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Abstract
Medical image registration is the process of algorithmically aligning medical images

anatomically. Deformable registration seeks to find a nonlinear mapping between anatomic
locations of different images. In the past few years Deep Learning has been successfully
applied to the problem. In this work unsupervised Deep Learning based deformable
registration is considered. The developed methodologies are applied to registration of
computer tomography (CT) and artifical CT images created from magnetic resonance
images.

Regularization of the predicted mappings is an important aspect of deformable reg-
istration and diffeomorphisms, differentiable bijections with differentiable inverse, are
often sought after. Very recently diffeomorphic registration frameworks have been applied
to unsupervised Deep Learning registration and they have been shown to produce good
results with very small run time.

A common limitation in Deep Learning is the ability of a model to fit into a GPU memory.
As a result patch-wise approaches, where only sub-volumes of the whole data set are fed to
the neural network at once, are often employed. The approach introduces several problems
unique for registration, especially ones related to the regularization of transformations.

In this work an original framework for unsupervised Deep Learning registration based
on image patches is introduced. The framework is shown to produce diffeomorphic
transformations. Accuracy of the registrations is evaluated against a baseline and the
method is shown to produce comparative results.

Keywords deformable registration, medical image registration, unsupervised Deep
Learning, convolutional neural networks
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Tiivistelmä
Lääketieteellisten kuvien rekisteröinnissä sovitetaan lääketieteellisiä kuvia yhteen

anatomiaan perustuen. Deformatiivisessa rekisteröinnissä pyritään löytämään epälineaa-
rinen kuvaus anatomisesti vastaavien sijaintien välillle kuvien koordinaattijärjestelmistä
toiseen. Muutaman viime vuoden aikana syväoppimisen menetelmillä on saavutettu hyviä
tuloksia deformatiivissessa rekisteröinnissä. Tässä työssä pyritään kehittämään mene-
telmä tietokonetomografiakuvien ja pseudo-tietokonetomografiakuvien, jotka on luotu
magneettiresonanssikuvista, deformatiiviseen rekisteröintiin.

Ennnustettujen kuvausten onnistunut regularisaatio on isossa osassa rekisteröinnis-
sä. Usein pyritään löytämään kuvauksia, jotka ovat niin kutsuttuja diffeomorfismeja:
derivoituvia kääntyviä kuvauksia, joiden käänteiskuvaus on myös derivoituva. Viime
aikoina on onnistuttu hyödyntämään klassisesta rekisteröinnistä tuttuja menetelmiä
diffeomorfisten kuvausten ennustamiseksi myös syväoppimisen avulla. Tulokset ovat
olleet erittäin lupaavia.

Usein vastaan tuleva rajoite syväoppimisessa on, että mallin tulee mahtua näytönoh-
jaimen muistiin. Tämän rajoituksen kiertämiseksi voidaan verkolle syöttää vain osia
datajoukosta kerrallaan kokonaisen datajoukon sijaan. Rekisteröinnissä tämä lähesty-
minen kuitenkin aiheuttaa tiettyjä vain rekisteröinnille ominaisia ongelmia erityisesti
kuvausten regularisaatioon liittyen.

Tässä työssä rakennetaan uusi rekisteröintialgoritmirunko osavoluumeihin perustu-
vaan ohjaamattomaan syväoppimiseen. Menetelmän osoitetaan tuottavan diffeomorfisia
kuvauksia ja tuottavan vertailukelpoisia tuloksia suhteessa kirjallisuudesta otettuun
verrokkiin.

Avainsanat deformatiivinen rekisteröinti, lääketieteellisten kuvien rekisteröinti,
ohjaamaton syväoppiminen, konvoluutioneuroverkot
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1. Introduction

Medical imaging is important part of modern clinical practice and often

arising problem related to it is aligning different medical images with each

other. This procedure is called registration. In general terms, registration

of images is needed whenever one wants to combine information from two

images in one task. For example, if a patient has been imaged using com-

putational tomography (CT) and magnetic resonance imaging (MRI), these

images contain different information about the patient. In order to use

the both images together, for example in radiotherapy dose planning, the

images need to be registered. When images to be registered are acquired

from a single patient, the method is called intra-subject registration and

when they are from different patients, the inter-subject registration is in

question. Further, registration methods can be divided based on whether

they are unimodal or multimodal, that is, whether the method is register-

ing images of the same or different modality. In the context of registration,

also different MRI constrasts are considered different modalities.

Registration is a task in which different image volumes are brought into

single coordinate system under the assumption that the content of the im-

ages can be aligned spatially. In principle, one can register simultaneously

any amount of image volumes but in the most common case two images are

brought into single coordinate system. Registration methods can have dif-

ferent degrees of freedom. In simple rigid registration, volumes are aligned

by rotation and translations. Affine transformations preserve straight

lines. On the other hand, deformable registration refers to aligning images

using nonlinear transformations. This work concentrates on unimodal

deformable registration of rigidly preregistered volumes.

Different registration applications face different problems. Multimodal

registration is especially challenging due to the difficulty of quantitatively

defining similarity of registered images. Such a quantitative metric describ-
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Introduction

ing image similarity is called similarity metric and should be maximized

or minimized when images are perfectly aligned. However, difficulties are

not limited to multimodal registration. Depending on anatomy even intra-

subject unimodal registration can be challenging because of large internal

anatomic changes within a subject, for example due to breathing motion,

peristaltic motion, or tumor growth. Nonetheless, in unimodal registration

one can often define similarity of registered images quite straightforwardly

which makes the problem significantly easier.

In general terms, the task is to find a mapping between coordinate sys-

tems of different volumes. Anatomical constraints set limitations for the

set of possible mappings and thus constraining the transformation to some

desired subset of transformations is an important aspect of a registra-

tion algorithm. Generally diffeomorphisms, differentiable bijections with

differentiable inverse, are considered to be ideal especially when doing

intra-subject registration which is the topic of this study.

Significant amount of research has been conducted on different registra-

tion methods during the past decades. First deformable medical image

registration algorithms are already from the beginning of 80’s by Broit,

Bajcsy et al. [1–4]. Vastness of the research is hinted at the 1996 review

article by Maintz et al. [5]. Different methods work well in different set-

tings and comparison of registration methods can be extremely difficult

due to lack of "correct registrations" or ground truths [6]. State-of-the-art

classical registration methods include Large Diffeomorphic Distance Met-

ric Mapping (LDDMM) [4], diffeomorphic Demons [7], DARTEL [8], and

symmetric normalization (SyN) [9], all of which constrain the transfor-

mation to be diffeomorphic [10]. Despite the challenges, some systematic

comparisons of different registration algorithms have been made [11, 12].

Recent advances in Deep Learning have opened way to new registration

methods. Deep Learning based registration methods have shown promising

results and are already outperforming classical registration methods in

some aspects. Deep Learning can be applied to image registration in

quite numerous ways. It can be used to deform an image directly or to

learn some parametric representation of the deformation. Methods can be

supervised or unsupervised. In the latter setting some similarity metric is

usually used as a loss function. Attempts have been also made in learning

similarity metrics using Deep Learning. Generative adversial networks

(GAN) are also showcasing promising results. One of the main possible

benefits of using Deep Learning is faster registration as it enables an

2



Introduction

algorithm to learn to predict a direct transformation instead of obtaining

the transformation using an iterative process. [13]

In this work, registration of pseudo-CT images to real CT images is

looked into. A pseudo-CT image refers to a CT-like image which has been

produced artificially from a MRI image. Pseudo-CT images have also been

produced using classical methods but Deep Learning is the state-of-the-art

methodology on this area as well. Producing pseudo-CT images is not the

topic of this work.

Being able to register CT and pseudo-CT images quickly and with good

accuracy would open numerous possibilities, since they make it possible

to convert multimodal registration problems into unimodal ones. Such

a workflow has been used very recently by Fu et al. for registering CT

and MR images [14, 15]. The main difference in this work is the use of

diffeomorphic registration frameworks and patch-wise registration. We do

not evaluate the multimodal registration but instead focus on the quality

of the registration between CT and pseudo-CT images.

We will start by a quick survey into basics of Deep Learning, after which

we will look into classical registration methods. Due to the vastness of the

research, the survey is not comprehensive. Only methods with possible

use in Deep Learning and this particular problem are looked into with

the focus on how the registration fields are encoded. Exact nature of the

iterative algorithms is not in our interest here as the purpose is not to

develop such algorithms. The survey into classical methods is followed by

a survey into recent advances in registration using Deep Learning. The

focus will be on unsupervised methods. In Chapter 3 chosen methods are

explained with rationale to selecting them. In Chapter 4 we look at the

experiment setup and define the evaluation methods. This is followed by

Chapter 5 where results are considered.

3



2. Background and Theory

In this work medical image registration is always considered between

exactly two (and no more) images. An image will refer to a mapping

I : R3 → R from image domain to intensity values. In practice one only has

samples of the image domain, the so called voxels, and the rest is inferred

by interpolation. Given two images I1 and I2, registration of I1 to I2 is

then the task of finding a mapping, also referred to as a transformation,

ϕ−1 : R3 → R3 which maps anatomic locations of the image I2 to anatomic

locations of the image I1. This is demonstrated in Figure 2.1. Then

I1 ◦ ϕ−1 ≈ I2 should hold where exact interpretation of ≈ depends on the

application (unimodal or multimodal).

An inverse mapping is sought after, since one wants to sample the trans-

formed image in the target space. That is, given samples of ϕ−1 at voxel

locations we can interpolate I1 at the locations defined by the ϕ−1 to obtain

the transformed I1.

There are multiple ways to classify image registration algorithms but

the most common approach is to see the registration as an optimization

problem over some space of transformations. In this approach registration

algorithm consists of four components: the space of transformations, the

similarity measure, the regularization of the transformations, and the

optimizer. The task is then to minimize the loss function which is sum of

the similarity measure and the regularization term using the optimizer

over the space of transformations. [16]

If the output of the registration is simply a mapping from one domain

to another, as described above, the similarity metric will be simply some

function working on I1 ◦ ϕ−1 and I2. In the case of intra-subject unimodal

registration this could be for example mean squared error ||I1 ◦ ϕ−1 −

I2||2L2 . However, if a registration method takes equally into account both

images, this formulation of similarity metrics is not enough. In the case
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Figure 2.1. Registration is a task of finding a coordinate transformation connecting two
images. In the figure the transformations ϕ and ϕ−1 are the respective forward
and backward transformations between the images A and B.

of symmetric image normalization (SyN)[9], the similarity metric will

not be computed in the coordinate system of either of the images but

instead in some intermediate coordinate system. The result is not only

the mapping ϕ−1 but also the intermediate steps between the coordinate

systems. Because of that, for generic formulation, we will talk about

generic transformation T belonging to generic set of transformations T

between the images with which the similarity metric is calculated. Let us

denote the similarity metric by Es(I1, I2;T ).

The regularization term is the component of the loss function which de-

pends only on the transformation. It usually imposes some constraints on

the transformation such as smoothness. Correct transformation can not be

inferred for every image position and the ambiguous areas are determined

by the used regularization. Regularization terms are usually related to

the second order derivatives of the transformation [16]. Typical examples

include membrane energy, Laplacians, bending energy, and linear-elastic

energy [17]. The loss function is then the trade-off between the similarity

of the structures and the regularization of the transformation. [16] Let us

denote the regularization term with Er(T ).

Given two images I1 and I2, the registration task is then simply

argmin
T∈T

Es(I1, I2, T ) + Er(T ) (2.1)

Deep Learning can be utilized in multiple ways for problems related to

image registration. The most straightforward is prediction of the transfor-

mation. Others include using neural network as a similarity metric or for

5



Background and Theory

registration quality evaluation. [13]

When using Deep Learning for transformation prediction, there are two

basic approaches: supervised and unsupervised. In a supervised setting

ground truth transformations are needed. The network is then trained

to predict these transformations given the images to be registered. The

unsupervised setting is usually very close to the problem described in

Equation (2.1). The only difference to classical methods is that instead of

optimizing the transformation iteratively, it is predicted directly. Basically,

the problem is to find a function that predicts the transformation in one

shot given the input images. However, the function that produces the

transformation, i.e. the neural network, is optimized iteratively. [13]

In this work we will focus on unsupervised Deep Learning registration

methods.

For a Deep Learning method to learn the transformation directly we

need to have some representation for it. Furthermore, some similarity

metric and regularization terms are usually needed as a loss function of the

Deep Learning method. Thus the classical registration literature plays an

important role also in developing Deep Learning registration algorithms.

In this chapter we will first look at basics of neural networks. After that

registration is viewed from the classical viewpoint, especially from two per-

spectives: transformation representations and the used similarity metrics.

After the review of classical methods different existing unsupervised Deep

Learning registration methods are considered.

2.1 Basics of Neural Networks

In this section, a short introduction to neural networks and Deep Learning

is given. In addition to basics, some network architectures suitable for

registration are looked at. The purpose of this section is to help the reader

less familiar with Deep Learning to understand the thesis.

In essence, Deep Learning concerns fitting functions with very large

number of parameters to data. In Deep Learning the functions are usually

called neural networks due to inspiration from biological neural networks

for how these functions are defined. The term network architecture is often

used when referring to the structure of the chosen neural network.

The process of fitting a neural network to data is called training a net-

work. For doing this, one needs a set of inputs and a way to define how

desired the produced outputs are. The measure of how desired an output
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is, is called a loss function which is some scalar function of the outputs. In

the common setting, the target is to find parameters that minimize the

loss function for given inputs. If some known desired outputs are available,

loss function could be some difference measure between produced outputs

and known outputs. The known outputs are often called ground truths.

Updating weights based on a loss function is usually done using some sort

of a gradient update scheme.

To be more explicit, let us define a neural network as fw : Rn → Rm

parametrized by weights w ∈ Rl. Then we have a set of training inputs

X = (x1, ...., xN ) where xi ∈ Rn. Given the inputs we can calculate the set

of outputs (fw(x1), ...., fw(xN )). It then remains to define a loss function.

Loss functions are usually independent for each output sample and also

different for each sample, for example due to having specific ground truth

output for each training input. We can thus define set of loss functions

Ei : Rm → R, where i ∈ {1, ..., N}. The target loss function is then usually

defined as the sum of losses over the outputs E : RN×m → R,

E(y1, ..., yN ) :=
N∑︂
i=1

Ei(yi)

Then in order to update the weights w based on the loss function it remains

to calculate the total derivative

d

dw
E(fw(x1), ...., fw(xN )).

Calculation of the derivative can be done using back-propagation algorithm

proposed originally by Rumelhart et al. (1986) [18]. Back-propagation is

basically applying the chain rule of differentiation repeatedly.

Typically, the number of samples N is so large that one cannot calculate

the derivative for all of them at once and hence only a subset of samples

are used at once for each update. For updating the weights based on the

derivative some advanced optimization scheme is usually employed, for

example Adam by Kingma et al. (2014)[19].

In order to avoid over-fitting, dropout strategy is often employed. In the

simplest terms dropout refers to updating only part of the weights during

each iteration and leaving some of them unchanged. [20]

Once the network weights have been trained, the function fw can be used

to predict an output for new samples which have not been used in the

training. In this work we refer to it as a prediction phase.

7
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... ... ... ...

Inputs Fully connected layers Outputs

Figure 2.2. Basic architecture of a fully connected neural network. Yellow boxes represent
an input with each rectangle being one scalar. The blue circles in the middle
represent the computational nodes of the network. Output is represented by
the rectangles. The number of inputs, outputs, and nodes in a fully connected
layer can differ. Each node output is a linear combination of the inputs added
with some constant and combined with a nonlinearity.

2.1.1 Network Architectures

Given the basic scheme, there remains the question of how to define a

neural network function. A chosen architecture has significant impact on

the results and different applications call for different architectures.

The most basic neural network design is the fully connected neural

network. The core idea of the fully connected neural networks is shown

in Figure 2.2. Fully connected neural networks consist of series of layers

consisting of nodes connected to all of the nodes of a previous layer. Each

node performs a basic linear calculation dependent on the weights followed

by a unit performing nonlinear computation. Nonlinearity is important

since otherwise the whole neural network could by represented by a single

matrix. Commonly used nonlinearity is the rectified linear unit (ReLu)

that gives zero output for input values less than zero and else performs

identity mapping.

One of the most popular and successful branches of network architectures

in the recent years has been convolutional neural networks [21]. The basic

idea is that in convolutional layers different features are extracted from an

input using different convolution filters. The filters are defined by kernels

that are learned during the training and thus the network can learn which

features are relevant for the task. The basic idea for one convolution filter

is represented in Figure 2.3. One convolution layer would have multiple

such filters acting on the input and that would result in different spatial

feature representations of the data. In addition some nonlinearity such as

ReLu is again applied to the output. Convolutions are spatially invariant,
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Figure 2.3. Basic idea of the convolutional filter in neural networks. In convolutional lay-
ers convolutional filters are applied to the input samples along the dimensions.
In this example the data is two dimensional and the size of the filter size is
3× 3. Each new value is a linear combination of 9 values of the original input.
The image is from a paper by Dumoulin et al. (2016) [22].

which is often a desired property. For an introduction to basic building

blocks and arithmetics of convolutional neural networks, see the paper by

Dumoulin et al. (2016) [22].

Commonly multiple convolutional layers are cascaded with some down-

sampling of the input in between the layers. Down-sampling can be done

for example using max pooling operation which takes the largest value

in each window. By consecutive convolutional layers and down-sampling

one obtains a more accurate feature representation of the input while

copy and crop
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Figure 2.4. Network architecture for U-Net from the original paper by Ronneberger et al.
[23].
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Figure 2.5. Dilated convolution filter with dilation rate of 1. The image is from a paper by
Dumoulin et al. (2016) [22].

reducing spatial accuracy. However, for example in image segmentation or

registration we need to have same spatial accuracy for inputs and outputs.

To get back to the original resolution, one can up-sample the data again

from the feature representation. Up-sampling can be achieved using

reverse convolutions. In reverse convolutions one input value affects many

output values instead of the opposite for regular convolutions. There are

multiple heuristics for implementing this basic idea, probably the simplest

approach being to repeat each value a desired number of times and then

apply a regular convolution to the up-sampled input.

Simple up-sampling from the spatially less accurate feature represen-

tation would still result in low spatial accuracy for the output. A very

popular architecture that was originally successfully applied to medical

image segmentation called U-Net developed by Ronneberger et al. (2015)

solves this by so called residual connections [23]. In U-Net earlier feature

representations from down-sampling stage are concatenated to the input

during up-sampling stage. This way the final output can have both a good

feature representation and a good spatial accuracy for the features. The

original U-Net architecture can be seen in Figure 2.4. U-Net type archi-

tectures are also among the most popular architectures for registration

[13].

Receptive field refers in neural networks to the radius of input values

affecting a single output value. Receptive field of U-Net depends on the

number of down-sampling steps and the size of the convolution kernels. In

10
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order to increase receptive field, dilated convolutions can be used at low

cost. In dilated convolutions, there are gaps between the values which the

kernel reads. The basic idea is shown in Figure 2.5.

2.2 Transformation Representations

Figure 2.6 shows three different mappings from R2 to R2. However, only

the one on the left is anatomically feasible (assuming two dimensional

tissue) since the other transformations include folding. Given the example,

it is evident that the desired space of possible coordinate transformations

is smaller than even the set of all spatially continuous mappings from an

image domain to another image domain.

The question of transformation representation is essential as one needs to

define the space of transformations over which to optimize the registration

problem given in Equation (2.1). One way to obtain transformations with

desired properties is by using a regularization term. However, even more

desired outcome is if one can limit the space of transformations altogether

to some more desirable subset of transformations.

A very commonly desired property is that the transformation should

be diffeomorphic, that is, bijective with differentiable inverse. Diffeomor-

phisms are sought after especially in the case of intra-subject registration

as there should be one-to-one correspondence between each anatomic loca-

tion. In addition diffeomorphisms preserve connected and disjoint sets and

smoothness of curves. Diffeomorphisms are thus a very natural choice for

anatomical registration tasks. [4]

Another relevant concept is inverse consistency introduced by Chris-

A B C

Figure 2.6. The figure visualizes different types of transformations from R2 to R2 using a
deformed grid. A: Smooth and inveritible mapping. B: Smooth but not invert-
ible mapping. C: Noncontinuous mapping. Only the mapping A has desired
properties for anatomical registration as it is both continuous and invertible.
Intuitively the desired mappings are such that they can be presented using
a grid without the grid folding on top of itself. In the case of noncontinous
mapping the grid representation fails entirely.
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tensen et al. (2001) [24]. It refers to the property that predicted transfor-

mation from image A to B and B to A should be inverses of each other.

Assuming that the transformation is everywhere differentiable, invert-

ibility of it can be checked easily using Jacobian determinant. Given the

mapping ϕ : R3 → R3 the Jacobian determinant can be calculated as

determinant of the Jacobian matrix:

det

[︃
∂ϕ

∂x

]︃
= det

⎡⎢⎢⎢⎢⎣
∂ϕ1
∂x1

∂ϕ1
∂x2

∂ϕ1
∂x3

∂ϕ2
∂x1

∂ϕ2
∂x2

∂ϕ2
∂x3

∂ϕ3
∂x1

∂ϕ3
∂x2

∂ϕ3
∂x3

⎤⎥⎥⎥⎥⎦
Jacobian determinant assigns a scalar value to each point in the space

representing the local "scaling" of the volume by the transformation. If it

is less than one but larger than zero, the volume is being locally shrunken

and if it is greater than one the volume is being locally expanded. However,

a Jacobian determinant below value zero indicates folding and thus is un-

desired in registration context. If the determinant is everywhere positive,

the transformation is invertible.

Significant number of different transformation representations have

been tried in the past [6, 16, 25].

2.2.1 Displacement Field

In practice one has to discretize the transformation from one image do-

main to another somehow, and displacement fields can be seen as the most

straightforward representation for that. For a continuous case, given a

transformation ϕ−1, the displacement field is defined as u = ϕ−1−Id, where

Id is an identity mapping. In discrete setting a three-dimensional displace-

ment vector is usually assigned for each voxel. Many early deformable

registration works optimize directly over displacement fields [5].

Usefulness of displacement fields results from the fact that one is usually

interested in a grid of intensity values of the warped image at the voxel

locations of the target image. Since the number of voxels usually stays

the same over a registration task, a discrete displacement field gives

transformation in the desired set of locations at the target space. To obtain

the warped image one would have to interpolate the source image in the

locations given by the displacement field.

To be explicit, let us have the voxel locations in the target space X =

(x1, ..., xn) where xi ∈ R3 for i ∈ 1, ..., n. Now, given the mapping ϕ−1 we
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obtain a set of points Y = (y1, ..., yn), where yi = ϕ−1(xi), representing the

points in the source space corresponding to the voxel locations in the target

space. To obtain the warped image we have to interpolate the source image

in the locations Y . Now, if we have a discrete displacement field defined at

the positions X, we obtain Y simply by yi = u(xi) + xi.

When using some other transformation representation, the representa-

tion basically has to be first converted to a displacement field for doing the

actual warping of the image. From the point of view of unsupervised Deep

Learning this has a clear significance. For unsupervised learning one has

to be able to compute the warped image from the predicted transformation

in such a way that the gradient of the loss function can be back-propagated

through the computations. Many of the transformation representations

require solving differential equations before obtaining the displacement

field from the representation. Depending on the equation this can be

extremely difficult to solve in such a manner that the gradient can be

back-propagated and thus the representation would not be well suited for

unsupervised Deep Learning.

2.2.2 Velocity Field

Displacement fields can describe any coordinate transformation between

volumes but it is difficult to regularize the transformations in such a

way that the resulting transformation can encode large and accurate

displacements and at the same time have some nice properties such as

invertibility. Many attempts to provide robust methods for generating

diffeomorphic transformations have been developed in the recent, see for

example [4, 7–9]. Many of these methods represent the transformation

using velocity field with inspiration gotten from fluid dynamics.

The first works using velocity fields for generating diffeomorphic map-

pings in registration were done by Trouvè et al. (1995) and Christensen et

al. (1996) [26, 27]. The basis of the work lies in the notion of Lagrangian

and Eulerian representations of the flow fields or Langrangian and Eule-

rian coordinates. The Lagrangian representation follows some fluid parcel

as it flows along the flow field parameterized by the initial position and

time. On the other hand, in the Eulerian representation the properties of

the fluid are described as it flows through a given static spatial position.

Let us now denote ψ(x, t) as position of a fluid parcel at time t, when

given an initial position x. This gives us the Langrangian representation

of the flow. Let us then denote velocity of the parcels flowing through

13
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Figure 2.7. The figure visualizes how a transformation is computed from a velocity field.
The velocity field is represented by the black arrows and the red dots represent
the original locations such as voxels. The locations move independently along
the velocity field flow for a fixed time (usually an unit time) and end in the
positions marked by the black crosses. The displacement field representing the
transformation is the difference between the final positions and the original
positions. For clear visualization, here the velocity field flow does not change
over time.

position x at time t with v(x, t) which gives us velocities of the fluid parcels

in Eulerian coordinates. These coordinate representations are related

through the equation

∂ψ

∂t
(x, t) = v(ψ(x, t), t). (2.2)

The basic idea is that the transformation can be represented as a velocity

field in Eulerian coordinates over unit time t ∈ [0, 1]. The transformation is

then obtained as the Langrangian representation at time 1 with constraint

ψ(x, 0) = Id, where Id is identity mapping. This idea is demonstrated in

Figure 2.7.

If the Eulerian flow is from a moving image to a fixed image, one actually

needs to solve the inverse flow instead of the forward flow, since one is

interested in sampling the fixed image values in the target space. Here

inverse flow refers to the inverse ψ−1 of the Langrangian representation

ψ and gives the position where a fluid parcel located at position x at time

t was at time 0. The transformation ϕ−1 from the target domain to the

original domain is then defined as ϕ−1(x) = ψ−1(x, 1).

The differential equation describing the inverse flow can be obtained

14
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using material derivative. Material derivative is another equation con-

necting Eulerian and Lagrangian reference frames. In fluid dynamics the

material derivative describes rate of change of some physical quantity for

some fluid parcel at position given in Eulerian coordinates. Mathematically

the quantity can be any differentiable time-varying scalar or vector field

defined over the Eulerian coordinate system. In other words, the material

derivative is the total time derivative of the given field along the trajectory

defined by the flow. In the case of some vector field w over a Lagrangian

flow representation ψ(y, t) = x we have using multivariate chain rule

dw

dt
(x, t) =

∂w

∂t
(x, t) + [Dxw](x, t) v(x, t).

Here Dxw is the Jacobian of the w with respect to x. One must note that

also the Jacobian is a function of x and t.

Now one can obtain the equation for the inverse flow. Let us first note

that material derivative with respect to ψ−1 is dψ−1

dt = 0 since the starting

position of each fluid parcel must stay constant. As a result one obtains

the inverse advection flow equation

0 =
∂ψ−1

∂t
+ (Dψ−1)v. (2.3)

In a paper by Dupuis et al. (1998) [28] instead of using Equation (2.3) for

solving the inverse at all time instants they simply integrate backwards

the velocity field from time 1 to time 0. As done in the paper, this can be

formulated for all time instants with the ordinary differential equation

∂η

∂s
(x, t; s) = v(η(x, t; s), s), (2.4)

given boundary condition η(x, t; t) = Id for all t. This definition results in

identity η(x, t, 0) = ψ−1(x, t). Note that this formulation is practical for

solving ψ−1(x, t) only for one time instant, which oftentimes is enough.

Large Deformations Diffeomorphic Metric Mapping

The basic concepts presented above give rise to one very popular registra-

tion framework with many variants named large deformations diffeomor-

phic metric mapping (LDDMM). The term was first introduced in a paper

by Beg et al. (2005) [4]. An important role in the development was played

by Trouvè, Miller and Younes [26, 29–32]

The mathematical theory is built on top of concepts from Riemannian
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geometry which studies differentiable manifolds with Riemannian metric,

i.e. an inner product on a tangent space of a differentiable manifold. Rie-

mannian metric makes it possible to define geometrical concepts such as

length of a curve and angle on a manifold. Differentiable manifolds are es-

sentially spaces in which one can do calculus, thus differentiable manifolds

always have a tangent space. In this context the space of diffeormorphisms

is the differentiable manifold with the space of velocity fields (in Eulerian

frame) as the tangent space. Let us denote the tangent space by V .

Exact formulations of LDDMM differ but usually the tangent space V is

chosen as a Hilbert space equipped with the inner product

⟨u, v⟩V := ⟨Lu, Lv⟩L2

inducing a Sobolev norm || · ||V where L is self-adjoint (L = L∗), linear

and invertible differential operator. The inner product on the tangent

space induces a right-invariant Riemannian metric on the manifold. The

right-invariance follows here essentially directly from defining the metric

in Eulerian frame.

Riemannian metric induces geometrical concepts in the space of diffeo-

morphisms. Let now vt ∈ V , t ∈ [0, 1] be a path in the space of velocity

fields. As discussed earlier, it defines a path ψt := ψ(·, t), t ∈ [0, 1] in the

space of diffeomorphisms according to the differential equation (2.2) given

some initial condition ψ0. For example, the length of the path ψt is then

L(ψt) :=

∫︂ 1

0
||vt||V dt.

Given the Riemannian metric, the notion of straight lines or geodesics

also rises. Given the path above, one can define the energy of the path as

E(ψt) :=
1

2

∫︂ 1

0
||vt||2V dt.

Given some start point ψ0 and end point ψ1 in the space G , there could be

multiple possible continuous paths parameterized by v. The path mini-

mizing the energy functional is the geodesic or straight path between the

points. Such a path also minimizes the length functional but minimizing

the energy functional provides us with constant speed parametrization.

The result is relatively easy to obtain, since by Cauchy-Schwartz we have

L(ψt)
2 ≤ 2E(ψt) and the equality can hold only if ||vt||V is constant.

Next, let us look at paths vt : [0, 1] → V in the space of velocity fields with
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the initial condition v0 = Id and L(vt) <∞. One of the main contributions

of the papers by Trouvè Trouvè (1995) and Dupuis et al. (1998) [26, 28]

was to show that given suitable differential operator, end points ψ1 defined

by all such paths in the space of velocity fields induce a group of diffeomor-

phisms where geodesic exists between any two elements. Geodesic path

length between two points of the space defines a metric on the space.

The induced metric in the space of diffeomorphisms gives rise to the defi-

nition of the variational LDDMM optimization problem originally defined

by Dupuis et al. (1998) [28]

argmin
v

||I1 ◦ ψ−1(x, 1)− I2||2L2 +

∫︂ 1

0
||vt||2V dt. (2.5)

The formula fits int the basic registration optimization framework as

defined earlier Equation (2.1). The first part of the equation is the sim-

ilarity term and the second part is the regularization term. Theoretical

framework of the regularization term gives natural interpretation for the

solutions of the optimization problem in terms of geodesics. The problem

can be then seen as finding the shortest path in the space of diffeomor-

phisms connecting the two images according to the similarity term. The

solution can be shown to satisfy the Euler-Langrange equation, which is

used by Begs et al.[4] for minimizing the functional.

The used differential operator defines the properties of the transforma-

tions. For example, given a suitable differential operator, the energy of the

path is larger for less smooth transformations and thus smoothness of the

transformation can be enforced.

Since the geodesics represent straight lines in the space of diffeomor-

phisms, an obvious question is whether one could parameterize the path

simply by the initial velocity. This is indeed possible, as was done for exam-

ple by Miller et al. (2006) [33] and Vialard et al. (2012) [34]. Calculating

the transformation from the initial velocity field by following along the

geodesic path is called Riemannian exponentiation of that velocity field.

However, the equations are unfortunately difficult to work with and are

thus not very suitable for Deep Learning purposes.

Another important modification of the LDDMM framework is the sym-

metric image normalization (SyN) method [9]. In the cases described

before, registration requires arbitrary choice about which image is moving

and which is not. SyN, however, considers both images equally. Instead of

measuring similarity of the two images in the space of either one of the
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images, SyN measures the similarity in a intermediate space between the

two. This is accomplished by moving both of the images towards each other

and the similarity is measured at time 0.5. An additional constraint is

added so that the distance from both the images to the in between space

is equal in the space of diffeomorphisms. By matching the images in the

intermediate space they can also be registered to each other since the

transformations provided by the LDDMM framework are invertible. The

algorithm produces good results for unimodal registration using cross-

correlation similarity measure.

Momentum Based Representations

As defined in the previous section, in the context of LDDMM the regular-

ization term is given as

∫︂ 1

0
||vt||2V d =

∫︂ 1

0
⟨Lvt, Lvt⟩ dt.

Since the differential operator L is self-adjoint, the regularization term

can be also written as∫︂ 1

0
⟨vt, L∗Lvt⟩ dt =

∫︂ 1

0
⟨vt, L2vt⟩ dt.

Let us denote the resulting differential operator as

K := L2. (2.6)

Given a velocity field v in Eulerian reference frame, we can obtain a new

vector field

m := Kv

which is called Eulerian momentum field. The name is derived from its

analogy in standard mechanical systems. As a result, the regularization

term can now be defined as an inner product between the velocity field and

the momentum field [33] ∫︂ 1

0
⟨vt, mt⟩ dt. (2.7)

The operator K is of our interest here as it allows for the formulation of

the framework from another direction. In the original approach by Beg et

al. (2005) [4] the operator L was chosen to be some differential operator, in

their case of the form

L = α∆+ γ Id . (2.8)
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The chosen differential operator induces the operator K = L2 and since

the operator is linear it can be represented as a kernel which we equate

with the operator denoting it also as K. Now, instead of having differen-

tial operator which induces a kernel one can begin with the kernel as it

is enough to define the regularization term according to Equation (2.7).

Usually the kernel is defined by its inverse.

Typically isotropic kernels are used, meaning that the kernel is of

the form K−1(x, y) = K−1(||x − y||L2), although exceptions can be found

[36]. Also the operator in Equation (2.8) induces an isotropic kernel [37].

Isotropic kernels depend only on the distance between the arguments and

are thus translation and rotation invariant and can be formulated as a

convolution. Simple Gaussian kernels are often the choice [38]. Gaussian

kernels can be shown to be induced by the limit case L = (α∇2 + γ Id)n

when n approaches infinity [37].

Stationary Velocity Field

So far we have looked at generating diffeomorphisms using time-varying

velocity fields. A naturally arising question is whether a static velocity

field representation would be able to encode all the relevant anatomical

variation.

An important paper on this topic is by Arsigny et al. (2006) [39] where

they provide several useful mathematical observations. The main focus

of the paper is on developing metrics on the space of diffeomorphisms

but the provided framework has proven to be fruitful in general. The

basic idea in the paper is to look at so called one-parameter subgroups of

diffeomorphisms. In general, given a group G with group operation ◦, the

set (g(t))t∈R of G is a one-parameter subgroup of G if g(0) is an element

of the group, and for all t, s ∈ R it holds that g(t + s) = g(t) + g(s). They

note that for diffeomorphisms that form a group under composition, one-

parameter subgroups are given exactly by integrating (smooth) stationary

vector fields over time according to Equation (2.2), which simplifies to

∂ψ

∂t
(x, t) = v(x(x, t)). (2.9)

In group theory, Lie algebra g of a Lie group G is defined as the tangent

space of the group at the identity. Exponentation of an element X ∈ g of the

Lie algebra is then defined as a map exp : g → G, so that exp(X) = γX(1),

where γX : R → G is the unique one-parameter subgroup of G, for which

the tangent vector at the identity is equal to X.
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In the paper by Arsigny et al. [39] it is noted that this concept can be

generalized to the infinite dimensional case of diffemorphisms and the

generalization proposed is the only possible way of doing this. Essentially,

the Lie algebra is given by the stationary velocity fields and Lie group

is the group of diffeomorphisms. As mentioned earilier, one-parameter

subgroups of diffeormorphisms are obtained by integrating stationary

velocity fields. Thus, given a stationary velocity field v : R3 → R3 one can

define the exponentiation as

exp(v) := ψ(x, 1), (2.10)

where ψ is defined according to Equation (2.9). This exponential would

be identical to the Riemannian exponential mentioned earlier if the Rie-

mannian metric was bi-invariant. However, this is not the case in our

application and thus the group exponential and the Riemannian expo-

nential differ. However, it is interesting that both the transformations

obtained using integration of stationary velocity fields and the transforma-

tions obtained as geodesic time-dependent velocity fields can be seen as

results of exponentiation of a velocity field.

In the paper by Arsigny et al. the authors go on to define a logarithm in

the space of diffeomorphisms based on the definition of the exponentiation.

The logarithm can be used to create a metric in the space, which gives

theoretical credence for the solution in general. More important for prac-

tical purposes is the authors’ proposed method of integrating stationary

vector fields or, in other words, computing the exponential exp(v). The

concept is called scaling and squaring and is inspired by computing matrix

exponentials. The basic idea is that the exponential is easy to approximate

for values close to zero. It is also clear that given some t, s ∈ R, it holds

that

exp((t+ s)v) = exp(tv) ◦ exp(sv).

To calculate the exponential one can then first calculate exp(v/2N ) for

some sufficiently large N ∈ N (scaling step) followed by N squaring steps.
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Squaring is defined simply as exp(v)2 := exp(v) ◦ exp(v). Thus we have

exp(v/2N−1) = exp(v/2N )2

exp(v/2N−2) = exp(v/2N−1)2

...

exp(v/2) = exp(v/22)2

exp(v) = exp(v/2)2.

(2.11)

Only N compositions are needed. In the case of diffeomorphisms, if N is

large enough one simply has exp(v/2N )(x) ≈ x+ v(x)/2N . Interpolation is

required for calculating the composition in practical settings.

This concept was used and further discussed by Ashburner (2007) [8].

He introduces a new registration algorithm which he names DARTEL

(Diffeomorphic Anatomical Registration using Exponentiated Lie algebra).

The algorithm is based on the stationary velocity field representations

which are exponentiated as defined above to produce the diffeomorphic

transformation. He also notes that such a transformation has always a

positive Jacobian in analogy to exponential of a real number being always

a positive number. As a result the transformation can be guaranteed to

be diffeomorphic. In practical setting this still depends on the number of

time-steps used in the integration, how the velocity field is sampled, and

how large changes are present in the sampled velocity field.

One of the main benefits of this framework, as noted by Ashburner,

is the easy handling of inverse transformations. They can be obtained

simply by exponentiating the negative velocity field. This also allows for

straightforward testing of inverse consistency of the transformation. If

the transformation is inverse-consistent, then exp(v) ◦ exp(−v) should be

identity transformation (or, in practice, close to it).

The paper by Ashburner discusses the possible limitations of the station-

ary velocity field model. The variable velocity field models presented above

have the ability to maintain the anatomical correspondence between the

velocity field and the warped image, since the velocity field evolves over

time together with the image. On the other hand, in the stationary velocity

field model no such correspondence between the velocity field and anatomi-

cal locations can be made as each anatomical point will be traveling along

the stationary flow. As mentioned in the paper, in some cases, the LDDMM

model above which aims to minimize the energy of the trajectory might be

able to arrive in a trajectory with significantly smaller energy than what
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is possible with stationary velocity fields. Also, some trajectories, which

might be relatively easy to represent using time-varying velocity fields, are

altogether impossible to represent using stationary velocity fields.

The paper leaves the quantitative comparison of time-varying and sta-

tionary models for future work and only evaluates the internal consistency

of the framework. In the comparison done by Klein et al. (2009) DARTEL

did quite well [11]. From the point of view of Deep Learning DARTEL is

very interesting as static fields are significantly less complex than dynamic

ones but the registration accuracy is still very good.

The DARTEL framework is in other aspects a relatively typical regis-

tration framework which some optimization strategy for optimizing a loss

function. In the paper the loss function is derived using Bayesian frame-

work. Regularization of the velocity field is viewed as a prior and the image

similarity term is obtained from the likelihood term. The objective is then

to find a maximum a posteriori (MAP) estimate of the transformation.

Another important practical application of the framework was Diffeomor-

phic Demons [7]. It uses classical Demons registration algorithm which

considers registration as a diffusion process [40]. The original algorithm is

not very suitable for Deep Learning purposes and is thus not reviewed in

this work. Diffeomorphic Demons algorithm clarifies the theoretical basis

of Demons algorithm as a two-stage iterative optimization problem and

applies the diffeomorphic framework provided by Arsigny et al. [39] on top

of that.

LDDMM framework can be considered for the stationary velocity fields

as well; this was done by Hernandez et al. (2009) [41]. This formulation

will not have all the beautiful properties of the non-stationary LDDMM

approach but is considerably faster to compute. The basic idea is the same

as in the normalization problem: minimization of a variational problem as

defined in Equation (2.5). However, since the velocity field is now static,

the optimization problem takes the form

argmin
v

||I1 ◦ ψ−1(x, 1)− I2||2L2 + ||vt||2V . (2.12)

The resulting paths are now longer geodesics and thus part of the beauti-

ful mathematical foundation is lost. However, the idea of minimizing the

energy of the transformation connecting two images, that is, obtaining a

path as close to geodesic path as possible, is still a reasonable goal, and

computational cost is significantly reduced when using stationary velocity
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Figure 2.8. An example of a 2D transformation formed using B-splines with lattice of
control points. The figure is from [42].

fields.

2.2.3 B-Splines

Another commonly used method for representing transformations are

splines which offer a very different representation compared to the velocity

fields. Splines are special functions that can be represented using piecewise

polynomials. The usefulness of splines comes from their representation

using B-splines which are basis functions for splines. Naturally, B-splines

themselves can also be represented piecewise by polynomials. Any spline

can be represented as a linear combination of B-splines. By B-splines the

transformation can be represented using a grid of control points as shown

in Figure 2.8. For further details about the basics of using B-splines in

registration we recommend the thesis by Schwarz, Loren [42].

The resulting formulas for transformations are fairly simple. The com-

monly used representation for transformations T in three dimensions is of

the form

T (x) =

d∑︂
l=0

d∑︂
m=0

d∑︂
n=0

Bd
l (x1 − i) Bd

m(x2 − j) Bd
n(x3 − k) cl+i,m+j,n+k, (2.13)

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i = ⌊x1⌋

j = ⌊x2⌋

k = ⌊x3⌋,

Bd is B-spline of degree d, and vectors cl,m,n ∈ R3 define the three dimen-

sional grid of control points. Depending on the desired density of the

control points, linear scaling might have to be applied to the transforma-
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d = 3

d = 2
d = 1

Figure 2.9. Examples of B-splines with varying degrees (d).

tion. Smoothness properties of the resulting transformation are defined by

the degree of the used B-splines. In general, n degree B-splines result in

n− 1 continuous derivatives.

The support of the B-spline basis functions is compact. Thus any control

point also has effect on the transformation only on limited distance which

depends on the degree of the used B-splines. Examples of B-splines of

varying degrees can be seen in Figure 2.9.

Regularization of transformations generated using B-splines is different

from the dense displacement or velocity fields which we have looked at

above. In a paper by Rueckert et al. [43] diffeomorphic framework for

registration using cubic B-splines is constructed. In the paper they use

a result by Choi and Lee [44] which basically states that if maximum

displacement for the lattice control points is a constant (approximately

0.40) times the original lattice spacing, the resulting transformatins is

injective. That naturally gives maximum displacement depending on

the density of the lattice. To overcome this rather strict constraint, the

authors compose multiple such transformations on top of each other. Since

each of the smaller transformations is diffeomorphic, also the resulting

transformation is diffeomorphic.

2.3 Similarity Metrics

In this section we look at similarity metrics for registration. In general,

similarity metrics are either intensity or feature based. Here we look

only at intensity based metrics since we are not interested in using any

highly application specific metrics for training the Deep Learning model.
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Different similarity metrics are numerous [45–48], only the most common

ones are referred at here.

Probably the most simple similarity metric is mean squared error (MSE).

The underlining assumption with mean squared error is that corresponding

anatomic locations should have same intensities. Thus small mean squared

error indicates a good match.

Cross-Correlation is another common similarity metric. In registration

context cross-correlation usually refers to functions of the form

CC(I1, I2) =

∫︁
R3(I1(x)−mI1(x))(I2(x)−mI2(x)) dx∫︁

R3(I1(x)−mI1(x))
2dx

∫︁
R3(I2(x)−mI2(x))

2 dx

where I1 and I2 refer to the compared images and mI1 and mI2 are mean

functions of those images. By defining the mean functions as local averages

over the given point has produced good results [9, 47]. Other versions of

Cross-Correlation with different normalizations exist, such as Pearson

Correlation Coefficient. Cross-Correlation is based on the assumption

that image intensities are linearly correlated. As a result, the larger the

Cross-Correlation the better the match should be.[45]

Mutual information and other information theory derived metrics have

achieved excellent results in metrics comparison studies by providing very

robust similarity metrics [47, 48]. Different information theoretic measures

are numerous. Pluim et al. (2004) [49] provide good survey of the methods.

A problem with information theoretic measures is however the need to see

the whole image volumes for calculating the metric and thus they are not

easily applicable for independent registration of sub-volumes.[45]

A relevant branch of similarity metrics is also gradient based metrics

which try to match the image gradients instead of the intensity values.

Mean squared error or Cross-Correlation can be modified to use gradient

volumes instead of the intensity volumes. [46]
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2.4 Unsupervised Registration Using Deep Learning

Using Deep Learning for registration is a very new field with the most

relevant papers being from the last couple of years. During the year 2020

alone multiple different solutions have been proposed in the literature. In

this section we will go through the relevant developments from the point

of view of unsupervised registration. As a basis for our survey we use

a review article by Fu et al. (2020) [13] which was written in December

of 2019. However, we also try to take into account the papers published

during 2020.

As mentioned in Section 2.2, in order to do unsupervised registration

using Deep Learning we need the neural network to be able to obtain

the deformed image produced by the network during the training phase.

In other words, the chosen transformation representation has to be such

that the deformed image can be computed from it using an algorithm for

which the gradient from the output image can be back-propagated to the

transformation representation. The most straightforward transformation

representation is displacement field. Calculating the deformed image from

displacement field requires basically interpolation. In 2015 Jaderberg et al.

proposed a spatial transformer network [50] which essentially computes

the transformed image using displacement field representation so that

the gradients can be back-propagated. As a result, the possibility to do

unsupervised registration using Deep Learning was noticed.

2.4.1 Network Training

Teaching a neural network in unsupervised registration has at least two

approaches. The simpler one used by most of the publications is to simply

use the loss function of the conventional registration optimization problem

described in Equation (2.1) as a loss function for the neural network

learning. The other approach using generative adversarial networks is to

create a discriminator network which tries to discriminate unregistered

and registered image pairs. Since no ground truths are available, the

registered image pairs are generated by adding noise to duplicate images.

Naturally this method works only in unimodal registration. The GAN

approach was used for example by Elmahdy et al. (2019) in [51] and by

Fan et al. (2019) in [52].

In principle, a benefit in using the generative adversarial network ap-

proach is that it simultaneously takes care of similarity measure and
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regularization since the discriminator network will force the generator

network to predict realistic looking deformed images. However, both of the

papers mentioned above end up using an additional regularization term

as the discriminator alone does not provide enough smoothness and the

paper by Elmahdy et al. even ended up using additional similarity loss.

Fan et al. note that the discriminator tends to learn too quickly making

the network difficult to train.

GANs can also be used for additional regularization, something that was

done by Fan et al. (2019) [52]: they used additional adversarial loss for

ensuring that the deformed images seem realistic, in addition to classical

similarity and regularization terms. In such a use case the discriminator

is simply trained to discriminate between deformed and non-deformed

images.

2.4.2 Transformation Representations and Inverse Consistency

Inverse-consistent and diffeomorphic registrations are often desired in

registration as mentioned in the preceding chapters. In this section we

look at different unsupervised Deep Learning registration methods for

producing well behaving transformations.

Most of the unsupervised registration methods directly predict the dis-

placement field using a fully convolutional neural network. However, there

are at least three other options found in the literature: using B-splines

[53, 54], using stationary velocity fields [10], or using momentum rep-

resentation[55]. In these methods, the authors have developed a way

to compute the displacement fields from the transformations predicted

by the fully convolutional neural networks so that the gradient can be

back-propagated.

Stationary velocity fields, as described in Section 2.2.2, were applied to

Deep Learning by Dalca et al. (2019) [10]. Inspiration was taken mainly

from DARTEL developed by Ashburner et al. (2007) [8]. For integrating

the displacement field from the velocity field they use the scaling and

squaring approach desribed in Equation 2.11) which is an approximate

method for calculating the group exponential defined in Equation (2.10).

The framework manages to produce extremely well behaving transforma-

tions, resulting in zero to a few folding voxels per volume with registration

accuracy comparable to the best available methods. In the approach the

loss function is formulated using Bayesian framework similarily to DAR-

TEL. However, instead of simply maximizing the posterior probability they
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employ variational auto-encoder approach. As a result the network learns

to predict the uncertainty of the generated transformations. Unfortunately

the authors do not analyze the usefulness of this estimate in the paper and

thus it remains an open question.

Shet et al. (2019) [55, 56] use stationary LDDMM framework for registra-

tion. Instead of predicting the stationary velocity field directly they predict

initial momentum. This way the network does not have to learn to predict

smooth transformations. The velocity field is then calculated from the

momentum field using a regularization kernel as defined in Equation (2.6).

They use multi Gaussian kernel for regularization. Since the stationary

LDDMM framework is used, the integration is done again with group ex-

ponential as defined in Equation (2.10) instead of Riemannian exponential.

They leave the exact details for how the integration is done more open

mentioning only that they use Runge-Kutta method for time integration.

On average the resulting transformations have only few folding voxels per

volume. The performance is similar or even better compared to the method

by Dalca et al.

B-splines have been used in unsupervised registration by de Vos et al

(2017, 2019) [53, 54]. We will focus on the latter paper which presents

multi-step end-to-end registration framework. The basic component of the

framework is a fully convolutional neural network receiving the moving

and fixed images and predicting values for B-spline control points which

define the transformation. As showcased in Equation (2.13), displacement

field can be easily computed linearly given the B-spline control points and

thus the gradient can be back-propagated. As the B-splines have local

support using them makes sure that receptive field of each control point

exceeds the range for which the point is affecting the transformation. In

addition to B-splines, smoothness of the transformation is enforced by a

physics inspired bending energy regularization term. Multi-step approach

is used in order to avoid folding and to provide accurate transformations

similarly to Rueckert et al. (2016) [43]. The first steps are given coarser

resolution images and they predict less dense control point grids than the

latter steps. Transformation parameters are composed in each step and

are used to transform the original image for the next step. Total of three

steps are used in the experiments with each step trained separately with

weights of the other steps fixed. In addition, an affine registration network

is added to the beginning. The framework manages to register images

with relatively little folding voxels. However, significantly more folding is
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present compared to the stationary velocity field approaches.

Methods for trying to achieve well behaving transformations with direct

prediction of displacement fields also exist. In a typical solution trans-

formation is regularized by some smoothness enforcing regularization

term. If large displacements are present such standard regularization

term is not enough to guarantee invertible transformations and additional

regularization is needed.

In work by Zhang et al. (2008) [57] inverse consistent registration

is achieved using two constraints developed by the authors: inverse-

consistent constraint and anti-folding constraint. The basic idea is that the

transformation is predicted both ways, from image A to image B and image

B to image A using two separate fully convolutional neural networks. The

inverse consistency of these transformations is then enforced using the

loss function term called inverse-consistent constraint. The additional

constraint, anti-folding constraint, adds loss term relative to the abso-

lute value of the Jacobian determinant for each voxel that has a negative

Jacobian determinant thus penalizing folding in the transformations. Es-

pecially the anti-folding constraint proves effective in preventing folding

in the transformations.

Somewhat similar solution to Zhang et al. can be found in a paper by

Kim et al. (2019) [58] where cycle consistency loss is used to ensure dif-

feomorphic deformation. Again two separate fully convolutional networks

are trained to predict the transformation in the opposite directions. Cycle

consistency is obtained by applying the transformations to both of the im-

ages in succession (in different order) and then penalizing the dissimilarity

between the original images and the twice transformed images in the loss

function.

2.4.3 Patch-wise Registration

In many situations the 3D images are too large to fit into GPU memory in

their full resolution. As a result, the training is often done with smaller

sub-volumes called minipatches or just patches. During the prediction

phase the whole transformation is calculated from the patches with sliding

window approach, in other words the transformation is assembled from the

predicted transformations for the sub-volumes. This kind of an approach

has been used in multiple unsupervised Deep Learning frameworks [51,

52, 54, 59–64].

Major challange in patch-wise registration, as noted for example by Yang
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Patch A Patch B

Figure 2.10. An example of a problematic situation for regularization with patch-wise
approach to registration. In the figure the moving and target images are
placed on top of each other represented respectively by the solid and dashed
rectangles. White areas are ambigous with no apparent features for match-
ing the two images. Due to regularization, without further measures the
situation might result in a transformation discontinuity at the patch border.

et al.(2017) [65], is that the transformation is ambiguous on the areas

of equal image values and is defined only by regularization. Thus the

transformation within an image patch is not defined only by the image

values inside that patch but the neighboring patches might also affect the

transformation. This is depicted in Figure 2.10.

The simplest way to try to solve this problem is to use only center part

of the patches during the prediction. That way each voxel in the final

predicted deformation has at least some context, depending on the size of

the used padding.

Approach taken by many is to use multi-scale registration in which the

images are first registered with lower resolution but larger field of view

[59, 61, 64]. The patches are then taken from these preregistered images.

That way the patches should only contain smaller movement. The final

deformation field can be obtained by composing the patch-wise deformation

fields with the coarser resolution deformation field(s).

The paper by Yang et al. [65] is about supervised Deep Learning regis-

tration but the solution they ended up is still worth mentioning. They use

the LDDMM framework and train the network to predict initial momen-

tum fields as desribed in Section 2.2.2. Initial momentum is calculated

patch-wise but the patches are combined before applying the regulariza-

tion kernel K defined in Equation (2.6). That way the regularization is

transferred over the patch borders. The network is trained using ground

truth initial momentum fields obtained using classical iterative LDDMM

methods.
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The purpose of this work is to develop well working unsupervised Deep

Learning registration framework for registering pseudo-CT and CT images.

Pseudo-CT images are synthetic CT images generated from magnetic

resonance images. Accurate registration of CT and pseudo-CT images

would open a way for multimodal registration between MRI and CT images.

By registering a pseudo-CT image to a CT image one is very close to also

registering the MRI image which was used for producing the pseudo-CT

image to the CT image. In the simplest case this would mean applying the

deformation field produced by the pseudo-CT - CT registration to the MRI

image.

We will start the chapter by looking at the special characteristics of the

registration problem at hand. After that we will continue by an overview

and a rationale for the used methods followed by a more in-detail descrip-

tion.

3.1 Problem Characteristics

Properties of the images to be registered are relevant for choosing the

method for registering them. In this work both of the registered images

are CT-like images. CT images are three-dimensional versions of so called

x-ray images. Compared to MRI images, CT images show bones and air

cavities more clearly whereas MRI images have significantly better soft

tissue contrast.

Pseudo-CT images try to mimic CT images but never fully do so and have

less anatomical details than real CT images. The used pseudo-CT images

are also created using a Deep Learning algorithm but producing them

is not part of this work and can be considered a relatively independent

problem. The used pseudo-CT images are created for replacing CT images
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A B C

Figure 3.1. Example case of the data to be registered with each image showing the same
mid-sagittal slice of the same patient. A: CT-image. B: pseudo-CT image.
C: MRI image used for creating the pseudo-CT image, only one contrast
shown here. The medical images are Courtesy of Turku University Hospital /
Department of Oncology & Radiotherapy.

in radiotherapy treatment planning and delivery. The main goal of the

pseudo-CT images is to provide similar results to real CT images when

computing radiation dose in tissue and positioning a patient during a

treatment. The local average tissue density is the relevant factor for correct

radiation dose calculation. As a consequence, the pseudo-CT images do not

need to have anatomical details that would be present in real CT images.

The main reason for the lack of detail in pseudo-CT images is that the

used MRI image contrasts simply might not hold enough information for

accurate prediction of a CT image for every single anatomical location.

This is especially true for peripheral locations which might have bad image

quality. The used MRI sequences are primarily optimized for geometrical

accuracy, and not for perfect tissue contrasts in terms of pseudo-CT gener-

ation, since good geometrical accuracy is very important for radiotherapy

applications.

Another relevant feature of the used data is the image resolution. Images

have axial resolution of 400× 400. The number of axial slices vary between

230 and 270. The images are too large to fit into the used GPUs during the

training. As a result the images have to be downsampled or a patch-wise

approach must be taken.

3.2 Algorithm Overview

Due to the difficulties described above inherent to the used data set, good

regularization of the predicted transformations is especially important.

Deep Learning can be expected to be suitable for the task as it can be as-

sumed to be more robust against undesired local minima than the classical

registration methods [54].

The most robust method for creating diffeomorphic transformations in
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unsupervised Deep Learning registration is currently to employ the static

velocity field approach used by Dalca et al. (2019) [10] and Shen et al.

(2019) [55]. Hence, it is chosen as the transformation representation. For

calculating the group exponential, scaling and squaring method introduced

by Arsigny et al. [39] is used as it is the most efficient algorithm available

for the task. In addition, it was shown by Dalca et al. to be usable also in

unsupervised Deep Learning context.

Dalca et al. employ probabilistic variational approach. As the usefulness

of the uncertainty estimates have not been studied thoroughly we do not

employ the strategy here in order to limit the scope of the thesis. Also,

computational cost is increased by the approach. Instead the stationary

LDDMM initial momentum approach taken by Shet et al. is used. LDDMM

offers strong mathematical foundation for building diffeomorphic trans-

formations. The strength of those results is weakened by the stationary

approach but is still shown to work by Hernandez et al. [41]. In short,

the question is about whether to use group or Riemannian exponential for

calculating the displacement field from the initial velocity.

Patch-wise approach is employed to overcome the problem of the data

not fitting to the GPU memory. Currently all the unsupervised patch-

wise approaches use either dense displacement fields or B-splines. This is

surprising as the velocity field approach offers very clean method for fusing

the patches during the prediction phase. Since we are using actually

momentum fields, not velocity fields, even the regularization can flow

over the patch boundaries during the prediction. During the prediction

phase, momentum is calculated for each patch separately after which the

smoothing kernel is applied to the whole momentum volume. After that the

velocity field is exponentiated using the group exponential to produce the

displacement field. In that sense our approach is similar to the supervised

approach taken by Yang et al. (2017) [65]

Often in patch-wise registration multi-scale registration is employed. We

do not want to use that here for two reasons: firstly, to limit the scope of

the thesis and, secondly, to have access on how well the initial momentum

approach is able to work as a single step patch-wise registration method.

If movement exceeding the chosen patch field of view is present, multi-step

approach would obviously be needed. Here we preregister the images only

rigidly (translation and rotation). Affine registration commonly employed

as the first step is not used as it will introduce anatomically unfeasible

shearing to the bone tissue.
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Figure 3.2. Overview of the used architecture. The only component with trainable param-
eters is the U-Net. Only the forward pathway is shown for the prediction part.
For CT to pseudo-CT registration the velocity field should be reversed and
the final transformation be applied to the CT image instead of the pseudo-CT
image. The medical images are Courtesy of Turku University Hospital / De-
partment of Oncology & Radiotherapy.

As a network architecture we employ modified U-Net which used dilated

convolutions following the very recent paper by Wang et al. (2020) [66].

The resulting network has fewer parameters but larger receptive field

compared to the traditional U-Net.

As a loss function in addition to typical mean squared error we experi-

ment with normalized mean squared error of the form x2/(a2 + x2) where

x is the error and a ∈ R is some constant. A loss function of this form

is not very commonly used but it provides us with more similar weight

for all tissue boundaries compared to the simple mean squared error loss.

Normalized cross correlation has similar benefits but this is significantly

faster to compute.

Overview of the used framework can be seen in Figure 3.2.
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3.3 Algorithm Description

We employ the stationary LDDMM approach for registration. The theoreti-

cal background for the methodology was described in Section 2.2.2. Instead

of predicting the displacement field directly we predict the momentum

field from which the displacement field can be calculated.

In our approach the neural network is a function which estimates the

optimal transformation directly given the images to be registered. The task

is to approximate function f , which given two images I1 and I2, returns

the optimal momentum m : R3 → R3. The optimal f is of the form

f(I1, I2) = argmin
m

⟨v,m⟩L2 + Es(I1, I2, v)

v = K−1 ∗m,

where v = K−1 ∗m is the velocity field with ∗ denoting convolution, K−1 is

a convolution kernel, and Es is the similarity term. Coordinate transforma-

tion ϕ : R3 → R3 from I1 to I2 can be obtained as ϕ(x) = ψ(x, 1), where ψ is

defined by the differential equation

∂ψ

∂t
(x, t) = v(x(x, t))

ψ(x, 0) = Id .

For the similarity term we use a symmetric approach

Es(I1, I2, v) =
1

2
ϵ(I1 ◦ ϕ−1, I2) +

1

2
ϵ(I2 ◦ ϕ, I1),

where ϵ is a functional returning a scalar value representing the similarity

between the input images with larger values indicating less similar images.

We do not employ symmetric image normalization approach where the

similarity is calculated in the intermediate space at time t = 0.5 between

the images, since intuitively it is less robust towards situations where

some anatomical feature is entirely missing from the other volume, which

is something that might occur between CT and pseudo-CT images. The

conclusion was also confirmed by initial experimentation. However, it

remains an interesting option for other applications as it is very easy to

apply in the stationary velocity field context.

Joining all the equations we can define the optimal momentum prediction
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function f as

f(I1, I2) = argmin
m

⟨v,m⟩L2 + ϵ(I1 ◦ ϕ−1, I2) + ϵ(I2 ◦ ϕ, I1)

with

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v = K−1 ∗m
∂ψ
∂t (x, t) = v(x(x, t))

ψ(x, 0) = Id .

(3.1)

Let us denote the neural network predicting the momentum by Nw, where

w ∈ Rn is the parameter vector of the neural network. The goal is then to

find parameters w so that Nw approximates f .

The approximation is done by gradient optimization using sample images,

which is the common practice with neural networks. Let us write the

optimization target function as

E(m, I1, I2) := ⟨v,m⟩L2 +
1

2
ϵ(I1 ◦ ϕ−1, I2) +

1

2
ϵ(I2 ◦ ϕ, I1). (3.2)

Basically, given two images, one needs to be able to calculate the gradient

d

dw
E(Nw(I1, I2), I1, I2). (3.3)

As mentioned, the gradient is calculated relative to image patches. As a

result the ⟨v,m⟩L2 is not exactly the same thing as it would be for whole

volumes.

3.3.1 Practical Implementation

In practice we only have a grid of samples from the images and accordingly

predict the momentum only for a grid of values. In this section we present

the actual algorithm implementation in detail.

For calculating the gradient defined in Equation (3.3) we use Tensorflow

library [67] and thus formulas for the gradient will not be presented in

this work. However, we need to have formulas for calculating the loss

function, Equation (3.2), so that the gradient can be back-propagated using

Tensorflow.

Calculating the Velocity Field

Calculating the velocity field from the momentum field is defined using

convolution. The width of K can be quite large and thus using Fast Fourier

Transform (FFT) algorithm for the calculation is the most efficient way.
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Gradient can also be back-propagated over FFT using Tensorflow. For the

convolution kernel K−1 we choose the classical kernel used by Beg et al.

(2005) [4] induced by the differential operator L = α∇2 + γ Id with K = L2.

In order to calculate K−1 ∗m using FFT we need to have a frequency-

domain representation for the K−1 For discrete periodic function in one

dimension the operator L : Z/N → R can be defined as⎧⎪⎨⎪⎩L(0) = 2α/∆x2 + γ

L(1) = L(−1) = −α/∆x2,

where ∆x is the sampling resolution of the function. For the discrete

Fourier-transform DFT of L we obtain

DFT[L](j) =

N−1∑︂
k=0

L(k)e−2πik·j/N

= 2α/∆x2 + γ − α/∆x2e−2πij/N − α/∆x2e+2πij/N

= 2α
1− cos(2πj/N)

∆x2
+ γ,

Since inverse is simply exponentiation with −1 at frequency domain we

obtain

DFT [K−1](j) =

[︃
2α

1− cos(2πj/N)

∆x2
+ γ

]︃−2

.

The calculation can be done similarly for the three dimensional case. Given

the kernel in frequency domain, we can calculate the convolution as a

product in the frequency domain.

FFT calculates the convolution in cyclic domain which is not desired here.

Thus we need to pad the momentum field with zeros before applying the

convolution in frequency domain. Padding width needs to chosen based on

the used parameters α and γ as they define the kernel width.

Calculating the Displacement Field

Displacement field is calculated from the velocity field as in the paper by

Dalca et al. (2019) [10] using the scaling and squaring approach presented

in Equation (2.11). In discrete setting the only required special operator

is the spatial transformer by Jaderberg et al. (2015) [50] which basically

does interpolation.

Let ud : Z3 × R → R3, ud(x, t) be the discrete displacement field at point

x ∈ R3 at time t ∈ R of the integration. Let us denote interpolation operator

of some discrete vector field w : Z3 → R3 at point x ∈ R3 as I [x,w]. We

can now define the displacement field in R3 as u : R3 × R → R3, u(x, t) =
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I [x, ud( · , t)].

Now the velocity field can be integrated straightforwardly using the

approach in Equation (2.11) to obtain the approximate displacement field

at time t = 1. Using N scaling and squaring steps, we have:

ud(x, 1/2
N−1) = ud(x, 1/2

N ) + u(x+ ud(x, 1/2
N ), 1/2N )

ud(x, 1/2
N−2) = ud(x, 1/2

N−1) + u(x+ ud(x, 1/2
N−1), 1/2N−1)

...

ud(x, 1/2) = ud(x, 1/2
2) + u(x+ ud(x, 1/2

2), 1/22)

ud(x, 1) = ud(x, 1/2) + u(x+ ud(x, 1/2), 1/2).

(3.4)

If N is large enough ud(x, 1/2
N ) ≈ vd/2

N giving us the initial value. By

reversing the initial value to −vd/2N , inverse transformation can be ob-

tained.

Note that although each updating step is in principle accurate, at each

step the field is only updated at the discrete points and thus error is

introduced at each step in addition to the original approximation error.

Dalca et al. concluded that N = 7 was the best value in their experiments.

This is used in this work as well. Similar conclusion of either 6 or 7 steps

being optimal was made also by Ashburner et al. (2007) [8] in a classical

setting.

Using the discrete displacement field the transformed image can be

obtained by using the spatial transformer module again by interpolating

the image at locations defined by the displacement field.

Similarity Metric

Choosing a good loss function is very important for registration perfor-

mance. In unimodal registration simple mean squared error can work

relatively well. However, during the experiments it was noticed that it

failed to provide good registration for soft tissue and certain bones while it

matched, for example, body outline very well.

Mean squared error gives relatively higher weights for large errors.

However, registration can be in principle seen as a Boolean problem with

tissue types either matching or not matching. This idea can be seen

to be especially applicable to registration of CT-like images, since CT

images have very discrete-like appearance with large areas of roughly

equal intensity for basic tissue types (bone, fat, muscle etc.). On the other

hand, giving relatively smaller weights for very small errors is still desired,
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Figure 3.3. Plot of the loss function defined in Equation (3.5) (with constant a = 0.2).

since in practice pseudo-CT images and CT do not have exactly equal

values for the same anatomic locations. A good loss function for this task

would hence allow for some tolerance while providing relatively similar

weight for larger errors.

Normalizing the mean squared error provides us with the s-shaped curve

of the form
x2

a2 + x2
. (3.5)

Here a ∈ R is some constant. The loss function is plotted in Figure 3.3.

The value of the constant defines the half value of the loss function.

Other similarity metrics were also considered. Compared to normalized

cross correlation the proposed metric is significantly faster to compute.

Mutual information is also very interesting candidate but it is not suitable

for registration of small patches. Instead, we will use mutual information

for accessing the registration quality.

Neural Network Architecture

While the purpose of the present work was not to find an optimal network

architecture, some work was put into choosing a decent one. U-Net type

networks have been used in basically all the unsupervised registration

related papers and thus it was a natural choice.

A large receptive field is important for a good registration algorithm,

since it needs to take overall anatomy into account in order to find the

mapping optimal in energy between the images. To provide easier access

to larger receptive field, U-Net architecture taking advantage of dilated

convolutions was adopted.

The chosen network architecture follows the architecture presented in

the paper by Wang et al. (2020) [66]. Their architecture overperforms
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Figure 3.4. The used neural network architecture is presented in the top half and the
used symbols are explained in the bottom half. Dropout was added after the
down-sampling steps and the first concatenation step.

the classical U-Net in a segmentation task while using significantly less

parameters. The architecture is shown in Figure 3.3.

In our practical implementation, the second up-sampling step has 3×3×3

convolution filters instead of the more natural 2× 2× 2 due to a mistake.

The mistake was noted late and thus the experiments were not rerun. It

can be considered unlikely for it to have relevant impact on the results as

in practice the network can still learn to predict 2× 2× 2 filters.

Patch-wise Training and Prediction

While the patch-wise approach allows one to fit the model to the GPU

it presents us with a new set of problems. For registration the patch-
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wise approach introduces some unique problems not found in other Deep

Learning applications.

Often in registration the displacement field is assumed to be zero at the

image borders but with the patch-wise this is not possible. Instead, the

moving image moves over the patch borders. As a result, some values of

the moved image are unknown. This is shown in Figure 3.5. During the

training we want to back-propagate the gradient from the similarity metric

between the moved image and the fixed image. In addition, we want to

obtain metrics about progress during the training. To do this, we mask

out the unknown area from the moving image for back-propagation and

metrics calculation.

A general disadvantage in the patch-wise approach is that the network

has less context, with the situation being worst on the patch borders.

For registration the patch size should be, in principle, chosen so that

the movement present in the data set fits inside a patch. However, if

the movement is large in comparison to the patch size, only anatomical

locations close to the patch borders can be seen in both the moving and

the fixed image, and only if the movement for the location is away from

the patch border. In that case the matched anatomic locations would be

on the opposite sides of the patch in moving and fixed images. Intuitively,

this would reduce registration quality significantly, since there would be

less data by which to do the registration. However, the situation might

not be that bad since the network could learn to register images based

on secondary features other than directly matching anatomical locations.

However, it is safe to assume that the patch size should be significantly

larger than the present movement.

In the prediction phase, only the center parts of the patches are used. The

width of this discarded region should be considered at least as important a

Moving image patch Fixed image patch Moved image patch

Figure 3.5. In patch-wise registration moving image can move over the patch borders. Im-
age values on the area marked by the diagonal stripes are unknown. Weights
are updated based on the known area during the training.
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parameter as the patch size itself. If the movement present is less than the

width of the discarded region, all the locations in the final prediction have

had at least enough context to see their anatomical locations in the fixed

image. Thus it is safe to assume that for accurate prediction, the margin

should be chosen so that most of the movement fits inside it.

Another patch-related problem unique to registration is the regulariza-

tion challenge presented in Section 2.4.3. To overcome the problem, we

adopt the approach where in the prediction phase the momentum field

is predicted separately for the patches which are then combined before

calculating the predicted transformation. As a result, regularization flows

over the patch borders. However, training the momentum prediction net-

work remains a problem, since during the training the transformation

should be calculated also for a single patch. As mentioned earlier, FFT is

used for applying the smoothing kernel to a zero-padded momentum input.

This introduces a bias towards the border areas of the patch as zeros can

not be considered neutral values in this context. In practice, the network

tends to learn higher values close to the edges of the image. Extrapolating

predicted momentum values outside the patch could reduce the scaling

problem. However, that would introduce other, possibly worse, biases since

the only way to apply the smoothing properly would be to know the pre-

dicted momentum values outside the patch. Since there is no robust way

for handling the patch borders properly, there remains the experimental

question whether discarding the border regions in the prediction phase is

enough to provide practical solution to the problem.
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4. Experiments

We conduct two experiments that aim to evaluate the performance of the

proposed registration methods: one with mean squared error as the sim-

ilarity metric and other with the normalized mean squared error (MSE)

described in Equation (3.5). The aim of the experiments is to evaluate per-

formance and internal consistency of the proposed registration framework.

The latter includes evaluation of how well the framework manages to pro-

duce invertible transformations and how robust is the proposed patch-wise

registration approach.

Experiments are conducted on a data set of brain CT and MR images

with a total of 119 different subjects from three different hospital sites.

Pseudo-CT images were calculated from the MR images for each subject.

The data set was divided into training, validation, and test sets. The

number of subjects for training, validation, and testing were 66, 14, and

39, respectively. However, most of the subjects had two MR image versions,

one with and one without contrast agent. As a result, the number of image

pairs for training was 108, for validation 27, and for testing 66.

CT images were rigidly registered to the pseudo-CT images together with

interpolating them to the same resolution and field of view. The voxel size

of the pseudo-CT images is 0.675× 0.675 mm2 in axial plane and 1.0 mm in

feet-head direction. In addition, their axial resolution is 400× 400 while

the number of axial slices vary between 230 and 270. The originally used

CT images have the same slice thickness as the pseudo-CT images but

the axial voxel size is smaller. Thus it was a natural choice to interpolate

the CT images to the pseudo-CT image resolution as this way we entirely

avoid having to interpolate any of the pseudo-CT images.

In addition, the CT image intensity values were normalized to density

values to eliminate effect of having data from different hospitals in the

data set. Hospital site specific calibration curves were used for normalizing
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the pseudo-CT images. Very large values caused by, for example, dental

implants were cut to 6.7140kg dm−3.

Computations are done on a computer with NVIDIA Quadro RTX 5000

GPU, Intel Xeon W-2275 (3.30 GHz) CPU, and 128 GB of physical memory.

4.1 Evaluation Metrics

For evaluating the registration accuracy we calculate a set of metrics

between the registered and target image pairs. The most simple ones used

are voxel-wise mean absolute error and mean squared error. As a more

advanced metric we employ normalized mutual information. Additionally,

we calculate Sørensen–Dice coefficient for tissue type masks using simple

thresholding. To access the transformation regularity we calculate the

number of voxels with a negative Jacobian.

For normalized mutual information we used definition by Studholme et

al. [68], written as
H(X) +H(Y )

H(X,Y )
,

where X and Y are random variables and H(·) is Shannon entropy of a

random variable. In our use case the random variables X and Y refer

to intensity values of a random voxel in the compared images. Shannon

entropy can be defined for a continuous real valued random variable X as

H(X) = −
∫︂
R
p(x) ln(p(x))dx

where p is the probability density of the random variable X. We approxi-

mate the probability density functions using a joint histogram of 64× 64

bins calculated from the intensity values of the two images. Normalized

mutual information ranges between one and two with larger value indicat-

ing better match.

The threshold-based masks were produced for three generic tissue types:

bone, water, and fat. In addition, mask of the whole body was used.

Density values for different tissue types overlap significantly [69] and thus

arbitrary choices were needed. For fat we used values between 0.8 kg dm−3

and 0.97 kg dm−3, for bone anything above 1.15 kg dm−3, and watery tissue

was defined as anything between fat and bone, in other words, values

between 0.97 kg dm−3 and 1.15 kg dm−3.

The metric is then calculated by computing the masks for registered and

unregistered volumes and calculating the dice score between the masks.
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Sørensen–Dice coefficient or just Dice coefficient can be calculated as

2|A ∪B|
|A|+ |B|

between two sets A and B.

To calculate the amount of folding voxels in the produced transforma-

tions, Jacobian is calculated for each voxel location. Negative Jacobian

means that the transformation is folding on top of itself. Jacobian can be

calculated as

det

[︃
∂ϕ

∂x

]︃
= det

⎡⎢⎢⎢⎢⎣
∂ϕ1
∂x1

∂ϕ1
∂x2

∂ϕ1
∂x3

∂ϕ2
∂x1

∂ϕ2
∂x2

∂ϕ2
∂x3

∂ϕ3
∂x1

∂ϕ3
∂x2

∂ϕ3
∂x3

⎤⎥⎥⎥⎥⎦
for transformation ϕ : R3 → R3. We approximate the partial derivatives by

differences in the transformation between neighboring voxels.

4.2 Patch-wise Approach Evaluation

Due to the used patch-wise approach there will be anomalies on the patch

borders as discussed in Section 3.3.1. Our method aims to discard a

sufficient number of patch borders so that the anomalies do not affect the

final deformation field except on the volume border regions. To evaluate if

the approach can be considered valid, we calculate voxel-wise mean and

standard deviation for momentum vector lengths over all the predicted

patches. The motivation is to see how far the obvious border anomalies

span.

4.3 Baseline Method

In order to provide a baseline against which to compare the method,

NiftyReg [70] was used. The used algorithm behind NiftyReg is described

in [71].

NiftyReg provides several alternative configurations for doing the reg-

istration. We use normalized mutual information as a loss function and

stationary velocity field defined by cubic b-splines as transformation rep-

resentation. NiftyReg uses hierarchical approach where registration is

performed on multiple levels, beginning with the whole volume and then

moving to smaller sub volumes. A hierarchy of 3 levels is used in our
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experiments. The default value of 150 is used for the maximum number of

iterations. For regularization, default values were also used, consisting of

a bending energy term together with first order penalty.

4.4 Training and Prediction Details

In both experiments we use the patch size of 48× 48× 48 voxels and the

patches are fed to the GPU in batches of 12. The patches are extracted

from 4 volumes at a time and fed to the network in random order.

For regularization, kernel parameters α = 20 and γ = 1 are used. The

weight of 1e− 4 is used for the regularization term in the neural network

loss function for both models.

In calulating the velocity field from the momentum field we pad the

volume with 12 voxels.

During the prediction 12 border-most voxels are discarded from each side

As a result only the 24 center-most voxels are used from each patch except

for the patches at the volume borders. And decision to discard exactly 12

voxels was based on initial experimentation and its validity is analyzed in

the results section.

For the normalized MSE loss function given in Equation (3.5) we use the

constant parameter a = 0.2.

46



5. Results

In this chapter, we look at the results of the experiments described in the

previous chapter. The aim is to evaluate the Deep Learning registration

method we developed. Evaluation of registration results can be difficult

due to the lack of ground truths [6]. There is always a lot of ambiguity in

the estimated transformations. In practice, the best evaluation might be

obtained by visual analysis but that too is tedious and observer-dependent.

We evaluate the registration quality based on the set of metrics defined in

the previous chapter. In addition, we provide qualitative remarks based

on our visual observations.

We use NiftyReg[70] as a baseline method, as discussed in the previous

chapter. The point is necessarily not to show that our method outperforms

the baseline or vice versa. The main purpose is to see if the metrics

calculated for our model are in the same scale as the ones calculated for

the baseline model. Thus the baseline acts more as a sort of a sanity

check for our method. The reason why comparing the metrics might not be

meaningful is that the metrics are affected a lot by the used parameters.

For example, relaxing regularization weight results in a better match

between the images, resulting in better metrics. We also do not perform

any sort of parameter optimization for NiftyReg but instead use it almost

out of the box. The only difference to the default settings is that we use

the velocity field representation for the transformation. This way NiftyReg

provides invertible transformations, which is better in line with our method.

Another thing to note is that NiftyReg performs the registration in multiple

scales, whereas our method performs only patch-wise registration for

rigidly registered images. Thus NiftyReg can be expected to handle large-

scale transformations better. How much better, is the question of interest

for us.

Another baseline we have are the original rigidly registered images.
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Improvement of the metrics compared to the original rigid registration can

provide some indication of the quality of the method.

We have got two different Deep Learning models to evaluate: one using

mean squared error loss and another one using the normalized mean

squared error, Equation (3.5). We refer to these models respectively by ”DL

MSE” and ”DL Normalized MSE”. To the initial registration we refer as

”Rigid” and to the baseline method as ”NiftyReg”.

5.1 Training

The models were trained for 20 epochs but we used the epoch 12 in our ex-

periments, because the validation loss had stabilized already by then. One

epoch corresponded roughly to seeing the whole data set once. Training

one epoch took a little less than three hours.

In order to get the MSE model to converge, one had to start with a lower

value for regularization and increase it after one epoch. Normalized MSE

model converged more easily.

5.2 Prediction Runtime

Runtime of the algorithms was not analyzed systematically but we can

still provide qualitative results. Prediction of the transformation on GPU

using the trained model takes between 100 and 150 seconds per case. The

difference is due to the differing number of slices in the feet-head direction.

The relatively long runtime for a Deep Learning algorithm results from

the adopted patch-wise approach. The number of patches for which the

prediction has to be made is quite high for the used patch size, around

2600 per image volume. This was largely due to only the center part of

each patch being used, amounting to only 12.5% of each patch. As a result,

the amount of data for which the prediction has to be made is ten times the

size of the volume. Most of the run time goes to predicting the momentum

field. Calculating the displacement field and the transformed image from

the momentum field takes only a couple of seconds.

Even though the run time is large for a Deep Learning registration

algorithm, it is still good when compared to most classical registration

algorithms which take even hours to produce the result. However, for

example the GPU version of NiftyReg can have a registration time of less
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DL Normalized MSE DL MSE NiftyReg
CT to pseudo-CT
% of folding voxels 0.000005% 0% 0%
# of cases with folding voxels 1 0 0

Mean Jacobian 0.998392 0.999792 1.00062

pseudo-CT to CT
% of folding voxels 0% 0.000003% 0%
# of cases with folding voxels 0 1 0

Mean Jacobian 1.0015 0.999838 0.999217

Table 5.1. The proportion of folding voxels (voxels with negative Jacobian determinant)
and the mean of Jacobian determinant (the mean over means of deformations)
calculated for the test set images registered using different registration methods.
The image pair for which DL Normalized MSE model results in folding voxels
has very large movement present and all the registration methods fail to
register it even decently.

than 10 seconds on a modern GPU [71]. Using the static velocity field

representation increases its run time significantly but it is still at least in

the same scale as our method. The CPU version had a run time from 200 to

1100 seconds per image volume in our experiments. The difference results

mostly from the different number of iterations needed until the algorithm

converges. This is in contrast to our proposed Deep Learning method for

which the run time is practically a linear function of the number of voxels

in the image.

The run time of the algorithm is not optimized and could be improved.

The most simple solution would be to use larger patch size as it would

allow larger portion of the patch to be used. It is also noteworthy that the

momentum field calculation is trivial to parallelize for multiple GPUs.

5.3 Metrics Results

In this section, we look at the evaluation metrics calculated for the regis-

tration results on the test set. Our method provides an invertible trans-

formation between the input images. Thus each metric is calculated both

ways, in the CT space and in the pseudo-CT space. These are referred

to as ”pseudo-CT to CT” registration and ”CT to pseudo-CT” registration,

respectively. The used NiftyReg algorithm also provides invertible trans-

formations but the loss function is not symmetric. Thus we performed the

registration separately both ways for a fair comparison.
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Figure 5.1. Three generic similarity metrics calculated for the test set images registered
using different registration methods.

5.3.1 Transformation Regularity

The results for transformation regularity can be seen in Table 5.1. The

proposed methods provide diffeomorphic transformations with zero folding

voxels for almost all of the test cases. Both Deep Learning models have

folding voxels in exactly one image pair. The image pair for which the

Normalized MSE model has folding voxels has very large movement and is

the only image pair for which the registration fails completely for all the

methods, including NiftyReg (also an only image pair for which any of the

methods fails completely). Our proposed method thus manages to provide

perfectly invertible transformations for practically all of the test set image

pairs, despite predicting the transformation in separate patches.

In addition, the mean of the Jacobian determinant is close to one which

indicates smooth deformations.

5.3.2 Generic Similarity Metrics

We used three generic similarity metrics for evaluating the results: nor-

malized mutual information (NMI), mean squared error (MSE), and mean

absolute error (MAE). The results can be seen in Figure 5.1 and Table

5.2. As can be seen from the results, all the methods improve significantly

compared to the initial rigid registration.

The model using normalized MSE performs better than the model using

MSE on all other metrics except for the pseudo-CT to CT MSE metric. It

can be considered a surprise that the MSE model has even slightly worse

mean result for the MSE metric in the CT to pseudo-CT direction. It

indicates that the method has probably failed to converge.
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NiftyReg can be considered to have the best results for the NMI metric

as it has significantly lower variance than the other two methods. Since

NiftyReg optimizes over normalized mutual information, the result is not

surprising. However, the mean values for the DL Normalized MSE model

and NiftyReg are about the same, with the DL Normalized MSE model

having even slightly better mean NMI for the pseudo-CT to CT registration.

We remind that the results are not directly comparable due to different

regularization terms. None the less, the results being in the same scale is

a good indicator.

The worst outliers visible for Deep Learning models are all the same

image pairs for which all registration methods fail to find plausible trans-

formation. However, NiftyReg manages to fit the body outline successfully,

resulting in significantly better numbers especially for the MSE.

5.3.3 Tissue Mask Metrics

Thresholding-based tissue mask metrics results can be seen in Table 5.3

and in Figure 5.2. Again we can see that all the methods perform signifi-

cantly better than the initial rigid registration.

In terms of the tissue mask metrics, the normalized MSE model performs

better than the MSE model and the baseline. The mean values are better

for all the mask types, except for the body mask for which the results

are essentially identical. Again, direct comparison to NiftyReg is not

meaningful due to different regularization but the results being better is a

good indicator.

Mean NMI Mean MSE Mean MAE
pseudo-CT to CT

DL Normalized MSE 1.61219 0.00250076 0.0108585

DL MSE Loss 1.60019 0.002238 0.0113549

NiftyReg 1.61162 0.00267284 0.0116831

CT to pseudo-CT
DL Normalized MSE 1.59666 0.00277285 0.0113437

DL MSE Loss 1.58382 0.00278784 0.0120448

NiftyReg 1.60301 0.00286777 0.0121914

Rigid 1.51141 0.0115741 0.0233327

Table 5.2. Means of the three generic similarity metrics calculated for the test set images
registered using different registration methods.
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Figure 5.2. Dice coefficients for the different tissue masks calculated for the test set
images registered using different registration methods.

Bone Fat Water Body
Mean Dice coefficient pseudo-CT to CT

DL Normalized MSE 0.930839 0.822708 0.936116 0.993538

DL MSE 0.925338 0.795413 0.925483 0.993706

NiftyReg 0.924734 0.810471 0.929381 0.994233

Mean Dice coefficient CT to pseudo-CT
DL Normalized MSE 0.940477 0.833142 0.941176 0.995133

DL MSE 0.932754 0.805392 0.930842 0.995561

NiftyReg 0.92834 0.814012 0.931968 0.995454

Rigid 0.885745 0.722414 0.891636 0.977985

Table 5.3. Mean dice coefficients for the different tissue masks calculated for the test set
images registered using different registration methods.

5.4 Patch-wise Approach Consistency

To evaluate whether discarding 12 voxels from the patch borders is enough,

we calculated voxel-wise mean and standard deviation of all predicted test

set momentum patches, as discussed in Section 4.2. The results can be

seen in Figure 5.3. As can be seen, border anomalies do not seem to reach

over 12 voxels from the patch borders.

However, few other anomalies can be seen in the plots. The linear ramp

along the z-axis is probably due to used image volumes, which result in

empty voxels more often being in the top part of the patches. Additionally,

there is slight oscillation present along the x and the z axes. Relative

magnitude of the oscillation in the mean is from around 2% to 3% and is

thus practically not seen in the final deformations after smoothing and

velocity field integration. A possible reason for it might be the mistake in

the up-sampling step, as described in Section 3.3.1.
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Figure 5.3. Voxel-wise mean and standard deviation of vector lengths over all the pre-
dicted test set momentum patches plotted as marginals for the two used Deep
Learning models. Only the 24×24 center-most voxels along each axis are used
for calculating the marginals since those are used in the prediction phase. The
vertical red bars indicate the center-part along the plotted axis.

5.5 Visual Evaluation

In addition to the metrics evaluation, we performed visual analysis of the

results. The upcoming remarks are qualitative in nature and thus can

not be confirmed by the reader based on the results provided in this work,

except for the few examples. However, we see them as providing valuable

insight for anyone analyzing this work and they are hence included.

In general, visual analysis confirms well the result that using the nor-

malized MSE loss improved the result compared to the ordinary MSE loss.

This is especially evident for the bone and soft tissue accuracy. An obvious

example can be seen in Figures 5.4 and 5.5.

The proposed method does not always handle the volume border areas

well. This might be the case since the patches on the border of the volumes

include the border anomalies even after fusing the patches. In principle

that should not be a problem, since in that case the patch border and

volume border are the same and thus the network should have learned to

predict exactly the desired momentum. However, convolutional neural net-

works are not naturally good for making location variant predictions even

though matching volume border as a feature is indirectly possible. Based

on Figure 5.3, the border anomalies do not seem to be very consistent.

The method does not always catch large scale movements well, either.

The basic problem is that even though using the methods we are able
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registered pseudo-CT original pseudo-CT
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Figure 5.4. A test set image pair registered both ways using the Deep Learning model
trained using the normalized MSE loss. The image pair is same as in Figure
5.5. Registration accuracy for the spinal cord is significantly better than
for the ordinary MSE model. The medical images are Courtesy of Turku
University Hospital / Department of Oncology & Radiotherapy.

to match specific features, large scale movements are not matched as

smoothly as would be possible. This is not surprising, since only 48× 48×

48 voxel patches are seen at a time and combination of locally optimal

transformations is not necessary the globally optimal one. On the other

hand, on some occasions the algorithm is able to match large movements

quite well.
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Figure 5.5. A test set image pair registered both ways using the Deep Learning model
trained using the ordinary MSE loss. The image pair is the same as in Figure
5.4. Registration accuracy for the spinal cord is significantly worse than for the
normalized MSE model. (Courtesy of Turku University Hospital / Department
of Oncology & Radiotherapy)
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6. Discussion and Conclusions

In this work, we have provided unsupervised Deep Learning diffeomorphic

registration framework which works on image patches. The work builds

o the work by Dalca et al. [10] and Shen et al. [55], bringing patch-wise

approach as a new feature allowing for significantly larger volumes to be

registered.

The framework is shown to be consistent in that it provides diffeomorphic

transformations between whole volumes. Using the momentum static

velocity field approach for generating the transformations from the patches

results in smooth and invertible deformations over the patch borders.

Accuracy of registration is evaluated by comparing similarity metrics

against a baseline registration method, NiftyReg [70]. The method is

shown to provide similar scale results as the baseline. Especially the

model using the normalized MSE loss described in Equation (3.5) performs

well in this aspect.

Th main principal weakness of the approach is in our opinion the han-

dling of the momentum field smoothing. Velocity field is calculated from

the momentum field by applying a smoothing kernel to it. This introduces

a problem for patch-wise training, since smoothing kernel does not have

the values of the neighboring patches. The problem is solved by using only

center-part of the patches during prediction and this solution is shown to

be adequate for solving the problem in practice. However, a more advanced

way of calculating the velocity field from some initial transformation repre-

sentation would allow for a more robust algorithm and might also improve

handling of the volume borders. In some sense an optimal approach would

be one where the patch-wise prediction would find locations to match be-

tween the images and the fusion algorithm seeing the larger picture would

find the optimal transformation connecting them.

One possible way to do it would be to teach a network to predict directly
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displacement field points along with confidence measure for each. A sepa-

rate step would then be to calculate a final displacement field prediction

based on the initial prediction and the used regularization. Intermediate

velocity field representation could also be used in the process to obtain

diffeomorphic transformations. Calculating the final displacement field

would be a separate task for which Deep Learning might be also suitable.

Another problem the approach has is inherent to the patch-wise approach:

the lack of context. We used only rigidly registered images, whereas in

patch-wise approaches usually multi-scale deformable registration ap-

proach is employed. We proved that in spite of that, our approach was able

to create diffeomorphic transformations between the images. However,

nothing prevents one from using a multi-scale approach together with the

framework provided here. It is likely that it would help the algorithm

to see larger scale movement in some instances and also provide more

accurate registration as smaller movement would be left in the patch-wise

registration phase. That would also solve at least partially the problem

of patch fusing presented above as the magnitude of movement inside the

patches would be smaller. A problem with multi-scale approach is that

it tends to create unwanted stretching, for example, within bones which

the lower-scale steps then have to fix. The strength of our approach is not

having to do that.

The rationale of registering pseudo-CT and CT images is to provide

multimodal registration framework between CT and MRI images. Using

Deep Learning, one could train a network to predict transformations

between CT and MRI images directly and only use the pseudo-CT images

in the training phase for calculating the loss function. Initial experiments

to evaluate the concept were done during the thesis work and it was shown

to work on a conceptual level.
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7. Summary

In this work we introduce a new patch-wise diffeomorphic approach for

unsupervised unimodal Deep Learning registration. The used methods

are closest to the works by Dalca et al. (2019) [10] and Shen et al. (2019)

[55] which both provide diffeomorphic transformations using unsuper-

vised Deep Learning. The new concept is the patch-wise prediction of the

transformations allowing GPU acceleration for larger resolution image

pairs.

The basic idea in applying Deep Learning to registration is to train a

network which can predict deformations between image spaces in one

shot, when given the set of images to be registered. This is in contrast

to the classical registration approach where the deformation is updated

iteratively for each new image pair.

In unsupervised registration the network is trained without using ground

truth registrations. This is done by using the sum of a similarity term and

a regularization term as a loss function for the network. In this aspect the

approach is similar to classical registration methods which are typically

formulated as optimization problems.

As a diffeomorphic framework we use static velocity field approach orig-

inally suggested by Arsigny et al. (2006) [39] and applied in practice by

Ashburner (2007) [8]. We combined it with large deformation diffeomor-

phic metric mapping (LDDMM) framework, as was done for example by

Hernandez et al. (2009) [41].

Instead of predicting a static velocity field, we predict a momentum field

as was done by Shen et al. [55]. From a momentum field one can generate

a velocity field by applying a smoothing convolution kernel. Using the

momentum representation allows for regularization to flow over patch

borders, the concepts discussed by Yangt et al. (2017) [65] in the context of

supervised Deep Learning.
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Summary

We apply the method for registration of computer tomography (CT) and

pseudo-CT images. Pseudo-CT images are CT-like images generated from

magnetic resonance images. We prove that our diffeomorphic patch-wise

approach manages to generate diffeomorphic transformations between

the volumes while providing registration accuracy in terms of the used

similarity metrics comparable to the used baseline method, NiftyReg [70].

Visual analysis shows good results in general while having some difficulties

on volume borders and in matching large scale movement accurately. Thus

the work opens up possibilities for fast and robust multimodal registration

of CT and magnetic resonance images.
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