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1. Introduction

In 1905, the annus mirabilis, Albert Einstein published his four seminal

works and triggered an immensely productive period of activity in quan-

tum mechanics. Several decades later, towards the end of this golden

age in physics, Claude Shannon would introduce his new information

theory [1], a seemingly unrelated, but no less important work. Einstein

and his contemporaries had revolutionised the fundamental framework

of physics, but the impact of Shannon’s ideas has ultimately proven to

be even more far-reaching, providing the necessary foundations for the

transformation to our modern mass-communication society.

The effect of information theory on physics has been no less signifi-

cant, indeed looking at physics from the perspective of information has

led physicists down a very fruitful path, a journey which would eventu-

ally cause them to question the nature of reality itself [2–4]. In the years

following the publication of Shannon’s masterpiece, it was gradually re-

alised that information is intimately connected to the physical world, and

it is equally as fundamental as energy or entropy [5, 6]. In particular,

since a computer is nothing more than a device which stores and acts on

information, any computation is a physical process1 [8].

The implications of this point become truly fascinating when the worlds

of Shannon and Einstein are combined. If information is physical, then its

behaviour must be governed by the laws of physics, which are ultimately

believed to be quantum mechanical. Applying quantum principles to com-

puting suggests the possibility of creating novel computers which can be

vastly more powerful than their classical counterparts [9–11]. This huge

speed up is fundamentally a consequence of utilizing the two lynchpins of

the quantummechanical world. The first of these, superposition, provides

1The reverse is also true, any physical process may be considered a computation.
Indeed as Seth Lloyd has noted [7], the universe is itself a computer, a computer
that happens to compute its own evolution.
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Introduction

the possibility for a quantum system to simultaneously exist in multiple

states, à la Schrödinger’s infamous cat. The second critical element is

entanglement, Einstein’s "spooky action at a distance", which allows the

physical properties of quantum objects to remain correlated even when

separated across galactic distances.

Since any two-level system can in principle perform the role of the quan-

tum bit, qubit, many candidates have been proposed. Natural qubits such

as spin-1/2 particles or photons have many attractive features and are

the subject of intense study [12–14]. In practice building a real quantum

computer is an extremely difficult engineering challenge, and currently

no one system has all of the necessary attributes required, namely [15]

1. The ability to reset the qubit to a simple state.

2. A method to operate on, and make precise measurements of qubits.

3. Scalability of the system to a large number of qubits2.

4. A set of one qubit operations and at least one non-trivial two qubit gate.

5. Coherence times far greater than the time needed to apply one gate.

The problem is essentially that these factors can be, to a large extent,

mutually exclusive. Photons, for example, do not couple very strongly to

the environment which makes them resilient to noise. On the other hand,

they do not couple strongly to other photons either, making qubit-qubit

interactions difficult. The work in this thesis culminates with a method

to improve the initialization of superconducting qubits without harming

their coherence times (Publications III and IV). We reach this goal via

several important milestones, most notably the theoretical prediction of

heat conduction due to single photons in a cavity (Publications I and II).

The overview is organised as follows. Chapter 2 gives a brief introduc-

tion to circuit quantum electrodynamics. Some of the latest experiments

in photonic heat conduction are reviewed in Chapter 3. Chapter 4 intro-

duces the theoretical basis required for both our studies on single-photon

heat conduction, the subject of Chapter 5, and on a tunable environment

for superconducting qubits, which is presented in Chapter 6. Finally

Chapter 7 concludes this thesis with a summary of the main results.

2Small toy quantum computers with up to 14 qubits have successfully imple-
mented Shor’s Factoring Algorithm [16, 17]. This algorithm is important for en-
cryption reasons, but will require ∼104−5 qubits to tackle practical problems [18–
20]. Nevertheless, even a quantum computer consisting of ∼50 qubits is likely to
have some interesting uses [21, 22].
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2. Quantum Computing with circuit
QED

This chapter gives some background on superconducting quantum bits in

microwave cavities, a field that provides much of the motivation for our

work and helps to place it in context.

2.1 Superconducting Qubits

A long term goal of this research is to provide new tools for superconduct-

ing qubits. These qubits encompass several different kinds of supercon-

ducting circuits that can be engineered to have atom-like properties. Un-

like intrinsic two-level systems, these artificial atoms are coherent over

macroscopic dimensions. Macroscopic quantum coherence in electronics

was first predicted in 1980 [23], but it would be two decades before exper-

imental techniques reached the necessary level of sophistication to allow

for definitive observation [24]. The phenomenon is perhaps best exempli-

fied by large superconducting rings, systems of ∼1010 electrons in which a

macroscopic current can simultaneously flow clockwise and anticlockwise

[25, 26].

The large number of degrees of freedom involved permits strong cou-

pling to other circuits, making multi-qubit gates possible. Even better,

and unlike real atoms, these circuits can be designed to have specific (and

often tunable) parameters. Being solid-state devices, construction of these

artificial atoms is also appealing from a practical point of view, allowing

well-developed fabrication techniques to be employed. However, by ex-

ploiting orders of magnitude more degrees of freedom to gain increased

qubit-qubit coupling, we must inevitably contend with a correspondingly

stronger qubit-environment interaction [27, 28]. Experimentalists have

risen to the challenge of extending decoherence times and, though there

is still some way to go, qubit lifetimes have improved by a factor of 104 or

3
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so, in comparison to the first pioneering superconducting qubits [29]. This

enhancement has been achieved through a combination of reducing both

the sensitivity of the qubit to noise and the noise itself [30–32]. In this

thesis the precise choice of qubit is not crucial, we care only that viable

qubits exist. The specific details of the various different types of super-

conducting qubits are therefore not discussed here; these can be found,

for example, in Refs. [33, 34].

Instead, our interest lies with the architecture. The qubits are typically

coupled to a superconducting coplanar waveguide transmission line res-

onator. These transmission lines operate in the microwave regime, where

they effectively act as one dimensional Fabry-Perot cavities. The cavi-

ties can be manufactured with extremely high quality-factors Q ≥ 106−7

[35], meaning that the photonic excitations in the resonator can, classi-

cally speaking, travel a distance of several kilometres before exiting the

cavity. This setup, in which a single photon mode is coupled to a qubit

in a superconducting resonator, is referred to as circuit quantum electro-

dynamics (cQED) [36–41]. The cavity-qubit coupling mixes the states of

the two systems producing new eigenstates that have both photonic and

qubit character with an anharmonic energy level spacing. By coupling

several qubits to the cavity, the resonator can be used to mediate an inter-

action between spatially separated qubits [42–44]. Entanglement of one

or more qubits can now be routinely achieved [45–47], and implementa-

tion of the first algorithms has recently been reported [48, 49]. Though

driven primarily by quantum computing, cQED has proved to be a stel-

lar test bed for fundamental quantum mechanics. From the manipulation

and generation of single-photons [50–52], to the production of several ex-

otic quantum states [53, 54], the control exerted by experimentalists over

this domain has reached a high level of sophistication.

In this thesis, we will demonstrate that, in theory, we can insert normal

metal components into the cavity in a useful manner. In Publication III

and IV we do exactly this, with the proposal for a new method to initialize

superconducting qubits.

2.2 SQUIDs in a Coplanar Waveguide Cavity

The Josephson junction is the key component of superconducting circuits,

providing the non-linearity needed for interesting physics without intro-

ducing dissipation which would cause decoherence. Such a junction occurs
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at a weak link between two superconductors, through which a supercur-

rent, i.e., Cooper Pairs, may flow in the absence of an applied voltage. If

two of these junctions are combined in parallel to from a loop, we obtain a

superconducting quantum interference device (SQUID). These SQUIDs

are regularly employed in a variety of low temperature experiments and

are important building blocks for superconducting qubits. If the instanta-

neous current through the SQUID if much lower than its critical current,

then the non-linear response of the SQUID, i.e., the dependence of the in-

ductance on the instantaneous current, can be neglected [55]. In this case,

it is reasonable to approximate a SQUID as an inductor, whose inductance

is a function of the magnetic flux penetrating the loop Φ [56],

LJ =
�

4eIc

1

| cos
(
πΦ
Φ0

)
|
, (2.1)

where the magnetic flux quantum is denoted by Φ0 = h
2e , and Ic is the

critical current of each junction. In modelling the SQUID as an inductor,

we also disregard its junction capacitance CJ , which may be assumed to

have only a small effect on the total conductance, in the regime of small

signal frequency ω � 1√
LJCJ

.

By constructing the central resonator entirely or partially with SQUIDs1,

it is possible to tune the resonance frequency in situ by varying the flux

through the SQUIDs. Such techniques provide a useful means, for exam-

ple, to quickly detune the resonator from the qubit2 [55, 56]. One stunning

achievement enabled by this approach, has been the observation of pho-

tons created by rapidly changing the effective length of the transmission

line, a phenomenon referred to as the dynamical Casimir effect [59, 60].

1Alternatively the SQUID may be placed at the end of the line to tune the bound-
ary conditions
2Recently a new type of qubit has been designed which provides a tunable cou-
pling to the resonator, independent of the cavity or qubit frequency [57, 58].
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3. Photonic Heat Conduction in
Nanoelectronics

For further background, we review recent experiments on the observation

of photonic heat conduction, as well as work on the temperature control

of small metal islands via tunnel junctions.

3.1 Observation of Quantum-Limited Heat Conduction due to
Photons

Quantum computation is far from the only interesting consequence of ap-

plying quantum mechanical principles to information exchange. A sec-

ond notable effect is revealed by the presence of the thermal conductance

quantum, g0 =
π2k2BT

3h , an upper bound on the thermal conductance of a

one-dimensional quantum channel at a temperature T [61, 62]. This ef-

fect becomes important when the coherence length of the heat carriers

becomes comparable to the size of the sample, as can be the case in low-

temperature nanosystems. It is precisely because this limit to the maxi-

mum thermal power is derived from an information-theoretic standpoint

that it can be applied so generally, completely independent of the materi-

als used, or the specific details of the circuit design. It also holds regard-

less of the nature of the heat carriers, be they electrons [63], phonons [64],

or indeed photons [65].

To see this fundamental limitation in practice, typically requires the

low temperatures only found in dilution refrigerators. Even at these tem-

peratures, it can still be somewhat unusual to see photons mentioned in

discussions of heat conduction. However, this photonic pathway can be a

significant thermal relaxation mechanism in ultra-low temperature nano-

electronics. Consider, for example, the circuit shown in Fig. 3.1, in which

two metallic islands, of average temperature T , are connected by super-

conducting leads. Unlike electrons, Cooper pairs do not transport energy

7
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by diffusion and therefore no such conventional electronic thermal con-

duction is possible through the leads between the islands. The heat power

transferred out of each island as a result of the coupling of the electrons

in the metal with the phonons in the lattice is, typically, proportional to

T 5 [66]. In comparison, the photonic heat flux between the two islands

in such a circuit has (depending on the precise details of the circuit) a T 2

dependence [67]. Therefore, at least in some nanosystems, there exists a

regime in which the competing conduction channels are frozen out, and

photon heat conduction is dominant. The crossover to this new regime

usually occurs at a temperature somewhere in the region of 100−200 mK.

Such a circuit is precisely what was fabricated in the experiment of

R1
T1

R2
T2

Figure 3.1. Equivalent circuit of
a connected island structure. The
impedance, and hence the power
transmitted, is dependent on the
presence of the dashed lead, which
forms a loop geometry. Adapted
from Timofeev et al [67].

Meschke et al [65]. In this case, the heat

conduction is a consequence of the ther-

mal agitation of the electrons in the metal,

this motion produces random voltage fluc-

tuations across the islands, which are

transmitted through the electromagnetic

modes of the circuit, and have the two-

sided Johnson-Nyquist power spectrum

SV (ω, T ) =
2R�ω

1− exp(−�ωkBT )
, (3.1)

where T is the temperature of the re-

sistor, and negative frequencies are al-

lowed [68]. By utilizing a SQUID to vary

the impedance of the circuit, they were able to tune the photonic heat

conduction between the islands. The power reaches its maximum for an

impedance matched circuit, connected in a ring geometry, with a value

measured to be in good agreement with the thermal quantum [65].

A more recent experiment [67], adapted this setup and successfully dem-

onstrated remote photonic refrigeration. By lowering the temperature of

one island they were able to observe the cooling of a second island at a

separation of about 50 μm. This distance is much smaller than the wave-

length of the thermal photons1 and the lumped element model shown in

Fig. 3.1 is therefore valid2. Thus the power transfer may be modelled

1At 100 mK, λth = hc/kBT ≈ 5 cm.
2This was also the case in Ref. [65]

8
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using the semiclassical equation [66]

Pγ =

∫ ∞

0

dω

2π

4R1R2�ω

|Zt(ω)|2

⎛
⎝ 1

exp
(

�ω
kBT2

)
− 1

− 1

exp
(

�ω
kBT1

)
− 1

⎞
⎠ , (3.2)

which gives the photonic power through a circuit of total impedance Zt(ω),

including islands 1 and 2, which have resistances R1, R2 and tempera-

tures T1, T2, respectively.

These studies have approached the subject from the point of view of un-

derstanding how the electromagnetic environment affects ultra-sensitive

experiments and devices. As electronic devices become increasingly minia-

turised, knowledge of the heat transport on the chip becomes increasingly

important. The additional photon channel can couple isolated compo-

nents. This feature may be a hindrance when attempting to maintain

components at distinct quasiequilibrium temperatures, or prove benefi-

cial, for example, in refrigeration [69, 70]. The focus of this thesis is

slightly different, and aims to provide a tunable environment for compo-

nents placed into a superconducting cavity, a theme found throughout. In

a cavity, the photons have a well defined frequency and we are therefore

able to associate the heat conduction with individual microwave photons.

This subject is explored in detail in Publications I and II.

3.2 Tunnel Junction Thermometry

EF
Δ

EF − eV

Figure 3.2. In NIS thermometry
a bias is applied over the normal
metal, shifting the Fermi level of
the metal relative to the supercon-
ducting gap. Adapted from Muho-
nen et al [71].

There are two tools which are absolutely

crucial for all of the work presented in this

thesis. If we place a normal-metal island

into a cavity, it is essential that we have,

firstly, a practical method to measure the

temperature of the island, and secondly,

the ability to control the temperature of

the island over a range of several hundred

millikelvins. In fact, both of these can be

accomplished using the same underlying

principle [71, 72]. The basic idea is rather

elegant, and is explained below.

Fundamentally, the cooling of an elec-

tron reservoir is equivalent to a narrowing

of its Fermi distribution around the Fermi

9
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energy, EF . In NIS cooling, hot electrons (with E > EF ) are removed from

the reservoir (see Fig. 3.2), while cold electrons (E < EF ) may also be

added. This is accomplished by taking advantage of the superconducting

density of states NS(E), which has an energy gap forbidding electronic

excitations in the region EF ± Δ. In a low-temperature normal-metal–

insulator–superconductor (NIS) junction at equilibrium, this gap prevents

hot electrons from tunnelling out of the normal metal into the supercon-

ductor. By applying a suitable bias to the normal metal we can shift the

Fermi energy of the metal relative to the superconducting gap, increasing

or reducing the rate at which electrons tunnel out of the reservoir. In this

way, the temperature of the normal-metal may be varied considerably.

The accessible electron temperature range depends on the initial bath

temperature, as well as the BCS gap in the superconductor, Δ. For alu-

minium, the most common superconducting material, and assuming re-

alistic bath temperatures, this technique allows a normal-metal island

to be cooled down to around 100 mK. Below this temperature however,

cooling becomes significantly more challenging [73, 74]. In suspended de-

vices, temperatures of 42 mK have been achieved in islands for which the

electron temperature at zero-bias is 100 mK [75].

The NIS thermometer works on a very similar principle. When a small,

constant current bias is maintained across the junction, a measurement

of the voltage allows the temperature of the normal metal to be inferred.

These NIS techniques are especially attractive as they operate directly on

the chip, which can simplify the experimental setup significantly. The use

of NIS junctions for thermometry and temperature control are assumed

throughout this thesis, the power introduced to the islands by the NIS

probes is considered explicitly only in Publication II.

10



4. Cavity with a Position-Dependent
Inductance

Exciting photons in the transmission line induces voltage and current

waves which travel along the length of the line. In the microwave regime,

photon wavelengths are typically comparable to the size of the waveg-

uides; the voltage and current can therefore differ considerably over the

length of the device, rendering a lumped LC oscillator model incomplete.

Nevertheless, as shown in Fig. 4.1, the transmission line can be divided

into many smaller sections, each of which does have a lumped element

representation [76].

In this chapter, we describe two possible methods to calculate the mode

profiles in the resonator. We first employ the Lagrangian formalism to ac-

quire an analytic result for the voltage and current operators. The second

technique describes the system as a classical eigenvalue problem, permit-

ting the inclusion of dissipative elements in a straightforward manner.

dx

V1

I1

C

L1

Vr

I2

C

L2

V2

C C

Lr

R
· · ·

Lr−1 Ck
Lk−1 Lk

CC

Vk

· · · · · ·

Figure 4.1. Equivalent circuit of a transmission line. We canmodel a transmission line by
considering an infinitely long sequence of L and C elements. The values of these elements
are chosen in order to match the inductance per unit length �, of the central conducting
strip Li = � dx, and the capacitance per unit length c, between the line and ground plane
C = c dx. In this figure the transmission line has been modified by the introduction of
a resistor at node r and a capacitor at node k. In addition, one may include SQUIDs by
adding an inductor of inductance L+ LJ(φ) at the appropriate nodes.
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Cavity with a Position-Dependent Inductance

4.1 Quantum Lagrangian Analysis

In the quantum description, we model the resonator using the language

of the harmonic oscillator, defining creation and annihilation operators

for the photon number states. Applying the Lagrangian formalism to

Fig. 4.1, the voltage and current operators of a standard cavity1 are found

to be [36],

V̂cav =
∞∑
k=1

√
�ωk

Lc
cos (kπx/L) [âk(t) + â†k(t)], (4.1)

Îcav =

∞∑
k=1

i

√
L�cω3

k

k2π2
sin (kπx/L) [âk(t)− â†k(t)], (4.2)

where L is the length of the cavity, with � and c the inductance and capac-

itance per unit length, respectively. We denote the bosonic annihilation

and creation operators of the jth cavity mode by âj(t) and â†j(t). The jth

mode has an angular frequency ωj , which for this standard cavity takes a

value ωj = jπ/(L
√
�c).

We now extend the Lagrangian method to a more general case, which

allows for a capacitor of capacitance Cc at xc, and a position dependent

inductance per unit length �(x) of the form

�(x) =

⎧⎪⎨
⎪⎩
�L, 0 ≤ x ≤ xc,

�R, xc < x ≤ L.
(4.3)

Our starting point is the discrete model of the circuit shown in Fig. 4.1.

In the continuum limit dx → 0, the integral of the charge density stored

in the capacitors of Fig. 4.1, can be defined as Θ(x′, t) =
∫ x′
0 q(x, t) dx, and

the Lagrangian may be written in terms of Θ as

L =

∫ L

0

[
�(x)

2

(
∂Θ

∂t

)2

− 1

2c

(
∂Θ

∂x

)2

− Θ2

2Cc
δ(x− xc)

]
dx. (4.4)

We assume that the cumulative charge may be separated into the form

Θ(x, t) =
∑

j Xj(x)Tj(t), to arrive at the Euler-Lagrange equations

1

c�(x)Xj(x)

∂2Xj(x)

∂x2
− 1

Cc�(x)
δ(x− xc) = −ω2

j , (4.5)

1

Tj(t)

∂2Tj(t)

∂t2
= −ω2

j . (4.6)

We observe that in the time domain each mode has simple harmonic

behaviour, while the spatial variation has the same form as the time-

1A cavity which can be modelled using only a homogenous inductance and ca-
pacitance per unit length.

12
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independent Schrödinger equation of a particle in a delta function po-

tential. The latter can be solved with a plane wave Ansatz. Taking the

boundary conditions Xj(0) = Xj(L) = 0, and applying continuity at xc,

the solutions are found to be

Xj(x) =

⎧⎪⎨
⎪⎩
Aj sin(k

L
j x) 0 ≤ x ≤ xc,

Ajβj sin[k
R
j (x− L)] xc ≤ x ≤ L,

(4.7)

where βj =
sin(kLj xc)

sin[kRj (xc−L)] , and we have wavevectors k2j = ω2
j �(x)c. The con-

stant Aj simply scales Xj(x) to ensure orthogonality
∫ L
0 �(x)XmXn dx =

δmn of the modes.

To find the {ωj}, Eq. (4.5) is integrated over the infinitesimally small

region xc ± δ yielding

βjk
R
j cos

(
kRj [xc − L]

)− kLj cos
(
kLj xc

)− c

Cc
sin
(
kLj xc

)
= 0. (4.8)

This is a key equation, all effects of the capacitor and altered inductance

are essentially encapsulated in these modified wavevectors.

Figure 4.2. Frequencies of the lowest two
modes, with xc = L/2, as a function of ω( 1

2
)

L =

2π/(L
√
�Lc).

If we examine the case xc = L/2,

then taking the limit Cc → 0

would result in two isolated cav-

ities of equal length. These left

and right half-cavities, have the

fundamental frequencies ω
( 1
2
)

L(R) =

2π/(L
√
�L(R)c). Figure 4.2 shows

the two lowest eigenfrequencies

ω1 and ω2, calculated numerically

from Eq. (4.8), as a function of ω( 1
2
)

L .

If �L = �R, the isolated left and

right cavities are in resonance, i.e.,

ω
( 1
2
)

L = ω
( 1
2
)

R ; in reality the finite capacitance couples the two cavities, and

results in an avoided crossing for the two lowest energy modes of the total

system. Away from this resonance point, the lowest angular frequency

ω1, is approximately equal to ω
( 1
2
)

L , when �L 	 �R. In this case, we find for

the second mode, ω2 ≈ ω
( 1
2
)

R (and vice-versa for �L � �R). With a tunable

inductance, we may therefore switch the lowest-energy excitations of the

coupled cavity system between the left and right cavities.

To illustrate this point further, let us consider the mode profiles. In

Fig. 4.3(a), we take xc = L/2 with �L 
= �R. In this setup, we observe

that by tuning �L, we can move from a cavity whose first excited photon

13



Cavity with a Position-Dependent Inductance

Figure 4.3. Mode profiles as a function of the position in the cavity. In (a), the capacitor is
positioned at xc = L/2 with a capacitance Cc = 1 fF, while the inductance per unit length
in the left of the cavity is varied between � = 0.8�R (dotted line), � = �R (solid line), and
� = 1.2�R (dashed line). In (b), xc = L/2, the inductance is constant, �L = �R, and we take
no capacitor (dotted line), Cc = 100 fF (dashed line), and Cc = 1 fF (solid line).

state is predominantly found in the left hand side of the cavity, to one in

which it is predominantly in the right hand side, via a region where it is

a mixture of both left and right. In Fig. 4.3(b), we again take xc = L/2

but fix �L = �R. The first current mode for several values of Cc is then

shown, and we observe that for small Cc the current is virtually zero at

the position of the capacitor, and hence the single cavity has essentially

been divided into two.

As demonstrated in Publication III, we may continue to quantize the

charge operator Θ̂ as

Θ̂j(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
√

�A2
j

2ωj

[
âj + â†j

]
sin(kLj x), 0 ≤ x ≤ xc,

βj

√
�A2

j

2ωj

[
âj + â†j

]
sin[kRj (x− L)], xc ≤ x ≤ L,

(4.9)

which results in the current Î = ∂Θ̂
∂t , and voltage V̂ = 1

c
∂Θ̂
∂x , operators

Îj(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
i

√
�A2

j

2ωj
ωj

[
â†j − âj

]
sin(kLj x), 0 ≤ x ≤ xc,

iβj

√
�A2

j

2ωj
ωj

[
â†j − âj

]
sin[kRj (x− L)], xc ≤ x ≤ L,

(4.10)

and

V̂j(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

kLj
c

√
�A2

j

2ωj

[
âj + â†j

]
cos(kLj x), 0 ≤ x ≤ xc,

kRj βj

c

√
�A2

j

2ωj

[
âj + â†j

]
cos[kRj (x− L)], xc ≤ x ≤ L,

(4.11)

where we have employed the Heisenberg picture with ∂tâj = −iωj âj , and

∂tâ
†
j = iωj â

†
j . These current and voltage operators should be compared

with Eqs. (4.1) and (4.2).
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4.2 Classical Matrix Analysis

The quantummodel provides an analytic solution for the current and volt-

age operators for a given ωj , however it is not trivial to include dissipa-

tion in such a formalism. We therefore also consider a classical analysis

of this circuit model, previous classical studies having proved useful in

analysing the low-temperature photonic heat conduction via a transmis-

sion line [70].

Let us first consider a resonator which has been modified only by in-

serting a capacitance Cc at node k. Once again, our starting point is

the distributed-element model of the transmission line shown in Fig. 4.1,

where the current flowing into node n is denoted by In. Application of

Kirchoff ’s Laws gives

(−LCω2
j + 2)In − In−1 − In+1 = 0, n 
= k, (4.12)(

−LCω2
j + 2 +

C

Cc

)
Ik − Ik+1 − Ik−1 = 0. (4.13)

We assume that there is a common eigenmode across the two cavities,

which may be written in the form Ij(x, t) = I(x)eiωjt. Equations (4.12)

and (4.13) are then equivalent to the eigenproblem MI(x) = ω2
j I(x), with

a tridiagonal matrix M

M =
1

LC

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. . . . . . . . .

−1 2 −1
−1 2 + C

Cc
−1

−1 2 −1
. . . . . . . . .

, (4.14)

which has a Laplacian form, with the diagonal element in the kth row,

modified to be M(k, k) = 1
LC

(
2 + C

Cc

)
. The eigenvectors and eigenvalues

of M give the spatial mode profile and the angular frequencies respec-

tively.

It is relatively easy to incorporate SQUIDs into this matrix, the typical

width of a SQUID is approximately 10 μm, much less than the length

of the microwave transmission lines considered here, and hence we can

assume that the SQUIDs change the impedance only at a single node2.

We therefore replace L with L+LJ [see Eq. (2.1)] at the relevant nodes in

Fig. 4.1, which translate into a scaling of the corresponding rows of M by

2For a very dense discretisation, each SQUID may affect several nodes, in this
case the SQUID inductance is just divided between them in a linear manner.
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Figure 4.4. Comparison of the first mode (solid lines) and second mode (dashed line) com-
puted using the analytical result of Eq. (4.7), and by diagonalising the matrix of Eq. (4.14).
In both (a) and (b), we take a capacitor positioned at xc = L/2 with Cc = 1 fF. In (a) we
have �L = 1.2�R, whereas in (b), �L = �R.

a factor of L/(L+ Ls). In Fig. 4.4, we compare the first and second modes

calculated using this method to those given by the analytic solution of

Sec. 4.1, and observe good agreement. If further accuracy is required the

small remaining discrepancy can be removed by increasing the number of

points used in the discretisation.

We now include a resistor of size R = rΔx at the rth node of the lumped

element model. The preceding analysis is unaffected except at n = r, at

which point the voltage across the resistor fluctuates due to the thermal

noise. We therefore associate a noise voltage δV (t) with node r and apply

Kirchoff ’s Laws to find(−LC∂2
t − CR∂t − 2

)
Ir + Ir−1 + Ir+1 = CδV̇r(t). (4.15)

Figure 4.5. Profiles of the fundamental current
mode, when a resistor of resistance 2.3Ω (solid
line) and 230Ω (dashed line) is inserted into the
line. The latter does not propagate.

To see the effect on the mode

profile, we first assume that the

resistor does not introduce any

noise, in which case we may

set δV (t) = 0. In this case,

Eq. (4.15) along with Eqs. (4.12)

and (4.13) no longer form an

eigensystem but instead take

the form Z(ω)I(x) = 0, where

Z(ω) is an ‘impedance’ matrix,

similar in form to Eq. (4.14).

For a non-trivial solution of

I(x), we have the condition that
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det[Z(ω)] = 0, enabling us to calculate the eigenfrequency, ωj . The ele-

ments of I(x) can then be found in a systematic manner from Z(ωj). To

handle δV (t), as we must do, for example, to calculate the classical power

transfer we can move to Fourier space, as discussed in Publication II.

Figure (4.5) shows that adding a resistor into the line can distort the

mode profile substantially. The coupling to the mode of a 230 Ω resistor

positioned at L/4 is so great that the imaginary part of the eigenfrequency

becomes orders of magnitude greater than the real part and these modes

therefore do not propagate. In contrast, placing a resistor with R = 2.3 Ω

at the same location results in an almost negligible change of the profile

and frequency. A more quantitative criterion for the maximum acceptable

resistor coupling is given in Chapter 5.

A key message of this thesis is that changes to the sinusoidal mode pro-

file of the bare resonator can play a significant role in designing and un-

derstanding experiments. Much of our work will involve inserting addi-

tional components into the line, some of which can have a dramatic effect

on the mode profiles. Quantifying these effects forms a major part of Pub-

lication II, and is crucial in the analysis of Publication III.
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5. Single-Photon Heat Transfer in a
Cavity

This chapter covers single-photon heat conduction in a cavity, the subject

of Publications I and II. Inspired by the experiments described in Chap-

ter 3, which demonstrated the first observations of quantum-limited pho-

tonic heat conduction, we propose a related circuit consisting of a coplanar

waveguide cavity. In a cavity, the excitations are photons of well defined

frequencies, and we are therefore able to identify individual photons as

the source of the heat conduction between the resistors. Experimental

verification of these results would be an important first step on the road

to developing useful normal-metal components for cQED.

5.1 Calculation of the Photonic Heat Power in a Cavity

An illustration of the cavity discussed here is shown in Fig. 5.1. It has

been modified by the introduction of two resistors into the central conduc-

tion line. These are placed close to the ends of the line such that they

couple only weakly to the modes of the cavity. In this case, the contri-

bution of the cavity to the Hamiltonian takes the usual form Ĥcav(t) =∑
j �ωj(â

†
j âj+1/2), i.e., a sum of harmonic oscillators with photon number

eigenstates |n〉j , at the frequencies of the standard cavity ωj = jπ/(L
√
�c).

The Hamiltonian of the ith resistor Ĥ(i)
R , can also be represented as an in-

finite number of harmonic oscillator modes [77], though when calculating

the transition rates we will trace out these degrees of freedom, and so the

explicit form of ĤR plays no role in the analysis presented here. Finally,

the total Hamiltonian will contain a term Ĥint, corresponding to the inter-

action between the resistors and the cavity modes. The total Hamiltonian

is therefore expressed as Ĥ(t) = Ĥcav(t) + Ĥ
(1)
R + Ĥ

(1)
int (t) + Ĥ

(2)
R + Ĥ

(2)
int (t).

We treat the resistors as the dominant environment for the cavity, stim-

ulating photonic emission and absorption through Ĥint. We then proceed
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R 1

R 2

Figure 5.1. Coplanar waveguide cavity with two resistors embedded into the central
conduction line. The blue line represents the magnitude of the current in the first mode.

to calculate the rates for resistor induced transitions, and the resulting

photonic heat power into each resistor.

In the weak coupling regime, it can be shown that applying Fermi’s

golden rule to an interaction term of the form Ĥint(t) =
∑

j Q̂j ⊗ δÊ(t),

in which Q̂j acts only on the system degrees of freedom, and δÊ only on

those of the environment, yields the transition rates [68]

Γj
m→l ≈

|〈l|Q̂j |m〉|2
�2

SE(−ωml), (5.1)

between states |m〉 and |l〉 of the jth mode. Here ωml =
Ej

l−Ej
m

�
corresponds

to the energy change in the transition, and SE(ω) is the spectral density

of the environmental fluctuations causing the transition.

In our case, we treat the resistor as a semi-classical voltage source with

fluctuations governed by the thermal Johnson-Nyquist noise [Eq. (3.1)]. If

these fluctuations are small, the cavity-resistor interaction Hamiltonian

can be written as Ĥint = Θ̂L(xR)⊗ δV̂ , as shown in Publication I. We thus

apply Eq. (5.1) to find the rates for resistor i to increase or decrease the

photon number in the jth mode to be

Γ
(i),j
n→n+1 = (n+ 1)

2Ri sin
2(kjx

i
r/L)

L�

1

exp
(

�ωj

kBTi

)
− 1

, (5.2)

Γ
(i),j
n→n−1 = n

2Ri sin
2(kjx

i
r/L)

L�

1

1− exp
(−�ωj

kBTi

) , (5.3)

for weak resistor-cavity coupling. The voltage fluctuations of the two re-

sistors are not intrinsically correlated and therefore the total rate is just

the sum of the two individual contributions Γj
n→n+1 = Γ

(1),j
n→n+1 + Γ

(2),j
n→n+1.
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Naturally, inserting resistors into the cavity will substantially increase

the dissipation. We require that the Q-factor remains � 10, so that each

photon is still able to make a reasonable number of oscillations before

it decays. For an n-photon state, the excitation probability decays as1

pn(t) = e−2tΓ
(1),j
n→n−1 . Denoting E as the energy stored in the cavity, and

ΔE = E(t = 0)−E(t = 1/fj) the energy lost after one oscillation, Qn is by

definition

Qn =
2πE

ΔE
= 2π

n�ω

�ω

[
1− exp

(
−2nΓ

(1),j
1→0
fj

)] ≈ πfj

Γ
(1),j
1→0

, (5.4)

for each number state |n〉j . Taking the zero temperature rates, we arrive

at a limit to the coupling strength for symmetric resistance

Qn ≈ jπ

4

Zc

R
(j)
eff

	 1, (5.5)

where we have defined an effective resistance R
(j)
eff = R1 sin

2(jπx1r/L) and

the characteristic impedance of the cavity Zc =
√

�
c .

We denote the eigenstate occupation probability for each mode by the

vector 	pj , each element of which, pjn, represents the probability to be in the

corresponding photon number state |n〉j . The master equation describing

the time evolution of 	pj , may then be expressed as a first-order differential

equation d�pj(t)
dt = Γj	pj(t), for each mode j. We have employed the secular

approximation, so that the evolution of the probabilities of the eigenstates

decouples from their coherence, justifying this treatment. The probability

distribution in steady state therefore corresponds to the zero eigenvalue

of the transition matrix Γj .

Figure 5.2(a) shows the setup schematically, with both resistors contin-

uously emitting and absorbing photons to and from a shared cavity. For

each photon number state, the rate at which energy is absorbed by resis-

tor i is equal to the probability pjn, of having n photons in the mode, multi-

plied by the energy difference �ωj , of the transition, and by the net photon

number absorption rate for the transition. To obtain the total power, we

sum over all modes and photon numbers

P
(i)
net =

∑
j

�ωj

∑
n

(
Γ
(i),j
n→n−1 − Γ

(i),j
n→n+1

)
pjn. (5.6)

Why do we refer to single-photon heat conduction? At temperatures kBT �
�ω1, the probability to simultaneously excite multiple photons or higher
1For the sake of this argument we assume the resistors have the same resis-
tances, relative offsets, and temperatures, hence we get a factor of two in the
exponent.
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modes is suppressed exponentially with decreasing temperature. The

overwhelming majority of the heat conduction therefore takes place at

the single-photon level. Figure 5.2(b), presents a comparison of the full

solution [Eq. (5.6)], with the two-level approximation which confirms that

the lowest energy state of the cavity accounts for the vast majority of the

heat power at temperatures below 90 mK.

In the two-level approximation, there may be only zero or one photons in

the fundamental mode and, in steady state, the net photon power trans-

ferred into the ith resistor may be calculated analytically (see Publication

I) as

P
(i)
net = Γ

(i),1
1→0p1�ω1 − Γ

(i),1
0→1p0�ω1 =

�ω1

ΓΣ

(
Γ
(i),1
1→0Γ

+ − Γ
(i),1
0→1Γ

−
)
, (5.7)

here we have defined the rate to add Γ+ = Γ
(1),1
0→1 + Γ

(2),1
0→1 , and to remove

Γ− = Γ
(1),1
1→0 + Γ

(2),1
1→0 , a photon, as well as a total rate ΓΣ = Γ− + Γ+.

5.2 Remote Heating and Cooling of a Dissipative Cavity Element

The final part of this chapter is devoted to the calculation of remote heat-

ing and refrigeration of one of the metal islands in the cavity. To achieve

this, NIS probes are employed in order to vary T1, the temperature of

the first resistor. We then calculate the temperature of the second is-

land, T2 when the system has reached steady state. At this quasiequi-

librium point, the net heat power from all sources into each of the re-

sistors must balance. We include only the power resulting from the in-

teraction between the electrons in the resistor with the phonons in the

substrate, and the net photon power transferred as a result of exchange

between the resistors and the cavity PΓ [Eq. (5.6)]. The phonon power [66],

P
(i)
Σ = ΣV (T 5

i − T 5
0 ), is dependent on the material-specific constant Σ, the

volume of the resistors V , and the temperature of the phonons, which we

assume to be at the bath temperature T0. In this simple case, we find the

steady state temperature of the second resistor to be2

T2 =
5

√
PΓ/(ΣV ) + T 5

0 . (5.8)

Since PΓ is itself a function of T2, Eqs. (5.8) and (5.6) must be solved self-

consistently. We may also define the effective temperature of the cavity

2Inevitably there are several additional sources of power other than those dis-
cussed here, e.g., from the NIS probes or due to quasiparticle excitations. These
are accounted for in Publication II, where it is demonstrated that they do not
essentially alter the results, I therefore do not discuss them further.
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R1 R2

Γ
(2)
1→0Γ

(1)
1→0

(a)

Γ
(2)
0→1Γ

(1)
0→1

Γ
(2)
2→1Γ

(1)
2→1

Γ
(2)
1→2Γ

(1)
1→2

TLA

(b)

Figure 5.2. (a) Schematic diagram showing the resistor-induced transitions between the
two lowest energy states of the first cavity mode. The two-level approximation (TLA)
is marked with the dashed box. (b) Comparison of the photonic power into the second
resistor using multiple modes and excitations (solid line), with the TLA (dashed line), and
the quantum-limited power (dotted line), as a function of the temperature of resistor 1.
The latter is calculated as P (i)

net = g0(Teff)ΔT , where the effective cavity temperature Teff ,
is calculated according to Eq. (5.9), andΔT = T1−T2. The temperature of the first resistor
is scanned from 50 to 100 mK while the second resistor is held at a fixed temperature of
80 mK. The length of the cavity is L = 6.4 mm, it has a capacitance per unit length
c = 130 pF, and a characteristic impedance Zc = 50 Ω. This results in cavity modes with
angular frequencies ωj = 2jπ × 12.0 GHz = 577 mK × jkB

�
. The resistors are offset from

the ends of the cavity by L/30 with resistances R = 230 Ω, yielding Reff = 2.5 Ω, for the
lowest mode.
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Figure 5.3. Temperature of resistor 2 (dashed line) and the effective temperature of the
cavity (dotted line) as functions of the temperature of resistor 1, which is also shown for
comparison (solid line). In (a) we observe heating of resistor 2 above the phonon bath
temperature T0 = 30 mK, and in (b) cooling below the bath temperature of 250 mK. The
cavity has a capacitance per unit length, c = 130 pF and a characteristic impedance Zc =

50 Ω. The length of the cavity is L = 6.4 mm, with resistors offset from the ends by
L/30 with resistance R = 230 Ω. The angular frequency of the lowest cavity mode is
ω1 = 577 mK× kB

�
.

as [68]

Teff =
�ω01

kB log
(
Γ1→0
Γ0→1

) . (5.9)

We show the resulting T2 in Fig. 5.3. In Fig. 5.3(a), T1 is scanned over the

range between 30 mK and 1 K, with a phonon bath temperature of 30 mK.

We observe that the photonic power is dominant if T1 is below 200 mK.

In this region, T2 follows T1 very closely, allowing us to control the tem-

perature of resistor 2 at will. At T1 > 200 mK, the phonon contribution

becomes notably more significant, and the effect of the heating on T2 be-

comes weaker. In Fig. 5.3(b), we increase the bath temperature to 250 mK

and then vary T1 from 250 mK to 40 mK. We observe that the second re-

sistor is cooled, with T2 saturating about 20 mK below T0. By modifying

the effective resistance [within the constraints of Eq. (5.5)] we are able to

vary the coupling strength and alter this saturation temperature. For the

parameters employed in Fig. 5.3, we have from Eq. (5.5), Q ≈ 20 for the

cavity quality factor.

Experimental observation of this heating and cooling would be not only

a demonstration of single-photon heat conduction, but also show that the

resistors act as as an engineered artificial environment for the cavity.
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6. Tunable Environment for
Superconducting Qubits

In this chapter, we utilise the framework that we have developed to inte-

grate normal-metal islands into superconducting cavities, and consider an

application for quantum computing. Covering the works of Publications

III and IV, our aim is to demonstrate that the coupling of a qubit to its

artificial environment can be tuned in situ. Here, one can quickly switch

between a setup in which the resistor is the dominant environment for

the qubit, causing rapid qubit initialisation, to one in which the coupling

is so weak that it is no longer the limiting factor for qubit decoherence. We

begin with the distributed-element model which includes the full spatial

dependence of the modes. Subsequently, we consider a more accessible

model in which two coupled resonators are modelled as LC circuits.

6.1 Distributed-Element Cavity Model

We propose the setup shown schematically in Fig. 6.1. A capacitor is used

to divide a single cavity into two weakly coupled cavities, designated as

left and right. We introduce a resistor into the left cavity, along with a

set of SQUIDs, which permit the inductance per unit length of this cavity

to be tuned. Into the right cavity, we place only a qubit and hence it

retains a very high internal quality factor. We analyse this scheme using

the circuit representation of Fig. 4.1. The cavity frequency is calculated

using Eq. (4.8), which incorporates the effects of the coupling capacitor

and variable cavity inductance. Any small effects of the resistor and qubit

on the profile are neglected. The qubit will, however, couple to the cavity

and affect the eigenstates. Modelling the qubit as a dipole moment, d̂ =

dσ̂x, and employing the rotating wave approximation [78], gives a dipole–
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Figure 6.1. Schematic illustration of a qubit (rightmost structure) coupled to a supercon-
ducting cavity with an artificial environment R. Adapted from Publication III.

electric-field interaction of the form

Ĥq
int = −

∑
j

d̂ · Êj(xq) =
∑
j

�gj(σ̂
+â+ σ̂−â†). (6.1)

For concreteness, we consider a charge qubit with Josephson energy EJ ,

charging energy EC , and junction capacitance CJ . For such a qubit, a

more thorough treatment in the transmon regime [36, 79] yields a cou-

pling strength

gj = −
√
2

(
EJ

8EC

)1/4 Cq

CΣ

e

�

kRj βjϑj

c
cos[kRj (xq − L)], (6.2)

where the qubit couples to the center conductor with capacitance Cq at po-

sition xq. The total capacitance CΣ is defined as CJ +Cq. The wavevector,

kRj , angular frequency, ωj , asymmetry factor, βj , and normalisation con-

stant, Aj , of the mode were all introduced in Chapter 4. The capacitance

per unit length of the center conductor has a value of c.

With a single cavity mode, we may identify the Hamiltonian Ĥq
int (see

Publication III) as the Jaynes-Cummings Hamiltonian with the excited

eigenstates [36]

|−, n〉 = cos(θn)|g, n〉 − sin(θn)|e, n− 1〉 (6.3)

|+, n〉 = sin(θn)|g, n〉+ cos(θn)|e, n− 1〉 (6.4)

and energies

E±,n =
�

2

[
(n− 1)ωr + ωa ±

√
4ng2 +Δ2

]
, n 
= 0, (6.5)

where Δ = ωQ − ω1, is the detuning of the qubit and cavity frequencies,

and θn = arctan(2g
√
n/Δ)/2. In this single-mode case, we can find analytic
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expressions for the rates. The first two excited states decay to the ground

state at a rate

Γ1→0 = A2
1

E1

�ω1

√
4g2 +Δ2 +Δ

2
√
4g2 +Δ2

R sin2(kL1 xr)

1− exp[−E1/(kBT )]
, (6.6)

Γ2→0 = A2
1

E2

�ω1

√
4g2 +Δ2 −Δ

2
√
4g2 +Δ2

R sin2(kL1 xr)

1− exp[−E2/(kBT )]
, (6.7)

where the normalisation constants Aj , introduced in Chapter 4, can de-

pend strongly on the cavity parameters

Aj =

{
�L

4kLj

[
2kLj xc − sin(2kLj xc)

]−
�Rβ

2

4kRj

[
2kRj (xc − L)− sin(2kRj (xc − L)

]}−1/2
. (6.8)

The reverse transitions are of identical form and can be found by making

the substitution Ei → −Ei. If the detuning is large (Δ/g 	 1), then the

Jaynes-Cummings eigenstates are approximately equivalent to the basis

states |σ, n〉, that is |−, 1〉 ≈ |g, 1〉, and |+, 1〉 ≈ |e, 0〉.
More generally, we consider an extended Jaynes-Cummings Hamilto-

nian with two cavity modes. We diagonalise this Hamiltonian to find the

eigenvectors and energies numerically and then construct the transition

rates as above. Though we no longer arrive at a closed form expression for

the rates, the procedure is conceptually identical to the single-mode case

(see Publication III).

Once we have the transition rates, the evolution of the probability is

determined by the master equation

d	p(t)

dt
= Γ	p(t)⇒ 	p(t) = exp [Γt] 	p(0), (6.9)

allowing us to simulate the dynamics. In Fig. 6.2 we show the decay of

the eigenstates corresponding to excitations of the qubit and the lowest

energy photon mode in the single-mode limit, which we focus on for sim-

plicity. Three distinct features are observed. Firstly, if the left and right

half-cavities are in resonance, the amplitude of the lowest-energy mode

is significant in both cavities, such that qubit is strongly coupled to this

mode, which is itself strongly coupled to the resistor. Quick decay of both

photon and qubit are observed here. Secondly, if the left half-cavity is then

tuned above resonance, the qubit remains strongly coupled to the lowest-

energy mode. However, the mode couples here only weakly to the resistor,

as a result of its very small amplitude in the left cavity. This results in

slow decay of both photon and qubit. In the third case, the left half-cavity
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Figure 6.2. (a), (b), and (c): Probability of the system to be in the eigenstate correspond-
ing to |g1〉 (solid line) and |e0〉 (dashed line), as a function of time when the system is
initially prepared in these eigenstates. (d), (e), and (f): Current profile of the lowest-
energy mode corresponding to |g1〉 [Eq (4.7)], for (a), (b), and (c), respectively. We focus
on three cases, distinguished by the relative magnitudes of the isolated left and right cav-
ity frequencies, ωB

L = π/(xc

√
�Lc), and ωB

R = π/[(L − xc)
√
�Rc]. In resonance ωB

L ≈ ωB
R ,

and the two frequencies differ only by ωres = 2π × 15 MHZ, which corresponds to the
cavity interaction energy. From this resonance point, ωB

L is tuned by ±42ωres, for posi-
tive and negative detuning, respectively. By varying the inductance of the left hand side,
we can tune ωB

L , and switch between these three cases. For the cavity parameters, we
take a cavity length L = 12 mm, with a capacitance per unit length for the central con-
ducting strip, c = 130 × 10−12 Fm−1. The characteristic impedance of the right cavity is
Zc =

√
�R/c = 50 Ω. A capacitance Cc = 1 fF, is positioned at xc = 0.45L, in addition to a

resistance of R = 230 Ω, positioned with an offset xr = L/25. The angular frequencies for
left-right cavity resonance [(a),(d)], are ω1 = 2π×11.64 GHz, for positive detuning [(b),(e)],
ω1 = 2π × 11.65 GHz, and for negative detuning [(c),(f)], ω1 = 2π × 11.02 GHz. The qubit
detuning to the first mode Δ, is held constant at 2π × 979 MHz. These calculations are
performed using the single-mode model; in the general case, at least two modes should be
considered (see Publication III) .
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is tuned below resonance. In this configuration, the qubit is only weakly

coupled to the lowest-energy mode, and the mode is strongly coupled to

the resistor. Thus the photon decays rapidly but the qubit remains pro-

tected. By tuning the flux through the SQUIDs we can move continuously

between these three cases (see Sec. 4.1). As shown in Publication III, if we

also vary the qubit-cavity detuning Δ, we can access an even wider range

of decay times. In the two-mode case, the noise source for each mode is

not independent, and consequently we cannot simply infer the qualitative

behaviour directly from Fig. 6.2. Nevertheless, as described in detail in

Publication III, by also utilising the left-cavity–qubit resonance, variation

of the qubit lifetime over many orders of magnitude still remains attain-

able.

6.2 Lumped-Element Resonator System

In this section, we study a closely related, but more convenient system, of

two coupled lumped element oscillators which are themselves capacitively

coupled to a qubit and a resistor in the circuit configuration shown in

Fig. 6.3(a). In comparison to the galvanic connection employed in Sec. 6.1,

this capacitive bath coupling can potentially simplify the fabrication of

the devices. This section concludes with the introduction of a mapping

between the resonator parameters and those of the distributed-element

system, such that this lumped-element model can also be utilised to sim-

ulate the dynamics of the coupled cavity system.

The complete Hamiltonian of this setup may be written as

Ĥtot =

ˆ̃HL︷ ︸︸ ︷
1

2
C̃L

ˆ̃V 2
L +

1

2
LL

ˆ̃I2L+

ˆ̃HR︷ ︸︸ ︷
1

2
C̃R

ˆ̃V 2
R +

1

2
LR

ˆ̃I2R +

ĤCc︷ ︸︸ ︷
1

2
Cc(

ˆ̃VL − ˆ̃VR)
2+

ĤCE︷ ︸︸ ︷
1

2
CE(

ˆ̃VL − δV̂r)
2+

ˆ̃Hq︷ ︸︸ ︷
EJ cos(φ̂) +

1

2
CJ V̂

2
q +

ˆ̃HCq︷ ︸︸ ︷
1

2
Cq(

ˆ̃VR − V̂q)
2+

ˆ̃Hr︷ ︸︸ ︷∑
r

�ωr

(
â†râr +

1

2

)
, (6.10)

where ˆ̃HL(R) is the Hamiltonian of the left (right) resonator, which con-

sists of an inductor LL(R), and capacitor C̃L(R). We denote by ˆ̃VL(R), the

voltage across the respective capacitors, and by ˆ̃IL(R), the current through

the respective inductors. The voltage across the resistor is δV̂r. The en-

ergy of the resonator coupling, resistor coupling, and qubit coupling capac-
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C̃L
R L̃L

CcCE Cq

C̃R L̃R
ωQ

R

(b)

ωQ

CqCE

Cc

Figure 6.3. (a) The system we consider is comprised of left and right LC oscillators cou-
pled by a capacitance Cc. The right oscillator is weakly coupled by a capacitor Cq, to
a transmon qubit, with angular frequency ωQ, and the left oscillator is coupled via an-
other capacitor CE , to a resistor which acts as an artificial environment for the qubit. (b)
Schematic representation of the setup, which may be used to model a coupled cavity sys-
tem, in which each resonator represents a single cavity mode. Adapted from Publication
IV.

itors, are denoted by ĤCc , ĤCE
, and ĤCq , respectively. We take the qubit

Hamiltonian ˆ̃Hq, of a transmon [31, 79, 80] with junction capacitance CJ ,

Josephson energy EJ , and charging energy EC . We represent the resistor

Hamiltonian, ˆ̃Hr, as an infinite sum of harmonic oscillators.

We rewrite this Hamiltonian in the more amenable form,

Ĥtot =

ĤL︷ ︸︸ ︷
1

2

(
C̃L + Cc + CE

)
V̂ 2
L +

1

2
LLÎ

2
L+

ĤR︷ ︸︸ ︷
1

2

(
C̃R + Cc + Cq

)
V̂ 2
R +

1

2
LRÎ

2
R−

Ĥint︷ ︸︸ ︷
CEV̂LδV̂r −

ĤL−R︷ ︸︸ ︷
CcV̂LV̂R +

Ĥq︷ ︸︸ ︷
EJ cos(φ̂) +

1

2
(CJ + Cq) V̂

2
q −

ĤR−q︷ ︸︸ ︷
CqV̂RV̂q +Ĥr.

(6.11)

That is, in terms of new effective left and right Hamiltonians which re-

tain the form of LC oscillators, but with the modified capacitances, CL =

C̃L + Cc + CE , and CR = C̃R + Cc + Cq. Equation (3.1) yields the spec-

trum of δV̂r, provided that ω � 1/(RCE). The effective cavities may be

diagonalised by introducing bosonic creation and annihilation operators.

Defining V̂L(R) = V 0
L(R)(â

†
L(R) + âL(R)) where V 0

L(R) =
√
�ωL(R)/(2CL(R)),

gives a cavity Hamiltonian ĤL(R) = �ωL(R)(â
†
L(R)âL(R)+1/2), with ωL(R) =

1/
√
LL(R)CL(R).

We therefore identify the left-right cavity coupling term as ĤL−R =

�α(â†Lâ
†
R + â†LâR + âLâ

†
R + âLâR), where we have defined α = −CcV

0
LV

0
R/�.

Similarly, with b̂(†) the annihilation (creation) operator for the transmon,

taking the voltage over the qubit to be V̂q = V 0
q (b̂ − b̂†), where V 0

q =
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−i
√
2e

CJ+Cq
( EJ
8EC

)1/4 [79], one finds a cavity-qubit coupling ĤR−q = �g(b̂â†R +

b̂âR − b̂†âR − b̂†â†R), with g = −CqV
0
RV

0
q /�.

We proceed by treating the resistor as an environment for the cavity-

qubit system, incorporating the coupling term, Ĥint, as a weak pertur-

bation which induces transitions between the cavity-qubit states. This

treatment enables us to compute the dynamics of the eigenvector proba-

bility distribution from the resulting master equation, as in Eq. (6.9).

We work in the basis |σ, nL, nR〉, with σ ∈ {g, e}, and at low tempera-

tures. We restrict ourselves to the photon number subspace nLR ∈ {0, 1},
and hence terms representing simultaneous (de)excitations of photon and/or

qubit play no role. In this case, the Hamiltonian may be represented as a

4× 4 block diagonal matrix.

Ĥtot=̂�

⎛
⎜⎜⎜⎜⎜⎝
0 0 0 0

0 ωL α 0

0 α ωR g∗

0 0 g ωQ

⎞
⎟⎟⎟⎟⎟⎠ . (6.12)

The general solution for the eigenvectors of the non-trivial 3× 3 block are

sin(θk)|g10〉+ cos(θk) sin(γk)|g01〉+ cos(θk) cos(γk)|e00〉, (6.13)

with

γk = arctan[(ε′k − ωQ)/g], (6.14)

θk = arctan

[
(ε′k − ωQ)

(ε′k − ωL)

−iα√|g|2 − (ε′k − ωQ)2

]
, (6.15)

where we have defined ε′k = εk/� using the corresponding eigenvalues εk.

In general, these exact solutions are cumbersome to work with. Neverthe-

less we can recover useful analytical solutions in several important limits

as summarised in Publication IV.

In practice, perhaps the most important of these regimes is the weak

coupling limit α ∼ |g| � ωL, ωR, ωQ. We assume that the bare oscilla-

tors are non-degenerate, and hence utilize second-order perturbation the-

ory to find the eigenvectors and frequencies {|i〉, ωi}. In the far detuned

limit these are approximately equivalent to the basis states |σ, nL, nR〉 (see
Publication IV), and the transition rates between them can be calculated
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using Eq. (5.1),

Γ2→1 = Ã2
2

(
CE

CL

)2(2Δ2
LR − α2

2ω2
LR

)2
Rω2

ZL[1− exp(−�ω2
kBT )]

, (6.16)

Γ3→1 = Ã2
3

(
CE

CL

)2 α2

Δ2
RL

Rω3

ZL[1− exp(−�ω3
kBT )]

, (6.17)

Γ4→1 = Ã2
4

(
CE

CL

)2 |g|2α2

Δ2
QRΔ

2
QL

Rω4

ZL[1− exp(−�ω4
kBT )]

, (6.18)

where the Ãi are the normalisation constants of the eigenvectors, which

are of the order of unity for large detuning. We have also defined Δab =

ωb − ωa in terms of the angular frequencies of the bare oscillators and of

the qubit. We observe the deexcitation rate of the state |4〉 (≈ |e00〉, if
|ΔQL|/α, |ΔQR|/|g| 	 1) is proportional to |g|2α2, that is the excited qubit

state is ‘doubly protected’, firstly by the weak cavity-qubit coupling and

secondly by the small coupling of the cavity to the resistor.

Finally, we consider how to select the parameters of the resonator such

that the model corresponds to the coupled cavity setup depicted schemat-

ically in Fig. 6.3(b)1. We assume that the coupling capacitances, and the

qubit properties are determined by the geometry of the device, and are

therefore equal in both pictures. In order to match the excitation ener-

gies, and the voltage operators at the ends of the isolated cavities, we

select

LL =
2

π2
xc�L, (6.19)

LR =
2

π2
(L− xc)�R, (6.20)

C̃L =
cxc
2

, (6.21)

C̃R =
c(L− xc)

2
. (6.22)

for the lumped oscillator parameters. Placing a qubit at xq = L will then

give matching spectra in the two models (see Fig. 4.2). Should a qubit off-

set be desirable, we may define an effective capacitance Ceff
q , such that the

energy spectra of the two models remain matched. Figure 6.4 presents

the dependence Ceff
q on the position of the qubit in the right cavity re-

gion. In this case, the effective coupling capacitance may be well approx-

imated by Ceff
q = C0

q cos(2πxq/L). By matching the parameters in this

way, the lumped element model exhibits similar physical behaviour to the

distributed-element model.
1With a suitably modified resistor interaction term in the distributed-element
model, Ĥint = CE V̂L⊗δV̂R. We neglect the effects of CE , and Cq, when performing
the mapping, as these are not included Eq. (4.8).
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Figure 6.4. Value of the effective coupling capacitance required to match the spectra
of the lumped- and distributed-element models as a function of the position of the qubit
in the right cavity region. The solid lines gives the numerical solution obtained through
matching the low-energy spectra of the two models. The line Ceff

q = C0
q cos(2πxq/L), shown

by the dashed line, gives a good approximation to these solutions for �L = �R. We use
a cavity of length L = 12 mm divided into left and right cavities by a capacitance of
Cc = 1 fF at xc = L/2. The cavity has a capacitance per unit length of c = 130 pF, and
characteristic impedance Zc = 50 Ω. The bare qubit coupling capacitor has a capacitance
C0

q = 10 fF, and the qubit has a frequency of ωQ/(2π) = 12.62 GHz.
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7. Summary

This thesis contains theoretical and computational studies of supercon-

ducting microwave cavities, embedded with carefully designed normal-

metal components. The main goal of the research presented here was to

analyse the functionality of these normal-metal components, with the ul-

timate aim to stimulate experimental activity on expanding the toolbox of

circuit quantum electrodynamics by realising the proposed techniques.

To achieve this we approached the topic from two directions, in Publica-

tions I and II we showed that a normal-metal island can act as an engi-

neered environment for the cavity and that observation of single-photon

heat conduction between two such islands in a cavity was a realistic goal

which would open up the possibility of remote heating and refrigeration

of cavity components.

Achieving a balance between the competing demands of qubit address-

ability and coherence time remains an obstacle on the path to engineering

a large-scale quantum computer. Publications III and IV suggest a new

tool which will potentially contribute in overcoming this challenge. More

precisely, we showed that the qubit and photon lifetimes may be tuned

independently and in situ, allowing for fast system reset, or normal oper-

ation as required.

The work here is theoretical but the experimental implications have

been considered closely throughout. The experiments are forthcoming,

and it will be interesting to see how closely those results match the pre-

dictions made here. In the long term, solving the evolution of the full

density matrix may be necessary in order to extend the applicability, and

account for the interference effects that are not studied in the present

approach.
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Errata

This paper contains the following errors, which have a minor effect on

the stated results.

1. The effective resistance in Eq. (3) was defined as R
(i)
eff = Ri sin(πxi/L),

which is correct only for the first mode. In general, the effective resis-

tance is a function of the mode number, R(i,k)
eff = Ri sin(kπxi/L). This

was handled correctly in the simulations, and hence has no effect on the

numerical results.

2. The value for the coupling strength γ was given as 1.53×109 s−1, rather

than 1.46×1010 s−1. This error was propagated to the estimate of the Q-

value, which was a factor of 10 too large as a result. The saturation tem-

peratures for the parameters used in the paper are therefore likely to be

slightly optimistic in comparison to what is realistically achievable in

practice. Nevertheless, this error has no effect on the essential features

of the results, and all of the conclusions remain perfectly valid. Note

that this error is not present in the analysis or simulations of Chapter

5.

43



9HSTFMG*afcced+ 

ISBN 978-952-60-5224-3 
ISBN 978-952-60-5225-0 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 
ISSN 1799-4942 (pdf) 
 
Aalto University 
School of Science 
Department of Applied Physics 
www.aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

A
alto-D

D
 10

4
/2

013 

 

P
hilip Jones 

Integrating N
orm

al-M
etal C

om
ponents into the F

ram
ew

ork of C
ircuit Q

uantum
 E

lectrodynam
ics 

A
alto

 U
n
ive

rsity 

Department of Applied Physics 

Integrating Normal-Metal 
Components into 
the Framework of Circuit 
Quantum Electrodynamics 

Philip Jones 

DOCTORAL 
DISSERTATIONS 




