
Publication VIII

Jouni Mäenpää. Reducing P2PSIP Session Setup Delays. In 2013 IEEE

International Conference on Computing, Networking and Communications

(ICNC 2013), San Diego, USA, pp. 1-6, January 2013.

c© 2013 IEEE.

Reprinted with permission.

In reference to IEEE copyrighted material which is used with permission in

this thesis, the IEEE does not endorse any of Aalto University's products

or services. Internal or personal use of this material is permitted.

If interested in reprinting/republishing IEEE copyrighted material for

advertising or promotional purposes or for creating new collective works

for resale or redistribution, please go to

http://www.ieee.org/publications_standards/publications/rights/rights_link.html

to learn how to obtain a License from RightsLink.

227

Reducing P2PSIP Session Setup Delays

Jouni Mäenpää

Ericsson Research

jouni.maenpaa@ericsson.com

Abstract—It has been shown in previous work that ses-
sion setup delays in a Peer-to-Peer Session Initiation Protocol
(P2PSIP) based Voice over IP (VoIP) system can be unacceptably
high. This is due to the need to route several messages across
the P2P overlay and also due to the fact that P2PSIP needs to
establish separate connections for SIP signaling and Real-Time
Protocol (RTP) media between the communicating parties across
Network Address Translators (NATs). In this paper, we will
develop optimizations to reduce P2PSIP session setup delays. We
will also analyze the performance of these optimizations. Using
the proposed optimizations, it is possible to achieve delays that
are up to three times lower than those of unoptimized P2PSIP.

Index Terms—P2PSIP, ICE, RELOAD, session setup delay

I. INTRODUCTION

Peer-to-Peer Session Initiation Protocol (P2PSIP) is a new

decentralized communication system that is being standardized

in the Internet Engineering Task Force (IETF). The main idea

in P2PSIP is to replace the centralized proxy and registrar

servers of client/server SIP [1] with a Distributed Hash Table

(DHT) based P2P overlay network. P2PSIP uses a protocol

called REsource LOcation And Discovery (RELOAD) [2] for

rendezvous, data storage, and exchange of overlay mainte-

nance messages. P2PSIP uses Chord [3] as the mandatory-to-

implement DHT algorithm. For Network Address Translator

(NAT) traversal, P2PSIP utilizes the Interactive Connectivity

Establishment (ICE) [4] NAT traversal mechanism that has

been standardized by the IETF.

We have shown in previous work [5] that P2PSIP session

setup delays can be unacceptably high, especially when the

communicating parties are located behind the most restrictive

types of NATs. Our results in [5] indicate that in the worst

case, session setup can take as long as over 30 seconds. To

put this figure in perspective, the ITU-T recommendation for

average call setup delay of international calls is 8.0s [6].

Therefore, it is clear that optimizations are needed to bring

P2PSIP session setup delays down.

In this paper, we will design and evaluate different ap-

proaches for reducing P2PSIP session setup delays. The re-

mainder of the paper is structured as follows. Section II gives

an introduction to ICE and P2PSIP session setup. Section III

presents related work. Section IV introduces the optimizations

that we propose and describes the setup of the experiments that

we used to evaluate the proposed optimizations. Section V

presents the results of the experiments. Finally, Section VI

concludes the paper.

II. TECHNOLOGIES

This section will give an introduction to key topics in this

paper: ICE and the P2PSIP session setup procedure.

A. NAT Traversal Using ICE

ICE [4] is a NAT traversal technique that has been designed

by the IETF. In ICE, hosts that wish to establish a direct

connection first gather a set of candidate addresses that can

potentially be used for communication. There are three main

types of candidate addresses. A host candidate is the transport

address (i.e., IP address and port) of a local network interface.

A server reflexive candidate is an address that has been

assigned to a host by a NAT. A relayed candidate is a transport

address that has been allocated for a host at a relay server for

the purpose of relaying traffic. Having gathered the candidates,

the hosts run connectivity checks to test connectivity between

pairs of candidate addresses. The checks are done in priority

order in such a way that host candidates have the highest and

relayed candidates the lowest priority.

ICE makes use of Session Traversal Utilities for NAT

(STUN) [7] and Traversal Using Relays around NAT

(TURN) [8] protocols. STUN is used to gather candidates, for

the connectivity checks, and for keep-alive signaling. TURN

is used for communicating with a relay server.

There are several ICE parameters with which we experiment

in this paper. The Ta parameter defines the interval at which

ICE paces STUN and TURN transactions. N is the maximum

number of connectivity checks that a host can perform. Rc

determines the maximum number of times that STUN requests

are transmitted. Retransmission TimeOut (RTO) is the STUN

retransmit timer. The stopping criterion determines the max-

imum time that connectivity checks are run before selecting

one of the valid candidate pairs.

B. P2PSIP Session Setup Procedure

Figure 1 shows the P2PSIP session setup signaling flow. In

the figure, Alice establishes a VoIP session with Bob. Alice

and Bob are acting as RELOAD clients that are connected

to a P2PSIP overlay. Alice is using Peer 1 as her TURN

server, whereas Bob is using Peer 2. In steps 1-2, Alice

performs a RELOAD lookup (i.e., Fetch) operation to fetch

Bob’s contact information from the overlay. Next, Alice starts

the ICE connection establishment procedure for SIP. In steps

3-4, Alice performs ICE candidate gathering. Alice sends her

candidates to Bob via the overlay in a RELOAD AppAttach

request in steps 5-6. Having received the candidates, Bob

Fig. 1. P2PSIP call setup

gathers his own candidates in steps 7-8. In steps 9-10, Bob

sends his candidates to Alice via the overlay. Next, Alice

and Bob perform ICE connectivity checks for SIP in step

11. The result of the checks is a direct UDP connection for

SIP between Alice and Bob. In steps 12-13, Alice performs

ICE candidate gathering for RTP. In step 14, Alice sends a

SIP INVITE request carrying the candidates to Bob. Having

received the INVITE, Bob gathers his ICE candidates for RTP

in steps 15-16. In step 17, Bob sends a SIP 200 OK response

carrying his candidates to Alice. The 200 OK is acknowledged

in step 18. ICE connectivity checks for RTP are done in step

19. Finally, in step 20, RTP media starts to flow between Alice

and Bob.

In this paper, session setup delay refers to the delay between

the caller starting the lookup operation in step 1 of Figure 1

and the ICE connectivity checks being finished in step 19. The

callee is assumed to always accept the session immediately.

III. RELATED WORK

In [5], we study P2PSIP session setup delays with different

NAT types and show that the delays can be unacceptably high.

In the worst case, session setup can take over 30 seconds. The

difference between [5] and this paper is that in this paper, we

will develop mechanisms to reduce the session setup delay.

In [9], we show how P2PSIP session setup delays can be re-

duced by running P2PSIP on top of the Host Identity Protocol

Based Overlay Networking Environment (HIP BONE) [10]

framework. The difference to the present work is that the

mechanisms in this paper do not need to rely on HIP BONE.

Further, the optimizations in this paper result in significantly

lower session setup delays than the HIP BONE approach.

In [11], an alternative to ICE called Address List Extension

(ALEX) is proposed. ALEX attempts to reduce SIP session

setup delays when NATs are present. The difference to our

work is that we focus on P2PSIP rather than SIP and that we

use standard ICE rather than an alternative to ICE.

IV. EXPERIMENTS

A. P2PSIP Simulator

The results presented in this paper were obtained from our

P2PSIP simulator, which is an event-driven, message-level

simulator. It has been implemented in the Java programming

language. The simulator uses the same code base as our a real-

world P2PSIP implementation that we have used in previous

work [12], [13], [5] to run experiments in PlanetLab. The sim-

ulator uses a topology generator that assigns peers randomly to

206 different locations around the world, which correspond to

PlanetLab sites. The pairwise delays between simulated peers

are generated from a distribution of real pairwise delays that

we measured between these 206 PlanetLab sites.

The simulator has been used extensively in previous

work [14], [15], [16]. The simulator has been validated in [16]

by comparing its results to results obtained by running the

same code base in the real Internet.

B. Traffic Model and Parameters

The measurements were carried out in a simulated 5000-

peer P2PSIP overlay network. The network was created during

the first 9250s of the simulations. During this period, the

size of the overlay grew from zero to 5000 peers. The

measurements started when the size of the overlay reached

5000 peers and were continued for one hour of simulated time.

During this one hour period, the overlay was experiencing

churn. The churn, that is, the arrival and departure of peers,

was modeled as a Poisson process. The join and leave intervals

of peers were exponentially distributed with a mean of 5.76s,

which corresponds to a mean online time of 8 hours. As

an example, a global company-internal P2PSIP VoIP system

might have an 8-hour (full working day) mean online time. By

online time, we refer to the time between a peer joining the

system and leaving it. Since the mean join and leave intervals

were identical, the size of the overlay stayed constant at 5000

peers during the one-hour measurement period.

During the one-hour period, peers were initiating calls. This

period was modeled as a busy hour. The number of busy hour

call attempts per user was 2.21. This rate of call attempts was

chosen based on the results in [17], [18]; in [17], it is suggested

that VoIP users initiate 13 calls per day. Further, [18] states

that 17% of calls per day can be used to represent busy hour

traffic, which results in a number of busy hour call attempts

equal to 2.21. This number was used as a mean rate for the

arrival of calls, which was modeled as a Poisson process.

All the users initiating calls were P2PSIP clients. The clients

were using 3G High Speed Downlink Packet Access (HSDPA)

access. In contrast to the clients, all peers participating in the

P2PSIP overlay were using fixed broadband access. For the

delays between the clients and between clients and peers, the

delay generator used a large set of delays that we collected

in [15] through measurements in a 3G HSDPA network with

a high number of packet sizes ranging from 10 to 1400 bytes.

The sizes of the Chord finger table and successor list were

set to 12 following the recommendation in [3] to use on

the order of O(logN) fingers and successors. The size of

the predecessor list was set to 3 based on the minimum

recommended in [2]. The Chord stabilization interval was set

to 95s based on the formula presented in [19] that guides how

to set the interval for a given churn rate and network size.

ICE uses different Ta values for RTP and non-RTP sessions.

For RTP sessions, we use the standard formula in the ICE

RFC for setting the value of the Ta timer. This results in a

minimum Ta value of 20ms. For SIP sessions, we use initially

the default Ta value of 500ms specified in the ICE RFC and

later experiment with other values.

We use initially the default value of 7 specified in the STUN

RFC for Rc and later experiment with values 6 and 5. The

RTO was set using the standard formula in the ICE RFC. This

formula results in a minimum RTO value of 100ms.

For N, we use initially the default value of 100 specified in

the ICE RFC and later experiment with an alternative value.

We use an ICE stopping criterion consisting of two steps:

a soft deadline and a hard deadline. When the soft deadline is

reached, the hosts will try to nominate any valid candidate pair

that is not using a relay. If no such pair has been discovered,

the hosts will wait until the hard deadline is reached to see if

any candidate pair not using a relay succeeds. If not, the hosts

will nominate the highest priority pair utilizing a relay.

The soft deadline was set to 2s. This value was chosen

because the International Telecommunication Union (ITU)

recommendation for average post-selection delay on local

connections is 3s [6]. A 2s delay ensures that there is still

1s left for signaling before and after ICE that can be used for

instance to perform candidate exchange over SIP.

The hard deadline was initially set to 10s. This value was

chosen due to the reasons explained below. First, when using

the default values for Ta, N, and RTO, the final connectivity

check will time out roughly after 9.9s from the start of the

checks, assuming that checks are paced at 20ms and that the

maximum number of checks is reached. Second, a 10s delay

ensures that there is a good chance of finding a path if one

exists even with a rather high RTT and some packet loss.

Third, in person-to-person communication, a user is not likely

to tolerate a delay longer than 10s. Fourth, a 10s value is

also used by other widely used ICE implementations [20].

Our traffic model and parameters are summarized in Table I.

C. Optimizations

The optimizations that we propose and analyze in this paper

to reduce P2PSIP session setup delays are described in the

subsections below.

1) Unoptimized P2PSIP: This scenario uses the standard

P2PSIP session establishment flow described in Figure 1. In

this scenario, no optimizations have been applied.

2) Timers & joint candidate gathering: This optimization

introduces two changes to the unoptimized P2PSIP session

setup procedure. The first change is to modify the Ta value that

ICE uses for non-RTP sessions; instead of using a Ta with a

minimum of 500ms as specified by the ICE RFC for non-RTP

sessions, we use the same minimum Ta value that ICE uses

TABLE I
TRAFFIC MODEL AND PARAMETERS

Parameter Value

Peer interarrival & departure time 5.76s

Network size (N) 5000 peers

Busy hour call attemps 2.21 calls/user

Fingers/successors/predecessors 12/12/3

Chord stabilization interval 95s

ICE Ta timer, RTP (min) 20ms

ICE Ta timer, SIP (min) 500ms or 20ms

ICE soft deadline 2s

ICE hard deadline 10s, 7s, 5s, or 4s

STUN Rc 5, 6, or 7

ICE RTO 100ms

Maximum number of checks 50 or 100

for RTP (i.e., 20ms). The reason ICE uses a more conservative

Ta value for non-RTP sessions is that it might not be known

whether an aggressive rate will work for non-RTP sessions

in the network in which ICE is deployed. However, since our

experiments with ICE in a P2PSIP overlay network running in

the real Internet in [5] showed that Ta=20ms appears to work

without problems also for non-RTP sessions, we chose to use

that value also in this optimization. The second change that we

make is that we gather candidate addresses simultaneously for

SIP and RTP at the calling party. This change halves the time

that candidate gathering requires. The call setup flow of the

Timers & joint candidate gathering optimization is identical

to Figure 1 except for the parallel gathering of SIP and RTP

candidates.

3) Reuse ICE result: This optimization makes use of the

result of ICE connectivity checks for SIP when prioritizing

the candidate pairs for RTP. As an example, if the ICE

checks for SIP resulted in the selection of a candidate pair

that uses a relay, the corresponding pair will be assigned the

highest priority in the ICE checks for RTP. The benefit of this

optimization is that it removes the need to re-test the paths

that are already known to fail with a high probability as a

result of the first ICE negotiation. Thus, the optimization can

significantly reduce the session setup delay especially in cases

where a relay needs to be used. The call setup flow of the

Reuse ICE result optimization is identical to Figure 1.

4) SIP and RTP Mux: This optimization multiplexes SIP

and RTP on the same port. The benefit of such multiplexing is

that it eliminates the need to perform an ICE negotiation for

RTP. This is because the connection that ICE established for

SIP can be reused for RTP. The downside is that multiplexing

requires changes to SIP and RTP stacks; there is a need to

implement a multiplexing layer between the socket layer and

the rest of the protocol stack. The task of the multiplexing

layer is to determine whether the received datagram carries a

SIP message or RTP packet and deliver the datagram to either

the SIP stack or the RTP stack. The signaling flow that the SIP

and RTP Mux optimization uses is illustrated in Figure 2. The

differences compared to the standard P2PSIP session setup

flow shown in Figure 1 include that no ICE candidates need

to be gathered and that no ICE connectivity checks need to

be executed for RTP. Steps 1-11 of Figure 2 are identical to

Fig. 2. P2PSIP call setup, SIP and RTP Mux optimization

Fig. 3. P2PSIP call setup, SIP via Overlay optimization

Figure 1. In step 12, a SIP INVITE request is sent to the called

user. The called users accepts the call by returning a SIP 200

OK response in step 13. Neither the INVITE nor the 200 OK

carry ICE candidates. This is because RTP packets will be

sent on the already existing connection being used for SIP

signaling. Thus, RTP packets can start flowing between the

users in step 15 directly after the SIP signaling has finished,

without the need to run ICE connectivity checks.

5) SIP via Overlay (SvO): In the SIP via Overlay (SvO)

optimization, we use RELOAD to transport SIP messages, that

is, we send SIP messages encapsulated in RELOAD messages

across the overlay. For this purpose, we use a new RELOAD

Tunnel message. The Tunnel message is similar to any other

RELOAD message with the key difference that a Tunnel

request and its response can carry application data (i.e., SIP

messages) in their payloads. The benefit of the SvO approach

is that it eliminates the need to perform an ICE negotiation

for SIP. Thus, it results in significant reduction in the session

setup delay. The signalling flow used by the SvO optimization

is illustrated in Figure 3. The differences compared to Figure 1

include, in addition to the encapsulation of SIP messages in

RELOAD Tunnel messages, that the AppAttach transaction is

not needed and that there is no need to gather ICE candidates

or run connectivity checks for SIP. In steps 1-2 of the figure,

the called user’s Node-ID is fetched from the overlay. In steps

3-4, ICE candidates are gathered for RTP. In steps 5-6, a

RELOAD Tunnel request carrying the SIP INVITE request

is sent to the called user. In steps 7-8, the called user gathers

ICE candidates for RTP. In steps 9-10, the ICE candidates

are returned in a SIP 200 OK response that is included in

the payload of a RELOAD Tunnel answer. In step 11, a SIP

ACK is tunneled across the overlay. The empty Tunnel answer

has been omitted from the figure for brevity. In step 12, ICE

checks are run for RTP. Finally, in step 13, the ICE checks

have finished and RTP packets are flowing between the users.

6) SvO Rc=6: This optimization, in addition to using

the same mechanisms as the SvO optimization above, also

modifies the STUN Rc parameter by setting its value to 6

instead of the default value of 7. Reducing Rc allows us to drop

the hard deadline of the ICE stopping criterion to 7s. This is

possible since if we assume that ICE checks are paced exactly

at 20ms (i.e., Ta=20ms), Rc=6, RTO=100ms, and N=100, the

last check completes at the latest at 6.7s.

7) SvO Rc=5: This optimization uses the same mechanisms

as the SvO RC=6 optimization with the exception that we set

the Rc parameter to 5. This allows us to drop the hard deadline

further down to 5s since when reducing Rc to 5, the last check

completes at the latest at 5s if the checks are paced at 20ms.

It should be noted that the risk with reducing the number

of STUN retransmissions (i.e., using Rc values of 5 and 6)

is that in some rare cases ICE checks might really require 7

STUN transmissions to succeed. However, in our simulations

for this paper and in our experiments in [5] where we used

ICE to establish connections between two mobile phones in a

P2PSIP overlay running in PlanetLab, we did not observe any

degradation in performance with Rc=5; if an ICE check did not

succeed with 5 transmissions, it was not likely to succeed with

further transmissions either given the RTTs in our experiments.

8) SvO Rc=5 N=50: In this optimization, we use Rc=5 and

also limit the total number of connectivity checks (N) that a

host can perform to 50 instead of using the ICE default limit

of 100 that we used in the optimizations above. This allows

us to drop the hard deadline to 4s since with Rc=5 and N=50,

all the checks have completed roughly at 4s if paced at 20ms.

The risk with reducing N to 50 is that in some rare cases ICE

might be able to find a more optimal candidate pair if more

checks were allowed. However, in our experiments and when

running ICE in a P2PSIP overlay in PlanetLab in [5], we did

not experience any performance degradation with N=50.

9) SvO SigComp: In this optimization, we use the same

mechanisms as in the SvO Rc=5 N=50 optimization and

additionally, also use Signaling Compression (SigComp) [21]

to compress SIP messages. SigComp is an IETF-specified

mechanism for compressing the messages of application pro-

tocols. The benefit of using SigComp is that it reduces the

size of SIP messages considerably, which results in a lower

propagation delay for them on the 3G radio link. Compressing

SIP messages is worth the effort since due to the textual

Fig. 4. Total session establishment delay

encoding that SIP uses, SIP messages are multiple times larger

than binary-encoded RELOAD and STUN messages.

In our experiments, we will study the performance of each

of the optimizations above in three different scenarios. In the

No NATs scenario, both communicating parties are publically

reachable, that is, not located behind NATs. In the EIMF NATs

scenario, the parties are located behind NATs using Endpoint

Independent Mapping and Filtering (EIMF) behavior. In the

APDMF NATs scenario, the parties are located behind the most

restrictive types of NATs, that is, NATs using Address and

Port Dependent Mapping and Filtering (APDMF) behavior.

The main difference between the EIMF NATs and APDMF

NATs scenarios is that in the latter, the parties need to use a

TURN relay server to relay all traffic between them.

V. RESULTS

This section presents the results of our experiments. Our

overall results for all the optimizations are shown in Figure 4

for all the three NAT scenarios. The error bars in the figure and

all the other figures of this section represent 95% confidence

intervals. Note that in many cases, the error bars are very small

since thousands of calls were made during the measurement

period. In all the figures, the differences between different

optimizations and NAT scenarios are statistically significant

at the 95% confidence level. From Figure 4, we can observe

that unoptimized P2PSIP has the highest delays in all the three

NAT scenarios. In the worst case, that is, in the APDMF NATs

scenario, the session setup delay of unoptimized P2PSIP is as

high as 31.2s.

For all the three NAT scenarios, the lowest delays are

achieved in the SvO SigComp scenario. In case of the APDMF

NATs scenario, the delay is reduced by 64%, that is, the delay

is only 1/3 of the delay of unoptimized P2PSIP. Therefore, we

can conclude that the optimizations seem to be very effective

in reducing the session setup delay.

Fig. 5. Session establishment delay, APDMF NATs

We will analyze the session setup delays of each of the three

NAT scenarios in more detail in the subsections below.

A. APDMF NATs

The components of the session setup delay are shown for the

APDMF NATs scenario in Figure 5. From the figure, we can

see that the performance gain of the Timers & joint candidate

gathering optimization is rather small, 594ms. In contrast,

the Reuse ICE result optimization achieves a considerable

improvement (a reduction of 30% to 21.7s) compared to

unmodified P2PSIP. This is because the delay associated with

running the ICE connectivity checks for RTP is reduced from

11.1s to 1.6s due to the reprioritization of RTP candidate pairs.

The SIP and RTP mux optimization reduces the delay further

to 19.3s by removing the need to run ICE checks for RTP.

The SIP via Overlay (SvO) optimization, which eliminates

the ICE check delay for SIP, the candidate gathering delay for

SIP, and the delay associated with exchanging the candidates

via the overlay, results in an even greater gain than the SIP

and RTP mux optimization, reducing the delay to 17.8s.

The remaining four optimizations attempt to bring the delay

of the SvO optimization further down. The Rc=6 optimization,

which reduces Rc (STUN retransmission count) to 6 and

lowers the hard deadline of the ICE stopping criterion to 7s

brings the delay down to 15.0s. The Rc=5 optimization, which

lowers Rc by two and sets the hard deadline to 5s, reduces the

delay to 13.0s. Reducing the maximum number of connectivity

checks (N) by 50% and setting the hard deadline to 4s in the

SvO Rc=5 N=50 scenario squeezes the delay to 12.0s. Finally,

the compression of SIP messages in the SvO SigComp scenario

brings the total session setup delay down to 11.2s.

B. EIMF NATs

The detailed results for the EIMF NATs scenario are shown

in Figure 6. From the figure, we can see that the best-

performing scenario, SvO SigComp, has a 41% lower delay

Fig. 6. Session establishment delay, EIMF NATs

than unoptimized P2PSIP. Although this represents a consid-

erable improvement, the gain is lower than in the APDMF

NATs scenario. This is because in the EIMF NATs scenario,

the ICE check delays are no longer the dominant component

of the session setup delay. Thus, removal of one of the ICE

negotiations in the SIP and RTP mux and SvO scenarios does

not have as high an impact on the total session setup delay as

in the APDMF NATs scenario.

We can observe from Figure 6 that modifying the Rc, N,

and hard deadline values has no impact on the delays of the

different SvO optimizations. This is due to the fact that since

the NATs are not of the most restrictive type, ICE manages to

always find a working, relay-free path before the hard deadline

is reached. Thus, optimizations reducing the hard deadline do

not have an impact.

Further, for the Reuse ICE result scenario, we can see that

the performance gain is not as high as in the APDMF NATs

scenario. This is due to the fact that there is less to optimize

since the starting point is that the ICE delay for RTP is

already much lower than in the APDMF NATs scenario. Thus,

prioritizing the RTP candidates based on the result of the ICE

negotiation for SIP can only reduce the RTP ICE negotiation

delay by 1.1s.

C. No NATs

The results for the last scenario, No NATs, are shown in

Figure 7. We can observe that the SvO SigComp optimization

removes 42% of the delay compared to unmodified P2PSIP.

Similar to the EIMF NATs scenario, the reduction comes

from the elimination of the ICE for SIP, SIP candidates,

and AppAttach components, and from the SigComp compres-

sion of SIP messages. The Reuse ICE result optimization

has no impact in the No NATs scenario. This is because

reusing the result of the SIP ICE negotiation in the RTP

ICE negotiation (i.e., modifying the priorities) does not help;

the highest priority candidate pair (host candidates) will be

Fig. 7. Session establishment delay, no NATs

Fig. 8. Comparison of SIP and P2PSIP session establishment delays

selected anyway regardless of the modification. For the SvO

scenarios, modification of the Rc, N, and hard deadline values

has no impact. The reason is the same as for the EIMF NATs

scenario.

D. Comparison to Client/Server SIP

We also ran simulations to measure session setup delays

of client/server SIP to be able to compare them against the

delays that our P2PSIP optimizations can achieve. Figure 8

shows the session setup delays of unoptimized P2PSIP, un-

optimized client/server SIP, optimized P2PSIP, and optimized

client/server SIP for our three NAT scenarios. Optimized

P2PSIP refers to the SvO SigComp configuration. Some of

the optimizations in the SvO SigComp configuration are also

applicable to client/server SIP, including the use of SigComp

and modification of the Rc and N ICE parameters. These

optimizations have been applied to client/server SIP in the

Optimized SIP configuration.

From Figure 8, we can see that, perhaps surprisingly,

optimized P2PSIP outperforms unoptimized client/server SIP

in the APDMF NATs scenario. Further, our optimizations bring

P2PSIP session setup delays closer to the client/server SIP

delays also in the EIMF NATs and No NATs scenarios.

When comparing the session setup delays of optimized

P2PSIP and optimized client/server SIP, we can see that

our optimizations reduce considerably the difference between

P2PSIP and client/server SIP; when comparing the unopti-

mized session setup flows, P2PSIP delays are always 8.0-

16.7s higher (depending on the NAT scenario) than those of

client/server SIP. However, when using the optimized session

setup flows, the P2PSIP delays are only roughly 3.0s higher

regardless of the NAT scenario.

VI. CONCLUSIONS

In this paper, we proposed and analyzed several optimiza-

tions that reduce the P2PSIP session setup delay. Our results

indicate that these optimizations are very effective; they reduce

the delay by up to 64% when a relay server is needed between

the communicating hosts, by up to 41% when ICE can find

a direct path despite of NATs, and by up to 42% when the

communicating hosts are publically reachable.

It is interesting to compare our results against ITU-T recom-

mendations for call setup delays. ITU E.721 [6], recommends

an average delay of 8.0s for international calls and sets the

95th percentile at 11.0s. The starting point for this paper

was that unoptimized P2PSIP does not come even close

to the recommendation regardless of the NAT scenario; the

average delay is 60% (4.8s) larger than the recommendation

even in the best case and 290% (23.2s) larger in the worst

case. When using our optimizations, the average session setup

delay is clearly lower than the recommendation when the

communicating nodes are publically reachable. When ICE can

find a direct path across NATs, the average delay is also in

line with the recommendation. When a relay server is needed,

our optimizations reduce the delay considerably, by 20s, to

a level that is much closer to the recommendation. Thus, we

can conclude that our optimizations result in a considerable

performance improvement and bring P2PSIP session setup

delays down to a level that is acceptable to users, even when

compared to the strict ITU-T recommendations.

Our results indicate that ICE and STUN parameters can

have a significant impact on session setup delays. Therefore,

future work could study the impact of using a wider range

of values for these parameters to see if the delays could

be reduced even further. Finally, it should be noted that the

optimizations presented in this paper are applicable not only

to P2PSIP, but also to other usages of RELOAD. One example

is the Constrained Application Protocol (CoAP) usage for

RELOAD [15]. Thus, another topic for future research is

analyzing the performance of our optimizations in the context

of other RELOAD usages.

REFERENCES

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation
Protocol,” RFC 3261, IETF, 2002.

[2] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne,
“REsource LOcation And Discovery (RELOAD) Base Protocol,” IETF,
Internet Draft – work in progress, July 2012.

[3] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Trans. Netw., vol. 11,
no. 1, pp. 17–32, 2003.

[4] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol
for Network Address Translator (NAT) Traversal for Offer/Answer
Protocols,” RFC 5245, IETF, April 2010.

[5] J. Mäenpää, V. Andersson, A. Keränen, and G. Camarillo, “Impact
of Network Address Translator Traversal on Delays in Peer-to-Peer
Session Initiation Traversal,” in Proc. of IEEE GLOBECOM, Miami,
USA, December 2010.

[6] ITU-T, “Network Grade of Service Parameters and Target Values
for Circuit-Switched Services in the Evolving ISDN,” International
Telecommunication Union, Geneva, Recommendation E.721, May 1999.

[7] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session Traversal
Utilities for NAT (STUN),” RFC 5389, IETF, 2009.

[8] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal Using Relays
around NAT (TURN): Relay Extensions to Session Traversal Utilities
for NAT (STUN),” RFC 5766, IETF, April 2010.

[9] G. Camarillo, J. Maenpaa, A. Keranen, and V. Andersson, “Reducing
delays related to NAT traversal in P2PSIP session establishments,” in
IEEE Consumer Communications and Networking Conference (CCNC),
Jan. 2011, pp. 549–553.

[10] G. Camarillo, P. Nikander, J. Hautakorpi, A. Keranen, and A. Johnston,
“HIP BONE: Host Identity Protocol (HIP) Based Overlay Networking
Environment (BONE),” RFC 6079, IETF, 2011.

[11] M. Baldi, L. De Marco, F. Risso, and L. Torrero, “Providing end-to-end
connectivity to sip user agents behind nats,” in Communications, 2008.

ICC ’08. IEEE International Conference on, may 2008, pp. 5902 –5908.
[12] J. Mäenpää and G. Camarillo, “Study on Maintenance Operations in a

Peer-to-Peer Session Initiation Protocol Overlay Network,” in Proc. of

IEEE IPDPS, 2009.
[13] J. Mäenpää and G. Camarillo, “Analysis of Delays in a Peer-to-Peer

Session Initiation Protocol Overlay Network,” in Proc. of IEEE CCNC,
Las Vegas, USA, January 2010.

[14] ——, “Estimating Operating Conditions in a Session Initiation Protocol
Overlay Network,” in Proc. of IEEE IPDPS, Atlanta, USA, April 2010.

[15] J. Mäenpää, J. Jimenez, and S. Loreto, “Using RELOAD and CoAP
for Wide Area Sensor and Actuator Networking,” EURASIP Journal on
Wireless Communications and Networking, March 2012.

[16] J. Mäenpää, “Performance Evaluation of Recursive Distributed Ren-
dezvous based Service Discovery for Peer-to-Peer Session Initiation
Protocol,” Elsevier Journal on Computer Networks, June 2011.

[17] B. Athwal, F. C. Harmatzis, and V. P. Tanguturi, “Replacing centric
voice services with hosted voip services: an application of real options
approach,” in Proc. of the 16th international telecommunications society

(ITS) European regional conference, 2006.
[18] “Traffic analysis for voice over ip,” 2001. [Online]. Available:

http://www.cisco.com
[19] D. Liben-Nowell, H. Balakrishnan, and D. Karger, “Observations on

the dynamic evolution of peer-to-peer networks,” in Proc. of the First

International Workshop on Peer-to-Peer Systems (IPTPS ’01). London,
UK: Springer-Verlag, 2002, pp. 22–33.

[20] Microsoft, “Interactive Connectivity Establishment (ICE) Extensions,”
Microsoft Corporation, Technical specification v20100218, Feb 2010.

[21] R. Price, C. Bormann, J. Christoffersson, H. Hannu, Z. Liu, and
J. Rosenberg, “Signaling Compression (SigComp),” RFC 3320, IETF,
2003.

