
Publication VI

Jouni Mäenpää. Performance evaluation of Recursive Distributed Rendezvous

based service discovery for Peer-to-Peer Session Initiation Protocol. Else-

vier Journal on Computer Networks, Volume 56, Issue 5, pp. 1612-1626,

March 2012.

c© 2012 Elsevier B.V..

Reprinted with permission.

185





Performance evaluation of Recursive Distributed Rendezvous based
service discovery for Peer-to-Peer Session Initiation Protocol

Jouni Mäenpää ⇑
Ericsson Research, Oy L M Ericsson Ab, Hirsalantie 11, 02420 Jorvas, Finland

a r t i c l e i n f o

Article history:
Received 8 January 2011
Received in revised form 18 June 2011
Accepted 19 January 2012
Available online 31 January 2012

Keywords:
Recursive Distributed Rendezvous
Peer-to-Peer Session Initiation Protocol
Service discovery

a b s t r a c t

Recursive Distributed Rendezvous (ReDiR) is a service discovery mechanism for Distrib-
uted Hash Table (DHT) based Peer-to-Peer (P2P) overlay networks. One of the major P2P
systems that has adopted ReDiR is Peer-to-Peer Session Initiation Protocol (P2PSIP), which
is a distributed communication system being standardized in the P2PSIP working group of
the Internet Engineering Task Force (IETF). In a P2PSIP overlay, ReDiR can be used for
instance to discover Traversal Using Relays around NAT (TURN) relay servers needed by
P2PSIP nodes located behind a Network Address Translator (NAT). In this paper, we study
the performance of ReDiR in a P2PSIP overlay network. We focus on metrics such as service
lookup and registration delays, failure rate, traffic load, and ReDiR’s ability to balance load
between service providers and between nodes storing information about service providers.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Recursive Distributed Rendezvous (ReDiR) [1] is a ser-
vice discovery mechanism for Distributed Hash Table
(DHT) based Peer-to-Peer (P2P) overlay networks. ReDiR
can be used by nodes in an overlay network to discover
service providers and also to register themselves as service
providers. ReDiR has been adopted as a service discovery
mechanism for the Peer-to-Peer Session Initiation Protocol
(P2PSIP) by the P2PSIP working group of the Internet Engi-
neering Task Force (IETF) [2].

P2PSIP is a new distributed communication system that
can be used for instance for telephony and instant messag-
ing. P2PSIP uses the REsource LOcation And Discovery (RE-
LOAD) protocol [2], Chord DHT algorithm [3], and Session
Initiation Protocol (SIP) [4] as the core building blocks. RE-
LOAD is used as the signaling protocol between nodes in a
P2PSIP overlay network. It is used for storing and retrieving
data, and for maintaining the network. RELOAD is being
standardized by the P2PSIP working group of the IETF.

The topology of the P2PSIP overlay is organized using the
Chord algorithm, which RELOAD specifies as mandatory
to implement. Nodes in the P2PSIP overlay use SIP to set
up real-time communication sessions. The overlay net-
work acts as a distributed database for SIP, mapping SIP ad-
dress-of-record (AoR) values to node identifiers, which can
be used to reach users participating in the system. The
overlay network replaces the centralized proxy-registrar
servers of traditional client/server SIP.

Nodes in a P2PSIP overlay both use and provide ser-
vices. As an example, some of the publically reachable
nodes in the overlay can act as Traversal Using Relays
around NAT (TURN) [5] relay servers for other nodes lo-
cated behind Network Address Translators (NATs). To dis-
cover and register service providers, P2PSIP relies on a
service discovery mechanism. We have specified how Re-
DiR can be applied as a service discovery mechanism for
P2PSIP in [6]. The work in this paper is highly relevant
for ReDiR and P2PSIP standardization efforts in the IETF.

The goal of this paper is to study the performance of
ReDiR in a P2PSIP overlay network. We focus on service
lookup and registration delays, failed operations, traffic
load, the distribution of lookup load, and the load of service
providers. We also study the impact of various ReDiR

1389-1286/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2012.01.015

⇑ Tel.: +358 9 299 3283.
E-mail address: jouni.maenpaa@ericsson.com

Computer Networks 56 (2012) 1612–1626

Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet



parameters and the density of service providers on ReDiR
performance. Further, we develop a model for configuring
ReDiR in such a way that short delays and good load bal-
ance can be achieved. The remainder of the paper is struc-
tured as follows: Section 2 gives an introduction to ReDiR.
Section 3 presents related work. Section 4 describes the
P2PSIP simulator used in the experiments. Section 5 de-
scribes the experiments and the traffic model used. The
simulator we used in the paper is validated in Section 6.
Sections 7–10 present the results of the expriments. Sec-
tion 11 presents a model to assist in configuring ReDiR.
Section 12 concludes the paper. The terms used in the pa-
per are defined in Table 1.

2. Recursive Distributed Rendezvous (ReDiR)

ReDiR implements service discovery by building a tree
structure of the peers that provide a particular service. Re-
DiR trees are service-specific; each service has its own Re-
DiR tree. The tree structure is embedded tree node by tree
node into a DHT-based P2P network by using regular Put
and Get requests provided by the DHT. Each tree node in
the ReDiR tree contains pointers to peers providing a par-
ticular service. The ReDiR tree is illustrated in Fig. 1. The
tree has multiple levels. Each tree node belongs to a partic-
ular level. The root of the tree contains a single node at le-
vel 0. The immediate children of the root are at level 1, and
so forth. The ReDiR tree has a branching factor b, which is 2
in the example shown in Fig. 1. At every level i in the tree,
there are at most bi nodes. The nodes at any level are la-
beled from left to right, such that a pair (i, j) uniquely iden-
tifies the jth node from the left at level i. The tree is
embedded into the DHT by storing the values of tree node
(i, j) at key H (namespace, i, j), where H is a hash function
such as SHA-1, and namespace is a string that identifies
the service being provided. An example of a namespace is
for instance ‘‘turn-server’’.

Each level in the ReDiR tree spans the whole identifier
space of the DHT. At each level, the ID space is divided
among the tree nodes. Each tree node is further divided
into b intervals. In Fig. 1, each node has two intervals since
b = 2. As an example, since level 2 in the figure has 4 nodes,

each of which has two intervals, the whole identifier space
of the DHT is at that level divided into 8 intervals. When
storing a record with identifier k in a given level l, the re-
cord is stored in the interval within whose range k falls. Be-
low, we will refer to this interval as I(l,k).

The act of storing a record in the ReDiR tree is referred
to as ReDiR service registration procedure. This procedure
is carried out by a service provider (SP) to store its contact
information (i.e., a ReDiR data record) in the DHT. Service
registration is valid for a certain amount of time, after
which the SP needs to refresh its record by repeating the
service registration procedure. Service registration starts
from some starting level l ¼ lstart . The default starting level
is two. The input to the service registration procedure con-
sists of the namespace of the service being registered, the
key k, and the value that is being stored in the ReDiR tree.
The first step (1) in the registration procedure is that the SP
does a Get operation to obtain the contents of the tree node
responsible for k at level l. The key k can be for instance the
SP’s node identifier in the Chord overlay or a randomly
chosen identifier. (2) The SP also stores its record in the
tree node responsible for k at level l using a Put operation.
The record is stored in the interval I(l,k). (3) If, after the Put
operation, k is the lowest or highest key in the tree node,
the SP starts an upward walk in the tree. During the up-
ward walk, the SP performs Get and Put operations to store
its record in higher levels of the tree (i.e., the SP repeats
steps 1 and 2). The upward walk ends when the SP reaches
either the root or a level at which k is not the lowest or
highest in its interval. (4) After this, the SP performs a
downward walk in the tree, at each step getting the con-
tents of the tree node at level l responsible for k, and stor-
ing its record in the tree node if k is the lowest or highest
key in its interval I(l,k). The downward walk ends when
the SP reaches a level at which it is the only SP in its inter-
val. After this, the registration has finished.

The act of fetching a record from the ReDiR tree is re-
ferred to as ReDiR service lookup. The purpose of a service
lookup for key k is to find the successor of k from the tree.
The key k can be either a randomly chosen key or the node
identifier of the node n performing service discovery. A ser-
vice lookup starts from a starting level l ¼ lstart . The default

Table 1
Definition of terms.

Term Description

ReDiR tree A tree structure of ReDiR tree nodes
embedded in an overlay network

Tree node Node in the ReDiR tree
Record Tree nodes are stored as data records in

the overlay
Peer A network node participating in the

overlay. Peers store records and tree nodes
Service Provider (SP) Peer providing a service in the overlay
Service client Peer using a service in the overlay
Get The act of fetching a record
Put The act of storing a record
Service lookup Carried out by a service client to find an SP
Service registration Peer registers itself as an SP in the overlay
Root The single tree node at level 0 of the ReDiR

tree

Fig. 1. ReDiR tree.
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starting level is two. A service lookup consists of one or
more steps. The first action (1) at each step is that n fetches
the tree node associated with the current interval I(l,k)
using a Get request. After having fetched the tree node, n
proceeds with one of the following actions: (2) if the suc-
cessor of k is not present in the tree node, n sets l = l � 1
(i.e., proceeds with an upward walk) and performs a new
Get operation (that is, n goes back to action 1). (3) If k is
sandwiched between two keys (i.e., k is neither the highest
nor lowest key) in I(l,k), n sets l = l + 1 (i.e., proceeds with a
downward walk) and performs a new Get (that is, n goes
back to action 1). (4) If a successor is present and k is not
sandwiched in its interval, the successor must be the clos-
est successor of k and thus the service lookup is finished.

3. Related work

To the best of our knowledge, the only previous study
on ReDiR performance is [1], which briefly evaluates ReDiR
performance through experiments in PlanetLab. There are
several differences between the work in [1] and ours. First,
our work focuses on studying the suitability of ReDiR as a
service discovery mechanism for P2PSIP. In contrast, the
work in [1] focuses solely on OpenDHT. The P2PSIP use
case (i.e., TURN server registration and discovery) is differ-
ent from the OpenDHT one. Second, our ReDiR implemen-
tation follows the ReDiR specification produced by the
P2PSIP working group of the IETF [6]. Third, [1] investi-
gates only ReDiR service lookup delay and lookup consis-
tency. We focus on a wider set of performance metrics
including registration delay, failure rate, traffic load, load
of service providers, and load of peers storing ReDiR tree
nodes. Fourth, we also study how to configure ReDiR
appropriately for different operating conditions by varying
parameters such as branching factor and starting level. We
also develop a model for determining appropriate values
for ReDiR parameters. Fifth, the experiments in [1] are
rather small-scale; five PlanetLab nodes were used and
the number of clients was 256 at the maximum. In our
work, the maximum number of clients is 10,000.

4. P2PSIP simulator

The results in this paper were obtained using our P2PSIP
simulator, which is an event-driven, message-level simula-
tor. It uses the same code base as our P2PSIP prototype that
we have used to run experiments in PlanetLab in previous
work [7–9]. We have previously used the simulator in [10].
We chose to use the simulator also in this paper because
we wanted to experiment with larger network sizes than
is possible to achieve in PlanetLab. The simulator is imple-
mented in the Java programming language. It uses Peer-to-
Peer Protocol (P2PP) [11] as the protocol between peers in
the overlay. The RELOAD protocol [2], which is currently
being standardized in the IETF, is based on P2PP (the
P2PP proposal was merged with RELOAD). P2PP connec-
tions are assumed to run over an unreliable transport.
The Chord DHT [3] is used to organize the overlay. Chord
was chosen since the P2PSIP working group specifies it as
mandatory to implement [2].

The topology generator of our simulator assigns peers
randomly to 206 different locations around the world that
we modeled according to PlanetLab sites. The pairwise de-
lays between peers were set based on real pairwise delays
that we measured between nodes at these sites. For the
random number generators that assign peers to different
sites, we used the same seeds, meaning that the same
topology was used for all the simulations for a given net-
work size. Keeping the topology constant allowed us to
compare the performance of different values for ReDiR
parameters. However, we also ran a series of simulations
using different seeds to confirm the general validity of
the results. These simulations, whose results are not in-
cluded in the paper for brevity, confirm that our results re-
main valid even when different seeds are used. Although
the topology was constant, different seeds were used for
the random number generator selecting the pairwise de-
lays from among the set of sample delays collected be-
tween each pair of PlanetLab sites.

5. Experiments

This section describes the traffic model and parameters
used in our simulations. We used three different maximum
network sizes (N): 100, 1000, and 10,000 peers. N = 10,000
was used as the largest network size since this was the
maximum size our simulator could handle (with even lar-
ger network sizes, memory consumption became the limit-
ing factor). N = 100 and N = 1000 were chosen since we
wanted to study ReDiR performance in networks whose
size is very different from N = 10,000. In each simulation
run, the network was created from scratch. The network
reached its maximum size at the end of the simulation.
The simulated time was four hours for N = 10,000 and
one hour for the other network sizes. The peer interarrival
times we used in the simulations are listed in Tables 2–4,
for N = 10,000, N = 1000, and N = 100, respectively. In the
simulations studying the impact of branching factor, start-
ing level, and service provider density, the network was
constantly growing. No peer departures were used. This
is because in these simulations, we wanted to eliminate

Table 2
User interarrival times, N = 10,000.

Start of
period [s]

End of
period [s]

Interarrival
time [s]

N at end
of period

0 1000 10 100
1000 2000 5 300
2000 4000 2.5 1100
4000 6000 2 2100
6000 13900 1 10,000

Table 3
User interarrival times, N = 1000.

Start of
period [s]

End of
period [s]

Interarrival
time [s]

N at end
of period

0 1000 10 100
1000 2000 5 300
2000 3750 2.5 1000
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the impact of service provider and peer departures on the
results. Departures would have made it more difficult to
compare performance metrics such as the distribution of
clients among the service providers. Although we did not
use peer departures in these particular simulations, in Sec-
tion 10 we will report the results of simulations whose fo-
cus was solely on studying the impact of peer departures
on ReDiR performance. We have further studied the impact
of peer departures and arrivals (i.e., churn) on the perfor-
mance of Chord in P2PSIP overlays in previous work [7,8].

There is also another reason why we wanted the net-
work to be constantly growing when studying the perfor-
mance of different b, lstart , and SP density values. In
P2PSIP, the most common use case for ReDiR is TURN ser-
ver discovery. TURN server discovery is performed when a
peer joins the overlay. Since the network was constantly
growing, this ensured that there was a constant load
caused by service lookups on the ReDiR tree.

The reason for choosing the specific interarrival times
specified in Tables 2–4 is explained below. As already ex-
plained, we wanted the overlay to be constantly growing.
The size of the overlay was increased in steps. Each step
had a specific interarrival time; the smaller the network,
the longer was the interarrival time. The specific interarri-
val time for each step was set to the maximum that a
Chord ring of the given size was able to handle without
the risk of becoming disconnected based on the recom-
mendations in [12,13].

In the simulations, peers used ReDiR for TURN server
registration and discovery. In the simulations studying
the impact of braching factor and starting level on ReDiR
performance (Sections 7 and 8,) the proportion (i.e., den-
sity) of peers capable of acting as TURN servers (i.e., publi-
cally reachable peers), was constant. In these simulations,
the density of TURN servers was set to 11% based on the re-
sult in [14] according to which this was observed to be the
average percentage of publically reachable Internet hosts
over the countries studied. However, we also studied the
impact of using different Service Provider (SP) densities
(Section 9).

Following the recommendations in [3], the size of
Chord’s successor list and finger table were set to logN
using the maximum network size, N = 10,000. In Chord,
roughly Xðlog2NÞ rounds of stabilization should occur in
the time it takes for N new peers to join or N/2 peers to
leave the overlay [13]. Chord stabilization refers to the
operations that peers carry out to ensure that their routing
tables stay up to date. Using the above-mentioned rule, we
set the Chord stabilization interval to 15s based on the
highest join rate that the overlay experienced during the
simulations. The highest join rate occurred at the moment
when a 300-node network faced a peer interarrival time of
2.5 s (see Table 2).

SPs, that is TURN servers, carried out the ReDiR service
registration procedure upon joining the overlay. As all state
is soft in the ReDiR tree, SPs refreshed their records at ten
minute intervals. The ten minute refresh interval was cho-
sen since in our simulations, we found it to be a good
tradeoff between not overloading the network with ReDiR
refreshes and ensuring that stale information is removed
quickly enough from the overlay. A considerably more fre-
quent refresh interval would result in there being more Re-
DiR traffic in the overlay than Chord stabilization traffic.
This would be inefficient. Making the refresh interval con-
siderably longer would increase the number of stale re-
cords in the overlay, resulting in an inrease in service
lookup failures. Upon graceful exit, SPs removed their Re-
DiR records from the overlay. Users of the TURN relay ser-
vice performed the ReDiR service lookup procedure upon
joining the overlay.

Background (i.e., non-ReDiR) P2PSIP lookup traffic dur-
ing the simulations consisted of lookups related to SIP calls
and presence. Calls were modeled according to busy hour
traffic volumes. Each user was assumed to initiate 13 calls
per day, as suggested in [15]. 17% of these calls were used
to represent busy hour traffic based on [16]. Thus, the
number of busy hour call attempts per user was 2.21. This
value was used as a mean rate for the arrival of calls, which
was modeled as a Poisson process. Since users typically call
their friends instead of strangers [17], it was assumed that
2
3 of the calls are placed to users on the buddy list. The
mean size of the buddy list was set to 22 based on the find-
ings in [18]. It is worth noting that, as shown in [7], the vol-
ume of call and presence related lookup traffic is very low
compared to stabilization traffic in a P2PSIP overlay. Fur-
ther, this lookup traffic is completely independent from
ReDiR traffic; there is no ReDiR-related signaling required
when initiating calls or presence sessions. Therefore, in
practice, the impact of P2PSIP background traffic on the
performance of ReDiR is negligible. However, we still in-
cluded background traffic in the simulations to make them
more realistic. The traffic model and Chord parameters are
summarized in Table 5.

The metrics we study in the experiments are delays and
failure rates of service lookup and registration operations,
ReDiR traffic load, Get request load, and load of SPs. Service
lookup delay was measured as the time between a client
sending the first Get request of a service lookup and receiv-
ing the final Get response. Registration delay was mea-
sured as the time between an SP sending the first Get

Table 4
User interarrival times, N = 100.

Start of
period [s]

End of
period [s]

Interarrival
time [s]

N at end
of period

0 1000 100 10
1000 2000 50 30
2000 3750 25 100

Table 5
Traffic model and Chord parameters.

Parameter Value

Max network sizes (N) 10,000, 1000, and 100
Duration 13,900 s, 3750 s, and 3750 s
Busy hour call attempts 2.21 calls per user
% of calls to buddies 66.6
Mean size of buddy list 22
Finger pointers 14
Successors 14
Predecessors 7
Stabilization interval 30 s
ReDiR refresh interval 10 min
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request of a registration operation and receiving a response
to the final Put request. Service lookup failure rate was
measured as the percentage of failed out of all service look-
ups initiated in the overlay during the measurement peri-
od. Service registration failure rate is the percentage of
failed out of all registrations. ReDiR traffic load refers to
all ReDiR related signaling (measured as number of bytes)
exchanged in the overlay during the measurement period.
Get request load refers to the number of ReDiR-related Get
requests that peers storing ReDiR tree nodes receive during
the measurement period. The load of an SP is the number
of clients the SP is serving. We also studied how these met-
rics change as the ReDiR branching factor, starting level,
and SP density are modified. We also studied the impact
of peer and SP departures on the metrics.

6. Validating the simulator

In this section, we will validate our simulator by com-
paring the results obtained from it to results obtained by
running our P2PSIP prototype that uses the same code base
as the simulator in PlanetLab. The parameters listed in Ta-
ble 5 were used both in the simulations and PlanetLab
experiments with the exceptions listed below. The size of
the overlay was 100 peers. The traffic model was such that
during the first 1500 s of the simulations and experiments,
the 100-node overlay was created from scratch. During this
phase, the mean interarrival time of users was 15 s. The
reason for using a rather high interarrival time was to limit
the total time it takes to create a 100-node overlay. We
started collecting measurement data after the overlay
had reached the size of 100 peers. During the next
3600 s, both the mean interarrival time and the mean in-
ter-departure time of peers was set to 36 s. These values
were chosen since they cause the entire population of
nodes in the overlay to change during the 3600 s measure-
ment period. The topology generator of the simulator was
initialized using the same set of nodes that were used in
the PlanetLab experiments. Further, the delay generator
of the simulator was initialized using the pair-wise delays
measured between these PlanetLab nodes. The pair-wise
delays were measured using six different message sizes
(25, 75, 125, 250, 500, 750, and 950 bytes). The ReDiR
branching factor was set to 10 and the starting level to 2
since these are the default values in ReDiR [6].

The results of the PlanetLab experiments and simula-
tions are shown in Table 6. The values in the table are aver-
ages calculated over 20 PlanetLab experiments and 20
simulations. The values in parentheses represent 95% con-
fidence intervals. From the table, we can observe that the
results of the simulations are in general very well in line
with those of the PlanetLab experiments; in the majority
of cases, the differences are not statistically significant.
However, in the case of the percentage of failed Get and
Put requests, the differences are statistically significant;
in PlanetLab, the values are significantly higher. Based on
our results, the majority of Get and Put failures occur
because of request timeouts. The higher failure rate of
PlanetLab experiments is caused by the very dynamic load
situation of PlanetLab nodes: since PlanetLab nodes are

running multiple experiments of different users in parallel,
the load situation of the nodes can vary dramatically dur-
ing the 5100 s duration of our experiments. A node experi-
encing a high load may become slow in replying to P2PP
messages, which results in timeouts at other nodes. We
chose not to model such overload situations in our simula-
tor since they are a characteristic of PlanetLab rather than
of P2PSIP or ReDiR. Based on the results in Table 6, we can
conclude that the results produced by the simulator appear
to be valid compared to results obtained from a real global
P2PSIP overlay.

Finally, to show that the performance relationships be-
tween different ReDiR parameter values are similar in our
simulations and in real test cases, we ran a further set of
PlanetLab experiments and simulations using different val-
ues for the branching factor but otherwise using the same
setup that was described above. The branching factors we
used were 2, 6, 10, and 14. The results of these PlanetLab
experiments and simulations (not shown here for brevity)
indicate that the performance relationships between dif-
ferent branching factor values produced by the simulations
hold also in real test cases (as one could expect based on
the results in Table 6 and the fact that our P2PSIP proto-
type uses the same code base as our simulator).

In the sections below, we will describe the results of the
simulations studying the impact of different parameter
values on ReDiR performance. Section 7 studies the impact
of modifying the branching factor. Section 8 studies the
impact of the starting level. Section 9 studies the impact
of SP density. Finally, Section 10 studies the impact of peer
and SP departures. The error bars shown in the figures of
these sections represent 95% confidence intervals.

7. Impact of branching factor

This section presents the impact of the branching factor
on ReDiR performance, including delays, failure rates, traf-
fic load, Get request load, and the load of SPs. In these sim-
ulations, we kept the starting level at 2, which is the
default value specified by ReDiR [1].

7.1. Service lookup delay

ReDiR service lookup delay is shown in Fig. 2 for
branching factors (b) ranging from 2 to 38. The figure con-
tains results for all three network sizes. For b = 2–14, we

Table 6
Validating the simulator.

Parameter PlanetLab Simulator

Discovery delay 1908 ms (53 ms) 1792 ms (67 ms)
Registration delay 3717 ms (97 ms) 3701 ms (91 ms)
Discovery failed 3.7% (1.7%) 2.6% (0.91%)
Registration failed 3.5% (1.5%) 2.5% (0.87%)
Gets per discovery 2.58 (0.03) 2.59 (0.02)
Gets per registration 4.03 (0.03) 4.00 (0.01)
Puts per registration 4.02 (0.02) 4.00 (0.01)
Get failed 1.7 (0.5) 0.6 (0.2)
Put failed 2.5 (0.9) 0.2 (0.1)
Get hop count 4.0 (0.2) 3.8 (0.1)
Put hop count 3.3 (0.1) 3.2 (0.1)

1616 J. Mäenpää / Computer Networks 56 (2012) 1612–1626



ran simulations for every second value of b to get a better
idea of the minimum delay. From b = 14 onwards, we ran
simulations for every fourth value. Some of the error bars
are so small that they are not visible in the figure. From
the figure, we can observe that the delay behaves differ-
ently for different network sizes as b is increased. This is
especially visible when looking at the smallest values for
b (i.e., 2–14).

To understand what causes the behavior visible in
Fig. 2, we studied various factors impacting the service
lookup delay, including the number of Gets per service
lookup, and the average finishing level of service lookups.
The results of these studies are not included here for brev-
ity. What we found is that the main factor affecting the de-
lay is the number of Get requests per service lookup. We
also found that there is in fact a linear correlation between
the number of Gets and the service lookup delay. Thus, we
further studied the factors affecting the number of Gets per
service lookup and found the main factor to be the density
of ReDiR records in the tree at levels close to the starting
level.

The reason why record density affects the number of
Gets per service lookup is discussed below. Our results
suggest that the larger b is, the closer to the root of the tree
service lookups will finish. This is because the branching
factor impacts how densely populated the ReDiR tree is.
If the tree is sparsely populated at the starting level and
other levels close to the root, service lookups will have a
long upward walk and no downward walk at all. The up-
ward walk is long since no successors are found from high-
er levels in the tree due to its sparsity. There is no
downward walk because the search key is typically never
sandwiched in its interval also due to the sparsity of the
tree. Having no downward walk is beneficial since it de-
creases the service lookup delay. Therefore, when configur-
ing ReDiR, one should aim at density of records that
eliminates the downward walk and minimizes the length
of the upward walk if aiming at low service lookup delays.
The minimum delay is naturally achieved when there is no
downward walk and the upward walk finishes already at
the starting level.

To understand the conditions that cause service lookups
to finish at the starting level lstart , it is necessary to have a

look at the rules described in Section 2. Per these rules, a
service lookup may finish already at lstart if a successor is
found from the tree node fetched from lstart and k is not
sandwiched in its interval. In such a case, the service look-
up delay is optimal since the lookup finishes after only a
single Get request. To reach this optimal performance,
two conditions need to be satisfied. First, the average num-
ber of records per interval at lstart must be as close to one as
possible (this ensures that k is not sandwiched in its inter-
val). Second, at the same time, the number of records per
tree node must be as high as possible (since this maximizes
the probability that there is a successor present in the tree
node at lstart). We show in Section 11 how to configure Re-
DiR in such a way that both of these conditions are
fulfilled.

In general, our results so far suggest that configuring
ReDiR can be somewhat challenging; the branching factor
that results in the best performance with a given network
size may become the worst possible choice if the network
size changes, as can be seen from Fig. 2 for b = 2.

7.2. Registration delay

The delay of ReDiR registration operations is shown in
Fig. 3 for different values of b and network size N. As with
service lookups, the delay behaves again differently for dif-
ferent network sizes. As an example, the minimum regis-
tration delay is reached with different branching factors
depending on the network size. We also found a linear cor-
relation between the number of Gets (and in addition,
Puts) per registration operation and the registration delay.
Thus, the minimum registration delay occurs with a
branching factor that results in the minimum number of
Gets and Puts per registration.

For all of the network sizes, the impact of b on the up-
ward walk of the registration procedure is as follows. If b
is large, the upward walk will nearly always reach the root
(because the tree nodes at levels close to the root are rather
empty and k is typically the highest or lowest ID stored in
the tree node). In contrast, if b is small, the starting level is
rather densely populated and there is typically no upward
walk at all. The impact of b on the downward walk of the
registration process is as follows. If b is small, the
downward walk is typically long because the tree is

Fig. 2. Delay of ReDiR service lookups.

Fig. 3. Registration delay.

J. Mäenpää / Computer Networks 56 (2012) 1612–1626 1617



densely populated. However, if b is high, the downward
walk will be short or there may be no downward walk at
all. The smallest number of Gets and Puts is achieved when
a b that minimizes the lengths of the upward and down-
ward walks is used.

7.3. Service lookup and registration failures

The percentage of failed service lookups is shown in
Fig. 4. From the figure, we can see that there are two cases
in which there is a statistically significant impact on failure
rate. The first case is b = 2 for N = 10,000. The second case is
visible for the majority of branching factors when N in-
creases from 1000 to 10,000. The explanation for both of
these cases is that our results (not included here for brev-
ity) show that there is a linear correlation between the fail-
ure rate and the number of Get requests per service lookup.
The number of Gets per service lookup is higher for b = 2
than any other b when N = 10,000 due to the high density
of records in the tree (as was discussed in Section 7.1).
Also, the number of Gets per service lookup grows signifi-
cantly as network size is increased. The higher is the num-
ber of Gets per service lookup, the higher is the probability
that the service lookup fails. This is due to the fact that Re-
DiR does not by default retry failed Gets; if even one Get
fails, the entire service lookup will fail.

The graphs for failed service registrations are very sim-
ilar to those of failed service lookups and are thus not
shown separately for brevity. Based on our results, the fail-
ure rates of service lookups and registrations are accept-
able as long as the Get and Put request failure rate of the
underlying DHT is acceptable. By Get and Put request fail-
ure rate of the DHT, we refer to the percentage of requests
that fail due to maximum request hop count being ex-
ceeded, transaction timeouts, or routing errors caused by
for instance routing loops. All of these errors were present
in our simulations since they are a consequence of changes
in the overlay (e.g., new peers joining) and varying delays,
and did not need to be modeled separately.

7.4. ReDiR traffic load

Fig. 5 shows how large a percentage of the total traffic
in the overlay is generated by ReDiR. From the figure, we

can observe that the differences between traffic volumes
generated by different branching factors can be rather
large. As an example, in the largest network, the amount
of ReDiR traffic grows by a factor of 12 when increasing b
from 6 to 38. An interesting observation for this particular
case is that despite the 12-fold increase in ReDiR traffic
(measured in number of bytes), the amount of ReDiR re-
lated requests increases only by 7.2% (from 157,200 to
168,500; a graph for the number of ReDiR requests is not
included here for brevity). Therefore, the increase in traffic
volume must be due to the increase in the average size of
ReDiR messages. Further, the increase must be due to the
Get response since it is the only message having a variable
size. To verify this, we measured the average size of Get re-
sponses in the simulations. The results indicate that a min-
imum Get response size, 1153 bytes, is reached when b = 6.
The maximum Get response size, 15,735 bytes, is reached
when b = 38. This growth is explained by the fact that
when b = 38, 93% of registrations and 6% of service lookups
reach the root level due to the fact that the tree is very
sparsely populated. For registrations, this means that
nearly all registrations store a record in the root node (con-
sequently, the root has a total of 923 records) and also
fetch the contents of the root node (which explains the
large average Get response size).

In contrast to b = 38, when b = 6, only 9% of registrations
reach the root. The maximum number of records stored by
the root node is only 71. Further, only 0.7% of service look-
ups reach the root. This ensures that the average Get re-
sponse is much smaller for b = 6. The maximum, median,
and 95th percentile of number of records stored per tree
node is depicted in Fig. 6. In the figure, the maximum is
shown in the primary y-axis, whereas the median and
95th percentile are in the secondary y-axis. From the fig-
ure, we can observe that ReDiR does not do a very good
job at balancing the load of storing pointers to SPs equally
among the tree nodes. Even in the best case the root node
is holding over 70 times more records compared to the
median.

7.5. Get request load

The percentage of Get requests received by the top 5% of
the most loaded peers storing ReDiR tree nodes is shown inFig. 4. Failed service lookups.

Fig. 5. Percentage of ReDiR traffic out of all traffic.
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Fig. 7. The high load experienced by the top 5% indicates
that ReDiR does not distribute the load of answering Get
requests equally among the peers.

We also investigated the median, average and maxi-
mum number of Gets received by peers storing ReDiR tree
nodes. What we found out is that for instance for
N = 10,000, the most loaded peer receives 951–7039 Gets
depending on the branching factor. From b = 6 onwards,
the most loaded peer is always one of the peers responsible
for storing the root node (note that the responsibility for
storing the root and other nodes may be transferred be-
tween peers in the overlay due to new peers joining the
system). The most loaded peer handles alone 1.1–5.8% of
all Gets depending on the branching factor. The median
of received Gets is 9–11 for branching factors other than
b = 2, for which it is 18. The standard deviation of received
Gets is very large (around 100 for all branching factors; the
average varies between 25–72) for all branching factors,
which shows that ReDiR does indeed a poor job at balanc-
ing the load equally among tree nodes and thus also among
the peers storing the tree nodes regardless of the branching
factor.

It should be noted that the the results look slightly dif-
ferent when the overlay is static (i.e., when there is no peer
arrivals and N stays constant at 10,000) since in that case
the root of the tree is always stored by the same peer. In

a static setup, the percentage of Gets handled by the most
loaded peer was 20% in the case of the b with the worst
performance (b = 38).

7.6. Load of service providers

To analyze how well ReDiR balances load between SPs,
we studied the median and 95th percentile of number of
clients per SP, and the number of SPs having no clients at
all. For all of the network sizes, the average number of
TURN clients per server would be 8.1 in case of optimal
load balancing. However, based on our results, the median
number of clients per server is 5, 5, and 6 for N = 100,
N = 1000, and N = 10,000, respectively. The 95th percen-
tiles are shown in Fig. 8.

Fig. 8 shows also the number of SPs having no clients at
all. From the figure, we can observe that depending on the
network size, there can be a large number of unused TURN
servers. The large number of unused TURN servers explains
why the median load is lower than the ideal load. From
Fig. 8, we can conclude that by modifying b, one can
achieve some improvement in load balancing especially
in the largest network. However, even with these improve-
ments, ReDiR still does a rather poor job at balancing the
load equally among service providers.

The histogram in Fig. 9 shows a typical distribution of
clients among TURN servers. The figure is from a simula-
tion run with N = 10,000 and b = 10. In the ideal case, the
distribution in the figure would be Gaussian with a mean
around 8.1. Unfortunately, the distribution in Fig. 9 is
rather far from the ideal case: there are roughly 100 serv-
ers with no clients at all and also a high number of servers
having only a few clients. Also, 38% of the servers have a
load higher and 45% a load lower than the ideal load (i.e.,
8.1 clients). 15% of the servers have a load that is at least
two times higher than the fair load (the fair load is 8.1 cli-
ents) and 40% of them have a load that is less than half of
the fair load.

As a summary, branching factor has a significant impact
on delays, traffic load, and the load of answering ReDiR-
related Get and Put requests. However, it has a smaller
impact on the load of service providers and only a minor
impact on the failure rate. Also network size has a clear

Fig. 6. Pointers per tree node.

Fig. 7. Gets received by top 5% most loaded peers in ReDiR tree.
Fig. 8. TURN servers with no clients and 95th percentile of clients per
server.
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impact on ReDiR performance. ReDiR seems to fail to dis-
tribute the load evenly among the service providers; many
servers have an exceptionally high load. At the same time,
many other servers remain rather lightly loaded or do not
have any clients at all.

8. Impact of starting level

In the previous section, we studied the impact of the
branching factor on ReDiR performance. In this section,
we will first study the impact of choosing the starting level
adaptively. Next, we will study the impact of using differ-
ent fixed starting levels. The measurements were carried
out using one network size, N = 10,000. The branching fac-
tor was set to 10, as this value was observed to minimize
delays for N = 10,000 in the previous section.

8.1. Adaptive starting level selection

ReDiR specifies a mechanism to determine the starting
level (lstart) adaptively [1]. In this approach, service clients
take, for registrations, lstart to be the lowest level at which
registration last completed. For service lookups, clients re-
cord the levels at which the last 16 service lookups com-
pleted and take lstart to be the mode of those depths. Table
7 compares the cases when the mechanism has been
switched on and off. In the table, the 95% confidence inter-
vals are shown in parentheses after each value. Surprisingly,
using the mechanism results in significant degradation in
performance for many of the metrics studied.

The reason why adaptive starting level selection results
in degraded performance is as follows. First, the mecha-
nism can result in a performance improvement for service
lookups only if a typical client performs them rather fre-
quently. However, this is not the case in our P2PSIP use
case, since each client typically performs only one service
lookup (to discover a TURN server upon joining the net-
work). Therefore, the mechanism is not very useful in our
use case. Second, we observed the mechanism to cause
the starting level of registrations to be rather high in the
tree. Since the starting level is high, the upward walk of
registrations becomes very long, which results in increased
delays and failures.

Based on these results, we can conclude that the specific
adaptive starting level selection mechanism proposed in
[1] should be switched off in the TURN server discovery
use case and other similar use cases. We will propose an
alternative mechanism for adapting the starting level in
Section 11.

8.2. Service lookup and registration delays

The impact of modifying the default starting level on
ReDiR service lookup and registration delays is shown in
Fig. 10. From the figure, we can conclude that at least for
N = 10,000 and service provider density of 11%, b = 10 and
lstart ¼ 2 result in the lowest ReDiR delays.

8.3. Service lookup and registration failures

Fig. 11 shows the impact of different starting levels on
the percentage of failed service lookups and registrations.
From the figure, we can observe that the lowest number
of failures is achieved when lstart =2. The difference be-
tween this starting level and starting levels 0, 1, and 3
are not statistically significant.

In the case of the branching factor, we conluded that the
delays and failure rates depend on the density of records in
the ReDiR tree. The same explanation holds also in the case
of the starting level; in fact, to reach the lowest delays and
failure rates, one must find the optimal combination of b
and lstart values for a given number of SPs. We will study
how to determine the optimal combination in Section 11.
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Fig. 9. TURN clients per server, b = 10 and N = 10,000.

Table 7
Effect of using adaptive starting level selection.

Adaptiveness off Adaptiveness on

Discovery delay 4373 ms (10 ms) 4372 ms (13 ms)
Registr. delay 20162 ms (22 ms) 82577 ms (375 ms)
Discovery failed 0.33% (0.13%) 0.29% (0.10%)
Registr. failed 0.89% (0.19%) 4.55% (1.03%)
ReDiR traffic 947 MB (3 MB) 2300 MB (19 MB)
Lookups, top 5% 41.8% 39.14%
Clients, 95th 26.85 (0.17) 26.44 (0.28)

Fig. 10. Impact of starting level on delays.
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8.4. ReDiR traffic

We also studied the impact of different starting levels
on the traffic ReDiR generates. Our results (not shown here
for brevity) indicate that lstart ¼ 0 creates roughly seven
times more traffic than any other starting level. The expla-
nation is the same as in Section 7.4; when lstart ¼ 0, every
SP ends up storing its record in the root node, which results
in that node becoming extremely large. Since also service
lookups start from the root level, every client has to fetch
the root node. This results in a high amount of ReDiR traffic
when lstart ¼ 0. The starting level generating the least
amount of traffic (0.9 GB during the duration of the simu-
lations) is lstart ¼ 2. The rest of the starting levels generate
roughly twice as much traffic as lstart ¼ 2.

8.5. Lookup load and load of service providers

Fig. 12 shows the impact of the starting level on the
number of Get requests that peers storing ReDiR tree nodes
receive. The figure shows the maximum, 95th percentile,
median, and average number of Gets received. The maxi-
mum is shown in the primary y-axis and the other values
in the secondary y-axis. From the figure, we can observe
that increasing lstart has the effect of bringing the 95th per-
centile of received Gets down. It also results in the median

number of received Gets going up. We also studied the per-
centage of Get requests received by the top 5% most loaded
peers storing ReDiR records. Our results (not shown here
for brevity) indicate that as lstart increases, the top 5% be-
come less loaded. However, even in the best case
(lstart ¼ 6), the top 5% of the peers still handle 41% of all
Get requests, which cannot be considered satisfactory.
Based on these results, we can conclude that increasing
lstart seems to result in the load of answering Gets becoming
slightly better distributed among the peers storing ReDiR
tree nodes. The reason for this is that a larger lstart increases
the probability that service lookups will finish higher in
the tree; our results show that as lstart is increased, the
average service lookup finish level goes up. A higher finish-
ing level means that more Gets are handled by the large
number of nodes at the higher levels of the tree, which re-
duces the load of the few nodes close to the root level.

We also studied the impact of starting level on the
number of clients per TURN server. Our results (not shown
here for brevity), indicate that changing the starting level
has in practice no impact on the load of the TURN servers;
the maximum, average, median, and 95th percentile num-
ber of clients per server stays flat regardless of the starting
level.

As a summary, the adaptive starting level selection
mechanism specified by ReDiR should be disabled if clients
perform service lookups infrequently. Starting level can
have a considerable impact on ReDiR delays and failure
rates. It also effects the amount of ReDiR traffic and the dis-
tribution of Get load among peers storing tree nodes. How-
ever, lstart does not seem to have an impact of the
distribution of load among SPs.

9. Impact of service provider density

We also wanted to understand the impact of SP density
on ReDiR performance. For this, we carried out an extra set
of simulations in which we varied the percentage of TURN
servers from 0.1% to 90%. Nwas set to 10000, meaning that
the number of TURN servers varied between 10 and 9000.
In these simulations, we focused on comparing the delays,
failures, lookup load, and load of SPs. We will not discuss
the traffic load, since it simply increases in a linear fashion
as the density of SPs grows. In these simulations, b was set
to 10, and lstart to 2. These specific values were chosen for b
and lstart since they produced good results in the previous
simulations.

The impact of different SP densities on service lookup
and registration delays is shown in Fig. 13 for N = 10,000.
From the figure, we can conclude that in addition to a
low SP density, also a high SP density increases the service
lookup and registration delays considerably.

Fig. 14 shows the impact of different service provider
densities on ReDiR service lookup and registration failures.
Although the differences between the densities are not in
all cases statistically significant, we can still see that very
low and high densities result in a higher percentage of fail-
ures than the medium level densities.

When the density is 0.1%, there are only 26 nodes in the
ReDiR tree and one node receives on the average 10,459

Fig. 11. Impact of starting level on failures.

Fig. 12. Impact of starting level on Gets received.
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Get requests during a simulation run. When the density is
increased to 90%, the number of tree nodes grows to 12143
and the number of Gets an average tree node receives
drops to 363. This means that when density is 0.1%, a peer
storing tree nodes receives on the average 0.75 Gets per
second, and only 0.03 Gets per second when the density
is 90%. Thus, we can conclude that when the density is very
low, ReDiR places a considerable load on peers storing tree
nodes.

The impact of TURN server density on the number of cli-
ents per TURN server is shown in Fig. 15. The figure shows
the median, 95th percentile, and ideal number of clients
per server. The ideal number of clients is the number of cli-
ents each TURN server would have if the load was perfectly
balanced among the servers. Based on the figure, we can
conclude that the higher is the density of SPs, the worse
job ReDiR does at balancing the load among them. This is
because the percentage of unused TURN servers increases
as the density increases.

It is interesting to investigate why a very high and low
SP density results in decreased performance (in terms of
delays and failures). A high SP density results in increased
delays since the ReDiR tree becomes so densely populated
at the starting level and levels close to it that the average
length of upward and downward walks increases. The

increased length of upward and downward walks also ex-
plains why the percentage of failed registrations and ser-
vice lookups goes up (the relationship between failures
and the number of requests per registrations and service
lookups was discussed in Section 7.3). Further, a very low
SP density results in increased delays and failure rates
since the tree becomes so sparsely populated that upward
and downward walks become longer.

Based on these results, we can conclude that also SP
density has an impact on ReDiR performance. One of our
findings was that increasing the density does not always
result in better performance; especially very high densities
result in degraded performance. The reasons for this were
discussed above. Regardless of the density, the load is not
equally distributed among the SPs. Finally, when the den-
sity of SPs is rather low and a high number of service look-
ups are being carried out, the peers storing ReDiR tree
nodes can experience a very high load.

10. Impact of peer departures

In this section, we will focus on studying the impact of
peer and SP departures on ReDiR performance.

10.1. Growing overlay

We will first study the impact of departures in a grow-
ing overlay whose maximum size is N = 1000. We used the
setup described in Table 5. The traffic model, which is de-
scribed in Table 8, is identical to that used in earlier simu-
lations for N = 1000 (see Table 3) with the exception that a
peer inter-departure time was used. An inter-departure
time of 28.8 s was chosen since based on Little’s law, it

Fig. 13. Impact of service provider density on ReDiR delays.

Fig. 14. Impact of service provider density on failures.

Fig. 15. Impact of service provider density on TURN clients per server.

Table 8
User interarrival and departure times, N = 1000.

Start of
period [s]

End of
period [s]

Interarrival
time [s]

Inter-departure
time [s]

N at end
of period

0 1000 10 0 100
1000 2000 5 28.8 265
2000 3750 2.5 28.8 904

1622 J. Mäenpää / Computer Networks 56 (2012) 1612–1626



corresponds to the mean inter-departure time of users
whose average online time is 8 h (i.e., a full working day)
in a 1000-peer system. For instance a company internal
P2PSIP telephony network could have a user online time
of 8 h. In the simulations, bwas set to 10 and lstart to 2 since
these are the default values in ReDiR. Density of SPs was
11% (i.e., the same as in earlier simulations). The purpose
of the simulations was to study how peer and SP depar-
tures impact the results described in the earlier sections.
The arrival and departure of peers was modeled as a Pois-
son process. 10% of departures were crashes, meaning that
the peer or SP left the overlay ungracefully without inform-
ing other peers. A 10% crash percentage was chosen based
on the assumption that the clear majority of users leave
gracefully from a P2PSIP telephony system. The peers and
SPs to leave and crash were selected randomly from among
all the peers participating in the overlay.

The results of the simulations are described in Table 9.
The table compares two scenarios: in the first one, peer
departures were used, whereas in the second, there were
no peer departures. The values in the table are averages
calculated over 25 simulations. The numbers shown in
the parentheses represent the 95% confidence intervals.
From the table, we can see that the introduction of depar-
tures does not have a statistically significant impact on de-
lays. However, the amount of failed service lookup and
registration operations and the amount of failed Get and
Put requests grows significantly. The most common reason
for registration and service lookup failures was observed to
be Get and Put request timeouts resulting from the tempo-
rary instability caused by departing and crashing peers.

10.2. Churn in an overlay having constant size

So far, we have been studying the performance of ReDiR
in constantly growing overlays. In this subsection, we will
study ReDiR performance in an overlay whose size remains
constant over time. We studied two different scenarios. In
the first scenario, the overlay was churning at such a rate
that its size remained constant. The average mean online
time of users was again 8 h. The size of the overlay (N)
was 1000 peers. Using Little’s law, this results in mean user
interarrival and departure times of 28.8s. We started col-
lecting measurement data at the moment when N reached
1000 peers and continued collecting data for 3600 s. The

second scenario was otherwise identical except that there
was no churn at all. We repeated the simulations 25 times.
The results of these simulations are presented in Table 10.
The results indicate that the presence of churn does not
have a statistically significant impact on delays. In con-
trast, churn does have a statistically significant impact on
the percentage of failed service lookup and registration
operations. This is caused by a high percentage of Get re-
quests failing due to the instability caused by peer depar-
tures. Nearly all Get requests fail due to timeouts. The
percentage of failed Put requests is much lower than the
percentage of failed Get requests due to the fact that the
average hop count of Put requests is almost three times
lower than that of Get requests.

Note that most of the values in Tables 9 and 10 are not
comparable between the tables since the duration of the
simulations was different and since results from the period
before N reached 1000 are not included in Table 10. How-
ever, we can still see that there are no statistically signifi-
cant differences for instance in the number of Put and Get
requests per registration between the different scenarios.
This is because the structure of the ReDiR tree is not af-
fected by churn (tree nodes are simply transferred be-
tween peers as peers come and go) and also because it is
not affected by whether N is constant or growing.

Based on the results in this section, we can conclude
that the main impact peer departures have on ReDiR per-
formance is the increased failure rate of service lookup
and registration operations. Peer departures also impact
the distribution of Get load and load of SPs. This is because
records stored by leaving peers and clients served by leav-
ing SPs are transferred to some other node in the overlay,
which on the average doubles the load of that node.

11. Selecting branching factor and starting level

Our results suggest that knowing the number of SPs, it
is possible to determine the optimal values for b and lstart .
We have seen that the lowest service lookup and registra-
tion delays are reached when the density of records in the
ReDiR tree is neither too high nor too low, that is, when the
majority of service lookups finish already at lstart . Thus, we
can determine the parameters resulting in the lowest

Table 9
Impact of departures on ReDiR performance.

Departures No departures

Service lookup delay [ms] 5005 (176) 4961 (182)
Registration delay [ms] 17454 (305) 17951 (358)
Service lookup failed [%] 1.4 (0.3) 0.8 (0.3)
Registration failed [%] 3.8 (1.0) 1.4 (0.4)
ReDiR traffic [MB] 27.0 (1.0) 28.9 (1.2)
All departures 72.8 (2.5) 0 (0)
SP departures 17.5 (1.2) 0 (0)
Failed Get requests [%] 0.65 (0.12) 0.19 (0.05)
Failed Put requests [%] 0.24 (0.06) 0.06 (0.02)
Gets per registration 3.89 (0.02) 3.87 (0.02)
Puts per registration 3.89 (0.02) 3.87 (0.02)
% of Gets handled by top 5% 43.0 44.4
Median of clients per SP 6 7

Table 10
ReDiR performance in an overlay with constant size.

Churn No churn

Service lookup delay [ms] 5004 (126) 4882 (159)
Registration delay [ms] 21724 (550) 22619 (1077)
Service lookup failed [%] 0.9 (0.4) 0 (0)
Registration failed [%] 2.5 (1.2) 0.6 (0.3)
ReDiR traffic [MB] 31.5 (1.1) 36.2 (2.9)
All departures 124.9 (3.5) 0 (0)
SP departures 12.4 (1.4) 0 (0)
All joins 124.8 (4.0) 0 (0)
All SP joins 13.7 (1.0) 0 (0)
Failed Get requests [%] 0.7 (0.5) 0.15 (0.1)
Failed Put requests [%] 0.07 (0.05) 0 (0)
Gets per registration 3.89 (0.02) 3.91 (0.02)
Puts per registration 3.89 (0.02) 3.91 (0.02)
% of Gets handled by top 5% 44.7 39.4
Median of clients per SP 4 6
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delays by calculating the probability that service lookups
will finish at lstart . This probability can be calculated as
follows:

Pðfinish at lstartÞ ¼ Pðsuccessor foundÞ
� Pðk not sandwichedÞ; ð1Þ

where k is the key being searched for, P (successor found)
refers to the probability that the successor of k is found
at lstart , and P (k not sandwiched) refers to the probability
that k is either the highest or lowest identifier in its inter-
val at lstart . P (successor found) can be calculated as follows:

Pðsuccessor foundÞ ¼
NSP

blstart
NSP

blstart
þ 1

; ð2Þ

where NSP is the number of service providers. Eq. (2) and
also other equations presented in this section assume uni-
form distribution of peer identifiers in the identifier space
of the overlay. The numerator of Eq. (2) gives the average
number of records Nrec ¼ NSP

blstart
per tree node at lstart . The

denominator gives the average number of positions that a
randomly chosen key can occupy within its tree node at
lstart relative to keys already stored in the tree node. More
specifically, an average tree node at lstart has Nrec records.
The keys of these records divide the part of the identifier
space that the tree node owns into Nrec þ 1 parts. There is
a successor of a key k present in the tree node if k fallswithin
the range of any other of these parts except for the last one.
Further, the probability P (k not sandwiched) is given by:

Pðk not sandwichedÞ ¼ min
2

NSP

blstartþ1 þ 1
; 1

 !
ð3Þ

The numerator in Eq. (3) is two since a given key is not
sandwiched within an interval if it is either the first or last
key within the interval. In the denominator, NSP

blstartþ1 gives the
average number of records per interval at lstart . This value is
incremented by one in the denominator to get the number
of subintervals into which the keys of the records divide
the interval.

Eq. (1) makes it possible to determine which values of
lstart and b result in the highest probability that service
lookups will finish at the starting level. This is enough to
guarantee that delays stay as low as possible. However, it
is not enough to guarantee a good distribution of the load
of answering Get requests. To achieve a good distribution
of Get load, we need to, in addition to having as many ser-
vice lookups as possible finish at lstart , to also have as many
registrations as possible to not have an upward walk. The
reason to not have an upward walk is to minimize the load
of the few tree nodes located at the root level and levels
close to it. Although most of the service lookups finish at
lstart if Eq. (1) has been used to select optimal parameters,
typically most of service registrations will proceed all the
way to the root especially if a large b is used. This causes
a high load at the lowest levels of the tree. To reduce the
load, one should minimize the number of registrations
having an upward walk. The probability that a registration
does not have an upward walk can be calculated as
follows:

Pðno upward walkÞ ¼ 1� Pðk not sandwichedÞ ð4Þ

Eq. (4) follows from the fact that a registration does not
have an upward walk if k is sandwiched in its interval at
lstart . Now, using Eqs. (1) and (4), the probability that both
a short delay and good distribution of Get load is achieved
can be calculated as follows:

Pðshort delay and good load distributionÞ
¼ Pðfinish at lstartÞ � Pðno upward walkÞ ð5Þ

As a summary, knowing NSP , one can use different values of
b and lstart as input to Eq. (5) to determine which combina-
tion of the parameters results in the highest probability va-
lue. These parameters can then be used to configure ReDiR
in such a way that short delays and good distribution of
Get load is achieved.

Naturally, P2P overlays are typically dynamic and thus
the number of peers and SPs changes over time. Therefore,
we will next explain how the model can be used to dynam-
ically adapt ReDiR parameters as a response to changes in
the number of SPs (NSP). The number of SPs present in the
overlay can be estimated as follows. As discussed above,
every SP needs to store its record at lstart . Thus, an estimate
of the number of SPs NSPest can be calculated by fetching
M P 1 tree nodes from lstart and observing the average
number of records Nrec that the tree nodes contain. Based
on this information, NSPest can be calculated as follows:

NSPest ¼
PM

i¼0Nreci

M
� blstart ; ð6Þ

where blstart gives the number of tree nodes at lstart . In our
simulations, we found Eq. (6) to provide decent estimates
for NSP , especially whenM is sufficiently large. As an exam-
ple, when M = 3, b = 4, and lstart ¼ 2, the estimate is on the
average accurate within 15% of the real value of NSP in a
network with 1000 peers, 100 of which are SPs. In the same
setup, M = 10, improves the estimate to be accurate within
9% of the real value. The estimate produced by Eq. (6) can
be used as input to Eq. (5) to calculate the best b and lstart in
an adaptive fashion during the runtime of a P2P overlay.

Adapting lstart during the runtime of a P2P overlay is
rather straighforward as it does not require changes to
the structure of the ReDiR tree. However, adapting b is a
more complex procedure since it requires re-building the
tree. The way a system can migrate to a new tree is de-
scribed below. The first SP detecting the need to switch
to a different b creates a new tree by storing its record
using the new b. Further SPs detecting the need to migrate
will add more records and tree nodes to the new tree. To
ensure that other SPs can detect the need to migrate, the
old tree needs to be maintained in parallel with the new
tree for the duration of one ReDiR record refresh period.
This is because the SPs detect the need to migrate by
observing record density in the old tree. Thus, all SPs
migrating to the new tree still need to refresh their record
in the old tree. At the end of the refresh period, all SPs are
already part of the new tree and thus the old tree can be
abandoned. As a summary, the cost of the tree migration
procedure is to maintain two ReDiR trees in parallel for
the duration of a single refresh period. From the viewpoint
of a single SP, this means performing two registration pro-
cedures instead of a single one during that period.
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11.1. Validating the model

We validated the model presented in the previous sub-
section using simulations. We ran simulations for N = 100,
N = 1000, and N = 10,000 using a large number of combina-
tions of starting levels between 1–9 and the branching fac-
tor values used in the previous simulations (i.e., from b = 2
to b = 38). In the simulations, we observed for each b and
lstart combination how many service lookups finish at the
starting level (i.e., Pðfinish at lstartÞ) and how many registra-
tions have no upward walk (i.e., Pðno upward walkÞ) and
compared these results against the model (i.e., Eq. (5)).
Our results (not shown here for brevity) indicate that the
model can accurately predict the best b and lstart combina-
tion for each network size. Thus, we can conclude that the
model provides good guidance for selecting appropriate
values for ReDiR parameters.

12. Conclusions and future work

In this paper, we studied the performance of ReDiR
when applied as a mechanism for TURN server discovery
in a P2PSIP overlay. Although we focused on the TURN
server use case, our results are applicable to any popular
service in a DHT-based network. Wemade several observa-
tions. First, ReDiR is rather difficult to configure. Configur-
ing it inappropriately can have non-negligible impact on
both ReDiR performance (i.e., on delays, traffic, and load
balance) and the performance of the entire P2P overlay
(e.g., due to the traffic load ReDiR generates). On one hand,
configuring ReDiR so that delays are minimized can result
in sub-optimal load balance. On the other hand, if the goal
is optimal load balance, delays can grow dramatically.
Parameters that are optimal for one network size and ser-
vice provider density may perform very badly in a different
setting.

If configured inappropriately, ReDiR can cause a high
Get, Put, and storage load on tree nodes at the lowest levels
of the tree. Especially the root node can become over-
loaded. If the number of service providers is low, the cost
of being responsible for a tree node can be high for a peer.
In such a case the traffic load caused by ReDiR on these
peers is considerably higher than that caused by the DHT.
To assist in problems with configuring ReDiR, we devel-
oped a model that can be used to determine parameters
resulting in both short delays and good load balance. The
model was validated through simulations.

If ReDiR has been configured appropriately for the num-
ber of service providers in the overlay, the average service
lookup delay is only slightly higher than the delay of a sin-
gle DHT Get operation. However, even in the best case, the
average registration delay is multiple (typically, at least
five) times longer than the delay of a DHT Put operation.
The most important factor impacting ReDiR delays is the
density of records at the starting level.

ReDiR does not add any additional uncertainty on top of
the underlying DHT; the failure rate of service lookups and
registrations is proportional to the Get and Put failure rate
of the DHT. We also saw that ReDiR does not do a very
good job at balancing the number of clients among service
providers.

Some conclusions can also be drawn for the P2PSIP use
case. First, due to the large delays associated with ReDiR
service lookups, it is not practical to use ReDiR for TURN
server discovery during P2PSIP call setup. Instead, TURN
server discovery should either be performed in advance
before the call or an existing TURN server should be used.
Also, since service lookup delays can be large, it makes
sense for a peer to maintain a backup TURN server to speed
up the process of re-establishing connections if the pri-
mary server fails.

Based on our results, ReDiR could be improved in multi-
ple ways. One simple way to reduce the traffic load is not
to return the entire tree node (i.e., all records) in a Get re-
sponse but instead return records selectively (e.g., only the
record of the successor or enough information to indicate
that the search key is sandwiched). This comes at the cost
of extra logic required in every peer. Using the model for
determining suitable branching factor and starting level
proposed in this paper, one can also make ReDiR adaptive
to address the difficulties associated with configuring the
parameters. As an example, using the model, it would be
possible for peers to adjust the starting level as a response
to changes in the number of service providers. When the
number of requests per operation is high, ReDiR failure
rate could be reduced by retransmitting failed Gets and
Puts. ReDiR would also benefit greatly from better load bal-
ancing between service providers. ReDiR also does not take
service provider heterogeneity into account. We plan to
study ReDiR improvements in future work.
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