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Gene regulatory networks (GRNs) control the amount and the temporal patterns 
of gene products, both of which are crucial for the correct functioning of the 
living cells of an organism. In many diseases, such as cancer, biological processes 
controlled by GRNs are perturbed. Understanding the functioning of GRNs may 
lead to a better understanding of the mechanisms behind disease and ultimately 
to the identification of putative drug targets.

The amount of information on the components of the GRNs and the interactions 
between them is increasing rapidly. Many modeling approaches have been applied 
to simulate the behavior of GRNs. Boolean networks give qualitative predictions 
of the dynamic behavior of the GRNs. They are applicable especially for large 
GRNs where all the mechanistic details of different reactions are not known.

In this thesis, an analysis framework to predict the effects of drugs in the context 
of GRNs was developed. A network consisting of genes, drugs and biological pro­
cesses was constructed based on knowledge in biological databases. The behavior 
of the network was simulated with Boolean networks. To predict the effect of 
perturbing the network with a drug, an activation score was developed to esti­
mate the activity of different components of the network before and after the 
perturbation. The method was applied to triple-negative breast cancer data to 
search for putative drug targets.
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Geenisäätelyverkot (GSV) kontrolloivat geenituotteiden määrää ja ajallista il­
mentymistä, jotka ovat ratkaisevassa roolissa eliön solujen virheettömässä toimin­
nassa. Monissa sairauksissa, kuten syövässä, GSV:n kontrolloimat biologiset pro­
sessit ovat häiriintyneet. GSV:n toiminnan ymmärtäminen voi johtaa sairauksien 
takana piilevien mekanismien parempaan ymmärtämiseen ja lopulta mahdollisten 
lääkeainekohteiden tunnistamiseen.

Tieto GSV:n osista ja niiden välisistä vuorovaikutuksista kasvaa nopeasti. Mo­
nia eri mallinnusmenetelmiä on sovellettu GSVdiin. Boolean verkot antavat 
laadullisia ennustuksia GSV:n dynaamisesta käyttäytymisestä. Ne soveltuvat eri­
tyisesti isojen GSV:n mallintamiseen ja tilanteisiin, joissa kaikkia yksityiskohtia 
eri vuorovaikutuksista ei tunneta.

Tässä työssä toteutettiin analyysikehikko, jolla voidaan ennustaa lääkeaineiden 
vaikusta GSV:n kontekstissa. Geeneistä, lääkeaineista ja biologisista prosesseista 
koostuva verkko luotiin biologisten tietokantojen sisältämän tiedon perusteel­
la. Verkon käyttäytymistä simuloitiin Boolean verkoilla. Lääkeaineen vaiku­
tuksen määrittämiseksi kehitettiin aktivaatiomitta, jolla arvioidaan eri osien 
aktiivisuutta ennen ja jälkeen lääkeaineen lisäämistä verkkoon. Menetelmää 
sovellettiin triplanegatiiviseen rintasyöpädataan mahdollisten lääkeainekohteiden 
selvittämiseksi.

Asiasanat: geenisäätelyverkot, syöpälääkkeet, rintasyöpä, Boolean
mallinnus

Kieli: Englanti
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Abbreviations and Acronyms

ATO Arsenic trioxide
DNA Deoxyribonucleic acid
DEG Differentially expressed gene
ER Estrogen receptor
FDR False discovery rate
FDA Food and Drug Administration
GO Gene Ontology
GRN Gene regulatory network
KEGG Kyoto Encyclopedia of Genes and Genomes
LSS Logical steady state
mRNA messenger RNA
PR Progesterone receptor
RNA Ribonucleic acid
TNBC Triple-negative breast cancer
TCGA The Cancer Genome Atlas
TF Transcription factor
TFBS Transcription factor binding site
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Chapter 1

Introduction

A Gene regulatory network (GRN) consists of a set of molecular species and 
their interactions which together control the amount and temporal patterns 
of gene products in a cell [1]. The correct functioning of GRNs is essential to 
carry out the relevant processes of living cells, including control of cell cycle, 
cell metabolism and signal transduction [1]. Understanding the functioning 
of GRNs will assist in understanding the mechanism of diseases where these 
cellular processes are affected [1].

The vast amount of experimental data and complex structure of the net­
works make computational tools essential for the analysis of GRNs [1]. The 
models applied to simulate GRNs can be divided into three categories [1]. 
Logical models give a dynamic qualitative description of the behavior of the 
system under study [1]. Continuous models on the other hand give a more 
detailed view of the concentrations of different species and their temporal 
development [1]. Lastly, single-molecule level models take into account the 
stochastic nature of the molecular interactions on the single-molecule level[l].

Boolean networks belong to the class of logical models [1]. Genes are 
modeled as active or inactive, and the interactions between the genes are 
represented with Boolean functions [2]. The qualitative dynamic behavior of 
a GRN of hundreds of components can be simulated using Boolean networks 
[2]. Boolean networks do not require information on the kinetic parameters
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CHAPTER 1. INTRODUCTION 10

or mechanistic details of different reactions and are well suited to model 
systems where this information is insufficient[2].

The aim of this thesis is to develop an analysis framework to predict drug 
effects in the context of GRNs. The GRN is constructed utilizing information 
in biological databases. The network is expanded to include Gene Ontology 
(GO) terms representing different biological processes affected by the genes in 
the network and drugs targeting the genes in the network. The vertices of the 
network represent the different biological entities, namely, genes, biological 
processes and drugs. The edges between the vertices describe the regulatory 
interactions between the different biological entities.

Experimental transcriptomics data, such as gene expression or RNA-seq 
data, is used to preserve only those interactions fetched from the databases 
that are relevant for the specific biological system in question. The network 
is transformed into a Boolean network, and the resulting Boolean network 
is simulated using individual drugs to perturb the state of the network one 
by one. An activation score is developed to estimate the effect of a drug on 
different biological processes included in the network. The activation score 
is calculated for each gene and GO term based on the states of the genes in 
the network before and after perturbation with a drug. The difference of the 
activation scores is used to predict the effect of a drug on genes and different 
biological processes.

The analysis framework is applied to suggest potential drug targets in 
triple negative breast cancer (TNBC) patients. Cancer is a disease that af­
fects milhons of people world wide every year [3]. In cancer the normal cells 
become malignant and proliferate without control [4]. The capabilities re­
quired from cancer cells are orchestrated through changes in gene expression 
[4]. The identification of putative cancer drug targets is an important task 
to facilitate medical research and may eventually lead to the improvement of 
patient survival and quality of life.

The following Chapter 2 introduces the basic biological background of 
GRNs and gives some insight into cancer biology. Also, the principles of
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Boolean networks and modeling GRNs using them are presented. Finally, 
Anduril and BoolNet are described. Anduril is a workflow engine that facil­
itates development of complex analysis pipelines and BoolNet is a software 
package dedicated to the simulation and analysis of Boolean networks. Chap­
ter 3 gives a general view of constructing a drug effect analysis pipeline using 
a simple example network. Chapter 4 presents a case study of predicting 
drug effects in the context of TNBC patients. The network is constructed 
using biological databases, and transcriptomics data from TNBC patients is 
employed to fit the network to the biological context in question. Chapter 5 
discusses the reached conclusions and the limitations as well as the possible 
improvements of the analysis framework.



Chapter 2

Background

This chapter gives an introduction to the biological background of gene reg­
ulatory networks and modeling them with a Boolean networks. The basics 
of cancer and specifically TNBC are presented. Additionally, the main tools 
and databases utilized to create the drug effect prediction analysis framework 
are introduced.

2.1 Basics of molecular biology

The majority of genetic information of an organism is stored inside the nu­
cleus of the cells of the organism [5]. The information is stored in chromo­
somes which are structures composed of proteins and a deoxyribonucleic acid 
(DNA) molecules [5]. DNA is composed of a sugar-phosphate backbone and 
four bases, namely adenine (A), cytosine (C), guanine (G) and thymine (T) 
[5]. The specific sequence of the bases encodes information [5]. Genes are 
stretches of DNA along the chromosome encoding for functional ribonucleic 
acid (RNA) molecules [5].

The genes function as templates for creating a functional RNA molecule
[5]. The RNA molecules can be divided into two classes [5]. The coding RNAs 
contain sequences which encode the polypeptide sequence of a protein [5]. 
Most of the genes encode coding RNA molecules, which are subsequently used
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CHAPTER 2. BACKGROUND 13

as templates to construct a protein [5]. The other class of RNA molecules is 
non-coding RNA [5]. The non-coding RNA molecules are often involved in 
the regulation of the expression of other genes [5].

The process of creating an RNA molecule from the DNA sequence of a 
gene is called transcription [5]. For the class of coding RNA molecules, the 
RNA is called a messenger RNA (mRNA), since it carries information from 
DNA to the protein synthesis machinery [5]. The protein synthesis machinery 
is located outside the nucleus in the cytoplasm [5]. The mRNA is transported 
to the cytoplasm where it is used as a template to produce a protein in a 
process named translation [5].

2.1.1 Gene regulatory networks

A subset of all the genes in an organism encode for proteins known as tran­
scription factors (TFs) [6]. TFs bind DNA to the regulatory regions of genes 
on specific patterns of DNA called transcription factor binding sites (TFBS) 
and regulate the rate of transcription either positively (activators) or neg­
atively (repressors) [6]. The regulation of the transcription rate of a single 
gene is generally achieved by the interplay of multiple activators and re­
pressors [7]. This is a simplified view of transcriptional regulation of genes, 
which in addition to TFs also involves many other types of proteins, such 
as chromatin-modifying factors [7]. Also, non-coding RNAs are known to 
regulate the expression of other genes [5].

All the transcriptional regulation interactions between genes form a com­
plex transcriptional regulation network [8], which is referred to as a gene 
regulatory network in this thesis. A toy example of a gene regulatory net­
work is shown in figure 2.1. Here the gene regulatory network consists of 
three genes of which all are TFs regulating the transcriptional rate of other 
genes. For example, gene A regulates the transcription of itself and gene C.
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GENE A GENE В GENE C
f--------------A------------- N /--------------A-------------4 ,-----------------A----------------N

■ transcription factor binding site 
1 transcribed DNA 

Q transcription factor

Figure 2.1: An example of a toy gene regulatory network. A gene regu­
lates another gene, if the transcription factor binds to the left side of the 
transcribed DNA of the gene.

2.2 Cancer

In 2008, there were an estimated 12.4 million new cancer cases and 7.6 mil­
lion cancer deaths [3]. The number of cancer cases and deaths in 2030 are 
projected to be 20.0 million and 12.9, respectively [3]. The most common 
cancers in the world in 2008 in terms of the number of new cases were lung, 
breast and colorectal cancer [3].

In cancer, the normal cells of an organism proliferate without normal 
control giving rise to tumors [9]. Almost all deaths caused by cancer follow 
from a malignant tumor that invades the surrounding tissues and gives rise 
to distant tumors in other parts of the organism [9].
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The development of normal cells into malignant tumor cells proceeds in 
steps where the cells acquire capabilities required for the malignant pheno­
type [4]. The capabilities needed, the hallmarks of cancer, are sustaining 
prohferative signaling, evading growth suppressors, resisting cell death, en­
abling replicative immortality, inducing angiogenesis and activating invasion 
and metastasis [10]. Recently, reprogramming energy metabolism and evad­
ing immune destruction have also appeared as potential hallmarks of cancer 
[4]. The main driver behind the acquisition of these hallmark capabilities 
is genomic instability in cancer cells [4]. Genomic instability leads to ac­
cumulation of changes in the genome of the cancer cells, which enable the 
emergence of hallmark capabilities [4].

2.2.1 Triple-negative breast cancer

Invasive breast carcinomas are cancers arising from the mammary epithe­
lium [11]. They are characterized by invasiveness to surrounding tissue and 
tendency to form metastases in distant sites [11]. Breast cancer is the most 
common type of cancer in women accounting for approximately one quarter 
of all the cancers in women [11]. In the high risk areas of Europe, North 
America and Australia, six percent of women develop invasive breast car­
cinoma before the age of 75 [11]. However, in the low risk areas, only two 
percent of women develop invasive breast carcinoma before the age of 75 [11].

Triple negative breast cancer (TNBC) is a type of breast cancer defined 
as lacking expression of estrogen receptor (ER), progesterone receptor (PR) 
and HER2 in the tumor [12]. Approximately 12% to 17% of women with 
breast cancer have TNBC [12]. The patients with TNBC have as a group 
relatively poor outcome and are mainly treated with chemotherapy [12].

2.3 Modeling gene regulatory networks

Gene regulatory networks are essential for the correct functioning of living 
cells [1]. By understanding the functioning of these networks, the mechanisms
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behind diseases caused by dysfunctioning gene regulatory networks can be 
elucidated [1]. Gene regulatory network is the collection of molecular species 
and the interactions between the species that control the amount of gene 
products in a cell [1].

Different approaches to modeling gene networks can be divided into log­
ical, continuous and single-molecule level models [1]. Logical models rep­
resent the levels of different entities of the system as discrete values. The 
levels of the entities are updated at each time step according to regulation 
functions. Logical models include Boolean networks, probabilistic Boolean 
networks and Petri nets [1]. In continuous models, the levels of the entities 
are real-valued and are modeled over a continuous timescale [1]. Continuous 
models include continuous linear models and ordinary differential equations 
[1]. Single-molecule level models take into account the fluctuations that occur 
on the molecular level. Single-molecule level models have been implemented 
using Gillespie’s stochastic simulation algorithm and approximation to it [1].

2.3.1 Modeling gene regulatory networks with Boolean 
networks

Boolean networks consist of vertices with binary states [2]. The states of 
the nodes are determined by the states of the other nodes through a Boolean 
function [2]. Boolean networks were first introduced for the analysis of genetic 
regulatory systems by Kauffman [13]. Boolean networks can be used to 
simulate the qualitative behavior of the system over time and to predict the 
effect of perturbations on the system [2]. Unlike continuous models, Boolean 
networks do not require the kinetic parameters of the interactions of different 
species [2]. Boolean networks are able to provide qualitative description of 
the dynamic behavior of the system without the kinetic parameters even for 
systems with hundreds of species [2].
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Network structure

f A = XA

f В = NOTxc 

fc = xA and xb

(b) Boolean functions

Figure 2.2: (a) The directed graph representation of the example GRN in 
figure 2.1. The activating interactions are shown with arrowhead edges and 
the inhibitory interaction with a tee-head edge, (b) The Boolean functions 
associated to the Boolean network model of the example GRN in figure 2.1.

2.3.1.1 Boolean networks

A Boolean network consists of a set of Boolean variables {x\,X2,..., xn} and 
a set of Boolean functions / = {/i,/2, •••,/«} [14]. The Boolean functions 
determine the state of the corresponding Boolean variable at time t as a 
function of the Boolean variables in the network [14].

The Boolean variables corresponding to different biological entities are 
binary valued. They take values 0 or 1 corresponding to the logical values of 
FALSE and TRUE. The value 0 is referred to as inactive and the value 1 
as active [15]. For example, a gene is active when it is expressed and inactive 
when it is not expressed.

The Boolean functions are mappings / : {0, l}fc —> {0,1}, where к is 
the number of input variables for the Boolean function [2]. The Boolean 
function determines how to calculate the output value from the input values 
using logical operators, which include AND, OR and NOT [2]. For exam­
ple, if species i activates species j, is present in the Boolean function 
Inhibitory interaction is modeled with the NOT operation. The Boolean
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functions can also be defined by truth tables, which list the output values 
for all the combinations of the input values [2].

A Boolean network can be projected into a directed graph [2]. Directed 
graph G = (V, E) consists of a set of vertices V = {t>i,u2, vn} and a set of 
directed edges E. The vertices correspond to the Boolean variables, and the 
edges are defined by the Boolean functions [2]. The vertices corresponding 
to the input variables of Boolean function /, have an edge incident on 
The edges have a sign implying whether the input vertex has a positive or 
negative effect on the vertex [2]. The directed graph does not define the 
Boolean network completely since the Boolean functions are only partially 
determined by the directed graph [2].

Figure 2.2a shows a graph representation of the example GRN in figure 
2.1. All the regulatory interactions between the genes are assumed to be 
activating except C is taken to inhibit B. The activating interactions are 
shown with arrowhead edges and the inhibitory interaction with a tee-head 
edge. The Boolean functions of the network are shown in figure 2.2b, and 
the corresponding truth tables are shown in table 2.1. Here, it is assumed 
that both A and В have to be active in order C to be active.

Bc xA XB
0 0 0

BA Xa Bb xc 0 0 1
0 0 1 0 0 1 0
1 i 0 1 1 1 1

(a) (b) (c)

Table 2.1: The truth tables of the Boolean functions of the example GRN. 
The left most column gives the output value of the Boolean function with 
the input value combination on the same row.
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Figure 2.3: The state transition graph of the example gene regulatory net­
work. The vertices represent states of the system and the directed edges 
allowed transitions. The state of the system is given in the order gene A, 
gene В and gene C. The allowed transitions are calculated using synchronous 
updating. State 010 is a point attractor, and the states 100,101,110, 111 
form a complex attractor.

2.3.1.2 Simulating Boolean networks

The state of the system at time point t is x(t) = ¡x1(t),x2(t), ...,zn(t)], and 
the state space of the system consists of 2n states [15]. The dynamics of the 
Boolean network is given by the equation xt(t + 1) = /,(f) [15]. Here, all the 
states are updated simultaneously based on the state of the system at time 
t. In this case, the Boolean network is called synchronous and the behavior 
of the network is deterministic [15]. The synchronous update scheme implies 
that all the regulatory interactions in the system have the same timescale 
[2]. In asynchronous updating scheme, the states are updated based on the 
previous or current states of the input variables [2]. The asynchronous scheme 
can be deterministic, where individual states are updated according to the 
relevant timescales of the biological interactions, or it can be stochastic, 
where the states are updated in a random order [2].

The sequence of states the system travels through in the state space is
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called a trajectory [15]. The state of a synchronous Boolean network will 
follow a deterministic trajectory in the state space [15]. The possible tra­
jectories can be visualized with a state transition graph, where the vertices 
represent the states of the system and edges allowed transitions between the 
different states [2]. The system will eventually end up in a recurring state, 
called a point attractor or a steady state, or in a recurring state cycle [15], 
called a complex attractor [2, 15]. The states that lead to the attractor are 
called transient states [15]. The attractor itself and the transient states that 
lead to it are called the basin of attraction for the attractor [15]. For the 
asynchronous Boolean network the point attractors are the same as for the 
synchronous Boolean network [2]. The complex attractors can be different 
for deterministic and stochastic Boolean networks [2]. For stochastic asyn­
chronous Boolean networks the system can oscillate randomly in a set of 
states forming a complex attractor also referred to as loose attractor [2].

The state transition graph of the example gene regulatory network using 
synchronous updating is shown in figure 2.3. The states are represented as 
vertices and the allowed transitions as directed edges. For example, if the 
system is in state 000 at time point t, at time point t + 1 gene В will be 
activated and genes A and C will remain inactive and the system will be in 
state 010. The system has two attractors: 010 is a point attractor, and the 
states 100,101,110 and 111 form a complex attractor. The size of the basin 
of attraction is four states for both of the attractors.

For small Boolean networks the point attractors can be solved analytically
[2]. For example, all the possible point attractors satisfy /¿(aq,..., xn) = 
i = 1,..., n, where /, are the Boolean functions of the network and n is the 
number of vertices in the network. For example, the point attractors of the 
example GRN can be obtained by solving the equation system

Xa ~ %A

x в = NOT xc 

xc = xa AND xb
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The logical steady state (LSS) analysis can find partial steady states of a 
Boolean network [16]. The fixed initial values of a set of Boolean variables 
of the network are propagated through the network to identify the variables 
with fixed states [16]. The resulting set of variables with fixed states is called 
a partial LSS [16]. Complex attractors can be identified for small synchronous 
Boolean networks by analytical methods but for asynchronous Boolean net­
works the identification of loose attractors analytically is a difficult task [2].

The state transition graph of the Boolean network can also be utilized to 
identify attractors [2]. Point attractors are vertices without outgoing edges 
except to itself [2]. In figure 2.3, the point attractor 010 has only an out­
going edge to itself. In synchronous or deterministic asynchronous Boolean 
networks, complex attractors are sets of vertices forming a cycle without out­
going edges [2]. The compex attractor in figure 2.3 consists of a cycle of states 
100,101,110 and 111. In stochastic asynchronous Boolean networks, com­
plex attractors are a set of vertices forming a strongly connected component 
without outgoing edges [2].

For large Boolean networks identification of attractors for both synchronous 
and asynchronous Boolean networks is a computationally challenging task 
[2]. The task can be made easier by simplifying the Boolean network prior 
to the search of attractors [2]. Several network reduction methods have been 
suggested to this end [2].

2.4 Biological networks

Cells contain a myriad of complex molecules that together carry out the 
functions necessary for the correct functioning of the cell. The cellular com­
ponents and the interactions between them can be at the most basic level 
of abstraction represented as networks [17]. The vertices of the graphs rep­
resent the different biological molecules and the edges between the vertices 
different interactions between the molecules [17]. The network model can be 
used as a basis for mathematical modeling of the functioning of the network
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[18]. The simulation of the network behavior can be used to understand the 
mechanisms of complex diseases or predict potential drug targets [18].

2.4.1 Moksiskaan

Moksiskaan is a tool to translate gene or protein lists into hypothetical path­
ways. The pathways are constructed by integrating data from various online 
databases [19]. In Moksiskaan, biological concepts such as genes, proteins, 
drugs, biological processes, molecular function and cellular components are 
called bioentities. Each bioentity has its own bioentity type. The rela­
tionships between bioentities are represented as directed edges between the 
bioentities. Each edge has a link type specifying the type of relationship 
between the bioentities [20]. The relationships include for example gene ex­
pression and gene repression between a gene and a gene, drug inhibits and 
drug promotes between a drug and a gene, and positive regulation and neg­
ative regulation between a gene and a biological process [21].

Moksiskaan can be used to produce hypothetical pathways consisting of 
defined bioentity types. From a given list of bioentities the pathway is ex­
panded following defined link types between the bioentities. There are four 
modes for the pathway construction: ’up’ bioentities upstream are searched, 
’down’ bioentities downstream are searched, ’both’ bioentities both upstream 
and downstream are searched and ’connected’ bioentities between the given 
list of bioentities are searched. All these modes are parametrized by the 
number of steps to search upstream, downstream or between the given list 
of bioentities[19].

Moksiskaan can also be used to prune the network using experimental 
data. The bioentities, such as genes, are assigned a state based on the exper­
imental data. The edges conflicting with the experimental data are removed. 
Also, the state of genes for which there is no experimental data can be pre­
dicted using Moksiskaan[21].

Figure 2.4 shows an example of a Moksiskaan generated network. The 
network was expanded from a gene list: SOS 1 and MAP2K1 one step up-



CHAPTER 2. BACKGROUND 23

Figure 2.4: An example of a Moksiskaan generated gene regulatory network. 
The network was expanded one step upstream and one step downstream from 
genes SOS 1 and MAP2KÌ, marked with white background color, following 
edges representing gene expression and gene repression. The arrowhead edges 
represent regulatory interactions where the source gene activates the gene 
expression of the target gene, and the tee-head edges represent regulatory 
interactions where the source gene inhibits the gene expression of the target 
gene.

stream and one step downstream following edges representing gene expression 
and repression.
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2.5 Biological knowledge bases

Moksiskaan integrates information from various biological knowledge bases 
[19]. This section summarized the knowledge bases and their relevant content 

utilized in this work.

Figure 2.5: The ancestors of the GO term G0.0033598: mammary gland 
epithelial cell proliferation from the biological process ontology. The dark 
blue lines depict an is a relation and the light blue lines a part of relation.
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2.5.1 Gene Ontology

Gene Ontology is a controlled vocabulary to describe genes and gene products 
[22]. It is divided into three separate ontologies: biological process, molecular 
function and cellular component [22]. Biological process refers to a biolog­
ical objective the gene or the gene products are involved in achieving [22]. 
Molecular function is a biochemical activity of a gene product. Cellular com­
ponent is the location where a gene product is active. The terms are linked 
to their parent and child terms with different relationships forming a hier­
archical structure [22]. In figure 2.5 the ancestors of GO term G0.0033598 
mammary gland epithelial cell proliferation are shown. The dark blue lines 
and the light blue lines mark is a and part of relations between the terms, 
respectively.

The structure of the GO is not static and it is updated frequently as 
new information is gathered [22]. As of now, there are 25786, 10482 and 
3348 GO terms for the biological process, molecular function and cellular 
component ontologies, respectively [23]. For the same ontologies there are 
188386, 103887 and 115817 associations for the human gene products [23].

2.5.2 DrugBank

DrugBank is an open access drug database containing information on drugs 
and drug targets [24]. The information includes nomenclature, function, ac­
tion and the targets on which these drugs act upon. There are 6811 drug 
entries in the database including 1528 FDA-approved small molecule drugs, 
150 FDA-approved protein/peptide drugs, 87 nutraceuticals and 5080 exper­
imental drugs [25].

2.5.3 KEGG

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is an integrated 
database resource of 15 main databases, including a pathway database KEGG 
PATHWAY [26]. The KEGG pathway maps represent molecular interaction
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and reaction networks for metabolism, genetic information processing, en­
vironmental information processing, cellular processes, organismal systems, 
human diseases and drug development [26]. The pathways are based on 
published literature and curated in-house [26].

2.5.4 WikiPathways

WikiPathways is a community curated resource for biological pathways [27]. 
Pathways are represented as pathway diagrams and contain entities such as 
genes, proteins and metabolites. Currently there are 1729 pathways in the 
database [28]. WikiPathways offers a web service for programmatic access to 
the pathway information [29].

2.5.5 Pathway Commons

PathwayCommons is a freely available pathway database which integrates 
pathway information from various sources [30]. The data is stored in BioPax 
format and includes proteins, DNA, RNA, complexes, their cellular locations 
and different physical interactions [30]. The data can be browsed through 
a web-based interface, downloaded or accessed programmatically through 
a web service [30]. Currently PathwayCommons contains 1668 pathways 
comprising 86282 physical entities and 442182 interactions [31].

2.6 Anduril

Anduril [32] is a workflow engine designed for large-scale integrative data 
analysis. A workflow consists of interconnected processing steps. Each of the 
processing steps implements a well defined part of the analysis such as data 
import, data preprocessing or result visualization [32].

The processing steps are implemented as components. Components are 
reusable executable code, which can be written in any programming language 
such as Java, R, Python or Matlab. The components have well defined input
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and output ports, which are represented as files or directory structures. The 
input and output ports of the components are connected to each other to 
form a workflow. The workflow is created using a script language called 
AndurilScript [33].

2.7 BoolNet

BoolNet is an R package that provides tools to analyze synchronous, asyn­
chronous and probabilistic Boolean networks [34]. The Boolean networks 
can be defined using a collection of Boolean functions read from a file, re­
constructing the network from time series gene expression data or importing 
from BioTapestry [34]. The Boolean network of the example GRN defined 
in figure 2.2b would be written in BoolNet format as:

targets, factors

A, A

B, ! C
C, В & A

The targets column lists the variables in the Boolean network, and the factors 
column determines the Boolean function of the corresponding variable [35]. 
Logical operators AND, OR and NOT are coded with <fc, | and !, respectively 
[35].

The Boolean networks can be analyzed with various methods, including 
identification of attractors [34]. Attractors can be searcher for synchronous or 
asynchronous Boolean networks [35]. For synchronous Boolean networks the 
steady state and complex attractors can be searched for using an exhaustive 
search or a heuristic search [35]. The exhaustive search starts from every 
possible initial state of the network and calculates the transitions in the 
state space until an attractor is reached [35]. This is plausible only with 
small networks consisting of maximum 29 genes [35]. The heuristic search 
starts from a limited number of initial states of the network and identifies
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attractors to which the initial states lead [35]. For asynchronous networks 
the attractors are searched for with a heuristic method which starts from a 
subset of possible initial states and performs a number of random transitions 
to reach the attractors [35].

The state of a gene can be fixed to active or inactive without modifying 
the Boolean functions to simulate overexpression or knock-out experiments, 
respectively [34]. Computationally expensive algorithms have been imple­
mented in ANSI C to ensure high performance [34].



Chapter 3

Drug effect analysis pipeline

This chapter describes a general approach to assess the effects of individual 
drugs on a biological system. To this end, a network consisting of different 
biological entities (bioentities), specifically genes, drugs and GO terms repre­
senting biological processes and molecular functions, is constructed. The reg­
ulatory interactions between the bioentities are also included in the network. 
Experimental data is used to prune the network, that is to say, regulatory 
interactions between the bioentities not supported by the data are removed. 
Also, the state of the genes in the network are predicted using experimental 
data. The effect of perturbing the network with a drug is computed and the 
biological effectes of the drug predicted. The analysis workflow is constructed 
using Anduril workflow engine. The workflow can be divided into four main 
stages:

1. Construction of a candidate network using biological databases.

2. Constructing a pruned network with initial states for the genes from 
the candidate network using experimental data.

3. Simulating the effects of a drug on the state of the network.

4. Estimating the biological effects of the drug based on the perturbed 
and the initial state of the network.

29
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First, Moksiskaan is employed to construct a candidate network based on 
existing databases of biological knowledge. The network consists of vertices 
representing the different bioentities and edges between the vertices repre­
senting the regulatory interactions between the bioentities. Second, the net­
work is pruned using transcriptomics data from TNBC patients [36]. Genes 
and edges between them are removed, if they are not supported by the exper­
imental data. Also, the state of the genes with unknown state is predicted 
using the data and the network structure. Third, the effect of perturbing 
the network with a drug is simulated with a Boolean modeling framework 
implemented as a BoolNet R package. The attractor of the network is com­
puted after perturbation and the steady states of the genes are determined. 
Finally, the information of the states of the genes before and after perturba­
tion are used to calculate activity scores to estimate the change of activity 
for the genes and the GO terms following the perturbation. The difference 
between the scores is used to estimate the biological effects of the drugs on 
the biological system.

3.1 Construction of the candidate network

In order to construct a candidate network, Moksiskaan is used to retrieve in­
formation from the following databases: GO, KEGG, WikiPathways, Patli- 
wayCommons and DrugBank. The gene regulatory network is expanded 
from a set of candidate genes utilizing gene interaction data from KEGG, 
WikiPathways and PathwayCommons. GO terms are added to the network 
by employing data from the GO database, which provides information on how 
different genes regulate different biological processes and molecular functions 
represented by GO terms. DrugBank is used to include drugs regulating pos­
itively or negatively genes in the network.

The network is represented as a graph where the vertices are genes, drugs 
and GO terms from the molecular function and biological process ontolo­
gies. The bioentity types queried from Moksiskaan are: gene, drug, biolog-
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icaLprocess and molecular-function. The vertices are connected by directed 
edges, which represent the following relationships:

• Gene expression and repression between a gene and a gene. 
Moksiskaan link types: gene-expression and gene-repression.

• Drug promotion and inhibition between a drug and a gene. 
Moksiskaan link types: drug-promotes and drug-inhibits.

• Positive or negative regulation between a gene and a GO term. 
Moksiskaan link types: positive-regulation and negative-regulation.

Note that all the edges are independent. There is no information on the 
combined regulatory effects of multiple edges incident on the same vertice. 
For example, two genes might be known to regulate the expression of a third 
gene, but the combined regulatory effect of the genes is unknown.

3.2 Pruning the candidate network with ex­
perimental data

The candidate network contains genes and their regulatory interactions from 
various biological contexts. All of the genes and the interactions are not 
necessarily present in a specific condition [37]. For this reason, the candidate 
network is pruned with experimental data to fit the candidate network better 
to the biological context under investigation.

Experimental data are used to assign the genes as either upregulated or 
downregulated. Employing Moksiskaan, the sets of upregulated and down- 
regulated genes are used to prune the candidate network. Only the genes in 
the candidate network are submitted to the pruning operations, while drugs 
and GO terms are not. The sets of upregulated and downregulated genes are 
mapped to the states of the genes in the candidate network. The upregulated 
genes are considered to be active (1) and the downregulated genes inactive
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(0). The state information of the genes in the candidate network is then used 
to prune the network and to predict the state of genes with unknown state.

Vertices and edges incompatible with the experimental data are discarded 
as follows. The state information is propagated to the genes lacking state 
information, given there are no ambiguities in their upstream regulators. 
Genes still lacking state information are removed from the network. Edges 
which are in contradiction with the known states of the genes on their both 
ends are removed. Finally, orphan genes that have become disconnected from 
the network are removed to produce the pruned network.

3.3 Calculation of the logical steady state of 

the network after perturbation

The effect of perturbing the network with a drug is computed separately for 
each drug in the pruned network. The pruned network is transformed into a 
Boolean network to simulate the effect of a drug on the state of the network 
with BoolNet R package.

To transform the network in to a Boolean network, the network was 
first represented as a directed graph G = (V, E) with vertices V and directed 
edges E between the vertices. Every vertex is associated with a state, namely 
active or inactive: a : V {0,1}. Every edge has a link type T assigned to 
them. Function r maps the link types to activating or inactivating link types 
t : E —>{ —1,1}. The link types are assigned to activating or inactivating as

• Activating: gene expression and drug promotes

• Inactivating: gene repression and drug inhibits

The GO terms and the drugs, except the one used as the perturbation, are 
removed from the graph. The graph is transformed into a Boolean network 
В = (V, F), where V = {i/b ...,u„} are the vertices of the network and 
F = {/i,..., /n} are the transition functions of the vertices. The transition
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functions represent the regulatory interactions between the vertices. The 
vertices are modeled as Boolean variables хг with two states, namely active 
(1) or inactive (0).

For vertex i G {1,n}, the vertices with an edge to v¿ are combined 
into a transition function fi represented as a Boolean expression. Let Jf = 
{j,+’\ j,+’n‘ } = {j?’k € {l,...,n} I 3(e = (Uj+.^Vi) £ E A r(e) = 1)} be

the indices of vertices with an edge to vt with activating link types, and let 
J~ - {j~'\ j, } = {j~'k € {l,-,n} I 3(e = (u-л, Vi) G E A r(e) = 
— 1)} be the indices of vertices with and edge to vt with inactivating link 
type. Since there is no information on the regulatory interaction of vertices 
having edges to the terms are combined with the OR operator

fi = x.+.i OR ... OR x +n+ OR !xn-,i OR ... OR \x , (3.1)
U ' ' 3i Ji '

or alternatively with the AND operator

fi = Xj+,i AND ... AND x +n+ AND !жп_д AND ... AND \x - .
Ji ii ' 1 3' j, ' '

(3.2)
When using the OR operator no interaction between the regulatory effects 
of vertices having edges to тг is assumed. One active vertice having an 
activating edge to vt or one inactive vertice having an inactivating edge to 
is enough to activate vt. Conversely, when using AND operator it is assumed 
that for Vi to become active all vertices with activating edge to иг must be 
active and all vertices with an inactivating edge to vt must be inactive.

If vertex Vi does not have any edges incident to it, an activating edge 
from Vi to Vi is created. Thus, the state of vertex vt during the simulation 
will be the given initial state, as the transition function is fi = x, and thus 
Xi(t + 1) = fi(t) = Xi(t).

The states of the genes in the pruned network are used as the initial 
states of the vertices. The drug used to perturb the system is fixed to active 
state and the partial steady state of the network is calculated. The logical 
steady state (LSS) analysis introduced in [16] was first applied to solve the
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partial LSS of the network. However, it proved unsatisfactory as the initial 
states of the genes cannot be given without fixing them to constant values 
for the whole duration of the simulation. Instead, the attractor of the system 
is computed using synchronous update of the states. Since the initial states 
of the vertices are known and synchronous update is used, the system will 
at some point re-enter a state previously visited [13]. After this, the system 
will follow the same path trough the states as before starting from the first 
re-entered state [13]. Therefore, there can only exist one attractor for a given 
initial state of the system.

If the network is perturbed with the drug at time point t = 0, the vertices 
for which there exists taa, such that x(t + 1) = x(t), when t > taa, are taken 
to be in steady state after the perturbation. In other words, if the state of 
the vertex is constant in the attractor after some time period, the vertex is 
said to have an LSS in the attractor. If the state of the vertex fluctuates in 
the attractor, the vertex is said to have an unknown LSS in the attractor. 
Thus an LSS for the network can be determined after the perturbation.

3.3.1 Simple example network

Next, the computation of the LSS of a network is illustrated with a simple 
example network. Also, the effect of assuming AND or OR operators for 
combining the incoming edges of the vertices is explored.

Figure 3.1 depicts the topology of the example network and the initial 
states of the vertices. The vertices could represent genes, drugs or biological 
processes. An edge with an arrowhead represents an activating interaction 
and an edge with a tee-head represent an inactivating interaction. The states 
of the vertices are illustrated by the boundary colors of the vertices. Green 
codes for active state and blue for inactive state.

A perturbation is introduced to the network by fixing the state of the 
vertice /1 to active. The attractor for the network is calculated and the 
LSSs of the vertices in the attractor are determined. This is performed with 
two distinct assumptions: combining the incoming edges with the AND
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Figure 3.1: The initial state of the example network. Active vertices are 
marked with green boundaries and inactive vertices with blue boundaries. 
An arrowhead edge stands for an activating interaction and a tee-head edge 
stands for an inactivating interaction.

operator or combining the incoming edges with the OR operator to illustrate 
the differences between these two assumptions. The resulting LSSs for the 
vertices are shown for the case of the AND operator in figure 3.2 and for the 
case of the ОД-operator in figure 3.3.

The states of all the vertices are determined in the LSS for the case of 
the AND operator. In contrast, the states of the vertices F, G and 02 
are undetermined in the LSS for the case of the OR operator. This follows 
from the fact that the attractor for the case of the AND operator is a point 
attractor, which comprises only one state, whereas for the case of the OR 
operator, the attractor is a complex attractor, which comprises four states 
listed in table 3.1. In the complex attractor, the states of F, G and 02 
vertices oscillate and are left thus undetermined. After the first round of
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Figure 3.2: LSSs of the vertices in the example network assuming incoming 
edges are combined using the AND operator. Vertices with red boundaries 
are fixed to active state. Vertices in active state are marked with green 
boundaries and vertices in inactive state with blue boundaries. An arrowhead 
edge stands for an activating interaction and a tee-head edge stands for an 
inactivating interaction.

simulation F = 1 as it is activated by E, while G = 02 = 1. On the 
following round E has become inactive and thus F = 0, while G = 02 — 1. 
Next, F stays inactive and G becomes inactive, while 02 is active. Following 
this, F becomes active and G = 02 = 0. This leads to activation of G, while 
F = 1 and 02 = 0. Next, F = 0 and G = 02 = 1 which then starts the 
cycle again. The states of the vertices follow this cycle in the attractor, and 
thus the LSS cannot be determined for these vertices.

The difference between combining the incoming edges with the AND or 
the OR operator is also observed for the LSSs of vertices A, C, D and Ol. 
For example, vertice C is inactive when assuming the AND operator since
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Figure 3.3: LSSs of the vertices in the example network assuming incoming 
edges are combined using the OR operator. Vertices with red boundaries 
are fixed to active state. Vertices in active state are marked with green 
boundaries and vertices in inactive state with blue boundaries. Vertices 
with black boundaries have undetermined state. An arrowhead edge stands 
for an activating interaction and a tee-head edge stands for an inactivating 
interaction.

E is inactive and the activation of C would require both E and В to be in 
the active state. For the case of the OR operator, the active state of В is 
enough to activate C.

3.4 Evaluating the biological effects of a drug

The evaluation of the biological effects of perturbing the network with a drug 
is done by introducing an activation score for the vertices for the initial state 
of the network and the LSS of the perturbed network, and then comparing
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Table 3.1: The set of states forming the attractor of the example network 
assuming the incoming edges are combined using the OR operator. Each row 
represents one state and the columns the vertices. Active state is marked by 
1 and inactive state by 0.

11 E F G 02 A в c D Ol

1 0 1 0 0 0 1 1 1 0
1 0 1 1 0 0 1 1 1 0

1 0 0 1 1 0 1 1 1 0

1 0 0 0 1 0 1 1 1 0

the activation scores for the two different states of the network.
The activation score for a vertex in a network is calculated as follows. The 

network is represented as a directed graph G = (V, E) with vertices V and 
directed edges E between the vertices. Every edge has a link type T assigned 
to them. Function r maps the link types to activating or inactivating link 
types T : E —> {—1,1}. Every vertex is associated with a state, namely 
active, inactive or unknown: a : V —> {0,1, _L}. The activation score for 
vertex v is simply the sum of incoming activating signals and inactivating 
signals divided by the number of incoming edges.

More formally, for v € V, let n be the cardinality of the set {(u,v) G E} 
of edges incident to v, and let n! be the cardinality of the set E' = {{u,v) € 
E I a[u) ф -L} of edges incident to v with a source vertex with a known 
state. Activation score S : V -4 R is defined if and only if n ф 0 and n' ^ 0 

as
S(v) = — У] т(е)о{и) (3.3)

n ezE'

The difference between the activation scores for the initial state of the 
network and the LSS of the network after the perturbation is taken to describe 
the effect of the drug on each vertex v e V:
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AS(v) = Sp(v) - S0(v), (3.4)

where Sp(v) and S0(v) are the activation scores for vertex v after the pertur­
bation and before, respectively.



Chapter 4

Prediction of drug effects for TNBC

This chapter describes how the drug effect prediction method is applied to 
a network constructed for TNBC patients. The effect of potential drugs 
for TNBC patients is evaluated. A candidate network containing genes, 
drugs and GO terms is constructed based on the knowledge in the biological 
databases. The network is pruned with TNBC gene expression data and 
the initial states of the vertices are derived from the data. The LSSs of 
the vertices are determined before and after perturbing the system with a 
drug. The biological effects of administrating the drug to the system are 
predicted by comparing the activation scores of the vertices before and after 
perturbation.

4.1 Candidate network construction

To predict the drug effects for TNBC patients, a network relevant in the con­
text of TNBC patients is needed. Breast carcinomas arise from the mammary 
epithelium [11], and excessive proliferation is characteristic for malignant can­
cer cells [4]. A gene regulatory network regulating cell proliferation in TBNC 
is searched for. First, GO term G0.0033598 mammary gland epithelial cell 
proliferation is used as a seed to search for genes directly positively or neg­
atively regulating cell proliferation in mammary epithelium. The set of can­

40
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didate genes is used as the core set from which the network is expanded one 
step upstream and one step downstream. The information is retrieved from 
the following databases: GO, KEGG, WikiPathways, PathwayCommons and 
DrugBank.

Moksiskaan database (version 2.01) was queried for genes regulating pos­
itively or negatively biological process G0:0033598 mammary gland epithe­
lial cell proliferation. The query resulted in a core set of 10 candidate genes, 
which are listed in table 4.1. The network expanded from the set of candidate 
genes one step upstream and one step downstream resulted in a candidate 
network of 191 vertices and 728 edges. The network consisted of genes, drugs 
and GO terms and the regulatory interactions between the bioentities. The 
vertice and edge types for the candidate network are listed in table 4.2.

Table 4.1: The set of candidate genes regulating biological process 
G0:0033598 mammary gland epithelial cell proliferation. Regulation Type 
indicates whether the gene has a positive or a negative regulatory effect on 
G0:0033598 mammary gland epithelial cell proliferation. Fold change in log2 
and the related FDR value are given for the comparison between triple neg­
ative solid tumor samples and the solid normal samples used to prune the 
candidate network.

Ensembl Gene ID Gene Name Regulation type Fold Change FDR
ENSG00000139618 BRCA2 negative regulation 2.99 9.24E-21
ENSG00000107485 GATA3 negative regulation -1.86 3.36E-05
ENSG00000175832 ETV4 negative regulation 1.15 1.51E-08
EN SG00000215021 PHB2 negative regulation 0.34 2.29E-04
ENSG00000183779 ZNF703 positive regulation -0.27 6.11E-01
ENSG00000169855 ROBO 1 negative regulation 0.26 6.89E-01
ENSG00000125686 MEDI positive regulation 0.22 3.92E-02
EN SG00000110092 CONDÌ positive regulation 0.17 9.33E-01
ENSG00000183856 IQGAP3 positive regulation 0.13 7.59E-01
EN SG00000135439 AGAP2 positive regulation NA NA
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Table 4.2: The total number and the number of different types of vertices 
and edges in the candidate network and the pruned network.

Candidate network Pruned network

Edge type: drug inhibits 3 0

Edge type: drug promotes 3 2

Edge type: gene expression 345 24

Edge type: gene repression 76 6

Edge type: negative regulation 140 58

Edge type: positive regulation 161 59

Number of edges 728 149

Number of vertices 191 81

Vertex type: biological process 53 40

Vertex type: drug 1 1

Vertex type: gene 130 34

Vertex type: molecular function 7 6

4.2 Pruning of the network

The network is pruned using experimental gene expression data from TCGA. 
Level one raw gene expression microarray data was downloaded from TCGA 
for 524 primary breast carcinoma tumors and 59 solid normal samples [36]. 
The gene expression measurements were performed on AgilentG4502A_07_3 
microarray. All the arrays were normalized to have a mean of zero. Probes 
matching either multiple or no genes were removed using Ensembl database 

[38].
The clinical data for the breast cancer patients was downloaded from 

TCGA. The clinical information was used to select TNBC patients, namely 
those who lack the expression of HER2, progesterone receptor and estrogen 
receptor [12]. This resulted in 55 triple-negative primary breast carcinoma
tumors.
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Differentially expressed genes (DEGs) between the triple-negative solid 
tumor samples and the solid normal samples were determined as follows. 
First, the group median was calculated for both groups and then fold change 
was calculated by taking the ratio between the group medians. Second, a 
t-test was performed to asses the statistical significance of the differential 
expression for each gene. To reduce the number of false positives, a multiple 
hypothesis correction method was applied to calculate the false discovery rate 
(FDR) based on the p-values [39]. Last, genes with fold change at least 2 in 
either direction and FDR < 0.05 were considered differentially expressed.

The comparison of triple-negative solid tumor samples to normal solid 
samples resulted in 2164 upregulated and 2172 downregulated genes out of 
15282 genes in total. The candidate network was pruned using the sets of 
DEGs, which resulted in a pruned network of 81 vertices and 149 edges. The 
vertice and edge types for the candidate network are listed in table 4.2. Only 
three genes, BRCA2, GATA3 and ETV4, of the original set of 10 candidate 
genes were in the set of DEGs and thus included in the pruned network. 
The states of the genes in the pruned network were determined based on the 
DEG sets. The structure of the pruned network and the initials states of 
the genes are illustrated in figure 4.1. The state of the genes are coded with 
green and blue boundaries for active and inactive states, respectively. The 
states derived directly from the data are marked with thicker boundaries, 
whereas states predicted from the data are marked with thinner boundaries. 
The genes in the original candidate gene set, from where the network was 
expanded, are shown in white background. The network also includes the 
drugs and the GO terms.

4.3 Prediction of drug effects

The candidate network includes one drug, Arsenic trioxide (ATO), and three 
regulatory interactions between the drug and the genes. In the pruned net­
work the number of regulatory interactions is reduced to two: the activation
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of genes JUN and MAPK1. The effect of perturbing the pruned network 
with ATO was computed assuming the incoming edges were combined using 
OR operator. The OR operator was chosen because this does not assume 
any interaction between the regulations of the same gene. The resulting LSS 
state of the network is shown in figure 4.2. The activation score difference for 
genes and GO terms is shown in table 4.3 for those vertices with an activation 
score difference unequal to zero. Also, the number of activating and inhibit­
ing signals incident on a gene or a GO term before and after perturbation 
and the total number of edges incident on a gene or GO term is reported.

ATO is used in the treatment of newly diagnosed and relapsed acute 
promyelotic leukemia patients, and it has been shown to have an anticancer 
effect on many solid tumors [40]. The exact molecular mechanism of ATO’s 
anticancer effect are not known but it works mainly through elevating oxida­
tive stress levels in the cells [40].

The simulation results predict that ATO would inactivate mammary 
gland epithelial cell proliferation (AS — —0.333), as there is one activat­
ing signal less out of three regulators of the process after the perturbation. 
Also, cell cycle (AS = -0.500) is predicted to be inhibited by addition of 
two inactivating signals out of four regulators and endothelial cell apoptotic 
process (AS = -1) is predicted to be inhibited by the only regulator after 
treatment with ATO.

The results obtained here are in part based upon data generated by The 
Cancer Genome Atlas pilot project established by the NCI and NHGRI. In­
formation about TCGA and the investigators and institutions who constitute 
the TCGA research network can be found at http://cancergenome.nih.gov/. 
For the TCGA studies used here the study accession number in the database 
of Genotypes and Phenotypes (dbGaP) is phs000569.vl.p7.
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Table 4.3: Activation score differences AS, activation scores for the initial 
state of the network So and activation scores after the perturbation of the 
network Sp for genes and GO terms. The scores are listed for genes and GO 
terms with an difference in the activation score between the initial state and 
the LSS after the perturbation of the network with Arsenic trioxide. A0 and 
Ap are the number of activating signals incident on a gene or a GO term 
before and after the perturbation. 70 and Ip are the number of inhibiting 
signals incident on a gene or a GO term before and after the perturbation. 
N is the total number of edges incident on a gene or a GO term

VERTICE__________________________________________
IL13
interleukin-13 secretion 
JUN
transcription regulatory region DNA binding 
ILIO
GTPase activity 
FOS
interleukin-5 secretion 
FEV
protein kinase В signaling cascade
MYB
ETSI
T cell differentiation 
cellular amine metabolic process 
thyroid hormone generation 
FABP4
interleukin-4 production 
FOSL2
endothelial cell migration 
GATA3
cellular process 
immune response 
KLK3
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Figure 4.1: The initial state of the TNBC network. The states of the genes 
are coded with blue and green boundaries for inactive and active states, 
respectively.
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Figure 4.2: The LSS of the genes for the TNBC network after perturbation 
with ATO. The states of the genes are coded with blue and green bound­
aries for inactive and active states, respectively. ATO is shown with a red 
boundary.



Chapter 5

Discussion

The prediction of drug targets is an important task that can speed up biomed­
ical research and potentially lead to improvements in patient care. This thesis 
implemented an analysis framework for predicting potential drug targets in 
the context of GRNs. The analysis framework can be applied flexibly to a 
number of biologically interesting systems. The network containing genes, 
drugs and biological processes can be generated with Moksiskaan to suit the 
biological question in hand, and different transcriptomics data, such as gene 
expression or RNA-seq data, can be used to fit the candidate network to the 
relevant biological context.

The effect of perturbing a biological system with a drug was estimated 
by simulating the system with Boolean networks. Even if information on 
the mechanistic details and the specific kinetic parameters of the chemical 
reactions are lacking, Boolean networks are able to give qualitative predic­
tions on the dynamic behavior of the system [2]. Since Moksiskaan gener­
ated networks do not contain the required information to build continuous 
or single-molecular level models, Boolean networks were chosen to model the 
system.

The herein developed activation score was used to predict the effect of 
a drug on the network. The activation score measures the activation of the 
components of the network under a steady state. The activation score was

48



CHAPTER 5. DISCUSSION 49

calculated for the genes and the GO terms before and after perturbing the 
network with a drug. The differences of the activation scores were used to 
predict the effect of a drug on the genes and the biological processes in the 
network.

The analysis framework was applied to predict the drug effects on TNBC 
patients. ATO was predicted to inactivate mammary gland epithelial cell 
proliferation and cell cycle, which would be in agreement with anticancer 
effects of ATO in other cancer types [40]. However, ATO is also predicted 
to inactivate endothelial cell apoptotic process, which could imply a tumor- 
promoting effect of ATO in TNBC patients. These results leave unclear the 
effect of ATO on malignant cancer cells in TNBC patients.

In the future, it would be interesting to take into account different time- 
scales of different biological processes. Here, the states of the genes are 
updated synchronously, which implies that all the regulatory interactions 
are assumed to occur at similar timescales [2]. In reality, different biological 
interactions have different time scales [2]. Asynchronous update scheme can 
be utilized to take into account these differences, if timescales of different 
types of interactions are known [2]. For example, TF based regulation of 
gene expression has a different timescale compared to miRNA based regu­
lation [41]. Also, Moksiskaan does not currently contain information on the 
regulatory interactions of genes regulating the same gene. For this reason, 
Boolean functions were assumed to contain only OR operations when sim­
ulating drug effects for TNBC patients. As more data accumulates in the 
biological databases, the Boolean functions can be modified to reflect this 
new information.

In summary, the major development in this thesis was the construction 
of an analysis framework that can be flexibly utilized to predict the effect 
of drugs on different biological systems. For this purpose, a method for 
calculating the partial logical steady states of the genes after perturbing the 
network was implemented. Furthermore, an activation score to asses the 
activity of the components in different conditions was created. Finally, the
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method was applied to predict drug effects in TNBC patients.
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