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Wind turbine icing causes issues for wind turbines in cold climates. Ice causes 
production losses and increases loads on turbine structures and components. Icing 
conditions can be identified with an ice sensor, but ice accretion on the turbine is 
harder to detect directly with a sensor. On the other hand, the effects icing has 
on turbine behaviour are known.
This thesis shows an approach for ice detection indirectly, by searching the turbine 
process data for signs of icing. This is done in real time by looking for abnormal 
values in standard process measurements using statistical methods.
Detection is done by using three different control charts, a principal component 
analysis -based method and a method based on к nearest neighbour search.
The effectiveness of these methods is examined in a simulation study. The sensi­
tivity, accuracy and detection speeds of all five methods are compared in different 
ice and wind cases. Finally the methods are tested on authentic process data from 
a real wind turbine.
The methods introduced are able to react appropriately to changes in the data in 
the simulated test case, but the accuracy is dependant on wind speed. The meth­
ods do find probable icing incidents from real process data, but overall detection 
accuracy in real world use still leaves a lot of room for improvement.

Keywords: Wind turbine, Icing, Control charts, fault detection, Statistical pro­
cess control
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Tuuliturbiinin lapoihin kertyvä jää tuottaa vaikeuksia tuulivoimaloille kylmässä 
ilmastossa. Jää aiheuttaa tuotantotappioita ja kasvattaa turbiinin rakenteisiin ja 
komponentteihin kohdistuvia kuormia. Jäätävät olosuhteet voidaan tunnistaa, 
mutta jään olemassaoloa turbiinin lavoissa on vaikeampi mitata. Jäätämisen 
vaikutukset turbiinin toimintaan kuitenkin tunnetaan.
Tavoitteena on kehittää ja testata menetelmä, jolla voidaan havaita turbiiniin 
kertyvä jää tarkkailemalla turbiinissa normaalisti tehtäviä mittauksia. Tur­
biinin prosessidatasta etsitään jäätämiseen viittaavia, tavallisesta toiminnasta 
poikkeavia arvoja tilastollisten menetelmien avulla.
Sovelletut menetelmät ovat normaalisti laadunvalvonnassa käytettyjä tilastolliseen 
prosessinohjaukseen suunniteltuja menetelmiä, joita käytetään tässä työssä jään 
aiheuttamien ilmiöiden tunnistamiseen.
Menetelmien toimivuutta testataan ensin simulointimallin tulosten avulla erilaisia 
tuuli- ja jääolosuhteissa. Tämän jälkeen menetelmien toimivuutta kokeillaan myös 
oikealla tuulivoimalan prosessidatalla.
Työssä käytetyt menetelmät onnistuvat löytämään jäätymistapaukset simulointi- 
datasta melko hyvin, tosin tunnistustarkkuus on riippuvainen tuulen nopeudesta. 
Mittaustulosten analysointi kuitenkin osioittaa, että tarkkuudessa on vielä paran­
nettavaa.

Avainsanat: Tuulivoima, Jääntunnistus, Tilastollinen prosessinohjaus
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Tip-speed ratio of the turbine 
Turbine blade length [m]
Rotational speed of the turbine rotor [rad/s]
Power [W]
density of air [kg/m3] 
wind speed [m/s]
Capacity factor (efficiency) of the turbine 
bin width 
bin index
Bin at index y (a set of measurements) 
number of measurements in bin 
process variable (measurement at time t) 
mean of measurements Xj in bin By 
standard deviation of measurements Xj in bin By 
interpolated estimate of Xj(t)
Normalised process variable Xj(t) 
pressure [Pa] 
temperature [oC]
ideal gas constant of dry air [J/molK]
normalised (temperature corrected) wind speed
cut-off limit for construction of reference dataset for kNN search
alarm limit for kNN-search
number of neighbouring values used in kNN algorithms
distance measure
smoothing parameter
Euclidean distance
citiyblock distance
Chebychev distance
measurement matrix
vector containing measurements of variable Xj 
rescaled X 
rescaled Xj 
mean of Xj
standard deviation of xj
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VI

covariance matrix of X
principal component, eigenvector of R
eigenvalue of R
projection matrix, consist of principal components pn 
Principal component scores
principal component score corresponding to measurement Xj 
backprojection of X
error matrix in principal component projection 
upper limit for ACR 
Hotellings statistic
Q-statistic corresponding to principal component projection 
residual vector
upper limit for the Qp statistic 
cumulative sum at time T 
cumulative sum 
cumulative sum
scaling matrix for EWMA chart calculation
EWMA control chart
upper limit for EWMA control chart
process covariance matrix
estimate of X at time t
vector of measurements of all process variables at time t 
normalised x(t)
vector containing the means of process variables Xj 
Mahalanobis distance between x(t) and ¡л 
multivariate cumulative sum at time t
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Abbreviations
FAST Fatigue, Aerodynamics, Structures, and Turbulence;

Simulation model used to generate the data 
National Renewable Energy Laboratory;
National laboratory of the United States Department of Energy 
Multivariate statistical process control 
cumulative sum of a single variable

NREL

MSPCA 
CUSUM
MCUSUM multivariate CUSUM
EWMA
MEWMA

exponentially weighted moving average control chart. 
Multivariate EWMA chart 
к nearest neighbours 
principal component analysis 
Accumulative contribution rate

kNN
PCA
ACR



1 Introduction
Wind turbine icing is a significant problem for wind power applications in cold 
climate conditions. Icing can cause fatigue in turbine components, shortening the 
lifetime of the turbine and can cause immediate production losses. Detecting ice 
directly is difficult to do in a reliable way. The aim of this work is to compare 
different methods that make it possible to detect icing indirectly from normal wind 
turbine process data.

For the purposes of this work icing is seen as an external fault in the turbine. 
Ice detection then becomes a question of detecting abnormal changes in turbine 
behaviour. All the methods introduced in this work operate solely based on historical 
process data without knowledge about the underlying system. The used methods 
are generic methods normally used for fault detection.

All the methods used here follow a similar two-step approach: First a baseline 
relationship between wind and different process variables is determined using his­
torical data. Then real-time measurements are compared to the historical baseline. 
Possible icing events are identified by monitoring the differences between the pre­
determined baseline and the measurements. The comparison is done by calculating 
a distance measure i.e. a single number that indicates how well the most recent 
measurement corresponds to the baseline. This distance measure can then be used 
as an ice alarm signal.

The used methods are all statistical methods that do not make any assumptions 
about the exact nature of the observed system or the nature of the faults. The 
resulting system can then be used for different types of turbines without any real 
changes.

Ice detection requires that the short-term effects of icing on the wind turbine 
behaviour and the measured variables need to be identified first. These effects are 
deduced from analysing results from simulation studies using several wind distri­
butions and multiple ice cases. Later these same simulations are used to test the 
effectiveness of the different ice detection methods. Finally the methods are tested 
on real-world wind turbine data. The tests with the turbine data also offer an 
opportunity to compare these indirect methods with a standard ice sensor.
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2 Wind turbine icing

Wind Turbine2.1

The basic structure of a modern day wind turbine is illustrated in Fig. 2.1. Turbine 
nacelle is rotated to face the wind. Turbine output power is controlled to achieve 
optimal power production for the current wind speed by altering the blade pitch 
angle i.e. the angle of the blade relative to the wind. The optimal output power is 
reached when the relative speed of the blade tip as compared to the wind speed is 
kept at a certain optimum. Optimal tip-speed ratio is a design feature of the turbine 
blades and is usually a constant. Tip-speed ratio is defined by (1) where (1) r is the 
blade length, v is wind speed and Í2 is the rotational speed of the rotor in rad/s. [1]

?’$1
(1)Л

v

nacelle

gearbox/
У

П ■ П
hub

generator

blade

tower

лv
Figure 1: Basic structure of operational parts of a wind turbine [2]

All wind turbines have an optimal power curve i.e. a certain, predefined, optimal 
relationship between the wind speed and generator power. Power curve is usually 
defined for one set of conditions. Normally the generated power fluctuates around 
the power curve to a certain degree. Turbulence, temperature and air pressure all 
affect the produced output power at a set wind speed to a varying degree. The 
maximum amount of power that can be extracted from wind is defined by (2). [1]

1
-pnr2v3Cp(X) (2)P1 W
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In (2) r is the blade length, v is the wind speed, p in (2) is air density. Air density 
on the other hand is directly proportional to air temperature and air pressure. Cp(\) 
is the so-called capacity factor, or turbine efficiency, that depends on the turbine 
tip-speed ratio Л. CP(A) is turbine specific, the shape of the Cp(A)-curve depends 
on blade aerodynamics. An example is illustrated in Fig.2.1. Figure 2.1 is for a 
two-bladed turbine, but the basic shape is very similar for a more modern three 
bladed design as well.

CP(')
0.5

0.4

0.3

0.2

0.1

0
^•opl0 15

Figure 2: The basic shape of a CP(X) -curve for a two-bladed turbine. [1]

Wind turbine power curve is represented by three wind speeds: the cut-in speed, 
the rated speed and the cut-off speed. The cut-in speed is the point where the 
turbine is started. It represents the windspeed at which the turbine is able to 
overcome its own power losses. The cut-out speed is the maximum wind speed at 
which the turbine is allowed to operate. If wind speed raises above the cut-out point, 
the turbine blades are turned into an angle that does not produce any rotational 
force and the rotor is stopped. In some cases the nacelle is also rotated away from 
wind after the turbine has been stopped to prevent accidental restarts. The third 
characteristic point on a power curve is the wind speed at which the turbine reaches 
its nominal (rated) power. Generator power increases along with windspeed up until 
this point. After the rated power point has been reached the turbine will operate at 
its nominal power as long as the wind speed stays above the rated power point and 
below the cut-out speed. [1]

Rated

Partial Full loadload

*■
0 Cut-in Rated Cut-out

Figure 3: A power curve and operating regions of a wind turbine [1]

The power is kept constant at higher wind speeds by adjusting the angle of the 
turbine blades in order to weaken the aerodynamic properties of the turbine. As a
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result the turbine will operate at a lower tip-speed ratio. Lower relative speed will 
result in drop in produced power as well.

Icing2.2
When installing wind turbines in to locations where temperatures can drop below 0 
°C, there is always a risk of icing. Icing can cause production losses and unwanted 
stops and in extreme cases even damage the turbines. Because of this in areas 
where icing is possible it needs to be taken into account and some kind of actions 
are needed. Icing risks can not be completely ignored when planning future wind 
power sites, because there is a very large wind power potential in areas affected by 
icing.

There are two types of icing: in-cloud icing and precipitation icing. In-cloud icing 
occurs when small droplets of liquid water that form clouds freeze when hitting a 
surface. These small water droplets can remain in liquid form in air in freezing 
temperatures due to the small size of individual droplets. They will only freeze 
when hitting a surface. Precipitation icing mostly refers to freezing rain or wet 
snow. [3]

Ice accumulates on all parts of the turbine, but the most problematic form of 
icing is the ice accumulated on the turbine blades. This has direct effects on the 
dynamics of the turbine and can cause production losses and increase fatigue loads 
in the turbine. Ice accretion on the blades increases the blade mass which in turn 
increases the loads in turbine structures. If ice is not distributed evenly, the mass 
imbalance can cause unwanted vibrations. Both of these can cause fatigue in turbine 
components which might shorten the lifetime of the turbine and can cause unwanted 
breakages. [4]

Even a small number of ice will have a noticeable effect on the output power of 
wind turbine. The detrimental effect will become more severe as ice mass increases 
but an ice sheet only a few mm thick can have noticeable effects on the amount of 
power a turbine is able to produce. [5]

Even if the ice accretion is not severe enough to cause problems through sheer 
mass alone the ice accumulated on the blades can have a detrimental effect on turbine 
dynamics through changes in blade aerodynamics. Ice accretion on a turbine blade 
increases the drag (air resistance) of the blade and decreases the lift produced by the 
blade. As a result an iced turbine blade will produce less power at a constant wind 
speed than a clean blade would. As a result of this the relationship between wind 
speed and the rotational speed of the turbine will change. The relative speed of the 
blade tip is a design parameter for the turbine, the ratio of blade tip speed to wind 
speed has an optimal value where the turbine produces maximum torque.[6],[7]

The change in lift and drag coefficients changes the torque produced by the 
turbine at a certain wind speed. This will in return cause the turbine to rotate at 
a slower speed when compared to wind speeds. On a variable pitch turbine this 
means that the pitch angle related to wind speed does not behave as it is supposed 
to. Pitch angle controller starts to alter the angle of attack at a certain rotational 
speed to prevent the turbine from spinning too fast. On an iced turbine this might
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happen at a higher wind speed than it normally should. [2]
All these changes can be detected by monitoring the differences between standard 

behaviour and current values. The standard values can be deducted from process 
data under warm conditions, or set beforehand using predefined power, speed and 
blade angle curves. A more interesting approach is to collect process data in regular 
conditions first. Using old process data makes it possible to react to variation in the 
actual values of the process variables. Wind is never constant and the available wind 
measurement is very likely to be corrupted to some degree because wind is often 
measured with an anemometer located on top of the nacelle. This means that there 
will be large fluctuations in available measurements, and the used method needs to 
be able to react to this.

2.3 Ice sensors

A normal ice sensor solution is to install an ice sensor on top of the turbine nacelle. 
This can be problematic due to sheer size of a modern turbine. It is very well 
possible that a turbine blade might be covered by a cloud, even when the sensor 
isn’t. Often an ice sensor is more of a point-like detector, it only reliably detects 
icing at the sensor location. Because of this an ice sensor is more an indicator of 
icing conditions than an indicator of presence of ice. Conditions on top of the nacelle 
are not equivalent to conditions at the blade tip. Most importantly the apparent 
wind speed at the blade tip is significantly (approximately 7 times) higher when 
the turbine is operating. Faster relative speed and smaller impact surface (only the 
narrow leading edge of the blade) means that the cooling effect of the surrounding 
air is amplified significantly at the blade tip.

The best results could be achieved by mounting the ice detector on the blade 
itself. This is technically very demanding, the sensors need electricity and signal 
cabling, and are extremely hard to replace in the case of malfunctioning sensor. 
The blade isn’t completely rigid either and the surface is made to be as smooth and 
slippery as possible to make it as aerodynamically efficient as possible. Even if a 
sensor is installed on a blade, the sensor would still need to be able to detect icing 
over a larger area, simply because of the sheer size of the turbine blade. Ice can 
accumulate on different parts of the blade and a sensor can usually only cover a part 
of the blade. [3]

The blade tip is the most important target, because the very tip of the blade 
produces a significant portion of the power in the turbine in the first place. According 
to [7], ice on the outmost 5 % of the blade has an equally large detrimental effect 
on turbine performance as ice on the inner 95 %. In addition to this only ice on the 
last 25 % has a real effect on turbine performance.

Many ice sensors detect changes caused by ice accumulated on the sensor itself 
or some kind of detector part such as a probe, thin film or a wire. The most common 
operating principle for an ice sensor is to monitor a change in some property caused 
by icing. The property can be an electrical property of the probe such as capacit ance, 
inductance or impedance. Or it can be the amplitude of an ultrasonic wave or simply 
ice mass accumulated on the detector. [3]
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Because of these issues with ice sensors, indirect detection is an attractive solu­
tion. It does not need extra equipment, which makes it significantly easier to add 
detection capability to an already operating turbine. The approach used in this 
work also tries to detect actual consequences of icing rather than issuing warnings 
because the conditions are right. The methods used in this work are reactive, which 
means that they will issue icing alarms only after there is enough ice to have an 
effect on performance on the blades.

3 Simulation study
A controlled dataset is needed to reliably test all the different methods. This mini­
mizes possible problems caused by measurement issues and makes algorithm testing 
somewhat easier. FAST (Fatigue, Aerodynamics, Structures, and Turbulence) is a 
complete simulation model for a wind turbine system. It uses a multibody dynam­
ics approach and models the turbine as a combination of rigidly connected flexible 
bodies. The model of a wind turbine used by the simulation model consists of a few 
main components as illustrated in Fig. 2.1. The model makes it possible to study 
e.g. turbines aerodynamic behaviour in changing conditions and the forces affecting 
the turbine structure. FAST has been certified by Germanischer Lloyd WindEnergie 
and found suitable for ” the calculation of onshore wind turbine loads for design and 
certification”. [8] [9]

The turbine used in the simulations is a 5 MW reference turbine specified by 
NREL in [10]. It is a reference turbine model meant to be used as a baseline for 
wind turbine simulations. The NREL reference turbine is a model built based on 
publicly available information about real production turbines. It is a composite 
system mostly based on existing RePower 5MW turbine.

The biggest limitation in using FAST is that it does not support changing the 
turbine dynamics mid-run. This means that simulations do not cover the somewhat 
interesting icing event, but can simulate the behaviour of an already iced turbine 
and compare this to a turbine behaviour in normal conditions. This is enough to see 
the changes caused by icing but it makes evaluating the sensitivity of any method 
used to detect icing difficult. It is possible to see the differences between different 
icing scenarios with different ice masses and it is possible to make estimates on the 
detection speed of used methods. But in crease in ice mass in these simulations will 
be a step-like process.

The step transition is not realistic, but on the other hand it makes assessing the 
detection speed and accuracy easier. On these datasets the exact moment when the 
icing event starts or stops is known exactly. For testing purposes, several datasets 
with different ice masses were created. Then, when running the simulation with 
identical wind time series, the differences in turbine behaviour are all caused by 
blade icing, because all other variables are identical and all the differences in process 
variables between simulation runs are caused by differing ice masses.

The icing cases used in simulations are collected in Table 1. The approximate 
shapes of ice accumulated an the turbine blade in different cases are illustrated in



Figure 4: Ice shapes in different ice cases [11]

The simulations are made with three different ice masses and with symmetric 
and asymmetric icing. Asymmetric icing here means that one blade of a three blade 
turbine is clean and the remaining two blades are iced identically. Asymmetric icing 
is a more severe scenario because it causes unbalance in aerodynamic forces and 
blade masses. This will increase loads on turbine structures. [12] [13]

To test the methods several reference datasets were created. Time series plots of 
these test cases are illustrated in Figs. 5 and 6. Simulations have been run for each 
time series for each ice case in table 1. Wind time series is always identical for all

7

Fig. 3. Figure 3 represents an approximate shape of ice on the tip of the turbine 
blade.

Table 1: The ice masses used in simulations [11] 
descriptioncase name ice mass

0.2 kg / mstart of icing1 Ice appears on blade leading edge. Maximum 
thickness approximately 0.2 cm on approxi­
mately 85 % of the blade length.
Ice appears on blade leading edge. Maximum 
thickness 2 cm on approximately 85 % of the 
blade length.
Ice appears on blade leading edge. Maximum 
thickness 10 cm on approximately 85 % of the 
blade length.

2 kg / mlight icing2

8 kg / mmoderate icing3

1. Start of icing 2. Light icing 3. Moderate icing
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ice cases. The time series plots in Fig. 5 are plotted using the same averaged data 
used to test detection methods. The original data was drawn from the simulation at 
a 20 Hz sample rate. The time series in Figs. 5 and 6 consist of ten second averages. 
In Addition to these a big reference dataset was used as a baseline, teaching dataset 
and the three smaller ones were used to test different methods.

light wind test case

0 20 40 60 80 100 120 140 160 180
time

Figure 5: Time series plots of wind speed test cases

Figure 6 is plotted using the asymmetric icing cases for the simulations. The drop 
in power in the light wind test case in Fig. 6 at the start of icing is an unfortunate 
side-effect of the wind time series, it is not caused by icing. Generally, the relative 
drop in output power is larger in the low wind test case. In the high wind test case 
the turbine sometimes reaches the nominal operating power even when iced.
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Output power in the light wind simulation test case
3000

- ice case 1.
- ice case 2. 

ice case 3. 
reference

\2000 <— icing starts

-\M\1000 у
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iо 0 20 40 60 80 100 120 140 160 180

time
Output power in the medium wind simulation test case
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reference

4000 r
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Output power in the high wind simulation test case
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5 5000 - ; - 

I 4000 - 
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Figure 6: Time series plots of generator power in all test cases. Using ice cases from 
table 1
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4 Indirect detection methods
The aim of this work is to create an ice-detection system that can be implemented in 
the future as a real-time solution. Because of this the goal is to avoid computational 
complexity. This aim also disqualifies methods that work by analysing large datasets 
recursively. Also because the goal is to create a reusable system, which is not closely 
coupled with an individual turbine or turbine site configuration, most interesting 
approaches involve the use of non-parametric models.

Ice detection can be seen as a fault detection problem. Fault detection is a well 
studied field with a large number of well known and tested methods. In general 
fault detection methods can be divided in to three sub-categories: model-based, 
knowledge-based and process history-based approaches. [14], [15], [16].

For the purpose of this work only statistical, process history -based models 
used. This decision is mostly based on two factors: statistical models can be used 
without knowing the exact nature of the faults and without using an explicit model 
of the system. While statistical fault detection methods are often used incorporation 
with a model, it is not necessary, if the normal behaviour can be derived from some 
different source.

are

4.1 Non-parametric models
The idea is to create a system that can be trained to detect anomalies in the turbine 
behaviour. It is possible to deduct the effects icing will have on turbine by studying 
the simulation data or verifiable measurements. Based on this it is possible to create 
a system that looks for these pre-defined abnormalities. This way it is possible to 
also avoid fitting a complete model of the turbine inside the ice detection system. 
Using a model based method can be problematic, because these methods demand 
exact knowledge of a large number of model parameters. Wind turbine models can 
be constructed, but these require explicit knowledge of certain turbine characteristics 
that might not be available. Also using a non-parametric approach might prove to 
be simpler. [2],[17], [18]

The simplest possible approach would be to use several separate detectors, and 
a simple voting scheme to decide the final outcome. This kind of approach, where 
several independent detectors are used, makes developing and extending the system 
a very straightforward procedure. Also, using separate algorithms to detect different 
symptoms means that these detectors can be tuned more closely to detect a specific 
symptom only. Problem in this is that strict univariate methods might not work 
properly in a complex process due to cross correlations between process variables. 
On the other hand changes in correlations between variables can be interpreted as 
anomalous behaviour and can be detected as faults in the system even if the values 
of individual variables are not outside the designated alarm limits.[21],[22]

The use of non-parametric methods means that there is no need to have explicit 
information about the turbine. The methods operate based on process data alone. 
This means that the detector needs to be tuned with historical process data in 
order to teach it the normal behaviour of the system. A practical approach would
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be to tune the detector based on data collected during warmer times, when the 
temperatures are high enough so that icing is extremely unlikely. As a result the 
detector needs to have two operating modes and we switch between those modes 
according to outside temperature. There are several approaches to this kind of 
problem and the question here is to pick the right ones that work in our case. Some 
examples can be found in [18], [21], [17], [23]

The selected method family does not really change the basic idea of anomaly 
or fault detection. There are basically two approaches that can be used to solve 
the icing detection problem. The first approach is to collect a larger dataset from 
a normally behaving turbine. Then, as the system is running, the real time mea­
surements can be compared to the collected reference data. Any sudden changes 
in differences here can be interpreted as faults. The other approach is to identify 
a model of the observed process first. Then said model needs to be updated for 
each step and monitor the change in model parameters. This approach can be more 
difficult to implement, especially if the target process is very non-linear. [18]

Icing can be seen as an external fault in the process or, more correctly, as a 
sudden change in internal process dynamics. This change in dynamics happens 
because icing changes the aerodynamic properties of the turbine blades. Different 
kinds of fault detection methods can be used to detect this change. The simplest 
method is to define a set of variables known to be affected by icing and monitor 
these for abnormalities. If these process variables exhibit non-standard behaviour 
in favourable conditions it can be assumed that it is due to ice accretion. A big 
drawback in using purely non-parametric data based methods is that it might not 
be possible to isolate the cause of a fault. This means that false positive alerts of 
ice when there is no icing are likely. The number of false positives is an important 
performance measure for all detection methods and should be taken into account 
when evaluating detection method performance. [21]

It is also extremely unlikely that there is significant amounts of training data 
available from an actually iced wind turbine. Furthermore, it is even more unlikely 
to have data from different icing scenarios or data from iced turbine from all rele­
vant wind speeds. Also there is no really accurate way to measure mass of ice on 
the blades, so even if there was data of icing events it is not possible to properly 
tell the difference between different icing events. All this means that the proper 
approach to this problem is to simply try to detect abnormal behaviour. This is 
an approach to fault detection generally known as novelty detection. The purpose 
in novelty detection is to compare the behaviour of the system to a known good 
dataset and try to determine if a measurement falls within the boundaries of this 
known, good behaviour. If the measurement is significantly different from the refer­
ence data, it can be assumed to be faulty. In other words novelty detection methods 
calculate the distance between the measurement and the reference dataset. If this 
distance becomes too large, the measurement is considered to originate from a faulty 
system. [24], [25]

It is possible to determine how certain process variables should act in the case 
of an icing event. But there is always a certain degree of uncertainty involved, 
especially, when dealing with real data. In addition to data based methods described
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in this work it is possible to collect data from an ice sensor and then correlate the 
results for improved accuracy.

Correlating with an ice sensor is not entirely reliable way for checking whether the 
method produces proper results or not. The tip of the blade produces a significant 
part of the rotational force that spins the rotor. Because of this ice accretion near 
the tip of the blade has a more significant effect on turbine performance than icing 
closer to the root of the blade. The size of a modern wind turbine means that the 
ice sensor is located 50 - 70 meters away from the blade tips.

A more sophisticated way would be to treat icing as one of several possible faults 
in the process and look for specific fault signatures in the process data. This would 
require a fault ”fingerprint” to be detected in the process data. Biggest benefit here 
would be an increased certainty that the problems seen in the data are caused by ice 
and not for example problems elsewhere in the turbine. This is especially relevant 
if these methods are used to control an anti-icing system.

There are two approaches that can be taken to process the data once a com­
parison dataset from non-iced data has been created. One is to collect data for a 
longer time, get a set of data points and calculate differences in interesting variables 
and differences in detected vibrations over this measurement period. The other al­
ternative would be to read data in measurement by measurement and calculate the 
differences in real time. This would probably lead to faster classification, but as a 
method it would be a lot more sensitive to noise in measurements. Moreover a good 
and reliable way of dealing with false positives is required.

This uncertainty also means that it is very difficult to use these kinds of methods 
to detect the degree of icing. Instead it is easier to settle for a binary output signal: 
in the best case scenario it is possible to give a probability or an estimate of certainty. 
Even then, this would not be a probability for icing, it would be a probability that 
the turbine behaviour differs from normal. Theoretically it is possible that there is 
some other problem with the turbine that causes icing-like symptoms, but there is 
really no way to tell.

4.2 Look-up tables and variable binning
The easiest approach to tackle the non-linearities in the process is to use a set of 
look-up tables in place of a more complex model of the observed process. This 
is especially relevant because both the terrain surrounding the wind turbines and 
especially the wakes of other wind turbines have a significant effect on wind turbine 
behaviour. The easiest way to take this into account is to create a two-dimensional 
look-up table of the behaviour of different process variables and their behaviour as a 
function of wind speed. Once a look-up table is constructed, it is simple to calculate 
the difference between actual measurement and a reference value interpolated from 
the look-up table. The operating principle of this method is illustrated in Fig. 7.

The first step in constructing lookup tables is to pick a value for bin width 
b (usually 0.5 m/s). After this a set of bin centre points Vb(i) is defined so that 
vb(k + 1) — vb(i) — b. Measurements of process variables Xj(i) are then distributed 
into appropriate bins according to the wind speed measured at time i. A separate
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Figure 7: Using the binned data for fault detection

set of bins is constructed for each monitored process variable Xj. Figure 8 shows 
how generator power measurements can be fitted into bins according to wind speed 
measurements.

After the variables have been binned the lookup tables are made by calculating 
the binwise mean mj(i) of each process variable Xj separately for each bin Bk ac­
cording to (3). The final lookup-table consists of bin centre points and these binwise 
means. For other purposes we also create a table that contains the bin sample stan­
dard deviation Sj(i) for each variable with (4). In (3) and (4) nk is equal to number 
of variables in bin k.

1 Д
щ(г) = (3)nk

1 ^
Y^{xj{t) - mj2)Sj(i) (4)nk

When a measurement is read at time i, the appropriate bin is selected according 
to wind speed v(t) by picking the bin center point vb(i) closest to the measured wind 
speed v(t). Bin index к is saved. Now that the bin index is known, the values for 
other process variables can be interpolated from the lookup table. The result is a 
comparable set of data points that correspond to the wind speed measurement. The 
only information that needs to be saved about the bins is the coordinates of the bin 
center point. This requires an extra step when interpolating: if the measurement
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Figure 8: Simulated values of turbine power placed into appropriate bins, and the 
binwise mean plotted on top

belongs to bin В/, but is larger than bin centre point u6(z), the corresponding refer­
ence value Xj(t) is interpolated with (5). If the value is in bin Bk, but smaller than 
bin centre Vb(i) (6) is used.

mj(i — 1) — mj(i)x^t) = (v(t) - vb(i)) + т,(г) (5)vb(i - 1) 
mj{i)

vb{i)

Xj(t) = (v(t) - vb(i + 1)) + mj{i + 1) (6)Vb{i) - Vb[i + 1)
In (5) and (6) vb{i) refers to average windspeed in bin к and mj{i) refers to 

average value of the process variable in bin k. Xj(t) is the corresponding interpolated 
reference value at time i.

Using look-up tables makes it possible to capture real turbine behaviour and its 
inherit non-linearities as simply as possible. The relationships between wind speed 
and different process variables are non-linear and not always easily modelled. Using 
look-up tables is also computationally very efficient. This is very beneficial when 
attempting to implement these methods in practice. These look-up tables can also
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be repopulated when conditions are safe enough so that icing events are unlikely 
to happen. It is possible to collect data and update the look-up tables at times 
when temperature is safely above zero and switch to icing detection mode when the 
temperature drops to a lower level. Real-time updating makes it possible to " seed” 
the look-up table manually with predefined values e.g. the turbine power curve and 
expected values for rotational speed and blade pitch angle. These predefined values 
can then be later updated with real-time measurements.

In this work the most used approach is to use look-up table as a filter. This 
makes it possible to take external error sources such as neighbouring turbines into 
account and standardise the data first before trying to detect any strange behaviour.

Bin size does not have to be constant though, the only requirement is that the 
variable behaviour does not change too much inside the bin, because the interpola­
tion requires the assumption that variable behaviour is linear inside each bin. For 
example, using wider bins for generator power at higher wind speeds is possible, 
because after the turbine reaches its nominal power, it stays there until wind speed 
reaches the cut-off speed. This means that power and rotational speed remain close 
to constant for a wide range of wind speeds. This can be taken into account when 
designing the look-up tables.

Once the data has been distributed into the appropriate bins, the next step is 
to calculate the bin sample mean for the process variable and use these means and 
bin centre points to create the final look-up table. The actual measurement data 
can contain outliers that can affect the mean, so in some cases it might be more 
useful to use a more robust estimate for the mean. Different approaches here could 
be to use the sample median or just simply reject the measurements that differ from 
the mean most. For example, if the top and bottom 5 % of the measurements are 
removed from the data, the amount of outliers will be significantly smaller. [20]

It is also very straightforward to keep these look-up tables up to date. The only 
real requirement here is to discard old data as new data becomes available. This is 
done by setting an upper limit N for the bin size updating the bin by following a 

. first-in-first-out approach. When the number of measurements in a bin reaches N 
the oldest measurement is removed and a new one is added to the bin. The update 
method is illustrated in Fig. 9.

Once the look-up tables have been constructed they can be used as a crude 
approximation of the turbine behaviour, as a replacement for a proper model. This 
makes it possible to investigate the turbine behaviour as it relates to wind speed and 
makes it easy to normalise the measurements so that differences in different process 
variables can be compared with one another. The most direct method for variable 
normalisation is to divide the difference between the interpolated value from (5) or
(6) and the current measurement with the bin standard deviation according to
(7).

Zj(t) = (7)
Sfe

Normalisation like this eliminates most of the effects that widely different abso­
lute values of process variables have in some detection methods. This does double
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Figure 9: Basic update procedure of a single bin. New measurement is added and 
oldest is dropped.

the amount of data that needs to be stored, but it improves the method accuracy 
significantly, so trade-off can be considered worthwhile. In cases where the bin 
standard deviation is zero the normalised value is set to zero.

Normalising the data improves the detection accuracy, especially when using 
several concurrent measurements. Normalisation requires a separate set of look-up 
tables for variable standard deviation. These can be calculated binwise the same 
way as tables for the sample mean are done. And just like with mean here outliers 
can affect the results to some degree. When using real data a more sophisticated 
method for outlier elimination might be needed.

A real concern here is how a too small number of measurements in a single 
bin affects the outcome of the normalisation. Too small number of measurements 
can cause the deviation within the bin to rise, especially with noisy data. This 
is problematic, because the normalisation will produce odd results this way. An 
example is illustrated in Fig. 10 for sample standard deviation.

The curves in Fig. 10 are calculated from real, somewhat noisy data, that has 
some outliers. A similar effect, but in opposite direction can be seen for mean as 
wTell. This illustrates the need for a good method for outlier removal. On the other 
hand, the sample size needs to be reasonably large in order to be able to classify 
a value as an outlier in the first place. A quick solution for this could be to set 
a lower limit for bin size. A low limit for bin size would mean that bins are only 
activated once there is enough data in them. Alternative approach would be to 
seed the bins with data from simulations or measurements from other turbines of
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PVn{t) = v{t) (8)RT po
Figure 11 shows the effect of temperature correction on real data. Note that 

there were no pressure measurements for the data set used, so it is assumed that 
the pressure stays constant at p = 1000 hPa for all measurements. Still the effect of
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Figure 10: Effect of bin size on bin sample standard deviation

the same type. This data can then be updated with measurements from the actual 
turbine. Pre-seeding the lookup tables would eliminate the requirement to collect 
data first before the ice detection system can be properly activated.

Changes in air temperature can affect the measurements. This change can have a 
noticeable effect on detection accuracy, because the basic principle here is to use data 
collected at summertime to gauge turbine performance during wintertime. The main 
culprit here is the fact that air density is inversely proportional to air temperature 
and directly proportional to power produced by the turbine at a set wind speed.

Air density effects the amount of power a turbine produces according to formula
(2). This might have an effect on ice detection, because the power curve will shift to 
the left on colder weather. As a result the turbine produces slightly more power at 
the same wind speed on colder weather. This has a direct effect on efforts to detect 
icing from process data. When comparing the raw measurements to a power curve 
defined at different conditions, smaller changes in process variables are not found, 
because the relationship between wind speed and the process variables has changed 
slightly.

According to [26] the measurements can be normalised for changes in air density 
by normalising the wind speed with with (8). In (8) v(t) is the measured ten minute 
average of the wind speed, p is the ten minute average of current air pressure, T 
is the ten minute average of the temperature and Rq is the gas constant of dry air 
(Ro = 287.05 J/(kg * K)), p is the reference density of air.
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Figure 11: Relative size of temperature correction compared to measured wind speed

temperature alone is generally noticeable. In the measured dataset it is equivalent 
of a 2% increase in wind speed.

The normalized wind speed can then be used as input for normal interpolation 
according to (5) or (6) in order to get the reference values for all measurements.

4.3 Control charts

The most straightforward solution to fault detection would be to create a control 
chart that acts as an indicator of the state of the turbine. Control charts are an 
important concept in statistical process control and are often used as a tool in 
automatic quality control and fault detection. Control charts are used to determine 
whether a process is in control or not. A process is considered to stay in control if 
nothing unusual (e.g. a process fault) happens. An in-control process behaves in a 
predictable way. Anomalies from normal behaviour are interpreted as a sign of an 
out of control process and can be interpreted as signs of a process fault. Control 
charts are used to track values of a monitoring variable, that acts as an indicator of
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process state. Monitoring value is often a specifically calculated statistical quantity 
that acts as an indicator of the process status.

When a process stays in control, the value of the control chart variable stays at a 
predictable level. Faults in the process cause the value of the control chart variable 
to grow. Too large values can then be interpreted as signs of a fault or an out of 
control process. For the purposes of ice detection, it is possible to create a control 
chart using the variables that are affected by icing to detect changes in them, and 
to create a single signal that can act as an indicator of icing events.

Most common control charts are so called CUSUM (cumulative sum) and EWMA 
(exponentially weighted moving average) charts. The idea is to track the values of 
interesting process variable and monitor its deviations from the long term mean. If 
the values of the observed variable deviate too much from mean the process can be 
deemed to out of control i.e. exhibiting abnormal behaviour. Both CUSUM and 
EWMA are essentially univariate charts meant for a simple SISO process. These uni­
variate methods are easy to implement and have been shown to be reliable, but can 
sometimes fail when used with a process with multiple correlated variables.[21],[23]

Standard CUSUM chart means plotting the cumulative sum defined in (9). Here 
Xj is the monitored process variable and /x0 is a reference value for the process mean. 
The cumulative sum S(t) starts to grow when Xj{t) starts to deviate from the mean. 
Process is considered to be out of control when the value of S{t) grows too large. [27]

S{t) = ^(т,-(г) - po) (9)
¿=o

To properly detect changes in the value of the sum we need to define limits for 
St- Here the so called decision interval scheme is used to define the control limits 
for the cumulative sums. In order to be able to compare changes in different process 
variables to each other, all the variables need to be scaled accordingly. Most effective 
approach here is to normalize the variables first according to (10). Here x is the 
sample mean of variable x and a is the sample standard deviation. [27]

^Ф) =

Normalising the variables this way produces a set of residuals that are more 
comparable to each other. And more importantly it is a set of variables where it 
is easy to define appropriate limits to determine if the process is out of control. In 
order to properly detect out of control behaviour of the normalized variable two 
variables, Shí and defined in (11) and (12) need to be calculated. The process 
is considered to be out of control if Sujif) > h or Sijit) > h. Here к and h are 
constants that need to be set on a case by case basis, к is called a reference value 
and h is known as decision interval. [27]

(10)
a

— max(SHj(t — 1) + Zj(t — 1) — k, 0)
SLj(t)

(И)

max^Sijit — 1) — Zj{t — l) — k, 0) (12)
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Figure 12: Effect of the chosen method to create a compound chart

In order to create a combined chart, a simple solution would be to combine 
the values of individual charts for different process variables. Because normalised 
variables are used instead of raw, unsealed measurements, the values of all control 
charts are comparable with one another. As a result two alternative approaches 
to chart combining problem can be taken. Either combine the charts and use one 
upper limit and compare against that, or specify limits separately for each chart

20

For normalised variables Zj k can be seen as the size of the anomaly we want 
to detect. The decision interval h can be interpreted to be related to probability 
of false alarms. Both of these parameters need to be adjusted individually for the 
process at hand. [27]

For normalised variables it can be assumed that they behave in somewhat similar 
manner so that the same parameters can be used for each of variable.

For a multivariate process a different approach that takes the different 
lations between the process variables into account is needed. There are several 
multivariate statistical process control (MSPCA) methods that can be used to 
itor a more complex process. Most of these are simply extensions of the univariate 
methods and are relatively easy to implement. Alternative approach would be to 
calculate a set of univariate control charts and then combine the results. [21] [17] [23]
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Figure 12 illustrates the effect of the chosen compound chart construction method. 
Using mean will produce fewer false alarms on the simulated dataset, but the signal 
level is overall lower. As a result the Sh chart level drops below the warning level 
before the icing event has ended. The results are collected in Table 2 for one simula­
tion case. Table 2 lists the percentage of correctly detected iced measurements and 
percentage of correctly detected clean (not iced) data points. From these results it 
is clearly visible that using maximum values increases the detection accuracy and 
increases the number of false positive detections. In the case used to build Table 2, 
the drop in detection accuracy is a lot more severe than the drop in correctly de­
tected clean data points. On basis of this using maximum values would be a better 
option at least for the Si-chart.

In addition to this, these charts will only detect changes in one direction: values 
of S/,-chart will grow if the value of the test variable grows and value of S¿-chart will 
grow if the value of the test variable becomes smaller. The final alarm should then 
be issued when either of the two charts crosses the alarm limit because these two 
charts are complementary. There are no process variables that contribute to values 
of both of these charts at the same time, because the changes caused by icing will 
be to same direction i.e. certain variables will always see a drop in their value and 
certain variables will see their value grow as a result of icing.

Different, a more direct approach is to use a specifically defined multivariate 
chart. This has the added benefit of also taking the correlations between the vari­
ables of the system in to account. In a complex process like a wind turbine the pro­
cess variables are always interconnected to a degree. Combining univariate charts 
will always carry the assumption that the variables are independent to a degree. 
In some cases this will have an effect on detection accuracy. The most common 
alternatives are multivariate CUSUM and multivariate EWMA charts. These 
simply multivariate versions of common univariate charts. A multivariate EWMA 
chart is defined according to (13).[30] [31]

are
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and combine the results.
If the goal is to detect an anomaly in process behaviour as quickly as possible 

an alternative approach would be to use the maximum of all of these values. This 
is lot less robust approach and it will increase false positive results, but it will react 
faster. One approach to make it a bit more robust is to demand that more than one 
chart needs to cross the alarm line before an alarm is raised. This should make the 
system a bit more robust to fluctuations in individual measurements. [28]

Table 2: Effectiveness of different compound chart construction methods 
_________ correctly detected iced [%] correctly detected clean [%]
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z(t) = Rx(t) + (I - R)z(t - 1)

Here R = diag(r\, Г2, Г3,...) and O < < 1, and z¿ is the monitored variable.
It is assumed that ~ A7(/íq, So) with a known covariance matrix E0 and known 

vector Hq. The chart gives an out-of-control signal if QE > hE in eq. (14). 
There isn't a well specified way to determine the control limit hEl it needs to be 
evaluated from data collected from a known safe case or calculated from simulation 
data using e.g. Monte Carlo methods. [29]

(13)

mean

Qe = (14)

Assuming all variables in the input data are equally relevant, it is possible to set 
T\ = — Г3 = ... = r. In this case the covariance matrix E -1 is defined by (15).z{t)

(1 - (1 -r)2*)^
^z(t) (15)2 — r

This of course requires exact knowledge of the process variable covariance matrix 
E.[29] The method is in general rather sensitive regarding the initial covariance 
matrix. Detection sensitivity is greatly affected depending on the data that was used 
to define the covariance matrix. The best solution is to use a properly normalised 
portion of the reference dataset. Detection works with simulated data also when 
using a covariance matrix calculated from the iced data set, and even better when 
using just a safe portion of the iced data set. This option is not as practical, because 
a full iced data set is not available when attempting to detect icing events in real 
time. [30]

EWMA control charts can be constructed also for non-normalised data. The de­
tection does work in these cases, and for simulated data, using raw, non-normalised 
variables in control chart creation produces larger changes in the final signal when 
icing is detected. Normalising the data makes the method a lot less sensitive to the 
definitions of the covariance matrix and the parameter r.

Some kind of safe upper limit for the control charts is needed to determine 
whether the process is in an out of control state. Upper limits for multivariate 
EWMA control charts would need to be calculated from data and there are often 
no direct methods for the multivariable case. Often the suggested method is to 
use simulations to gauge an estimate for the out-of control alarm limit. The basic
process here is to simply run a lot of simulations and decide an appropriate level for 
the chart based on these results. [32]

A less formally correct approach here would be to calculate the values of the 
control chart using the reference dataset as input. From there we can calculate 
an assumption for the upper limit for the control chart variable. An example is 
illustrated in Fig. 13. A value of 120 % of the maximum of the control chart value 
from the reference dataset is used to define the alarm limit. The dashed red line 
is the alarm limit. In Fig. 13 the figure on the left is generated by calculating the
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Figure 13: Setting the alarm limit to 120 % of the maximum of the control chart 
value in the reference dataset. The beginning and the end of the icing incident 
marked with a vertical dotted line on the graph on the right.

Here the interesting feature is the relative change in the signal amplitude. When 
looking for anomalies in the process, the bigger the change from a base level, the 
easier it is to isolate the change as relevant. When using EWMA charts the only 
adjustable parameter is the smoothing parameter r in (13) and (15). Safest assump­
tion is to assume that r\ — = ... = r meaning that all variables behave in
similar fashion over time. Adjusting the value of r adjust the speed at which 
information is brought in to the chart. Suitable value of r depends on the number 
of handled variables and also on the magnitude of the shift in variables caused by 
the fault. [30] [29]

The choice of r also affects the speed and sensitivity of the detection. Figure 14 
shows the effect of changes in r on a MEWMA control chart plotted for a simulated 
dataset. There is an icing event in the dataset on the interval [60,120]. It is easy to 
see from Fig. 14 that too small values for r make detection slower and also make 
the signal fall back to normal level slower. On the other hand larger values for 
r result in smaller absolute values for the signal. The simulation data is cleaner 
than real data, which results in easier detection and makes it possible to 
false positives completely. When using real measurements too large values for 
cause the number of false positive detection signals to increase because of noise in 
the data.
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values of the control chart using the reference data as the input. The graph on the 
right shows the control chart value over time for a sample icing incident. The alarm 
limit stays the same in both cases.
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MEWMA control chart, simulated dataset, Icing between 60 and 120
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Figure 14: Effect of parameter r on multivariate EMWA chart. Alarm limit marked 
with the dashed red line.

It is also possible to create a multivariate version of a standard CUSUM-chart. 
One approach is to simply replace the standardised individual variables with the D2 
statistic defined in (16). D2 can be seen as a multivariate version of squared error. 
Strictly it is the square of the Mahalanobis distance between he measurement and 
the mean. It is similar measure than the normal distance, except that it also takes 
the correlations between different variables into account. [32]

D2(t) = (x(t) - //)TS_1(x(t) - ¿t)
Calculating the D2 statistic as defined in (16) once again requires exact knowl­

edge of the covariance matrix. A possible approach is to use a covariance matrix 
calculated from the reference dataset. There are multiple different methods to con­
struct a multivariate CUSUM chart, some of which have bee collected in [32]. The 
method we use here is very similar to the univariate methods described by eq. (11) 
and (12). The difference here is that the D2 statistic can only have positive values 
so we need to calculate only one sum. [32]

(16)

max[(SM(t - 1) + D(t) - /f),0]

Here 5м(0) > 0 and К > 0. The process is deemed to be out of control when 
Sm(í) > H. Where H is a predetermined constant. К is related to the magnitude 
of shift in process variables that requires an alarm to be raised.

Using a set of individual single variable charts as opposed to actual multivariate 
methods can be justified, if similar performance can be achieved while avoiding com­
putational complexity that might come with multivariate methods. Mathematically 
simpler methods can sometimes be preferable. It is possible that these methods 
need to be implemented on a system that cannot do matrix algebra. Inverting the

5m (i) (17)
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covariance matrix can also in some cases lead to numerical problems because the 
process variables are correlated.

An additional prefiltering trick that can be used to improve the performance of 
our control charts is to take the sign of the change into account. It is known what 
kind of effect icing will have on at least some of the measured process variables. 
The magnitude of the change might not be known. Even less likely is that the exact 
relationship between the change in process variable and the amount of ice on the 
turbine blade is known. But in most cases it is possible to tell the direction of the 
change icing causes in the process variable.

The direction of the change in process variable values induced by icing can be 
deduced from e.g. simulation studies or from prior measurements. Even if the 
magnitude of the change in process variable values is not known, knowing the sign 
of the residuals in an icing event is enough to help create a simple filtering scheme 
that has noticeable effect on detection accuracy. The number of false positives can be 
reduced by filtering wrong signs away form the data. For a given measured process 
variable x{ there is a corresponding reference value Xj. Most of these methods deal 
with differences di = Xi~ Xj between these two. Now if the direction of change that 
icing causes in a variable (e.g. drop in power)is known, the variable can be filtered 
according to (18), and conversely for variables that are known to grow (loads) (19) 
can be used.

dXj(t) = min(0,Xj(t) - Xj(t)) (18)

dx,j(t) max(0, Xj(t) — Xj(t))

Most methods discussed here do not differentiate based on the direction of change 
in variables. By removing changes in unwanted directions it is possible to get rid 
of at least one potential source of false positive detections. Curiously doing a sign 
based removal of features makes detection performance worse on simulated datasets. 
The relative change of control chart variable is smaller when calculated this way. 
On real data this has proven to be a useful trick to reduce false positive detections.

(19)

Principal component analysis and fault detection
In some cases when dealing with very large-dimensional data, some of these variables 
may be highly correlated with one another. In these cases it would be beneficial 
if it were possible to reduce the data dimension without losing too much valid 
information. One way to achieve this is to use principal component methods. Prin­
cipal component analysis (PCA) is an often used method to transform the original 
correlated data into a smaller set of uncorrelated data while preserving as much 
information from the original data as possible.

Another benefit of using PCA methods is that it is not required to explicitly 
choose the variables used for detection, the method finds the most meaningful vari­
ables automatically. Meaningful here means the variables that best describe the 
changes in the reference dataset, not the variables that are most affected by icing.

4.4
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The reduced small set of vectors can be used as a model for the full wind turbine
system. Here it is important to note that PCA is a linear method, and the observed 
system (wind turbine) is somewhat non-linear. The problems caused by nonlinearity 
can be alleviated to some degree by normalising the data first as described earlier.

Assume an n x m matrix X, that contains m measurements of n process variables 
Xi, x2, x3, x4,..., xn. These variable might be correlated with each other. PCA 
transforms these n correlated variables into a uncorrelated variables, where a « n.

The first step is to rescale the datamatrix X into a new matrix Z with zero mean
and unit variance. This means that each column vector z¡ of Z has a mean of 0 and 
variance of 1, (20). Then the covariance matrix R of X is calculated as shown in
(21). [33] [34]

Xi - X,
(20)zi =

a

1
ZTZR — (21)

n — 1

Principal components of X are the eigenvectors Pi, Рг, Рз, •••, Pm of R. The 
eigenvalues A2, À3,..., Am tell the amount of variance of original data has along 
each principal component axis. After the principal components have been calculated 
an m a: о projection matrix P can be defined by choosing a most significant principle 
components. Once the projection matrix has been defined it is possible to calculate 
so called principle component scores T with simple projection according to (22). 
Finally a projection back to the original data space can be defined according to 
(23). The residual (estimation error) matrix E is then defined as per (24).[34][35]

(22)T — XP

X = TPT (23)

(24)E = X — X
The proper number of principle components can be calculated from the eigen­

values Aj using different methods. The most straight forward selection method is 
plotting the eigenvalues, sorted largest to smallest, and looking for the ”knee” in 
the graph, meaning the point where the values become smaller compared to the first 
few eigenvalues (4 in Fig. 15). Figure 15 is calculated from the same simulation 
data used to generate the results in Chapter 5. Another option is to simply pick 
a threshold ha and the solve a from (25). This is known as the accumulative con­
tribution rate (ACR). ACR tells us the percentage of total variance the selected a 
principal components explain [33].

ha — (25)

The principal component representation of the process can be used as a model for 
fault detection. The basic principle is simple: a new measurement for each process



a
E■jT
i=0

W) = Xj(i)P 

Xj(í) = Tj(i)Pr

r(i) - x(i) - x(i) (28)
These variables can be used for fault detection by constructing a control chart, 

that will tell us whether the process remains in control or not. The most common 
control chart to use in these situations are Hotellings T2 and Q statistic. Both these 
can be updated for each measurement in real time, and it is possible to define control 
limits for both of them. For added accuracy it is recommended to use both charts 
side by side. This is recommendable because T2 and Q charts are complementary. In 
other words T2 chart monitors changes in variance explained by the first a principal 
components. The Q statistic on the other hand monitors changes in variance of the 
residuals. [35] [34] [17]

The T2 statistic is calculated with (29). Here í¿ is the score representing the 
principal component г and A¿ is the corresponding eigenvalue of the original corre­
lation matrix. Confidence limits of the T2 statistic can be then shown to be related 
to the F-distribution according to (30). [17]
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Relative size of eigenvalues
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Figure 15: The eigenvalues of covariance matrix X.

variable is collected and placed in a vector x(i) = xi(t),X2(t), z3(i),..., xm(t). Then 
the scores are calculated using the principal components defined earlier according to 
(26). These scores are then used to calculate a projection back to original dimension. 
Finally the residual r is calculated with (28).[35]
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(m - l)p „
------------------- -Ti

m — p

is the value at the upper tail of the F-distribution at confidence 
level a with p and p—m degrees of freedom. This allows us to calculate an alarm limit 
for the T2 statistic. Now if the value of T2 exceeds the value of T2n p it means that 
a change in the part of the process represented by the first a principal components 
has been detected with a probability of a. The T2 statistic is calculated based on 
the assumption that the principal component scores follow a multinomial Gaussian 
distribution [19]

The T2 statistic is not always enough by itself to detect changes in the process 
dynamics. If there is a new event that changes the way a process behaves it might 
be easier to detect by monitoring the residuals. This requires us to define a comple­
mentary control chart, often called the Q chart. The Q chart is defined according 
to (31), where r is the residual from (28).[19]

Qi = Tirf

Confidence intervals for the Q statistic can be defined according to Eq. (32), (33) 
and (34). Equation 32 calculates an upper limit which means that if Q > Qa, the 
process is in an out-of-control state and there is something out of the ordinary going 
on. Here ca is the 1 — a confidence interval from the standard normal distribution. 
Use of the standard normal distribution here means that it is assumed that residuals 
(model error) follow a normal distribution. h0 and 0¡ are helper variables that are 
used to make the formula 32 easier to read. [17]

rj-,2 (30)p,m—pm,p

In (30) F,p,m—p

(31)

-L
n i i ; v2©2 , 02Mfio-l)V° Øl 11 + cA-g-Qa (32)

0?

- 530 г = 1,2,3 (33)i
j=a+l

1 — 20!©з
ho (34)Зв22

The result here is two separate test variable plots illustrated in Fig. 16. Figures 
are drawn with a simulated dataset, where the turbine is iced between time instances 
60 and 120. Figure 16 contains the two test variables and their 99 % confidence 
levels. We can then use a simple logical operation as a final icing signal here. Either 
we can issue a warning when both signals indicate abnormal behaviour or just with 
either one.

Normally principal component methods are defined for static data. In order to 
capture the behaviour of a dynamic system the data original matrix X is amended by 
adding in a set of delayed variables. This means going from X = [x^A;), x2(A(),..., x„(A:)] 
to Xa = [xi(fc), Xi^A; — 1), x2(Å:), x2(A: — 1),xn(A;), xn(A: — 1)]. Adding delayed mea­
surements into the data matrix doubles the data size and as a result requires that a
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Figure 16: The PCA test variable charts.

larger number principal components used for detection, but it improves the accuracy 
of the used methods, especially when dealing with faster data. [18]

Time shifting can cause problems if the time delays in the process are not mul­
tiples of the sampling interval [22]. When dealing with icing it can be assumed that 
the icing process is so much slower than the sampling interval that this does not 
have negative effects on accuracy.

When attempting to detect changes in the process it can sometimes be beneficial 
to feed the PCA algorithm with something else than plain process variables. One 
approach that seems to produce good results is to first normalise the data in order to 
reduce the effect of different wind speeds. This is achieved by using look-up tables 
defined earlier to replace the direct process data measurements with normalised 
residuals calculated with (7).

One approach is suggested in [17] where process variables are replaced with 
cumulative sum values. This seems to improve detection efficiency as well, but does 
introduce a new adjustable parameter to the system. The cumulative sum values 
are calculated over an observation window, so that the detection process can be run 
in real time.

Adding a processing window that ” looks backward” a bit seems to make detec-
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F-test variable and 99 % confidence level
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Prom this table it is very clear that while detection accuracy goes up when 
the buffer length is increased, there is a point after which the the number of false 
positive warnings starts to go up as well. The increased number of false positive 
detections is caused partially by the increased reaction time to the end of icing. 
Longer summation time in this instance will make the signal stay above the warning 
level even after the measurements have dropped back to normal values. The slowness 
here is a flipside of increased robustness, i.e. the method will not react to quick 
changes in signal values. It will require the signal to stay above the warning level 
for a while before the final signal will react. It is also notable that almost all false 
positives are registered after the icing event is over. This could be interpreted as the 
system having some difficulties adjusting to the ending of the icing event in cases 
where the cumulative sum buffer is too long.

Best performing option in this case is either buffer length 30 or 70, depending 
on whether the emphasis is on detection speed or accuracy. Using buffer length 30 
results in smaller number of correct detections, but the number of correctly detected 
clean incidents is very high. Higher number of correctly detected clean measurements 
means fewer false positive alarms. Using buffer length 70 has the highest detection 
rate, but it also issues a false alarm nearly 40 % of the time.

4.5 к Nearest Neighbour search

One approach for detecting changes in process behaviour is to calculate differences 
between variables directly. This can be done separately for each variable and then

30

tion more accurate, but it adds an additional delay to the system. This delay is 
directly proportional to the length of the window the cumulative sum calculation 
uses. The results are collected in Table 3. Correct iced refers to percentage of iced 
data points detected correctly and correct clean refers to percentage of non-iced 
events detected correctly, time to first alarm is the time (number of measurements) 
from the beginning of the icing event to the first warning.

Table 3: Effect of cumulative sum buffer length on performance of the PCA-based 
method

buffer length correct iced [%] correct clean [%] time to first alarm
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Initial dataset 
X={x1,x2,..,xJ

Variable Rest of data 
X, = (xyjxi)X/

distances

Unfiltered
distances

к smallest mean

Figure 17: The construction of the reference dataset for knn-based fault detection.

by comparing and possibly combining the residuals. Another approach would be to 
use a multivariate method to calculate the distance of a variable from the reference 
set directly. Simplest approach for this would be to use к nearest neighbours search 
(kNN).

The basic principle is to first pick a distance measure, function that can be used 
to calculate the distance between two points in a set. After this the distance between 
the measurement point and all points in the reference dataset is calculated. From 
these k(k 6 N) points with the smallest distance to the new measurement are picked 
and and the mean of these к distances is stored. This distance is then used as a 
measure of distance between the measurement and the reference dataset. [36]

Proper pick of к is important when considering the effectiveness of kNN as a fault 
detection scheme. Larger values of к might produce more robust results, but in the 
context of fault detection too large values for к might obscure away the possible 
faults. On the other hand too small values for к might be too sensitive to outliers in 
data. A suitable к can be selected based on some test runs on simulated data and 
then the mean of к smallest distances as our final measure for the distance between 
measurement and the reference dataset.

The final monitored signal is the distance between the measurement and the 
reference data. The reference data is constructed according to flowchart in Fig. 17. 
First, a set of measurements is collected and then a reference dataset is constructed 
by calculating the distance between each point and its к nearest neighbours in 
the data Xj, j ^ i.

The detection process is illustrated in Fig. 18. Measurements are collected from
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Reference
dataset

Measurement distance

Pick к 
smallest

Average
distance

alarm
greater,

Limit Compare*
Noless

alarm

Figure 18: Fault detection procedure for knn-based fault detection.

the process and the к nearest neighbours in the reference dataset are found for each 
measurement and the mean distance between measurement and reference data is 
calculated. When a point that is too far from the reference data is detected an 
alarm is issued. [37]

The alarm limit for the distance can be derived from the reference dataset. 
One option would be to pick a percentile from the original reference data. Using 
a percentile limit can be interpreted as searching for data that differs from the 
reference data more than most points in the reference data do. This approach 
ignores some outliers in the reference data and produces a more sensitive detection 
method. Setting the limit too low will in turn increase the number of false positive 
signals or in the worst case can make detection impossible [37].

The basic principle for automatic limit setting is illustrated in Fig. 19. First a 
histogram is created for the reference dataset, that contains the distances of reference 
data points from the rest of the dataset. Then the right side tail of the histogram so 
is cut off so, that p percent of the data is below the cut off point hr. The remainder 
of the data is then used as the reference dataset. Rather high values can be used 
for p, because the goal is to get rid of most obvious outliers. In Fig. 19 a 95 % limit 
was used for a simulated dataset. Prefiltering like this produces a lot more coherent 
dataset, as the histogram on the right hand side of the red line in Fig. 19 is a lot 
more symmetric.

The alarm limit is then determined in a similar manner. Either use the same 
upper limit hr as for the dataset construction pick a different, higher value ha. If 
ha > hr there will be some "leg room” for measurement inaccuracies before the
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Figure 19: Creation of the reference dataset: All data to the right of the 95th 
percentile is ignored

method gives an alarm.
Using kNN methods produces quite noisy output signal (see Fig. 20). A more 

reliable result can be achieved by calculating a moving average of this output signal 
with (35). Smoothing lowers the output levels to some degree and makes detection 
slightly slower. The drop in speed is not all that significant because icing as a 
phenomenon is so much slower than the data sample rate. The lower signal levels 
might affect the detection accuracy.

effect of moving average filter on kNN distance metric
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Histogram of KNN distances of all datapolnts In reference dataset
150

0 20 40 60 80 100 120 140 160 180
time

Figure 20: Effect of moving average filter on kNN detection. Dashed red line repre­
sents the alarm limit

ds(t) = (1 — r)d(t) + rd{t — 1)

This leaves kNN-based methods with two degrees of freedom: value of k, and
(35)
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the post filtering smoothing parameter r. Both of these need to be adjusted based 
on the sample rate used and the data in question. An important detail here is 
that kNN-based methods produce good results on non-normalised simulation data 
as well, where other methods do not. The only real issue here is that larger absolute 
values of a single measurement will end up dominating the results.

The effect of к is illustrated in Table 4. Here 4 к is the variable count, correct 
iced refers to correctly detected icing events, correct clean refers to correctly detected 
events, where there was no ice on the turbine and time to first alarm is the number 
of measurements between the start of the icing and first issued alarm. From Table 
4 we can see that the detection accuracy gets better when к grows, but eventually, 
the performance gets worse as the number к grows.

Table 4: Effect of values of к on detection accuracy. Constant value of r — 0.5 
к Correct iced [%] Correct clean [%] time to first alarm

Effect of r on kNN distance

20 40 60 80 100 120 140 160 180
time

Figure 21: Effect of variable r on the filtered mean distance measure to 15 nearest 
neighbours in the reference data.

The effect of parameter r can be tabulated similarly. Detection statistics have 
been collected in Table 5 for different values of r. The table has been constructed 
from the same dataset as Table 4: using medium wind case and ice case 2, asym­
metric ice scenario. The table does not tell the whole story, increasing the value of
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euclidean
cityblock
chebychev

8
7

The differences between these are not very drastic for the simulation data used 
here, but the ”standard" Euclidean distance measure seems to have a slight edge 
above the alternatives.

The number of input variables has a very visible effect on kNN accuracy as well. 
In Table 7 there are eight test cases with different number of process variables listed. 
Dropping the number of used variables causes the number of false positives to shoot 
up when keeping rest of the configuration constant. This shows that the number of 
measurements makes the algorithm more stable.

0.05 22
0.10 7
0.20 6
0.40 6
0.60 2
0.90 1
0.99 1

r drops the values of the filtered distance measure, making actual detection more 
difficult. Figure 21 illustrates this.

The distance can be defined in many ways. Table 6 illustrates the effect of 
distance measurement algorithm in overall detection performance. The different 
distance measures in Table 6 between two vectors x — [zi, X2,..., жп] and у = 
[У1,У2, •••, Уn] are defined with (36) for euclidean distance, (37) for cityblock distance 
and (38) for Chebychev distance. Euclidean distance is defined as the absolute short­
est distance between two points. Cityblock distance between two points is the sum 
of absolute differences in their coordinates and Chebychev distance is the maximum 
absolute coordinate difference between the two points. [39]

\/(x - y)(x - y)T
П

deb = \Xi - Уг\
1 = 1

dc = rnaXi(\Xi - Уг\)

de (36)

(37)

(38)

Table 6: Effect of distance measure on kNN performance 
distance measure Correct iced [%] Correct clean [%] time to first alarm
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Table 5: Effect of values of r on detection accuracy. When calculating these к = 15. 
r Correct iced [%] Correct clean [%] time to first alarm

О
 CD 

Ю
 

o -
q -q

CD
 00 

CD
 

О
 00 

О

C
D

 CD 
C

D
 CD 

C
D

 CD
 CD 

i—
1 I—‘ 

bO
 Ci 

C
D

 tOCO 
00 

LO 
00 О 

00 
(M

 
CD 

00 00 
CD 

CD 
Ю



Using all the variables in the input data (the 28 variable case) does not produce 
better results. In fact, introduction of redundant data does make the detection 
results slightly worse. Selecting the variables beforehand is very beneficial in this 
case as well.
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Table 7: Effect of process variable count on detection accuracy, A; = 15 in all cases 
variable count Correct iced [%] Correct clean [%] time to first alarmо о
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Blade moment difference between iced and clean turbines vs.wind speed

0 5 10 15 20 25
wind speed [m/s]

Figure 22: Effect of icing on two simulated process variables: turbine power (top) 
and flapwise blade moment (bottom). Ice case used here is case 3 in Table 1.
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5 Simulation study results
Results drawn from simulated data are calculated using the same sets of data. Three 
different wind distributions for five different ice cases were used to evaluate the 
performance of different methods. Also the effect of available measurements on 
detection accuracy is illustrated here in order to evaluate the suitability of different 
methods for real world usage. In this section the effects of different wind and ice 
cases and different method specific parameters are evaluated first for each method 
separately. Then the performance and sensitivity of different ice detection methods 
are compared to each other.

Three different wind cases were needed to see if wind speed has any effect on 
detection accuracy. The expected result here is that detection will not be as efficient 
at lower wind speed because the changes in process variable values are smaller. Also, 
in the upper end of the power curve, the differences eventually even out, when the 
turbine reaches its nominal power and rotational speed. Figure 22 illustrates the 
drop in output power as a function of wind speed in one ice case. At lower wind 
speeds the change is so small that it might disappear into measurement noise.

Power difference between iced and clean turbines vs.wind speed
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Generator power
Generator speed
Generator torque
Blade pitch angle
Tower base moment
Blade root moment
Flapwise biade moment
Yaw bearing acceleration x-axis
Yaw bearing acceleration y-axis
Rotor thrust
Tower top displacement (fore-aft)
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In general, the process variables used for detection here can be grouped into two 
groups. One group is variables that behave like power in figure 22 i.e. variables 
whose values drop as a result of an icing event. The other group are variables such 
as blade root moment in figure 22, whose values grow larger when an icing event 
occurs. Here difference disappears as well the at higher wind speeds.

5.1 Control charts

The goal here is to compare the detection accuracy in different wind and ice con­
ditions and to test the response time that different kinds of control charts have to 
icing events of different magnitude. It is important to evaluate the effects that wind 
speed has on the detection accuracy of different methods. In addition to these the 
effect that the number of monitored variables has on multivariate methods need to 
be addressed.

The effects of variable numbers is interesting considering real world usage because 
in real world installations the number of measurements might be limited, at least 
when comparing to the amount of data available from the simulation model. In fact 
some of the simulation variables most affected by icing are things that can not be 
measured directly. Effect of variable number has been tested by grouping the process 
variables into several test cases with different variable counts. The test cases are 
collected in to Table 8. Measurements grouped in Table 8 are variables in simulation 
model output most affected by icing.

Table 8: Different variable combinations used in simulation test cases.
Variable cases 

3 4 5 6 7 9 11Measurements

Results were calculated for all control charts introduced in Chapter 4. For the 
MCUSUM case it was necessary to adjust the parameter К individually for each 
case to get reliable detection out of the method (see chart titles in Fig. 23). This 
is noteworthy because smaller values of К mean that the used detection method is 
more sensitive to noise. This means that in less optimal conditions a larger number 
of variables result in better detection of anomalies as well. Regardless of attempts
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Figure 23: MCUSUM control charts for the same icing event with different variable 
counts and different values for parameter К.

to adjust the parameter, there doesn’t seem to be a way to get reliable detection 
with the MCUSUM chart from just three process variables. In many cases too small 
value for parameter К results in charts that do not recover from an anomaly in the 
data. Too small values of the parameter cause some kind of saturation effect for 
larger variable counts that result in a control chart that does not detect the ending 
of the icing event.

For univariate CUSUM charts in Fig. 25 the effect of added variables is just 
as visible. Adding more measurements increases the values of the control chart. 
Interestingly, it does not affect the detection speed of the chart, but when using 
more variables, the difference to alarm limit value (dashed line) is bigger. Using 
more variables here results in a control chart that recovers slower i.e. takes a longer 
time to return to a safer value after the icing event is over.

Same effect is visible from the EWMA charts in Fig. 24. The signal amplitude 
drops significantly as the variable number drops. Here it is clearly visible as well that 
once the variable count drops too low, detection becomes more and more unreliable. 
The different signals in Fig. 24 are plotted by keeping all parameters the same across 
different cases, so the only differences in these plots come from changes in variable

о 50 100 150 200 450
time

MCUSUM charts for different variable counts, K=3.2

0 50 100 150 200 450
time

MCUSUM charts for different variable counts, K=3.0
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MCUSUM charts for different variable counts, K=2.8
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Effect of adding a variable to EWMA chart performance
250

3 variables
4 variables
5 variables
6 variables
7 variables 
9 variables
11 variables

200

150

100

50

0 50 100 150 200 250
time

Figure 24: MEWMA control charts for the same icing event with different variable 
counts. Alarm limit is draw to the figure with the red dashed line. Vertical dotted 
lines represent the beginning and end of the icing event.

count.
In Fig. 24 the three basic variables used to plot the chart are generator power, 

rotational speed and the blade pitch angle. The added fourth variable was the 
generator torque, which is very heavily correlated with both generator power and 
speed. Regardless of this, adding a new measurement makes detection accuracy 
better even if the new measurement is somewhat redundant. The biggest difference 
between the different variable scenarios came from including the blade root moments. 
The 3, 4 and 5 variable cases are the only ones that do not include the blade root 
moments.

Different ice cases are clearly visible in the control charts as well as illustrated 
in Figs. 26 to 29. Also the difference between symmetric and asymmetric icing is 
somewhat visible in almost all cases, but it is so small that it doesn’t really affect 
detection accuracy or speed. The difference grows significantly when moving to 
a more severe icing case, suggesting that the effect of icing will get more 
as aerodynamic penalty and ice mass increase. The less severe ice cases are more 
interesting because we might want to be able to detect icing as quickly as possible.

The most severe cases of icing used here seem to be separable from the data pretty 
much every time, using all of the different control charts. The two less 
are not always so clearly visible. These can be found by tuning the control charts 
to be more sensitive. This will cause really long recovery periods for the charts in 
case for more severe icing and might, in the presence of noisy data, produce a large 
amount of false positive detections.

This would suggest using, if at all possible, the target level of icing as a design 
parameter. Then to increase robustness, it could be possible to demand that the 
charts need to stay above the warning level for an extended period of time, instead 
of raising an alarm immediately after the chart crosses the warning level. Icing is 
relatively slow phenomenon, especially when comparing to the sample rate of the

severe

severe ones
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Figure 25: CUSUM control charts for the same icing event with different variable 
counts. Icing event between time indexes 60 and 120, alarm limits are marked on 
the charts with the red dashed line.

turbine control process.
The low wind speed dataset causes serious problems for some of these methods as 

well. The problems are most evident when using the MCUSUM chart. This is either 
a method-specific problem or a problem with the dataset, most likely a combination 
of both. The fact that other methods seem to be able to handle this dataset without 
issues, would suggest that it is most likely an issue with the method in question. 
The problematic part of the dataset has very low wind speed, so the problems are 
most likely caused by the relatively small values of the process variables.

The low wind speed dataset is somewhat more difficult to handle because the 
changes in process variable values are so small that legitimate differences might get 
lost in process noise even in the simulated case where the data is very coherent. 
In a real world application the data will have significantly more noise in it, so the 
methods tested here should behave very well with simulated data to have hope of 
performing with real world measurements.

The detection statistics for each control chart for all wind and ice cases are listed 
in Tables 9 to 17. In these tables the listed values are the percentage of correctly

о 20 40 60 80 100 120 140 160 180
time

Sj CUSUM for different variable configurations
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Sh CUSUM for different variable configurations
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detected iced datapoints, the percentage of clean (not iced) datapoints detected 
correctly and the detection speed repesented as the time (number of sample) between 
the start of icing and the first issued alarm. In an ideal situation, the values of the 
first two columns need to be as high as possible and the value of time to first alarm 
needs to be as low as possible. Ice cases are defined in Table 1.

MCUSUM charts require that the parameter К is adjusted manually for each 
wind case, and regardless of the parameter adjustment, the low wind test case was

о 20 40 60 80 100 120 140 160 180
time

Figure 26: MEWMA control charts with different ice cases. Ice cases defined in 
table 1. a represents asymmetric and s symmetric icing

Table 9: The performance of MEWMA control charts in the low wind test case 
ice case correct iced [%] correct clean [%] time to first alarm

о 20 40 60 80 100 120 140 160 180
time

MEWMA charts for high wind case

0 20 40 60 80 100 120 140 160 180
time

MEWMA charts for medium wind case
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MEWMA charts for light wind case
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time
MCUSUM charts for medium wind case: К = 4.7

too difficult to detect properly. For the univariate CUSUM chart the detection 
results are good when using the same configuration for the low and high wind test 
cases, but for the medium case the detection accuracy can be improved by increasing 
the value of the parameter к in (11) or (12). Also for the MCUSUM chart the 
parameter adjustment effected accuracy between different ice cases, it seems to be 
difficult to find a setting that works well for both the most severe ice case and

о 20 40 60 80 100 120 140 160 180
time

Figure 27: Multivariate CUSUM control charts for different ice cases. Ice cases 
defined in table 1. a represents asymmetric and s symmetric icing

Table 10: The performance of CUSUM control charts in the low wind test case 
ice case correct iced [%] correct clean [%] time to first alarm

о 20 40 60 80 100 120 140 160 180
time

MCUSUM charts for high wind case: К = 4.3
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MCUSUM charts for light wind case: К = 3.2
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Sh CUSUM charts for medium wind case; к = 1.35
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the least severe ice case at the same time. This is more problematic than wind 
dependency because naturally there is no real way to determine the severity of icing 
beforehand. Detection rates with these control charts are decent enough, but the 
wind speed dependence of the parameters makes CUSUM charts lot less practical 
than MEWMA chart. Also MEWMA charts do allow an easy method for calculating 
an upper limit for detection as well, which makes it a lot better option for practical

о 20 40 60 80 100 120 140 160 180
time

Figure 28: Sh CUSUM control charts for different ice cases. Ice cases defined in 
table 1. a represents asymmetric and s symmetric icing

Table 11: The performance of MCUSUM control charts in the low wind test case 
ice case correct iced [%] correct clean [%] time to first alarm

о 20 40 60 80 100 120 140 160 180
time

Sh CUSUM charts for high wind case; к = 0.85
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Sh CUSUM charts for light wind case; к = 0.55
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Figure 29: Si CUSUM control charts for different ice cases. Ice cases defined in 
table 1. a represents asymmetric and s symmetric icing

Table 12: The performance of MEWMA control charts in the medium wind test 
case

correct iced [%] correct clean [%] time to first alarmice case
3s 93 62 4
3a 93 62 4
2s 88 75 7
2a 88 73 7
Is 88 77 7
la 88 77 7

use.
The wind speed dependency of the CUSUM chart parameter seems to be related 

to the observation that the differences from norm are bigger at medium wind speeds. 
Because the possible changes are bigger at those wind speeds the detection method 
needs to be adjusted accordingly. Still, the parameter need to be set to a value that
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Sj CUSUM charts for light wind case; к = 0.85
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is comparable to the size of the expected change in the variable value. This might 
be hard to determine beforehand, without reference data for different icing scenarios 
or a realistic simulation model.

Table 15: The performance of MEWMA control charts in the high wind test case 
ice case correct iced [%] correct clean [%] time to first alarm

Table 14: The performance of MCUSUM control charts in the medium wind test 
case

correct iced [%] correct clean [%] time to first alarmice case
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Table 13: The performance of CUSUM control charts in the medium wind test case 
ice case correct iced [%] correct clean [%] time to first alarm
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5.2 PCA

When using PCA-based methods for detection there are a few factors that contribute 
to detection accuracy. The most important one is the number of principal compo­
nents used for detection. Other factors that contribute to detection statistics 
the method used to combine the Q and T2 statistics and the length of the possible 
pre filtering buffer (see Table 3).

The two different statistics both produce a boolean alarm signal. These need to 
be combined to get the final output of the ice detection method. The two signals 
can be combined by issuing an alarm when both of them are above the alarm limit 
(equivalent to combining the two signals with a logical AND-operation) or issuing 
an alarm when either one crosses its warning level (logical OR).

The differences of these two operations are collected in Tables 18 and 19. Results 
in both of these tables illustrate the effect that increasing the number of principal 
components has on detection performance. In these tables correct iced refers to share 
of correctly detected iced datapoints correct clean means percentage of correctly 
detected non-iced samples and time to first alarm refers to the number of samples 
between the beginning of icing and the first issued alarm.

One thing that can be seen from Tables 18 and 19 is that the operation used 
for chart combination affects the number of required principal components needed 
to reach a certain performance level. On the other hand increasing the number 
of principal components and using an OR-operation causes the number of false 
positive detections to spiral out of hand. Seemingly, at least with the simulated 
data, demanding that both charts need to cross the line before issuing an alarm

are

Table 17: The performance of MCUSUM control charts in the high wind test 
ice case correct iced [%] correct clean [%] time to first alarm

case
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Table 16: The performance of CUSUM control charts in the high wind test 
ice case correct iced [%] correct clean [%] time to first alarm
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has on detection accuracy.

detection speed

Table 19: Effect the number of principal componer 
Statistics combined with AND-operation.

Л Correct iced [%] Correct clean [%}

Table 18: Effect the number of principal componer 
Statistics combined with OR-operation.

Л Correct iced [%] Correct clean [%]
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has on detection accuracy.

detection speed
11
10
8
7
7
1
1
1
1

seems to produce a significantly more robust detection method, even though it does 
not seem to be able to find all iced data points and requires slightly larger number 
of principal components to produce similar performance.

Another clear conclusion that can be drawn from Tables 18 and 19 is that in­
creasing the number of principal components makes the detection accuracy better 
only to a certain degree. There is a point after which increasing the dimension of 
the principal component basis does not make the method perform any better.

The effect of ice mass is illustrated in Figs. 30, 31 and 32 for all three wind 
distributions defined earlier. These graphs illustrate the values of Q and T2 statistics 
for different ice cases when all method parameters and wind time series are kept 
constant. In all cases the icing occurs between time points 60 and 120. Icing alarm 
is issued at any time both Q and T2 charts are above the alarm limit illustrated 
with red dashed line. Ice cases have been defined in Table 1, with the addition that 
a refers to asymmetric and s refers to symmetric icing.

The detection statistics have been collected in Tables 20, 21 and 22. In these 
tables correct iced refers to share of correctly detected iced datapoints correct clean
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means percentage of correctly detected non-iced samples and time to first alarm 
refers to the number of samples between the beginning of icing and the first issued 
alarm. The results clearly show that PCA is significantly slower than e.g. control 
chart based methods in issuing the alarms. Also the accuracy of PCA-based methods 
seems to be at above 50 % only in the medium wind test case and the most severe 
ice case in the light and high wind test cases. In other words in 8 of the 18 test 
cases the PCA-based method missed more than half of the iced samples. This was 
either due to slowness of the method or due to general method insensitivity.

The ice cases affect the detection accuracy as well. The PCA methods seem to 
work best for the medium wind test cases. On higher wind speeds, the detection 
accuracy is lower than in the low wind case. This is especially true for the milder 
ice cases. For example, in the high wind test case, the detection accuracy drops to 
approximately 15 % from 50 % for the more severe ice case. This is in fine with

Table 22: Different ice cases for the high wind test case.
Ice case Correct iced [%] Correct clean [%] detection speed

Table 21: Different ice cases for the medium wind test case. 
Ice case Correct iced [%] Correct clean [%] detection speed
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Table 20: Different ice cases for the low wind test case.
Ice case Correct iced [%] Correct clean [%] detection speed
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Figure 30: Test variables for different ice cases for the low wind case.

the previous observation that the differences in process variable values tend to trend 
towards zero as wind speed grows (see Fig. 22).

As a result of this the detection here works best near the maximum (blade 
moment) or minimum (generator power) of the curve illustrated in Fig. 22 and 
becomes more and more uncertain at lower and higher wind speeds. In the middle 
of the range PCA-based detection works very well for the simulation data, even for 
the lighter ice cases the detection is reliable and fast.

When considering real world usage there are several possible sources for issues 
when using these methods. Tuning a PCA based system was a bit complicated and 
requires several independently tuned steps to make it work with simulated data. 
This can cause problems when operating on actual measurements, because there 
might not be any data from an actual icing incident to use as a reference in order 
to get the algorithms tuned in a way that detection is overall possible. Also the 
added complexity and computational overhead of PCA will not necessarily improve 
detection accuracy when comparing to simpler control charting methods, especially 
when the number of used process variables is relatively small as compared to 27 in 
the full simulation data.
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Figure 31: Test variables for different ice cases for the medium wind case.
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Figure 32: Test variables for different ice cases for the high wind case.
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Figure 33: Effects of changes in ice mass on kNN distance for different wind cases. 
к is kept constant at 50.

Figure 33 illustrates the average distance from test case measurements to ref­
erence data set. Interestingly this method does not produce any warnings for the 
low wind test case. For the high wind case the same configuration produces only a 
short peak above the warning line. There is also a rather lengthy delay between the 
icing event and first detection. On the other hand, detection works just fine for the 
medium wind test case.

Notable point here is that these results have been calculated, unlike all others, 
for non-normalised data. This method finds icing events from normalised data as 
well, but the output looks slightly different. The absolute values of the distance 
measure are significantly smaller. Not using normalised data is problematic because 
of differences in absolute values of variables. The worst case scenario is that a single 
measmement can dominate the final results and all the others might become irrel-
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5.3 kNN

Using kNN methods to calculate the distance of measurements from the reference 
data results in similar behaviour as described earlier for other methods. Smaller ice 
masses and smaller wind speeds make detection harder. The medium wind test case 
produced best results here as well, just like with all other methods tested.
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evant. Normalising the data removes the possibility of a single variable dominating 
the results. This is what happens with the simulation data in the test case as well. 
There is a single variable with significantly larger absolute values than the rest and 
as a result, the resulting graphs pretty much represent the behaviour of that one 
measurement.

average distance to к nearest neighbours, light wind case
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Figure 34: Effects of changes in ice mass on kNN distance for different wind cases 
for normalised data, к is kept constant at 15.

The results for different wind and ice cases are collected in Tables 23, 24 and 
25. In these tables correct iced refers to share of correctly detected iced datapoints 
correct clean means percentage of correctly detected non-iced samples and time to 
first alarm refers to the number of samples between the beginning of icing and 
the first issued alarm. These tables show that the kNN method performs at an 
acceptable level except in the light wind test case. In the other two the detection 
is fast and relatively accurate. The small number of false positive alarms (large 
percentage of correctly detected clean samples) is also encouraging.

When using normalised data the results are slightly different, the absolute values 
of the distance measure are smaller, but overall the detection accuracy is better. The 
results are illustrated in Fig. 34 Also when using normalised data, the method is

о 20 40 60 80 100 120 140 160 180
time

average distance to к nearest neighbours, high wind case
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Table 24: Effectiveness of KNN-based detection for different ice cases in the medium
wind test case.

Ice case Correct iced [%] Correct clean [%] time to first alarm

A clear difference between kNN and other methods discussed here is the com­
puting time required to create the reference dataset. The method described here 
requires calculating the distances between every point in the reference dataset and 
every other point in the dataset. This means calculating the kNN distance N + 1 
times when creating the reference dataset. Here N is the size of the reference

Table 25: Effectiveness of KNN-based detection for different ice cases in the high 
wind test case.

Ice case Correct iced [%] Correct clean [%] time to first alarm

55

able to detect icing in the low wind test case as well, but only for the most severe case 
of icing. Also, the detection accuracy is better for the high wind test cases. This is 
clear evidence that data normalisation does benefit the method rather significantly 
and is useful addition to the detection method, regardless of the added complexity.

Table 23: Effectiveness of KNN-based detection for different ice cases in the light 
wind test case.

Ice case Correct iced [%] Correct clean [%] time to first alarm
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dataset. Other method would require looping through the dataset only once for the 
lookup table. This makes initialising the kNN method significantly slower, but the 
initialisation is a step that needs to be done only once, so the difference is not that 
relevant. [38]

The results for this particular dataset are somewhat promising, but performance 
of kNN seems to be affected by wind speed. This is the same wind speed related 
behaviour that was detected earlier for other methods as well. Detection accuracy 
in all these methods is related to the size of the anomaly and the change in variable 
values is smaller at smaller wind speeds. There exists a ”sweet spot” for all these 
methods: a wind speed range somewhere close to the rated wind speed where these 
kinds of methods seem to work best. Above and below this range the detection 
becomes harder and less reliable.

5.4 Conclusions from the simulation study

When comparing the results from different methods the results are somewhat mixed. 
Overall, each of the examined methods can detect icing in the simulated case. The 
real differences come from the overall robustness and stability of the examined meth­
ods: How well these methods work on different ice cases and even different wind 
distributions?

The behaviour is similar in all cases, methods work better at wind speeds some­
what below the rated speed. More severe icing produces a larger response in the 
control charts or other measures. Normalising the data produces better outputs 
in all analysed cases as well. Normalisation makes it easier to compare the rela­
tive impact of different measurements on the final control chart and it removes the 
requirement of analysing the units used to save a variable.

The detection accuracy of different methods is plotted in Figs. 35, 36 and 37. 
All figures represent the detection accuracy of different methods in different ice 
cases for a certain wind distribution. Generally it seems that the MEWMA control 
charts work well in all cases, even though it is more or less the simplest method to 
implement. It seems to be the only method that works well in all test cases.

It seems that detection accuracy in these simulations is a very visibly related to 
wind speed. The medium wind test case produces best results overall, and even in 
the higher wind tests the performance of the CUSUM control charts is rather good. 
The kNN and PCA methods and the MCUSUM control chart have serious problems 
with ice cases 1 and 2. Only in the best-case scenario (the medium wind test case) 
are these two able to capture more than half of the icing incident in these two ice 
cases. The performance in ice case 3 is at a comparable level in all wind scenarios.

There does not seem to be a significant difference between symmetric and asym­
metric icing. Asymmetric icing is slightly easier to detect and there is a slight 
difference in e.g. control chart values between symmetric and asymmetric case 
(asymmetric is without exceptions worse). But the differences are rather small. The 
methods used here monitor changes in the variable values and based on this the 
difference in ice distribution does not affect the result too much.

The detection speed is calculated as samples between the start of icing and the
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Correctly detected icing events in the light wind
test case

100
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■ CUSUM

■ MCUSUM

■ PCA

■ kNN

Figure 35: Detection accuracy of different methods in different ice cases. Ice cases 
defined in table 1, s refers to symmetric icing a to asymmetric.

first issued alarm. These are shown in Figs. 38, 39 and 40. Generally all methods 
perform in a relatively similar way, but PCA seems to always be the slowest of the 
bunch in all cases and the MCUSUM control chart and kNN methods do not 
to work very well in the light wind test case.

Both multivariate control charts require that the variables are picked manually 
beforehand in a way that the variable matrix only contains variables that are actually 
affected by icing. This needs to be done in order to avoid ending up with a covariance 
matrix that is too close to singular. A singular covariance matrix would make 
calculating the multivariate control charts impossible because the inverse of the 
covariance matrix does not exist in (14) and (16). This is caused by existence of 
measurements not affected by icing in the data.

The univariate CUSUM charts go a step further. Both of the charts detect only 
differences in one direction: SX reacts to increases in variable mean and 5) reacts 
to events where variable mean is less than the reference value. Successful detection 
requires if values used for these charts are picked according to expected behaviour.

The false positive results observed in the simulation case were mostly a result of 
slower than required recovery. Meaning that the ice alarm stays on after the icing 
incident had ended, this could also be a feature of the dataset, because the changes 
in the ice mass were sudden steps. On the other hand missed detections were almost 
entirely, with few exceptions due to a delay between the start of icing and the first 
alarm. After the alarm was activated, it mostly stayed on until the icing event had

seem
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Correctly detected icing events in the medium 
wind test case
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Figure 36: Detection accuracy of different methods in different ice cases. Ice cases 
defined in table 1, s refers to symmetric icing a to asymmetric.

ended.
Other methods discussed here do not require manual variable selection, making 

these methods easier to implement. Performance of kNN methods does improve, 
when redundant variables i.e. variables not affected by icing are removed. Not 
requiring variable selection means that it is possible to implement the detection 
method by simply using all available measurements as inputs. PCA will do the 
variable selection mathematically, but the number of principal components needs to 
be adjusted when variables are added.

The complexity of the chosen method does affect the usability of the methods. 
The control charts are rather straightforward to implement and fast to use in differ­
ent environments; using PCA requires some advance preparation and the added step 
of the principal component generation. Using PCA-based detection in practice also 
means that every time the reference dataset is updated, the principal component 
scores need to be updated as well. This adds an additional level of complexity and 
an extra step in the implementation. The biggest issue in using kNN based detec­
tion as described here is the slowness of the reference dataset creation. Every time 
a new set of measurements is added to the reference dataset, the method needs to 
calculate the distance to every other point in the dataset. As a result the addition 
of new data will become significantly slower as the reference dataset grows.

The tests with simulated dataset show that detection is possible using any of 
these methods. There are differences in accuracy, speed and overall usefulness, but
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Correctly detected icing events in the high 
wind test case
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Figure 37: Detection accuracy of different methods in different ice cases. Ice cases 
defined in table 1, s refers to symmetric icing a to asymmetric.

they all seem to work. On the other hand it is hard to say how well these methods 
will work in real life scenarios, because the simulation data has very little noise and 
is overall very well organised.



Time to first alarm in the medium wind test
case
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Figure 39: Detection speed of different methods in different ice cases. Ice cases 
defined in table 1, s refers to symmetric icing a to asymmetric.
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Figure 38: Detection speed of different methods in different ice cases. Ice cases 
defined in table 1, s refers to symmetric icing a to asymmetric.
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Time to first alarm in the high wind test case

Figure 40: Detection speed of different methods in different ice cases. Ice cases 
defined in table 1, s refers to symmetric icing a to asymmetric.
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Figure 41: Generator power vs. wind speed in the raw measurement data (left) and 
the final reference dataset (right).

In this Chapter two potential icing incidents are picked from the data to illustrate 
the performance and accuracy of different methods and to highlight possible issues 
these methods might have in detecting the icing incidents.
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6 Case Study
In order to test the performance of these methods in real world usage, a case study 
with real turbine data was conducted. The test case data was collected from a multi 
MW turbine in northern Finland over 2010-2012. There was an ice sensor mounted 
at the top of the nacelle, but the ice sensor data is only available for the final year 
of the data.

There are fewer available measurements in the real data than there were in the 
simulations. The available measurements in this dataset are generator power and 
rotational speed, blade angles, outside temperature and wind speed and direction. 
All measurements in this set are ten minute averages. This set of measurements is 
enough to test whether the methods described earlier work in real world scenario or 
not.

The data was divided into two sets according to temperature: a warmer reference 
set and a colder set that was used as a detection target. The most obvious outliers 
were removed from the reference dataset beforehand to ensure a more reliable per­
formance. The filtering is demonstrated in Fig. 41, most obvious outliers were 
removed to ensure slightly better detection accuracy. This kind of outlier removal 
was only done to the reference dataset. The reason for limiting the pre-processing 
data clean-up to the reference dataset was to avoid the possibility of filtering out 
possible icing incidents.

raw dataset: 15792 samples cleaned dataset: 15693 samples
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Figure 42: Potential icing incident in test data

Icing incident

An example incident that was detected by several methods is illustrated in figure 
42. The behaviour of process variables is similar to predicted. When comparing to 
standard behaviour at the same wind speed generator power and generator speed 
and pitch angle have all dropped below their nominal values. The whole incident 
starts at time point 9530 and at the same time there is a very sharp drop in outside 
temperature (see figure 43). The event lasts approximately 20 hours. The event is 
marked at the beginning by a very obvious drop in temperature. The temperature 
itself is abnormally low, in general icing incidents are more common at temperatures 
closer to 0 ° C.

This event is visible when running the data through all the different methods 
described earlier. It causes a rather significant disruption in all control chart vari­
ables illustrated in figure 44. In all cases it takes several hours before any of the 
charts issue a warning. This is mostly related to the relatively light wind speeds 
at the moment of the incident. Once wind speed picks up, the control chart values 
finally cross the warning threshold. This is similar behaviour that was discovered 
in the simulated dataset as well. Detection does not work as reliably on lower wind

6.1
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Temperature during the icing incident
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Figure 43: Temperature and wind speed during the incident in figure 42

speeds.
The recovery period is longer for CUSUM type charts, both of them come down 

to normal levels very slowly. The recovery time is almost as long as the length of 
the abnormality in process values. The recovery time is long, but the chart does 
return to normal levels eventually. Nevertheless, the return time is multiple hours 
in real time.

The PCA output for the same incident is illustrated in figure 45. Here the top 
two graphs display the values of PCA control charts and the bottom chart displays 
the final alarm output. In this case the incident can be assumed to start at 9520 
and end at around 9660. This means that the PCA method is quite slow, the first 
alarm is issued at around 9590, and the recovery period is significantly slower than 
it is for most control charts. Once again, the slowness of initial detection might be 
related to small overall values of the process variables during the early stages of the 
icing incident.

The available data has a ten minute sample rate. Partly because of this the 
detection is significantly slower here than it was in the simulation study. There 
are several factors that can explain this disparity. First, the sample rate in the case 
study measurement data is significantly lower than the sample rate in the simulation
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Figure 44: Control charts for the icing incident. Icing event starts at 9520 and ends 
at 9660.

study and ice detection seems to require a certain amount of measurements that 
contain an anomaly to be collected before an alarm is raised. As a result collecting 
the required amount of anomalous measurements after the icing event has started 
will take longer with the data used in the simulation. This alone does not explain 
the difference observed here. Most likely explanation is that ice accretion occurs 
relatively slowly and changes between concurrent measurements do not change very 
much. In the simulation the change was instant, which results in an unrealistically 
short detection time.

Noticeable in Fig. 45 is that the anomaly is seen a lot sooner in the F-test chart 
which relates to the T2 statistic defined earlier. Issuing an alarm when either one 
of the test statistics is over the line would produce an alarm a lot quicker in this 
particular case. On the other hand it would also increase false positive alarms rather 
significantly.

The к nearest neighbours method detects icing roughly at the same speed as 
PCA, The end of the incident is also detected pretty quickly. Downside to this is 
the somewhat larger number of false positives. One way to address this is to issue 
an alarm only after n consecutive distance measurements are larger than the alarm
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F-test variable and 99 % confidence level
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Figure 45: PCA method output for potential icing incident in test data

limit. Here n > 1, the exact value depends on the noisiness of data and the quality 
of measurements. This makes detection slower (delay is at least n) but it should 
decrease the number of false positive signals given by the method.

The detection happens rather long time after the initial drop in the process 
variable values becomes visible in Fig. 42. This can be explained with the relatively 
low wind speed at the time of the icing incident. There is less data i.e. fewer 
variables available from the real incident than there was for the simulations, which 
makes detection harder. Because of this the icing becomes visible through different 
methods only at a point where wind speed starts to grow, and the drop in values 
becomes more evident.
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Figure 46: kNN method output for potential icing incident in test data

Comparison to ice sensor
For a part of the measurement period, there was an ice sensor located on the top 
of the nacelle. This makes it possible to compare the results of methods discussed 
here and the output of a state of the art ice sensor. The ice sensor does not indicate 
whether or not there is ice on the turbine blades, it only indicates that the conditions 
are right for icing. The ice sensor here measures signal strength in a wire. Ice 
accretion causes the signal to weaken. An alarm is issued if the signal strength 
drops below a predetermined level.

The ice sensor data can be plotted on the same timeline along with various 
control charts and other process data based indicators. There does not seem to be 
a clear-cut incident in this data set where all of the methods described in this work 
would issue an alert at the same time the ice sensor signal drops to a low level. Also 
these incidents do not really go hand in hand with anomalies in process variable 
values like they do in incident illustrated in Fig. 42. This emphasises the difficulty 
in actual icing detection and the need for a more reliable methods.

One incident is pictured in Fig. 47 and 48. The drop in ice sensor signal level is 
an indicator that the weather conditions were suitable for icing. There is a barely 
visible drop in process variable values in Fig. 48. The drop could be interpreted 
as being caused by icing, the conditions were suitable, and the resulting shift is to 
proper direction. The drop is relatively small, which means that it might as well be 
a part of normal variance in data and probably would not be noticeable without the 
ice sensor pointing towards it. There is also a smaller drop around the time point 
1000, where the ice sensor also reacts. There the drop in ice sensor signal values is 
slightly smaller, but very clear regardless.

The ice sensor signal looks the way it does due to the operating principle of the 
sensor. When the sensor is iced badly enough that the signal level drops below a 
warning level, the sensor probe is heated until the signal returns to normal level i.e. 
until all the ice melts. After the ice is melted the heating is switched off. The ice
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Figure 47: Ice sensor output, temperature and wind speed for a time period in test 
data

needs to be frequently removed from the sensor in order to gauge if the conditions 
continue to remain hostile or not. It is after all possible for the temperature to 
remain below zero without a significant icing risk. This heating cycle causes the ice 
sensor output signal to fluctuate heavily under icing conditions.

All the control charts in Fig. 49 do not cause a warning at both times the 
ice sensor reacts, the Si CUSUM chart catches both but MCUSUM chart reacts 
only to the latter event. And the MEWMA chart does not react to either one. 
The common feature between the MEWMA and MCUSUM charts is that both of 
these use the covariance of variables in updating the distance measure. This might 
explain their similar behaviour, interestingly turbine power is significantly smaller 
during the latter incident, but for some reason the first one does not register in all 
control charts. There is an increase in the values of the MEWMA chart, but not 
large enough to raise an alarm. Granted the alarm limit used for MEWMA chart is 
rather arbitrary, but the value of the chart is rather small at this point.

The kNN chart displays that both of the potential incidents are visible as blips 
in the distance measure, but only the latter incident causes an alarm. Here the 
alarm limit is set at 95 % and the reference data cut off limit is set at 90 %. The
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Figure 48: Process variable behaviour for time period corresponding to figure 47

measurements that do cause an alarm are therefore further away from reference data 
than 95 % of the cleaned reference data.

The PCA-based method does not react to the first incident at all, even though 
the ice sensor signal sees a rather massive drop here. It is likely that the relative 
drop in the process variables is not large enough for the PCA-method to pick up. 
It is visible in the F-test variable chart, but the Q-test variable is a flat line at this 
moment in time. Adjusting the number of used principal components does not seem 
to help here. The latter incident is caught And there is an additional blip later on 
at 1240 or so. Primary reason why the latter incident is detected is probably the 
sharp spike in the blade pitch angle measurement visible in Fig. 48. This kind of 
sudden and relatively large anomaly is always easiest to detect.
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MEWMA control chart of the icing incident
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Figure 50: kNN method output for time period corresponding to figure 47
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Figure 49: control charts for time period corresponding to figure 47
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MCUSUM control chart of the icing incident
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Figure 51: PCA output for time period corresponding to figure 47
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F-test variable and 99 % confidence level
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Figure 52: control charts for time period corresponding to figure 47 with the ice 
sensor included in the data.

Here the control charts were calculated using the same parameters as earlier and 
the result is that both the incidents where the ice sensor reacted are now clearly 
visible in all these control charts. In the same way PCA actually causes an alarm in 
both of these cases. The question here if this change in control chart behaviour really

72

Inclusion of ice sensor in to input data
A more refined solution would be to include the ice sensor into the data. This would 
add an additional measurement that is very likely to correlate with actual icing. 
This could increase detection accuracy and stabilise the system. As is clearly visible 
from Figs. 52 and 53, this is indeed the case. The effect of the ice sensor is so 
severe to the CUSUM charts, that the values of charts stay above the warning level 
the entire time between the incidents. This can happen in cases where there is a 
very large anomaly, the valuers of control charts might not return to a neutral level 
very quickly. This is a problem that can be triggered by other incidents as well. 
For example, if the turbine is forced to stop even though it is windy (because of a 
fault or other reasons), CUSUM control charts will jump to a very large value and 
it they might remain above the warning level for hours even after the turbine starts 
to operate normally.

6.3

MEWMA control chart of the data with the ice sensor included
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Figure 53: PCA output for time period corresponding to figure 47, with the ice 
sensor included.

The kNN method behaves in similar fashion as the others. Adding the ice 
measurement on the side helped make the first potential icing incident visible here 
as well. The warnings happen pretty much simultaneously with the changes in 
the ice sensor signal values. It really looks like the ice sensor will dominate other 
measurements if it is added to the dataset, the change from signal in Fig. 50 to the 
signal in Fig. 54 is rather dramatic, even though only difference between the two 
cases is the addition of the ice sensor signal to the dataset. There is also a third 
spike in the kNN signal that was visible in an icesensorless run of the PCA-method 
(see Fig. 51). This does correspond to a small dip in process variables (visible at 
around time step 1180 in Fig. 48) but curiously was not visible until the inclusion 
of the ice sensor in to the dataset.

Generally adding the ice sensor to the process data can be useful and it will

sensor
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is desirable or is it simply reacting to changes in ice sensor values. The shape of the 
ice detector sensor actually helps here as well. Because the ice detector has to melt 
the ice accreted on the sensor surface before it can make an updated measurement, 
the sensor signal resets to 100 often during a lengthy icing incident. As a result the 
variance of the ice sensor signal increases significantly during an icing incident. This 
in turn is easier to detect as an anomaly.

F-test variable and 99 % confidence level
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Figure 54: kNN output for time period corresponding to figure 47, with the ice 
sensor included.

probably increase detection accuracy. There might be issues relating to sample rates 
depending on how the ice sensor is implemented. It is after all a measurement that 
correlates to some degree with icing incidents, even if it is not foolproof. Depending 
on the implementation of the ice sensor, the ice sensor might start to dominate the 
output over other process variables. The sensor used here most definitely seems to 
improve results a lot. But at least the CUSUM control charts and the kNN distance 
measure seem to be

On the other hand using temperature as an additional measurement would not 
work. The basic principle behind all methods described in this work is to build a 
reference dataset during times when temperature is at a safe value, clearly above 
temperatures where icing might be possible. This means that temperature values 
between the two datasets will always be clearly different. Adding temperature would 
not produce any additional information about the state of the turbine.

Conclusions from the case study
The most obvious thing that was visible from the tests with real data is the sheer 
number of alarms. The accuracy of detection using only the data available here is 
not up to par. It is possible to dig out potential icing cases out of the data, but it 
is not a process that could be easily automated. Having more measurements could 
help with the accuracy, especially load measurements would be helpful. The load 
measurements could help because the changes in loads happen to the opposite di­
rection when comparing to generator variables and blade angles. Methods discussed 
here do produce results, but are often triggered by normal variability in the system.

The data required quite a lot of work in order to get it into shape that was 
useful for testing these methods. There were pretty obvious faults in the system 
that were probably not caused by icing but at the same time caused huge issues for 
the detection methods. An example of this is illustrated in Fig. 55.
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Figure 55: A series of faults in the turbine system

The sudden drops in turbine power are caused by some kind of fault in the 
system, that causes the turbine to shut down momentarily. Theses spikes in the 
data cause massive spikes in the control charts. It will also take a long time for 
the control charts to return to normal levels, because the change is so large and so 
quick. These spikes not only cause false alarms, but these false alarms can easily 
stay on for hours at time, even if there is nothing out of the ordinary happening 
in the system. Because faults cause such huge problems to control charts, knowing 
the turbine state is beneficial when using the methods described here. Knowing 
the turbine state would help ignore faults detected by the turbine control system 
and it would help ignore the large spikes in control charts these sudden changes in 
turbine values cause. Easiest way to cope with faults would be to suspend detection 
completely for the duration of a fault.

Putting all the pieces together, these methods do seem to work in a controlled 
environment, but the separation of icing from other events needs work. Currently 
these methods can act as a guideline or a starting point for search of icing events, 
but results are not conclusive and manual work is still needed in identifying and 
analysing interesting parts of the data. The methods do not reliably flag the events 
just yet, additional work is needed in order to increase detection accuracy.

Curiously enough the differences between the methods when analysing real data 
differ from the simulation study. Especially in the first icing incident PCA perfor­
mance is comparable to all the control charts: all methods produce an alarm at 
roughly the same time. In all cases the different CUSUM charts also seem to also 
perform at a level comparable to MEWMA chart or better even in cases where the 
difference between the reference and the measurement is pretty small. Granted, all 
the cases studied do appear to reach the same wind speeds that seemed to work best 
in the simulation study as well.

In the first case shown here the kNN-based method reacted a lot slower than all 
others, and in the second case only reacted mildly once. The surprising slowness in 
the first example case is harder to explain what causes this slowness in this particular
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case since other methods seem to work and the detection speeds of kNN seem to be 
line with others in the latter test case.

The differences between different methods seem to be less predictable when using 
real data. The produced results seem to vary from case to case. A solution to this 
could be to run several methods side-by-side and issue an alarm only when multiple 
methods give out a warning. For different control charts this could be an easily 
implementable solution.

A big problem in analysing the effectiveness of the methods discussed here is the 
fact that the data used is collected blindly, there are no verified icing events in the 
test data set. There are events that look promising and there are warnings issued 
by the ice sensor, but these are all just likely events, there is no real certainty in 
this.
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7 Conclusions and future work
The results here show that the methods discussed work very reliably on controlled 
data. The results of the simulation study are very good and all the methods in­
troduced do produce good results there. The detection accuracy of most methods 
seems to be related to the wind speed, with the best results coming from the medium 
wind test case, where wind speeds of the iced part of the data mostly stay below 
the rated wind speed of the simulation model. Detection does not work as well at 
lower wind speeds mostly due to the fact that all the variables observed do not differ 
from the reference at the wind speeds used in the low wind test case (see blade root 
moment in Fig. 22).

With the simulation data, across all datasets, the exponentially weighted moving 
average control chart performed the best. Additional good feature of the MEWMA 
control chart is the fact that it seemed to perform well without requiring wind speed 
specific tuning unlike other control charts.

When operating on real data, the control charts seem to produce better results 
as well, even though the difference is not as clear. Evaluation of performance in the 
case study is somewhat difficult, because of a lack of certain ice cases in the data. 
The most obvious looking incidents are caught by all methods but they all produce 
some false positive detections and some potential icing incidents are only caught by 
some of the methods.

With the real data, the control charts seem to be the best approach as well. Here 
the difference between MEWMA and different CUSUM charts is not as clear. This 
might be related to the fact that there were more measurements available in the 
simulation study: there were no load measurements included in the case study. The 
difference between detection accuracy might not be as evident because of this, after 
all the loads are often the variables that make the biggest difference in detection 
accuracy.

The excessive number of false positives or suspicious detections in the real data 
test case makes it hard to declare these methods useful just yet. There is still work 
that needs to be done in order to improve the overall accuracy of these methods. 
This could mean adding measurements or adding different statistics into the input 
data. Right now the only data used is the mean values from a time series. It 
might be smarter to incorporate some higher order statistics into the methods as 
well. For example studying the behaviour of variable standard deviations might 
produce interesting results. On the other hand for strongly fluctuating signal like 
accelerations or loads the arithmetic mean might not be the best way to represent 
the signal value. Results might be better if the methods were modified to look at 
changes in RMS values.

The behaviour of fatigue loads in an iced turbine needs to be examined outside 
of a simulation. This could perhaps be the next logical step if suitable dataset is 
found.

Another pressing concern in the quality of input data. There is a very real 
demand for some kind of filter for input data so that obvious outliers generated 
by measurement errors or faults in the system can be removed from the data first,
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before affecting the detection results.
Also wind turbine behaviour is always affected by its surroundings. Buildings, 

vegetation, landscape and most importantly other wind turbines have a noticeable 
effect on turbine performance. Wind direction needs to be taken into account some­
how in order to get a detection method that works in a real world environment as 
well.
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