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In this thesis we study in the context of metric measure spaces, some methods which in
Euclidean spaces are closely related to questions concerning regularity of nonlinear parabolic
partial differential equations of the evolution p-Laplacian type and of the doubly nonlinear
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estimates.

We take a purely variational approach to parabolic partial differential equations, and use the
concept of parabolic quasiminimizers together with upper gradients and Newtonian spaces, to
develop regularity theory for nonlinear parabolic partial differential equations in the context
of general metric measure spaces. The underlying metric measure space is assumed to be
equipped with a doubling measure and to support a weak Poincaré inequality.

We define parabolic quasiminimizers in metric measure spaces and establish some
preliminary results. Then we prove several regularity results for parabolic quasiminimizers in
metric measure spaces, using energy estimates and the properties of the underlying metric
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prove a comparison principle in metric measure spaces for parabolic super- and
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Tiivistelma

Téassa tyossa tutkimme metristen avaruuksien kontekstissa menetelmié, jotka euklidisissa
avaruuksissa liittyvat 1dheisesti epalineaaristen parabolisten osittaisdifferentiaaliyhtaloiden
sddnnollisyysteoriaan. Paraboliset prototyyppiyhtéalot, joihin menetelmét liittyvat ovat
evoluutio p-Laplace-yhtalo seka kahdesti epalineaarinen yhtédlo. Olemme kiinnostuneita
menetelmistd, jotka perustuvat kokonaan energiaestimaatteihin.

Tarkastelemme epélineaaristen parabolisten osittaisdifferentiaaliyhtéléiden teoriaa
puhtaasti variaationdkokulmasta. Kayttamalla parabolisten kvasiminimoijien késitetta
yhdessé yldgradienttien ja Newtonin avaruuksien kanssa, kehitimme parabolisten
epéilineaaristen osittaisdifferentiaaliyhtdloiden séédnnollisyysteoriaa yleisissd metrisissa
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Maaérittelemme parabolisten kvasiminimoijien kdsitteen metrisissé avaruuksissa, ja kdiymme
lapi tarvittavia esitietoja. Tamaén jalkeen todistamme useita sddnnollisyystuloksia
kvasiminimoijille metrisissd avaruuksissa. Tulokset ovat aiemmin julkaisemattomia.

Todistamme lokaalin Holder-jatkuvuuden degeneroituneisiin evoluutio p-Laplace-yhtéal6ihin
liittyville kvasiminimoijille metrisissd avaruuksissa. Todistamme paikasta ja mittakaavasta
riippumattoman Harnack-estimaatin kahdesti epélineaarisiin yhtal6ihin liittyville
minimoijille metrisissd avaruuksissa. Todistamme korkeampaan integroituvuuteen liittyvia
tuloksia lampoyhtaloon liittyville kvasiminimoijille metrisissé avaruuksissa, seké lokaalisti
ettd alueen reunalle asti. Todistamme vertailuperiaatteen metrisissa avaruuksissa evoluutio
p-Laplace-yhtal6ihin liittyville super- ja subminimoijille, seké yksikésitteisyyslauseen
minimoijille.

Kaymme yksityiskohtaisesti lapi todistuksissa kaytetyt menetelmat ja tekniikat, ja esitimme
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1. Introduction

In this thesis we study in the context of metric measure spaces, some meth-
ods which in Euclidean spaces are closely related to questions concerning the
regularity of nonlinear parabolic partial differential equations of the evolution
p-Laplacian type

—% +div(|DulP™2Du) =0, 1< p < oo,
and of the doubly nonlinear type
p—2
—W +div(|DulP™2Du) =0, 1< p < occ.

For the special case p = 2 the two equations coincide and we recover the clas-
sical heat equation. The evolution p-Laplacian equation has been extensively
studied in the literature, and in recent years renewed interest has grown in
studying also the doubly nonlinear equation. For an expository treatment on
the doubly nonlinear equation we refer the reader to [K] and the references
therein.

In many cases, when proving regularity results for weak solutions of these
nonlinear parabolic equations, a method can be applied for a larger class of
functions than weak solutions. It turns out that the method is based on an
energy type estimate, and is applicable to all functions that satisfy the specific
energy estimate.

In Euclidean spaces, the above parabolic equations can be formulated into
equivalent variational problems. A function is a weak solution of the parabolic
equation if and only if it is a minimizer to the corresponding variational prob-
lem. We then say that a function is a parabolic minimizer related to the
parabolic equation.

The variational minimizing condition associated with the parabolic equation
can be relaxed to define a larger class of functions, which contains weak solu-
tions as a proper subclass, but at the same time retains the variational prop-
erties needed for establishing energy type estimates. This is the main idea
behind parabolic quasiminimizers, defined in 1987 by Wieser [Wie].

Parabolic quasiminimizers form a natural starting point for studying from
a purely variational perspective, methods used in the regularity theory of
parabolic equations. As the class of parabolic quasiminizers is strictly larger
than weak solutions, regularity methods established for parabolic quasimin-
imizers are then known to only rely on energy estimates. Parabolic quasi-
minimizers also offer a unifying aspect, in the sense that several parabolic
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equations with similar elliptic growth conditions fall under the same class of
quasiminimizers.

Moreover, an important advantage is that the elliptic part of the definition
of parabolic quasiminimizers contains only moduli of gradients, instead of
the gradients present in the definition of weak solutions. This opens up the
possibility to generalize parabolic quasiminimizers to general metric measure
spaces. Indeed, partial derivatives cannot be defined in the metric context,
but moduli of gradients and Sobolev’s spaces can be generalized by using well
known concepts such as minimal upper gradients and Newtonian spaces, see
[Shl, Sh2] and the references therein.

This way the theory of nonlinear parabolic partial differential equations can
be developed and studied in the metric space context, thus combining analysis
of nonlinear partial differential equations with the robustness of analysis in
metric spaces.

In this thesis we use this approach to establish regularity theory for nonlinear
parabolic equations in general metric measure spaces. We assume the under-
lying metric space to be equipped with a doubling measure and to support
a weak Poincaré inequality. The purely variational approach and the general
doubling metric space setting cause several complications to known arguments
for weak solutions, as many of the usual techniques associated with weak so-
lutions, gradients or the Lebesgue measure are not available, and instead have
to be replaced with a more general approach.

An alternative way to study the theory of partial differential equations in
metric measure spaces also exists, by using a stochastic point of view. For
more on this approach we refer the reader to recent articles by Kumagai and
his co-authors [CK, CKK].

Already in the context of Euclidean spaces with Lebesgue’s measure, the avail-
able literature on parabolic quasiminimizers is very limited, and several inter-
esting questions still remain open. As far as we know, the available literature
is as follows: In 1987 Wieser [Wie] introduced parabolic quasiminimizers re-
lated to the evolution p-Laplacian equation, and proved that they are locally
Hélder continuous in the quadratic case. In the early 90’s Zhou [Z1, Z2] ex-
tended this result by proving that parabolic quasiminimizers are locally Holder
continuous in the general degenerate case, and established the result also for
parabolic quasiminimizers related to equations of Newtonian as well as non-
Newtonian filtrations. In 2008 Parviainen [P1] proved higher integrability up
to the boundary for the quadratic case. In the context of metric spaces, in 2012
Kinnunen, Marola, Miranda and Paronetto [KMMP] have proved a scale and
location invariant Harnack inequality for parabolic quasiminimizers related to
the heat equation.

One motivation for studying the regularity theory in general metric measure
spaces is the following. Grigor’yan and Saloff-Coste [Gri, Sal, Sa2] have ob-
served for the heat equation that the doubling condition and the Poincaré in-
equality are sufficient and necessary conditions for a scale invariant parabolic
Harnack principle on Riemannian manifolds. In this thesis, we extend this
result by establishing sufficiency in metric measure spaces for the general case
1 < p < oo. It would be very interesting to find out to what extent also ne-
cessity holds in the metric space setting, as this would show that assuming a
doubling measure and a weak Poincaré inequality are the natural assumptions
for studying the regularity theory of parabolic partial differential equations in

10
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the metric context.

The text is organized in the following way. In Chapter 2 we present the
concepts and preliminary results needed in the proofs of our regularity results.
In Chapters 3-6 we present the main results of articles -V, and discuss in
detail the methods, techniques and ideas behind them. We also present some
open questions related to our results. The last part of this thesis contains the
five original articles.

11
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2. Basic concepts and preliminary
results

2.1 The variational approach to partial differential equations

Several nonlinear parabolic partial differential equations can be formulated as
equivalent variational problems. For example, finding a weak solution u to the
evolution p-Laplacian equation in Q x (0,7,

ou

ot
is equivalent to finding a function u, such that

p/ u% dx dt+/ |VulP dz dt < / [Vu + V|l dedt, (2.1.2)
for0) Ot {970} {60}

for every ¢ € Cg°(2x (0,7)). Here 2 denotes a domain in R and 0 < T' < 0.
From now on we will denote Q7 = Q x (0,7).

+ div(|VulP~2Vu) = 0, 1<p<oo, (2.1.1)

The equivalence can be seen the following way. Let u be a weak solution of
(2.1.1). Take a compactly supported ¢ € C§°(Q27). By the definition of a weak
solution we can write

/ |Vul? dx dt = / |Vu|P~2Vu - Vu dz dt
{##0} {##0}

= / |Vul|P~2Vu - (Vu + Vo) dmdt—/ u% dz dt.
{970} {sr0y Ot
This implies that

/ u% d:vdt—i—/ |Vul? dx dt
{or0p Ot {670}

< / |VulP~2Vu - (Vu+ Vo) dz dt
{¢70}

< <1 - 1> / |Vul? dx dt + l/ |[Vu+ Vol? dx dt,
P/ J{g#0} P J{g#0}

where in the last step we use Young’s inequality. After rearranging terms we
obtain (2.1.2). Let then u be satisfy (2.1.2). Let ¢ € C§°(Q2r). For every
€ > 0 we have ¢ € C5°(Qr) and {e¢ # 0} = {¢ # 0}. By (2.1.2), we have for
every € > 0

&‘p/ u% d:tdt—i—/ [Vul? de dt < / |[Vu+eVo|P dz dt,
{orop Ot {60} {640}

13
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which can be written as

1

p/ W22 d:rdt—i—/ L (VulP = |[Vu+ Vo) dedi < 0.
{20} Ot {g#0} €

As e — 0, we have

1
L (Vul = [Vu + eVoP) = —p|Vufp1 2% . v
e \Vu\

pointwise. Hence, by the dominated convergence theorem we obtain

p/ u%dzdt_p/ IVulP =2V - Vo du dt < 0.
(o0} Ot {0}

Choosing —e¢ yields the reverse inequality.
Analogously, for the doubly nonlinear parabolic equation

_ O(ul"?u)

o +div(|VulP™2Vu) =0, 1<p< oo,

finding a weak solution is equivalent to finding a function u such that

p/ |u|Hu% da:dtJr/ |VulP dx dt g/ |Vu + VP dz dt.
{60} ot {670} {670}

2.2 Parabolic quasiminimizers in Euclidean spaces

The concept of parabolic K-quasiminimizers related to the p-parabolic evolu-
tion equation was first defined by Wieser in 1987 [Wie]. Following his work,
we consider a Carathéodory function

F=F(z,t,6):Qx(0,T) xR = R
satifying a growth condition
algl’ < F(z,t,8) < eof¢f?,

with positive constants ¢1, ¢o, and 1 < p < co. In Euclidean spaces, a function
uwe L} (0,T; I/Vli’f(Q))ﬂLQ(QT) is called a parabolic K-quasiminimizer related

to the evolution p-Laplacian equation, K > 1, if for every ¢ € C§°(Q2r),

/ u% dxdt—l—/ F(x,t,Vu)dxdt SK/ F(x,t,V(u+ ¢))dxdt.
{sr0p Of {670} {670}

By the growth condition this is equivalent to stating that there exists constants
« > 0 and K > 1 such that

a/ u% dx dt+/ |Vul? dx dt
{60} Ot {640}

<K |Vu + Vol du dt,
{60}

(2.2.1)

for every ¢ € C§°(Qr). We say that u is a parabolic quasiminimizer, if (2.2.1)
is true for some K > 1.

14
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From the discussion in the previous section, we see that u is a weak solu-
tion of (2.1.1) if and only if u is a parabolic K-quasiminimizer with K = 1
and @ = p. We say that u is a parabolic quasiminimizer related to (2.1.1),
or borrowing from the vocabulary used in calculus of variations, we say that
(2.1.1) is the parabolic Euler-Lagrange type equation of the quasiminimizer
u.

By an analogous reasoning, for the doubly nonlinear parabolic equation

p—1
U div(|Vul[P~*Vu)) =0,
ot
the related K-quasiminimizer is defined to be a function u € Lﬁ) (0,7 VV&)?(Q))
which satisfies for some o > 0 and K > 1

oz/ |u\p_2u8—¢ dxdt+/ [VulP de dt < K/ [Vu+ VolP dx dt,
{670} ot {670} {670}

for all ¢ € C§°(Qr). For now we return to discussing quasiminimizers related
to the evolution p-Laplacian equation.

Like much of the parabolic theory, the historical background of parabolic quasi-
minimizers lies in the study of elliptic problems. In 1982 and 1984 Giaquinta
and Giusti [GG1, GG2] introduced the notion of elliptic quasiminimizers as a
unifying approach to the study of elliptic equation and systems, of minima of
variational integrals and of quasiregular mappings. A function v € VV&;?(Q) is
called an elliptic K-quasiminimizer, K > 1, related to the p-Laplacian elliptic
partial differential equation in Q C R¢,

div(|Vu|P~2Vv) = 0. (2.2.2)

if for every ¢ € C§°(£2) we have
/ VolP d < K/ Vo + V[ da. (2.2.3)
{p#0} {p#0}

In the elliptic 1-dimensional case one can show [GG2] that a function v(z)
defined on the interval (a,b) C R is an elliptic K-quasiminimizer if and only
if

/ab W ()P do < KW’ (2:24)

for every a < o’ < V' < b. On the other hand, assuming any elliptic K-
quasiminimizer v, by defining u(z,t) = v(x) for each ¢ € (0,7T), we obtain a
parabolic K-quasiminimizer with the same constant K.

These observations provide us a way to use 1-dimensional elliptic quasimini-
mizers to construct examples of parabolic quasiminimizers. Indeed, with this
procedure, for any K > K’ > 1, it is fairly simple to construct a function which
in Qp is a parabolic K-quasiminimizer but not a parabolic K’-quasiminimizer.
In particular, we see that the class of weak solutions is a proper subclass of
parabolic quasiminimizers.

Being a weak solution is a locally determined property, in the sense that if a
function is a weak solution in every compactly contained open subset of a set,
then it is also a weak solution in the whole set. The analogous statement is not
true for parabolic quasiminimizers. Being a parabolic quasiminimizer in every

15
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compactly contained open subset of a set does not imply being a parabolic
quasiminimizer in the whole set. This can be seen from the following example:
Consider the elliptic function v : (0,00) — R, defined by setting

k—1
}_'_1:—7—1))7 when k—l<az<k, keN.
j

j=1
For v on the interval (m — 1,n), m,n € N, inequality (2.2.4) is
N P

"1 1 1
Z - <K 7771)1*1/1’ Z —| . (2.2.5)

j=m’

From this we see that for any m,n € N the function v is an elliptic K-
quasiminimizer on the interval (m — 1,n) with some large enough K > 1.
However, as n tends to oo, the right hand side of (2.2.5) tends to zero. It
follows that in the set (0,00), v is not an elliptic K-quasiminimizer with any
K > 1. Setting now u(z,t) = v(z) gives a function which is locally a parabolic
quasiminimizer, but not in the whole set (0,00) x (0,7).

When K > 1, parabolic quasiminimizers are not uniquely determined by their
behaviour on the parabolic boundary. As a simple example of this, consider
solutions to the two problems

U\ T, 2u,¢ T,
Duled) )\ — 0, (1) € (0.1) x (0,1),
ui(oat) :ui(lvt) :07 te (Oal)a
u;(z,0) =1, x € (0,1),
where Ay = 1 and Ao = a, where a > 1. The solutions u; and wug are
both parabolic quasiminimizers with p = 2 and K = a?/(2a — 1) in the set

(0,1) x (0, 1), but are not identical. For more details see Example 4.3 in article
V.

2.3 Doubling measures

In this thesis we investigate parabolic quasiminimizers in the general metric
measure space setting (X, d, ;). We assume (X,d) to be complete, and that
the measure p is a complete positive Borel measure which is doubling.

A positive Borel measure p is called doubling, if there exists a positive constant
C, such that for metric balls

B(z,r)={ye X : d(z,y) <r},
we have
0 < w(B(z,2r)) < Cu(B(z,r)) < o0,

for any € X and r > 0. We then say that the constant C' is a doubling
constant related to p.

The doubling condition ensures that the measure is regular in any bounded
subset of X, and that any non empty open set has non zero measure. Also,
as a consequence of the doubling property, every bounded measurable set has
finite measure.

16
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Other than the doubling condition, we do not assume any more specific scaling
properties for p. In particular, we do not assume p(B(x,r)) to be independent
of & or to be for example continuous with respect to z or r.

The only exception to only assuming p is doubling will be made when proving
local Holder continuity for parabolic quasiminimizers in metric measure spaces.
Then we make the additional assumption that g also has the so called a-
annular decay property. A measure p is said to have the a-annular decay
property, if there exists a positive constant « such that

u(B(z,r) \ B(z, (1 =d)r)) < 6“B(z,r),

for every x € X, r > 0 and 0 < § < 1. This says that the measure of an
annulus with fixed outer surface decays in a control way as the thickness of
the annulus tends to zero.

2.4 Parabolic upper gradients and parabolic Newtonian spaces

From now on, in cases where we integrate both in the spatial and time vari-
able, for the sake of brevity we often denote the product measure as dv =
dp dt.

In general metric spaces the concept of direction cannot be defined, and so
classical partial derivatives have no meaning. Nevertheless, several ways to
generalize Sobolev’s spaces to metric measure spaces can be found in the liter-
ature [C, Haj, HeK, Sh1]. In this thesis, we follow the definition introduced by
Shanmugalingam in 2000 [Sh1], where the generalization of Sobolev’s spaces
to metric spaces, called Newtonian spaces, is based on the notion of so called
upper gradients, and more precicely on the concept of minimal p-weak upper
gradients.

A nonnegative Borel measurable function g is said to be an upper gradient
of the function u : X — [—o00,00], if for all compact rectifiable arc length
parametrized paths v joining z and y we have

uw) ~u(w)| < [ g (2.4.1)
¥
Clearly |Vu| is an upper gradient of u in Euclidean spaces. However, from
the point of view of generalizing Sobolev’s spaces to metric measure spaces, a
major drawback of upper gradients is that their integrability is not controlled
by u. Indeed, if g is an upper gradient of u, then adding any non-negative
measurable function to g is a again an upper gradient of u. Avoiding this
drawback gives a natural motivation for the concept of minimal p-weak upper
gradients.

For 1 < p < oo, the p-modulus of a family of paths I' in X is defined to
be

inf / PP du,

roJx
where the infimum is taken over all non-negative Borel measurable functions
p such that for all rectifiable paths « which belong to I', we have

/pdle.
~
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A property is said to hold for p-almost all paths, if the set of non-constant
paths for which the property fails is of zero p-modulus. If (2.4.1) holds for
p-almost all paths v in X, then g is said to be a p-weak upper gradient of
u.

From these definitions we see that the class of p-weak upper gradients of u
is larger than the class of upper gradients of w. This enlargement of the
class makes it possible to show the following: Whenever 1 < p < oo and
u € LP(X, ) has an LP(X, ) integrable p-weak upper gradient, then there
exists a minimal p-weak upper gradient of u, denote it by g, in the sense that
gu is a p-weak upper gradient of u and for every p-weak upper gradient g of u
it holds g, < ¢ p-almost everywhere in X.

It can now be shown that g, is p-almost everywhere uniquely determined by
u. On the other hand, in Euclidean spaces |Vu| is exactly the minimal p-weak
upper gradient of u, and so g, generalizes the modulus of the gradient of u to
metric measure spaces.

The minimal p-weak upper gradient is then used to define

”qupX Hu” Xu)jL ”guan(Xu

with the covention [jul[;, x = 0o in case g, does not exist. The Newtonian
space is defined to be the quotient space

NYP(X) = {u : Jlullipx <00}/ ~,

equipped with the norm || - |1 5, x, where the equivalence relation is defined by
saying that u ~ v if

lu —vlj1,px = 0.

Defined this way, N!?(X) is a complete normed vector space, which generalizes
the usual Sobolev space WHP(RY) to metric measure spaces. The Newtonian
space with zero boundary values is defined as

NyP(Q) = {ulg : uw e NVP(X),u=0in X\ Q}.

In practice, this means that a function belongs to NO1 P(Q) if and only if its
zero extension to X \ 2 belongs to N'P(X). For more properties of Newtonian
spaces, see [Shl, KKM, BB, He].

For a time-dependent function u(z, t), whenever ¢ is such that u(-,t) € N1P(Q),
we define the parabolic minimal p-weak upper gradient of u in a natural way
by setting

gu(z,t) = gu(-,t)(x)v
at v-almost every (z,t) € Qp. For the sake of brevity we refer to the parabolic
minimal p-weak upper gradient as just the upper gradient.

Finally, we define the parabolic Newtonian space LP(0,T; N?(Q2)) to be the
space of functions u(z,t) such that for almost every 0 < ¢ < T the function
u(-, ) belongs to NLP(Q), and

T
/ la(, )}, o dt < oo.

We say that u € LY (0,T; NLP(Q)) if for every 0 < t; <t < T and ' CC Q

we have u € LP(t1,to; Nl*p(Q/)) We say that u € L2(0, T; NP(Q)) if for some
0 <t <ty <T,we have u(-,t) = 0 outside [t1,ta].
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2.5 Poincaré inequalities and Sobolev embeddings

A key assumption we make is that (X, d, p) is a metric measure space which
supports a weak (1, p)-Poincaré inequality. A metric measure space is said to
support a weak (1, p)-Poincaré inequality if there exist constants C' > 0 and
A > 1 such that

1/p
][ |u — up(zr|dp < Cr (][ 9 du) :
B(z,r) B(z,Ar)

for every u € N'P(X) and B,(x) C X. In case A = 1, we say a (1, p)-Poincaré
inequality is in force. Here we have denoted

1
UB(pa) = ud;zi/ ud.
B.r) ][B(x,r) ! :U’(B(‘rvr)) B(z,r) :

The weak Poincaré inequality relates the oscillation of u to its minimal p-weak
upper gradient, via the measure p. This has far reaching consequences, as it
gives a first connection between integrals of u and of g,,.

In the case of a Euclidean space equipped with the Lebesgue measure, for any
1 < p < o0 a (1, p)-Poincaré’s inequality follows from the properties of the
Euclidean space and the Lebesgue measure. However, when p is only assumed
to be a doubling measure, a similar implication result is not known, and so
already then the weak (1, p)-Poincaré is explicitely assumed.

A motive for assuming only a weak (1, p)-Poincaré inequality instead of a (1, p)-
Poincaré, is that in a general metric measure space setting it is of interest to
have assumptions which in the Euclidean special case are invariant under bi-
Lipschitz continuous coordinate changing mappings. The weak (1, p)-Poincaré
inequality has this property.

One important implication of assuming a doubling measure p and a weak
(1, p)-Poincaré inequality, is that together they imply a Sobolev embedding.
This is a result established in 1995 by Bakry, Coulhon, Ledoux and Saloff-
Coste [BCLS] and also by Hajlasz and Koskela [HaK], which says that if X
is a metric measure space equipped with a doubling measure p and supports
a weak (1, p)-Poincaré inequality, then there exists positive constants C' > 0
and A > 1 such that

1/k 1/p
<][ IU — UB(z,r) |H dﬂ) < Cr <][ 95 dﬂ) )
B(z,r) B(z,Ar)

where k£ > p. This Sobolev embedding with x > p turns out to be a cornerstone
when building the proofs of the regularity results in articles I-IV.

Another deep result we use is a self improving principle for the Poincaré -
inequality, established by Keith and Zhong in 2008 [KZ]. This principle says
that if a complete metric space X is equipped with a doubling measure p and
supports a weak (1,p)-Poincaré inequality, then for some 1 < ¢ < p a weak
(1, g)-Poincaré inequality is also supported.

Combining the Sobolev embedding together with the self improving principle,
it follows that for some 1 < ¢ < p, a weak (g, ¢)-Poincaré inequality

1/q 1/q
(J[ lu—upgnl! du) <Cr <][ 94 du) :
B(z,r) B(z,Ar)
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holds. As we shall see, this inequality is a key element for example in a
parabolic version of De Giorgi’s method in article I, and also when proving
higher integrability in articles III and IV.

2.6 The variational capacity

For a measurable set 2 C (2, the variational capacity is defined to be
capy(E,0) = inf [ gt dp,
vJo

where the infimum is taken over all u € N& P(Q) such that u > 1 on E. If
there are no such functions, then we consider the variational capacity to be co.
One can show [Bj] that if the underlying space X is equipped with a doubling
measure and supports a weak p-Poincaré inequality, then there exists a positive
constant C' such that

w(E)
Crp

Cu(B(z,r))

rp

< cap,(E, B(z,2r)) < (2.6.1)
when E C B(x,r). This gives us a tool to estimate the variational capacity of
a set.

The variational capacity can be used to give a sort of regularity condition for
the boundary of a set without actually having to define the boundary as a
curve. Namely, one can define a so called thickness condition, by saying that
a set E is uniformly p-thick provided there exists positive constants § and pg
such that

Ca‘pp(E N Bp(x),sz(a:)) > 5capp(Bp(x): BQP(I))a

for every x € E and 0 < p < po.

In the context we work in, it is known that the uniform p-thickness satisfies
the following deep self improving property established by Lewis in 1988 [L] for
the Euclidean case and generalized to the metric setting by Bjorn, Macmanus
and Shanmugalingam in 2001 [BMS]:

Let X be proper, linearly locally convex and equipped with a doubling mea-
sure. If a set £ C X is uniformly p-thick with p > 1, and X supports a
weak (1, p)-Poincaré inequality, then E is also uniformly g-thick with some
1<g<np.

A space X is called proper if closed and bounded sets in X are compact.
It can be shown, see Lemma 4.4 in [ATG], that a complete metric space
equipped with a doubling measure is proper. A space X is called linearly
locally convex if there exists constants C; > 0 and r; > 0 such that for all
balls B(z,r) in X with radius at most r1, every pair of distinct points in the
annulus B(z,2r) \ B(z,r) can be connected by a curve lying in the annulus
B(z,20y7) \ B(z,Cy'r). For example, it can be shown [BMS, HeK] that
Ahlfors p-regular spaces supporting a (1, p)-Poincaré inequality are linearly
locally convex.

The concepts presented in this section are used in article IV, where we prove
higher integrability up to the boundary. For more details we refer the reader
to [BB, BMS] and the references therein.
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2.7 Parabolic quasiminimizers in metric measure spaces

The definition of parabolic quasiminimizers in Euclidean spaces only involves
moduli of gradients. Therefore, the concept of p-weak minimal upper gradi-
ents and Newtonian spaces can be used to generalize the concept of parabolic
quasiminimizers to metric spaces.

In metric spaces, we say that u € LI (0,7, Nﬁ)’f(ﬂ)) N L?(Qr) is a parabolic
K-quasiminimizer related to the evolution p-Laplacian equation, if there exists

constants o > 0 and K > 1 such that

dp /
« u— dyv+ ghdv < K gi dv, (2.7.1)
/{@m} ot {60} foroy "+

for all ¢ € Lip.(Qp). If K = 1, we say that u is a parabolic minimizer.
If (2.7.1) holds for every non-negative ¢ € Lip.(Qr), we say that u is a K-
quasisuperminimizer. If (2.7.1) holds for every non-positive ¢ € Lip.(Qr), we
say that u is a K-quasisubminimizer.

Analogously, we define that in metric spaces a function v € L (0,7, Nﬂ)’f (Q))
is a parabolic K-quasiminimizer related to the doubly nonlinear equation, if

there exists constants o > 0 and K > 1 such that

_, 09
a |ul? 2,22 dy+/ ghdv <K gﬁ dv, (2.7.2)
/{45750} ot {¢#0} toro)

for all ¢ € Lip,(Q7).

The constant « present in both definitions originates from taking into account
in the Euclidean setting the growth conditions assumed for the elliptic parts of
parabolic equations related to the evolution p-Laplacian type or to the doubly
nonlinear type. For details see for example Section 3.1 in article V.

Defined this way, in the special case where the underlying space is a Euclidean
space and the measure is the usual Lebesgue measure, the class of parabolic K-
quasiminimizers is closed under bi-Lipschitz continuous coordinate changing
mappings. The analogous property cannot be said to hold for the class of weak
solutions.

We invite the reader to take note how the class of parabolic quasiminimizers
related to the evolution p-Laplacian equation is also closed with respect to
substracting a constant: if u is a parabolic quasiminimizer with constants «
and K, then so is u — k for every k& € R. On the other hand a parabolic
quasiminimizer related to the doubly nonlinear equation is scalable: If u is
a parabolic quasiminimizer, then so is ku for every nonnegative constant k.
When p # 2, one cannot a priori say that a quasiminimizer related to the
evolution p-Laplacian equation is scalable, nor can one say that the class of
quasiminimizers related to the doubly nonlinear equation is closed with respect
to substracting a constant. However, in the quadratic case p = 2 where the
two definitions for quasiminimizers coincide we have have both scalability and
invariance with respect to substractiong a constant. As we shall see, these
properties play an important role when proving regularity results.

Elliptic quasiminimizers were first introduced in metric measure spaces by
Kinnunen and Shanmugalingam in 2001 [KS]. In 2012 Kinnunen, Marola, Mi-
randa and Paronetto [KMMP] introduced parabolic quasiminimizers in metric
measure spaces.
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Since their introduction, elliptic quasiminimizers have been extensively stud-
ied, both in the Euclidean case and more recently in metric measure spaces.
In contrast, for parabolic quasiminimizers already in the Euclidean case the
available literature is significantly more scarce in number.

As an illustration of this, unlike for elliptic quasiminimizers, see the work by
Kinnunen and Martio [KM], it is an open question already in the Euclidean
setting to find out to what extent the class of parabolic quasiminimizers is
closed with respect to basic structure operations. For instance, it is not yet
known if taking the minimum of a parabolic minimizer and a constant produces
a parabolic quasisuperminimizer.

2.8 Energy estimates

The first and in many ways the most important step in the proofs of the
regularity results presented in this thesis, is to establish an energy estimate
for the quasiminimizer (or quasisuperminimizer etc. depending on the case)
under investigation. The regularity results are then proved based only on
this energy estimate, and on the assumptions made on the underlying metric
measure space. An example of an energy estimate is

70
ess sup/ (u(z,t) — k)2 dp + / / gf)u_k” dpdt
T1<t<70 J B(x,r1) T JB(z,r1)
<L/m/ (u—k)E dudt

B (TQ - Tl)p T2 J B(z,r2) N

b e
4+ — u— k)5 dudt,
(Tl - 7-2) T B(m,m)( )+

which is used in article I, for proving local Holder continuity of locally bounded
parabolic quasiminimizers in metric measure spaces. Each regularity proof
uses its own energy estimate, but the common feature is that potential energy
type terms on time slices

[ )~k dn
B(z,r1)

and a kinetic energy type term

70
D
Fiupy. A di,
/T1 /13(1',1"1) ( k)+

are estimated from above by a sort of possibly inhomogeneous potential energy
of u. By saying inhomogeneous we refer to the case p # 2, where integrands
of different degree are present in the inequality. Even in the homogeneous
case, the spatial and time scales of the parabolic cylinders where the energy
estimate is established are chosen in such a way that the terms (ro — r1)7?
and (72 — 1) ! are of the same degree.

In the regularity proofs presented in this thesis, the energy estimate is ex-
ploited as an inequality which contains in one package both a Caccioppoli type
inequality, and after using a weak Poincaré type inequality on the right hand
side, also a parabolic Poincaré type inequality where time slice integrals of u
are estimated with an integral of g, over a parabolic cylinder. The possible
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inhomogeneity of the energy estimate causes complications, as the inhomo-
geneity has to be taken care of somehow before we can combine the integral
terms of different degree to obtain a Caccioppoli or Poincaré inequality.

In some cases the energy estimate is also used to obtain a measure estimate,
either by estimating the integrands by constants or by directly building an
energy estimate where one or several integrands are of degree zero, and so the
corresponding integrals become measures over sets.

Each energy estimate is obtained by testing the quasiminimizer (or quasisu-
perminimizer etc. depending on the case) with a suitably chosen test func-
tion, and then using real analytic techniques such as integration by parts,
Lebesgue’s differentiation theorem and the hole filling iteration [Wid] (or a
similar real analytic lemma, see Lemma 2.1.4 in [WZYL]) to extract the en-
ergy estimate.

There is a technical difficulty present when establishing energy estimates for
parabolic quasiminimizers. A common feature of the test functions used
for proving energy estimates, is that they depend on the function wu itself.
However, it is not clear that the time regularity of a parabolic quasimini-
mizer u is a priori sufficient for placing u as the test function, and perform-
ing the usual techniques used for obtaining an energy estimate. Indeed, as
we LY (0,T;N-P()), it is not evident that du/dt exists almost everywhere

loc loc
in such a sense that the real analytic techniques can be carried out.

Wieser [Wie] has shown that for u € L (0,T; Nlt’f (€)), the quasiminimiz-
ing property implies that du/dt exists in the sense of distributions, and that
dujdt € L2(0,T;(NyP(€))), where (Ng?(€)) denotes the dual space of
N&’p(Q). Wieser’s result relies on being able to test u with both positive
and negative test functions, and hence does not apply to situations where we

want to establish energy estimates for super- or subquasiminimizers.

We treat the issue of time regularity by using a mollification technique, where
functions used in the test function are mollified with respect to time, and
also the inequality from the definition of a quasiminimizer is manipulated to
become an inequality for the mollification of u. For example, the rigorous
version of the test function

P(x,t) = (ulz,t) — k)ro1(z)p2(t),

where ;(z) and @s(t) are smooth enough cutoff functions with respect to
space and time, is

Pz, 1) = (ue(x,t) — k)rpr(x)pa(t).

Here u. denotes the standard time mollification of u. Roughly speaking the
idea of the technique we use is to then deduce the energy estimate for u., and
finally to establish the same estimate at the limit € — 0.

In the metric space setting, one runs into unexpected difficulties when taking
the limit ¢ — 0. To establish convergence of the estimate, one needs to
show that g, —(z,t) tends to zero as ¢ — 0. In the Euclidean case this
poses no difficulties as we can use the linearity of taking a gradient to write
V(ue —u) = (Vu): — Vu, and the convergence as ¢ — 0 then follows from
the integrability of Vu. With the minimal p-weak upper gradients g, _u,
the situation is not as simple, as taking an upper gradient does not preserve
linearity, and so we cannot use the same argument as for gradients. It turns
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out to be problematic to establish the convergence by using only the theory
of upper gradients.

In article I, we circumvent this difficulty by introducing so called Cheeger
derivatives [C] from the literature, which are comparable to upper gradients,
and preserve linearity. For the Cheeger derivatives the convergence as ¢ — 0
can be established, which then implies convergence also for the minimal p-weak
upper gradients. It would be interesting to know if one can show using only the
theory of upper gradients, to what extent and in what sense g, _,(x,t) — 0
as e — 0.

On the other hand, in article III we establish that each compactly supported
function in LP(0,T; N'P(Q)) N L?(27) can be approximated by compactly
supported functions in Lip(Q27) in such a way, that roughly speaking the time
mollification of a parabolic quasiminimizer can be tested with any compactly
supported function in LP(0,7; N1P(Q)) N L?(Qr). For more details we refer
the reader to Lemmas 2.3 and 2.7 in article III. This result helps in the
sense that we only need to perform the time mollification for u, while the
rest of the test function does not need to have much time regularity. The
result also enables us to establish some of the characterizations of parabolic
quasiminimizers, presented in article V.

Next we move on to discuss in more detail the results established in articles
I-V.
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3. Holder continuity for parabolic
quasiminimizers in metric measure
spaces

In the mid 1950’s De Giorgi [DeG]| showed that elliptic functions satisfying
a certain energy estimate type condition are Holder continuous. The class
of these functions was later named the De Giorgi class. In particular, the
De Giorgi class contains weak solutions of the linear second order elliptic
equation

d
Z (aij(v)ug;)z;, =0, in QC RY,
ij=1

where the coefficients a;; are only assumed to be bounded and measurable
and to satisfy related growth conditions. The proof of De Giorgi used a novel
approach, which did not rely on the linearity of an underlying equation. This
allowed Ladyzhenskaya and Uralt’seva [LU] to extend De Giorgi’s approach
in the mid 1960’s to prove Holder continuity for weak solutions of elliptic
quasi-linear equations

diva(z,uVu) =0, in QcCRY

with nonlinear structure assumptions of the type

{a(a:7u, Vu) - Vu > Ci|Vulp - C (3.0.1)

la(z, u, Vu)| < Co(|VulP~t + 1),

with 1 < p < oo, and constants C; > 0 and Cy > 0. In particular, these
structure assumptions are satisfied by the p-Laplacian equation

div(|VulP~2Vu) = 0,
both in the denerate case 2 < p < oo, in the quadratic case p = 2, and in the
singular case 1 < p < 2.

In 1964 Moser [Mo] proved Hélder continuity for weak solutions of the parabolic
equation

d

—u + Z (aij(z,t)ug;)e; =0, in Qr,
ij=1

where the coefficients a;; are assumed to be bounded and measurable. His
proof established Holder continuity via Harnack’s inequality. Again, the lin-
earity did not play a role in the proof, and so it was plausible to expect that
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similarly to the elliptic case, the proof would be generalized to cover weak
solutions of parabolic quasi-linear equations

_ou

En +diva(z,t,u,Vu) =0, in Qp,

with non-linear structure assumptions analogous to (3.0.1). Success was ob-
tained with growth conditions related to the quadratic case p = 2, but it
turned out that when p # 2, the methods of De Giorgi and Moser could not
be extended to the parabolic case. As a special case of this, whenever p # 2
it remained unknown if the evolution p-Laplacian equation

P
76—1‘ Fdiv(|Vulf2Va) =0, in Qp,

was Holder continuous.

These questions remained open until 1986, when DiBenedetto published his
celebrated article [DiB], in which he proved that in the degenerate case p > 2
bounded weak solutions of parabolic quasilinear equations are indeed locally
Holder continuous. In 1993 Chen and DiBenedetto [CD] extended this result
to also handle the singular case 1 < p < 2. Moreover, the method pre-
sented by DiBenedetto could be adapted to establish local Hélder continuity
for any local solutions of quasilinear porous medium type equations. Recently,
DiBenedetto’s method has been modified by Kuusi, Siljander and Urbano
[KSU] to prove local Hélder continuity for nonnegative weak solutions of the
doubly nonlinear equation.

In a series of recent articles DiBenedetto, Gianazza and Vespri [DGV1, DGV2,
DGV3] have established an intrinsic Harnack inequality for nonnegative solu-
tions of degenerate and singular parabolic PDEs with the full quasi-linear
structure. This result provides an alternative approach to proving Holder
continuity as an a posteriori estimate, by using Harnack’s inequality.[U]

From the point of view of variational calculus, investigating Holder regularity
in the parabolic setting was initiated by Wieser in 1987 [Wie|, when he intro-
duced in Euclidean spaces the notion of parabolic quasiminimizers related to
the evolution p-Laplacian equation and proved Hoélder continuity in the case of
growth conditions related to the quadratic case p = 2. In 1993 Zhou [Z1, Z2]
adapted DiBenedetto’s method to prove that bounded parabolic quasiminimiz-
ers in Euclidean spaces are locally Holder continuous in the degenerate case
p > 2, and also adapted this approach to include weak solutions to equations
of Newtonian as well as non-Newtonian filtrations.

In article I, we show that in the degenerate case p > 2, locally bounded
parabolic quasiminimizers in metric measure spaces are locally Holder contin-
uous. We do this by adapting DiBenedetto’s method to work in the metric
setting with upper gradients and a doubling measure. This establishes that
Holder continuity and the techniques used in DiBenedetto’s method do not de-
pend on having a linear structure or on properties of the underlying measure
such as translation invariance or continuity.
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3.1 Establishing the energy estimate

For showing Holder’s continuity for parabolic quasiminimizers related to the
evolution p-Laplacian equation, the energy estimate employed is of the form

70
ess sup/ (u(x,t) — k)L du + / / Ty, Gt
T1<t<70 J B(z,r1) 71 JB(z,r1)
¢ / " / (u— k) dud
< U — wdt 3.1.1
(ro —m1)P ),y Bl(z,r2) * ( )

C 72
+7/ / (u— k)L dudt.
(Tl - 7—2) 71 J B(z,r2)

The energy estimate is obtained by testing u with the test function

p(z,t) = £(u— k)xp1(x)pa(t).
where ¢ and ¢y are cutoff-functions with respect to space and time.

At the time of writing article I, it was not completely clear which space of test
functions would be technically the most natural choice, as the proof for the
density of Lip(Qr) in LP(0,T; Nol’p(Q)) in such a sense that also the support of
the function is approximated in measure, see Lemma 2.3 in article III, was not
yet established. This is the reason why in article I we have chosen the space
of compactly supported functions in C*°(0,T; N'P(Q)) as the space of test
functions, instead of Lip,(€27) used in the other articles of this thesis.

Also, when proving the energy estimate for Holder continuity, an essential tech-
nical detail for the argument to work is that the integrations in the definition
of a parabolic quasiminimizer are taken over the set {¢ # 0} instead of supp ¢.
Indeed, as the measure p is only assumed to be doubling, the integral

/ gﬁ_ @ dv
supp(®)

may well differ significantly from the same integral over the set {¢ # 0}. For
more details on this we refer the reader to the proof of Theorem 6.11 in I. If
the definition of parabolic quasiminimizers would be written using integrals
over supp ¢ instead of the set {¢ # 0}, then one would in any case first have
to show that the definition using integrals over the support of ¢ implies the
definition using integrals over the set {¢ # 0}. This is the origin of why in
articles I and III-V we have used the convention of testing quasiminimizers
over the sets {¢ # 0} instead of supports.

In light of the the density results presented in article III and the characteri-
zations of parabolic quasiminimizers presented in article V, the choice of the
definition for parabolic quasiminimizers and the space of test functions become
largely a matter of taste, as the different definitions for quasiminimizers can
be shown to be equivalent.

An important property of energy estimate (3.1.1), is that it is invariant under
substracting a constant. If u satisfies the energy estimate, then u — k satisfies
the same energy estimate with any constant k. This property is inherited from
quasiminimizers related to the evolution p-Laplacian equation, and plays an
fundamental role in DiBenetto’s method, described next.
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3.2 DiBenedetto’s method

The purpose of DiBenedetto’s method is to establish a reduction of oscillation
for u, as the underlying parabolic cylinder converges to a point. By this we
mean that if we have a parabolic cylinder, and a parabolic quasiminimizer u has
essential oscillation w in this cylinder, then by diminishing the measurements
of the cylinder around a point of the cylinder in a predetermined fashion, also
the oscillation of u diminishes by a fixed factor o < 1, so that the oscillation in
the smaller cylinder is at most aw. The needed diminishment of the cylinder
and the corresponding diminishment factor a for the oscillation of v do not
depend on the scale of the initial cylinder or on the magnitude of the oscillation
of u, and so we may repeat this reduction of oscillation in the smaller cylinder.
Local Holder continuity then follows by a standard iteration procedure from
real analysis, see for example Section 4.4. in [U].

Fixing the center point of the upper time level face of the parabolic cylinder
(see article T) and then seeking to show reduction of oscillation when diminish-
ing the cylinder around the center point leads us to two alternatives. Indeed,
if  is the initial parabolic cylinder and Q' is the diminished subcylinder con-
tained in @, then showing that (essoscqru) < (essoscqu) is equivalent to
showing that either there exists a constant (essinfgu) < k= < (esssupg u)
such that

(u—k~)_ = 0 almost everywhere in @', (3.2.1)
or there exists a constant (essinfgu) < k't < (esssupg u) such that
(u— k1) = 0 almost everywhere in Q'. (3.2.2)

DiBenedetto’s method is based on assuming two mutually complementing mea-
sure theoretic alternatives in the initial cylinder @), and then showing that the
first one of the alternatives implies (3.2.1) and the second one implies (3.2.2),
thus showing reduction of oscillation for u when moving from @ to Q'. Before
describing the two measure theoretic alternatives, we discuss the techniques
on which the method is based.

3.3 Moser’s iteration

A key technique for showing the implication leading from the measure theoretic
alternatives to (3.2.1) or (3.2.2) is to be able to construct a countably infinite
sequence of nested cylinders Qo D ...... D Q and levels kg > k1 > -+ > koo,
such that for each finite j we have a measure estimate of the form

Qe+ ki) > 0) g (MU0 k)2 0DY g
v(Qj+1) v(Q;)
where 7 > 1. For each j these measure estimates can then be chained together

in a fashion similar to Moser’s iteration, and since v > 1, it follows from a
standard real analytic lemma, that if the initial fraction

v({Qo : (u—ko)- > 0})
v(Qo)
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is small enough, then iterating the estimate (3.3.1) implies that

v({Qoo & (u—koo)- > 0})
V(Qoo)

which in turn implies that (v — koo)— = 0 almost everywhere in Q. For
showing the implication leading from the second measure theoretic alternative
to (3.2.2), the main technique is analogous, only this time one uses levels
ko < ki < -+ < ks and functions (v — kj;)4+ in place of (v — k;j)—. In what
follows we conduct explanations using (u—k)_, but the situation is completely
analogous for (u — k).

=0.

Establishing measure estimates of the type (3.3.1) is done using integral aver-
ages of (u— k)_, by combining Sobolev’s inequality together with the energy
estimate. Loosely speaking, the following scheme is applied:

v({Qj+1 ¢ (u—kjy1)- >0}
v(Qj+1)

energy estimate (and intrinsic scaling)} <9 (

< {Hélder’s and Sobolev’s inequality} ,

v({Qj : (u—kj)- > 0}))7
v(Q;) '

(3.3.2)

where v > 1. Sobolev’s inequality is used to estimate the integral average of
(u—Fk)— from above with the integral average of the upper gradient g,,, and the
energy estimate is then used in a Caccioppoli estimate like fashion to revert
back to the integral average of (u — k)_. Finally the obtained inequality is
estimated on both sides and divided by a suitable power of (essosc(u — k)_),
resulting in measure estimate (3.3.1).

What is important is that the constants in the resulting measure estimate de-
pend only on the data and in particular are independent of . Here we also
point out that the key component for obtaining v > 1, a crucial property for
making the measure estimate useful for the Moser type iteration, is Sobolev’s
inequality, as it enables to pass from a power to a lesser power. In the above
scheme, when passing from integral averages over the cylinder Q;41 to inte-
gral averages over the cylinder @), the dilatation in measure of the underlying
cylinder is handled by using the doubling property of the measure. This is
a modification to DiBenedetto’s original method, where instead of using in-
tegral averages, the explicit scaling properties of the Lebesgue measure are
needed.

3.4 Intrinsic scaling

When p # 2, energy estimate (3.1.1) is inhomogeneous. This is a consequence
originating from the evolution p-Laplacian equation, as in the related quasi-
minimizer the degree of the time derivative part is not equal to the degree of
the elliptic part. It turns out that the above described scheme (3.3.2) cannot
be pushed through if the inhomogoneity in the energy estimate is not some-
how taken care of, as otherwise it is problematic to recover a measure estimate
where the constants are independent of . This is also the reason why in the
case p # 2 it was originally problematic to adapt DeGiorgi’s method to the
parabolic case and combine it with Moser’s method.

The breakthrough idea of DiBenedetto was to eliminate the inhomogeneity in
the measure estimate scheme by introducing a technique called intrinsic scal-
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ing. Roughly speaking, intrinsic scaling consists of choosing the ratio between
the time scale and the spatial scale of the parabolic cylinders in such a way
that the ratio cancels out the inhomogeneity between (essosc (u — k)_)? and
(essosc (u—k)_)P. Using the notations of (3.1.1), this is done by choosing the
ratio between the time and spacial scales in such a way that

(ro—r1)P

(12 —71)
This way the power 2 on the right hand side of (3.1.1) can in essence be
eliminated and we obtain an estimate homogeneously related to the power p.
We note in passing that we choose to transform the power 2 into the power p

and not vice versa, because of the assumption that the situation is degenerate,
i.e. that p > 2.

< Cfess osc (u — k)_)P~2.

As a result of intrinsic scaling, the ratio between the time and space scales of
the parabolic cylinder where the Moser type iteration is carried out is dictated
by the behaviour of u and the choice of the level k. The closer the level k
is chosen to the extremal value of w (for example in the case of (u — k)_
the extremal value is the essential infimum of w), the more ’elongated’ the
relative proportions of the underlying parabolic cylinder have to be. It turns
out however that as long as the underlying parabolic cylinder is intrinsically
scaled according to the choice of k, the threshold value of the initial fraction
needed for initiating the Moser type iteration depends only on the data. This
property is crucial for the success of DiBenedetto’s method.

Originally DiBenedetto carries out the intrinsic scaling by a change variable
and by using the explicit scaling properties of the Lebesgue measure. We
avoid these techniques by working with integral averages and relying only on
the doubling property of the measure when performing intrinsic scaling.

Here we digress to point out that in order to be able to carry out the method
successfully, we need to be able to scale the initial parabolic cylinder intrinsi-
cally, while still staying inside Qp. Although it turns out that the space-time
proportions caused by intrinsic scaling ultimately only depend on the data, the
global scale of the initial cylinder inevitably depends on how close we are to
the complement of Qp. This affects the constants in the final Holder continuity
estimate in a way that causes the result to be local.

3.5 Forwarding in time

Another key technique in DiBenedetto’s method is forwarding in time. Start-
ing from the energy estimate (3.1.1), by taking the limit 79 — 71 and using
Lebesgue’s differentiation theorem on the right hand side, we obtain an esti-
mate of the form

70
ess sup/ (u(z,t) — k)% dp < L/ / (u—k)! dudt
T1<t<70 J B(x,r1) (ro —r)? Joy B(z,r2)

+C/ (u(x, 1) — k)2 dp.
B(z,r2)
(3.5.1)

From this expression, using intrinsic scaling and the fact that p > 2 one can
show that if

p{z: (ulx,n)—k)->0}) <d<1,
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then for every € > 0 and almost every 7 < 7/ < 7y there exists a &/, closer to
the extremal value of u, for which we have

pw{z: (u(z,7)—K)->0}) <d+e.

Thus a spatial measure estimate at a time level can be forwarded in time. How
much closer k' has to be chosen to the extremal value of u depends among
other things on how much forward in time we want to forward the measure
estimate. Using the a-annular decay property, one can show that no dilatation
is necessary in the spatial direction when forwarding a spatial measure estimate
in time. In some situations this property is needed, as we want to avoid having
to dilate the cylinder in the spatial direction while forwarding information in
time.

Another novelty of our proof is that we prove forwarding in time directly
from the energy estimate, where as DiBenedetto does this using a separate
logarithmic type energy estimate. In the technique we use, it is essential that
p> 2.

3.6 De Giorgi type method

The third key technique in DiBenedetto’s method is to combine the self im-
proving principle for the Poincaré inequality together with the energy estimate
(3.5.1) and intrinsic scaling, to obtain what is essentially De Giorgi’s elliptic
method applied uniformly at every time level of a parabolic cylinder. This
way we obtain that if we have

p{z : (u(z,t) — k)L >0}) <d <1,

for almost every t, in an intrinsically scaled parabolic cylinder, then for any
e > 0 there exists a k' closer to the extremal value of u, in this case the
essential supremum of u, such that

p({z : (u(@,t) = k)1 > 0}) <&,

for almost every ¢ in the same cylinder. The main difference to the purely ellip-
tic De Giorgi method is that here the energy estimate being used is parabolic,
and hence intrinsic scaling is necessary to overcome its inherent inhomogene-
ity when p # 2. Also, here we point out that the self improving principle
for the Poincaré inequality, see Section 2.5, plays a key role in making the
De Giorgi type iteration effective, analogously to Sobolev’s inequality when
proving (3.3.1).

3.7 The measure theoretic alternatives

Now that the key techniques used in DiBenedetto’s method have been covered,
we describe the two measure theoretic alternatives.

In the first alternative, it is assumed that inside the initial cylinder @ there
exists a parabolic intrinsically scaled cylinder @y for which
v({Qo : (u— Jessoscou)_ > 0})
v(Qo)

(3.7.1)
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is so small that the Moser type iteration inside Q)g can be initiated. Since the
cylinder @)y is assumed to be intrinsically scaled, this threshold value turns
out to only depend on the data. From the Moser type iteration it follows that
in a smaller cylinder inside @y we have a reduction of oscillation. As it may
well be that the upper time level of @y does not coincide with the upper time
level of the initial cylinder, the next step is to use forwarding in time. This
way, by choosing a k" close enough to the essential infimum of u in the initial
cylinder, we obtain that in a cylinder which coincides in upper time level with
the initial cylinder, the conditions to initiate the Moser type iteration are also
met. We end up with (3.2.1).

The second alternative is the complement of the first alternative. We assume
that for every Qg inside the initial cylinder, the value of (3.7.1) is so large
that the Moser type iteration cannot be initiated. It follows that there exists
a 0 < 1 such that at time levels with predetermined maximal length between
each other, we have

w{z : (u(z,t) — %ess&)sc u)y >0}) <o. (3.7.2)

Since the maximal length between these time levels is known, we can use
forwarding in time to obtain that (3.7.2) holds with some predetermined § <
§" < 1 at almost every time level of the initial cylinder. It follows that we can
use the De Giorgi type method to obtain that for some &’ close enough to the
essential supremum of u, the value of

v({@ : (u—K)y >0})
v(Q)

is smaller than the threshold value used in the first alternative. Since the
threshold value only depends on the data, so does k’. Hence we may assume
that the initial cylinder has been intrinsically scaled according to k. It follows
that the Moser type iteration can be initiated in the initial cylinder, and we
arrive at (3.2.2).

Thus we see that both measure theoretic alternatives lead to a reduction of
oscillation, and the proof is done.
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4. Harnack inequality for parabolic
minimizers in metric measure spaces

The doubly nonlinear equation was first studied by Trudinger [T] in the late
1960’s, when he proved a Harnack inequality for nonnegative weak solutions,
by using Moser’s method [Mo] and proving a parabolic version of the John—
Nirenberg inequality. The proof of this parabolic John-Nirenberg inequality
was simplified by Fabes and Garofalo [FG]| in their work twenty years later,
but still the proof remained technically demanding. In 2007 Kinnunen and
Kuusi [KKu] have given a proof for Harnack’s inequality for positive weak solu-
tions using the approach of Moser, but replacing the parabolic John—Nirenberg
lemma with an abstract lemma due to Bombieri and Giusti [BG].

In article IT we generalize this result by proving a scale and location invariant
Harnack’s inequality in metric measure spaces for positive parabolic minimiz-
ers related to the doubly nonlinear equation with 1 < p < co. We assume that
the parabolic minimizers are positive, locally bounded and locally bounded
away from zero, and that the underlying metric space is geodesic.

Grigor’yan and Saloff-Coste observed independently [Gri, Sal, Sa2], that for
the heat equation, assuming a doubling measure and the Poincaré inequality is
not only sufficient but also a necessary condition for obtaining a scale invariant
parabolic Harnack principle on Riemannian manifolds. In our work we show
the sufficiency in geodesic metric spaces for the case 1 < p < co. It would be
interesting to find out to what extent also the necessity holds in the metric
space setting. The doubling condition and a weak Poincaré inequality are
rather standard assumptions in analysis on metric spaces, and establishing
necessity would imply that they are also in some sense the natural assumptions
when generalizing the regularity theory of parabolic differential equations to
metric spaces.

We use a similar proof to Kinnunen and Kuusi, but the purely variational
approach and the metric setting cause several differences in the techniques
needed. Kinnunen and Kuusi make use of the fact that if u is a weak su-
persolution bounded away from zero, then u~! is a weak subsolution of the
same equation. In the variational calculus approach such a technique is not
available, and instead we have to prove energy estimates for both super- and
subminimizers.

AT . s e 1,
The parabolic minimizer under investigation is a positive u € Lﬁ) (0,T; N, Of (),
such that for some o > 0 we have

a/ upfl% dy+/ ghdv < / gﬁ+¢ dv, (4.0.1)
{o20} Ot {640} {640}
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for every ¢ € Lip,(Qr). In article 11, for the sake of brevity we have assumed
that a = p, and so the parabolic minimizer is the one that in Euclidean spaces
is a weak solution to the doubly nonlinear equation. However, it is easy to
check that our proof is valid with any positive fixed a.

4.1 Energy estimate for superminimizers

For our proof, a fundamentally important property of parabolic quasiminimiz-
ers related to the doubly nonlinear equation, is that if u satisfies condition
(4.0.1), then for any & > 0 the same is true for ku.

As a consequence of this scalability, it turns out that a parabolic supermin-
imizer related to the doubly nonlinear equation satisfies an energy estimate
roughly of the form

esssup/up_l_E d,u—l—//gﬁu_l_e dpdt
¢
c C
< m//upiliad,udt+m//upilisd,udt,

for every positive € # p — 1. Roughly speaking, this implies that for every
negative exponent ¢, by choosing a suitable € > p — 1 such that g=p—1—¢,
we obtain an essentially homogeneous energy estimate for u9.

(4.1.1)

Energy estimate (4.1.1) is proved by testing the parabolic minimizer with a
test function of the form

¢ =u""p1(x)pa(t),

where ;1 and ¢y are cutoff-functions with respect to space and time. Estab-
lishing energy estimate (4.1.1) using this test function is based using convex-
ity properties, which in turn necessitate being able to scale u to be locally
almost everywhere large enough. In order to be able to do this, we assume
the superminimizer to be locally bounded away from zero. We note that here
exceptionally, we are forced to extend the analysis all the way to the pathwise
properties of upper gradients. Also, preserving the scalability for the energy
energy estimate necessitates being able to cancel upper gradient terms side-
wise in the proof. In order to be able to do this, one needs the property that
u is a parabolic superminimizer, not just a quasisuperminimizer. For more
details on these observations we refer the reader to the proof of Lemma 3.1 in
article II.

An important property of energy estimate (4.1.1) is that it is essentially homo-
geneous, in the sense that it is scalable. If u satisfies the energy estimate, then
also ku satisfies it, where k is a nonnegative constant. This is a fundamental
difference with energy estimate (3.1.1), proved for quasiminimizers related to
the evolution p-Laplacian equation, where the energy estimate is inhomoge-
neous and thus non scalable when p # 2. On the other hand however, energy
estimate (3.1.1) is invariant with respect to substracting a constant. Energy
estimate (4.1.1), which corresponds to the doubly nonlinear equation, does not
have this property when p # 2.

Thus we see that the properties of scalability and invariance under substracting
a constant are inherited all the way from the partial differential equations to
the energy estimates for the corresponding quasiminimizers (or minimizers in
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this case). This seems incontournable, and greatly affects which regularity
results are difficult to establish for each type of quasiminimizers.

As we have noted, the proof we present requires the strict minimization prop-
erty, and does not apply for quasiminimizers. Recently Kinnunen, Marola,
Miranda and Paronetto [KMMP] have proved a scale and location invariant
Harnack inequality for functions belonging to the parabolic De Giorgi class
with p = 2, which contains parabolic quasiminimizers related to the heat
equation. Their proof relies on the homogeneity of the energy estimate. It
would be interesting to find out if and how one can prove a scale and loca-
tion invariant Harnack inequality for parabolic quasiminimizers related to the
evolution p-Laplacian equation in the general case 1 < p < oco.

4.2 Moser’s iteration

For minimizers related to the doubly nonlinear equality, the homogeneity in
the energy estimate makes it possible to obtain a reverse Holder inequality
directly, without the need for techniques such as intrinsic scaling. Indeed, we
can combine Sobolev’s inequality with the energy estimate to obtain a decrease
in the integration exponent. We use the following scheme:

1/vp
( ][ u P dl/> < {Hélder’s and Sobolev’s inequality]7

{energy estimate (4.1.1) for negative exponents} (4.2.1)

C B 1/p
<(aarf)
Q

where v > 1. We then construct an countably infinite sequence of parabolic
cylinders Q D Q1 D --- D @', and iterate the reverse Holder inequalities for
each pair of cylinders in the sequence, to obtain that for parabolic supermini-
mizers

essc;)s/up(ufl) < (ﬁ ]{g(ufl)s du) 1/S, (4.2.2)

for every 0 < s < p, or writing this same expression in another form

C 1/s
(7/6][ u® du) < essinf u,
(a—a)? Jo Q

for every —p < s < 0.

The same energy estimate (4.1.1) allows also to be used for a segment of posi-
tive exponents near zero. By constructing a finite sequence of nested parabolic
cylinders, and using the above scheme (4.2.1) with positive exponents, we ob-
tain a reverse Holder inequality of the form

(][ / ud du) v < (ﬁfczus dzx) v (4.2.3)

for every 0 < s < ¢ < (p—1)(2 —p/kK).
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4.3 Bombieri’s and Giusti’'s lemma

The tricky part of establishing Harnack’s inequality is now to extend the re-
verse Holder inequality over the value s = 0. We wish to obtain, by glue-
ing inequalities (4.2.2) and (4.2.3) together, for parabolic superminimizers a
weak version of Harnack’s inequality. By this we mean an inequality of the

form
1/q
<][ ul du) < essinf u, (4.3.1)
Q Q

for some ¢ > 0. In order to do this, we use an abstract lemma by Bombieri and
Giusti, which roughly says that if a reverse Holder inequality of the form

<][Q/fqdy>l/q§<(aca/)9]{2fsdy)l/57

where 0 < ¢ < oo, holds for every 0 < s < ¢ close enough to zero, and if we
have an estimate for the level sets of the logarithm of f of the form

Av(Q')
A

1/q
<][ f d1/> <C, (4.3.3)
Ql

where C' does not depend on f. The key idea in our proof is now to use the
Bombier—Giusti lemma, separately on one hand for positive powers of u and
on the other hand for positive powers of u=!. The boundedness (4.3.3) for
both cases implied by the Bombieri-Giusti lemma can then be used to glue
the two estimates together, thus obtaining the weak Harnack inequality. We
already have the reverse Hélder inequality conditions for both cases (4.2.2)
and (4.2.3), but the corresponding measure estimates of type (4.3.2) for log u
and log ©~! remain to be established.

u({x €Q: logf > A}) < (4.3.2)

then we have

4.4 Measure estimate around a time level

Establishing these measure estimates is based on a logarithmic energy estimate
for parabolic superminimizers. The logarithmic energy estimate is obtained
by testing the parabolic superminimizer with a nonnegative function of the
form

¢ = u” P Vo (2)pa(1).

Again in the proof we need to be able to scale u to be as large as needed in
a compact set, in order to take advantage of convexity. In order to be able
to do this, we assume u to be locally bounded away from zero. We also need
the strict minimizing property for the upper gradient terms to cancel out, and
so it is not enough to assume u to be a quasisuperminimizer. The exponent
—(p—1) then plays together with convexity in such a way that the logarithmic
energy estimate we obtain is of the form

//gﬁ)g LA dt —p {/ log u(x,t) du} " < LV(Q).

t=71 (T’Q — T )p
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What is significant about this estimate, is that u does not appear on the
right hand side. We can now combine this estimate with a weighted Poincaré
inequality, to obtain that the weighted spatial integral of log u is a monotonous
function in time around the time level tg.

We note in passing that the weighted Poincaré inequality used here is based
on being able to connect two arbitrary points in space with a finite chain
of balls. In order to be able to do this, one needs the assumption that the
underlying space is geodesic. This is the reason why in article II we make the
extra assumption that X is a geodesic metric space.

From the monotonicity of the weighted integral of log u, after using energy
estimate (4.1.1), we then obtain estimates of the type (4.3.2) for the level sets
of log u when t > ty and for the level sets of log u~! when t < t;. Here we
point out, that it is this motonicity property around the time level ¢y which
leads us to use the Bombieri-Giusti lemma in two parabolic cylinders, adjacent
to each other around the time level 3. Because the constant in (4.3.3) only
depends on the data of the setting, we are still able to compare the estimates
obtained in the two adjacent cylinders.

Having established all the prerequisites for using the Bombieri—Giusti lemma,
we obtain the weak Harnack inequality (4.3.1) by using the lemma on both
sides of the time level ty. Because the Bombieri-Giusti lemma requires dilata-
tion of the parabolic cylinder and we use the lemma in the adjacent cylinders
on both sides of the time level ¢ separately, the Harnack estimate unavoidably
ends up containing a waiting time around tg.

4.5 Energy estimate for subminimizers

After having obtained the weak Harnack inequality, the rest of the proof lead-
ing to the Harnack inequality is relatively straightforward. We establish the
analogue of reverse Holder inequality (4.2.2), but for parabolic subminimizers
and positive exponents. For this we begin by establishing for subminimizers
an energy estimate of the form

esssup/upflﬁ clu—i—//gﬁtfl+6 dp dt
¢

S ﬁ//up_lﬁ‘g dﬂdt+ ﬁ/‘/up_l-‘rsd‘udt.

This estimate is obtained by testing a parabolic subminimizer v with a function
of the form

(4.5.1)

¢ = —uSp1(x)pa(t).

This time, in order to recover the above energy estimate, one needs to be able
to scale u to be uniformly small enough on a compact set. This is why we
assume the subminimizer to be locally bounded. Again, similarly as was done
for superminimizers, we build a sequence of nested parabolic cylinders and use
the homogeneity of the energy estimate to establish reverse Holder inequalities.
As before, by using the Moser iteration we obtain that for a locally bounded

subminimizer u

C 1/s

esssupu < <7][ u’ du> , (4.5.2)
Q' (Oé — Oél)g Q
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for every 0 < s < p.

The final Harnack estimate for parabolic minimizers related to the doubly
nonlinear equation is now obtained by noting that a parabolic minimizer is
both a super- and subminimizer, and then combining the weak Harnack in-
equality (4.3.1) together with the reverse Holder inequality for subminimizers
(4.5.2).

For supersolutions, one can show that if u is a positive weak supersolution
locally bounded away from zero, then v ! is a locally bounded weak subsolu-
tion. From this it follows that when working with the equation, one can show
the Harnack inequality assuming only a positive weak supersolution which is
locally bounded away from zero. In our case, since we cannot claim that if u
is a superminimizer then u~! is a subminimizer, we need the assumption that
u is both a super- and subminimizer.

Note also, that one could prove Harnack’s inequality for a minimizer with a
shorter proof than what we have done, by using the Bombieri-Giusti lemma
directly for the reverse Holder inequalities (4.2.2) and (4.5.2), thus bypass-
ing the weak Harnack estimate for parabolic superminimizers. However, the
shorter proof is not used here, because the weak Harnack estimate is an inter-
esting result in itself, as it only requires the superminimizing property instead
of minimizing.

It would be interesting to find out if and, in case the answer is positive, how one
can get rid of the assumption that the parabolic minimizer is locally bounded
and locally bounded away from zero in our proof.

38



5. Higher integrability for parabolic
quasiminimizers in metric measure
spaces

In the elliptic setting the first higher integrability results date back to 1957,
to an article by Bojarski [Boj]. Almost twenty years later in 1975, Elcrat and
Meyers proved local higher integrability for nonlinear elliptic systems [EM].
In 1982, Granlund [Gra] showed that an elliptic minimizer has the higher
integrability property if the complement of the domain satisfies a certain mea-
sure density condition. Later, Kilpeldinen and Koskela [KKo] generalized this
result to a uniform capacity density condition.

In the parabolic setting higher integrability results were first proved by Gi-
aquinta and Struwe in 1982 [GS], when they proved reverse Holder inequalities
and local higher integrability in the case p = 2, for weak solutions of parabolic
second order systems of p-growth. Arkhipova has considered global integra-
bility questions for parabolic systems, see [Al, A2]. In 2000 Kinnunen and
Lewis [KLe] extended this local result to the general degenerate and singular
case p # 2. Recently, several authors have worked in the parabolic setting on
questions concerning local and global higher integrability and reverse Holder
inequalities, see [Mis], [AM], [Bol, Bs2], [P2, P3|, [BP], [BDM],[F], and in
particular for quasiminimizers in the Euclidean setting see [P1].

Already in the Euclidean setting, it would be interesting to find out if one
can establish higher integrability for weak solutions of the doubly nonlinear
equation. Since quadratic parabolic quasiminimizers are a special case of quasi-
minimizers related to the doubly nonlinear equation with 1 < p < oo, showing
higher integrability for quadratic parabolic quasiminimizers can be regarded as
an initial step in investigating the variational approach to higher integrability
of the doubly nonlinear equation. The quadratic case is the simplest to treat,
as the time derivative term of the parabolic quasiminimizer is linear and the
energy estimate is homogeneous. The proofs we use take advantage of this,
both in the local and global case.

The local case

In article III we prove local higher integrability for minimal p-weak upper
gradients of quadratic parabolic quasiminimizers. More specifically, we show
that if u is a parabolic quasiminimizer with p = 2, then there exists a ¢ > 0,

such that
1 1
te 2
<][ g2te dy) <C (][ gz dl/) ,
Qr Q2r
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for every Qar C Qp. The resulting higher integrability estimate depends on
being able to dilate the cylinder Qr with a fixed dilatation constant inside
Qpr. As a consequence of this the final higher integrability result is local in
nature.

5.1 Establishing the energy estimate

As before, the first step of the proof is to etablish an energy estimate. Here
the energy estimate is roughly (after using a hole filling type argument) of the
form

ess sup |u—u3(t)|2d,u+/ gidug%/ lu —up(t)*dv, (5.1.1)
teN' JB Q’ (r—r1") Q

where we denote Q' = B’ x A’ and Q = B x A. The energy estimate is obtained
by testing the parabolic quasiminimizer v with a function of the form

¢ = 7(“’(1'7 t) — Ug,y (t))¢l($)¢2(t)7

where ¢ and ¢ are cutoff-functions with respect to space and time, and ug, (t)
is the weighted spatial mean value of u with ¢;(z) as the weight. The idea
behind this choice of test function is that this way we obtain the property

/u¢1 (t)% dv =0,

and on the other hand, roughly speaking, we have the comparability

c'/B|u—uB<t>|2dus/B|u—u¢1<t>|2dusO/B\u—uB@nZdu.

These two properties, together with a hole filling iteration type argument make
it possible to obtain (roughly, see article III for the exact argument) estimate
(5.1.1). Note how here again the energy estimate is homogeneous. This is a
consequence of the fact that we consider the case of quadratic quasiminimizers,
where p = 2.

5.2 Establishing a reverse Hdlder inequality

Once the energy estimate is obtained, because of its homogeneity, obtaining
the reverse Holder inequality type estimate is relatively simple. We use a
similar scheme as when proving Holder continuity and Harnack’s inequality,
but since we want to establish a reverse Holder inequality for upper gradients
gy instead of u, we reverse the order in which the energy estimate and Sobolev’s
inequality are combined together. The scheme we use is the following:

][ g dv < [ Caccioppoli inequality from the energy estimate } ,

{ energy estimate, Poincaré’s inequality } , { (2, g)-Sobolev’s inequality } ,

{the e-Young inequality } < 56’][ gidv+etC <][ gl du) ! ,
Q Q
(5.2.1)
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where 1 < ¢ < 2, and € > 0. Here the key component for obtaining the
smaller exponent 1 < ¢ < 2 on the right hand side is a weak (2, ¢)-Poincaré
inequality obtained by combining Keith and Zhong’s self improving result
with Sobolev’s inequality. In this reverse Holder inequality, we demand that
the larger cylinder on the right hand side of the estimate, denoted by @ above,
is contained in the parabolic cylinder Qp, but other than that the local nature
of the estimate does not appear.

5.3 A modification of Gehring’s lemma

The remaining part of establishing local higher integrability relies only on
the obtained reverse Hoélder inequality and on properties of the underlying
doubling metric measure space. We use Gehring’s famous lemma, see for
instance [Ma] and the references therein, modified in such a way that the
reverse Holder inequality (5.2.1) implies higher integrability.

In the proof of this modification, the initial cylinder is divided into a good set
where g, is bounded and into a bad set where g,, is unbounded. At each point
of the bad set, in some small enough cylinder centered at this point, we have by
our previous results a reverse Holder inequality. These cylinders are then used
to form a Vitali covering of the bad set, so that we obtain the reverse Holder
inequality over to whole bad set. Finally, by an argument involving Fubini’s
theorem, the reverse Holder inequality is used to establish higher integrability
over the bad set. In the good set higher integrability turns out to be a direct
consequence of cleverly choosing the cutoff value by which we divide the initial
cylinder into the good and bad set. This way we obtain higher integrability
in the whole initial cylinder.

The global case

In article IV we prove higher integrability up to the boundary for minimal
p-weak upper gradients of quadratic parabolic quasiminimizers that satisfy a
Dirichlet type boundary condition on the parabolic boundary of 7, where
Q is assumed to be regular in the sense that X \ Q is uniformly 2-thick. For
the definition uniform thickness see Section 2.6, and for a survey on boundary
regularity see Section 8 of [Mik].

To be precise, we show that if u is a parabolic quasiminimizer with p = 2, if
X \ Q is uniformly 2-thick and if there exists a function 7 such that

u(z,t) —n(z,t) € N0 %(Q), for almost every t € (0,T),

/ /|u:rt n(x,t)*dudt — 0, as h — 0,

then the minimal p-weak upper gradient g, is globally integrable to a slightly
higher power than initially assumed, in the sense that there exists a ¢ > 0
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such that

1
0 ) (0 Ly, )
A Gu dv S A\ gudV
(V(QR) QrNOQr V(Q?R) QarNQr
1 2+e T‘IFE
+(7c / g,?*st) R / U
v(Q2r) Jgunnor V(Q2r) JQupnoy

ot
1
C q+e
+ 7/ gIte (2,0 du) ,
<N(BQR) Bogn@ (=0)

for every Qar C X xR. We assume X to be a complete linearly locally convex
metric measure space equipped with a doubling measure and supporting a
weak (1,2)-Poincaré inequality. For the definition of linearly locally convex
see Section 2.6.

ol

Establishing global higher integrability is based on obtaining a reverse Holder
inequality type estimate up to the boundary, and then using it together with
a Caldéron—Zygmund type decomposition and a Vitali covering to obtain inte-
grability at some slightly higher exponent than initially assumed, in the whole
set Qp. The starting point for showing the reverse Holder inequality for a
parabolic quasiminimizer is an energy estimate over two concentric parabolic
cylinders with different radii, Q" and Q, where Q' C Q. As before, this en-
ergy estimate is extracted from the definition of parabolic quasiminimizers by
choosing a suitable test function.

In the global case, when choosing the test function, we are faced with two qual-
itatively different situations. Depending on the center point and radii of the
concentric cylinders, the larger cylinder @), may or may not overlap the lateral
boundary of Q7. These two alternatives cause a difference in how we build
the test function, and consequently lead to different energy estimates.

5.4 Estimates away from the lateral boundary

In case @ does not overlap the lateral boundary of Qp, we can construct
the test function, much like in the local case, by using only the geometry of
the cylinders Q" and Q, without having to take into consideration the lateral
boundary of Qp. Similarly to the local case, we use a weighted mean value.
The test function is of the form

¢ = —(u(@,t) — ug, (£))P1(x)2(t).

The difference to the local case is however, that when determining boundary
terms created by time-wise partial integration, we have to take into account
the possibility that @ overlaps also the lower time level boundary ¢ = 0 of
Qp. This is reflected by having to consider the initial condition for w near
the boundary ¢ = 0. Accordingly, the initial condition is visible in the energy
estimate, which ends up being of the form

ess sup |u—ug(t)|2d,u+/ go dv
teA’'N(0,T) J B QN

c 2 2
< — — _
< o [ w0 d C [ .0 s )P
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where Q' = B’ x A’ and Q = B x A. Once the energy estimate has been
obtained, the reverse Holder inequality is proved using a similar scheme as in
the local case (5.2.1), except that we use the weak (2, ¢)-Poincaré inequality
also for the term caused by the initial value condition. The reverse Holder
inequality type estimate we obtain is then roughly of the form

1 2 eC 9
— g, dv < g5 dv
v(Q') // Qr V(Q)/ Qr
wner o ) (5.4.1)

1 C q >E ( 4 >E
e <V(Q) /QQQTgudV +eC ][Bgn(x>0)d,u .

for every 0 < e < 1.

5.5 Estimates near the lateral boundary

In case @) overlaps the lateral boundary of 7, we take the lateral boundary
of Q7 into consideration when building the test function for obtaining the
energy estimate. Indeed, instead of relying solely on a cutoff function using
the geometry of Q' and @, we also make use of the lateral boundary condition
by setting the test function to be of the form

¢ = —(u—n)p1(z)p2(t),

where ¢ is a spatial cutoff function such that supp(p1) C B and supp(p2) C
(0, 7). We invite the reader to note how the lateral boundary condition is
built into the test function in such a way that ¢ vanishes at the parabolic
boundary, even if Q = B x A overlaps the parabolic boundary of Q7. This
way the energy estimate we obtain with this choice of test function is up to the
lateral boundary of Q7. As the test function vanishes also on the lower time
boundary ¢t = 0 of Qr, also the initial condition for u is taken into account in
the estimate.

After using techniques such as partial integration and the hole filling iteration,
the energy estimate we arrive to is essentially of the form

€ss sup / lu(a,t) — n(z,t)|? du + / g2 dv
teA’'n(0,T) J B'NQ QMO

[ merae [ (|
<= w—ndv+C T dv.
(r =12 Jonar e =l orar \ 77

Since now in the estimate we have the integral of |u—n|? in place of the integral
of |u—up|?, we cannot directly combine the weak Poincaré inequality with the
energy estimate, to prove a reverse Holder inequality type estimate. This is
were the regularity assumption concerning X \ € comes into play. Indeed, one
can show that for any Newtonian function, and in particular for u(-,t) —n(-, t)
(after continuing it by zero in the set X \ ), we have a weak Poincaré type
inequality with capacity of the form

<]{3/ fu—nl du>; : (Capq(NB/(c; - ), B) /B G d“) % » (55.0)

where Np/(u—7n) ={B’ : (u—n)(x) =0} and 1 < ¢ < 2. By the uniform
thickness assumption for X \ ©Q and by the self improving principle for the

on

ot
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uniform p-thickness, see Section 2.6, we have
cap,(X \ QN B, B) > § cap,(B’, B),

for some 1 < ¢ < 2. By the fact that u(,t) — n(,t) = 0 in X \ £, this implies
that

Capq(NB’(u - 77)73) > 5capq(B',B).

Plugging these into (5.5.1) , we obtain a (2, ¢)-Sobolev inequality for v — 7, up
to the boundary when @ overlaps the lateral boundary of Q.

Here we note that being able to use the self improving principle for the uni-
form p-thickness is the reason why in article IV we have made the additional
assumption that X is linearly locally convex.

Having obtained a Sobolev inequality and the energy estimate, we have the
building blocks to push through a scheme similar to (5.2.1), where we combine
the Sobolev inequality together with a Caccioppoli type inequality extracted
from the energy estimate, and the e-Young inequality. We establish a reverse
Holder inequality type estimate of the form

1 / 9 eC / 9
— g dv < g, dv
(@) Jona, v(Q) Jona,

B T N - Ty PP
v(Q) Jonor " v(Q) Jorap \77 |0t

for 0 < € < 1, when @’ overlaps the lateral boundary of Q7. By summing the
right hand sides of (5.4.1) and (5.5.2), we obtain a reverse Holder inequality
type estimate which covers every Q C X x R, for every small enough 0 < € <
1.

Once the reverse Holder inequality type estimate up to the boundary has been
established, as in the local case, we prove global higher integrability by using
a modification of Gehring’s lemma. This time the modification of Gehring’s
lemma is adapted to take into account the terms containing 7.
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6. Comparison principle for parabolic
minimizers in metric measure spaces

In article V we show by a counterexample that parabolic quasiminimizers
related to the evolution p-Laplacian equation do not satisfy the comparison
principle, and that a boundary value problem does not have a unique solution,
in general. However, if we restrict our attention to parabolic minimizers, then
a parabolic comparison principle for super- and subminimizers holds, and as
a consequence a uniqueness result for minimizers is obtained.

More precisely, we assume a parabolic superminimizer v € LP(0,T; NYP(Q))N
L?(Qr) and a parabolic subminimizer v € LP(0,T; N*P(2)) N L?(Qr) related
to the evolution p-Laplacian equation. We assume that v < u on the parabolic
boundary of {27, in the sense that for almost every 0 < ¢t < T

(v(z,t) — ulz,t)4 € Ny (),

1 rh
7/ /(vfu)idz/%()
h 0 O

as h — 0. We prove that then v < u p-almost everywhere in Qp, and hence
satisfy the comparison principle.

and that

The proof for this is initiated by first testing the parabolic superminimizer u
with a test function of the form

¢ = (v —u)+X(0,)s

and then testing the parabolic subminimizer v with the test function —¢.
Next we substract the resulting two expressions from each other, to obtain an
expression of the form

t/
g/ g(v—u)id,udt—&-/ gfjdu—l—/ gb dv
2 Jo Jaot 640 $40

< / ghdv + / gh dv.
$#0 $#0

The upper gradient terms now cancel each other, and on the other hand we
can perform the time integration for the first term on the left hand side of the
above expression. This way we obtain

(v —u)y(z,8) <0

almost everywhere in 7, which completes the proof. We note that in the
proof, to obtain the cancellation of the upper gradient terms, we need the strict
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minimization property. Also, the linearity of the time derivative term, which
distinguishes the evolution p-Laplacian equation from the doubly nonlinear
equation is taken advantage of to write the first integrand on the left hand
side as the time derivative of (v — u)2.

Lastly we note that if u and v are both parabolic minimizers, then the ar-
gument can be repeated with the roles of u and v inversed. This implies a
uniqueness result for parabolic minimizers in metric measure space, extending
a result by Wieser established for the Euclidean case, see [Wie].

We end this section by noting that in the Euclidean setting with the Lebesque
measure, the comparison principle is known to be a sufficient and necessary
condition for a function to be a parabolic superminimizer. For more details
we refer the reader to [KLi], [KKP] and [KKS]. In the metric space context
however, the theory for parabolic obstacle problems has not yet been studied
much.
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In this thesis we study in the context of
metric measure spaces, some methods
which in Euclidean spaces are closely
related to questions concerning regularity of
nonlinear parabolic partial differential
equations of the evolution p-Laplacian type
and of the doubly nonlinear type. To be more
specific, we are interested in methods which
are based only on energy type estimates.

We take a purely variational approach to
parabolic partial differential equations, and
use the concept of parabolic
quasiminimizers together with upper
gradients and Newtonian spaces, to develop
regularity theory for nonlinear parabolic
partial differential equations in the context
of general metric measure spaces.
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