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ABSTRACT

The development of a new hierarchical optimization model for explaining left ven­

tricular function is summarized. In the model, arterial load is described by three 

linear time-invariant differential equations. End-diastolic volume, linear end-systolic 

pressure-volume relation, heart rate, and nominal ejection time are given. Under these 

constraints, ventricular function is described by optimality criteria that are based on 

minimizing an index of myocardial oxygen consumption per beat. Also forces developed 

during ejection and ventricular efficiency are taken into account in the cost functions of 

the model. The model predicts ventricular stroke volume, time courses of root aortic 

flow and pressure, and ejection time. These predictions are in accordance with experi­

mental data from an isolated canine heart preparation. In the measurements analyzed, 

arterial load has been changed while end-diastolic volume, contractility, and heart rate 

have been kept constant. Thus the analysis shows that the left ventricular response 

to a change in arterial load can be predicted by an optimization model. The results 

also suggest that energy economy and efficiency are essential features of left ventricular 

function.





1. INTRODUCTION

The mammalian heart is composed of two atria and and two ventricles. Each 

atrium is connected to a ventricle through an A-V valve. In the systemic part of the 

circulatory system, the left ventricle is connected to the aorta through the aortic valve. 

The aortic valve opens at the beginning of ventricular ejection when the pressure in the 

contracting ventricle exceeds the pressure in the root of aorta. The mitral valve between 

the left ventricle and the left atrium prevents backflow of blood from the ventricle into 

the atrium during the systolic contraction phase. When the ejection of a certain stroke 

volume has occurred, the aortic valve closes due to a decrease in ventricular pressure.

During diastole the aortic valve is closed and pressure in the aorta decreases while 

blood flows through arterioles and capillaries into the veins (blood is stored in the 

compliant aorta and arteries during the ejection period). At the same time blood 

flowing from the left atrium fills the left ventricle to a certain end-diastolic volume from 

which the ventricle starts to contract after diastole. The time interval in the beginning 

of systole, when ventricular pressure rises while both the mitral valve and aortic valve 

are closed, is called the isovolumic contraction period.

Given ventricular loading conditions, stroke volume and the time courses of root 

aortic pressure and flow during the ejection period (the ejection pattern) are determined 

by the operation of the ventricle. End-diastolic volume describes preload. Arterial 

load can be characterized by the arterial input impedance that is determined from 

simultaneous measurements of root aortic pressure and flow. Given preload and arterial 

load, the myocardial contractile state also influences stroke volume and ejection pattern. 

Heart rate is the fourth important factor. For a review of factors influencing cardiac 
performance, see e.g. [2].

The problem analyzed in this paper is to predict stroke volume and ejection pat­

tern when preload, arterial load, contractility, and heart rate are given. Especially the 

effects of changes in arterial load and end-diastolic volume on stroke volume and ejec­

tion pattern will be studied in detail. It is assumed that the response of the ventricle 

to a change in its load can be described by an optimization model. The optimality
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criteria developed are based on the assumption of energetically economical and efficient 

performance of the ventricle.

This paper is organized as follows. Firstly, the use of optimization models in 

physiology is briefly discussed. Secondly, a definition of the set of feasible solutions for 

a dynamic optimization problem is described and an example is given of a model for 

the inspiratory airflow in breathing. Then the set of feasible solutions is defined for an 

optimization model of left ventricular ejection. The elastance model that is frequently 

used to describe the operation of the ventricle is also presented. Then an optimization 

approach for modeling left ventricular function is outlined. After these introductory 

sections the five papers describing the models developed in |I]-[V] are summarized.

1.1 Optimization Models in Physiology

In pure science, the concept of optimality is used to characterize the way in which 

a natural process does occur, out of all the ways it could occur [14]. The problem 

how a natural process occurs in various environmental conditions is solved by carry­

ing out suitable experiments. How a natural process could occur can only be defined 

theoretically.

A mathematical optimization problem is formally stated as follows:

Let U be a set of elements and J : V —► R a cost (objective) 

function. The optimization problem is to find an optimal u* 

that minimizes (maximizes) J(u) subject to u G U.

In the analysis of a physiological process by an optimization model, U is defined to 

contain all feasible solutions. Suppose that parameters p describe the properties of the 

system and the environmental conditions, and that p influences a certain quantity и 

describing the behavior of the system. For all p G Sp C R4, the corresponding u must 

be elements of U. Sp is the set of physiologically feasible values of p.

If we would like to construct an optimization model that predicts u for a given p, 

we should find a cost function J the minimization of which gives u* when p is given. 

The optimal u* should resemble the experimentally observed u for all p G Sp.
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Examples of cost functions used in optimization models of physiological and biome­

chanical systems have been given by Hämäläinen, R.P. [8], Hatze [5], and Rosen [15]: 

minimize the time spent for a specified movement, maximize efficiency, minimize energy 

expenditures, maximize stability, or take several criteria into account. Swan [24] also 

gives references of several biomedical optimization models.

It has been suggested that the phenomenon of natural selection is a qualitative ar­

gument justifying the use of optimality principles in biological sciences [15]. When such 

biological interpretations are given for the models, one should remember that the cost 

functions in mathematical optimization problems are not unique. Several optimization 

criteria can give the same solution.

Theoretically one can always try to construct a model only based on curve fitting for 

predicting u for a given p. In fact, there is no general benefit in using an optimization 

model for predicting purposes if methods based on curve fitting work equally well. 

However, in certain applications the optimization approach is the only method that is 

feasible in practice (see e.g. [5, 6]). On the other hand, the analysis of the optimality 

criterion may give us insight of the physiological processes involved.

l.S Dynamical Systems

Consider a dynamical system described by the model

i(t) = f(x[t),u[t),p,t) (1)

y(t) = g(x(f),u(t),p,t) (2)

where t G [<o,fi] is time, x(t) G Rn is the system state, u(t) G Rm is the input, y(t) G R* 

is the output, and p G Sp C R4 is the parameter vector. Let u G U where U is the 

set of piecewise continuous functions from [<o,ti] into Rm. Assume that / and g are 

continuous functions from Rn x Rm x Sp x [t0,t,] into Rn and R‘, respectively, and 

that the partial derivative of / with respect to x is continuous.

Suppose that to, the initial state z(fo), and p are given. Given u((), (1) is an initial- 

value problem that has a unique solution (see e.g. [l]).

5



Suppose that i(t0) is not known, but w equations of the following form are given

Ф(<о), i(ti), u(t0),u(ti),p) =0 (3)

where r is a function from Rn x Rn x Rm x Rm x Sp into Rw. When to, ti, u(t), 

and p are given, and w = n, the differential equations (l) and boundary conditions (3) 

constitute the standard form of the two-point boundary-value problem. This problem 

can have a unique solution, several solutions, or no solution (see e.g. [18]).

The admissible inputs u(f) for the model defined by (l)-(3) must be such that the 

boundary conditions (3) are satisfied. When the model is used to describe a biomechani­

cal or a physiological system, physiological conditions are often described by parameters 

p. In order to predict the system behavior when p is changed, one should be able to 

describe the effects of p on the input u(t).

l.S An Example: Model for the Inspiratory Airflow in Breathing

In order to clarify the general formulation above, let us consider a model for the 

inspiratory airflow in breathing. The dynamical behavior of the lung-ribcage system 

can be described by a first order differential equation (see [11])

Pi(t) = E,V,(t) + R,V,(t) (4)

where t 6 [0,<i|. Pj(t) is the total driving pressure produced by the respiratory muscles, 

Vj(t) is the increase in lung volume from the resting equilibrium volume, E\ is the total 

elastance, and R¡ is the total resistance of the airways, lung tissue, and thoracic wall. 

When the duration of inspiration 11, Vt°, and tidal volume Vj1 are given, the following 

boundary conditions must be satisfied:

Vj(0) = v,° (5)

Vi(ti) = v,° + vtl (6)

©II

g•£* (7)

V|(ii) = 0. (8)
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Conditions (5)-(6) fix the tidal volume and (7)-(8) say that the inspiratory airflow is 

zero at the beginning and at the end of the inspiratory period. In this case the state of 

the system is V¡(t), the input is Pi(t), the parameter vector is pi = [Ei R¡ V¡° Vj1 tj]' 

(the superscript ' denotes the transpose), n = 1, and w — 4. It is easy to see that the 

model is of the form (l)-(3).

Assume that pi and P¡(t) are known for a patient being at rest. Thus the airflow 

pattern Vj(t) is obtained by solving the initial value problem (4)-(5). Since P¡(t) is 

admissible, the boundary conditions (6)-(8) are satisfied.

Assume that p¡ is changed. For example, R¡ can be increased artificially or pi may 

change due to a change in physiological conditions (e.g. exercise). In order to predict 

the new Vj(t), the new Pi(t) must also be predicted. The predicted Pi(t) should be such 

that (4)-(8) are satisfied and that the flow pattern Vj(t) resembles the measurements.

Hämäläinen, R.P. et al. have presented an optimal control formulation of the prob­

lem, where an optimal operation of the respiratory control system is assumed [7, 9, 

10, 11). The optimality criteria suggested in these papers are based on minimizing the 

oxygen cost of breathing and on avoiding rapid muscular movements.

1-4 Feasibility Conditions for Theoretical Left Ventricular Ejection Patterns

In left ventricular ejection, arterial load (input impedance) can be described by a 

set of linear time-invariant differential equations (see e.g. [4, 25]). In (V) a four-element 

model is used

sk-M—jfeAM+é«-) <»>
5«l>—ÍA<l)-í<(l> + íf<l) (Ю)

where t G [to.ti]. <o denotes the beginning and tj the end of ejection. The electric 

analog of the system is shown in Fig. 1. C is arterial compliance, R is peripheral 

resistance, L is inertance, and r is a small resistance which represents the characteristic 

impedance of the ascending aorta [4]. P(t) is the pressure in the root of aorta and «"(<)
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i(t) r L

Fig. 1. The electric analog of the arteria I load model (9)-(ll). In the analog, P(t) 

and Pa(t) represent voltages, i(t) is current, r and R are resistances, L is inductance, 

and C is capacitance.

the root aortic flow. P„(t) does not have a specific counterpart in the real system during 

the ejection period. The rate of change of the left ventricular volume V (t) is given by

jtV(t) = -«(<)■ (и)

When P(t) is the input, i.e. u(t) := P(t), and x(t) := |Pa(t) t(t) V(t)]', the model 

(9)-(ll) is in the form of (1).

If the inertial component L is neglected, the model becomes the so-called three- 

element Windkessel model [25] that is often used to describe the arterial input impedance. 

When also r is neglected, the classical Windkessel load is obtained (see e.g. [13]).

The theoretical ejection patterns should satisfy certain feasibility conditions in order
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to be physically realistic. At the beginning of ejection

F (t0) = Vcd (12)

«(to) = 0 (13)

á*(fo) = 0 (14)

where Ved is the end-diastolic volume. At the end of ejection

V(h) = Ved-V. (15)

•(ti) = » (16)
>) = °- (17)

Equations (12) and (15) say that a stroke volume V, is ejected while the aortic valve is 

open. The root aortic flow is zero at the beginning and at the end of ejection due to 

(13) and (16) (opening and closing of the aortic valve). According to (14) and (17) it is 

required that the first time derivative of i(t) is zero at t0 and 1j. Since i(t) = 0 during 

diastole, these are natural assumptions. During diastole (9)-(10) give an exponential 

decay of pressure in the aorta. Thus

P(t0) = kP(t i) (18)

where к = exp(—td/(RC)). The duration of diastole td is defined to include the duration 

of isovolumic contraction: td — T — te, where te = ti — to is the duration of ejection (s) 

and T is the duration of cardiac cycle (s).

The parameter vector is p — \r L C R Ved V, t0 <i Г]'. Assume that a nominal 

solution [P(t) and i(t)] for a certain p is known. For example, the value of peripheral 

resistance R can be different in different physiological conditions. In order to predict 

the effect of a change in R on t(t), it is not enough to change R in the system equations 

(9)-(ll), since the left ventricle reacts to a change in arterial load such that also the 

input pressure P(t) changes. In fact, also Ve, t„, and change when R is changed in
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an isolated heart preparation while Vt¿ and T are kept constant. The predicted new 

P(t) should be admissible, i.e. (9)-(18) should be satisfied. On the other hand, the new 

P(t) and i(t) should resemble the experimentally observed root aortic pressure and flow 

curves.

1.5 The Time-Varying Elastance Model

The time-varying elastance model [19, 22] or some modification of it (see e.g. [3,17]) 

has been used to describe the operation of the left ventricle. The model is based on the 

assumption that the ventricular elastance curve e(<) is independent of ventricular loading 

conditions when contractility and heart rate remain constant. Ventricular pressure P„(f) 

is given by

P„(t) = e(t)[V(t) - Vd] (19)

where V(<) is the ventricular volume and V¿ is an experimentally estimated correction 

volume (originally assumed to be a constant, but in some models Vd is a function of 

time, see [3]). Model (19) can be combined with arterial load models of the form (l)-(2) 

(e.g. (9)-(ll)) for predicting the effects of changes in load on P(t), t(t), V,, and te (often 

it is assumed that Pv(t) = P(t)).

In practice some class of functions must be selected to describe e(t). Third order 

polynomials can be used [3]

e(f) = oq + ait + ait1 + 03t3. (20)

The free parameters oo,...,a3 do not have a physical interpretation and they can only 

be estimated by model fitting. Although the elastance model or its variations have been 

reported to describe the behavior of an isolated heart quite accurately [17, 21, 22], the 

model does not seem to be as good in predicting the effects of changes in load on the 

behavior of an in situ heart (3).
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1.6 An Optimization Approach for Modeling Left Ventricular Function

The papers summarized in the sequel deal with the use of optimization models in 

predicting the left ventricular function. In [V] it is shown that given model (9)-(ll) and 

boundary conditions (12)-(18), P(t) and i(t) can indeed be predicted by using optimality 

principles. The cost function suggested is of the form

fy. ít^
J(u) = h(î(t1),p)+ g(£(t),ü(t),p)dt (21)

J t0

where h and g are given real-valued functions. Mathematically the model is an optimal 

control problem (see e.g. [1]). Note that V, and te are fixed in (12)-(18). However, also 

V, and tg are predicted by the hierarchical model developed in (V). The system state 

and the input have been redefined in (21) and the new boundary conditions are of the 

form

f(z(to),i(t,),p) =0. (22)

The cost function developed in [V] is based on minimizing an index of ventricular oxygen 

consumption per beat and on avoiding high values of total axial force on the direction 

of blood flow through the aortic valve. Also the efficiency of ventricular response to an 

increase in Ved is taken into account.

Since the cost function is based on several optimality criteria we are dealing with 

a multiple-criteria optimization problem. One method to take into account multiple 

criteria is to use weighting parameters by which different terms in the cost function are 

multiplied (see e.g. [26]). The weighting parameters used in [I], [Ш], and [V] cannot be 

given exact physical interpretations and they can only be estimated by model fitting. 

Thus, in order to see how accurately the model describes the operation principles of 

the ventricle, the model predictions must be compared with independent measurement 

data that have not been used in the estimation of the weighting parameters.
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2. SUMMARY OF THE THESIS

In [I] the problem of predicting P(t) and i(t) for given stroke volume (V,), heart rate 

(HR), ejection time (te), and arterial load is analyzed. Arterial load is described by a 

model consisting of a small resistance in series with the classical Windkessel load. The 

cost function describes the external work done by the left ventricle and it also includes 

an additional term that penalizes rapid changes in aortic flow.

The choice of the boundary conditions for an optimal control model has not received 

sufficient attention in the literature. The number of boundary conditions needed de­

pends on the structures of the system model and the cost function used. Although the 

boundary conditions are due to physical constraints, it may be possible to describe these 

constraints by several alternative boundary conditions for some state variable. However, 

the same optimality criterion can yield entirely different solutions with different sets of 

boundary conditions although the conditions do not differ much from each other [I].

The choice of the boundary conditions related to the initial and final values of 

P(t) is studied in detail [I]. It is shown that the solution of the model analyzed is 

very sensitive to the choice of these conditions. A model formulation is presented that 

predicts an aortic flow pattern with an initial peak that is in qualitative accordance 

with experimental observations. However, the model (model 6 in [I]) fails to predict 

correctly the effects of changes in arterial compliance on the aortic pressure and flow 

curves (Fig. 8 in [I]).

The results of [II] suggest that the minimization of external work should be an 

essential component of the optimality criterion used to explain the ejection pattern. A 

detailed analysis of the validity of the minimum external work criterion is presented 

by studying theoretical ejection patterns generated by a model. The ejection patterns 

are required to satisfy certain feasibility and normalization conditions. Arterial load is 

described by the three-element Windkessel model. Also HR, V„ and mean ejection 

pressure P, are given when the patterns of ejection flow and pressure are changed. The 

comparison of the patterns with respect to the external work shows that a pattern with 

the maximum flow in the first half of ejection is optimal among the patterns studied.

Many of the previous models (for references, see [II]) are based on the minimum

12



work criterion. It is shown that the main defects in the earlier analyses have been in 

the formulations of the boundary conditions for P(t) and Since the structures of 

the previous models are unsatisfactory, the relevance of the minimum work criterion 

has remained unknown.

In [III] Pt is not fixed, but V„ HR, and te are given and arterial load is described by 

the three-element Windkessel model. The optimality criterion is based on minimizing 

the so-called PVA index that correlates with the total ventricular oxygen consumption 

per beat [20]. The minimization of external work is one component of the optimality 

criterion. However, also a term penalizing high values of the total axial force on the 

direction of blood flow through the aortic valve is included in the cost function. The 

above two criteria are taken into account by two weighting parameters (a and ß). 

For proper values of a and ß, the ejection patterns given by the model are shown 

to accurately match experimental recordings of two human ejection patterns. P(t) and 

i(t) curves predicted by the model also qualitatively resemble experimental observations 

when the values of the arterial load model parameters are changed (while a and ß are 

kept constant).

An optimization model for predicting V, is developed in [IV]. End-diastolic volume 

(Ved) and the linear end-systolic pressure-volume relation [12, 16] are given. HR and te 

are fixed and arterial load is described by the three-element Windkessel model. The cost 

function of the model is based on minimizing PVA and on maximizing the efficiency of 

ventricular response to an increase in Vej. The optimal V, is very close to the experi­

mentally observed stroke volume of an isolated heart in spite of substantial changes in 

arterial load.

Also previous models for an optimal arterial load are analyzed (for references, see 

[IV]). The difference between the optimization models for ventricular function and the 

optimization models for arterial load is made clear. The recent idea of matching between 

the ventricle and load has caused difficulties for the interpretation of the earlier models. 

It is shown that the previous experimental results of other authors suggest that the 

control of peripheral resistance in a living animal can possibly be described by an 

optimization model.
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In [V] an inertial component is added to the arterial load model used in [III] and 

[IV] in order to better describe the arterial input impedance (i.e. model (9)-(ll) is 

used). The models for an optimal stroke volume and an optimal ejection pattern are 

then combined. Also a model for predicting changes in ejection time is developed 

and included in the arising hierarchical optimization model. The predictions of the 

new hierarchical model are shown to match experimental data from an isolated heart 

preparation quite accurately. In the experiments, arterial load has been simulated by a 

servo-controlled loading system and contractility and have been kept constant (see

[23] for a detailed description of the experimental setup). The results show that at least 

at a qualitative level the model indeed explains the response of the ventricle to a change 

in arterial load.

3. CONCLUSION

A hierarchical optimization model for predicting left ventricular stroke volume, time 

courses of root aortic flow and pressure, and ejection time has been developed. The 

model predictions for changes in arterial load have been shown to be in accordance with 

experimental data from an isolated canine heart preparation.

The minimization of energy expenditures is the basis of all the the optimality criteria 

suggested. However, also forces developed during ejection and ventricular efficiency are 

taken into account in the cost functions of the model. It should be noted that an exact 

correspondence between the cost functions and ventricular 02 cost or efficiency has not 

been demonstrated. Still the results strongly suggest that energetically economical and 

efficient performance is an essential feature of left ventricular function.

In spite of difficulties in a strict interpretation of the optimality criteria, the analysis 

shows that the operation of the left ventricle can be predicted by optimality principles. 

The models developed can also be viewed as mappings from the set of parameters 

describing arterial load into the set of admissible root aortic pressure curves. Thus we 

can conclude that it is possible to describe the effects of changes in arterial load on 

ventricular function by an optimization model.
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Most of the experimental data analyzed are from isolated heart preparations. Still 

the predictions of the model developed also qualitatively resemble measurements in 

living animals and patients. However, recent studies suggest that some of the experi­

mental relations of the model should possibly be modified in order to better describe 

the behavior of an in situ heart (see [V]).
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