
less than the nominal capacity C. To define c(e), we have to
establish a schedule α which tells us how the links are used.
All the links that are active simultaneously have to belong
to the same independent set of links to avoid collisions. A
set of links L is said to be independent if the corresponding
vertices form an independent set in IG. This is equivalent with
forming a clique in the complement of IG. A complement of
a graph has the same vertices as the original graph, and two
vertices are adjacent iff they are not adjacent in the original
graph. The independent sets of links (transmission modes) are
cliques in the complement interference graph. A clique is a
set of vertices such that for every pair of vertices there is an
edge connecting them.

We call the independent sets that are used for transmitting
transmission modes and denote the set of transmission modes
with M = {L1, . . . ,LM}. The schedule α = {t1, . . . , tM}
assigns each transmission mode Li with the proportion of time
ti that it is used. Now the effective capacity of link e is

c(e) = C
M∑
i=1

ti1{e∈Li}, (4)

that is, the nominal capacity times the time share the link is
active.

Let us now consider a network (G, c) where we distinguish
two sets of special vertices: the start nodes S and the terminal
nodes T , or the sources and the sinks. In our construction the
sources are located in the left side of the transport network
and the sinks on the right. Now, we have a structure N =
(G, c, S, T ) that we call a flow network, and we can define a
flow in the network. A mapping f : E → R

+ is a flow if it
satisfies the following conditions:

f(e) ∈ [0, c(e)] ∀ e ∈ E (5)∑
r(e)=v

f(e) =
∑

t(e)=v

f(e) ∀ v ∈ V \ (S ∪ T ) (6)

The first, feasibility condition guarantees that there is a pos-
itive (≥ 0) bounded flow through every arc, and the second,
flow conservation condition means that flows are preserved
(except at the sources and the sinks). The value of flow f is

w(f) =
∑

t(e)∈S

f(e)−
∑

r(e)∈S

f(e) =
∑

r(e)∈T

f(e)−
∑

t(e)∈T

f(e). (7)

The maximum flow problem is a classic problem in graph
theory and combinatorial optimization with a variety of ap-
plications. It considers finding a feasible flow through a flow
network that is maximal. A flow f is maximal if w(f) ≥ w(f ′)
for all flows f ′ on N .

B. Transmission mode formulation

The problem is to maximize the value of the flow, w(f),
subject to the flow constraints (5-6) and a constraint that says
that the sum of the time shares allocated to the transmission
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modes cannot exceed one. Hence, the decision variables are
the flow, f , and the schedule, α, that specifies the capacities.

max
f,α

w(f) s.t. (8)

0 ≤ f(e) ≤ C
∑

i ti1{e∈Li} ∀ e ∈ E∑
r(e)=v f(e)−

∑
t(e)=v f(e) = 0 ∀ v ∈ V \ (S ∪ T )∑M

i=1 ti ≤ 1, ti ≥ 0, i = 1, . . . ,M

The previous constraints are the necessary and sufficient
conditions for the flow optimality.

C. Clique formulation

Each link in the network corresponds to a vertex in the
interference graph, and two vertices are adjacent if the corre-
sponding links interfere with each other. From the constraint
that says that the sum of the time shares of the transmission
modes is less than or equal to one, we get that the total capacity
of the links forming a clique in the interference graph never
exceeds the nominal capacity C. This follows from the fact
that adjacent vertices (interfering links) belong to different
transmission modes, and thus cannot be activated at the same
time. Vertices in a clique are all pairwise adjacent, and hence
only one of them can be used at a time.

This means that a constraint that limits the capacity of a
maximal clique in the interference graph to C is a necessary
condition for a feasible flow.2 By replacing the constraint
considering the time shares with constraints for the clique
capacities, we get an upper bound for the maximum value of a
flow in the network. Since the flow through a link is bounded
by the capacity, these constraints can further be replaced by
similar ones considering the flow. When the flow satisfies
these, the capacities could always be chosen to match the flow.
Thus, the only decision variable is the flow.

max
f

w(f) s.t. (9)

f(e) ≥ 0 ∀ e ∈ E∑
r(e)=v f(e)−

∑
t(e)=v f(e) = 0 ∀ v ∈ V \ (S ∪ T )∑
e∈Ci

f(e) ≤ C ∀ cliques Ci of the IG

When the diameter of the network grows compared to the
transmission (interference) range, the number of transmission
modes becomes very large while the growth in the number of
cliques is much more modest. In practice this means that this
latter formulation becomes more tempting when the network
is large, though it only gives an upper bound.

D. Clique Approximation Algorithm

The problem of finding a maximum clique is NP-hard
[6]. It is computationally equivalent to finding a maximum
independent set through the concept of complement graph.
This means that though the latter formulation for the LP
problem is simpler, it is still not usually possible to generate
the constraints explicitly for a given large network in a feasible
time.

2Clique constraints are necessary and sufficient for perfect graphs [8].

TABLE I
CLIQUE APPROXIMATION ALGORITHM

0. i := 0
1. forall e ∈ E do
2. if e is a forward link do
3. i := i+ 1
4. Ci := {e}
5. forall a ∈ E \ Ci do
6. if t(a) = r(e) ∨ r(a) = t(e) do
7. Ci := Ci ∪ {a}
8. end if
9. end for

10. forall a ∈ E \ Ci do
11. if forall ã ∈ Ci : {a, ã} ∈ E(IG) do
12. Ci := Ci ∪ {a}
13. end if
14. end for
15. end if
16. end for

If the number of constraints (cliques found) in the problem
is reduced, the obtained result is still an upper bound but a
loser one. We try to limit the size of the problem, and the
time required for creating it by using the following algo-
rithm to find a subset of maximal cliques in the interference
graph.

Using the microscopic level problem as a starting point, we
utilize the fact that the relay traffic is directed in the algorithm.
For every forward link in the network, i.e., a link that has
positive progress in the direction of the packet flow, we create
one maximal clique in the following way. In addition to the
original link, all the links with the receiving node same as
the transmitting node of the original link and all the links
with the transmitting node same as the receiving node of the
original link are added to the clique (they always interfere
with each other since the transmitting node of the original link
hears the transmissions from the receiving end). This way we
rule out the possibility of any of three consecutive links to
transmit at the same time. After this, other links are added
to the clique in some order until the clique is maximal. The
algorithm, presented in Table I, has a complexity of the order
of O(|E|3).

E. Example

Let us consider the following network of 11 nodes and 24
links presented in Figure 1. Nodes 1 and 2 serve as sources
while 10 and 11 are sinks. The interference graph resulting
from the Boolean interference model is depicted in the left
subfigure of Figure 2. Note that only links with positive
progress (receiving node closer to the sinks) are drawn to make
the figure more readable.

A schedule resulting in a maximum flow in the network
is represented in Table II. The value of the flow is 7/12
[packets/time slot]. This consists of the capacity of the upper
path, 1/3, and the capacity of the lower path which is 1/4.
The clique formulation (9) gives a higher optimum of 2/3.
This means that the optimality gap due to the relaxation is
1/12. The same result is obtained using only the 12 cliques
(10 different) produced by the algorithm of Table I. The total
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Fig. 1. The example network of 11 nodes.
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7→9
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9→11

Fig. 2. The iterference graph of the example network and its complement
when only forward links are drawn.

TABLE II
SCHEDULE

# transmission mode timeshare
1. 1 → 3 2 → 4 8 → 10 9 → 11 1/4
2. 3 → 5 7 → 9 1/4
3. 4 → 6 5 → 8 1/4
4. 1 → 3 6 → 7 8 → 10 1/12
5. 3 → 5 6 → 7 1/12
6. 6 → 7 5 → 8 1/12

number of maximal cliques is 27, and there exists a total of
74 maximal transmission modes.

The results for the original problem with transmission
modes and for the clique formulation of the problem start
to differ when the mean node degree is large enough for the
“paths” used to transfer packets from one side of the network
to another to begin to interfere with each other. This can be
seen in the example where the upper and lower paths are
clearly visible. The clique approximation algorithm is still able
to produce the same result with the full clique formulation
as the number of interfering paths is only two. When the
number of interfering paths grows, the algorithm is only able
to describe the interference caused by a single clique in the
interference graph per forward link. If the interfering paths do
not share a common clique, some of the pairwise dependencies
might be missed.

IV. RESULTS

At the microscopic level the network appears as an infinite
one. The idea is the approximate this network with a finite,
but a large, one where the relay traffic flows, e.g., from
left to right. A unit square with the average of N nodes
distributed according to a spatial Poisson process represented
the relay network, and a strip of sources was laid on the

Fig. 3. Transport network with ν = 10, N = 1000.

left side of the square and a similar strip of sinks on the
right. One transmission range R is a sufficient width for the
strips since no longer links can be established. Finally, the
top and the bottom of the network were connected to reduce
harmful border effects. An example network with ν = 10 and
N = 1000 is depicted in Fig. 3. After solving the optimization
problem (9) with the reduced set of clique constraints from the
algorithm of Table I, we get an upper bound for the maximum
flow from left to right. Since the network resides in a unit
square, we have u = w(f)/

√
N .

To properly simulate the operation of an infinite network,
N needs to be as large as possible. Due to the computational
limitations, it is not possible to solve the problem for suffi-
ciently large networks when the mean degree of a node, ν, is
large. Because it is easier to establish a flow through shorter
paths, the price to pay for a smaller network is that we get a
looser upper bound. The border effect caused by the left and
the right sides of the network, where the sources and sinks
are located, is illustrated in Fig. 4 which shows the obtained
dimensionless mean progress u as a function of the system
size N for ν = 7 and 10. The figure also shows the rate at
which the network starts to resemble an infinite network.

Fig. 5 represents u as a function of ν obtained using the
clique approximation algorithm in Table I with N = 500
as well as the 90% confidence intervals. The figure also
depicts the maximum capacity achievable in one time slot
[15] and a result from an actual forwarding method, namely
the opportunistic forwarding method [15], that is a variant of
ExOR [2]. As can be seen from the figure, the upper bound
provided by the LP approximation is much tighter than the
one-slot maximum when the mean degree of a node is small.
On the other hand, when ν increases even the relaxed LP
problem becomes too complex, and the earlier results remain
as the only available bounds.

We finally comment on the relationship between the one-slot
maximum and the achievable flow for large ν. The maximum
total progress in one time slot gives an upper bound for the
total progress achievable with feasible flows. This is intuitive
since in a continuous flow the best possible progress cannot be
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Fig. 4. The effect of the network size on the dimensionless mean progress.
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Fig. 5. Function u = u(ν) with 90% confidense intervals.

achieved in every time slot. When the mean degree of a node is
relatively small, the upper bound should be loose. For example,
just before the network becomes connected the feasible flow is
still zero, but there are plenty of links that can contribute to the
one slot maximum that is quite high. When the mean number
of neighbors increases, the one-slot approximation becomes
better since the difference to the bottleneck-slot limiting the
feasible flows decreases. This is due to the idea that when the
network is very dense, it is always possible to use a relatively
good transmission mode.

V. CONCLUSIONS

The potential of large wireless multihop networks as a
part of the future ubiquitous networks is undeniable, but the
relevant work is still heavily biased towards certain types of
results, e.g., scaling laws leaving the constant of proportional-
ity undetermined. To get concrete quantitative results that fix
the unknown constant, one often has to rely on approximations
due to the computational complexity of the problems.

We studied the directed max-flow problem in an infinite
network that appears as the microscopic level problem when
the separation of scales in a dense wireless multihop network
is assumed. The other part of the problem needed to fix the

constant, so-called load balancing problem, has been studied
elsewhere. By solving the corresponding problem in a finite
network with small mean degrees of a node, we were able to
considerably reduce the gap between the earlier upper bound,
i.e., the one-slot maximum capacity, and a capacity achieved
with an actual forwarding method. In our case, the necessity of
approximations comes from the NP hardness of generating the
constraints for the LP problem. Hence, the original schedulable
link capacity constraints of the max-flow LP problem were
replaced with a reduced set of clique constraints generated
with a heuristic algorithm.

The maximum achievable progress in one time slot still
remains as the tightest upper bound with larger neighborhoods.
The results also give some kind of indication of when the finite
network starts to behave as an infinite one.
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