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This dissertation analyses two popular methods used in Bayesian data analysis, that involve
splitting the data set into disjoint sets. The analysed approximative methods include expectation
propagation (EP) and leave-one-out cross-validation (LOO-CV), which are used in the context of
distributed inference and model evaluation/comparison respectively. The main contribution of the
dissertation is in analysing the applicability and behaviour of the methods under different
situations.

The EP algorithm is a popular method for approximating a factorisable density. In the Bayesian
context, for tractability, it has usually been applied pointwise. However, by including multiple
observations in one approximated factor component, the method can be seen as a flexible
framework for distributed inference. In addition, in hierarchical settings, it provides a convenient
mean for dimension reduction by concentrating parameter inferences to separate units.

LOO-CV is a popular method used in model evaluation, comparison, and weighting for estimating
the out-of-sample predictive performance of a model using the given observations. In some
situations, obtaining the estimate is a computationally heavy operation. The dissertation addresses
this issue in the context of Gaussian latent variable models (GLVM) by reviewing various more
efficient methods for approximating the LOO-CV estimate. Based on the results, a suggestion of
approaches with different levels of accuracy and computational complexity are proposed.

As the variability of the LOO-CV estimator can be high in some problems, it is important to take
into account the related uncertainty when applying the LOO-CV method in practice. The current
popular ways of estimating the uncertainty often leads to considerably underestimating the
variability. The dissertation studies the behaviour of the uncertainty in a model comparison setting
both theoretically and experimentally and identifies problematic cases, in which the estimated
uncertainty is badly calibrated. The problematic cases include small data size, models making
similar predictions, and model misspecification. In addition, the dissertation proposes an improved
estimator for the variance of the LOO-CV estimator in the case of a Bayesian normal model. The
proposed estimator serves as an example of the possibility of obtaining improved model-specific
uncertainty estimates. This approach has not been discussed in the literature before.
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Tama vaitoskirja kisittelee kahta suosittua bayesilaisessa data-analytiikassa kédytettyd menetelméas,
joissa data jaetaan pistevieraisiin joukkoihin. Analysoitavat menetelmét ovat odotusarvon
valittdminen (expectation propagation, EP), jota sovelletaan hajautettuun pééttelyyn, ja jata-yksi-
pois ristiinvalidointi (leave-one-out cross-validation, LOO-CV), jota kiytetdédn mallin evaluointiin
ja vertailuun. Tyon padkontribuutio on menetelmien sovellettavuuden ja kiyttaytymisen
analysointi eri tilanteissa.

EP-algoritmi on suosittu menetelm3, jolla voidaan approksimoida osittuva tiheysfunktio.
Bayesilaisessa kontekstissa menetelmai on algebrallisen mukautuvuuden vuoksi yleensé sovellettu
pisteittdin. Osittamalla useita havaintoja yhteen approksimoitavaan tekijaan, menetelmaa voidaan
soveltaa joustavasti myds hajautettuun laskentaan. Taman lisdksi sen avulla voidaan pienentia
laskennallista dimensionaalisuutta hierarkisissa ongelmissa keskittamalla eri parametrien paattelyt
eri yksikoille.

LOO-CV on suosittu mallin evaluointi-, vertailu-, ja painotusmenetelma4, jolla voidaan estimoida
havaintoaineiston ulkopuolista prediktiivista suorituskykya annetun havaintoaineiston perusteella.
Joissain tilanteissa timén estimaatin laskeminen on raskas operaatio. Vaitoskirjassa tata ongelmaa
kisitelladn Gaussinen latentti muuttuja -mallien (Gaussian latent variable models, GLVM)
kontekstissa vertailemalla eri menetelmia, joilla LOO-CV estimaattia voidaan approksimoida
tehokkaammin. Tulosten perusteella esitetdan suositellut lahestymistavat ongelman
ratkaisemiseksi eri tarkkuuden ja laskennallisen vaativauden tasoilla.

Joissain ongelmissa LOO-CV estimaattorin vaihtelevuus voi olla suuri. Timén vuoksi on tarkea
arvioida ja huomioida siihen liittyva epdvarmuus sovellettaessa menetelméé kaytannossa. Nykyiset
suositut menetelmit timén epavarmuuden estimoimiseksi usein aliarvioivat vaihtelevuuden
huomattavasti. Tama vaitoskirja tutkii epdvarmuuden kédyttaytymistd mallinvertailutilanteessa
seka teoreettisesti ettd kokeellisesti ja identifioi ongelmallisia tilanteita, joissa estimoitu
epavarmuus on huonosti kalibroitu. Havaitut ongelmat esiintyvit tilanteissa, missa havaintojoukko
on pieni, mallien ennusteet ovat samankaltaisia, ja mallit kuvaavat ilmi6ta huonosti. Lisdksi
vaitoskirja esittda paremman estimaattorin LOO-CV estimaattorin varianssille bayesilaisen
normaalimallin tapauksessa. Esitetty estimaattori toimii esimerkkind mahdollisuudesta rakentaa
parempia mallikohtaisia estimaattoreita LOO-CV estimaattorin epdvarmuudelle. Tdtd nikokantaa
ei ole esitetty kirjallisuudessa aiemmin.
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1. Introduction

Various approximative techniques in Bayesian data analysis involve data
partitioning. Distributed inference and predictive performance estimation
are examples of fields, for which such methods have been applied (see for
example Gelman et al., 2013). These methods address important steps
in the workflow of computational Bayesian data analysis and are useful
tools for adapting to various intractable or unfeasible problems. Different
properties affect the applicability and interpretability of these methods. In
particular, accuracy and efficiency plays a great role and should be taken
into consideration when applying these methods.

The approach of distributing the inference can be viewed from multiple
perspectives. In some situations, these methods can be used to improve the
scalability of various computational inference algorithms by distributing
the task at hand to smaller more manageable sub-problems. An altern-
ative motivation for such a distributed setting could arise from a natural
partitioning of the data or from the need to keep the separate parts private.
Inference on partitioned data can also be considered as a way to handle
different parts of the data differently—with different inference methods,
sub-models, or precisions—taking into account part-specific objectives and
properties of the data.

The predictive performance of a model is of interest in different situ-
ations. Various measures of the predictive performance can be useful as
such for assessing the quality of the model’s predictive capabilities or they
can be used for comparing, selecting, and weighting multiple models (see
for example Vehtari and Ojanen, 2012). In order to even out the inherent
ability of models with different complexities to fit into the given data set,
these measures reflect the performance of the model in the context of an-
other data set from the respective data generating mechanism in general.
Because the data generating mechanism is usually unknown, in practice
such out-of-sample predictive performance measures need to be approx-
imated based on the given data. A general approach for estimating these
measures involves using a hold-out set of observations for evaluating the
performance of a model trained on the other observations. By partitioning
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Introduction

the data into disjoint sets, this estimation can be carried out multiple times
with different combinations of sets for the hold-out set. Cross-validation
(CV) is a popular approach in which each partition is used once for the
hold-out data set and in leave-one-out cross-validation (LOO-CV) each
data point is partitioned into its own set (see for example Arlot and Celisse,
2010).

This dissertation analyses some popular methods involving data parti-
tion in the context of distributed inference, model evaluation, and model
comparison. In particular, the applicability and behaviour of the methods
in different situations are studied. The analysed properties include effi-
ciency, approximation error, uncertainty, and estimation of the uncertainty.
Based on the analysis, different approaches are compared and various
recommendations and considerations are presented for the usage of the
methods. In addition, aspects requiring future research are discussed.

While applied in different contexts, the analysed techniques are connec-
ted through the underlying approach of analysing one part of the data in
the context of the left-out-data. This connection offers possibilities for ap-
plying concepts of one of the analysed method in the context of distributed
inference for solving the problem in the context of predictive performance
estimation; applying one particular method, expectation propagation (EP),
for the former problem yields an approximation for the latter problem with
only minimal additional computational cost.

1.1 Structure of the dissertation

This dissertation comprises this introductory part and four publications.
The original publications, referred to as Publication I-IV, are included at
the end of the dissertation. Each publication addresses a subset of the
aforementioned concepts in the data partitive setting. All of the publica-
tions are methodological and analytical (Deming, 1942). Publications I, II
and III are partly of review nature. The introductory part presents the
problem settings discussed in the publications at a general level from a
unified perspective. It also summarises the contributions from the publica-
tions while connecting them in the conceptual level.

The introductory part is organised as follows. First, reflecting the study
in Publication II, Chapter 2 reviews the expectation propagation (EP)
method in the context of distributed inference. Supporting the theme in
publications I, ITI, and IV, Chapter 3 introduces the problem of estimating
the predictive performance of a model with a focus on the LOO-CV estim-
ate. Chapter 4 further studies the LOO-CV estimate by discussing the
problem of estimating the uncertainty related to the LOO-CV predictive
performance estimator in different problem situations while summarising
the main findings and propositions from the associated publications III

12
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and IV. As reviewed in Publication I, Chapter 5 combines concepts from
all the other chapters to discuss various approaches for approximating
the LOO-CV estimate in the context of Gaussian latent variable models
(GLVM). Finally, Chapter 6 concludes the introductory part by discussing
the main contributions of the dissertation.

13






2. Expectation propagation

Expectation propagation (EP) is a popular iterative algorithm for approx-
imating a factorisable density with a density from a parametric family
distribution. Opper and Winther (2000) first presented the initial idea
of the method and shortly after Minka (2001b,a) presented it in a gener-
alised form. It is often used in Bayesian inference for approximating an
intractable posterior distribution.

Together in a more general group of algorithms called message-passing
algorithms, EP provides convenient means for distributed inference on
graph-structured models (see for example Pearl, 1986; Minka, 2001b; Chen
and Wand, 2020). Publication II discusses and reviews this aspect and
reflects it to a generalised setting of applying probabilistic programming
to conveniently carry out the local inference on each partition. In addition,
Publication II illustrates how applying EP for distributed inference in
the context of hierarchical models can often be used to reduce the local
dimensionality of the problem, which can offer drastic benefits in some
high dimensional problems.

This chapter briefly presents the method and discusses its application
in Bayesian inference. Following the discussion in Publication II, the ap-
plication of the method for distributed inference is discussed, in particular
in the context of hierarchical models. First, the algorithm is introduced
and formulated in Section 2.1. Then Section 2.2 presents some general
considerations related to the algorithm and Section 2.3 considers the pos-
sibilities EP offers in the context of distributed Bayesian inference. Finally,
Section 2.4 discuss EP as a part of the more general framework of message-
passing algorithms and review various extensions and modifications for
it.

2.1 Algorithm

In EP, a target density f(0) is approximated by a density g(0) from some
specified exponential family, such as the multivariate normal. The target

15
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density is assumed to have some factorisation

K
f@ o [ £x0). (2.1)

k=1

Each factor f3(0) is assigned a respective approximation g(0) from the
selected family of distributions and the target density is approximated
with their product:

K
g0 [ £r0). (2.2)
k=1

Exponential family distributions have the following property: a product
or division of two distributions from an exponential family is an unnorm-
alised distribution from the same family. Thus g(0) is also a distribution
in the same selected family (see for example Minka, 2001b). The approx-
imation g(0) is referred to as the global approximation and each factor
f£(0) in the target density together with the respective factor g;(6) in the
approximation are referred to as the sites.

The algorithm iteratively updates each site approximation g(0) by fixing
other site approximations and considering the current target site factor
f2(0). Accordingly, following the common terminology in EP literature (see
for example Gelman et al., 2013, Section 13.8, p. 339), let

g(0)

_r(0) 0)=—-— 2.3
gk «ggt @ (2.3)

be referred to as the cavity distribution, and let
g\r(0) x fr(0)g_1(0) (2.4)

be referred to as the tilted distribution. The cavity distribution in Equa-
tion (2.3) belongs to the selected approximating exponential family but the
tilted distribution in Equation (2.4) depends on the target site factor £(0)
and is thus not restricted to be in this family. The algorithm is described
as following:

1. Initialise each site approximation g(0).

2. Repeat for each site £ € {1,2,...,K} in any order, sequentially or asyn-
chronously in parallel, until the global approximation g(f) and the
site approximations converge:

(a) Compute the cavity distribution g_;(0).

(b) Update the site approximation g.(0) so that the moments of the
new global approximation g(6) o g;(6)g_;(0) match the moments
of the tilted distribution g\.(0).

16
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2.2 General considerations

Due to the exponential family restriction, the global approximation g(0)
and the cavity distribution g_;(6) in the EP algorithm, which comprises of
products and divisions of the site approximations g;(0), are easy to obtain
by summation or subtraction of the respective natural parameters of the
distributions. This makes it easy to carry out step 2.a in the algorithm and
to form the new global approximation after a site approximation has been
updated in step 2.b.

The moment-matching step 2.b in the algorithm corresponds to minim-
ising the KL-divergence KL(g\;(0)|| g(8)) (Minka, 2001b). Depending on
the form of the target site factor f,(0) and the selected approximating
distribution family, this step involves a potentially complex operation of
inferring the moments of the tilted distribution.

In Bayesian context, EP is often applied to approximate the posterior
distribution; the target density f(0) corresponds to the posterior distribu-
tion p(0 | y), and each factor f(0) corresponds to a likelihood component
p(yz 1 0) or to the prior p(9). The likelihood components assigned to each
factor f5(0), p(y; | 0) needs to be independent given the model parameters
0. Usually, one factor f}, is assigned to one observation, but as discussed
in Publication II, multiple observations may be combined into one factor,
which may provide various computational or structural advantages as later
discussed in Section 2.3.

In some problems, the inference on the tilted distribution can be carried
out analytically, but often approximative methods need to be used. In the
context of Gaussian latent variable models (GLVM) in particular, discussed
in more detail in Chapter 5, analytic solution is often available (see for ex-
ample Opper and Winther, 2000; Minka, 2001b; Rasmussen and Williams,
2006, Section 3.6) or relatively efficient and quick numerical integration
can be adopted (see for example Zoeter and Heskes, 2005). In some prob-
lems, however, one must resort to more complex approximative methods.
Possible approaches include, but are not limited to, various mode-based
approximation (for example the Laplace propagation Smola et al., 2004,
shown to work well in many settings Rue et al., 2009), variational approx-
imations (see for example Winn and Bishop, 2005), nested EP (Riihiméki
et al., 2013; Hernandez-Lobato and Hernandez-Lobato, 2016), or simula-
tion based approximations (such as Hamiltonian Monte Carlo (HMC) using
the Stan probabilistic programming language (Carpenter et al., 2017)).

As indicated in the algorithm description, updating the site approxim-
ations in step 2 in the algorithm can be carried out sequentially or in
parallel. The sites can also be updated asynchronously by initialising
an update for a site using the latest approximations for the other sites.
However, in this case, it is sensible to ensure that at least some other site
approximation is updated between two concurrent updates for one site.
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Expectation propagation

While in the EP algorithm, each update of the site approximation minim-
ises the KL-divergence from the tilted distribution to the global approxim-
ation, it is not guaranteed that the KL-divergence from the target density
to the global approximation is minimised. Furthermore, while being a
fixed-point algorithm, is not guaranteed that the EP algorithm converges.
Damping the updates of the site approximations can be used to mitigate
these problems (Minka and Lafferty, 2002; Minka, 2005). In a damped site
update, the site approximation in step 2.b of the algorithm is set to

™" 1Y) o g0y 0 gpev o), (2.5)
where a damping factor 6 € (0,1] controls the step size of the update. In
particular, damping is often necessary when the site updates are carried
out in parallel; without damping, parallel EP updates often result in
a global approximation that is deviated with respect to the sequential
EP (Minka and Lafferty, 2002; Jylanki et al., 2011). Smaller damping can
be used to avoid the error in the approximation while at the same time the
convergence time is increased. Publication II discusses and demonstrates
that it could be possible to use greater damping factor ¢ in the beginning
for speedy start and reduce it during later iterations in order to avoid
convergence problems and errors in the approximation.

2.3 Data partitioning

As discussed in Section 2.2, in Bayesian context EP has been usually
applied to approximate the posterior distribution by allocating one EP site
approximation for each observation likelihood factor p(y; | 6). However, as
discussed in Publication II, using one site to approximate the likelihood of
multiple observations might offer various beneficial possibilities, namely
speed and memory efficiency via distributed inference and dimension
reduction in hierarchical settings. The following sections 2.3.1 and 2.3.2
respectively discuss these subjects in more detail.

2.3.1 Distributed setting

The EP algorithm conveniently work as a tool for distributed inference:

(a) The site updates in the EP algorithm in step 2 in the algorithm can
be run in parallel.

(b) Because each site considers only the respective target factor f(9),
the data can be distributed to separate units.

(c) The information necessary to be shared among the sites between the
iterations consists of distribution parameters of the selected approx-
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imating family, for which the size depends only on the dimensionality
of the parameter space.

(d) For convenience and generalisability, the inferences on the sites can
be carried out approximately by utilising probabilistic programming.

Publication II discusses and shows experimentally, that increasing the
number of sites offers possibilities for speed and memory efficiency while
potentially increasing the error in the obtained global approximation. A
desired partitioning of the data set can be applied to obtain a suitable trade-
off between error in the approximation and the speed in the inference.

In some situations, the data and/or inference is distributed into condi-
tionally independent sets by nature, for which distributed inference can be
directly applied using EP. For example, as discussed in Publication II, EP
can be used to combine multiple inferences of the same parameter carried
out in different institutions. Motivation/reason for the separate inferences
could be for example the complexity of the separate inferences as such or
data privacy.

Various other generalisable distributed divide-and-conquer methods has
been proposed for Bayesian inference (Ahn et al., 2012; Hoffman et al.,
2013; Wang and Dunson, 2013; Neiswanger et al., 2014; Balan et al., 2014;
Scott et al., 2016). As discussed in Publication II, one of the typical prob-
lems in the distributed Bayesian inference methods is the inappropriate
conveying of the prior information to the separate inference units; either
the prior p(0) is distributed to each unit as such, in which case the com-
bined inference may contain too much prior information, or the prior is
reduced to p(0)VK, in which case the site-specific prior is too weak for
good inference (see for example Gelman et al., 1996, 2008; Barthelmé and
Chopin, 2014). In EP the prior information is naturally included as such
in each of the site inferences without the aforementioned side-effects. Pub-
lication IT compares the EP algorithm to the consensus Monte Carlo (MC)
algorithm in a simulated hierarchical logistic regression problem setting.
The results indicate that EP achieves better approximation accuracy with
a comparable speed in all tested partitioning rates.

In addition to the speed and memory efficiency, the advantages of EP in
a distributed setting come in the natural sharing of the information among
the sites between iterations. Figure 2.1 demonstrates this computational
benefit. A site receives information from the other sites via the cavity
distribution, which operates as a prior for the current site update. Similar
to a prior in conventional Bayesian inference, this information can indicate
the area of importance for which the computation can be focused on.
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Figure 2.1. Sketch illustrating the benefits of EP in Bayesian computation. In this simple
example, the parameter space 6 has two dimensions, and the data have been
split into five pieces. Each oval represents a contour of the likelihood p(y;,16)
provided by a single partition of the data. Simple parallel computation of each
piece separately would be inefficient because it would require the inference
for each partition to cover its entire oval. By combining with the cavity
distribution g_;(6), we can devote most of our computational effort to the area
of overlap. Figure adopted from Publication IT (Figure 2, p. 9).

2.3.2 Hierarchical setting

Using EP in hierarchical models can substantially reduce the parameter
space on the site inferences and on the global approximation. By allocating
all the likelihood components considering certain model parameters in
one site, the corresponding parameter does not need to be shared to the
other sites and to the global approximation. Only the parameters that
affect multiple sites need to be included in the global approximation. If the
inferences for the local parameters are needed after convergence, they can
be obtained separately from the respective sites, or a joint sample can be
generated as discussed in Publication II in Section 4.2.

The reduced dimensionality of the problem provides efficiency and allows
modelling problems with big parameter spaces. Publication II features an
example by Sahai (2018), in which a hierarchical problem in the field of as-
tronomy comprising of 3258 parameters is approximated with EP using 30
sites each performing inference on 288 parameters: 18 parameters shared
among the sites and 270 local parameters. In the concerned problem, by
increasing the number of sites into the number of hierarchical groups, the
local parameters could be further reduced to only 9 per site resulting in a
total of 27 parameters per site.
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2.4 Generalisations

As mentioned at the start of Chapter 2. EP belongs to a more general
class of algorithms called message-passing algorithms (Minka, 2005). In
this general form, the approximating distributions are not restricted to
any family and, instead of minimising the KL-divergence from the tilted
distribution to the global approximation by matching the moments, the
step 2.b in the algorithm can more freely be defined to update the global ap-
proximation so that it approximates the tilted distribution, not necessarily
by minimising any divergence measure.

The algorithmic definition of restricting the family of approximate dis-
tributions is useful in making the algorithm efficient due to the simple
calculation of the tilted and cavity distributions and easy information
sharing between the sites. The KL-divergence minimisation definition
of step 2.b in the EP algorithm is also convenient and relatively easy to
implement due to the simple moment-matching in the case of exponential
approximating distribution family (Minka, 2001b). However, in particular
for the latter algorithmic definition, various other implementations have
been proposed. The following summarises some of the key approaches
discussed in more detail in Publication II.

Minka (2004) propose an algorithm called power-EP, in which the KL-
divergence minimisation in step 2.b in the EP algorithm is generalised,
without losing the flexibility in the inference method, to a minimisation
of the a-divergence with a tunable parameter «. In particular, when a =1,
the divergence corresponds to KL(g\%(0)||g(0)) used in EP, and when a =0,
it corresponds to inverse KL-divergence KL(g(0)|| g\x(0)) also adopted in
variational message-passing algorithms (Winn and Bishop, 2005). Greater
values of a result in site updates that consider the whole parameter space
of the tilted distribution in the approximation, whereas smaller values of «
focus on good approximations near a mode of the tilted distribution (Minka,
2005). The mode focusing behaviour could be useful in situations when the
tilted distribution is multimodal. Because of this flexibility, power-EP has
shown to be more robust than EP in various situations, such as when the
approximating family is ill-fitting (Minka, 2005) or when the prior is too
vague (Seeger, 2008).

EP and the general message-passing algorithm framework does not
ensure convergence. An alternative approach, which could also provide
more reliable convergence properties, is to apply some energy optimisation
method to the objective function with stationary points corresponding to
the fixed point of some message-passing algorithm. Hasenclever et al.
(2017) propose a method called stochastic natural gradient expectation
propagation (SNEP), which is constructed by optimising the objective
function of power-EP to get another message-passing algorithm with the
corresponding optimum. Similar to the EP and power-EP, SNEP can

21



Expectation propagation

also be applied to use various inference methods in the sites, such as the
conveniently generalisable MCMC. The SNEP method can be considered
as a mean parameter space version of the power-EP, which updates the
sites in the natural parameter space instead.

Because of the factorised nature of the message-passing algorithm, it
is not necessary to define the algorithm consistently for each site. It is
possible to use different methods of inference or approximation criteria for
each site while using the same concept of cavity and tilted distribution to
convey information between the sites. The method and criteria can also
be changed during the iterations. For example, Publication II discuss the
possibility of using EP with the moment matching in the early iterations for
faster start and switching to use a compatible algorithm called stochastic
natural gradient expectation propagation (SNEP, Hasenclever et al., 2017)
for more reliable convergence.
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3. Bayesian leave-one-out
cross-validation

Evaluation of the predictive performance of a model is an important opera-
tion used in the Bayesian computational analysis workflow. The obtained
accuracy or loss measure can be of interest by itself, for example when
evaluating a forecast, or it may be used to compare two or more models
in the process of selecting the applied model or exploring for possibilities
improvements (see for example Vehtari and Lampinen, 2002; Vehtari and
Ojanen, 2012; Gelman et al., 2013; Vehtari et al., 2017). In addition, it can
be utilised in model averaging (see for example Geisser and Eddy, 1979;
Gelfand, 1996; Madigan et al., 1996; Hoeting et al., 1999; Ando and Tsay,
2010; Yao et al., 2018).

In general, there are various approaches to setting up a model for a
problem. One typical approach or involve starting off with a simple model
and iteratively extend it while comparing the simpler one to the more
complex one. In this nested model comparison setting, one ultimately
decides on the level of complexity on the model while considering the
advantages and disadvantages of the complexification (see for example
Piironen et al., 2020). Another typical problem setting involves comparing
non-nested models, where neither model is able to generalise into the other,
as in the case of regression models using different sets of predictors (see
for example Vehtari and Ojanen, 2012).

Ideally, the predictive performance of a model would be measured in the
context of the mechanism that has generated the given data in general,
instead of predicting the observed data set, the measure would reflect the
performance of a model for a new unobserved data set. The motivation
for this out-of-sample analysis is in putting models with different abilities
to fit the given data, for example by the flexibility due to an increased
number of parameters, to a common scale. As the true underlying data
generating mechanism is not known in practice, in order to evaluate such
an out-of-sample predictive performance measure, one needs to resort to
various approximative methods. Leave-one-out cross-validation (LOO-CV)
is one such a popular method (see for example Arlot and Celisse, 2010).

The LOO-CV estimation involves various problematic aspects, some of
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which are addressed in publications I, ITI, and IV. First, the naive approach
of obtaining this estimate requires fitting the model once for each obser-
vation in the data set, which can be overly time-consuming. Publication I
discusses different fast approximations of the LOO-CV estimate in the
specific context of Gaussian latent variable models. Second, estimating
the uncertainty related to a LOO-CV estimate is a complex task and the
currently popular approach often underestimates the uncertainty. Publica-
tion IIT study the behaviour of the LOO-CV estimate and the uncertainty
in Bayesian model comparison and alleviates problematic situations. The
problem is analysed both theoretically and experimentally in the case
of linear regression models. Publication IV presents an alternative un-
biased estimator for the variance of the sampling distribution for a simple
Bayesian normal model.

This chapter introduces the LOO-CV problem setting and discusses the
main challenges related to it while reflecting on the studies in the related
publications I, ITI, and IV. The studied predictive performance measure
and the associated LOO-CV estimator are introduced in sections 3.1 and 3.2
respectively. Section 3.3 discusses an alternative, related, and more easily
obtainable approach for assessing the predictive performance, the widely
applicable information criterion (WAIC), and contrasts it to LOO-CV. Sec-
tion 3.4 further discusses how, being relatively time-consuming to obtain,
LOO-CV can be estimated in practice.

3.1 Measuring predictive performance

Various measures of predictive accuracy exist, some of them being more
application-specific, such as the classification accuracy, and others gen-
erally applicable, such as the log predictive density also known as the
log-score. This work focuses on the latter measure. The log-score is a
commonly used strictly proper and local scoring rule: the expected score is
uniquely maximised by the true forecaster and the rule depends only on
the forecaster at the realised predicted event (Gneiting and Raftery, 2007;
Vehtari and Ojanen, 2012). The former property suggests honesty in the
forecast in order to maximise the score and the latter property allows some
bad forecasts to be penalised more than others.

Consider a data set of n observations y =[y1,ys,...,¥,], a stochastic vari-
able with probability distribution pi,..e(y) representing the true data gen-
erating mechanism, and its realisation y°P® corresponding to an observed
data set. The within-sample measure for the predictive performance with
log-score is the log pointwise predictive density (Ipd):

Ipd (M, | y°°%) Zlogm(y"bs %), (3.1)
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where log p;(y; | y°P%) is the posterior predictive log density for the evaluated
model M, fitted for data set y°PS. For readability, the conditioning on
possible covariates is omitted in the notation. Using the log-score, we
define an out-of-sample predictive performance measure for evaluating
the model M;, in the context of the observed data set and the underlying
true data generating mechanism (Vehtari and Ojanen, 2012; Vehtari et al.,
2017); given y°PS and pe(y), the expected log pointwise predictive density
(elpd) is

n
elpd (M | y°*5) = / Pirue(y:)10gpr(yi | y**)dy; (3.2)
i=1

The elpd measure defined in Equation (3.2) evaluates the predictive
performance of a model for a new possible data set that could have been
observed. It works in the context of a specific observed data set and
respective true data generating mechanism. Thus this measure is of
interest in the application-oriented setting, when evaluating a model or
comparing models for a specific task with the one observed data set. In the
algorithm oriented setting, one is interested in evaluating the predictive
performance of a model when applied to any possible observed data set.
In these cases one would instead use the expectation of elpd (e-elpd) over
possible data sets y that could be observed as the predictive performance
measure:

e-elpd(My,) =E, [*Velpd (M | y)] . (3.3)

Here the notation V--- is adopted from Publication III to remind that a
term is a stochastic variable. This dissertation focuses on studying the
elpd measure.

3.2 Leave-one-out cross-validation

The elpd and e-elpd predictive performance measures defined in equa-
tions (3.2) and (3.3) respectively involve the true data generating mech-
anism pypue(y). As this distribution is usually not known in practice, elpd
and e-elpd needs to be approximated (Bernardo and Smith, 1994; Vehtari
and Ojanen, 2012). However, an estimator for elpd suffices also as an
estimator for e-elpd as elpd itself is an estimator for e-elpd. Due to the
double use of the data (constructing the posterior and predicting), the
within-sample predictive accuracy measure lpd presented in Equation (3.1)
is a biased estimator for elpd; typically a model tends to be more accurate
in predicting the data used for training the model than some future data
from the same data generating mechanism. If directly applied to select a
model without any adjustment for the complexity, it leads to overfitting as
more complex models tend to be more adaptive for the training data.
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Cross-validation (CV) is a popular general approach for estimating elpd
and other predictive performance measures. In CV, a subset of observations
is left out of the data to use as an out-of-sample validation set while using
the rest of the observations to train the model. The splitting of the data
set is applied multiple times with different partitioning and the results
are combined. K-fold CV involves evenly splitting the data set into K
parts, where each part is used once as the validation set for the model
trained using the rest. In leave-one-out CV (LOO-CV), K =n so that each
observation is in turn left out of the data.

For approximating elpd (M}, | y°°%), the LOO-CV estimate is formulated
as

elpd, o0 (Mg | ) Zlogpk( sy, (3.4)

where
log p (y9°5] %) —log/pk(y?bsle)pk(ﬁly"bs) do (3.5)

is the leave-one-out (LOO) predictive log density for the ith observation
y?bs with model M, fitted for the data yﬂki’s consisting of all the other
observations.

Similar to the within-sample measure lpd presented in Equation (3.1),
the LOO-CV estimator Selpd, (Mg | y) presented in (3.4) uses the data
twice. However, the cross-validation approach in LOO-CV addresses the
problem of overfitting by never using an observation to predict itself. The
LOO-CV estimator is consistent under mild assumptions, almost unbiased,
and usually the bias decreases when the data size n grows (Arlot and
Celisse, 2010, Section 5.1; Watanabe, 2010b).

When the objective of the predictive performance estimation is to com-
pare models, the LOO-CV estimator can be directly applied to estimate
the difference of the predictive performances of the models as the differ-
ence of the individual LOO-CV estimates; the difference of the predictive
performances of models M, and M, fitted for the same data set y°Ps,

elpd (Mg, Mp | y°%) = elpd (M, | y°°%) —elpd (Mj | y°°) (3.6)
is estimated using LOO-CV as

e/l-ﬁiwo (Ma,Mb | yobs) = e/l-liimo (Ma | yobs) - e/l-p\dLOO (Mb | yobs)

n
— Z <logpa (y?bs‘ygll?s> —log pp ( 0bs|yobs)>
i=1
n —_— —_
= Z (eldeoo,i (Ma | yobs) - eldeOO,i (Mb | yObS)>

i=1

n
= " elpdy0; (Mo, My | 5°%). (3.7)
i=1
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Later on in the dissertation, together with functions accepting either a
single model f(M;, | y) (model evaluation) or two models f(M,,M, | ¥) (model
comparison), notation f(-|y) is used to denote either one of these cases
interchangeably but consistently so that always - = M, or - = M,,M; in one
set of equations.

3.3 Widely applicable information criterion

An alternative approach for approximating elpd is to use the corresponding
within-sample predictive accuracy measure lpd defined in Equation (3.1)
either as such or with various adjustments. Widely applicable information
criterion (also known as Watanabe-Akaike information criterion, WAIC)
is one such a method, in which Ipd is penalised with a term pwaic, often
called the effective number of parameters, reflecting the complexity of the
model being fit (Watanabe, 2010a,b):

elpd,yye (My | y°2%) = 1pd (My, | y°P%) - pwaic.- (3.8)

Two versions of the correction term pwaic has been proposed: one which is
based on the difference between the training and the Gibbs utility,

DWAIC,G = 2 Z (log (Epost[p(¥:16)1) — Epostllog p(y; |9)]) , (3.9
=1

and one which is based on the pointwise variance of the terms in the log
predictive density,

PWAICY = Y, VaTpest(p(3i10)), (3.10)
i=1

where Epst and Varp,s indicate the expectation and variance over the pos-
terior distribution of 0 respectively. Gelman et al. (2014) analyse popular
information criteria, including WAIC, and compare their behaviour both
theoretically and in practice. As discussed for example in Publication I and
as experimentally demonstrated by Gelman et al. (2014), using pwaicv as
the correction term is preferable to pwaic ¢ due to closer connection to the
LOO-CV via series expansion analysis.

Similar to the LOO-CV, WAIC is a consistent estimator for the elpd under
mild assumptions and it is asymptotically equivalent to the Bayesian LOO-
CV estimator (Watanabe, 2010b). However, as discussed in Publication I
and by Gelman et al. (2014) and by Vehtari et al. (2017), LOO-CV has been
found to be more robust than WAIC due to WAIC ignoring higher-order
terms, which may be of significance in the finite data domain.
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3.4 Fast approximations to LOO-CV

The naive way of evaluating the LOO-CV estimate involves fitting the
model for n different data sets, which can be a costly process. In order to
reduce the computational burden, various approximations for the LOO-CV
estimate with smaller computational cost has been proposed. First, being
asymptotically equivalent to LOO-CV, WAIC discussed in Section 3.3 can
be considered as a fast approximation for LOO-CV. Other methods include,
but are not limited to, various sample-based methods, methods based on
EP or Laplace approximation, and numerical integration.

One popular approach is to use importance sampling for estimating the
LOO-CV estimate, utilising the full posterior as the proposal distribu-
tion (Gelfand et al., 1992). Pareto smoothed importance sampling further
stabilises the obtained weights while providing means for estimating the
reliability of the estimate (Vehtari et al., 2019). Additionally, one can apply
various adaptive importance sampling techniques, such as implicitly ad-
aptive importance sampling (Paananen et al., 2020), or sub-sampling (Mag-
nusson et al., 2019, 2020). The full posterior can be approximated using for
example HMC using the Stan probabilistic programming language (Car-
penter et al., 2017). Alternatively, Magnusson et al. (2019) propose to use
Laplace or variational posterior approximations.

The EP method reviewed in Chapter 2 has a connection to the LOO-CV
estimate via its cavity and tilted distribution. When applied to approx-
imate the fully pointwise factorised likelihood, the cavity distribution
presented in Equation (2.3), representing the contribution from all but
one likelihood factor, can be considered as an approximation for the LOO
posterior distribution:

pOly_;)=g_i0). (3.11)

Respectively, the LOO predictive density corresponds to the marginal
likelihood of the tilted distribution:

p(yily-i)= /p(yi |0)g_;(6)do. (3.12)

In a converged EP algorithm, the cavity distribution has been determined
using all the observations and thus g_;(0) is technically not independent of
the observation y;. Opper and Winther (2000) show that the EP method is
LOO-CV consistent.

Although not used for approximating the LOO-CV estimator, an analog-
ous approach involving Laplace approximation instead of EP was discussed
by Cseke and Heskes (2011). Publication I utilises this for LOO-CV ap-
proximation while providing proof of LOO-CV consistency.

Another approach for approximating the LOO-CV estimate is to use nu-

-1
merical integration to approximate p(y; | y-;) = ( i ;’((y@illy@)) dB) (Held et al.,
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2010). Publication I adopts this method for Gaussian latent variable mod-
els (GLVM), in which the integral can be simplified to one-dimensional
quadrature approximation, and proposes a method for further stabilising
the errors in the tails.

Publication I discusses and compares various fast LOO-CV approxima-
tions in the context of GLVMs. Estimating the LOO-CV in this context is
discussed in more detail in Chapter 5.
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4. Uncertainty in LOO-CV

As discussed in Chapter 3, LOO-CV is a popular method for estimating the
predictive performance (see for example Arlot and Celisse, 2010; Vehtari
and Ojanen, 2012). The method is subject to the uncertainty arising from
the estimation of the data generating mechanism pi,4e(y;) in Equation (3.2)
using the finite observed data set y°PS. In order to rigorously interpret the
obtained LOO-CV estimate, the associated uncertainty should be taken
into account. Reflecting the analysis presented in Publication III, this
chapter discusses this uncertainty and its estimation. In particular, various
problematic cases, in which the LOO-CV estimator behaves problematically
and/or the uncertainty is hard to estimate, are identified and reflected to
the usage of the LOO-CV method.

It is known that, while the LOO-CV estimator is (under reasonable
assumptions) asymptotically unbiased, its variance can be big (see for
example Breiman, 1996; Arlot and Celisse, 2010, Section 5.2.1). The
variance is affected by the problem setting and, as discussed by Arlot
and Celisse, in particular by the stability of the learning algorithm. In
this consideration, LOO-CV is well suited for Bayesian methods as they
tend to be stable due to integrating over the uncertainty in the posterior
distribution. However, model misspecification may cause instability also
for Bayesian methods. In addition, as demonstrated for example by Vehtari
et al. (2017), due to the smoothness of the log score, the variance in LOO-CV
is usually lower than in K-fold CV in a Bayesian context.

Considering the possible high variability, in order to draw rigorous conclu-
sions about a LOO-CV estimate, the uncertainty of the obtained estimate
should be taken into account. In the case of evaluating the performance of a
single model, the uncertainty can be indicated for example by error bars on
the estimated predictive performance, and in the case of model comparison,
the uncertainty might be used to estimate the probability of one model
having better predictive performance than the other. As demonstrated
in Publication IIT both theoretically and experimentally, by analysing the
frequency properties of the LOO-CV estimator over possible data sets that
could have been observed, the uncertainty of the LOO-CV estimate can
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be significant especially in small sample sizes, when comparing models
which produce similar predictions, and when the model(s) are misspecified
with regards to the data generating process. Publication III also discusses
that, in addition to the high LOO-CV variance, in these situations the
estimation of the variance is also problematic.

Despite being asymptotically unbiased, when applied in a model selection
problem setting by selecting the model with best LOO-CV estimate, the
selection process induces bias into the resulting LOO-CV estimate of the
predictive performance of the selected model. Due to this selection-induced
bias, considering the uncertainty is particularly important in the typical
nested model selection problem setting, where neglecting the uncertainty
leads to overfitting (Piironen and Vehtari, 2017).

This chapter discusses the uncertainty of the LOO-CV estimator and
indicates various problematic aspects, which makes it hard to estimate
this uncertainty. First, Section 4.1 introduces an applied approach for rep-
resenting the true uncertainty of the LOO-CV estimator. Then, Section 4.2
presents the current popular ways of estimating the uncertainty and high-
lights the problems associated with them later investigated in Sections 4.3—
4.6. Finally, Section 4.7 draws some conclusions on the consequences of
these behaviours on using LOO-CV in practice and interpreting its results.

4.1 Formulating the uncertainty

The uncertainty of the LOO-CV estimator can be formulated in different
ways. This dissertation assumes the following generally applied inter-
pretation, which is also studied in Publication III; given a data set y°Ps,
the stochastic variable representing the uncertainty about elpd(- | y"bs),
either for model evaluation or for model comparison, when estimated with
e/II;iLoo(' | yobs) is

Sve/lgamo(' | yObS) = e/l-I;iLOO(. IyObs) - SverrLoo(' |y) , (4.1)
where
sver'I'Loo(' | y) = Sve/h;lmo(' |y) - Svelpd(' | y) (4.2)

is the distribution of the approximation error over possible data sets from
the respective data generating mechanism. Appendix A in Publication III
discusses the differences in the uncertainty when LOO-CV is used to
estimate e-elpd instead of elpd and Appendix B in Publication III discusses
various other approaches for formulating the uncertainty.
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4.2 Estimating the uncertainty

Currently, there are two popular ways of estimating the uncertainty of a
LOO-CV estimate presented in Equation (4.1): the normal approximation
and the Bayesian bootstrap approximation (Vehtari and Lampinen, 2002;
Vehtari and Ojanen, 2012; Vehtari et al., 2017; Yao et al., 2018). In the

normal approximation, S"erli;dwo(- | yObS) is approximated with
“elpd,o (-1 ™) ~ N(elpdyoq (- 15°%), SEuoo (- 15™) ), (4.3)
where
—~ 2 N — 1o~ — 2
SEwoo(-15°%)" = H;(elpdwo,i (-15°%) - ;;elpdmo, (1)), @4y

the sample variance of the individual LOO-CV terms multiplied by n, is
an estimate for the variance of SVe/lﬁlLOO (-1¥). The Bayesian bootstrap ap-
proximation applies a Dirichlet distribution to the terms e/lp\dmo,i ( | yobs),
i=1,2,...,n to model their sum and uses that as an approximation for the
uncertainty (Rubin, 1981; Vehtari and Lampinen, 2002). For a good estim-

obs)

ator for the uncertainty, the distribution of S"el?zlmo ( |y over possible

data sets is a good representation of elpd (- | y°P%):

p(sva/p:dmo(- | y))=p(svelpd(- | y)). (4.5)

For this, the calibration of the estimator can be analysed by the probability
integral transform (PIT) method (see for example Gneiting et al., 2007).

As discussed in Publication III, estimating the uncertainty of a LOO-
CV estimate, presented in Equation (4.1), is problematic due to multiple
reasons:

1. No unbiased estimator for the variance of the sampling distribution
Velpd, o, (- | ¥) exist in general (Bengio and Grandvalet, 2004).

2. The sampling distribution “elpd, ,, (- | y) may be highly skewed.

3. The connection between the sampling distribution SVe/lﬁlmo (‘1y) and
the uncertainty 'elpd,, (- | y°**) may be weak.

While the normal and Bayesian bootstrap approximations are easy to
obtain, the aforementioned aspects affect the behaviour of these approx-
imations so that they may be badly calibrated in some situations. In the
model comparison setting, the problematic cases include, but are possibly
not limited to,

1. small data size,

2. models that make similar predictions, and
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Demonstration of the estimated uncertainty in different problem settings
in two cases: near the mode (labelled with 1) and at the tail area (labelled
with 2) of the distribution of the predictive performance and its estimate.
Parameter fp controls the difference in the predictive performance of the
models, n corresponds to the size of the data set, and p« r to the magnitude
of an outlier observation. The experiments are described in more detail
in Section 4 in Publication III. In the plots in the first column, the green
diagonal line indicates where *Velpd (Mg, Mp | y) = SVelpd; oo (Ma, My | y) and
the brown-yellow lines illustrate density isocontours estimated with Gaussian
kernel method with bandwidth 0.5. Bayesian bootstrap approximation to the
uncertainty resembles the normal approximation in all the illustrated cases.
Figure adopted from Publication IIT (Figure 2, p. 10).

3. misspecified models.

Apart from the case of models that make similar predictions, in addition to
the model comparison problem setting discussed in Publication III, these
problematic cases are likely to appear also in the case of model evaluation.

Figure 4.1 demonstrates the behaviour of the estimand *'elpd (Mg, Mj | y)
and the LOO-CV estimate *elpd, (Mq,Mp | y) over possible data sets from
a known data generating mechanism in four different model comparison
problem settings: well-behaving setting, models that make similar predic-
tions, misspeciﬁecll\nodels, and small data size. Furthermore, the normal

approximation SvaﬁiLoo (Ma,Mb | y°bs) is compared to the true uncertainty
SVelpd, o, (Ma,Mb | yObS) in two cases in each setting. Various points of in-
terests can be seen from the figure. The following summarises the main

34



Uncertainty in LOO-CV

points:
1. The normal approximation can perform well in clear problem settings.

2. The estimand elpd and the estimator eT;IlLOO can be strongly negat-
ively correlated when the models make similar predictions.

3. Outliers can make the LOO-CV estimator biased.

4. The normal approximation can under or overestimate the uncertainty
in problematic settings.

The following sections 4.3—4.6 further discuss the reasons for the problem-
atic cases.

4.3 Variance of the sampling distribution

The estimator of the variance of the sampling distribution presented in
Equation (4.4) uses the sample variance of the individual LOO-CV terms
e/laiwo,i(- |y, i =1,2,...,n multiplied by n to estimate the variance of
the sum of these terms. This estimate relies on the assumption that
the individual terms S"Jﬁmo,i (‘1) are independent and have the same
variance so that

n n
Var (Z SV‘gp\dLoo,i ( | y)) = ZV&I‘ <SVeTP\dLoo,i ( | y)) = nU%OO > (4.6)

i=1 i=1

where
U%OO :Var(sve/liilLOO’i(' | y)), Vi=1,2,...,n. 4.7)

However, while the assumption of equal variance is reasonable, the as-
sumption of independence of the terms is not; each term S"e/lpTdLoo,,- (-1y)
depends on every observation y; either as a part of the training set or as
the predicted observation. As shown in Proposition 1 in Appendix C.1 in
Publication III, the real variance of the LOO-CV estimator depends also
on the covariance between individual terms:

Var (SVE/II;iLoo ( | y)) = nU%OO +n(n—-1)yLoo, (4.8)

where 0%00 is the variance of a LOO-CV term as defined in Equation (4.7)
and

YLOO = Cov(“eﬁlm,i(- %), elpdy, (- y)), Vi,j=12,...,n,i#j. (4.9)

On the other hand, as shown in Proposition 2 in Appendix C.1 in Public-
~ 2

ation III, the expectation of the estimator SYSE,o0 (-1 ¥)" is no? o — nyLoo-

Consequently, the bias of this estimator is —n%y00. Being simple to obtain

but limited in behaviour, the estimator SV§1\*]L00 ( | y) is referred to as the
naive variance estimator of the sampling distribution.
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4.3.1 No unbiased sample variance estimator in general

A discouraging result by Bengio and Grandvalet (2004) states that, given
the pointwise LOO-CV estimates elpd,, (-|y°°) i =1,2,...,n, for any single
model evaluation - = M; or model comparison - = M,,M,, there is no un-
biased estimate for the variance Var (SVeTp\dLOO(- | y)) They show experi-
mentally that the contribution of y100 can be of the same order of the
contribution of 6% in the variance presented in Equation (4.8) and thus
it should be taken into account. Furthermore, it can be seen from the
theoretically possible values of these terms (Bengio and Grandvalet, 2004,
Lemma 8), that the expectation of the naive variance estimator can be
infinitely too small or big compared to the true variance.

4.3.2 Improved problem specific variance estimators

Although Bengio and Grandvalet (2004) shows that there are no unbiased
estimators for the sampling distribution of the LOO-CV variance in general,
it could be possible to derive such estimators for specific models. Publica-
tion IV presents an unbiased variance estimator in the case of LOO-CV
model evaluation of a simple Bayesian normal model with fixed variance.
While the theorem by Bengio and Grandvalet (2004) deals with estimators
based on the individual LOO-CV terms e/h;lwo“(- |y°%%) i =1,2,...,n, the
estimator in Publication IV utilises the specific model to form the estimate
directly based on the observations y?bs, i=1,2,...,n. The same approach
could be extended to other model settings and LOO-CV model comparison.
However, analytic derivations required for an unbiased or improved estim-
ator might not be possible in more complex problem settings, unlike in the
case of the evaluation of the simple model in Publication IV. In these cases,
some numerical approximation methods could be utilised instead. To our
knowledge, the possibility of problem-specific LOO-CV variance estimators
has not been extensively discussed before in literature.

As shown experimentally for example by Varoquaux et al. (2017) and
Varoquaux (2018), the variance of the sampling distribution is often con-
siderably underestimated in the model evaluation case using the naive
variance estimate in the normal approximation. Furthermore, publica-
tion IV studies the bias theoretically under an example problem setting.
Figure 4.2 illustrates the relative bias of the naive estimator and the
improved estimator proposed in Publication IV in the scale of standard
deviation. In this example problem setting, the theoretical expectation of
the naive estimator is around 0.95, 1.15, and 0.8 times the true standard
deviation when applied with well-matching, under-dispersed, and under-
dispersed skewed heavy-tailed data respectively (0.9, 1.3, and 0.6 in the
scale of the variance). The proposed improved estimator is unbiased in all
these cases. Furthermore, Publication III identifies similar behaviour also
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Figure 4.2. The expectation of the naive and unbiased LOO-CV variance estimators

02, estimated using Bayesian bootstrap (BB, Rubin, 1981) in a simulated
experiment under three different data generating mechanisms: well matching,
under-dispersed, and under-dispersed skewed heavy-tailed data respectively.
More information on the problem setting can be found from Section 3 in
Publication IV. The x-axis is transformed to the square root of the ratio to
the LOO-CV estimator’s true variance oZ,,. The analytic expectations (blue)
match the simulated results (yellow) in all cases. The BB uncertainty is
illustrated using a dot and a line corresponding to the mean and 95 % credible
interval respectively. The naive estimator underestimates or overestimates
the variance while the proposed improved estimator is unbiased. Figure
adopted from Publication IV (Figure 1, p. 5).

for the model comparison case and for the Bayesian bootstrap approxima-
tion.

While exact unbiasedness itself is not necessary for a well-calibrated
uncertainty estimator, it often connects to badly represented variability
and bad calibrations. Figure 4.3 illustrates the connection of the bias to
the other problematic properties affecting the calibration in a simulated
Bayesian linear regression model comparison experiment adapted from
Publication III. However, the calibration is also affected by other properties
of the estimator and thus small bias—relative to the true variance of the
sampling distribution—might not be problematic. Deriving improved
problem-specific estimators of the variance, not necessarily unbiased ones,
would likely also improve the calibration of the estimated uncertainty as
a whole when applied to the normal approximation instead of the naive
variance estimator. More research is needed for exploring the possibilities
for such estimators and their effect on the calibration.
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Figure 4.3. The relative expectation of the naive LOO-CV variance estimator o2, in the
scale of standard deviation as a function of the data size n in a model compar-
ison problem setting for different magnitude of non-shared covariate effects .
The models make more similar predictions when S, is small. The expectation
is illustrated relative to the true variance o, of the sampling distribution

SVelpd; oo (Ma,Mb | y) and the error distribution SVerr; oo (Ma,Mb | y) The figure
is adapted from the results of the experiments in Section 4 in Publication III.
More details of the problem setting are given in the original work. Large bias
in the variance estimator for the sampling distribution occurs together with
a larger magnitude of skewness and underestimated variability in the error
distribution. The problematic cases occur when g, is small or with small
sample sizes n.

4.4 Skewness of the sampling distribution

When estimating the uncertainty of a LOO-CV estimate, presented in
Equation (4.3), estimating the variability, as discussed in Section 4.3, plays
a great role. However, using only the variance in describing the uncertainty
is a limited approach. In particular, when the estimated distribution
is skewed and possibly heavy-tailed, variance as such is insufficient at
representing the uncertainty. Even if the variance could be accurately
estimated or known, the calibration of the estimated uncertainty can be
very bad.

Publication III studies the possible skewness of the LOO-CV estim-
ate and the error in a model comparison case, s"eT};)\dLOO (Ma,Mz7 | y) and
SVerrio0 (Ma, M | ) respectively, both theoretically and experimentally in a
simulated case study with known data generating mechanism. The results
of the simulated experiment show that these distributions can be consid-
erably skewed in the problematic cases of small data and models with
similar predictions and situationally in the case of model misspecification.
Figure 4.4 illustrates the skewness for a model comparison problem setting
as a function of n with varying degree of difference in the predictions of
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Figure 4.4. Illustration of the skewness conditional on the design matrix X for

SVelpd; oo (Ma,Mp | ¥) as a function of the data size n. The data consist of
an intercept and two covariates. One of the covariates with true effect 5 is
considered only in the model Mj. The models make more similar predictions
when gp is small. The solid lines correspond to the median and the shaded
area illustrates the 95 % confidence interval based on 2000 Xs independently
simulated from the standard normal distribution. The problematic skewness
of the error occurs with small n and . It can also be seen that, when g =0,
the magnitude of skewness does not fade away when n grows. Figure adapted
from Publication III (Figure 4, p. 14).

the compared models. Furthermore, the theoretical analysis in the Public-
ation IIT shows that in some cases, the problematic skewness does not fade
away when n grows but converges into a constant nonzero value.

The popular normal approximation to the uncertainty of a LOO-CV es-
timate, presented in Equation (4.3), can not model the skewness of the
estimated distribution. The other popular method, the Bayesian bootstrap
approximation, is able to represent the skewness but has some problems
in modelling skewed and possible heavy-tailed distributions (Rubin, 1981).
Thus these methods may be badly calibrated in some situations. Public-
ation III illustrates this unwanted behaviour in the problematic cases of
skewed distribution. In order to have a robust, well-calibrated estimator
for the uncertainty, the possible skewness should be taken into account in
the estimator.

4.5 Bad connection between the sampling and the error
distribution

Sections 4.3 and 4.4 discuss the difficulty of estimating the variability of the
sampling distribution *'elpd, , (-1¥). Naturally, these problems also affect
estimating the uncertainty SVeTp/dLOO(- | y"bs) presented in Equation (4.1).
However, in addition to the sampling distribution, the true uncertainty is
also affected by the distribution of the estimand SVelpd(- | y). Instead of the
sampling distribution *elpd, (-1y), the error distribution SVerr oo (-|y) is
the distribution of interest in estimating the uncertainty.

Publication III analyses the sampling and error distributions in an ex-
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Figure 4.5. Illustration  of the distributions of *elpdoo(Ma,Mp|y) and
Velpdy oo (Ma,Mp | y°), where y°°8 is such that elpdyoo(Ma,Mp |y°P8) =
E [SVJ@LOO (Mq, M, | y)], for various data sizes n and non-shared covariate

effects fa. The estimated standard deviation (SD) is indicated next to each
histogram. The models make more similar predictions when f, is small.
The yellow lines show the means of the distributions and the corresponding
sample standard deviation is displayed next to each histogram. In the
problematic cases with small n and S,, there is a weak connection in the
skewness of the sampling and the error distributions. For brevity, model labels
are omitted in the notation in the figure. Figure adopted from Publication IIT
(Figure 16, p. 86).

ample Bayesian linear regression model comparison problem setting and
shows that the connection between them can be weak in problematic situ-
ations. Figure 4.5 illustrates these distributions in a few different settings.
It can be seen from the figure, that when the models make similar predic-
tions, the distributions are considerably different. Namely, the standard
deviation of the sampling distribution is smaller than of the error distribu-
tion and they are skewed to the opposite directions. Publication III further
shows that increasing the number of observations decreases the difference
in the standard deviation and more so when there is a larger difference
in the predictions of the models. Because of the possible weak connection
between the sampling and error distribution, even if the sampling dis-
tribution S"eﬂ;iwo(- | ¥) would be known explicitly, it would not yield an
optimally calibrated estimate for the uncertainty.
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4.6 Model misspecification

Model misspecification may affect the behaviour of the LOO-CV estimate
and the estimated uncertainty considerably. Publication III studies this
behaviour both theoretically and experimentally in an example Bayesian
linear regression problem setting involving one outlier observation with
varying magnitude. While LOO-CV is generally asymptotically unbiased,
the introduced outlier affects the convergence rate so that considerable
bias is introduced even with large data sizes. The bias inevitably affects
also the estimated uncertainty so that the calibration is bad; one would
need to learn this bias in order to have good calibration.

In addition to introducing bias, the outlier also affects the skewness of
the sampling distribution *elpd, , (Mq,Mp | ¥) and the error distribution
Verr;o0(Ma, Mp | ¥); increase in the magnitude in the outlier decreases the
magnitude of the skewness. This may situationally work in favour of better
calibration of the estimated uncertainty as, at some level of the magnitude
of the outlier, the positive effect of decreasing the skewness may be more
effective than the negative effect of increasing the bias. Section 4.4 in
Publication III illustrates one such case.

4.7 Consequences of the uncertainty in the estimated uncertainty

As discussed in sections 4.3—4.6, various reasons affect the behaviour of the
LOO-CV sampling and error distributions and consequently the accuracy,
calibration, and usability of the normal and Bayesian bootstrap approxim-
ation. Figure 4.6 illustrates the calibration of these approximations under
various model comparison problem settings. It can be seen from the figure,
that the calibration can be bad in the problematic cases: the models make
similar predictions, there are outliers in the data, or the sample size is
small.

In order to have an improved, robust estimator for the uncertainty with
good calibration, the aforementioned problematic aspects should be taken
into consideration in the estimator. Alternatively, the problematic cases
should be acknowledged and diagnosed so that the uncertainty in the
estimated uncertainty can be dealt with appropriately.

The actions taken upon diagnosed problematic cases vary by the applic-
ation. Nevertheless, as discussed in the Publication III, proper model
checking and expansion should be applied before using LOO-CV in order
to avoid model misspecification in general. In addition, both in the case of
model evaluation and comparison, the possibility for inaccurately estim-
ated uncertainty of the LOO-CV estimate should be taken into account
when the number of observations is small. In the case of model comparison,
when the models make similar predictions, the difference in the predictive
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Figure 4.6. Calibration of the estimated uncertainty S"éﬂ&imo (Mg, My, | y) discussed in
Equation (4.5) for various data sizes n and non-shared covariate effects .
The models make more similar predictions when 5 is small. The histograms

illustrate the PIT values p(s"efli)/dmO(Ma,Mb | y°bs) < elpd (Mg, Mp | y°bs))

over simulated data sets y, which would be uniform in a case of optimal
calibration (see for example Gneiting et al., 2007; Talts et al., 2018). The
yellow shading indicates the range of 99 % of the variation expected from
uniformity. Two uncertainty estimators are presented: normal approximation
and Bayesian bootstrap (BB). Cases with and without an outlier in the data
are presented. The outlier observation has a deviated mean of 20 times the

standard deviation of y;. The calibration is better when S, is large or n is big.

The outlier makes the calibration worse, although with large n and small gx,
the calibration can be better. The latter behaviour is, however, situational
to the selected magnitude of the outlier. Figure adopted from Publication III
(Figure 9, p. 21).

performance is small and the uncertainty is badly calibrated. Because of
this, it is hard to differentiate between small and zero effect sizes using
LOO-CV.
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5. Estimating the predictive
performance of Gaussian latent
variable models

As discussed in Chapter 3, assessing the predictive performance of a model
is an important step in Bayesian data analysis, for which LOO-CV is a
popular approximative approach. However, as discussed in Section 3.4,
the naive brute force evaluation of the exact LOO-CV estimate involves
fitting the model and evaluating the predictive density of an observation n
times. This can be a costly operation for models with intractable posterior
predictive distribution, such as occur with Gaussian latent variable models
(GLVM). Publication I compares different approximations for the LOO-
CV estimate together with various approaches for obtaining them and
handling the hyperparameter inference in the context of GLVMs.
Reflecting the work in Publication I, this chapter discusses the process of
estimating the predictive performance of GLVMs. First, the GLVMs are
introduced in Section 5.1. Then, Section 5.2 discusses various approaches
for estimating the LOO-CV predictive performance estimate. Finally, a
summary of the suggested approaches is discussed in Section 5.3.

5.1 Gaussian latent variable models

GLVMs are a class of models, in which a response variable y =[y1,y2,...,v5]
is modeled given an explanatory variable X = [x1,x9,...,x,] via a latent
variable f =[f1,f2,...,fx]. The latent values have a joint Gaussian prior
distribution p(f | X,0), which depend on the explanatory variable X and
hyperparameters 0. Similar to the Publication I, this dissertation focuses
on models with factorisable likelihood; Observation y; depends on the local
latent value f; and possibly some global parameters ¢ via an observation
model p(y; | f;,®»). The conditional posterior of the latent values f is

1 n
p(f 13.X,0.0)=_p(f 1X.0] [pi | fin), (5.1)

i=1
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where the normalising factor Z corresponds to the marginal likelihood

p(y1X,0,¢) = / p(F1X,0][p0il fi, p)af . (5.2)

=1

One popular category of submodels, used in the experiments in the
Publication I, is the Gaussian process (GP) models (reviewed for example
by Rasmussen and Williams, 2006). In a GP model, the prior on the
latent values is multivariate Gaussian, p(f | X,0) = N(uo,K), where pg is
the prior mean (often assumed to be zero) and for the covariance matrix,
K, ; = k(x;,x;;0),i,j = 1,2,...,n, where k(x;,x;;0) is a covariance function
with parameters 6. The selected covariance function characterises the
correlation between two points in their latent values.

5.1.1 Computing conditional posterior distribution

When the observation model is Gaussian, p(y; | f;,02) = N(y; | fi,02), where
the global hyperparameter ¢ = 02 is the noise variance, the conditional
posterior of the latent values p(f | v,X,0,¢) and the respective marginal
likelihood can be obtained analytically (see for example Rasmussen and
Williams, 2006, Section 2.2). With a non-Gaussian likelihood however,
these distributions usually need to be approximated. Popular methods
for this approximation include expectation propagation (EP), reviewed in
Chapter 2, and Laplace method (see for example Rasmussen and Williams,
2006; Gelman et al., 2013). These methods apply local Gaussian approx-
imations to each likelihood component to obtain a global multivariate
Gaussian approximation to the conditional posterior:

n
8(f1y.X,0,¢) = p(f 1 X,0 ] [ g:(F)- (5.3)
i=1
The EP and Laplace method has been shown to perform well for various
problems (see for example Nickisch and Rasmussen, 2008; Rue et al., 2009;
Vanhatalo and Vehtari, 2010; Vanhatalo et al., 2010; Jyldnki et al., 2011;
Cseke and Heskes, 2011; Riithiméiki et al., 2013; Vanhatalo et al., 2013;
Martins et al., 2013; Riihiméki and Vehtari, 2014; Tolvanen et al., 2014).
In the EP method, each cavity and tilted distribution, presented in
equations (2.3) and (2.4) respectively, consider only one latent variable.
Consequently, the inference on the moments of the one-dimensional tilted
distribution can often be carried out analytically, as in the case of probit-
likelihood p(y; | f;) = ®(f;y;), or relatively efficiently using numerical integ-
ration. The marginal likelihood p(y | X,6,¢) can be approximated at the
convergence by estimating the marginal likelihood Z; = il fidg-i(fdfi
at each site and combining them (see for example Rasmussen and Williams,
2006).
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As discussed in Section 2.4 in Publicationl, the Laplace method involves
finding an approximation f for the mode of the posterior to apply the
second-order Taylor expansion at, yielding a Gaussian approximation

g(f1,X,0,¢)=N(f,%) (5.4)

for the conditional posterior and an approximation for the marginal like-
lihood, where £ = (K1 +5™ 1! and £ is diagonal with elements 5; =
—(V;V;log p(yilfi, )l fi fi)’l. This approximation can also be matched with
the factorised form in Equation (5.3). For the Laplace approximation, the
site approximations can be formulated as

g ) = N | 13, 5), 6.5

where [, = F+2:Vilogp(yilfi, )l fimty For more detailed description of the
Laplace method, see for example Rasmussen and Williams (2006) or Gel-
man et al. (2013). This form is useful for obtaining marginal posterior
approximations discussed in Section 5.1.2.

5.1.2 Marginal posterior distribution

Many approaches for approximating the LOO-CV estimate involve the
marginal posterior distribution p(f; | v,X,0,¢). As reviewed for example by
Cseke and Heskes (2011), various methods have been proposed for approx-
imating this distribution. The simplest approach is to use the marginal
g(fi1y,X,0,¢) of the obtained EP or Laplace Gaussian approximations to
the joint posterior.

Instead of simply approximating the marginal posterior using the joint
approximation, further improvement can be made by considering (condi-
tionalisation for y,X,0,¢ has been dropped for brevity)

p(fi) o< g(fei(fy) / gl ] [eitFdf-i, (5.6)
J#i

ci(f)

where €;(f;) = p(y; | f;)/gi(f;) is the ratio of the true likelihood and the site
approximation. Local correction methods consider only the effect of ¢;(f;)
while global correction methods also consider c;(f;).

The tilted distribution inferred in the EP method corresponds to one such
local correction method and is obtained without any additional computation
while obtaining the joint posterior approximation. Analogous local correc-
tion for the Laplace method can be derived by defining respective Laplace
based cavity and tilted distribution: £ 1y.X.0.9) pWy; | fi,®) (Cseke and

Laplace
& (f:)
Heskes, 2011). Publication I proposes an alternative way of computing
an equivalent approximation where the Laplace cavity distribution is
formulated using linear response theory.
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Notable global correction methods include methods called EP-FACT and
LA-CM2 based on the EP and Laplace approximations to the joint posterior
distribution respectively (Cseke and Heskes, 2011). The global correction
methods are, however, more computationally complex. In addition, based
on the experimental results by Cseke and Heskes (2011), compared to the
local corrections, the difference is often small.

5.1.3 Hyperparameters

Various methods can be utilised for marginalising out the hyperparameters
0 and ¢ from the conditional posterior distribution. The marginal posterior
for the parameters

pO,¢1y,X)ox p6,p)p(y 1 X,0,¢) (5.7

can be formed using the true or approximated marginal likelihood p(y |
X,6,¢). This can be utilised to numerically integrate over 6 and ¢ using for
example various Monte Carlo methods (see a list of references by Vanhatalo
et al., 2013), importance sampling (see for example Vehtari, 2001; Vehtari
and Lampinen, 2002; Held et al., 2010), deterministic central composite
design (CCD) method (Rue et al., 2009), or importance weighted CCD (Held
et al., 2010; Vanhatalo et al., 2013).

In cases, where the marginal posterior distribution p(6,¢ | y,X) is narrow,
it may be sufficient to use type II maximum a posteriori (MAP) approx-
imation instead of integrating over the hyperparameters, that is select
0,p) = argmaxy , p(0,¢ | y,X). Such cases often occur when the dimension-
ality of the hyperparameters is small and »n is large.

5.2 Approximating the LOO-CV estimate for GLVMs

Obtaining the LOO-CV predictive performance estimate presented in Equa-
tion (3.4) can be a computationally intensive task for GLVMs. Various ap-
proaches have been proposed for approximating it. This section introduces
the problem setting and reviews some of the approximative approaches.

Hyperparameters In the context of estimating the predictive performance,
hyperparameters can be considered on different levels. Instead of dir-
ectly approximating the LOO predictive density p(y; | x;,y-;,X_;), one can
first obtain the conditional predictive density p(y; | x;,y-;,X-;,0,¢) and the
posterior for the hyperparameters p(9,¢ | y_;,X_;) and integrate out (6, ¢):

p(y; |xi,y—i,X—i)=/p(yi lx;,y-i,X_;,0,0)p0,¢ | y_;,X_;)dOd¢p. (5.8)

Furthermore, one can approximate p(0,¢|y_;,X_;) =~ p(0,¢|y,X) in Equa-
tion (5.8) (Marshall and Spiegelhalter, 2003). Finally, as discussed in
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Section 5.1.3, in some situations it is reasonable to apply type II MAP
point estimate (8, $) to approximate p(y; | x;,y_i, X_;) = p(yi | xi,y-i, X _i,0,P).

Full posterior formulation As demonstrated in Publication I, the LOO
predictive density can be formulated in a couple of ways (dropping 6 and ¢
for brevity):

pyilx,y-,X )= /p(yi | fdp(filxi,y—i, X _;)df; (5.9
p(fi13,X) ,\ 7"

—( [PYlyR) ) 5.10

(/ pilf) f) ( )

In some situations, p(f; | x;,v—_;,X_;) can be obtained analytically or it can
be approximated efficiently. Otherwise, one often needs to approximate
p(fily,X) and the integration over f;.

Gaussian likelihood When the likelihood p(y; | fi,¢) is Gaussian, the
LOO predictive density can be obtained analytically. In this case, p(f; |
xi,y-i,X_i,0,¢) corresponds to the cavity distribution discussed in the con-
text of EP approximation in Section 5.1.1. Sundararajan and Keerthi
(2001) present an alternative formulation for the corresponding distribu-
tion and use this to maximise the LOO log predictive density with respect
to the hyperparameters.

EP and Laplace approximations Various general approaches for approx-
imating the LOO-CV estimate, as discussed in Section 3.4, can also be
applied in the context of GLVMs. In particular, the EP and Laplace meth-
ods, discussed in Section5.1 for GLVMs, provide convenient means for
approximating the LOO-CV estimate via their marginal cavity distribu-
tion approximations discussed in Section 5.1.2. The marginal likelihood
of the tilted distribution, which corresponds to the LOO predictive dens-
ity, is obtained for free as a by-product of the EP algorithm and with
small additional computation for the Laplace method. More details on the
implementation in this context are provided in Publication I.

Quadrature approximations The numerical integration method by Held
et al. (2010), discussed in Section 3.4, can also be conveniently applied
to Equation (5.10) to yield a convenient one-dimensional quadrature ap-
proximation for the LOO-CV estimate. If applied together with EP or
Laplace approximation for the marginal posterior distribution of the latent
value using the local corrections, this method corresponds to the respective
EP or Laplace approximation discussed above. More complex methods
can be obtained by considering various other global correction methods
for approximating the marginal posterior distribution discussed in Sec-
tion 5.1.2. Publication I presents a more stable version of this method, in
which the contributions from difficult observations are biased towards the
full posterior behaviour in order to be more robust to approximation errors
in the tails.
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Estimating the predictive performance of Gaussian latent variable models
5.3 Suggested workflow

Based on experimental results, Publication I suggest a workflow with
incremental levels of computational complexity for assessing the predictive
performance in the context of GLVMs (list adopted from Publication I):

1. Find the MAP estimate ($,0) using the Laplace method to approxim-
ately integrate over the latent values f.

2. Using (¢,0) obtained in the previous step, use EP to integrate over the
latent values and check whether the predictive performance improves
substantially compared to using the Laplace method (we may also
re-estimate ¢ and 0).

3. Integrate over ¢ and 6 and check whether integration over the para-
meters improves predictive performance.

For the LOO-CV estimate conditional on the hyperparameters, the EP
and Laplace method with local marginal corrections, discussed in sec-
tions 3.4 and 5.2, provide the best trade-off between computational cost
and accuracy and are thus recommended. For full Bayesian LOO-CV ap-
proximation, both methods can be used together with importance sampling
or importance weighted CCD for hyperparameter inference discussed in
Section 5.1.3. The more complex quadrature approximations with global
marginal corrections give useful results but they are considerably slower
and often the EP method with local correction is more accurate. The WAIC
method does not provide any benefits.
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6. Discussion

This dissertation analyses several techniques in Bayesian data analysis,
that utilise data partitioning as an approximative approach for distributing
the inference or estimating the predictive performance. The discussed
methods are widely used to address various intractable or unfeasible
problems. The work focuses on analysing the expectation propagation (EP)
algorithm as a framework for inference on a partitioned data, and the
leave-one-out cross-validation (LOO-CV) method for model evaluation and
comparison.

The main contribution of the dissertation is in improving the understand-
ing of the behaviour of the methods and their capabilities. The accuracy,
efficiency, and applicability of different implementations and adaptations
of the methods and alternative approaches are reviewed and compared.
The behaviour of the methods is analysed under different problem settings.
Consequently, based on the results, the dissertation suggests approaches
for different situations and proposes points of consideration.

The EP algorithm is a popular general algorithm useful for approximative
Bayesian inference. In the past, motivated by the ability to perform the sub-
inferences analytically, the method has mainly been applied by factorising
the data set pointwise. However, by partitioning the data into bigger
sets and possibly utilising more complex approximative methods for the
sub-inferences, the algorithm can be seen as a framework for distributed
inference with a trade-off between accuracy and efficiency in the number
of partitions. In hierarchical settings, the framework can be used to
reduce the dimensionality of the problem by distributing conditionally
independent likelihood contributions to separate partitions.

In the context of the LOO-CV, the dissertation analyses the applicab-
ility and uncertainty of the method in various situations. By studying
the frequency properties of the LOO-CV estimator both theoretically and
experimentally in the model comparison setting, the following problematic
cases are identified:

1. small data size,
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2. comparing models that make similar predictions, and
3. misspecified models.

In these cases, the obtained estimates of the uncertainty related to the
LOO-CV estimate can be badly calibrated. This emphasises the importance
of model checking and highlights the uncertainty of the analysis when
identifying small effects sizes and analysing small data sets.

Being inefficient to obtain exactly in practice, various approaches for
approximating the LOO-CV estimator are studied and reviewed in the
context of Gaussian latent variable models (GLVM). Respectively, a work-
flow with levels increasing in accuracy and computational complexity is
presented. In addition, addressing the uncertainty of the estimator, an
improved estimator for the variance of the LOO-CV estimator is presented
in the case of a Bayesian normal model. The possibility of obtaining such
model-specific estimators has not been discussed in the literature before
and the presented estimator serves as an example of improving on the
current general way of estimating the uncertainty. However, more research
is needed to inspect the possibilities of this approach in a wider range of
models.
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