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1. Introduction

This thesis is on representation stability of cellular resolutions and invariants of

resolutions of monomial ideals. The general area of these topics is combinatorial

commutative algebra, and as much of pure mathematics, the questions studied in the

thesis are motivated mainly by fascination towards these mathematical objects and

applying new tools for studying them.

The main algebraic objects that appear in this thesis are all related to resolutions.

A resolution of a finitely generated graded module is a way to interpret the structure

of the module, and every module has a resolution. We will be using free resolutions,

where this information on the module will be stored in free modules and maps between

those. Historically, resolutions first appeared in the work of Hilbert [35] and have

been an active research topic ever since. From the early days of studying resolutions,

we have known they can be algorithmically computed, but the results may not be

unique since a module has multiple resolutions. The primary way to combat this

issue is to require minimal resolutions that solve this issue up to isomorphism. A

central piece of information that a resolution can give is the knowledge of the relations

between the generators of a module, and the relations between those relations, and

going on with all the relations of relations that follow. These are called the syzygies

of the module. Syzygies have also given the name to a central theorem in studying

resolutions, namely the Hilbert syzygy theorem, that states a resolution will always be

finite. In terms of the relations, this means eventually they stop.

Over the years since Hilbert, many exciting results have been published on reso-

lutions, for example, a very recent result of Eagon, Miller, and Ordog showing how

to construct a canonical minimal resolution for a monomial ideal [21], to name one.

Resolutions play a central role in studying invariants for modules and interact well

with many functorial constructions, all of which contributes to their importance as

mathematical objects. There have been different directions taken with the study of

resolutions, and the two main ones appearing in this thesis are cellular resolutions for

monomial modules and Boij–Söderberg theory.

A cellular resolution is a resolution of a monomial module that also contains the

homological structure of a cell complex. It connects an algebraic construction to

a combinatorial and topological object. Cellular resolutions were first defined and

studied by Bayer, Peeva, and Sturmfels [4, 5]. With cellular resolutions, minimality is
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Introduction

often a desired condition, too, and many results are on showing that minimal cellular

resolutions exist for a specific class of ideals, for instance, the cointerval ideals by

Dochtermann and Engström [19]. However, a significant result on cellular resolutions

is that by Velasco [55] that shows that not every monomial ideal has a minimal cellular

resolution. Another significant result on cellular resolutions is that they are compatible

with Morse theory as shown by Batzies and Welker [3], and the examples of cellular

resolutions in their work play a significant role in the results of this thesis. The interest

in minimality has also motivated the application of discrete Morse theory to cellular

resolutions, for example, in [41] it is shown how to make a resolution closer to a

minimal one and Engström and Norén use it in [26] to show the existence of minimal

resolutions for powers of certain ideals.

The other direction that our results take is the Boij–Söderberg theory. To each

finitely generated graded module M one can associate numerical invariants called

the graded betti numbers of M, which can be arranged in the so-called betti table

of M. These betti numbers can be found in the minimal free resolution of a given

module. The problem of characterising the possible betti tables of modules has been

open for many decades, and only relatively recently a breakthrough was obtained by

Boij and Söderberg [6]. They thought of betti tables as elements of a vector space and

provided conjectures describing the cone in which all possible betti tables live. These

conjectures were proved soon afterwards, and as a consequence, it turns out that the

extremal rays of this cone are what we call pure betti tables. The cone interpretation

can then give the central theorem of Boij–Söderberg theory: the betti table of a finitely

generated graded module can be expressed as a weighted sum of pure tables with

positive rational coefficients. This provides an excellent method of studying the betti

numbers of modules and ideals.

Despite all the known facts about cellular resolutions, they have not been studied

as a class of objects. There has been discussions on the general structure of cellular

resolutions, see for example [20] for an open question on “moduli spaces” for a

family of cellular resolutions, and even these cases often focus on the structure of

a particular family of cellular resolutions. A natural question would be to ask how

cellular resolutions behave in a more category-theoretic setting. This approach is

supported by the existing conversation on higher structures on cellular resolutions, and

that category theory is a fundamental tool in studying these in other fields like algebraic

geometry and representation stability. These ideas give the fundamental areas of this

thesis outside of commutative algebra: category theory and representation stability.

Category theory was pioneered by Eilenberg and MacLane in the 1940s [22], and has

since become a standard language to discuss mathematics. Representation stability

is, on the other hand, much more recent. The term was first coined in the current use

by Church and Farb in 2012 [15]; however, it does have connections to older ideas

of homological stability, in particular in topology on cohomology and configuration

spaces. The main idea behind representation stability, especially in its infancy, is to

apply homological stability to an infinite sequence of representations. This has then

been expanded by Ellenberg, Farb, Church and Nagpal [13, 14] to study what is called

FI-modules, which form one of the prevailing directions of representation stability

10
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with very active research. Roughly at the same time as much of the expansion of

representation stability from the first paper was growing, Sam and Snowden released

their work on representations of combinatorial categories [48]. Their work can be

seen as a more algebraic generalisation of the ideas of representation stability, and the

results presented in [48] recover many of the previous ones. We are inspired by the

paper of Sam and Snowden [48], which generalises ideas from representation stability,

and a part of the thesis applies their tools to cellular resolutions. Many preliminary

versions of the theorems appeared in earlier works on representation stability like

those of Church and Farb [15], and Church, Ellenberg, and Farb [13].

The first results in this thesis are the generalisation of the definition of cellular

resolutions to cases where the cell complex may not be connected, followed by a

definition of what a map between two cellular resolutions is. The main idea behind

the chosen morphisms is the concept of compatible cellular and chain maps, which

says that “they both do the same thing”. These lay the basis for defining a category

of cellular resolutions and all the further category-theoretic results. Our main result

from Publication I is the definition of the category of cellular resolutions, CellRes,

and that it does indeed form a category.

Further results in Publication I focus on the study of the typical constructions in

CellRes and note other worthwhile observations. These include mapping cones and

cylinders, (co)products and (co)limits. Throughout these sections, we see the repeating

pattern of well-behaved constructions if topological and algebraic constructions are

essentially the same. Otherwise, they may not even exist in the category CellRes in

general. An example of the non-existence is the product, which we do not have in

the category. Among the significant results that appear is the homotopy colimits of

cellular resolutions. They are a well-known construction in topology, and we show

that the explicit construction lifts to CellRes. The final topic touched upon in this

setting is discrete Morse theory on cellular resolutions. We show that the algebraic

Morse theory and the discrete Morse theory for cellular resolutions work well together,

that is, a pair of a cellular map and a chain map that come from the same Morse

matching forms a morphism of cellular resolutions. This result shows that Morse

maps are well behaved with respect to algebra and topology on cellular resolutions.

Furthermore, the results on Morse theory give a basis for simple homotopy theory for

cellular resolutions.

The computational results on cellular resolutions have long suggested that in some

families we have finitely generated syzygies given by some finite number of resolutions

in the family; however, there has not been a proof of this. In Publication II, we study

the families of cellular resolutions from a categorical perspective and through using

representations of categories that is motivated by computational results on syzygies.

Using the tools from representation stability, we establish conditions for families of

cellular resolutions to have finitely generated syzygies. The main idea is to define

the syzygies as a representation of the family and then show finite generation for this

representation using noetherianity and covering of the cell complexes. This method

allows us to use families with non-minimal cellular resolutions to study the syzygies.

Our main results from this publication are showing that a family of cellular resolutions
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satisfying linearity conditions will have a noetherian representation category and that

a family of cellular resolutions with a noetherian representation category will have

finitely generated syzygies if the cell complexes are covered.

Other than being able to show that certain families have finitely generated syzygies,

using categorical representations to study cellular resolutions can give new insights

into them and structures of families, in particular, it seems to be suited to studying

cellular resolutions of powers of ideals. This is highlighted in the specific examples

of the families we study. The powers of maximal ideals and edge ideals of paths are

among the examples we prove to have finitely generated syzygies. This method does

have limitations, and in particular, having to fix a polynomial ring for families that

do not consist of powers of ideals turns out to be not such an interesting situation

with edge ideals. Our last results propose, perhaps naive, approach to this situation

by removing the requirement for a constant polynomial ring through defining a new

category.

The results of Publication III change in theme towards the Boij–Söderberg theory. In

general, there are algorithms to compute the Boij–Söderberg decomposition, but to the

best of our knowledge, there are no general formulas that give it for any given module

or even ideal. We show that the class of ideals considered in Publication III has a Boij–

Söderberg decomposition that can be explicitly written. These ideals are edge ideals

of graphs that come from a specific construction, the Booth-Lueker graph, linked to

the graph isomorphism question. In one of the first results of complexity theory, Booth

and Lueker [7] introduced the following construction: given a finite simple graph G
with n vertices and m edges, define a new graph on n+m vertices, which we call

BL(G). Booth and Lueker proved that two graphs G and G0 are isomorphic if and

only if their corresponding Booth–Lueker graphs BL(G) and BL(G0) are isomorphic.

This reduced the problem of graph isomorphism to the special class of Booth–Lueker

graphs, which have several attractive properties. The main result of Publication III

regards the edge ideal of the Booth–Lueker graph of a graph on n vertices and di

vertices of degree i, for i = 0, . . . ,n−1. We show that the weight of the pure table

c j with j non-zero entries on the second row, can be described explicitly in terms

of n and di, and the other Boij–Söderberg coefficients vanish. Further on, we also

describe the explicit Betti numbers and anti-lecture hall compositions of these ideals.

Moreover, we study the dual graph situation, constructing the ideal of the complement

of the Booth–Lueker graph. We show that if the original graph has n vertices and m
edges, then the coefficients c j only depend on the values of n and m, and the other

coefficients vanish. We also give explicit results on Betti numbers and anti-lecture hall

compositions for these ideals.

Lastly, we detail the outline of this thesis. Chapter 2 covers the relevant background

material for the results in this thesis and defines in detail the concepts mentioned in

this introduction. Chapter 3 gives an overview of the results of Publications I and II,

and finally, Chapter 4 summarises the results of Publication III.
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2. Mathematical preliminaries

This chapter covers the relevant background material for the thesis. We begin by going

over the notions from category theory, commutative algebra and topology that are

required for defining cellular resolutions. This is followed by a section on cellular

resolutions, the definition and known results. The remaining sections are used to cover

the background necessary for the results in this thesis.

2.1 Category theory

The language of much of modern mathematics is category theory. One of the goals of

this thesis is to use categories to study cellular resolutions, and thus the definitions

and concepts from category theory that are frequently used in this thesis are covered

in this section. There are many good references for introductory category theory, like

[8], [9], and [38], and for our primary reference on category theory, we will use the

Chapter 1 from the book by Vakil [54].

One of the most important definitions that is required from category theory is the

definition of a locally small category itself. Informally this can be thought of as a

collection of objects that are linked by arrows. The collection of objects does not

necessarily have to be a set, and thus one defines categories with classes, that are

collections of sets.

Definition 2.1.1. A locally small category C consists of a collection of objects obj(C )
and a set of morphisms C (a,b) for each pair of objects a,b. For any triple a,b, c
there is a composition map of the morphisms C (b, c)×C (a,b) → C (a, c), with the
image of the pair (φ,ψ) denoted by φ◦ψ. The category C must satisfy the following
two conditions:

1. For any object a ∈ obj(C ) there exists an identity morphism ida ∈C (a,a) such that
ida ◦φ=φ and ψ◦ ida =ψ for any φ : a → b and ψ : b → a.

2. Composition of morphisms is associative, that is, (φ◦ψ)◦χ=φ◦ (ψ◦χ) for all ψ,χ,
and φ.

13



Mathematical preliminaries

A further requirement is that the morphism sets C (a,b) and C (c,d) are disjoint unless
a = c and b = d.

We say that a category C is small if the objects and morphisms form a set.

Example 2.1.2. Common examples of categories include the category of sets Set,
where the objects are sets and the morphisms are set maps, the category of topological

spaces Top with objects being topological spaces and morphisms are continuous maps,

and the category of S-modules ModS , where objects are modules over the ring S and

morphisms are module homomorphisms.

A subcategory C ′ of C is a category where obj(C ′)⊆ obj(C ) and morphisms of C

such that the source, target, and composition are the same as in C . A subcategory C ′

of C is full if C ′(a,b)=C (a,b) for any pair a,b ∈ obj(C ′).
There are two categories in particular that we want to focus on, the category of

topological spaces and the category of chain complexes of S-modules. The properties

of these two categories influence the category of cellular resolutions and thus we will

look at them in more detail in this section. we note that any of the topology books

listed in Section 2.3 is a suitable reference for the category of topological spaces and

[56] is a good introduction to the category of chain complexes.

The category of topological spaces, denoted by Top, is a category that has topologi-

cal spaces as the objects and for any two spaces X ,Y the set of morphisms Top(X ,Y )
consists of all continuous maps between X and Y . CW-complexes and cellular maps

form a subcategory of Top.

The category of chain complexes C•(ModS) is the category with the objects being

chain complexes of objects of the category ModS

C : . . .← C0 ← C1 ← . . .← Cn ← . . .

where Ci is in ModS and the maps, sometimes called differentials, ∂k : Ck → Ck−1

such that ∂i ◦∂i+1 = 0. The morphisms are given by chain maps, that is, a collection

of module homomorphisms f= { f i} with f i : Ci → Di, such that the squares

· · ·← Ci ← Ci+1 ←···
↓ ↓

· · ·← Di ← Di+1 ←···
.

commute. The commuting square means the map is the same whether the first map

is taken to be the differential map in the chain and then the module homomorphism,

or vice versa, the resulting composition map is the same both ways. The commuting

square property can also be expressed as

f i ◦∂i+1 = ∂i+1 ◦ f i+1.

Remark 2.1.3. We have stated the definition for the category of chain complexes of

S-modules; however, chain complexes can be defined for any additive category [56,

Chapter 1].
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z

a×b ba

z

a	b ab

Product Coproduct

Figure 2.1. The diagrams for product and coproduct in a category C .

The definitions in category theory are often unique up to an isomorphism. What

it means is to say that the objects are essentially unique, and isomorphic objects are

close enough to be considered the same in these circumstances. This uniqueness

often comes from defining concepts in category theory via the universal property. A

universal property provides a way to define properties and objects with the assurance

that the resulting object has no more than the desired properties; that is, it is the

universal object for that definition.

An object a ∈C is said to be an initial object if for all objects b ∈ obj(C ) there is

a single morphism a → b. Similarly a is a final object if there is a unique morphism

b → a for all b ∈ obj(C ). If the initial and final objects exists, they are unique up to an

isomorphism.

The product and coproduct constructions play a significant role for the properties

that the category of cellular resolutions has.

Definition 2.1.4. A product of two objects a,b in the category C is an object a× b
such that there exist morphisms f : a× b → a and g : a× b → b, such that for any
object z mapping both to a and b there exists a unique morphism z → a×b that makes
the product diagram in Figure 2.1 commute.

Definition 2.1.5. A coproduct of two objects a,b in the category C is an object a	b
in C such that there exist morphisms f : a → a	b and g : b → a	b, such that for any
object z where both a and b map to, there exists a unique morphism a	 b → z that
makes the product diagram in Figure 2.1 commute.

If a product or a coproduct exists, then they are unique up to unique isomorphism.

Comparing the diagrams for product and coproduct one notices that they are essentially

the same, only the arrows have been reversed. Such reversing of arrows is a common

phenomenon in category theory and the definitions related by reversing the arrows

often are separated by the co- prefix.

The next few definitions cover the limits and colimits in the category setting. First,

a definition of a diagram in a category is required, and then one can proceed to state

the definitions of a limit and a colimit.

A diagram D in a category C is a covariant functor F : I →C where I is a small

category and Fi denotes the image of i ∈ obj(I), and for any φ : i → i′ there is a map

F(φ) : Fi → Fi′ .
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Definition 2.1.6. A limit of the diagram D is an object lim D with maps f i : lim D →
Fi, satisfying f i = F(φ)◦ f j for all φ : i → j in I , and for any W ∈ obj(C ) and any
family of maps ti : W → Fi such that ti = F(φ)◦ t j for all φ : i → j in I , there exists a
morphism t : W → lim D such that ti = f i ◦ t for any object i ∈I .

Definition 2.1.7. A colimit of a diagram D in C is an object colim D in C with a
map ιi : Fi → colim D. The colimit must satisfy ιi = ι j ◦F(φ) for all φ : i → j in I ,
and for any W ∈ obj(C ) and any family of maps ti : Fi → W such that ti = t j ◦F(φ)
for all φ : i → j in I , there exists a morphism t : colim D →W such that ti = t◦ ιi for
any object i ∈I .

If limits and colimits exist, they are unique up to a unique isomorphism.

Definition 2.1.8. A map F between two categories C and D is called a (covariant)

functor and consists of a map F : obj(C ) → obj(D). For all pairs a,b ∈ obj(C ) there
is a map F : C (a,b) → C (F(a),F(b)). The functor F must also satisfy F(φ ◦ψ) =
F(φ)◦F(ψ) and F(ida) = idF(a). A contravariant functor is a functor that is a map
F : C (a,b)→C (F(b),F(a)) for all pairs a,b ∈ obj(C ) .

One can also construct a category where the objects are functors. The morphisms

between functors are given by natural transformations.

Definition 2.1.9. A natural transformation η between two functors F,G : C →D is a
collection of maps {ηa : F(a)→G(a)}a∈ob j(C ) in D such that the diagram

F(a)
ηa−→ G(a)

↓ ↓
F(b)

ηb−→ G(b)

commutes for any morphisms φ : a → b in C . The functors F and G are said to be
isomorphic if ηa is an isomorphism for all a, and η is called a natural isomorphism.

Many of the known constructions in algebra and topology can be seen as functors,

like the fundamental group of a space. Functors are not only useful to generalise the

concept of functions but also for defining things in category theory. Let F : C →D

and F ′ : D → C be functors between categories C and D. Then C is equivalent to

D if we have that F ◦F ′ ∼= idC and F ′ ◦F ∼= idD are natural isomorphisms where id
denotes the identity functor. A category C is essentially small if it is equivalent to a

small category.

As with subcategories, a subfunctor can be defined for a given functor F : C →D

as the functor F ′ : C →D such that there is a natural transformation i : F ′ → F with

components ix : F ′(x) → F(x) being monomorphisms. A monomorphism is a map

f : x → y such that h◦ f = g ◦ f implies h = g for maps h, g : z → x.

Definition 2.1.10. The category C is a monoidal category if it has a bifunctor ⊗ :
C ×C → C , an object e, a natural isomorphism α : (−⊗−)⊗−→−⊗ (−⊗−), and
natural isomorphisms λ : (e⊗−) →− and ρ : (−⊗ e) →−, that satisfy the triangle
equality

ρx ⊗1y(x, e, y)= (1x ⊗λy)◦α(x, e, y)
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and the pentagon identity

α⊗1◦α◦1⊗α(x, y, z,w)=α◦α(x, y, z,w).

Returning to our categories of interest, in the category of chain complexes of S-

modules the product is given by the direct sum of two complexes. The direct sum of

chain complexes C and D is C⊕D with (C⊕D)k = Ck ⊕Dk in the finite case. In the

case of finite coproducts, they are also given by the direct sum. Limits and colimits

can be computed degree wise in the category of chain complexes.

The category Top has an initial object, the empty space, as there is a continuous map

from the empty space to any other topological space. The products in the category

Top are just the usual products of topological spaces, where the underlying space is

the Cartesian product, and it has the product topology. The coproducts in Top are

disjoint unions of topological spaces.

Limits and colimits in Top are lifted from the category of sets, that is, the limit of

the diagram D in Top is the limit of the diagram in the in the category of sets with

initial topology, and final topology in the case of colimit. All finite limits and colimits

exist in the category Top.

2.2 Commutative Algebra

The main references for this section are the books by Eisenbud [23, 24] for general

commutative algebra and resolutions, and the one by Weibel [56] for chain complexes.

A graded ring is a ring S such that it has a direct sum decomposition

S = S0 ⊕S1 ⊕S2 ⊕ . . .

of abelian groups satisfying SiS j ⊆ Si+ j for i, j ≥ 0.

In particular, we are working over polynomial rings S = k[x1, x2, . . . , xn] where k is a

field and n is some positive integer. These have a natural grading by taking elements in

k to be the grade-0 elements and polynomials of degree d to be the elements grade-d
in the graded ring. Unless otherwise specified, S will denote a graded polynomial

ring.

A ring R is noetherian if it satisfies the ascending chain condition on ideals, that

is, every strictly ascending chain of ideals stabilises. Equivalently, R is noetherian if

every ideal is finitely generated.

A graded S-module is an module M with a decomposition M = ⊕∞
−∞ Mi into

abelian groups such that SiM j ⊆ Mi+ j for all i and j. A module is finitely generated
if it has a finite generating set. A free module is a module that is isomorphic to a

direct sum of copies of S, and in the finitely generated case it is denoted by Sk for

direct sum of k copies. The ring S can be viewed as a free graded module over itself.

Then one can define the shifted free module S(−a) by S(−a)i = Si+a, and it is a free

module with a generator in degree a.

A chain complex is exact if it satisfies im∂i+1 = ker∂i for all i ≥ 1.
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Let M be a S-module. A free resolution of M is a chain complex of free modules

F : F0
∂1←− F1 ← F2 ← . . .

∂n←− Fn ← . . .

such that coker∂1 = M and F is exact. If M is a finitely generated S-module and

m1,m2, . . . ,mk are the generators of M with degrees d1,d2, . . . ,dk, then a free res-

olution can be constructed as follows: Take a free module F0 =⊕k
i=1 S(−di) and

define a map ∂0 : F0 → M by sending the generator ei of S(−di) to the generator mi

of M. The kernel M1 of ∂0 is also a finitely generated module, with some generators

g1, g2, . . . , gr. Then we can define a free module F1 =
⊕r

i=1 S(−d′
i), where d′

i is the

degree of gi, and a map ∂1 : F1 → M1 by sending the generator of S(−d′
i) to gi in M1.

Again the kernel of this map ∂1 is finitely generated S-module, and the process of

defining a free module can be repeated and same for a map from that free module to

the kernel. Iterating this process gives the following chain complex

M
∂0←− F0

∂1←− F1
∂2←− . . .

∂i←− Fi ← . . .

The kernel M1 is called the first syzygy module of M and the elements in M1 are

called syzygies. Similarly the kernel of ∂i is called the i-th syzygy module of M.

Example 2.2.1. For this example let S = k[x, y, z,w] and let I = (xy, xz, xw, yzw) be

a monomial ideal. Then the module S/I is finitely generated and has a resolution

S/I ← S(−0)
∂1←−− S(−2)3 ⊕S(−3)

∂2←−− S(−3)3 ⊕S(−4)
∂3←−− S(−4)← 0

with maps

∂1 =
[

xy xz xw yzw
]

,∂2 =

⎡⎢⎢⎢⎢⎢⎣
−z −w 0 0

y 0 −w −yw

0 y z 0

0 0 0 x

⎤⎥⎥⎥⎥⎥⎦ , and ∂3 =

⎡⎢⎢⎢⎢⎢⎣
w

−z

y

0

⎤⎥⎥⎥⎥⎥⎦ .

A natural question to ask about the free resolutions is if they are finite. The answer

is yes and is given by the Hilbert Syzygy theorem.

Theorem 2.2.2 (Hilbert Syzygy Theorem). If S = k[x1, x2, . . . , xn], then every finitely
generated graded S-module has a finite graded free resolution of length ≤ n, by finitely
generated free modules.

There exist both a constructive and a non-constructive proof of the above theorem,

and both are found in [23, p. 340 and 478].

The given definition of a free resolution allows multiple resolutions for the same

module. For instance, we might not have chosen a minimal generating set for one of

the kernels. This brings us to one of the most desired properties of a free resolution,

minimality.

Definition 2.2.3. A free resolution

F : F0
∂1←− F1 ← F2 ← . . .

∂n←− Fn ← . . .

is minimal if for each i the image of ∂i is contained in mFi−1 where m is the graded
maximal ideal of S.
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The resolution of Example 2.2.1 is a minimal free resolution. In the explicit con-

struction, this means choosing a minimal generating set for all of the kernels. All

minimal resolutions for a module M are isomorphic, and a useful fact is that a minimal

resolution of some finitely generated module M is contained in any non-minimal

resolution of M as a direct summand [23, Thm 20.2].

Resolutions, in general, are central in commutative algebra as one can think of them

as a general presentation of the module, and importantly every module has a resolution.

They offer a way to compute many invariants for the module and also provide a good

way to compute functorial invariants. A functorial invariant refers to an invariant that

is obtained by applying a functor to something. In the case of free resolutions, the free

modules in them are special cases of projective modules, and thus free resolutions

are well suited for particular functors, the main one being Tor [23, Section A3.10].

Moreover, Tor is an example of a derived functor, that is, a functor derived from

another one, in this case, the tensor product of modules. Derived functors could also

be viewed as a canonical way for making an almost exact sequence, like a resolution

that is not augmented with the module, to an exact sequence [23, Section A3.9 ].

Derived functors do not play a central role in the results or proofs of Publications I,

II, or III, but it is good to be aware of them as they are central to much of modern

mathematics, and in particular of Tor for their usefulness in computing invariants for

the modules.

Many times minimal resolutions are the topic of interest in commutative algebra

as the uniqueness of them allows for definitions of invariants for the module without

having to consider multiple resolutions. One of the properties that a minimal resolution

has is the fixed length that is known to be the shortest possible resolution for a given

finitely generated module. The length of a minimal resolution is the projective

dimension of the module. Another invariant that can be obtained from the minimal

resolution is the Castelnuovo-Mumford regularity; it can be thought of as a measure

for how complex it is to resolve the given module, and to define it, the existence of

unique resolution is required. In a minimal resolution any minimal set of homogeneous

generators of Fi contains exactly dimk(TorS
i (k, M) j) generators of degree j, where

Tor is the left derived functor of the tensor product of modules. The degrees of

the generators of the minimal resolution give the Hilbert polynomial of the module,

HM(d)= dimk Md , as HM(d)=∑
i(−1)iHFi (d) [24, p.3].

For a finitely generated graded S-module M, the (i, j)-th graded betti number is

defined as

βi, j(M) := dimk(TorS
i (k, M) j).

The betti numbers can also be found from the minimal resolution of the given module

as the number of generators of Fi of degree j. It is customary to arrange the betti

numbers of M in the betti table of M, which has as ji-th entry the number βi,i+ j(M).
Free resolutions are special cases of chain complexes of S-modules and thus the

operations of chain complexes can be applied to them.

Definition 2.2.4. Let f,g : C→D be two chain maps. A homotopy between f and g
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is a collection of maps hi : Ci → Di+1 such that

f i − gi = ∂i+1 ◦hi +hi−1 ◦∂i.

If a collection of the maps hi exists, then we write f∼ g. Two complexes C and D are
said to be homotopy equivalent, denoted by C�D, if there are chain maps f : C→D
and g : D→C such that f◦g∼ idC and g◦ f∼ idD where id denotes the identity map.

Example 2.2.5. Let S = k[x, y, z]. Let C be the resolution of the module S/I where

I = (x, y, z) given by

S
∂1←−− S3 ∂2←−− S3 ∂3←−− S ← 0

with maps

∂1 =
[

x y z
]

,∂2 =

⎡⎢⎢⎣
y z 0

−x 0 z

0 −x −y

⎤⎥⎥⎦ , and ∂3 =

⎡⎢⎢⎣
z

−y

x

⎤⎥⎥⎦ .

and let D be a resolution of the same module given by

S
∂′1←−− S4 ∂′2←−− S5 ∂′3←−− S2 ← 0

with maps

∂′1 =
[

x y z z
]

,∂′2 =

⎡⎢⎢⎢⎢⎢⎣
y z 0 z 0

−x 0 z 0 0

0 −x −y 0 −1

0 0 0 x 1

⎤⎥⎥⎥⎥⎥⎦ , and ∂′3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z 0

−y −1

x 0

0 1

0 x

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Let f,g : C→D be two chain maps given by

f0 = [1], f1 =

⎡⎢⎢⎢⎢⎢⎣
−1 0 0

0 1 0

0 0 1

0 0 0

⎤⎥⎥⎥⎥⎥⎦ , f2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, and f3 =

[
1

0

]
,

and

g0 = [1], g1 =

⎡⎢⎢⎢⎢⎢⎣
−1 0 0

0 1 0

0 0 1

0 0 0

⎤⎥⎥⎥⎥⎥⎦ , g2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 0

0 0 1

0 1 0

0 x 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, and g3 =

[
1

−y

]
.
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Let hi : Ci → Di+1 , i = 0,1,2, be a collection maps given by

h0 =

⎡⎢⎢⎢⎢⎢⎣
0

0

1

−1

⎤⎥⎥⎥⎥⎥⎦ , h1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

x y z

−x −y −z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, and h2 =

[
0 0 0

y 1+ z 0

]
,

and hi = 0 for all other i. Then the maps hi give the homotopy between f and g.

There are many ways to construct new chain complexes from existing ones, and

the main ones used in this thesis are tensor product, mapping cones and mapping

cylinders.

The tensor product for two S-modules M1 and M2 constructs a new module M1 ⊗S

M1 that is the universal object making bilinear maps from the product M1×M2 linear,

that is, the tensor product makes the following diagram commute

M1 ×M2 M1 ⊗M2

P

where M1 × M2 → P is any bilinear map. This gives the category of S-modules a

monoidal structure [23, Section A2.2].

Keeping the above in mind, we want a construction for chain complexes that is in

the same spirit. Let C and D be two chain complexes. The tensor product of C and D,

C⊗D, is a chain complex given by

(C⊗D)k =
⊕

i+ j=k

Ci ⊗D j

with a differential

∂k(c⊗d)= ∂C
i (c)⊗d+ (−1)i c⊗∂D

j (d) where c ∈ Ci,d ∈ D j.

This definition of the tensor product provides a way to combine two chain complexes,

satisfying the property that it is still a chain complex of S-modules and that the

differentials respect the homological grading. The given formula is also known as the

Künneth formula for complexes [56, Thm 3.6.3]. One way to look at the differentials

is that since the differentials of the individual cell complexes ∂C and ∂D increase the

grading by 1, then the map in the tensor product also must only increase the grading

by 1. For an element of the form c⊗d this can be done by applying the differential

to either c or d but not both at once; hence we get the sum, and the -1 component is

there to assure that the composition of maps behaves well. This tensor product also

equips the category of chain complexes C•(ModS) with a monoidal structure.

The mapping cone and cylinder are again constructions that originated in topology,

like generally all of homological algebra, and the definitions for chain complexes
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A continuous map The mapping cone The mapping cylinder

Figure 2.2. A simplified example of topological mapping cones and cylinders.

are strongly motivated by them. For this, it may be helpful to have an elementary

topological picture in mind presented in Figure 2.2. Let f : C→D be a map of chain

complexes. The mapping cylinder in Figure 2.2 consists of copies of the spaces

involved and an extra part that comes from the map and appears to be more dependent

on starting space. The mapping cylinder of f, Cy(f) is the chain complex

Cy(f)i = Di ⊕Ci ⊕Ci−1

with a differential map

∂i(d, c, c′)= (−f(c)+∂(d),∂(c)+ id(c′),−∂(c′)).

This consists of modules made of copies of the involved chain complexes and an extra

piece of the chain complex C to mimic the added part in the cylinder. The differential

here can be presented in the following diagram

Ci−1

Ci

Di

Ci−2

Ci−1

Di−1

⊗

⊗

⊗

⊗

which shows that the copies of C and D are only mapped by their respective

differentials, and only the shifted copy is mapped to all components.

In Figure 2.2, the mapping cone is obtained from the cylinder by pinching the copy

of the starting space into a single point. This pinching is mimicked in the chain

complexes by leaving out the copy of the chain complex C. The mapping cone of f,
Co(f), is the chain complex

Co(f)i = Di ⊕Ci−1

with differential map

∂i(d, c)= (−f(c)+∂(d),−∂(c)).

22



Mathematical preliminaries

Here again the diagram of the differential is presented to make the maps clearer. The

arrow from Ci−1 to Di−1 corresponds to the differential component of −f(c), and the

other to arrows are the differentials coming from the original chain complexes.

Ci−1

Di

Ci−2

Di−1

⊗ ⊗

2.3 Simplicial and CW-complexes

This section introduces the "second half" of background for defining cellular reso-

lutions. Many standard topology books cover simplicial and CW-complexes, our

primary references are the books by Spanier [52] and Munkres [42]. We want to note

that due to the nature of the objects we study in this thesis, we will only focus on finite

cell complexes.

Let a0,a1, . . . ,an be an independent set of points in RN , where N is some positive

integer. A geometric n-simplex s is the space spanned by a0,a1, . . . ,an, that is, the set

of points x ∈RN such that x=∑n
i=0 tiai where

∑n
i=0 ti = 1 and ti ≥ 0 for all i. Any

subset of a0,a1, . . . ,an spans a face of s, and it is called a proper face if it does not

contain s. All the proper faces of s form its boundary. The dimension of the simplex

s is n and the empty simplex has dimension -1 by definition. A (geometric) simplicial
complex Δ is a collection of simplices satisfying the following conditions:

(i) If f is a face of a simplex s in Δ, then f is in Δ,

(ii) The non-empty intersection of two simplices s1 and s2 in Δ is a face in both s1

and s2.

One can define a simplicial complex abstractly as well. An abstract simplicial
complex Δ is a set of vertices V = {1, . . . ,n} with collection of subsets of V such that

if A ⊆ Δ and B ⊆ A then B ∈ Δ. The subsets are called simplices and they satisfy

dim A = |A|−1. The dimension of a simplicial complex Δ is the maximum dimension

of its simplices. A face of A in Δ is a nonempty subset B ⊆ A.

There exists a geometric realization of an abstract simplicial complex that makes it

a geometric simplicial complex. Commonly this is represented as a functor, and we

will return to it in Section 2.3.1. Simplicial complexes have many nice properties, but

they are many times not general enough to be used. Often the restrictions of simplicial

complexes can be overcome with regular CW-complexes that share many of the nice

properties of simplicial complexes.

Let Bd denote the d-dimensional unit ball and IntBd denote the interior of the

ball. We will use the standard notations ∂X and X to denote boundary and closure

respectively for some topological space X . A cell e of dimension d is a topological

space that is homeomorphic to Bd . The open cell e is a space that is homeomorphic
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to IntBd .

Definition 2.3.1. A CW-complex is a topological space X and a collection of disjoint
open cells eα whose union X satisfies

(i) X is Hausdorff,

(ii) for each open d-cell eα of the collection, there exists a continuous map fα : Bd →
X that maps IntBd homeomorphically onto eα and ∂Bd is mapped into a finite
union of open cells, each of dimension less that d, and

(iii) a set A is closed in X if A∩ eα is closed in eα for each α.

A finite CW-complex is a CW-complex with a finite collection of disjoint open cells.

In the case of a finite CW-complex the Hausdorff condition is implied by the

finiteness. The maps fα are called characteristic maps.

Example 2.3.2. A geometric realization of a d-simplex is homeomorphic to a unit

ball of dimension d; thus, a simplex is a cell. The open cells are the interiors of

the simplices and they satisfy conditions of Definition 2.3.1. Therefore, simplicial

complexes are examples of CW-complexes.

Definition 2.3.3. A CW-complex is regular if all of the characteristic maps are home-
omorphisms.

Regular CW-complexes have geometric properties that a general CW-complex does

not always satisfy. These are central to the definition of cellular resolutions to get

well-behaving chain complexes, and these are collected into a proposition below.

Proposition 2.3.4 ([17], Chapter 2). Let X be a regular CW-complex and en an n-cell
of X , then

(i) If m < n and em and en are cells such that their intersection is non-empty, then
em ⊂ en.

(ii) For n ≥ 0, en and ∂en are subcomplexes, and furthermore ∂en is the union of
closures of (n-1)-cells.

(iii) If en and en+2 are cells such that en is a face of en+2, then there are exactly two
(n+1)-cells between them.

One example of regular cell complex is a polyhedral cell complex. A polyhedral
complex P is a finite collection of convex polytopes in RN such that if f is a face

of polytope P ′ in P then f is in P, and if P1 and P2 are polytopes in P then the

intersection P1 ∩P2 is a face of both. A geometric simplicial complex is also a

polyhedral complex.
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Example 2.3.5. Figure 2.3 shows three different cell complexes. The cell complex (a)

is a simplicial complex and (b) is not a simplicial but still regular. The cell complex (c)

is an example of a non-regular CW-complex as it fails the condition (iii) of Proposition

2.3.4. Another example of a non-regular CW-complex is the space given by taking the

projective space with one cell in each dimension.

After defining the cell complexes, we want to look at the maps between them.

Classically in topology, the maps are continuous maps. However, just continuity is

not enough to preserve the cell structure.

Definition 2.3.6. Let X and Y be CW-complexes. A continuous map f : X → Y is
cellular if f (Xn)⊆Yn, where Xn and Yn are the unions of the cells of dimension ≤ n
in X and Y , respectively.

If both of the complexes are simplicial, then the map is called a simplicial map and

can be described by a function on the vertex set which has the requirement that any

simplex in X is mapped to another simplex in Y .

A fundamental concept in topology is homotopy of maps. We have already encoun-

tered homotopy for chain complexes, which copies the topological definition. Let f
and f ′ be two continuous maps from X to Y , then f is homotopic to f ′ if there exists

a function h : X × [0,1] → Y such that h(x,0) = f (x) and h(x,1) = f ′(x). We write

f ∼ f ′ for the homotopy. Two spaces X and Y are homotopic if there are morphisms

f : X →Y and g : Y → X such that f ◦ g ∼ idX and g ◦ f ∼ idY .

Example 2.3.7. Let X be the cell complex consisting of a triangle and let Y be the

cell complex consisting of a square split into two triangles. These are shown in Figure

2.4. The cell complexes have been labelled with numbers to clarify the example, and

we will refer to the cells by the vertices they contain. For example, an edge will be

denoted by 13 if it goes between the vertices 1 and 3. We want to look at two cellular

maps, f and g. The map f maps the vertices of X to the vertices of Y with the same

labels and the edges between them accordingly, in other words, f maps X to the upper

triangle of Y . The map g maps the vertices in the same way but the edge 13 is mapped

to the edges 14 and 43, and the 2-cell in X gets mapped to the whole square. These

images of the edge 13 under these maps are drawn in Figure 2.5 with blue describing

the map f and red marking g.

The maps f and g are homotopic. To show this we want to construct the map

h : X × [0,1] → Y . Note that to define how the cell complex X maps, it is enough

to define the continuous map for the edges and map the 2-cell into the cell bounded

by this. Let us parametrise the line in Y from the midpoint of the edge 13, denoted

by p1, to the vertex 4, denoted p2, by p1t+ (1− t)p2 for t ∈ [0,1]. Here we assume

an embedding to Rn for a suitable n. Then define the map h such that h(x, t) is the

cell complex where the edges 12 and 23 get mapped to the ones with the same label

and the edge 14 gets mapped such that the midpoint goes to p1t+ (1− t)p2 and the

halves form edges from there to 1 and 3. Figure 2.5 illustrates the middle stages in the

homotopy with the purple edges.
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(a) (b)

(c)

Figure 2.3. Cell complexes of Example 2.3.5.

1

2 3

1

2 3

4

X Y

Figure 2.4. The cell complexes of Example 2.3.7.
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1

2 3

p1

p2

Figure 2.5. The images of maps f and g and the intermediate stage in homotopy on the cell complex Y
of Example 2.3.7.

(a) (b)

Figure 2.6. Cell complexes of Example 2.3.9.

v2

v1

v3

v4

v5e1

e2

e3

e4

e6

e5

f1 f2

Figure 2.7. The oriented cell complex of Example 2.3.11.
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Continuous maps between CW-complexes are cellular up to homotopy and this is

captured in the Cellular approximation theorem.

Theorem 2.3.8 (Cellular approximation theorem). Let X and Y be any CW-complexes
with a continuous map f : X →Y , then f is homotopic to a cellular map.

See [52, Thm 17 p. 404] for a proof on CW-pairs. One can get the version with a

single CW-complex by choosing the empty complex as the subcomplex in the pair.

One can also construct new CW-complexes from existing ones. The two main ways

to do this are a join and a product. A product of X and Y is the CW-complex X ×Y
given by each cell in X ×Y being a product of a cell in X and a cell in Y with the

weak topology. The underlying set of the product is the Cartesian product. Since we

have finite CW-complexes, the product will also be a finite CW-complex. A join of

topological spaces X and Y , X ∗Y , is the quotient space of the product X ×Y × [0,1].
The elements in the quotient space are sets {x}×Y × {0} where x ∈ X , X × {y}× {1}
where y ∈ Y and points from the set X ×Y × [0,1]\(X ×Y × {0}∪ X ×Y × {1}). The

topology on this space is the quotient topology [52, pp. 25; 437–444]. Let X and Y
be regular CW-complexes and assume that we have an embedding into Rn. Then the

join of X and Y is the complex we get by connecting every vertex of X to all vertices

of Y with an edge, and filling in the higher degrees accordingly.

Example 2.3.9. Let us consider the cell complexes consisting of a single edge and

two vertices. Figure 2.6 shows the product and the join of two copies of the described

cell complex. The cell complex (a) is the product, and the cell complex (b) is the

join. Note that the product can be obtained from the join by cutting with a suitable

hyperplane.

Mapping cones and cylinders are typical in topology, and they can be used to build

new cell complexes from the existing ones.

Definition 2.3.10. Let f : X →Y be a continuous map. Then the mapping cone of f ,
denoted with Cf , is the space (X × [0,1])	 f Y with the identification of X × {0} with a
single point and (x,1)∼ f (x).

The mapping cylinder is constructed in the same way, but instead identifying X × {0}
with a single point, every point in X is identified with itself.

As a final part for theory on the cell complexes, we want to bring up the homology

of these cell complexes. Homology assigns a sequence of groups to a space X and

morphisms between homology groups for any map f : X →Y . Often in practice these

homology groups are computed using a chain complex such that the n-th homology

group is given by ker∂n/ im∂n+1. For CW-complexes, the n-th homology group

Cn(X ) is a free abelian group with generators in one-to-one correspondence with the

n-cells of X . However, finding the maps in the cell complex is not always easy, but

luckily for regular CW-complexes and simplicial complexes, this is doable.

Firstly it requires the notion of orientation. On a simplex s the orientation can be

defined through an ordering on the vertices. Ordering on the vertex set is equivalent

to another one if one can be reached from the other by an even permutation. If s has
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dimension greater than zero, these permutations will give two equivalence classes,

each being an orientation.

More generally, let X be a regular CW-complex. Then X comes equipped with an

orientation of the faces, and a function sign(e′, e) on pairs of faces e, e′. The functions

take values in {0,1,−1}, with sign(e′, e) non-zero if and only if e′ is a facet of e, and

sign(e′, e)= 1 if the orientation of e′ induces the orientation for e.

The sign(e′, e) can also be thought of as giving the sign of e′ in the boundary map

of e.

Example 2.3.11. Let X be the cell complex consisting of a square and a triangle in

Figure 2.7. The cells have been labelled with vi for the vertices, ei for the edges, and

f i for the faces for clarity. The labelling is also showing an ordering on the cells by

starting with subscript 1, and Figure 2.7 shows the orientation of the cells with arrows.

The vertices have canonical orientation 1.

First look at the pairs of cells coming from the vertices and edges. The value of

sign(v1, e1) is 1 since our chosen edge orientation goes from v1 to v2, and the value

of sign(v2, e1) is -1 following the same orientation. For any other vertex we have that

sign(vi, e1) = 0 for i �= 1,2 as the edge has no other facets. Similarly for the other

edges one vertex gives 1 and the other gives -1.

The sign-function for the faces behaves similarly. For the square face f1, the

orientation chosen is counter-clockwise. The edges that are oriented in this directon,

e1, e3, and e4, have sign(ei, f1)= 1, and the remaining edge e2 has sign(e2, f1)=−1,

since they do not match the orientation of f1, that is, it does not induce it. Using the

same arguments one can compute sign(e4, f2)= 1, sign(e5, f2)= 1, and sign(e6, f2)=
−1.

Observing the values from the sign-function, they match up with the coefficients in

the boundary maps of the cells.

Proposition 2.3.12 ([39], Lemma 7.1). The sign function given above exists for
regular CW-complexes and satisfies the described properties.

In the case of regular CW-complexes, their gluing structure and desirable properties

of the sign function allows one to compute the maps in the chain complex. We will

present the case of X being a simplicial complex and how to compute the reduced

chain complex for it.

Let X be a simplicial complex defined on the set {1,2, . . . ,n}. A reduced chain
complex C̃(X ;k) for X is a chain complex

0← kF−1(X ) ∂0←− . . .
∂i←− kFi(X ) ∂i+1←−− . . .

where Fi(X ) is the set of i-dimensional cells in X and kFi is the vector space over a

field k with a basis elements es corresponding to s ∈ Fi(X ). In the simplicial case the

sign function can defined as sign( j, s) = (−1)r if j is the r-th element of simplex s
with the points arranged in an increasing order. Then the differential is given by

∂(es)=
∑
j∈s

sign( j, s)es\ j.
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2.3.1 Homotopy colimits

In the category Top the colimits are not invariant under homotopy of the diagram.

However, this is a desirable property so one can define the homotopy colimit in Top.

The remaining definitions in this section are required to define homotopy colimits and

simplicial set enrichment. We will mostly follow the notation and construction of [57],

and in particular, use the definition of homotopy colimit that is given in it.

Let C be a category. Then the opposite category C op is the category with the objects

of C and morphism b → a for every morphism a → b in C .

Definition 2.3.13. Let V be a monoidal category. Then a category C enriched with

V is the category with objects obj(C ), and for every pair of objects we have an object
v(a,b) ∈ V . For any triple a,b, c ∈ C , we have the composition v(a,b) ⊗ v(b,c) → v(a,c).
Finally, the following diagrams must commute for the given data:

v(a,b) ⊗ (v(b,c) ⊗v(c,d))

(v(a,b) ⊗v(b,c))⊗v(c,d)

v(a,b) ⊗v(b,d)

v(a,c) ⊗v(c,d)

v(a,d)

and

I ⊗v(a,b)

v(a,a) ⊗v(a,b)

v(a,b)

v(a,b)

v(a,b) ⊗ I

v(a,b) ⊗v(b,b)

An example of the enriched category is Top with simplicial sets that are defined

below.

The category OF is the category of ordered finite sets, denoted by [n]= {0,1, . . . ,n},
as the objects and order preserving functions as morphisms. A simplicial set is defined

to be a contravariant functor X : OF →Set. The category of simplicial sets is denoted

by sSet.
The nerve of the under category appears in the definition of the homotopy colimit,

and these two concepts are defined below.

Definition 2.3.14. Let C be a category and c ∈C an object. Then the under category,
or category of objects of C under c, C↓c, is a category with objects (b, f ) where b ∈C

and f : c → b, and the morphisms (b, f )→ (b′, f ′) is a map g : b → b′ that makes the
triangle below commute

c

b b′.
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The under category is sometimes called the category of arrows and in particular one

can find this name in [57].

Definition 2.3.15. Let C be a small category. The nerve of C is the simplicial set
NC where the n-simplex σ is a diagram in C of the form c0 → c1 → . . . → cn with
maps di : NCn → NCn−1 by composing at i-th object, and si : NCn → NCn+1 by
adding an identity morphisms at i, where NCn is the collection of all n-simplices.

Homotopy colimits in Top are defined using the category Ord as follows, see [57] for

more details. The category Ord consists of finite sets [n]= {0,1, . . . ,n} as the objects

and non-decreasing maps, that is, f : [n]→ [m] then f (i)≤ f (i+1) as the morphisms.

The morphisms in Ord are generated by two maps, namely δi
n : [n] → [n−1] and

σi
n : [n]→ [n+1]. These maps are often called face and degeneracy in the literature.

Definition 2.3.16. A simplicial space is a contravariant functor F from Ord to Top.
The functors form a category of simplicial spaces with the morphisms being the natural
transformations between the functors.

A particular case of the simplicial space is the simple geometric realization functor

R : Ord→Top taking the set [n] to the standard n-dimensional simplicial complex

Δn.

Definition 2.3.17. The geometric realization of a simplicial space F is the direct sum⊔
Fn ×Δn quotiented out by the relations (di(x), p) ∼ (x,R(δi)(p)) and (si(x), p) ∼

(x,R(σi)(p)) where di and si are the images of δi and σi under F.

Definition 2.3.18. The classifying space of a category A is the geometric realization
of the simplicial space FA associated to A , which is the functor FA : Ord → Set
taking the set [n] to the sequence αn ← . . .←α0.

Remark 2.3.19. The classifying space is a special case of the nerve of a category.

For some small category A and objects, let A↓a be the category of all arrows a → b
with commutative triangles as the morphisms. Let B(A↓a) be the classifying space of

A↓.

Definition 2.3.20. The homotopy colimit of the diagram D : A → Top, denoted by
hocolimD is the quotient of the coproduct 	a∈AB(A↓a)×Da. The equivalence relation
∼ for the quotient is the transitive closure of α(p, x)∼β(p, x) , where α and β are the
following maps

α : B(A↓b)×Da −→ B(A↓b)×Db, α(p, x)= (p,df (x)),

β : B(A↓b)×Da −→ B(A↓a)×Da, α(p, x)= (p,df (x))

for all morphisms f : a → b.

One can also approach the homotopy colimit from a more concrete view and take it

as "gluing in mapping cylinders" to the diagram.
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Definition 2.3.21. The homotopy category of Top is the category where the objects
are the same as in Top, but the morphisms are homotopy classes of the morphisms in
Top.

Informally the colimits in Top can be viewed as gluing the diagram together along

the images of the maps and homotopy colimits by gluing in mapping cylinders in

the diagram. Homotopy colimits are of course not limited to topological spaces, and

one way to construct them is to use derived functors. The more categorical approach

to homotopy colimits and the more explicit construction we presented above are, in

fact, equivalent. Shulman provides both proof of this and definitions of the different

constructions and expansion to enriched categories in [49]. The approach through

derived functors often requires a Quillen model category [18] and the category of

cellular resolutions studied later do not have this property, which is why we have

chosen the more explicit approach for homotopy colimits.

2.4 Cellular resolutions

In this section we define cellular resolutions. This is the most important definition

in this chapter and central to the results of Publications I and II. Cellular resolutions

were introduced initially to study resolutions of monomial modules, and the first

definition only covered simplicial complexes that were subsequently expanded to

regular CW-complexes [4, 5]. The book of Miller and Sturmfels [40] presents a good

introduction to cellular resolutions and is our main reference.

A labelled cell complex X is a regular CW-complex with monomial labels on

the faces. The vertices of X have labels m1,m2, . . . ,mr with exponent vectors

a1,a2, . . . ,ar ∈ Nn, respectively. If ai = (ai1,ai2, . . . ,ain), then the monomial mi

is xai1
1 xai2

2 · · ·xain
n . The faces F of X have the least common multiple of the monomial

labels of the vertices it contains, mF = lcm{mi : i ∈ F}. The label on the empty face is

1, that is, x0
1x0

2 · · ·x0
n. The degree of a face F is the exponent vector aF of the monomial

label.

Recall that for a non-labelled cell complex, we can construct the reduced chain

complex of free modules. In the case of a labelled cell complex, there is also the

algebraic data of the monomial labels, which one would like to see included in the

data of the chain complex.

Definition 2.4.1. Let S(−aF ) be the free S-module with a generator eF in degree aF .
Given a labelled and oriented cell complex X , the cellular complex FX is given by

(FX )i =
⊕
F∈X

dimF=i−1

S(−aF )

with a differential
∂(F)=

∑
G⊂F

sign(G,F)mF−G eG ,

where eG is the generator corresponding to the face G and mF−G is the monomial
with the exponent vector aF −aG

32



Mathematical preliminaries

Note that the above definition uses fine grading on the modules, so the monomials

x1x2 and x1x3 would have a different gradings, for example. It is common not to write

all of the grading in examples, and indeed, if one has the differential maps, the fine

graded degrees can be deduced from those.

Definition 2.4.2. The chain complex FX is a cellular resolution if it is acyclic, that is,
FX has non-zero homology only at degree 0.

Example 2.4.3. Let us consider the simplicial complex of Example 2.3 and give it two

labellings shown in Figure 2.8. For the cell complex (i), the cellular chain complex is

the following:

S

[
xy xz xw yzw

]

←−−−−−−−−−−−−−−−−−−−− S4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−z −w 0 0

y 0 −w −yw

0 y z 0

0 0 0 x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

←−−−−−−−−−−−−−−−−−−−−−−− S4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w

−z

y

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

←−−−−−− S ← 0

Now looking at the maps we can see that ker∂i = im∂i+1 for all i > 0, thus it is acyclic

and is a cellular resolution. Moreover, this resolution is the same minimal resolution

as Example 2.2.1.

The labelled cell complex in (ii) gives the cellular chain complex

S

[
xy xz xw yzw

]

←−−−−−−−−−−−−−−−−−−−− S4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−z −zw 0 0

y 0 −yw 0

0 0 0 −yz

0 x x x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

←−−−−−−−−−−−−−−−−−−−−−−−− S4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w

−1

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

←−−−−−− S ← 0

If we look at the maps, we note that ker∂1 contains the element

e =

⎛⎜⎜⎜⎜⎜⎝
−w

0

y

0

⎞⎟⎟⎟⎟⎟⎠
and im∂2 does not contain e. Thus ker∂1 �= im∂2 and this cellular chain complex is

not a cellular resolution, even if the chosen labels are the same as in (i).

The differentials in the cellular complex can also be described by monomial matrices,

with the columns and rows having the corresponding faces as labels and the scalar

entries coming from the usual differential for reduced chain complexes. The free

S-modules of FX are then the ones represented by the matrices.

Another useful result for cellular resolutions makes use of order of vectors. If a and

b are two vectors in Nn, then set a�b if b−a ∈Nn. Let X be a labelled cell complex

and define the subcomplex X�b to be the complex consisting of all the faces with

labels �b.
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xy

xw

xz

yzw

xy

xz

xw

yzw

(i) (ii)

Figure 2.8. The labelled cell complexes of Example 2.4.3.

Proposition 2.4.4 ([40], Prop 4.5). The cellular free complex FX supported on X is
a cellular resolution if and only if X�b is acyclic over k for all b ∈Nn. When FX is
acyclic, it is a free resolution of S/I, where I = (mv |v is a vertex in X ) is generated
by the monomial labels on vertices.

Building cellular resolutions is not as simple as the definition may make it look.

Given a labelled cell complex one may not get a resolution from the cellular chain

complex, take, for example, a cell complex that has a hole in it. A hole will cause the

cellular complex not to be acyclic. Thus one can infer that a necessary condition for

the cell complex is to be contractible. Still, a lot depends on the chosen labels as can

be seen in Example 2.4.3. There are some particular cases where the knowledge on

the cell complex is enough to deduce cellular resolutions. One of these is utilising

standard labelling on specific cell complexes that we know give cellular resolutions

and then use those. Examples of this can be seen with the subdivision of Minkowski

sums by Norén [43].

Another operation that can be performed on a cell complex is discrete Morse theory.

Batzies and Welker [3] established that one can do discrete Morse theory on cellular

resolutions as well, with a few restrictions, and this has also motivated one approach

to algebraic Morse theory. See Section 2.5 for more details.

Going the other way, given a resolution and asking if it is supported on a complex,

is not necessarily any easier question. In particular, finding a minimal resolution

supported on a cell complex is a problem that we do not have general solutions to.

Velasco showed that there exist monomial ideals that do not have minimal cellular

resolutions [55]. Trying to answer these questions has provided some well-known

ways to build cell complexes like the Taylor resolution and the Hull resolution. Taylor

resolutions for the module S/I, with I having m generators, is built by taking the

m-simplex and labelling the vertices with the generators of I. The benefit of the

Taylor resolution is that given any monomial ideal I it will have a cellular resolution

that is even simplicial. However, this resolution is very far from the minimal one

for almost all ideals. The quest for minimality in the resolutions has provided many

results about specific classes of ideals that have a minimal cellular resolution, like

particular edge ideals [1, 26], co-interval ideals [19], and a construction for ideals with
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linear quotients to build the minimal resolutions [20]. Building or finding the minimal

resolution can be demanding, and there has also been work to prune the resolutions

closer to a minimal one [41], and we too make use of cellular resolutions that are not

minimal but close enough in Publications I and II.

2.5 Discrete and algebraic Morse theory

Both the algebraic and topological objects bring us to the homological setting, and

this section introduces a handy tool for working with these, namely discrete and

algebraic Morse theory. Traditionally, Morse theory has studied the topology of

smooth manifolds and could be thought of as an extension of the connection between

critical points on a manifold and critical points of a smooth function on it. Morse

theory has been a strong and useful theory, and naturally many variations of it have

been born. We are interested in the combinatorial versions of Morse theory, namely the

discrete Morse theory of Forman [30] and the algebraic Morse theory of Jöllenbeck and

Welker [36], and of Sköldberg [50]. These give us useful tools to remove unnecessary

pieces of a resolution or a cell complex while still preserving the homotopy type and

in the latter two cases the structure of the resolution is preserved as well. The discrete

Morse theory motivated Jöllenbeck and Welker, and Sköldberg as well to develop

algebraic Morse theory but with different goals. The theory of Jöllenbeck and Welker

was developed with the intention to be applied to cellular resolutions, and in this

direction, there is also an earlier paper by Batzies and Welker [3]. Sköldberg’s work is

directed towards having a purely algebraic version of the discrete Morse theory.

2.5.1 Discrete Morse theory

The main reference used for this discrete Morse theory section is [30]. We will again

focus only on the case where all the cell complexes are at least regular CW-complexes

or even simplicial complexes at the starting point. The cell complexes may deform

a little to be non-regular with discrete Morse theory, but they are all what can be

considered "not weird". A cell complex will mean a regular CW-complex.

Firstly, we require a few preliminary definitions. A graph G is a set of vertices V (G)
and set of edges E(G) consisting of pairs of vertices. A directed graph has a direction

for the edges.

A poset, or a partially ordered set, is a set P together with a relation ≤ that satisfies:

(i) a ≤ a,

(ii) a ≤ b and b ≤ a implies a = b,

(iii) and a ≤ b and b ≤ c implies a ≤ c for all a,b, c ∈ P.

The cells in a regular CW-complex form a poset with the inclusion relation.
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Let X be a cell complex. A face poset diagram PX for X is a directed graph with

vertices corresponding to n-cells of the cell complex. There is an edge from β to α if

and only if α is a codimension 1 face of β.

Definition 2.5.1. A matching on a graph is a set of pairwise non-adjacent edges. Let
X be a cell complex with face poset PX . Then a Morse matching on PX is a matching
M such that PX has no directed cycles when the edges in M are reversed. A vertex is
critical if it is not in the Morse matching.

The defined Morse matching is the central tool in poset-based discrete Morse theory.

The main theorem of discrete Morse theory is given in the form from [26, Thm 5.1 ]

since it will be convenient for the results for cellular resolutions in Publication I.

Theorem 2.5.2 (The main theorem of discrete Morse theory). If X is a regular CW-
complex with a Morse matching (giving at least one critical vertex and not matching
the empty cell to anything), then there exists a CW complex X̃ that is homotopy
equivalent to X , where the number of d-dimensional cells of X̃ equals the number of
d-dimensional critical cells of X for every d.

Example 2.5.3. Let us consider the cell complexes X and Y in Figure 2.9. The

face poset for each complex is drawn in Figure 2.10. The cell complexes and face

posets have been labelled by numbers to clarify the example. Consider the following

matchings, on PX we choose a single edge between the vertex 4 and 34; on PY we

take the edges 14 ← 134, 24 ← 234 and 124 ← 1234. The edges in the matchings

have been coloured in Figure 2.10. It is not hard to check on these small examples

that the chosen matchings do not create cycles. Thus they are Morse matchings. Now

using the chosen Morse matchings, the cell complex X is homotopy equivalent to a

cell complex that has three vertices, three edges and a single 2-cell, in other words, a

triangle. The cell complex Y is homotopy equivalent to X since the critical cells form

the face poset of X .

We have chosen to use the face poset version of the theorems in [30]. It is possible

to also define discrete Morse theory in terms of discrete Morse functions and finding

critical cells with that method [30].

A Morse matching with a single edge gives an elementary collapse in the cell

complex. This can be explicitly described on the CW-complex by the following

definition, see [16, Chapter 2] for more details.

Definition 2.5.4. Let X be a finite CW-complex and let Y be a subcomplex of X . Then
there is an elementary collapse of X to Y , X ↘e Y if there exists a ball Bn, where
∂Bn = Bn−1+ ∪Bn−1− with ∂Bn+ = ∂Bn−, and a map ϕ : Bn → X such that

(i) ϕ is a characteristic map for en,

(ii) ϕ|Bn−1+ is a characteristic map for en−1, and

(iii) ϕ(∂Bn−1− )⊂Y .
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1

2

3

4

1
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4

X Y

Figure 2.9. The cell complexes of the Example 2.5.3.

Example 2.5.5. Returning to the cell complexes and matchings of Example 2.5.3, the

change from the complexes X and Y to the homotopy equivalent ones X ′ and Y ′ can

be seen through elementary collapses. In the case of X , it is straightforward. There

was only one edge chosen; thus, it gives an elementary collapse of the edge in the cell

complex. For the cell complex Y , the chosen matching consists of three edges. Hence

it can be viewed as a process of three elementary collapses. First one can collapse the

3-cell and the matched the 2-cell, and then the two following elementary collapses are

those of a face and an edge.

The elementary collapses form the basis of simple homotopy theory defined by

Whitehead which is covered for cellular resolutions in Publication I.

2.5.2 Algebraic Morse theory

The focus of this section is the algebraic Morse theory and aims to cover the definitions

required for the results in Publication I. For a more complete and detailed overview of

algebraic Morse theory, the reader may look up the original works by Sköldberg [50]

and Jöllenbeck and Welker [36]. The notation used in this section follows that of [50],

and the ring is assumed to be a polynomial ring S even if the theory permits a more

general setting.

A based chain complex is a chain complex of R-modules such that the modules in

the complex N have a direct sum decomposition Ni =
⊕

j∈Ii
Nj with {Ii} being a

collection of index sets. A free resolution is an example of a based chain complex.

Let N be a based chain complex of S-modules

N0
∂1←− N1

∂2←− N2 ←− ·· ·

with Ni =
⊕

j Ni, j, where Ni, j is an S-module and ∂ is the differential in the chain

complex. The double indexing for Ni, j has the first component to denote the ho-

mological degree of the module that it is the summand of, and the second subscript

corresponds to the direct sum decomposition.

The directed graph associated to N, denoted by ΓN , is defined to be the graph where

vertices are given by the summands in each homological degree and the directed edges
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Figure 2.10. Face posets of the cell complexes in Figure 2.9.

go down in the degrees. There is an edge from Ni, j to Ni−1, j′ if ∂(Ni, j)∩Ni−1, j′ is

not empty. Denote by ∂ j,k the component of the differential corresponding to an edge

from Ni,k to Ni−1, j. The index i is not denoted in ∂ j,k as it will be clear of the context.

Note that the graph depends on the decomposition chosen for the Ni in the chain

complex.

Example 2.5.6. This example showcases the different directed graphs associated to a

resolution, in this case the resolution of S/I where I = (xy, xz, xw, yzw). As seen in

Example 2.2.1 a resolution is given by

S(−0)
∂1←−− S(−2)3 ⊕S(−3)

∂2←−− S(−3)3 ⊕S(−4)
∂3←−− S(−4)← 0

If the direct sum decomposition is taken to be the decomposition into the components

S(−i), so that the associated graph for this chain complex is in Figure 2.11(a). Alter-

natively, if the decomposition is taken to be such that each generator degree forms its

own module, then the associated directed graph is different from the previous one and

it is in Figure 2.11(b).

Definition 2.5.7. A Morse matching on the graph ΓN is a matching M on ΓN , satis-
fying that there are no directed cycles in the graph ΓM

N , which is ΓN with the edges
from M reversed, and that the maps in N corresponding to the edges in M are
isomorphisms.

In the algebraic setting of Morse theory, the condition on the selected edges being

isomorphisms is essential. Moreover, it facilitates the definition of necessary maps
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S

S(−2) S(−2) S(−2) S(−3)

S(−3) S(−3) S(−3) S(−4)

S(−4)

S

S(−3) S(−2)3

S(−4) S(−3)3

S(−4)

(a) (b)

Figure 2.11. Directed graphs associated to different direct sum decompositions of Example 2.5.6.

to construct a homotopic cell complex. These have been collected into a single

proposition from the smaller results in [50, Chapter 2].

Proposition 2.5.8. The Morse matching M gives a graded map ϕ : N → N. If j is
minimal with respect to the partial order ≺ and x ∈ Ni, j, the map is given by

ϕ(x)=
{

∂−1
j,k(x) ∃ an edge from Ni,k to Ni−1, j for some k ∈ M

0 otherwise

If j is not minimal then ϕ is given by

ϕ(x)=
{

∂−1
j,k(x)−∑

ϕ∂m,k∂
−1
j,k(x) ∃ an edge from Ni,k to Ni−1, jfor some k ∈ M

0 otherwise

where the sum is over all edges from Ni,k to Ni−1,m. The map ϕ is a splitting homotopy
as it satisfies ϕ2 = 0 and ϕ◦∂◦ϕ=ϕ.

Let π : N→N be the chain map given by π= id− (∂◦ϕ+ϕ◦∂). Then π(v)= 0 if v
is a vertex incident to an edge in the partial matching M.

Theorem 2.5.9 ([50], Theorem 1). Let M be a Morse matching on the complex N.
Then the complexes N and π(N) are homotopy equivalent. Furthermore, for each
n there is an isomorphism of modules π(Nn) ∼=⊕

α∈M0
n

Nα, where M0
n denotes the

intersection of In and the M-critical vertices.

Remark 2.5.10. Instead of π(N), we can look at the chain complex N given by

Ni =
⊕

Ni j is unmatched in M

Ni, j.

Let ρ be the projection from N =⊕
i Ni to N. The differential ∂ can be defined as

∂= ρ(∂−∂ϕ∂). The complex N is then also homotopy equivalent to N.
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S(−2) S(−2) S(−2) S(−3)

S(−3) S(−3) S(−3) S(−4) S(−4) S(−4)

S(−4) S(−4) S(−4) S(−4)

S(−4)

Figure 2.12. The directed graph associated to the Taylor resolution of S/I with I = (xy, xz, xw, xyz).

Example 2.5.11. Let us consider the resolution from Example 2.5.6 again. One cannot

choose a Morse matching on the associated graph in Figure 2.11(a) since there are no

isomorphisms. Next, consider the cellular resolution of the same ideal, but coming

from the Taylor complex instead. The resolution is given by

S(−0)←− S(−2)3 ⊕S(−3)←− S(−3)3 ⊕S(−4)3 ←− S(−4)4 ←− S(−4)← 0

and the directed graph of this chain complex is in Figure 2.12 with the edges corre-

sponding to isomorphism coloured. The coloured edges also correspond to the cells

in the cell complex that have the same label. Moreover, the edges that correspond

to isomorphisms include the chosen matching of Example 2.5.3. Then taking this

matching, we can produce a homotopic chain complex given by the Remark 2.5.10:

S(−0)
∂1←−− S(−2)3 ⊕S(−3)

∂2←−− S(−3)3 ⊕S(−4)
∂3←−− S(−4)← 0.

This chain complex is the resolution of the ideal I = (xy, xz, xw, yzw).

The observation in Example 2.5.11 on the edges corresponding to the same labels

in the cell complex, and the resulting cellular resolution is not just a special case of

the particular example. In general, the label requirement on the discrete Morse theory

side is sufficient to keep cellular resolution structure, and this was proven by Batzies

and Welker.

Theorem 2.5.12 ([3], Theorem 1.3). Let X be a complex that supports a cellular
resolution, and let M be a Morse matching on this complex. If M only matches cells
with the same labels, then the Morse complex X̃ also supports a cellular resolution of
the same module.
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2.6 Representation stability

We turn our attention to representations of categories. Often, and where many of the

concepts of representation stability originate, we can think of a representation of a

category as a sequence of classic representations with maps between them. Represen-

tation stability then studies the properties of these representations of categories, or

sequences, and in particular stability of some properties as the name suggests. The

name for this phenomena was given in a paper by Church and Farb [15], where they

combined homological stability with the study of sequences of representations. Later

work of Church, Ellenberg and Farb [13] and their work with Nagpal [14] expanded

on the study of representation stability and gave birth to the study of FI-modules

that is still one of the most studied parts of representation stability. The ideas of

representation stability allowed for work on representation stability of cohomology

by Wilson [58] and Church, Ellenberg and Farb [12] and of configuration spaces of

manifolds by Church [10] among others. There exists a good survey by Benson Farb

[28] on the topic of representation stability.

The different directions of representation stability share many similarities, which

motivated the categorical representation stability of Sam and Snowden [48] that was

being worked on at the same time as the representation stability work mentioned

above. Their main idea was to generalise the setting of individual cases to general

categories and find combinatorial conditions on the categories which imply algebraic

properties for the representations. The work of Sam and Snowden can be seen as

a generalisation of representation stability ideas presented by Church and Farb and

taking the ideas towards more of a commutative algebra setting.

In [48], they show that their methods recover the known results on representation

stability and solved some open conjectures. A significant point is also using the newly

defined setting to improve on the theory of Δ-modules from earlier work of Snowden

[51]. The methods were later used to study FI-modules further, and these are one of

the leading concrete applications of the abstract theory in [48]. The tools proposed

by Sam and Snowden also show the connections between different categories, the

main example being that modules over twisted commutative algebras are equivalent

to the category of representations for the FI-modules [48, Proposition 7.2.5.]. Sam

and Snowden have continued to work on the topic and use representation stability to

prove results on modules over polynomial rings with infinitely many variables [46]

and answering the Stembridge conjecture on Kronecker coefficients [47] for example.

The defined concepts of representation stability in the very general category-theoretic

setting has also created a plethora of further work by other authors and opened up

representation stability to a wider variety of topics, including combinatorics [27, 45],

noetherianity of representations of rooted trees [2, Chapter 5] and also applications

of variations of finite sets with specific morphisms, like surjections that have been

used to study stability in moduli spaces by Tosteson [53]. We will make use of these

tools from representation stability as presented by Sam and Snowden in studying

cellular resolutions. As far as we know, there has not been other work in the direction

of cellular resolutions and representation stability. The closest results to cellular
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resolutions is the direction of representation stability to study homological invariants

of the representations, like the homology of FI-modules [11]. Many of the results in

this area are by Gan and Li [32, 33, 31].

Let R be a commutative noetherian ring and let ModR be the category of R-modules.

Throughout this section, we assume the category C to be essentially small. Recall

that this means the category C is equivalent to some small category; alternatively, it is

locally small and has a small number of isomorphism classes as objects (assuming

the axiom of choice). We want the category C to be of "combinatorial nature", which

informally means objects are finite sets, possibly with some extra structures and

morphisms are functions with extra structure allowed.

Remark 2.6.1. One should not confuse a category of combinatorial nature with a

combinatorial category. There does exist a definition of combinatorial category
[37], however, it is not the required condition, and it is a lot stronger than being of

combinatorial nature.

Definition 2.6.2. Let C be an essentially small category. A representation, or a
C -module, over R is a functor

C →ModR .

The representations of C form a category denoted by RepR(C ). This is an abelian

functor category with the morphisms between representations given by natural trans-

formations.

Next let us consider some definitions related to the properties of individual represen-

tations (or modules). Let M be a representation of C . A subrepresentation N of M is

a subfunctor of M. Let M be a representation of C . An element of M is an element of

M(x) for some x ∈C .

Having defined an element one can then talk about the generating sets for represen-

tations.

Definition 2.6.3. Let M be a representation and let S be any set of elements of M.
The smallest subrepresentation of M containing S is said to be generated by S. The
representation M is said to be finitely generated if it is generated by some finite set of
elements.

The following representation is one of the main tools used to study noetherianity for

representations.

Definition 2.6.4. The principal projective representation for an element x is the
functor Px given by Px(y)= R[Hom(x, y)].

Remark 2.6.5. In the paper of Sam and Snowden, they do not explicitly give the

morphism part of the principal projective. The natural choice of maps between

the Hom sets in the principal projective are post compositions, so this gives then a

morphism between Px(y) and Px(z) if we have a morphism f : y→ z.

An important fact about principal projectives is that a representation of C is finitely

generated if and only if it is a quotient of a finite direct sum of principal projectives.
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Definition 2.6.6. Let M ∈ RepR(C ), then M is noetherian if every ascending chain
of subobjects stabilises, or equivalently every subrepresentation is finitely generated.
The category RepR(C ) is noetherian if every finitely generated representation in it is
noetherian.

Proposition 2.6.7 ([48], Prop 3.1.1.). The category RepR(C ) is noetherian if and only
if every principal projective is noetherian.

One of the ways to study the representations is to use pullback functors. Given a

functor Φ : C →C ′ there is a pullback functor Φ∗ : RepR(C ′)→RepR(C ). The idea

behind using pullback functors is that perhaps the representations we are interested

in are not easy to study, but the representations of another category are, and thus we

want to pull back the properties of interest. One of the desirable characteristics of a

representation is finite generation, and thus, the main result on pullback functors is

when do they map finitely generated objects to finitely generated objects. A sufficient

condition for this is the property (F).

Definition 2.6.8. Let Φ : C → C ′ be a functor. Then Φ satisfies the property (F) if
given any object x ∈ C ′ there exists finitely many y1, y2, . . . , yn ∈ C and morphisms
f i : x →Φ(yi) such that for any y ∈C and any morphism f : x →Φ(y) there exists a
morphism g : yi → y such that f =Φ(g)◦ f i.

Proposition 2.6.9 ([48],Prop 3.2.3.). A functor Φ : C →C ′ satisfies the property (F)
if and only if Φ∗ : RepR(C ′) → RepR(C ) takes finitely generated objects to finitely
generated objects.

Classically, in computational commutative algebra a Gröbner basis is a generating

set for an ideal I such that the ideal generated by the leading terms of I equals the ideal

generated by the leading terms of the Gröbner basis with respect to some monomial

order [23, Chapter 15]. To explicitly compute a Gröbner basis one generally employs

an algorithm, like the Buchberger’s algorithm. One of the main results in [48] is the

analogous definition of Gröbner basis for a representation of a category.

Let S : C → Set denote a fixed functor to sets and let Sx : C → Set be the functor

given by Sx(y)=Hom(x, y). A principal subfunctor is a subfunctor of S generated by

a single element.

Definition 2.6.10. The poset |S| is the set of principal subfunctors of S that is partially
ordered by reverse inclusion.

Let P denote the free module R[S], where S is the functor S : C → Set, and write

e f for the element of P(x) corresponding to f ∈ S(x). An element of P(x) is monomial
if it is of the form λe f for some λ ∈ R. A subrepresentation M is monomial if it is

spanned by the monomials it contains.

One of the important properties a poset can have in this setting is noetherianity.

Recall from Section 2.2 that a ring is noetherian when the ideals satisfy the ascending

chain condition. This idea can be lifted to posets by defining an ideal in a poset

P to be a subset I such that if x ∈ I and x ≤ y then y ∈ I. Then the ideals form a
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new poset, and P is noetherian if the poset of ideals satisfies the ascending chain

condition. Noetherian posets can also be defined directly by the poset itself: a poset P
is noetherian if it satisfies the descending chain condition, descending chains stabilise,

and has no infinite antichains, that is, subsets of elements where no two elements are

comparable.

To define a Gröbner basis, it is required to have a concept of initial representations

and terms. The functor S is orderable if there is a choice of a well-order on each S(x)
such that the induced map S(x)→ S(y) is strictly order preserving for every x → y.

Suppose S has ordering � on it. Then the initial term of an object α ∈ P(x) is

init(α)=λgeg, where g =max�{ f |λ f �= 0} and α is a direct sum of monomials. Let

M be a subfunctor of P. The initial representation of M consists of init(M)(x) that is

the R-span of init(α) for a non-zero α ∈ M(x).

Definition 2.6.11. Let M be a subrepresentation of P. A set of elements G is a
Gröbner basis of M is {init(α)|α ∈G} generates init(M).

Theorem 2.6.12 ([48], Thm 4.2.4.). Let S be orderable and |S| be noetherian. Then
every subrepresentation of P has finite a Gröbner basis. In particular, P is a noethe-
rian object of RepR(C ).

Definition 2.6.13. Let C be an essentially small category. Then C is called Gröbner

if for all x ∈C the functor Sx is orderable and the poset |Sx| is noetherian.
The category C is quasi-Gröbner if there exists some Gröbner category C ′ such that

there is a functor Φ : C ′ →C that is essentially surjective and satisfies property (F).

The definition of Gröbner categories is the combinatorial condition providing us

with algebraic properties of representations, and one of the main results concerns the

noetherianity of representations.

Theorem 2.6.14 ([48], Thm 4.3.2.). Let C be quasi-Gröbner, then RepR(C ) is noethe-
rian.

In the case the category is directed and small we can use the following proposition

to determine if it is Gröbner. First note that an admissible order is a well-order on

a set that also satisfies the following: if any two elements u ≤ v then for any third

element t, for which ut and vt make sense, we have ut ≤ vt.

Proposition 2.6.15 ([48], Prop 4.3.3.). If C is a directed category, then as posets
|Cx| ∼= |Sx| for all objects x. In particular, C is Gröbner if and only if for all x the set
|Cx| admits an admissible order and is noetherian as a poset.

2.7 Graph theory and edge ideals

All graphs are assumed to be simple, meaning that the edges have no direction and

there are no multiple edges or loops. The degree of a vertex is the number of edges

incident to it. It is common to discuss the degree sequence of a graph, that is, the

degrees sorted downwards. We will use a different strategy.
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G BL(G)

Figure 2.13. A graph G and its Booth–Lueker graph BL(G).

Definition 2.7.1. The degree vector or degree statistics of a graph G on n vertices is
the column vector

dG := (d0,d1, . . . ,dn−1)T

where di is the number of vertices of degree i in G.

The complement of a graph G is denoted by G and the induced subgraph of G on

the set of vertices W by G[W].

Definition 2.7.2. A graph G is said to be chordal if every cycle of length greater than
three has a chord.

Definition 2.7.3. For any graph G let BL(G) be the graph with vertex set V (G)∪E(G)
and edges uv for every pair of vertices in G and ue for every vertex u incident to an
edge e in G. We call BL(G) the Booth–Lueker graph of G.

See Figure 2.13 for an example of the Booth–Lueker graph construction. Both

BL(G) and its complement are chordal, for every graph G. They are split graphs, that

is, the vertices can be divided into a connected set and an independent set. Thus, we

actually have two interesting ideals to define.

Definition 2.7.4. Given a graph G, we denote by IG := (xix j | i j ∈ E(G)) its edge

ideal in a polynomial ring S := k[x1, . . . , xn] with as many variables as the vertices of
G, where k is a field.

Remark 2.7.5. We are interested in the betti numbers of the edge ideals of some

chordal graphs. Corollary 5.10 of [34] shows that the characteristic of the field k does

not affect these betti numbers.

The main results of Publication III are on the Boij-Söderberg coefficients of the

edge ideals of Booth-Lueker graphs. Boij–Söderberg theory deals with writing the

betti table of a finitely generated graded S-module as a sum of simpler pieces, coming

from the so-called “pure betti tables”: to each sequence n = (n0, . . . ,ns) of strictly

increasing non-negative integers, we associate the table π(n) with entries

π(n)i, j :=
{∏

k �=0,i | nk−n0
nk−ni

| if i ≥ 0, j = ni,

0 otherwise.
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This is called the pure betti table associated to n. There is a partial order to such

sequences by setting

(n0, . . . ,ns)≥ (m0, . . . ,mt)

whenever s ≤ t and ni ≥ mi for all i ∈ {0, . . . , s}.

Theorem 2.7.6 ([29], Theorem 5.1). For every finitely generated graded S-module
M, there is a strictly increasing chain n1 < ·· · <np of strictly increasing sequences
of n+1 non-negative integers and there are numbers cn1 , . . . , cnp ∈Q≥0 such that the
betti table is given by

β(M)= cn1π(n1)+·· ·+ cnpπ(np).

Definition 2.7.7. The non-negative rational numbers cn1 , . . . , cnp as in the theorem
above are called Boij–Söderberg coefficients of M.

Example 2.7.8. Let I = (xy, xz, xw, yzw) ⊂ S = k[x, y, z,w]. Then one can compute

that

β(S/I)=

⎛⎜⎜⎝
1 0 0 0

0 3 3 1

0 1 1 0

⎞⎟⎟⎠

= 1
3

⎛⎜⎜⎝
1 0 0 0

0 2 4 3

0 0 0 0

⎞⎟⎟⎠+ 1
6

⎛⎜⎜⎝
1 0 0 0

0 3 2 0

0 0 0 0

⎞⎟⎟⎠

+ 1
4

⎛⎜⎜⎝
1 0 0 0

0 2 0 0

0 0 1 0

⎞⎟⎟⎠+ 1
4

⎛⎜⎜⎝
1 0 0 0

0 0 0 0

0 4 3 0

⎞⎟⎟⎠
= 1

3
π(0,2,3,4)+ 1

6
π(0,2,3)+ 1

4
π(0,2,4)+ 1

4
π(0,3,4).

Hence n1 = (0,2,3,4), n2 = (0,2,3), n3 = (0,2,4), n4 = (0,3,4), and the Boij–Söderberg

coefficients are cn1 = 1/3, cn2 = 1/6, cn3 = 1/4, and cn4 = 1/4.

One of the reasons why Boij-Söderberg theory is worth studying is that it provides

a powerful tool to study the betti numbers of ideals. One of the big open questions

relating to betti numbers is what betti tables are possible, and Boij-Söderberg theory

provides a partial answer by being able to tell if a multiple of a betti table is possible.

Definition 2.7.9. A 2-linear resolution of a graded S-module M is a resolution where
βi, j(M)= 0 if j �= i+1. An ideal with a 2-linear resolution is called a 2-linear ideal.

Often we refer to 2-linear ideals, this means that the betti table of S/I is of the form

β(S/I)=
(

1 0 0 · · · 0

0 β1,2 β2,3 · · · βp,p+1

)
.
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By Boij–Söderberg theory, such a betti table will be the weighted average of certain

pure tables of the form π(0,2,3, . . . , s, s+1). For instance

π(0,2)=
(

1 0 0 · · ·
0 1 0 · · ·

)

or

π(0,2,3)=
(

1 0 0 0 · · ·
0 3 2 0 · · ·

)
.

The edge ideals of Booth-Lueker graphs form a collection of examples of 2-linear

ideals.
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3. On categorical structures of
cellular resolutions and their
stability

In this chapter, we present an overview of the results in Publications I and II. The

chapter has been divided into sections corresponding to Publications I and II. We will

use S to refer to a polynomial ring as in the earlier chapters and by a cell complex will

mean a regular CW-complex.

3.1 The category of cellular resolutions

As mentioned in the introduction, cellular resolutions are well known for specific

families and particular types of ideals. The structure of cellular resolutions as a whole

has not been investigated, though there exists a few proposed open problems pointing

towards this kind of direction. Understanding more about the general structure of

cellular resolutions can also let us build new cellular resolutions from the existing ones.

Another the motivation for Publication I comes from wanting to apply representations

of categories to cellular resolutions. Thus, one needs a category of cellular resolutions.

3.1.1 Definitions for the category

Let us fix a polynomial ring S. Recall that a cellular resolution is a cellular chain

complex of a labelled cell complex that is acyclic. Alternatively, a cellular resolution

can be thought of as a resolution of a monomial module that is supported on a cell

complex. We have defined cellular resolutions on a connected cell complex. If we

consider a disjoint cell complex, see Figure 3.1 for example, we note that the cellular

complex would have to be disjoint too, in the sense that the free modules Fi for

i ≥ 1 can be decomposed to a direct sum of free modules each corresponding to one

connected component. This follows from the definition. Moreover, it is the direct

sum of two cellular resolutions coming from each piece apart from the F0 module.

In algebra the direct sum of two resolutions is well defined as a direct sum of chain

complexes. The chain complex S/I ⊕S/J is not a resolution of a single ideal, but

if we consider the disjoint cell complex to contain an empty cell in each connected

component, the direct sum is then the cellular complex of the disjoint cell complex,

and this is consistent with the homology of cell complexes, too. We want these direct
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x

y

xz xy

xw

Figure 3.1. A labelled cell complex that is not connected.

sum resolutions to be included in cellular resolutions as they will provide desirable

properties to the category. Moreover, the standard properties of cellular resolutions

still hold for these direct sum resolutions. As an example Proposition 2.4.4 from

Chapter 2 has a multi-component version.

Morphisms play a fundamental role in category theory and representation stability

applications. Previous work on cellular resolutions has not included discussion on the

maps between cellular resolutions. The examples of maps that have been used in the

literature are Morse maps [36], multiplication by a monomial [20], and embedding of

a minimal resolution to a non-minimal one as the direct summand by the definition of

a direct summand [24, Thm 1.6]. Our definition of morphisms of cellular resolutions

should, and will, capture all of the above cases. One could, of course, try using a

chain map between cellular resolutions, yet this does not preserve the topological data

a cellular resolution contains. On the other hand, there are cellular maps between

cell complexes, but again these require a lifting to a chain map, and it might ignore

some algebraic properties of cellular resolutions. Our goal is to have a morphism of

cellular resolutions that would preserve both algebraic and topological data of it. For

this purpose, it is useful to consider a cellular resolution as a pair (F, X ) where F is

a free resolution and X is the labelled cell complex supporting this resolution. Note

that only taking one of the two allows us to recover the other. The main idea of the

morphism construction is to find a chain map and a cellular map that "do the same

thing". More precisely, this means we find a chain map that maps the generators of

the free modules in the same way as the cellular map maps the corresponding cells of

the generators. Formally this can be defined as follows:

Let g : X → Y be a cellular map between two labelled cell complexes X and Y
with label ideals I and J, respectively. Define a map ϕg : I → J on the set of the

labels by the action of g, that is, the label mx ∈ I maps to my ∈ J if and only if

the face x labelled by mx maps to the faces y1, . . . , yr labelled by my1 , . . . ,myr with

my = lcm(my1 , . . . ,myr ) under g. If ϕg is well-defined it is called the label map of g.
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Definition 3.1.1. Let X and Y be labelled cell complexes and FX , and FY be the
cellular resolutions coming from the labelled cell complexes, respectively. The cellular
map g : X →Y is compatible with a chain map f : FX →FY if they satisfy the following
conditions:

(i) ϕg is well-defined and the equality f0(x)=ϕg(x) holds for all labels x ∈ I, and

(ii) f i maps the generator ex, associated to face x ∈ X , in FX ,i to some linear combi-
nation of the generators e yi , i ∈ {1,2, . . . , r}, associated to yi ∈Y with the coefficients
in S if and only if g maps x to the union of y1, y2, . . . , yr.

The compatible pair of a chain map f and a cellular map g are denoted by the pair

notation (f, g) or by the fraktur letters, for example f.

Example 3.1.2. Let us consider the cellular resolutions of Example 2.4.3 and its cell

complex X , and the cellular resolution of the ideal

I = (x2 yz, x2zw, xy2z, xyzw, xyz2, y2z2w)

supported on the cell complex Y in Figure 3.2. The cellular resolution is

S
∂1←−− S6 ∂2←−− S7 ∂3←−− S2 ← 0

with the maps

∂1 =
[

x2 yz x2zw xy2z xyzw xyz2 y2z2w
]

,

∂2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−w −y 0 0 0 0 0

y 0 −y 0 0 0 0

0 x 0 −w −z 0 0

0 0 x y 0 −z 0

0 0 0 0 y w −yw

0 0 0 0 0 0 x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

∂3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y 0

−w 0

y 0

−x z

0 −w

0 y

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Purely as cell complexes, X embeds into Y . This gives that ϕg is a multiplication

by the monomial yz. Then we can find a map between the chain complexes with

51



On categorical structures of cellular resolutions and their stability

xy2z

xyz2

xyzw

y2z2w

x2 yz

x2zw

Figure 3.2. A cell complex supporting the resolution of the module S/I of Example 3.1.2.

f0 = [yz]. It gives is the module homomorphisms

f1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, f2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and f3 =

[
0

1

]
.

Next, we want to check that the chain map defined by { f i} is compatible with the

embedding of cell complexes. The condition f0 = ϕg holds since both maps are

multiplications by the same monomial. Moreover, the maps are all taking a single

generator to a single generator, and these are precisely the ones the embedding gives.

The definition of compatible maps allows cellular resolutions to have multiplication

by a monomial, embeddings, identity maps, and Morse maps as morphisms. However,

the definition is very restrictive, and some things one might expect to give a morphism

are not morphisms. For example, permutations or change of variables within the ring

do not give maps between cellular resolutions. Despite the limitations, the defined

compatible pairs provide desired properties for the morphisms and the category of

cellular resolutions that is defined with them.

Definition 3.1.3. Let S = k[x1, x2, . . . , xn]. We define CellRes over S to be the
following category:

• Objects are cellular resolutions, coming from any regular CW-complex labelled with
monomials from S, and their direct sums.

• A set of morphisms for any pair of objects FX and FY with individual maps given
by the compatible pairs (f, f ) of a chain map of S-modules and a cellular map.
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3.1.2 Properties of the category of cellular resolutions

One of the desired properties for the category of cellular resolutions is to have for-

getful functors to both Top and C•(ModS). The forgetful functor ΦCC : CellRes→
C•(ModS) takes a cellular resolution to the chain complex that is the resolution

and takes a morphism (f, g) to the chain map f. The other forgetful functor ΦTop :
CellRes → Top takes a cellular resolution supported on cell complex X to the un-

labelled cell complex given by X and it takes a morphism (f, g) to the cellular map

g. The functor ΦTop does take cellular resolutions to the subcategory of regular

CW-complexes.

For CellRes to have the desired forgetful functors does not yet tell us much about

the structure or properties of this category. Studying some of the properties of the

category CellRes was the goal of Publication I. Both Top and C•(ModS) are nice

categories in the sense that they have desirable properties like being (co)complete,

abelian, and other properties. One would, of course, hope that these properties

appear in CellRes as well. Unfortunately, this is not always the case; however, some

properties do lift from Top, C•(ModS), or both, to CellRes.

On the types of objects the category CellRes contains, it has an initial object that is

the resolution 0← S ← 0 that is supported on the empty cell complex with a label 1

and algebraically it is the resolution of the module S/(1).
The category CellRes is more abundant on the properties coming from the mor-

phisms than the objects, that is, we have more results that are about the morphisms

than about the objects. Sometimes the chosen morphisms do not behave as well as one

would wish and in general, the kernels and cokernels of the morphisms do not exist.

This implies that CellRes is not an abelian category. The structure of morphisms

allows us to lift many concepts from Top and C•(ModS). We can define homotopy

for the morphisms in CellRes following the definitions in Top and C•(ModS).

Definition 3.1.4. Let (f, f ), (g, g) : F→F′ be cellular resolution morphisms, then (f, f )
is homotopic to (g, g), denoted by (f, f ) ∼ (g, g), if the components are homotopic,
meaning that f is homotopic to g as chain maps and f is homotopic to g as continuous
topological maps.

Homotopies form a class of morphisms in CellRes that inherit properties from

Top thanks to the cellular map component of the morphisms. Hence they satisfy

properties that make CellRes a homotopical category with the homotopies as the

weak equivalences. Another property that almost directly applies to CellRes is the

enrichment by simplicial sets. Since the cellular map is a part of the morphism it

provides the necessary structure to enrich CellRes with simplicial sets.

It is known that mapping cones can be used to construct minimal resolutions of

particular ideals when starting with a resolution of a monomial module defined by at

least a single monomial [20]. This is a way to build cellular resolutions from existing

ones, and if we relax the condition on minimality, one can naturally ask if the mapping

cone, or the mapping cylinder that is a similar construction, gives a cellular resolution.

Noting that the ways to construct mapping cones and cylinders in Top and C•(ModS)
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are essentially the same, one would expect these to work for cellular resolutions as

well, and the identification of the two being practically the same can be found in [56,

pp. 20-21] for example. Indeed, both mapping cones and mapping cylinders construct

a cellular resolution in CellRes, as shown in Publication I. Moreover, for practical

computations of mapping cones and cylinders, one can either use the chain complex

construction of the resolution, or the topological construction on the labelled cell

complex supporting the resolution and get the same cellular resolution at the end.

Let F and F′ be cellular resolutions supported on the cell complexes X and Y
respectively, and suppose that there is a map f : F′ →F. For the mapping cone C(f) the

process can be viewed as adding a point to the cell complex X , that is, then attached to

the cell complex by some suitable k-cell. The work of Dochterman and Mohammadi

on the mapping cones of cellular resolutions of ideals with linear quotients and regular

decomposition functions uses this adding a point to build a larger minimal cellular

resolution from an easier smaller one [20]. In general, the new point will often have

label 1, implying that algebraically the resolution becomes trivial.

On the other hand, with mapping cylinders, we do not face the issue of creating

vertices with label 1, but the mapping cylinders are not providing us with minimal

resolutions in most cases. Disregarding the minimality of a resolution one can use

mapping cylinders to build new cellular resolutions, and one of the main results of

Publication II is on gluing them into a diagram. A special case of the gluing is

the following: Let F and F′ be cellular resolutions, such that both contain the sub-

resolution G. Then gluing F and F′ together along G, by identifying the G in F with

the G in F′, gives a cellular resolution.

Proposition 3.1.5. Let D be a finite diagram of cellular resolutions. Then gluing
mapping cylinders into D, gives a new cellular resolution.

With the special case of the gluing in mind, showing that gluing in mapping cylinders

to the diagram gives a cellular resolution is easy when the gluing components are

disjoint. In the case of the given diagram having any loops, one must pay more detailed

attention to the gluing, which requires gluing the cell complex to itself. To avoid

building holes in the cell complex or homology in the resolution, we must identify

some of the mapping cylinders and add cells between them.

Example 3.1.6. This example illustrates the gluing of mapping cylinders into a diagram

and the need to pay attention to holes. Let S = k[x, y] and let D be the diagram of

cellular resolutions with a indexing category shown in Figure 3.3. Take the resolution

of S/(x, y) for each of the cellular resolutions in the diagram and let the maps be

identity maps. Then each of the mapping cylinders is supported on a square. Gluing it

all together forms a cell complex that has holes, and thus we know it will not support

an acyclic cellular chain complex. One would like to fill in the hole that the gluing

process has created, and this can be done by identifying the mapping cylinders that

correspond to the same map. This means we add a cell to fill in the hole where

the boundaries are formed by the corresponding mapping cones. These cases are

illustrated in Figure 3.4.

The next part of the work in Publication II focuses on studying the products and
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Figure 3.3. Diagram of the Example 3.1.6.

y

y y

y

y

y

y

y

x x

x xx x

x x

Figure 3.4. Labelled cell complexes obtained by gluing in mapping cylinders (i) without identification
of corresponding mapping cylinders and (ii) after identification.

coproducts, followed by limits and colimits. We will only consider finite cases as the

infinite case of any of them would produce an infinite cellular resolution which is

not defined. Products both on Top and C•(ModS) are well defined, yet we run into

problems trying to just lift definitions as before since we now have two different types

of products. In C•(ModS) products are just direct sums of the chain complexes, and in

Top a product is a topological space with the underlying set being a cartesian product

of the spaces in the product. Trying to apply one of these to the resolution and one

to the supporting cell complex would not give the same cellular resolution at the end.

The implication of this is that neither of these two definitions satisfies the conditions

of a product. In the case one of the cellular resolutions is the resolution of S/(1) on

some trivially labelled cell complex, the topological product can be lifted, and we get

what we call "product up to homotopy".

The coproduct, denoted by F	F′, in CellRes, is a better behaving case. The

coproduct is a direct sum both in C•(ModS) and Top, so defining a coproduct in

CellRes as the direct sum is a fair assumption. The direct sum of cellular resolutions

does satisfy the category-theoretic definition of a coproduct. The category CellRes
has all finite coproducts. This is partially implied already by the chosen definition of

the objects.

Limits of a diagram D do not, in general, exist in CellRes. This follows from not

having well-defined products, and since the product is a special case of a limit, it

implies that they do not exist in general. A finite inverse system is a diagram indexed

by a directed poset. The only type of a limit CellRes has for all given diagrams of a

particular type are those of finite inverse systems. Similarly to coproducts, the colimits

are well defined, and they can be either computed as the colimit of resolutions, that is,
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using the chain complex definition, or by computing the colimit of the labelled cell

complexes, that is, the topological definition.

Theorem 3.1.7. The category CellRes has all finite colimits.

Also having all finite colimits implies that CellRes is a finitely cocomplete category

by definition.

Recall that tensor products are well defined for chain complexes, and they are used

to define specific resolutions like the Koszul resolution and at times used in computing

invariants like betti numbers via Tor-functor. Given two cellular resolutions F and F′,
taking their tensor product F⊗F′ as chain complexes, often does not give a cellular

resolution. The maps in the tensor product do not have the right degree to give a

cellular resolution, but one can slightly modify the definition to have suitable maps in

the chain complex. This gives a bifunctor ⊗ : CellRes×CellRes→CellRes, and a

monoidal structure to the category. As with many of the earlier definitions, the tensor

product of cellular resolutions can be computed using only the labelled cell complexes.

If the cellular resolutions are supported on the complexes X and X ′, then the tensor

product is supported on the join of X and X ′.
A typical pattern appearing in the category of cellular resolutions is that if something

is well defined in both Top and C•(ModS) such that the two definitions are essentially

the same, then the definition lifts to CellRes and inherits many properties from the

categories Top and C•(ModS). In the case when the definitions are too different, it

may not lift to CellRes like with the products. This, somewhat expected behaviour

of the category CellRes with relation to the other two categories is recorded in the

Table 3.1.

3.1.3 Homotopy colimits and Morse theory in CellRes

Homotopy colimits were introduced for topological spaces in Chapter 2. Since the

colimit lifts well from Top and homotopy is well defined for morphisms in CellRes
it is sensible to wonder if homotopy colimits lift to CellRes. Homotopy colimits can

also offer a way to build new resolutions from having a diagram of cellular resolutions

and thus it is considered one of the important results of Publication II. One way to lift

homotopy colimits is to define the homotopy colimit as the cellular resolution obtained

by gluing in mapping cylinders into the coproduct of the diagram. Alternatively, we

can define the geometric realisation of a simplicial set as the associated simplicial

complex labelled with 1 on each vertex.

Definition 3.1.8. Let I be a finite small category and let D be a diagram in CellRes.
Let Di and D j be resolutions in D, and let the morphism between them be denoted by
fi j = (fi j, f i j) if there is a map ψ : i → j in I . Then define the homotopy colimit of

the diagram D, Hocolim(D), to be the direct sum

Hocolim(D)=	B(i ↓I )×Di

quotient by a relation ∼. Here B(i ↓I ) is the geometric realization of the nerve of the
category under i, (I ↓ i), and Di is the element in the diagram D associated to the

56



On categorical structures of cellular resolutions and their stability

C
at

eg
o

ry
C

el
lR

es
To

p
C

•(
M

od
S

)

p
ro

d
u

ct
d
o
es

n
o
t

ex
is

t
in

g
en

er
al

,
so

m
e-

ti
m

es
ca

n
b
e

li
ft

ed
fr

o
m

To
p

to

g
iv

e
a

p
ro

d
u

ct
u

p
to

h
o

m
o

to
p
y

C
ar

te
si

an
p

ro
d

u
ct

o
f

th
e

u
n

d
er

ly
-

in
g

se
ts

w
it

h
a

su
it

ab
le

to
p

o
lo

g
y

d
ir

ec
t

su
m

o
f

ch
ai

n
co

m
p

le
x
es

co
p

ro
d

u
ct

d
ir

ec
t

su
m

,
al

l
fi

n
it

e
o

n
es

ex
is

t
d

ir
ec

t
su

m
,

h
as

al
l

co
p

ro
d

u
ct

s
d

ir
ec

t
su

m
,

h
as

al
l

co
p

ro
d

u
ct

s

li
m

it
d

o
n

o
t

ex
is

t
in

g
en

er
al

h
as

al
l

li
m

it
s

h
as

al
l

li
m

it
s

co
li

m
it

h
as

al
l

fi
n

it
e

co
li

m
it

s
h
as

al
l

co
li

m
it

s,
g
lu

e
th

e
d
ia

g
ra

m
h

as
al

l
co

li
m

it
ss

te
n

so
r

p
ro

d
u

ct
"r

ed
u
ce

d
"

te
n
so

r
p
ro

d
u
ct

o
n

th
e

re
so

lu
ti

o
n
,
co

rr
es

p
o
n
d
s

to
a

jo
in

o
n

th
e

la
b

el
le

d
ce

ll
co

m
p

le
x
es

jo
in

b
eh

av
es

co
m

p
u
ta

ti
o
n
al

ly

si
m

il
ar

to
th

e
te

n
so

r
p

ro
d

u
ct

te
n

so
r

p
ro

d
u

ct
s

ex
is

t

Ta
bl

e
3.

1.
S

u
m

m
ar

y
o

f
p

ro
p

er
ti

es
o

f
C

el
lR

es
.

57



On categorical structures of cellular resolutions and their stability

element i ∈I . The maps a : B( j ↓I )×Di → B( j ↓I )×D j and b : B( j ↓I )×Di →
B(i ↓I )×Di are given by

a(p, x)= (p, fi j(x))

and
b(p, x)= (δ ji(p), x)

for every map i → j ∈I , where δ ji : B( j ↓I ) �→ B(i ↓I ). Then the quotient is given
by the relation a(p, x)∼ b(p, x).

Since the homotopy colimit is a cellular resolution, it must belong to a module. We

can describe the generating set of the ideal using the definition of gluing mapping

cylinders, the labels on Hocolim(D) are the union of the labels in the cell complexes

of Di. It is very likely that some labels are repeated or redundant for the ideal the

union creates, therefore Hocolim(D) is often a non-minimal resolution.

These two definitions of homotopy colimit are equivalent. There is a way to define

homotopy colimits via derived functors as noted in Chapter 2; however, the theory

is written for Quillen model categories, which CellRes is not. This creates an open

question on the derived functors, homotopy colimits and CellRes to which we return

in Section 3.3.

Finally, we come to the last part of Publication II concerning Morse theory on

cellular resolutions. If one looks at the definitions and theorems given in Chapter 2

for algebraic and discrete Morse theory on cellular resolutions, they resemble each

other, and one would expect them to "match up" on cellular resolutions. Again our

expectations are met, and applying discrete Morse theory on the cell complex or

algebraic Morse theory on the resolution gives the same result assuming the Morse

matching is the same. This also allows us to define a Morse map between cellular

resolutions as a morphism.

Theorem 3.1.9. Let F be a cellular resolution with a labelled cell complex X , and
let M be a Morse matching on both the face poset of X and the associated directed
graph of F. Let f be the chain map from F to F̃, and let f be the cellular strong
deformation retract of X coming from Morse theory for the matching M. Then the
pair (f, f ) formed of the Morse maps is a morphism in CellRes.

Example 3.1.10. For an example of Morse maps in the category CellRes we will

look at a special case of the example of powers of the maximal homogeneous ideal

from Batzies and Welker [3, Section 5]. This same example is also referred to in [36,

pp. 33-35] and also expanded to include products of these ideals. For convenience,

we will refer to the example in [3] by BW-example.

The BW-example gives an explicit construction of a cell complex and a cellular

resolution that supports the maximal homogenous ideal of a polynomial ring S =
k[x1, x2, . . . , xd], and then describes the matching on the face poset that will give a

minimal resolution after applying discrete Morse theory.

The case for this example is the third power of the ideal I = (x1, x2, x3) in the ring

S = k[x1, x2, x3]. The cellular resolution of this ideal is given by

F : S
∂1←−− S10 ∂2←−− S18 ∂3←−− S9 ← 0
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with maps in the resolution are given by

∂1 =
[

x3
1 x2

1x2 x2
1x3 x1x2

2 x1x2x3 x1x2
3 x3

2 x2
2x3 x2x2

3 x3
3

]
,
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∂
2
=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣x 2
x 3
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x 3
0
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0
−x

1
0

0
−x

2

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦,
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and

∂3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x3 0 0 0 0 0 0 0 0

−x2 0 0 0 0 0 0 0 0

x1 0 1 0 0 0 0 0 0

0 x3 0 0 0 0 0 0 0

0 −x2 −1 0 0 0 0 0 0

0 0 1 x3 0 0 0 0 0

0 0 0 −x2 0 0 0 0 0

0 x1 0 0 0 1 0 0 0

0 0 0 0 x3 0 0 0 0

0 0 0 0 −x2 −1 0 0 0

0 0 0 x1 0 0 0 1 0

0 0 0 0 0 1 x3 0 0

0 0 0 0 0 0 −x2 −1 0

0 0 0 0 0 0 0 1 x3

0 0 0 0 0 0 0 0 −x2

0 0 0 0 x1 0 0 0 0

0 0 0 0 0 0 x1 0 0

0 0 0 0 0 0 0 0 x1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

On the side of cell complexes, this resolution is supported on a subdivided triangle

denoted by C3
3. The cell complex is drawn in Figure 3.6, and the corresponding face

poset is presented in Figure 3.5. Let a= (a1,a2,a3) ∈N3, J ⊆ {1,2,3}, |a| =∑3
i=1 ai,

and ei is the i-th unit vector in R3. The BW-example shows that the individual cells

can be described by

Ca,J = conv

(
a+

∑
j∈J

ε je j |ε j ∈ {0,1},
∑
j∈J

ε j = 3−|a|
)

,

where conv denotes the convex hull, and one of the two conditions is satisfied: |a| = 3
and J =�, or 1≤ 3−|a| ≤ |J|−1.

The first condition gives all the vertices of the cell complex, and in this case they cor-

respond to the integer points (3,0,0), (0,3,0), (0,0,3), (2,1,0), (2,0,1), (1,2,0), (1,0,2),
(1,1,1), (0,2,1), and (0,1,2). These have a natural labelling by taking the label of the

point (k, l,m) to be xk
1 xl

2xm
3 . For the higher cells the conditions become |J| = 2 and

|a| = 2, or |J| = 3 and |a| = 1 or 2. In the first case we have three possible sets J and

six different vectors a, thus is gives 18 cells. These are the 1-cells or edges in the

cell complex. In the second case, there is only one possible set J = {1,2,3} and nine

different vectors a, producing nine cells. These are the 2-cells. The labelling for the 1-

and 2-cells is obtained from vertices they contain.
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The Morse matching giving a minimal cellular resolution is also explicitly given

in the BW-example. The matching is presented in the face poset in Figure 3.5 and

the corresponding cells on the cell complex have been coloured. The matching can

also be formulated as conditions on a and J [3, p.15 paragraph 1]. The critical cells

are given by Ca,J such that 2≤ 3−a≤ |J|−1 and max J ≥max{i ∈ {1,2,3} |ai �= 0}.
The critical cells then describe the resulting cellular resolution, and the BW-example

provides the differential maps, too. Let F̃ denote the cellular resolution obtained from

this matching. It is given by

F̃ : S
∂′1←−− S10 ∂′2←−− S15 ∂′3←−− S6 ← 0

with differential maps given as

∂′1 =
[

x3
1 x2

1x2 x2
1x3 x1x2

2 x1x2x3 x1x2
3 x3

2 x2
2x3 x2x2

3 x3
3

]
,

∂′3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x3 0 0 0 0 0

−x2 0 0 0 0 0

x1 0 z 0 0 0

0 x3 0 0 0 0

0 −x2 −x3 0 0 0

0 0 −x2 0 0 0

0 x1 0 0 x3 0

0 0 0 x3 0 0

0 0 0 −x2 −x3 0

0 0 x1 0 0 x3

0 0 0 0 −x2 −x3

0 0 0 0 0 −x2

0 0 0 x1 0 0

0 0 0 0 x1 0

0 0 0 0 0 x1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and
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∂
′ 2
=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣x 2
x 3

0
0

0
0

0
0

0
0

0
0

0
0

0

−x
1

0
x 3

x 2
x 3

0
0

0
0

0
0

0
0

0
0

0
−x

1
−x

2
0

0
x 3

0
0

0
0

0
0

0
0

0

0
0

0
−x

1
0

0
x 3

x 2
x 3

0
0

0
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0
0

0
0
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1
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0
x 3
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0
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0
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0

0
−x

1
0

0
0
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x 3
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0
0

0
0
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x 3
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0
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1
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0
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x 3

0

0
0

0
0

0
0

0
0

0
0

−x
1

0
0

−x
2

x 3
0

0
0

0
0

0
0

0
0

0
0

−x
1

0
0

−x
2

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦,
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Figure 3.6. The non-minimal and minimal cell complex of Example 3.1.10.

in the matrix form. The supporting cell complex is presented in Figure 3.6.

Then the map g : C3
3 → C̃3

3 can be described as the cellular map that acts as an

identity on all the critical cells, and each pair of a 2-cell and a 1-cell that correspond to

a matching get mapped to the other two boundary 1-cells of the 2-cell, thus resulting in

the lozenge shapes in Figure 3.6. The map between the cell complexes can be written

out as the following matrices

f0 =
[

1
]

, f1 =
[

1
]

,

f2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

65



On categorical structures of cellular resolutions and their stability

and

f3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The label map from g is the identity, and from this we see directly that condition (i)
for compatible maps holds. Checking the second condition, we note that the cells and

modules corresponding to critical vertices map by an identity map in both maps, so

for those the condition (ii) holds. Thus it remains to check the "deleted" parts. These

match up, too, and so we get that the pair forms a cellular resolution morphism.

For other explicit cases see [36, pp.33] for C2
2 and [3, pp.14,16] for beautiful figures

of the case C3
4. In the general setting, the description of the differentials in the minimal

resolution in the BW-example is based on how the cells behave, and the compatibility

can be inferred from the general formulation as well.

3.2 Families of cellular resolutions

The category of cellular resolutions as a whole forms a large class of objects, and

this may often be too large to study. Moreover, algebraically it is often interesting

to study smaller families of cellular resolutions. Many of the existing results on

cellular resolutions focus on a specific type of cellular resolutions. This can be done

by restricting the ideal, construction, or just focusing on a specific family. These can

all be viewed as subcategories of CellRes, if we can assume the number of variables

has an upper bound. The focus of Publication II is on families of cellular resolutions.

Families form an optimally structured category to apply tools from representation

stability.

A family F of cellular resolutions is an infinite sequence of cellular resolutions with

maps in between the cellular resolutions. The maps in the family can be taken to be

all possible cellular resolution maps between the resolutions, no maps at all, or any

variation between the two. A family of cellular resolutions is also a subcategory of

CellRes. The sets of morphisms in the family are denoted by Hom(Fi,F j), and we

refer to all of the sets of morphisms as Hom sets.

In the situation when we are interested in the algebraic properties of the family, it is

useful to reduce the morphisms to only have a single pair of compatible maps for each

chain map. This method of reducing maps is used throughout the chapter.

3.2.1 Linear families of cellular resolutions

A typical example of a family of cellular resolutions is the family of powers of an

ideal. In particular, the family of powers of the maximal ideal I = (x, y, z) in the
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polynomial ring S = k[x, y, z] was a motivating example of families where we can

apply representation stability tools, and it motivates the following definition.

Definition 3.2.1. Let F : F1 →F2 → . . .→Fi → . . . be a family of cellular resolutions.
The family F is linear if there is at least one morphism f i,i+1 : Fi → Fi+1 between
consecutive cellular resolutions, and the other morphisms are compositions of those,
that is, for any f i,i+k : Fi →Fi+k there exists some consecutive morphisms such that

f i,i+k = f i+k−1,i+k ◦ f i+k−2,i+k−1 ◦ . . .◦ f i+1,i+2 ◦ f i,i+1,

or maps from the cellular resolution to itself Fi →Fi.

Linear families have many useful properties, and many of the types of families we

are interested in studying are included in them.

We can, of course, define a representation for a family F as a functor from F to

ModS , as introduced in Chapter 2. Noetherianity of the representation category is one

of the desired properties as then we have that subrepresentations of finitely generated

representations are finitely generated as well. Linear families, and families that are

eventually linear, in particular, satisfy this condition thanks to their structure, forcing

all principal projectives to be noetherian.

Theorem 3.2.2. Let F be a linear family of cellular resolutions with finitely generated
Hom sets. Then RepS(F ) is noetherian.

Gröbner categories are among the main results in [48] and there exist power families

of cellular resolutions that are Gröbner. Despite being a very powerful definition in

the results of Publication II, linearity is often more natural to show for the families,

and it is enough to reach the desired properties.

The p-th module representation is a representation of a family F

sp : F →ModR

such that sp(Fi)= p-th free module in the resolution and sp(Fi →F j) is the restriction

of the chain map from Fi to F j on the p-th component. This is related to the syzygy

module representation.

Definition 3.2.3. Let F be a family of cellular resolutions. The p-th syzygy functor,
or syzygy representation,

σp : F →ModR

is defined by taking F ∈F to its p-th syzygy module. The morphisms are restrictions
of the chain maps.

Proposition 3.2.4. The representation σp is a subrepresentation of sp.

A fundamental observation relating to the above representations is that the generators

of sp(F), where F is some element in the family, are in one-to-one relation with the

cells of dimension p of the labelled cell complex supporting F. This then allows one

to define coverings for cell complexes.
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Let F1,F2, . . . ,Fr be cellular resolutions mapping to G. Let Xi be the cell complex

supporting Fi and Y be the cell complex supporting G. Then there is a d-covering of

Y by X1, X2, . . . , Xr if the images of d-cells of Xi cover d-cells of Y under the maps

f ∈Hom(Fi,G) , ⋃
f ∈Hom(Fi ,G)

f (Xi)=Y .

If there is a covering for all dimensions d that exist in the cell complexes then we call

it a covering.

Now the observation on the relation of generators and cells can be written out as the

following lemma.

Lemma 3.2.5. The p-th module representation is finitely generated if and only if there
is a (p−1)-covering of Xi by finitely many X j’s with j < i for all i large enough.

Note that this applies to a specific cellular resolution and it is possible for a single

module S/I to have one cellular resolution that satisfies the covering conditions and

another one that does not. This creates a base for the proof in the main theorem of

Publication II.

Theorem 3.2.6. Let F be a family of cellular resolutions with noetherian representa-
tion category RepS(F ) such that the cell complex supporting Fi is covered by the cell
complexes supporting F j, j < i, for all i large enough. Then the syzygy representation
σp is finitely generated for all p.

3.2.2 Explicit examples of families with finitely generated syzygies

Several classes of explicit families are linear and have finitely generated syzygies as

a result of the above theorem. The first of these are the families given by powers of

maximal ideals.

Let S be a polynomial ring in n variables, m the maximal monomial ideal, and

consider the family generated by cellular resolutions of S/mk. These resolutions are

supported on a subdivided n-simplices, for example, in the n = 3 case triangles that

are shown in Figure 3.7, and these minimal cell complexes are explicitly defined in [3].

Adding cells into the subdivision still gives a cellular resolution of the same module

and cell complexes where the covering with maps is easy to see. Moreover, since

we are dealing with a power family, it is also a linear family, and thus we get that by

applying Theorem 3.2.6 these families have finitely generated syzygies.

These families are also great examples to highlight the importance of morphisms in

the family for getting finite generation. If we only allow one map between cellular

resolutions, the family is not finitely generated as we will not be able to reach all

generators from a finite set.

The second example of families with finitely generated syzygies that can be shown

using our method is the "cube" ideals. Let S be a polynomial ring in 2n variables

and let IP = {
xi1 xi2 . . . xin |i j ∈ P j for j = 1, . . . ,n

}
be an ideal where P is a pairing

of the variables that consists of P1,P2, . . . ,Pn where Pi is the set of indices of the pair.
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Figure 3.7. Cell complexes supporting the powers of the maximal ideal for n = 3.

The resolutions of S/IP are supported on an n-cube, and the powers are supported

on an n-cube subdivided to n-cubes. Again this family of powers is linear, and it has

sufficiently many maps to have a covering of the cubes. Then application of Theorem

3.2.6 shows that the syzygies are finitely generated for these families, too.

The third type looked at in Publication II is the equigenerated ideals supported on a

cell complex coming from the maximal ideal. A monomial ideal is equigenerated if

all the monomials have the same degree.

Proposition 3.2.7. If I is an equigenerated ideal in n variables and degree d such
that I has a cellular resolution supported on X d

I and the powers of I are supported
on X md

Im , then the family of cellular resolutions given by them has finitely generated
syzygies.

Examples of families that satisfy these conditions are those bound by some vector b
in the first power and kb in the k-th power.

The last examples of powers of ideals are types of edge ideals. Recall that an edge

ideal is an ideal defined by a graph G. Firstly we consider the family of cellular

resolutions for edge ideals of paths as defined in [26]. Engström and Norén give an

explicit description of the cell complexes, subdivided simplices, supporting a non-

minimal resolution of the k-th power of a path edge ideal Id
Pn

. Subdividing the given

cell complex a bit further with hyperplanes still supports a cellular resolution of the

ideal Id
Pn

, and allows us to use results for coverings of the subdivided simplices of

the maximal ideals to show covering in this case. Powers of edge ideals of complete

graphs form the second edge ideal power example. The edge ideals of complete graphs

are all the square-free subsets of m2 in a given polynomial ring S. This ideal can be

defined by bounding the exponent vectors of elements in m2 by the vector (1,1, . . . ,1).
Therefore the cell complex of m2 bounded by this vector supports the resolution of

the edge ideal of a complete graph and applying the results on equigenerated ideals

we get that the syzygies of the power family are finitely generated.
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3.2.3 Booth-Lueker ideals and unrestricted families

Previous work on Booth-Lueker ideals has shown that they have computable formulas

for their invariants like betti numbers [25] and the resolutions are known to be 2-linear.

These results are presented in Publication III of this thesis. The known results for

this class of edge ideals was the motivation behind studying them from the point of

view of cellular resolutions and trying to apply the tools from [48] to families of these

ideals.

Proposition 3.2.8. If I is an ideal of a Booth-Lueker graph, it has a minimal cellular
resolution coming from the mapping cone resolution construction.

Definition 3.2.9. Let CellResE(n) denote the category of cellular resolutions coming
from edge ideals of graphs with at most n vertices and m edges in k[x1, . . . , xn]. Then
define the functor

BL : CellResE(n)→CellResE(n+ n(n−1)
2

)

by sending the cellular resolution FG to a minimal resolution of the Booth-Lueker
edge ideal of G, FBL(G). The functor BL takes an embedding of cellular resolutions
to an embedding of the Booth-Lueker resolutions.

This functor can be restricted to families of cellular resolutions, in which case it

takes a family with individual resolutions belonging to CellResE(n) to a family where

the resolutions are in CellResE(n+ n(n−1)
2 ).

Next recall that in Section 2.6, we defined a property for functors called property

(F).

Proposition 3.2.10. The restriction of the functor BL between families satisfies prop-
erty (F).

Satisfying property (F) implies that we can pull back desirable properties of repre-

sentations from the Booth-Lueker resolutions to the representations of edge ideals.

However, since we are working over a single polynomial ring, there is a maximal

number of vertices a graph can have. Implications of this are that we have only finitely

many ideals that can give the cellular resolutions in the family and thus answers to

any questions about finite generation of syzygies immediately. This naturally raises a

question if we can have a family of cellular resolutions such that each resolution is

defined over its own ring and we propose a what can be called a naive solution for this

problem.

Definition 3.2.11. Let F be a family of cellular resolutions such that each resolution
Fi is over a polynomial ring Si. We call such a family the unrestricted family of

cellular resolutions.
The unrestricted family forms a category with the objects being the individual

resolutions and morphisms are compositions of change of ring maps and a cellular
resolution morphisms.
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As a category, the unrestricted families behave much in a similar way as the previ-

ously defined families of cellular resolutions and thanks to this behaviour we can lift

all the previous definitions to these unrestricted families as well. The main difference

to the previous case is that instead of having representations over the ring S the ring in

question is now the polynomial ring with infinitely many variables S∞. Nonetheless,

one can still prove an analogue of our previous theorem for the unrestricted families:

Theorem 3.2.12. If F is an unrestricted family of cellular resolutions such that it is
linear and the cell complexes have a t-covering for all i large enough, then the syzygy
functor σ∞

t is finitely generated.

3.3 Open questions arising from Publications I and II

Publications I and II establish a more category-theoretic approach to studying cellular

resolutions and also provide some concrete results for cellular resolutions and edge

ideals of Booth-Lueker graphs. Another important outcome of the research in this

thesis is the open questions and conjectures it produces. Hence we will present a few

of these coming from Publications I and II.

Many results deal with the structure of cellular resolutions or a smaller set of

them, but also constructing cellular resolutions is a central theme in Publication

I. The product construction from topology can lift at times to cellular resolutions,

but most of the time it does not satisfy the category-theoretic conditions of being a

product.Moreover, taking the product of cell complexes does not usually give a new

cellular resolution if the product contains any repeated labels on the vertices. One

could then ask if there is a modification that can be made to give a cellular resolution.

Preliminary computations suggest that removing or contracting cells such that there

are no repeated labels gives a cell complex supporting a cellular resolution. Whether

this always holds is a valid question and one can ask if it can be used to compute the

resolutions of powers or products of ideals as the corresponding labels would be as

desired.

Conjecture 3.3.1. Let X and Y be two labelled cell complexes supporting cellular
resolutions with label ideals I an J. A product of X and Y supports a cellular
resolution with a label ideal IJ after all repeat labels in the vertices have been
removed.

Taking the product of a labelled cell complex with itself would produce a cell

complex with repeated labels. This poses a question on how to remove algebraically

redundant vertices from a cell complex and what is the most efficient way for it.

Relating to the removing redundant vertices, one can ask what happens if we use

discrete Morse theory to remove vertices from a labelled cell complex that supports

the resolution and whether this would result in a cellular resolution, or under what

conditions it is still a labelled cell complex supporting a cellular resolution.
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Conjecture 3.3.2. Let X be a labelled cell complex supporting a cellular resolution.
Then removing a vertex from X by an elementary strong collapse gives a cell complex
supporting a cellular resolution.

Further investigation can also be done on general structures of cellular resolutions.

For example, we do not have homotopy colimits as derived functors for CellRes
and investigating the categorical structures relating this could bring up new insights.

Questions of classifying or parametrising spaces have been posed in other works as

well. One class that could be studied with this is possible minimal cellular resolutions

that a single monomial module can have. A variation of this is asked in [20] about

mapping cone resolutions. The choices appearing in the maping cone construction

appear to be such that they can be combined to build a resolution containing the

different choices of cells.

Conjecture 3.3.3. Mapping cone resolutions of an ideal I are simple homotopy
equivalent, and there exists a non-minimal cellular resolution that can be reduced to
any of the mapping cone resolutions using discrete Morse theory.

Another possible approach is to study different subcategories of CellRes, and we

would expect that some of them will have interesting properties. Families are a type

of subcategories, and Publication II raises plenty of open questions about them. In

all of our examples, the families of cellular resolutions have been linear, so a natural

question would be to ask what about non-linear families. Even the existence of

non-linear families that have finitely generated syzygies or satisfy other properties

like noetherian representation category, or any other interesting properties is not

certain, though one would expect there to be some examples. In all the examples in

Publication II noetherianity was used to prove finite generation of syzygies, and often

the noetherianity of the representation category is inherited from the structure the

family has, which in the first place suggested finite generation of syzygies.

Question 3.3.4. Does there exist a family of cellular resolutions that has finitely
generated syzygies but does not have a noetherian representation category?

Publication II is focused on the syzygies of the families of cellular resolutions; thus,

one can ask if the representations are used to study other properties than syzygies for

the families. Another open direction coming from Publication II is that the Gröbner

property was not fully utilised to study the families and this provides an interesting

direction for further work. Moreover, the paper of Sam and Snowden contains other

structures, such as lingual structures, that have not been addressed in this thesis for

the family of cellular resolutions setting.

The more concrete results in Publication II still point to new questions, in partic-

ular with the equigenerated ideals. A connected equigenerated ideal is one where

every generator differs at most by a single variable from at least one other generator.

Alternatively, these are ideals where the generators are sufficiently close to each other.

Conjecture 3.3.5. Connected equigenerated ideals have resolutions supported on
cell complexes coming from the cell complex of a maximal ideal.
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The "coming from a cell complex" here means that there is a way to delete vertices

and contract unnecessary cells to reach the desired complex. There is some overlap

with this conjecture and Conjecture 3.3.2. However, preliminary computations show

that not all cases of connected equigenerated ideals can be dealt with by the strong

elementary collapses.

The final part of the open questions coming from Publication II relates to the

unrestricted case of families. The approach we have proposed could be considered the

naive way to deal with the requirement of having cellular resolutions over different

rings, and we have not dwelt very deeply into it. The theory of modules over the

polynomial ring with infinitely many variables could offer tools to work further with

the proposed setting and also make use of different representations for these families.

Another direction to take with these are the cases where there is a polynomial ring

with a maximal number of variables, in which case the modules can be taken over that

ring. This mixed finite case also allows different permutations of variables within the

same ring, which are not morphisms of cellular resolutions in the fixed ring case. This

would allow larger automorphisms groups, and based on what happens with graph

automorphisms, we would expect that in this setting, we can find a cellular resolution

with the automorphism group being any group we want.

The unrestricted families are also tied to an example of the family of the edge ideals

of paths. That is a family where the i-th cellular resolution comes from an edge ideal

of a path of length i. The increasing length requires a new variable at each step. These

(non-minimal) cellular resolutions can be supported on simplices, but then there are

not enough maps to give a covering. However, we still would expect this family to

have finitely generated syzygies. We conjecture that there exists a Morse map that

removes all the non-covered cells in the cell complexes, and the reduced family would

then have a covering. Generally, if a non-minimal family F has a Morse map for

each cellular resolution, the family F̃ , obtained applying discrete or algebraic Morse

theory, is a subobject of F in the category of families. This does not say much about

the maps in F̃ , but one would expect them to reflect the behaviour of those in F .

Conjecture 3.3.6. Let F be a non-minimal family of cellular resolutions. Suppose
that there is a Morse map from each cellular resolution Fi in F to a reduced cellular
resolution F̃i in a family F̃ with corresponding maps. Then the squares formed by the
maps

Fi Fi+1

F̃i F̃i+1

commute.
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4. Combinatorial formulas for
algebraic invariants of
Booth-Lueker ideals

This chapter presents the results of Publication III. The approach to studying monomial

modules in Publication III is based on restricting the ideals and then making use of

the generous amount of combinatorial data the edge ideals under investigation contain.

The motivation for studying the edge ideals coming from Booth-Lueker graphs is not

only on the algebraic side, to understand this class of monomial ideals, but also graph-

theoretic. The Booth-Lueker graph connects to the graph isomorphism problem, and

in a quest to get closer to the solution, we considered the role of algebraic invariants in

these ideals. Alas, the Betti numbers and Boij-Söderberg coefficients do not contain

information on the isomorphisms of graphs, but the underlying combinatorial nature

gives the explicit formulas to compute these. The results of Publication III also were

a significant motivation to a part of the results in Publication II, and they form good

examples to look at.

4.1 Booth-Lueker ideals and algebraic invariants of their
resolutions

For an S-module S/I with a 2-linear minimal resolution of length n, we denote the

non-trivial part of its betti table as

ω(S/I) := (β1,2,β2,3, . . . ,βn,n+1)

and call it the reduced betti vector of S/I. If the ideal I is the edge ideal of a graph G,

we just write ω(G).
The Booth-Lueker graph BL(G) of G is chordal. Thus there are relevant results

one can use for the betti numbers associated with it. Combining these with the

combinatorial data of the edge graph we get the following formula for betti numbers

from the degree vector.

Proposition 4.1.1. Let G be a graph on n vertices and m edges, let A be the matrix of
size (n+m−1)×n defined by Ai j =

( j+n−2
i

)
, and let v be the column (n+m−1)-vector

defined by vi =
( n

i+1

)
. Then

ω(BL(G))= AdG −v, (4.1)
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where dG = (d0,d1, . . . ,dn−1)T is the degree vector of G.

The degree vector can also be obtained from the Betti numbers.

Proposition 4.1.2. Let Δ(G) be the largest vertex degree in G. Let A be as in Proposi-
tion 4.1.1 and let B be the square submatrix of A obtained by taking the first Δ(G)+1
columns and the rows from n−1 to n+Δ(G)−1. Then we have (B−1)i j = (−1)i+ jBi j

and
dG = B−1(βn−1,n+1,βn,n+1, . . . ,βn+Δ(G)−1,n+Δ(G)).

That is, we can compute the degree vector in terms of the (last non-zero) Betti numbers.

Having the formulas for betti numbers of S/IG , we can then start looking at the Boij-

Söderberg coefficients related to the graph. Combining the above results with known

results of the Boij-Söderberg coefficients of specific 2-linear resolutions provides the

following theorem after some application of the combinatorial results presented in

Chapter 2.

Theorem 4.1.3. Let G be a graph with n vertices and m ≥ n edges, and let dG =
(d0,d1, . . . ,dn−1) be its degree vector. Then the j-th Boij–Söderberg coefficient of
BL(G) is

c j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if j ≤ n−2,

d0
j +

∑n−1
i=1 di

j( j+1) − n
j( j+1) = d0

n if j = n−1,

d j−n+1
j +

∑n−1
i= j−n di

j( j+1) if n−1< j ≤ 2n−2,

0 if j > 2n−2.

A sequence of integers λ= (λ1,λ2, . . . ,λn) such that

t ≥ λ1

1
≥ λ2

2
≥ ·· · ≥ λn

n
≥ 0

is called an anti-lecture hall composition of length n bounded above by t. If the graph

G satisfies the condition m ≥ n−1, we can use the number of vertices in degree k,

denoted by dk, to obtain an anti-lecture hall composition associated to BL(G). This

sequence of integers is given by

λ j =

⎧⎪⎪⎨⎪⎪⎩
j for j = 1, . . . ,n,

dn−1 +dn−2 +·· ·+d j−n+1 for j = n, . . . ,2n−2,

0 for j > 2n−2.
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4.2 Invariants of the complement of the Booth-Lueker graph

Following the results of these invariants on BL(G), one can then ask if similar formulas

in terms of edges and vertices can be obtained for the complement BL(G). The

remaining results of Publication III are precisely the formulas for the complement.

Proposition 4.2.1. Let G be a graph with n vertices and m edges. Then, for every
integer j ≥ 1 we have

β j, j+1
(
BL(G)

)= m
(

m+n−3
j

)
−
(

m
j+1

)
.

The proof for these betti numbers is more involved than for the previous case, based

on expanding the Booth-Lueker construction to multi-graphs and showing that the

formula holds for a particular multi-graph, with all edges between two vertices, that

can be reached from any of the other multi-graphs. Following this, one can combine

the results in the same manner as in the earlier results, and we obtain the main theorem

for the complements.

Theorem 4.2.2. Let G be a graph with n vertices and m edges. Then the i-th Boij–
Söderberg coefficient of BL(G) is

ci =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i < m,

m
(i+1)i if m ≤ i ≤ m+n−4,

m
i if i = m+n−3,

0 if i > m+n−3.

The anti-lecture hall composition λ= (λ1, . . . ,λn+m−1) for a simple graph G can in

this setting be expressed as

λ j =

⎧⎪⎪⎨⎪⎪⎩
j if j ≤ m,

m if m < j ≤ m+n−3,

0 if j > m+n−3.

The Booth–Lueker construction can be written purely for the edge ideals and thus

seen as a map that takes a square-free monomial ideal generated in degree 2 and

returns a new such ideal, in a larger polynomial ring, with a linear resolution. This

map nature is also visible in the Booth-Lueker functor presented in Publication II.

Viewing the construction as a map, it can be expanded to include other ideals, as

was done by Orlich in [44]. There he defines a construction called linearization, that

is, a generalisation of the Booth-Lueker ideal construction, which associates to any

monomial ideal a new monomial ideal with a linear resolution.
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