
User Plane Scheduling Algorithms
in 5G SOCs

Ahmed Salman

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 13.3.2021

Supervisor

Prof. Jussi Ryynanen

Advisor

MSc Anssi Saari

Copyright © 2021 Ahmed Salman

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Ahmed Salman
Title User Plane Scheduling Algorithms in 5G SOCs
Degree programme Electronics and electrical engineering
Major Micro- and Nanoelectronic Circuit Design Code of major ELEC3036
Supervisor Prof. Jussi Ryynanen
Advisor MSc Anssi Saari
Date 13.3.2021 Number of pages 50+1 Language English
Abstract
While 5G mobile network has received much attention due to the need for faster,
more reliable, and more secure mobile communication. 5G uses cases have infiltrated
every aspect of both daily and working life. Consequently, Multiple technologies such
as Network Function Virtualization (NFV) and Software Defined Networks (SDN)
have been introduced to cope with the increasing user requirements.

As a result of NFV and SDN, The networking elements moved from the traditional
network element such as routers and switches; to virtualized network elements
implemented on computing platforms such as ARM or x86 CPUs. However, the rate
of the network packet processing increase is much faster than the rate of performance
increase in CPUs, especially with Moore’s lawes reaching its end.

Hardware acceleration of network functions especially packet-scheduling, has
recently become the main solution for the gap between the performance that CPUs
offers and the required processing speed for network packets. On the other hand,
software frameworks such as Open Data Plane (ODP) simplify the task of getting the
network application running on these different platforms. As ODP offers a unified
programming interface for high performance data plane network applications.

This thesis aims to evaluate packet-scheduler feasibility as part of the future Nokia
chipset to fulfill 5G requirements by implementing a prototype of the OpenDataPlan
(ODP) scheduler. The chipset needs to achieve high performance while maintaining
a small size, low power, and low price. Then, this thesis will compare various s
trade-offs, including the number of queues, priorities, scheduling algorithms, and
memory type, either internal or external.
Keywords Scheduler, System on chip, 5G , SoC

4

Preface
I want to thank my mother and father,and I want to thank my team at Nokia
Petri,Sarri and Mona and my supervisor Ryynänen Jussi for their support.

Otaniemi, 13.5.2021

Ahmed Salman

5

Contents
Abstract 3

Preface 4

Contents 5

Definitions & Abbreviations 7

1 Introduction 8
1.1 Background . 8
1.2 Motivation . 9
1.3 Goals and contributions . 9
1.4 Implementation . 9
1.5 Structure . 10

2 5G Mobile Systems 11
2.1 5G Use Cases . 11
2.2 5G Architecture . 12
2.3 Software-defined Networking (SDN) 15
2.4 Network Virtualization . 15
2.5 Quality of Service . 18

3 Packet Scheduler 21
3.1 Packets Processing . 21
3.2 Classic Switches and Routers . 22
3.3 Open Data Plane . 22
3.4 Data Plane Development Kit . 24

4 Hardware Accelration 25
4.1 FPGA . 25
4.2 Hardware Design Process . 26
4.3 AXI 4 . 28

5 OpenDataPlane 29
5.1 Classifier . 30
5.2 Input Queue Implementation . 31
5.3 Plain Queue . 32
5.4 Scheduling agent . 32
5.5 Synchronization . 34

6 Results 36
6.1 Instruction Decoder . 36
6.2 Input Queue . 37
6.3 Synchronization Agent . 37
6.4 Scheduling Agent . 39

6

6.5 Random Selection . 42
6.6 Configuration . 42
6.7 Conclusion . 44

References 47

7

Definitions & Abbreviations

Abbreviations
3GPP 3rd generation partnership project
5G Fifth Generation Mobile System
API Application programming interface
ASIC Application specific integrated circuit
CPU Central processing unit
DMA Direct memory access
EB Exabyte
FPGA Field Programmable Gate Array
PDU Protocol Data Unit
RAN Radio Access Network
SoC System on Chip
TCP Transmission Control Protocol
UDN Ultra-Dense Networks
UDP User Datagram Protocol
UPF User Plane Function
VM Virtual Machine

8

1 Introduction

1.1 Background
During the past decade, the 5G mobile network has received much attention due to
the need for faster, more reliable, and more secure mobile communication. Further-
more, applications, such as remote surgeries, massive IoT, 3D videos, and virtual
reality, have continued to challenge the capabilities of the current networks. More-
over, global mobile data traffic will reach approximately 226 EB per month by 2026
achieving more than 4 folds growth [1]; in addition, as the price of the cheapest
phone supporting the 5G sub 6 GHz band has fallen below the 300 US dollars mark,
the number of users has proliferated and thus the demand on 5G networks. By 2026,
approximately 54 percent of the word mobile data traffic will be 5G traffic [2]. 5G
Mobile networks offer multiple capabilities to serve these future needs: [4]. The
first notable capability is enhanced mobile broadband which provides high-speed
internet connections up to 10 Gbs. The second concerns ultra-reliable and low latency
communication; that provide the user with more certainty regarding different aspects
of the network, such as throughput. Massive machine-type communication is another
noteworthy feature; this is an essential requirement for the emerging IoT devices
that need to be small, cheap, and use minimal power.

5G mobile networks have implemented multiple enablers to achieve these goals.
One of these concerns the virtualization of 5G RAN. Network virtualization consists
of two parts: Network Function Virtualization (NFV) and Software Defined Networks
(SDN). Separating the software and hardware parts of the network and splitting the
control and user plane increases the flexibility of the network as changing or adding
new functions only updates the software. Additionally, the SDN allows wireless
infrastructure-sharing among multiple operators and capacity-sharing between differ-
ent network parts. Network virtualization moves from the traditional core network
(e.g., switches and routers) towards the RAN [5].

Although network virtualization has many benefits, many technical challenges have
arisen from this evolution, especially scheduling among the processing cores that
run the software and other hardware parts. Resources must be carefully allocated
to achieve the same performance as traditional networks. The demand difference
between latency, bandwidth, and reliability in content-aware scheduling is consider-
able. Consequently, scheduling the packets between nodes with quality of service
(QoS) requirements is critical with high demanding applications. As single processors
processing power doesn’t satisfy the networking requirements, parallel processing
and hardware acceleration are becoming increasingly attractive due to the parallel
nature of the network traffic [6].

9

1.2 Motivation
This thesis was conducted for Nokia Solutions and Networks Oy from August 2020 to
February 2021. Nokia develops 5G HW and SW aiming to deliver ultra-low latency,
massive connectivity, extreme capacity in 5G hardware. To meet these requirements,
5G networks need to be highly versatile and change their architecture to support
a vast range of services. Nokia develops commercial end-to-end 5G solutions that
enable operators to capitalize early on 5G, such as Nokia’s AirScale Radio Access,
which delivers vast capacity and connectivity required as the network moves towards
5G IoT [7] . Part of Nokia’s AirScale Radio Access is the Nokia ReefShark chipset
for 5G Baseband which delivers up to 84 Gbps per system module. With multiple
modules chained, it can reach throughputs of up to 6 terabits per second [8].

Different hardware IPs in the baseband modules have been developed resulting
in substantial improvements and hardware acceleration to support even more band-
width and better quality of service [8], while simultaneously reducing the size, cost,
and power consumption yet still ensuring that they meet 5G requirements. Due to
the high cost of deploying the 5G networks, telecommunication companies need to
ensure that the radio network can meet user requirements for more than a decade,
which requires anticipation of future demands, especially for the hardware modules
that depend directly on the application, such as the packet schedule.

The 5G network supports multiple different applications with a different quality of
service requirements, from IoT to real-time media service for thousands of clients to
more critical applications such as remote surgeries. The network needs to process
incoming packets as fast as possible without affecting any critical QoS, including
packet loss rate, deadline, and delay variance therefore, hardware acceleration for
packet scheduling and processing occupies a central role in the quality of service
provided for the user [6].

1.3 Goals and contributions
This thesis aims to evaluate packet-scheduler feasibility as part of the future Nokia
chipset to fulfill 5G requirements by implementing a prototype of the OpenDataPlan
(ODP) scheduler. The chipset needs to achieve high performance while maintaining
a small size, low power, and low price. Then, this thesis will compare various s
trade-offs, including the number of queues, priorities, scheduling algorithms, and
memory type, either internal or external.

1.4 Implementation
The hardware architectural design was implemented for ODP packet scheduler using
Very High Speed Integrated Circuits Hardware Description Language (VHDL). VHDL
is a language for describing digital electronic systems which is standardized by IEEE
as IEEE Standard 1076 with the first standard version being VHDL-87 [9]. However,

the VHDL-93 revised version is used in our implementation. Hardware Description
Languages (HDL) ease the hardware designer’s work by providing another level
of abstraction instead of transistor-level design, higher abstraction levels such as
gate-level, register-transfer-level (RTL), and processor-memory-switch- level. This
helps save money and time to market, especially with the current designs that contain
billions of transistors. HDLs are used to describe either the structure of the digital
circuit uses transistors, gates, and RTL blocks, or it describes the digital circuit using
a behavioral model, which is then translated into a netlist by the synthesis tools.
In Application-Specific Integrated Circuit (ASIC) Design, the netlist is mapped
to gates standard-cells in the manufacturer’s technology file. In the case of Field-
programmable gate array (FPGA), the netlist is used for FPGAs to generate the
programming file configuring the interconnection and logic of the FPGA fabric.
FPGA implementation is used to evaluate the packet scheduler implementation
feasibility and compare different parameters for priority levels, the number of groups,
and memory size.

1.5 Structure
The thesis is structured as follows: Chapter 2 introduces the overall architecture
and use cases of the 5G networks, as well as the improvements offered by the 5G
networks to tackle each use case, then describes network virtualization in 5G. Chap-
ter 3 describes the scheduler design, Classic switches and router, then lists multiple
scheduling algorithms and reviews OpenDataPlane-based scheduler implementation
used in many state-of-the-art 5G L1 SoCs. Afterwards, Chapter 4 discusses the
scheduler implementation methods by comparing the software versus hardware-
accelerated implementation. Chapter 5 evaluates the feasibility of the scheduler
implementation and presents the scheduler prototype implementation. Finally, Chap-
ter 6 presents the conclusion for the thesis and explores possible future improvements.

11

2 5G Mobile Systems
5G is the fifth generation of mobile networks specified in the 3GPP standard. 5G
specifications are set in continuous releases gradually improving different aspects of
the mobile network with multiple releases over a decade starting from Release 14 in
2016. Figure 2 shows the evolution time plane for the 5G network implementation
starting from providing higher bandwidth speed in 2017 to full 5G eco-system after
2022 including massive IoT, low latency and high reliability network[10]. With the
global traffic expected to reach 160 exabytes per month by 2025 [11], 5G is designed
to handle this increase, and it was the main focus of its first releases. Currently,5G
can be commercially deployed at both sub-6 GHz and mmWave frequency bands.

In this chapter, we will discuss the uses cases for the 5G. Then we will discuss the
multiple technology enablers that are introduced in different releases to achieve the
required performance for these use cases.

Figure 1: NR evolution time plan[12].

2.1 5G Use Cases
5G mobile communications provide the means to open a new unprecedented applica-
tion that affects every aspect of daily live,such as video streaming services with Ultra
High Definition (UHD) and three-dimensional (3D) videos as well as Augmented and
Virtual reality, which require fast internet speed and online meeting, besides online
gaming which requires ultra-low latency. A. In addition, it concerns every aspect
of working life with the need for remote computing, mobile cloud/desktop cloud,
and broadcast services. In addition to participation in more critical applications,
such as remote surgeries; 3D connectivity which includes aircraft and drones; and
collaborative robots.

IoT applications have added more value to the mobile communication network
concerning multiple applications in almost every industry, with tens of thousands
of connections required between tens of thousands of small smart devices with low
latency and small power. 5G mobile communication supplies the necessary capabili-
ties to achieve these extreme requirements.

12

When mobile networks were started, the main mobile network functionality was to
connect cellular calls. The wireless data connection gradually became a primary part
of the mobile networks. IoT has presently expanded the scope to not only include
interconnections between IoT devices, but also intrinsic support for IoT-based ap-
plications in the network. This support in turn provides the capability required for
multiple applications that affect daily living standards as these applications infiltrate
every corner of our lives. These applications include mobile health, Internet of
Vehicles (IoV), environmental monitoring, smart homes, and industrial control Indus-
trial Automation. IoT applications are spread among different fields, such as smart
grid, environmental monitoring, smart agriculture, smart city infrastructure, traffic
Management, sensor networks, and remote surgery. Another central application is
Automotive driving that will use 5G to produce a much better autonomous driving
experience; one other key application is industrial control with machine-to-machine
communication.

5G specification consists of multiple requirements to serve the wide applications
that 5G intends to support. First, Enhanced Mobile Broadband is the main fo-
cus of the average user [3] and the primary upgrade offered by 5G and the first
to be released. 5G offers an improved performance and an increasingly seamless
user experience. Secondly, Ultra-Reliable and Low Latency Communication focuses
on providing throughput, latency, and availability required by critical applications.
Such as factory automation, smart grids, traffic managements, remote surgeries etc.
Thirdly, Massive Machine-Type communication supports a vast number of low-cost,
extended battery life and transmits a relatively low volume of data with flexible
delay constraints. Other specifications have been defined and such as vehicular
communication, wireless-wireline convergence, network slicing, network automa-
tion, enhanced MIMO, time-sensitive communication, cloud gaming, NR-Unlicensed
(NR-U), reduced-capability NR devices and private networks. [4].

2.2 5G Architecture
As shown in Figure 3, 5G mobile networks connect devices at the area of coverage.
These devices include traditional devices such as phones and tablets; and other
devices that have been newly targeted by mobile networks in 5G, such as cars and
wireline-wireless coverage. The mobile network consists of the Radio Access Network
(RAN) and the Mobile Core. The RAN is the final link between the network and
the phone. It includes the antennas on the towers plus multiple base stations. The
antenna receives the signal from devices then, is sent to the base station, after which
the base station sends it to the mobile core network.

Each part of the network has a distinctive rule. The RAN manages the radio
spectrum, ensuring it is efficient and meets every user’s quality-of-service require-
ments. While The core provides access controls ensuring correct authentication for
the users and correct routing for calls and data by providing Internet IP connectivity;

13

Figure 2: NR evolution time plan[12].

it also enables mobile network operators to charge for phone calls and data usage,
as well as connects users to the Internet. It also responsible for handovers as users
move from coverage provided by one RAN tower to the next securing uninterrupted
service [15, 14].

Figure 3: Cellular networks consists of a Radio Access Network (RAN) and a Mobile
Core.[14].

14

Figure 4: Software Defined Network and Control & User Plane Separation [16].

The Radio Access Network is responsible for receiving the wireless signal and
connect the device to the core network. 5G has stringent latency requirements with a
minimum of 4ms and going as low as 0.5ms in 3GPP target specifications for ultra-low
latency applications.The 5G user plane is required to independently scale without
any change to the control plane to efficiently handle the increased data traffic. The
separation between the user plane and control plane offers a flatter, centralized, and
more user-centered network which leads to ultra-dense networks working efficiently
even in the most difficult deployment scenarios.

The user plane is the part of the network that receives and sends packets from
an interface and does the required processing, delivering, dropping, or forwarding of
these packets [17]. The 5G user plane interface is the link between the 5G-RAN node
and the UPF to transmit different network packets such as UDP and TCP between
the NG-RAN node and the UPF [18]. Then, the UPF is responsible for Forwarding
traffic between RAN and the Internet. Also, it manages policy enforcement, traffic
usage monitoring & reporting, , lawful intercept, and QoS policing [4].

The control plane is responsible for user connection management, defining QoS
policies,and performing user authentication. The control plane is also responsible for
packet routing, using control packets which describe the network topology to correctly
route the actual data packets in the user plane. The control packets are handled in
the control plane as they are different from the data packets. Although the control
packet consists of a small percentage of the traffic, it uses complex signaling protocols,
leading to high latency and low performance if they are handled together with the
data packets. After parsing the control packets, the control plane can update the
data plane information and inject signaling packets into the data plane [19].

15

2.3 Software-defined Networking (SDN)
Software-Defined Networks [20] is an emerging architecture closing the gap between
IT operation and network operation. SDN is used to design, build and manage
networks to achieve dynamic, manageable, cost-effective, autonomous, operationally
efficient, and adaptable networks. It consists of three different items: SDN separates
the network control from the network data plane, such as switches and routers.
Secondly, the control plane can be programmed separately, which offers greater
flexibility in reconfiguring the network to match user requirements. SDN also safe
time by reconfiguring in the software level instead of the hardware level.

Network reachability is one of the main challenges in mobile networks. Each new
node or service used to require updating the IP allocation, bandwidth allocation,
policy openings and routing changes in every router and every switch in traditional
networks. In traditional networks, traffic moves through multiple switches and
routers to reach its destination. Each router or switch decides the place to which
to send the traffic depending on its routing table, this results in the rerouting task
or adding of a new node lasting several hours or days. As shown in Figure 5,SDN
centralizes the control plane, which allows the application and network services to
directly program the network. turning the task of adding nodes or services into
one that only demands seconds. Furthermore, having a centralized control plane
increases the network’s efficiency and reliability as the router in the traditional
network only makes decisions based on its routing tables as well as the router avail-
ability and switches adjacent to it. In the SDN control plane, the decision depends
on the end-to-end topology of the networks achieving the best efficiency and reliability.

Software control of the network renders the network more agile and flexible as
it allows it to meet the dynamic requirements with software routing algorithms.
The programmable networks allow the operators to support applications, such as
dynamic provisioning of bandwidth, automatic scale-out, automatic scale-in, building
protection paths, and adding a new service and nodes to live networks. It also ensures
the QoS at any user requirement level. Consequently, SDN is used for reconfiguration
and real-time management of the complex network.OpenFlow protocol is one of the
main parts of SDN followed by most vendors as it provides a standardized interface
between the control plane and the data forwarding plane. SDN uses a net- work
controller through OpenFlow to define the behavior of the networking infrastructure
and operation, which allows remote configuring of the packet forwarding tables.

2.4 Network Virtualization
The 5G System architecture consists of multiple network functions (NF) such as
Authentication Server Function (AUSF), Access and Mobility Management Function
(AMF) - Data Network (DN), Network Repository Function (NRF). These functions
and their interfaces are defined in the 3GPP specifications. A network function can

16

Figure 5: Traditional hardware-based network versus. Software Defined Networks
[12].

17

be implemented as a software instance running on dedicated hardware, which requires
proprietary hardware equipment to implement these network functions. Traditional
mobile core networks have suffered from slow time to market and costly over-head
when cellular operators have tried to replace network functions or add new services.
It requires replacing the existing hardware and buying an expensive replacement
even if it is still working efficiently for most use cases, in addition to requiring skilled
professionals to integrate. The decision to scale the network or add a new service
is not an easily made one for the operators. Therefore, all these factors slow the
development cycle.

Instead, NFV allows the network function to be virtualized and instantiated on
multiple platforms, such as the cloud computing services. Although SDN and NFV
are usually confused with one another, both SDN and NFV can be separately imple-
mented. Network functions can be deployed and virtualized without the need for a
software-defined network, although using both SDN and NFV effectively decouples
network functions. Routing decisions in routers and switches are transformed in a
centralized network function at remote network servers or in the cloud through a
standardized interface, such as OpenFlow as shown in Figure 5. The result is a highly
flexible, fast, adaptive reconfiguration of the network. Furthermore, cloud abstraction
provides guaranteed content delivery and cost minimization for the operator. It
also reduces power consumption through equipment consolidation. It shortens the
operator cycle of innovation thus reducing processing time [21], rendering the network
more intelligent, resilient, and scalable. It also provides the carriers with distribution
flexibility as they add or remove hardware resources as needed, eliminating perfor-
mance bottlenecks and idle resources.

The virtualization of the network resources on the cloud ensures service reliability
and stability. It eliminates local resource failure threats with backup in multiple sites
and reduces the total cost of ownership (TCO). Network operators can explore new
markets for their business and use various new services offered by the 5G networks.
The carriers can provide extra services, such as online gaming, 3D videos, augmented
reality, Massive IoT, and more at request, which is due to SDN and NFV [20]. This
provides an additional source of earning for the carrier as there is a limit to what
the carriers can accumulate on the regular data and call subscription, rendering it
financially unviable as 5G deployment is expensive and requires ultra-dense network
nodes to provide an ideal user experience. 5G fuels the launch of innovative services in
different fields to generate new revenue. Telecommunications, energy & utilities, agri-
culture, automotive, banking, media & entertainment, and consumer electronics are
expected to participate more in the revenue and have a much more significant share
than regular data and calls subscriptions. 5G market mainly depends on IT and tele-
com. However, by 2020 5G services contributed with more than 24.5% of the market.
other services are expected to surpass it during the next decade, as shown in Figure 6.

Network function virtualization also improves network service provisioning flexi-
bility and reduces the time to market new services, which is a significant advantage

18

Figure 6: Vertical 5G Revenue Growth Opportunities [22].

to operators. General-purpose servers, such as Amazon’s EC2, and off-the-shelf hard-
ware, such as storage and switch, can be used as the building blocks of the network
functions. This became possible as NFV separates the software implementation of the
network function from the underlying hardware platform [21]. The use of separate
software instances instead of hardware opens new ways to architect the network to
provide faster networking service provisioning using network function virtualization.
Network functions are implemented on servers through software virtualization tech-
niques and supported by technologies such as Docker and Kubernetes. Carriers can
acquire these new servers from providers on-demand, Less money and time are spent
as no installation of new equipment is required. These servers can be integrated with
other network parts quickly. Network operators may implement a software-based
virtual firewall, vEPC (Virtual Evolved Packet Core) function, or any other network
function. The network functions can be implemented using virtual machines (VM)
on an x86 or ARM platform with a general-purpose processor-based platform. NFV
is a step to lower-cost agile network infrastructure that brings many benefits to users
and carriers [21]. NFV has a massive effect on the telecommunication industry as
it reduces capital investment and energy consumption by eliminating the need to
buy networking devices and decrease the time to market a new service shortening
the average innovation cycle. The development becomes based on software-based
service deployment instead of dedicated hardware. Hence, Operators can provide
personalized and targeted services to satisfy the customers’ needs.
.[22].

2.5 Quality of Service
Communication networks has multiple types of traffic. Data traffic and mails are not
delay-sensitive. But voice and video are real-time, so it requires a specific quality
of service. Also, applications such as IoT, mobile broadband internet, autonomous

19

driving, remote surgeries, and machine to machine, some services like broadcasts
require real-time and demand minimum delay. The best-effort delivery model can
cause random delays or drop packets, or do not arrive in order. This results in bad
video quality, video and audio out-of-sync, pausing, or choppy videos. Also, audio
can be distorted, or voice breakups [23].

First, there are three main problems. The first problem concerns the lack of band-
width when the bandwidth is surpassed, packets are dropped, and the solution is
to increase the bandwidth, which isn’t always possible; therefore, QoS policing and
queueing is discussed later. The second one is the latency and jitters, with a latency
of 4ms target of 5G, primary sources of latency are propagation delay, processing
delay, and queueing delay. The final and third is that packet loss happens when the
input buffer size is exceeded. This can be fixed by introducing queueing, but this
can cause jitters, also implementing traffic policing by dropping low-priority packets
or traffic shaping by delaying queues [24][25][26].Implementing QoS is essential to
increase spectral efficiency and reduce the latency. QoS implementation is split into
three steps. First, identify the traffic and its requirements. Secondly, it defines the
classes with similar priority, finally determining the QoS for each class. Classes can
be defined as such with voice being the highest priority, then video, then after that
is data services applications, followed by best effort application, such as emails, then
less critical applications, such as torrent.

QoS has three modes. The first is the best effort, which means QoS is disabled,
and the best-effort model is used instead. The best-effort model is similar to the
traditional internet, in which the network cannot classify the type of data transmitted.
Secondly, the guaranteed flow bit rate (GBR QoS Flows) or integrated services for
which the application signals to the network that it requires special treatment. The
third one uses differentiated services with a non-guaranteed bit rate (non-GBR QoS
Flows). The network identifies the classes with similar QoS requirements and applies
the related QoS level, rendering it very scalable. However, it does not guarantee a
specific treatment for the packets [18]. Classification of the classes can be in either
layers 2, 3, or 4 of the protocol, or in the parameters, such as COS (class-of-sevice
bits) or Source and destination IP addresses or protocols, including TCP or UDP.

Congestion can occur anywhere in the network in which there is a speed mismatch
between input and output. The overflow of arriving traffic can be handled by queuing
algorithms and then choosing from the queue depending on the priority. Congestion
management inserts packets in queues and then schedules them for transmission
when the output buffer is ready to transmit them. Queue temporarily stores the
packets until either they can be scheduled to transmission or queue drop packet
when the queue is full. Packets in software-defined networks are mapped to queues
depending on multiple factors. First, the protocol they belong to, such as UDP and
TCP. Secondly, the priority requirements, and finally the ordering requirements.

Queueing algorithms include FIFO (First In First Out), priority queueing, round-

20

robin, and weighted round robin. FIFO is the most straightforward queuing al-
gorithm as it just adds data to the FIFO, all software queues are mapped to the
same hardware queue. Secondly, priority queuing using multiple queues to allow
prioritizations of different events. However, the first queue dispatches, and others
may starve. Thirdly, the round-robin uses multiple queues but offers no prioritization
as it dispatches one packet from a different queue each time. After that, there is
a weighted round-robin in which the packets are accessed in the round-robin, but
weight is added to each queue to ensure that multiple packets can be dispatched
from the same queue at the same round.

Finally, weighted fair queuing (WFQ) is flow-based queuing. First, WFQ schedules
the high priority queues to the front of the queue and prevents high-volume flows
from taking over the bandwidth, then flows can be transmitted by order, and higher
importance flow gets higher priorities. It cannot provide fixed guarantees for traffic
flow. Consequently, custom queues are introduced for high priority queues such as
voice traffic, introducing classes that define these classes priority. This offers fine
granularity scheduling based on the QoS Flow.

When congestion happens, packets are stored in the queues, but when the queues are
full, the packets start to be dropped, which may cause noticeable service degradation.
Queues must respect the synchronization policy, such as the TCP synchronization.
Also, long queues can cause an overly long latency, and aggressive flows can cause
other flows to starve. Consequently, the quality of service has to put some thresholds
in order to slow the very aggressive flow, then when reaching the max threshold, it
stops this flow. SDN and NFV allow a nearly instant response for configuring the
QoS requirement in the network depending on the traffic and network performance.
This can help achieve the best performance in forwarding behavior and minimize
packet loss rate and packet delay.

21

3 Packet Scheduler
IT was difficult for packet processing to achieve more than 10 Gb/s using the
conventional methods on software-based platforms. Network processing with such
rates proved to be a challenge for both CPUs and Operating systems’ capabilities.
Consequently, ODP hardware-acceleration, DPDk and net map, and other solutions
were proposed. This chapter discusses Packet processingg by explaining the features of
the packet , and then it reviews classic switches and routers, as well as their operation.
Then, different scheduling algorithms are evaluated followed by a description of the
OpenDataPlane (ODP) scheduler concept. This chapter concludes with discussing
other packet scheduling frameworks currently available in industry.

3.1 Packets Processing
Networks process transport data packets at several parts of the communication
networks. This processing was traditionally done using routers and switches. " A
packet is A group of bits that includes data plus control information [27]." The
protocol data unit (PDU) in the network layer (OSI layer 3) is generally referred to
as a data packet. A packet consists of control information and user data(payload).
This control information signals to the network element multiple parameters such as
the sending host address and destination address, error detection codes, sequencing
information, hop limit, packet length, quality of service requirements, and others.
This control information is located in the headers and trailers of the packet. The
transmitter adds these control data at all the different layers of the protocol stack.
The transmitter calculates error detection and correction such as checksum, parity
bits, or cyclic redundancy before sending the data. The receiver side recalculates
these bits and compares them to the received bits to detect any error during trans-
mission. If inconsistencies are found, the receiver can discard or correct the message
depending on the protocol.Afterwards, the network protocol deals with the discarded
packets by requesting packets retransmission or by informing the transmitter or
resuming operations. Furthermore, some network elements, such as packet filters,
may also modify the network packets. Consequently, checksums must be recalculated.

Some parameters, including packet length, are optional and can be ignored de-
pending on the used protocol as it might imply the packet length, in addition to,
parameters, such as COS (class-of-sevice), MPLS EXP (Multiprotocol Label Switch-
ing Experimental), IPP (Ip precedence, differentiated services code point(DSCP),
Explicit Congestion Notification (ECN), and app signature via NBAR. This informa-
tion in different layers of the protocol prioritizes some types of packets above others.
as well as indicates the priority of the packet when congestion happens. In the final
part of the packet, the payload (transmitted data) is usually a variable length up to
a maximum length. For example, the Maximum Transmission Unit of the Ethernet
protocol is 1500 bytes.

22

3.2 Classic Switches and Routers
Traditional networks consist of hardware devices with a specific function, such as
switches, routers, and application delivery controllers. These functions work together
and support the network. As these devices are implemented in hardware, they usually
sustain their speed, but traditional networks lack flexibility. Most of the router and
switch do not expose most of the provisioning APIs; moreover, the software and
hardware are proprietary, and licenses are expensive [13]. Although the proprietary
provisioning software effectively manages the hardware, it still requires a great deal
of time and direct access to the router or the switch. Traditional network elements
are mainly implemented as Application Specific Integrated Circuits (ASIC). ASICs
arevery fast as they are specially made for a specific target. Still, they are not flexible
nor customizable as they are usually produced in thousands or millions of pieces.

3.3 Open Data Plane
OpenDataPlane (ODP) is an open-source project built to provide a unified pro-
gramming interface for high performance data plane applications in software-defined
networks. The main advantages of ODP are that it is simultaneously easy to use and
offers a very high-performance. It is also flexible and accelerates innovation as it can
interface various networking SoCs of different instruction set architectures.The ODP
environment consists of common APIs, configuration files, services, and functions
optimized for specific hardware acceleration. The ODP target provides cross-platform
compatibility. ODP works across all different networking SoCs with various hardware
acceleration. As packet scheduler implementation depends on the vendor ranging
from complete software implementation to intensive hardware acceleration of all of its
functions and everything in between, which are present in most modern networking
Systems on Chip(SoCs)[28]. ODP can achieve that because it provides a level of
abstraction ensuring that the application can run efficiently regardless of the way
that the ODP functions are implemented [29].

ODP provides a functional model for data plane applications covering all the data-
plane application programming operations, such as receiving, manipulating, and
transmitting packet data. ODP does not define the performance of its functions;
consequently, these functions can be implemented using different ODP implementa-
tions produced by various companies. ODP functions are described using abstract
data types that are defined depending on the ODP implementation [30]. The main
challenge is that the application will use different functions and require different
algorithms depending on the hardware-acceleration. However, the goal of ODP
is to build applications that run on multiple SoC implementations with a simple
recompilation [28].

Data plane application aims to provide extremely high-performance networking,
including packet receiving and transmission, in addition to examining and manipu-
lating these packets to achieve optimum network performance. ODP is designed as a

23

portable framework that primarily depends on the Layer 2 and Layer 3 parameters for
packet networking.At the top level, The ODP Application is a program that utilizes
at least one ODP APIs. ODP is a framework, not just a programming environment,
and applications can use other APIs that could provide similar API capabilities.ODP
applications differ regarding their functionalities and operation. However, when all is
said in done, some characteristics are shared between all of them. First, they consist
of at least one thread, and these threads execute in parallel. Secondly, these threads
can communicate and synchronize using synchronization mechanisms, such as atomic
variables. Packets are received for the I/O interfaces, and they are examined,then
queued until scheduled, afterwards, they are sent to the packet I/O interfaces [29].

The central part of ODP is data packets. Packets are the primary data type that
data plane applications manipulate, and they are transmitted and received by PktIO.
Packets are defined from pools of type ODP_POOL_PACKET. ODP parcels incor-
porate semantics that permits review and control in complex manners and support
metadata in addition to user metadata. User metadata enables applications to add
application-dependent bits of side data with every packet for describing the way it
should be used. Handles of abstract type odp_packet_t represent packets.

ODP consists of multiple-build units. First, the ODP application main building
unit is the thread, as the ODP applications consist of multiple threads that coordinate
together in order to complete the required task. These threads can be either a control
thread or a worker thread; these threads can also share the memory. The control
thread manages the worker threads and controls the resource allocation. On the
other hand, worker threads use a run-to-completion model to do the main processing
logic of the application. Multiple processing cores are dedicated for worker threads
to run onto. However, multiple threads on a single core can be multitasked, which
can lead to performance degradation. Threads also contain attributes that specify
the task that the thread executes including the thread mask and scheduler group.

Secondly, events represent an action that happens in the network which needs
to be scheduled. This can be the arrival of a new packet that requires handling or the
execution of requests that have been asynchronously performed, such as interrupts.
The event also reflects notification from the timers or notifications for status change
in the components adjacent to the scheduler. Events have an event type in the API
specifications, which describes the synchronization mode it represents, and can be
created or consumed by a thread as well as events processed by it. Threads can
forward the events for other components to continue the processing after it finishes.
Thirdly, the queue represents the channel which holds the events. Events are added to
a queue using enqueue operations or removed from a queue using dequeue operations.
There are two main queue types:plain queues and scheduled queues. Plain queues
are just a memory space in which the software directly manages to dequeue events.
In contrast,the scheduled queued are managed by hardware accelerators, and events
are chosen from it depending on the scheduling algorithm. Queues may also have
states that describe the associated context, such as configured, allocated, and ready.

24

ODP uses a shared memory to store events and packets that exceed the size of
its internal physical queueThe shared memory represents raw blocks of storage that
are sharable between the ODP threads. ODP application uses memory pools and
buffers to define packets and events, and these pools are part of the shared memory.
Handles of the abstract type odp_shm_t represents a shared memory. In addition
to bools, buffers are another memory abstract used as a shared storage of size by the
ODP application. Buffers are allocated from the pools inside the shared memory.

The main strength of ODP is that anyone can create their own ODP implementation
catered specifically to their needs. Despite ODP being open-source, businesses can
make their own implementation open or closed source depending on the application
needs. ODP Allows HW and SW innovation as the API works on multiple platforms
and SoCs. ODP implementation does not define the way that each function will be
implemented in detail. Instead, it declares the abstract data type; however, it is each
business’ own decision as to the way each abstract type is represented in a specific
platform, and the ODP function is realized. As a result, the business can define ODP
APIs as just some software instructions that run on the CPU or offload this function
to a co-processor. The platform can be changed without the programmer needing to
fully understand the internal hardware. The ODP’s ability to work independently
is mainly valuable for virtual network functions as they can be built to run on a
different platform with different vendors, which renders it more financially beneficial
[30].

3.4 Data Plane Development Kit
While ODP is an abstraction that is of a sufficiently high level to allow platform
abstraction without restriction or overhead on any network SoC implementation, in
contrast, the Data Plane Development Kit (DPDK) is a specific implementation of
a scheduling framework. It is a complete software implementation without hardware
acceleration, which is supported for x86, ARM, and PowerPC architecture. DPDK
has some issues in comparison, for example, it supports a single packet size of 2k
bytes, which wastes a significant amount of memory and requires chaining of buffers
for packets larger than 2k, which in turn wastes CPU cycles. DPDK also does
nothave the abstraction level required for hardware acceleration. Moreover, it uses
lock-free queues, resulting in different threads blocking each other, which significantly
affects the performance [31].

25

4 Hardware Accelration
Hardware design is one of the core industries today, with Moore’s law reaching its
end as we are approaching the physical limits of transistor size with 5nm and 7 nm
technology, it is becoming harder and much more expensive to go beyond that. Also,
increasing the clock speed of hardware devices causes overheating of the electronic
devices because the power dissipation is transistor switching. As a result, achieving
better performance in many of today’s applications in general-purpose computing
platforms has become challenging. Consequently, hardware acceleration has gained
huge interest recently as the way to achieve the wanted performance. In this chapter,
we will discuss technologies that enable adequate hardware acceleration.

4.1 FPGA
Hardware acceleration comes with many challenges, like a long time to market and
considerable initial cost. Application-specific integrated circuits (ASIC) and Field
Programable gate array(FPGA) are the two main hardware acceleration choices.
ASIC is an Integrated circuit developed for one particular use. It offers the best
performance compared to FPGA and general-purpose integrated circuits, but they
have the longest time to market that might be years. On the other hand, FPGA
offers a middle solution between the ASIC and general-purpose solutions. FPGA
takes much less time to market than ASIC, though it does not require as much money
as ASIC to use an FPGA, the cost for a single piece is much more expensive than
ASIC.

FPGA consists of a matrix of reconfigurable pieces of logic and interconnects, and
these logic pieces can consist of lookup tables(LUTs) that can be configured to
any required logic. Also, much more complex blocks like memory controller, ram,
DMA, and high-speed interfaces like SATA, USB, PCIe in addition to a digital signal
processing unit. Some FPGA contains a general-purpose CPU such as arm cortex
core integrated with them to integrate software part of the application with the
hardware parts.

Xilinx developed ZYNQ System on Chip (SoC). ZYNQ includes much more than the
FPGA logic to ease the use of FPGAs for embedded systems development. Firstly, a
programable ARM processor capable of running Linux OS, Secondly The Advanced
Extensible Interface (AXI) interconnections provide a standardized high-speed in-
terface between the ARM cores and the rest of the FPGA and other IP inside
the FPGAs.Finally, it provides hardware overlays to ease the development of new
hardware acceleration by providing hardware libraries that can be interfaced with
software languages such as python. With the advantages of microprocessors and
FPGA, ZYNQ builds very productive applications. AXI interface with the Direct
Memory Access (DMA) interface connects the ARM core with the FPGA logic to
maximize throughput and minimize latency between the two blocks to achieve the
needed performance. AXI DMA transfers streams of data up to two one data word

26

per clock cycle between the DDR memory connected to the ARM core and the
FPGA.

4.2 Hardware Design Process
The hardware design process for hardware accelerators starts by defining the top-level
specifications and constraints for the required performance. Functional and hardware
requirements are then developed to describe in detail the hardware and software
components and their connections and interactions with each other. After that, the
RTL design of the hardware blocks is implemented and integrated with other IPs.
RTL design can be done in multiple ways VHDL, Verilog, or high-level synthesis.
While VHDL and Verilog are much more time-consuming than high-level synthesis,
VHDL and Verilog offer more control of the underlying logic and achieve much better
performance results. VHDL is strongly typed, natural in use, and easy to read the
language, but it has some disadvantages. First, it is very verbose compared to Verilog.
Secondly, Verilog is much more similar to the C programming language, so it is easier
for people to start writing in Verilog. Also, With System Verilog being the most
popular way of testing, Verilog is much easier to integrate with test benches.

After writing the RTL, the testing starts to ensure that every block works cor-
rectly independently with unit test and then complete test benches, usually UVM or
System Verilog after the Integration. After that, there are two routes to be taken.
The first is FPGA implementation, so the FPGA synthesis is done, then the place and
routing with power and area optimization is done. This is mainly done by the tools
and does not require too much time. The other route is ASIC implementation, which
starts by testing for the target technology library, then starts down the back-end
route, which consists of multiple steps: place and route, timing, power, and after
place and route testing.

Strongly Typed Weakly Typed
Easier to understand Less code to write
More natural in use More of a Hardware Modeling Language

verpose succinct
Not like C language Similar to C language
Less testing friendly Testing Friendly

Table 1: Comparing VHDL and Verilog [32]

27

Figure 7: Hardware Design process[12].

28

4.3 AXI 4
Interconnection between the CPU cores, the packet scheduler, and other parts of
the system has been implemented using the AXI4 interface. The configuration of
the packet scheduler is being done of the AXI4-Lite interface. The Packet scheduler
requires high-frequency near 1 GHz, also requires high-bandwidth and low-latency,
which renders AMBA AXI4 a suitable choice.

Furthermore, AMBA specifications for interface standard improves IP reusabil-
ity significantly. Therefore, thousands of SoCs, and IP products, are using AMBA
interfaces, making it easier to integrate other modules from different sources[34].
Separation of the address and data in The AXI protocol offers a very high data
throughput, especially with burst-based transactions that require only the start
address.AXI also supports unaligned data transfers, using byte strobes and separate
read and write data channels that can render a low-cost Direct Memory Access
(DMA). AXI also supports multiple outstanding requests the can be used for non-
blocking caching.

AXI specification does not just define an interconnect between IPs; instead, it
defines the IPs interfaces themself. AXI interfaces are symmetrical and can be
master or slave, containing the same set of signals. AXI also offers IPs to connect
multiple master and slaves, such as AXI interconnect or AXI SmartConnect. but
The direct connection between the master and slave IP with no extra logic provides
the maximum bandwidth.

There are three types of AXI4 interfaces. First, AXI4 provides high-performance
memory-mapped requirements. The full AXI feature’s supported, such as bursts
and multiple outstanding requests, is usually used in a complex system, a very high
throughput system, or interfacing memories and caches. Secondly, AXI4-Lite is a
simpler version of AXI4. AXI4-Lite is used for simple and requires much fewer wires
and logic. Still, it is used in lower-throughput memory-mapped communication as it
has some disadvantages, such as all transactions are of burst length one and data
bus width is either 32-bit or 64-bit. Finally, AXI4-Stream is used for high-speed
streaming data that does not require memory mapping [35].

29

5 OpenDataPlane
The Compound Annual Growth Rate (CAGR) of the Mobile data traffic is 46 percent
from 2017 to 2022, reaching a seven-fold increase in this period and a total mobile
network traffic of 77.5 exabytes per month by 2022 [36]. Moreover, billions of IoT end-
nodes are being introduced to the network. On the other hand, the CPU performance
increase is much slower due to the power and transistor size challenges that better
performance CPUs face. The increasing difference between the data traffic and the
CPU performance creates a forwarding gab. Therefore SoCs optimized for the net-
work forwarding workload is currently playing a critical role in achieving the network
requirements in 5G such as lower power, better user experience and higher throughput.

This Chapter discusses the architecture top-level of the ODP accelerator imple-

Figure 8: Overview of a system running ODP applications [29].

mented in the this thesis. The scheduling process is complex and has multiple
components, as shown in figure 8. First, there are the servers, either x86 or ARM-
based architecture. Secondly, there is the ODP software application. Finally, there
is the hardware accelerator for some of the ODP function. The hardware imple-
mentation accelerates specific ODP functions, and the software handles the rest.
Functionalities such as odp_schedule_group_join, odp_schedule_ group_create
,odp_schedule_group_destroy are handled by the software. The software controls
functionalities, including creating new groups, queues, and threads, and the hardware
does not get involved. This ODP implementation accelerates specific ODP functions
such as scheduling, enqueuing, acquiring, and releasing the lock. Each function call is
represented as a memory-mapped write operation where e.g. a write to address 0x20
represents an enqueue operation to group 2. The ODP implementation contains an
input queue for scheduled events and a plain queue for the software-managed events.
then the scheduler applies the specific scheduling algorithm to choose the events to
dispatch to each thread.

30

Figure 9: ODP Accelerator Architecture

5.1 Classifier
The classifier is one of the key elements in the ODP framework. It enables clas-
sification and prioritization of the packets allowing for optimum scheduling and
processing in both hardware and software levels. Moreover, it is critical for satisfying
the QoS requirements. The classifier is part of each operation executed in the ODP
application, so it has to add minimal delay to the accelerator. The classifier is
implemented as a singles cycle lookup table that applies the classification rules to
the headers of incoming packets such as IP version, ethertype, IP protocol, transport
layer port numbers, IP DiffServ, VLAN id 802.1p priority. The classifier is also
responsible for validating the packet data integrity and correctness by checking
different parameters such as checksum and length fields and store the validation
result. After the classifier parses the incoming packet, it defines multiple parameters
such as the ODP queue that this packet belongs to, the flow ID, Scheduling group,
and priority level, then stores these parameters as packet metadata for the application.

As we are working on a software-defined network, the classification process is
configurable and can be controlled by the ODP application class-of-service based on
its Layer-2 802.1P/902.1Q VLAN tag priority fields that define priority levels also
can the class-of-sevice can be determined using IP DiffServ header field in layer 3.
Also, it defines whether to use Layer-3 priority or Layer-2 priority in a packet where
both headers present. Finally, the application can specify the class-of-sevice based on

31

Figure 10: Classifier procedure in ODP Scheduler [29].

defined pattern matching rules that consider several factors such as the transmitting,
receiving address, and transmission protocols. Using these classification tools, the
classifier identifies incoming packets. Such as VoIP traffic and video streaming pack-
ets, destination, and source port numbers. Consequently, these packets are assigned
to a class-of-sevice that maps to the highest priority allowing optimum processing
for the voice packets and minimizing the latency and packet drops.

5.2 Input Queue Implementation
In our design, after the Classifier determines the packet’s class-of-sevice and their
meta-data, the packets are arranged in Events. Events are messages passed through
queues. Classifiers determine the ODP queue that the event belongs. Events are
inserted in a queue using the enqueue operation and dispatched using the dequeue
operation. Queues are software instances that have two types two major types:
plain and scheduled. Plain queues are handled totally by the software without
any interaction from the hardware acceleration. The hardware accelerator manages
scheduled queues based on the defined scheduling algorithm.

After the Enqueue instruction, the Event goes in one of two directions. First,
The plain queue which represented as a memory managed by the software. When
the software issue enqueues instruction for an event to plain queue, the plain queue’s
memory address is sent with the event. Also, when it issues a dequeue instruction,
it sends the memory address to read from. Secondly, the Scheduled queues these
queues are managed by the hardware. The software can have a massive number
of ODP queues, and these software queues are mapped to hardware queues in the
input queues. Input queue stores the event in groups, and the scheduler can choose

32

which event to schedule only from the head of these groups.ODP predefines several
scheduler groups. These include default group (ODP_SCHED_GROUP_ALL),
worker threads groups (ODP_SCHED_GROU_WORKER), and control threads
group (ODP_SCHED_GROUP_CONTROL). The application can create addi-
tional scheduler groups for multiple purposes, but a maximum number of groups is
supported by the hardware and cannot be exceeded.

5.3 Plain Queue
Plain queues are controlled directly by the ODP application, and events are enqueued
and dequeued by software instructions. This offers flexibility for the software to
bypass the scheduling algorithm. ODP programmers can use the flexibility of the
plain queue to support multiple functionalities such as guaranteed bit rate (GBR)
QoS flows. The plain queue can be considered as a tool that can be controlled
directly by the software-defined network. The plain queue is implemented as two-port
memory. The enqueue is a memory write operation, and the dequeue is a memory
read operation. Any dequeue or enqueue operation takes one cycle at the ODP
scheduler.

5.4 Scheduling agent
Scheduling agent is considered the main building block of the implemented design,
as it is the primary location for performance upgrades. In the Scheduling agent
Each queue has a priority parameter determining the queue’s scheduling priority and
which scheduler group is selected for dispatching events. According to application
needs, though multiple priority levels are supported by QoS 3GPP specification, The
hardware implementation supports eight priority levels. The software maps these
hardware priorities to the different QoS priority levels. The software threads requests
events then the Scheduling agent selects and dispatches one or more events to this
thread. The Scheduling agent dispatch events based on multiple factors such as
Event selection is based the queues containing schedulable events and the thread
making an odp_schedule() call, and previously served events. The Threads that
request events from the scheduler can be on the same processing core or in different
cores.

Each ODP queue has a specific scheduling priority selected to meet the QoS by
choosing which event should be scheduled first among the rest of the queues. Queue
meta-data also contain Queues a scheduler group id that is used to provide event
specific to the thread requesting the schedule function. as a result, the events are
grouped into classes and threads can process events from specific classes, software can
change scheduler groups by adding or removing a thread from a group dynamically,
which allows the application to better handle demand increase.

33

The scheduling agent implements flow-aware scheduling. A flow consists of is a
group of events that with the same context and belong to the same application.
TCP flow is an example of flow-aware scheduling. TCP is one of the most popular
internet protocols. TCP protocol requires reliability, error checking, and maintaining
packet order. The TCP connection consists of multiple events such as payload data
packets and timeout events and other transmission control packets. These packets
are logically connected and must be received in the same order to be meaningful
to the receiving application. Typically the single flow is represented as an ODP
queue as all events from the same flow stored in the same ODPqueue. So the queue
id and the flow-id are synonymous for those events. But as Queues are complex
objects providing synchronizations in addition to user contexts for events. As a
result, Flow aware scheduling is defined where the number of flows is more than
the maximum number of queues defined in (max_queues). In our case, we support
a 1024 ODP queue, but it contains 32 bits flow-id that can support up to 4G of
flows. In flow-aware mode, the ODP tracks the flow-id separately as each flow-id is
stored with the event. The application is responsible for assigning and interpreting
the flow-id.A combination of flow-id and queue id in making scheduling decisions in
flow-aware mode.

Figure 11: ODP Application Packet Flow Overview [29].

The packets’ payload are usually stored in memory with a caching mechanism. The
scheduling agent should also fully utilize the cache; this is implemented by giving
higher priority to the events that belong to the same queue that have been scheduled
recently.First, odp_schedule runs the event scheduler to find the next highest priority
event, which is available for the calling thread. Only queues that have been created
with ODP_QUEUE_TYPE_SCHED type are connected to the scheduler. Option-
ally, outputs the source queue of the event. If there’s no event available, waits for an
event according to the wait parameter setting. Returns ODP_EVEN_INVALID if
it reaches the end of the waiting period. The scheduling agent takes 128-bit wide

34

input from the input queue called input_queue_group_empty. Each bit refers to
one of the hardware groups as 1 is empty and 0 is not. After that, the scheduling
agent applies the thread mask. The thread mask is a 128-bit register representing
which groups the thread issuing the schedule can receive events from. The scheduler
implementation supports up to 32 hardware threads. the scheduling agent contains
128 thread mask for each hardware thread. then scheduling agent uses the 128-bit
priority register to choose which of the events are eligible to be dispatched to the
threads. cache_hot_reg is 128 by 4 register, the cache_hot_reg is reset to all ones.
with each 4bits represent a counter for one of the groups that have been recently
dispatched. after that, we choose events with the highest cache_hot_reg value we
subtract one from the value corresponding to the chosen group, then random event
from the qualified events is dispatched from the scheduler.

5.5 Synchronization
ODP Scheduler accelerator does not only dispatch event but it is also responsible
for synchronization between events running on multiple threads, which provides
automatic scalability to ODP applications in the many-core environment. ODP
scheduler is also responsible for providing event synchronization methods to simplify
programming parallel processing applications. Also, it assists parallel processing and
increases parallel processing performance significantly. The sync mode per queue can
be Parallel, Atomic, or Ordered. These synchronization modes are used to determine
how multiple events from the same queue are ordered when multiple events are
dispatched from the same queue.

First, Parallel Queues ODP_SCHED_SYNC_PARALLEL is the mode Scheduled
queues, where no synchronization is required between the events. Parallel events
can be scheduled to any thread without any restrictions and execute simultaneously.
Synchronization required between parallel events is handled by the software. Parallel
events have the best throughput as no synchronization is required and can fully utilize
all the available threads, but it shifts the synchronization work to the application.
parallel queues do not require extra logic in the hardware implementation as the
dispatched event is not tracked once it is scheduled in the case of parallel sync mode.

Secondly, Atomic queues simplify event synchronization which implies better perfor-
mance in the ODP application as atomic synchronization can be cumbersome and
degrade the performance noticeably when implemented on the software level. In
Atomic sync mode, only one event from the same queue can be processed by a thread
at the same time. consequently, the software can process atomic events lock-free.
The atomic sync is implemented by providing the number of atomic locks equal to
the max number of the thread supported by the ODP scheduler. When the scheduler
dispatches event of sync mode atomic the scheduler checks the atomic locks first and
if the scheduler is operating in the flow-aware mode it compares both the queue id

35

and the flow-id with the flow and queue ids stored at the atomic locks if flow-aware
scheduling is disabled only the queue id is compared. flow-aware scheduling provides
better performance for the atomic events as only events the belong to the same flow
can block each other not all the events in the same ODP queue. The synchronization
is only for events that belong to the same atomic queue and no synchronization
between events belonging to different queues. The atomic queue is locked until either
the next call to the scheduler releases the lock using odp_schedule_release_atomic().
odp_schedule_release_atomic Release the current atomic context. This is called by
the software once the critical section that required order has completed execution
but the thread does not require another event yet. after that the scheduler can signal
other threads that are waiting for this ordered event to proceed with their critical
section However, the context may still be held until the next odp_schedule() as this
call allows but does not force the scheduler to release the context early. though
this function is not a must with the support for the voluntary atomic release the
performance can increase significantly.

Though ordered queue is the most complex to implement, it provides very use-
ful capabilities as it is a trade-off between parallel and atomic queues by providing
higher throughput closer to parallel queues while maintaining synchronization be-
tween events. In ordered queue, the scheduler is free to dispatch multiple events
to different threads at the same time similar to parallel queues, but it also keeps
track of the order of the dispatched packets, so the output queue order is the same
as the source queue order. Similar to atomic queues, the ordering is maintained
between events belonging to the same queue, and no ordering is tracked between
events belonging to different queues. The ordering is implemented using ordered
locks with one or more lock specified per queue by lock_count parameter at queue
create time.

Ordered locks in Ordered queues provide more efficient synchronization than atomic
queues. As it allows events to be processed in parallel while keeping the order only
for the critical sections that require synchronization. Ordered locks are efficient when
used with events that contain only part of the code that has to be executed sequen-
tially and in order which is called the critical section, while the rest of the event can be
executed in parallel. When these threads need to synchronize, Orderd locks are used
to ensure that the critical sections are executed in the correct queue order. Multiple
ordered locks can be used to support multiple critical sections but this implemen-
tation contains only one order lock per thread. odp_schedule_release_ordered()is
similar to the odp_schedule_release_atomic (). The thread calls this function
to notify the scheduler that it no longer requires the ordered lock as it finished
the critical section and all the required enqueues to keep the order are complete.
but the context may still be held by the lock as this function just hints at the
scheduler. The next odp_schedule() call releases the context if it is still held. The
release function is used to increase the parallelism and the overall system performance.

When the ODP application starts executing a critical section that needs to be

36

ordered, The application issues odp_schedule_order_lock() to acquire the ordered
lock. If it is the event turn to acquire the ordered lock the thread starts executing
the critical section. However, if it is not the event turn the thread is blocked until
preceding events have released this ordered lock. Threads can release the context of
the ordered lock without using it to handle a critical section. lock_count parameter
sets the number of ordered locks per queue and this parameter is passed to the
queue when it is created using odp_queue_create(). Max_ordered_locks defines
the maximum number of locks available for all the queues. The same lock cannot
be used multiple times for the same event. If a thread contains multiple critical
sections in processing an event, then multiple ordered locks need to be defined as the
ordered lock can be acquired and released once. If events are processed in multiple
critical sections an ordered lock is defined for each section. With multiple ordered
locks for an event, a smaller granularity is used for parallelism which increases the
performance significantly.

Each thread contains a pointer that points to the event dispatched to it, for the
atomic event the thread also contains a pointer to the blocked events so once the
context is released the blocked events are again ready for scheduling. The ordered
queues on the other hand are stored in a ring buffer with a pointer that indicates the
first event in the ring buffer. The order lock cannot be acquired unless the thread
that trying to acquire the lock is the first event in the ring buffer. once the first
event releases the context the ring buffer is updated, and that event is discarded.

6 Results
The ODP scheduler hardware accelerator is implemented on a Zynq Ultra-Scale+
FPGA (xczu9eg-ffvb1156). The Implementation consists of four main parts First, the
Instruction Decoder that is connected to the AXI bus and provide all the required
signals to the other blocks. Secondly Input Queue which stores all the incoming
events in an array of FIFOs until they are scheduled. The scheduling agent provide
the scheduling mechanism that aims to increase the performance and satisfy the
quality of service requirements. Finally the synchronization agent which make sure
that all the results are in the correct order.

6.1 Instruction Decoder
Instructions through AXI bus are memory mapped writing to different addresses
implements different function as address from 0x1 to 0x80 represent a enqueue to
specific input queue as 0x1 represent an enqueue to group 0 and write to address
0x80 represents an enqueue to group 128. An queue and dequeue to plain queue
is implemented using a write to address 0x100 to 0x500 as the plain queue is 1024
event deep the first slot is accessed using address 0x100 and the last is addressed
using address. A R/W bit is added with the instruction to define a read or write

37

Figure 12: Instruction Decoder Interface.

operation. The Scheduler also contains a 1024 lock that belong to address 0x600 to
0x1000 an acess to this address is used to acquire/release these locks. Finally the
scheduler supports 16 different threads with registers at address 0x1100 to 0x1140.
The instruction decoder handles the memory mapped requests to the register address
and passes the information required to all the other modules as shown in figure 12.

6.2 Input Queue
The input queue is implemented as an array of 128 FIFO, where each FIFO represents
one hardware group. The order between events that belong to the same hardware
group is maintained, while no guarantee for ordering between events from different
groups. Each queue belongs to a specific group. The Input Queue is also responsible
for choosing packets to drop when it gets full. It does so by keeping track of the ODP
queues usage of the total size and slows or stops the queues that are taking more
than its fair share of the traffic. As Shown in figure 13, The input queue provide a
list of the groups that contains events to the scheduling agent, and after the scheduler
agent completes the algorithm and chooses the group to schedule from it sends the
groups ID back to the input queue which in turn sends it to the synchronization
agent.

6.3 Synchronization Agent
Synchronization Agent is implemented to keep track of the ordering requirements
between different Event that belong to the same queue. Starting from the parallel
queues, any request for a parallel queue will be successful as different threads don’t
block each other. As shown in figure 14,sync_mode 0 refers to parallel event type.

38

Figure 13: Input Queue Interface.

39

Figure 14: Parallel Events doesn’t block each other.

Although both the requests access the same queue no blocking happened for the
parallel Event.

6.4 Scheduling Agent
The Scheduling Agent is activated when a schedule instruction is issued, the send a
scheduler signal to the scheduling agent as shown in figure 16, The scheduling agent
also receive a list of all the groups in the input queue that are not empty stored in a
128 bits vector called Inputqueue_Empty as shown in figure 17, also a 128 bit vector
blocked_list_Empty representing whether blocked events in the synchronization
area have became ready.First, Scheduling Agent prioritize the previously blocked
events as shown in figure 17 in order to avoid deadlocks and increase the performance.

Secondly, The 128 bit thread mask supplied by the requesting core is applied to the
result of the previous stat as shown in figure 18. The events eligible to continue for
the next step are then stored in 128 bit vector FIFO_Masked. Thirdly, the groups
that have the higher priority are passed and the lower priority groups are excluded.
Figure 19 provides an example for the events selection in this stage as the highest
priority in this case was 4 only event belonging to groups with priority of 4 are passed
and the rest are masked out. Finally a random selection between all the eligible
events is executed as shown in the next section. Figure 21 shows a complete example
of the process inside the scheduling agent.

40

Secondly, Ordered Events a linked list contains all the events associated with the a
specific a queue, Similar to the parallel queues the acquire of event always succeed
but when the thread enters the critical section it request the ordered lock and the
request is completed only when the event is the top of the list otherwise the lock
isn’t acquired and the thread is blocked.
Finally, Atomic Queues in which the acquire isn’t completed as long as an event
from that same queue is being executed.

Figure 15: Synchronization Agent Interface.

41

Figure 16: Scheduling Agent Interface.

Figure 17: Blocked Event that became ready are prioritized by the scheduling agent.

Figure 18: Only Events from Groups allowed by the requesting Mask can be scheduled.

Figure 19: Only Events in Highest priority groups are allowed to be scheduled.

42

Figure 20: Resources used by the scheduler Agent.

6.5 Random Selection
In the Scheduler design implementation that is developed in the thesis after the
applying the priority, the mask and the cache hot register, a number of events will
to remain so the scheduler should chose one of them to dispatch to the request-
ing thread. The number of the eligible events and their location is the random
depending on the state of the input queue, the descheduling request and the state
of the scheduling agents. Consequently, choosing event randomly from the eligible
events isn’t easy. As show in figure 21, The random generation is implemented
using a wrap around 15 bit counter that is increased by one each clock cycle, The
events remaining from the previous scheduling stages are represented 128 signal
MASKED_CHOSEN_AFTER_WGT where each bit represent a group, in which
one represents that this group has an eligible event and zero represent that it doesn’t.
The MASKED_CHOSEN_AFTER_WGT is shifted by the count modulus 128
which is the number of groups. After that the index of the first bit that equals ’1’ is
calculated. Finally, the calculated index is added to count modulus 128 to calculate
the index of the group that an event is going to be dispatched from.

6.6 Configuration
As flexibility is one of the key features of the ODP scheduler, applying the config-
uration and increasing the software on control on the accelerator performance is
crucial. AXI-Lite port is used for configuration. The configuration is changed by
memory-mapped write to the chosen register. this configuration register can be used
to control the QoS performance and the scheduling priority. The registers that can be
configured are sched_priority_reg setting the priority for each group, also defining the
cache_hot_max_reg which defines the max number of the cache_hot_max_reg that
is used to set the max counter value for the cache_hot_reg. Also, input_queue_max
which defines the max number of event per-queue that can be at the input queue at
the same time and after that packets from that queue is dropped which is one of
the key factors of the QoS and prevent one queue from starving the others.. another
register such as input_queue_threshold is also configured by the AXI-Lite port.
Flow-aware scheduling can also be turned on/off through the AXI-Lite port.

AXI-Lite port also provides an API that can be used by the software to find out

43

Figure 21: Simulation of random selection.

Figure 22: Random Selection Resources Usage.

all the supported functionalities in the ODP accelerator as the same ODP software
application work independent of the hardware implementation. The Software can
use this API to inquiry about the number of hardware threads that the ODP queue
supported, the number of ordered events that can be scheduled at the same time,
the number of the ordered locks, the size of the input queue, the number of hardware
groups.

This implementation is as shown in figure 22 is simple and uses only 716 LUTs
and 19 Flip flop, It doesn’t provide perfect synchronization, Using this algorithm
event in the lower groups starting from 0 have a higher chance in getting chosen
than events at the back as it can be noticed in figure 23.

Figure 23: Simulation of random selection.

44

Figure 24: Timing passes at 200Mhz.

Figure 25: Timing fails at 250Mhz.

6.7 Conclusion
A clock of 200MHz was achieved. However, a setup time violation occurred when
increasing the frequency to 250 MHz as shown in figure 24, 25. Although 200MHz
is not ideal for the scheduler. The scheduler implementation targets ASIC imple-
mentation, rendering it possible to achieve the required clock frequency. With the
scheduling agent containing the longest clock path. The minimum delay for an event
that is enqueued to the input queue to be dispatched to one of the threads is three
cycles as the reading and writing from the input queue takes one cycle, the scheduling
agent takes one other cycle to choose the event.

The scheduler implementation offers multiple trade offs and has a lot of locations
to improve. First, A group also contain a thread mask which defines which thread
can process event from this group. Threads can be located on different cores. As
a result, the number of groups defines the scheduler’s level of parallelism, which
provides the first trade-off in the scheduler design. Although extra parallelism is
desirable and leads to better performance, the number of groups can create extra
control overhead.

The second trade-off faced in the input queue design is the use of external memory
to store the input events. The trade-off depends on two factors of the network firstly
is the number of packets dropped, and secondly is the latency requirements. With
external memory access, the input queue can virtually store any number of the events
with zero packets lost. But 5G has very low latency requirements, which decreases
the importance of packets delivered too late. With a target clock of 500MHz queue
that can store 10k events has a maximum delay of 20us. The trade-off is between the
importance of keeping the delayed packets.this design a queue of size 32768 events in

45

Figure 26: Simulation of random selection.

46

which packets can take up to 64us delay, and other packets are dropped. Quality
of service requirements are provided at the input queue with a maximum threshold
configured for each queue, preventing any queue from filling the input queue and
blocking other queues.

Thirdly the number of locks, Though having multiple locks is very useful espe-
cially in using multiple critical sections for ordered events in the thread. Increasing
the number of events increases in turn the logic used to check with a queue is locked
or not and the time to acquire a lock consequently increasing the clock speed thus
decreasing the performance.

Vast number of locations are available for improvement. First, the random
selection implementing more fair algorithm in choosing events randomly. Secondly,
Improving the cache utilization by making sure that the events from the same queues
are executed multiple times in a row to keep hitting the cache. Finally, smaller
granularity in the Input queue instead of splitting it into groups with equal size which
can was queue size in case of the traffic isn’t equally split between all the groups.

47

References
[1] www.ericsson.com. 2020. Mobile data traffic outlook. [online] Available

at: /urlhttps://www.ericsson.com/en/mobility-report/dataforecasts/mobile-
traffic-forecast [Accessed 10 January 2021].

[2] Jonsson, P. and Carson, S., 2021. Ericsson Mobility
Report November 2020. [online] ericsson.com. Available
at: urlhttps://www.ericsson.com/4adc87/assets/local/mobility-
report/documents/2020/november-2020-ericsson-mobility-report.pdf [Accessed
9 October 2020].

[3] Nokia. 2021. Survey: When it comes to 5G, this is what con-
sumers want | Nokia. [online] Available at: https://www.nokia.com/blog/
survey-comes-5g-consumers-want [Accessed 4 March 2021].

[4] W. Xiang, K. Zheng, and X. Shen, 5G Mobile Communications. Cham,
Switzerland: Springer International Publishing, 2017

[5] J. Rodriguez, Fundamentals of 5G mobile networks. Chichester, UK: John
Wiley & Sons, 2015.

[6] J. Yao, J. Guo and L. N. Bhuyan, "Ordered Round-Robin: An Efficient
Sequence Preserving Packet Scheduler," in IEEE Transactions on Computers,
vol. 57, no. 12, pp. 1690-1703, Dec. 2008, doi: 10.1109/TC.2008.88.

[7] Nokia. 2021. AirScale Radio Access | Nokia. [online] Available at: https:
//www.nokia.com/networks/solutions/airscale-radio-access [Accessed
4 November 2020].

[8] Nokia. 2021. Nokia launches ReefShark chipsets that deliver mas-
sive performance gain in 5G networks | Nokia. [online] Available
at: https://www.nokia.com/about-us/news/releases/2018/01/29/
nokia-launches-reefshark-chipsets-that-deliver-massive-performance-gain-in-5g-networks
[Accessed 12 October 2020].

[9] Ashenden, P. J. The Designer’s Guide to VHDL. 3. Edition. Burlington,
Morgan Kaufmann Publishers, 2009

[10] "5G evolution: 3GPP releases 16 & 17 overview", ericsson.com, 2020.
[Online]. Available: https://www.ericsson.com/en/reports-and-papers/
ericsson-technology-review/articles/5g-nr-evolution. [Accessed: 21-
Dec- 2020].

[11] www.ericsson.com. 2019. Mobile data traffic outlook. [online] Available at:
/urlhttps://www.ericsson.com/en/mobility-report/reports [Accessed 10 Novem-
ber 2020].

https://www.nokia.com/blog/survey-comes-5g-consumers-want
https://www.nokia.com/blog/survey-comes-5g-consumers-want
https://www.nokia.com/networks/solutions/airscale-radio-access
https://www.nokia.com/networks/solutions/airscale-radio-access
https://www.nokia.com/about-us/news/releases/2018/01/29/nokia-launches-reefshark-chipsets-that-deliver-massive-performance-gain-in-5g-networks
https://www.nokia.com/about-us/news/releases/2018/01/29/nokia-launches-reefshark-chipsets-that-deliver-massive-performance-gain-in-5g-networks
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/5g-nr-evolution
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/5g-nr-evolution

48

[12] "5G Releases 16 and 17 in 3GPP", Onestore.nokia.com, 2020. [Online]. Available:
https://onestore.nokia.com/asset/i/207276. [Accessed: 12- Nov- 2020].

[13] Ibm.com. 2021. SDN Versus Traditional Networking Explained. [online]
Available at: <https://www.ibm.com/services/network/sdn-versus-traditional-
networking> [Accessed 4 March 2021].

[14] Peterson, L. and Sunay, O., 2019. Chapter 3: Basic Architec-
ture — 5G Mobile Networks: A Systems Approach Version 1.1-
dev documentation. [online] 5g.systemsapproach.org. Available at:
https://5g.systemsapproach.org/arch.html#:~:text=by%20the%20spec.
-,5G%20Mobile%20Core,blocks%20and%20not%20an%20implementation.
[Accessed 5 March 2021].

[15] "Open RAN explained | Nokia", Nokia, 2021. [Online]. Available:
https://www.nokia.com/about-us/newsroom/articles/open-ran-explained/. [Ac-
cessed: 03- Feb- 2021].

[16] U.Fattore, F.Giust, M.Liebsch, “5GC+: an Experimental Proof of a Pro-
grammable Mobile Core for 5G”, 2018 IEEE 23rd International Workshop on
Computer Aided Modeling and Design of Communication Links and Networks
(CAMAD), Barcelona 2018.

[17] European Telecommunications Standards Institute, "NG-RAN: Architecture
description," European Telecommunications Standards Institute, ETSI TS-138-
401 2010. [Online]. Available: http://www.etsi.org. [Accessed: December. 17,
2020].

[18] "5G;NR;Overall description;Stage-2", Etsi.org, 2021. [Online]. Avail-
able:https://www.etsi.org/deliver/etsi_ts/138300_138399/138300/15.
08.00_60/ts_138300v150800p.pdf. [Accessed: 13- Oct- 2020].

[19] H. Jonathan Chao and Bin Liu. High Performance Switches and Routers.
Wiley-IEEE Press, 2007. ISBN 0470053674.

[20] N. Le, M. Hossain, A. Islam, D. Kim, Y. Choi and Y. Jang, "Survey of
Promising Technologies for 5G Networks", Mobile Information Systems, vol.
2016, pp. 1-25, 2016. Available: 10.1155/2016/2676589 [Accessed 1 January
2021].

[21] B. Han, V. Gopalakrishnan, L. Ji and S. Lee, "Network function virtualization:
Challenges and opportunities for innovations," in IEEE Communications Maga-
zine, vol. 53, no. 2, pp. 90-97, Feb. 2015, doi: 10.1109/MCOM.2015.7045396.

[22] Grandviewresearch.com. 2021. Global 5G Services Market Size Report, 2021-
2027. [online] Available at: <https://www.grandviewresearch.com/industry-
analysis/5g-services-market> [Accessed 9 March 2021].

https://5g.systemsapproach.org/arch.html#:~:text=by%20the%20spec.-,5G%20Mobile%20Core,blocks%20and%20not%20an%20implementation.
https://5g.systemsapproach.org/arch.html#:~:text=by%20the%20spec.-,5G%20Mobile%20Core,blocks%20and%20not%20an%20implementation.
 https://www.etsi.org/deliver/etsi_ts/138300_138399/138300/15.08.00_60/ts_138300v150800p.pdf
 https://www.etsi.org/deliver/etsi_ts/138300_138399/138300/15.08.00_60/ts_138300v150800p.pdf

49

[23] W. Shi, X. Zhuang, I. Paul and K. Schwan, "Efficient Implementation of
Packet Scheduling Algorithm on High-Speed Programmable Network Processors",
Management of Multimedia on the Internet, pp. 184-197, 2002. Available:10.
1007/3-540-45812-3_15 [Accessed 7 January 2021].

[24] C. F. Müller, G. Galaviz, Á. G. Andrade, I. Kaiser, and W. Fengler,
“Evaluation of Scheduling Algorithms for 5G Mobile Systems,” Computer Science
and Engineering—Theory and Applications Studies in Systems, Decision and
Control, pp. 213–233, 2018.

[25] algorithms for LTE using weights," 2016 2nd International Conference on Ap-
plied and Theoretical Computing and Communication Technology (iCATccT),
Bangalore, 2016, pp. 264-269, doi: 10.1109/ICATCCT.2016.7912005.

[26] F. Heliot, M. A. Imran and R. Tafazolli, "Low-Complexity Energy-Efficient
Resource Allocation for the Downlink of Cellular Systems," in IEEE Trans-
actions on Communications, vol. 61, no. 6, pp. 2271-2281, June 2013, doi:
10.1109/TCOMM.2013.042313.120516.

[27] Stallings, William (2001). "Glossary". Business Data Communication (4 ed.).
Upper Saddle River, New Jersey, USA: Prentice-Hall, Inc. p. 632. ISBN
0-13-088263-1.

[28] "OpenDataPlane™ Introduction and Overview," Linaro Networking Group
(LNG) January 2014. [Online]. Available: [Accessed: December. 20, 2020].
http://www.opendataplane.org.

[29] "OpenDataPlane (ODP) Users-Guide", Opendataplane.github.io, 2019. [Online].
Available: https://opendataplane.github.io/odp/users-guide/. [Accessed: 01-
Oct- 2020].

[30] "Technical Overview", Opendataplane.org, 2021. [Online]. Available: https:
//opendataplane.org/index.php/service/technicaloverview/. [Accessed:
08- Sep- 2020].

[31] Nagarahalli, H., 2018. HKG18-409 - DPDK vs ODP: A comparison. [on-
line] Slideshare.net. Available at: https://www.slideshare.net/linaroorg/
hkg18409-dpdk-vs-odp-a-comparison [Accessed 14 March 2021].

[32]] S. Brown and Z. Vranesic, Fundamentals of Digital Logic with VHDL Design.
McGraw-Hill, 2009.

[33] OpenFastPath, "OpenFastPath-An Open Source Accelerated IP Fast Path,"
openfastpath.org March 2013. [Online]. Available:https://openfastpath.org/
index.php/service/technicaloverview/ [Accessed: December. 1, 2020].

[34] "Introduction to AMBA AXI", Developer.arm.com, 2021. [Online]. Available:
https://developer.arm.com/architectures/learn-the-architecture/
introduction-to-amba-axi/single-page. [Accessed: 18- Nov- 2020].

 10.1007/3-540-45812-3_15
 10.1007/3-540-45812-3_15
 http://www.opendataplane.org
https://opendataplane.org/index.php/service/technicaloverview/
https://opendataplane.org/index.php/service/technicaloverview/
https://www.slideshare.net/linaroorg/hkg18409-dpdk-vs-odp-a-comparison
https://www.slideshare.net/linaroorg/hkg18409-dpdk-vs-odp-a-comparison
https://openfastpath.org/index.php/service/technicaloverview/
https://openfastpath.org/index.php/service/technicaloverview/
https://developer.arm.com/architectures/learn-the-architecture/introduction-to-amba-axi/single-page
https://developer.arm.com/architectures/learn-the-architecture/introduction-to-amba-axi/single-page

50

[35] "AXI Reference Guide", Xilinx.com, 2021. [Online]. Available:
https://www.xilinx.com/support/documentation/ip_documentation/
ug761_axi_reference_guide.pdf. [Accessed: 20- Oct- 2020].

[36] "Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2017–2022", https://cisco.com/, 2019. [Online]. Available:
https://newsroom.cisco.com/press-release-content?type=webcontent&
articleId=1955935://davidellis.ca/wp-content/uploads/2019/12/
cisco-vni-mobile-data-traffic-feb-2019.pdf. [Accessed: 29- Jan- 2021].

https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1955935://davidellis.ca/wp-content/uploads/2019/12/cisco-vni-mobile-data-traffic-feb-2019.pdf
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1955935://davidellis.ca/wp-content/uploads/2019/12/cisco-vni-mobile-data-traffic-feb-2019.pdf
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1955935://davidellis.ca/wp-content/uploads/2019/12/cisco-vni-mobile-data-traffic-feb-2019.pdf

	Abstract
	Preface
	Contents
	Definitions & Abbreviations
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Goals and contributions
	1.4 Implementation
	1.5 Structure

	2 5G Mobile Systems
	2.1 5G Use Cases
	2.2 5G Architecture
	2.3 Software-defined Networking (SDN)
	2.4 Network Virtualization
	2.5 Quality of Service

	3 Packet Scheduler
	3.1 Packets Processing
	3.2 Classic Switches and Routers
	3.3 Open Data Plane
	3.4 Data Plane Development Kit

	4 Hardware Accelration
	4.1 FPGA
	4.2 Hardware Design Process
	4.3 AXI 4

	5 OpenDataPlane
	5.1 Classifier
	5.2 Input Queue Implementation
	5.3 Plain Queue
	5.4 Scheduling agent
	5.5 Synchronization

	6 Results
	6.1 Instruction Decoder
	6.2 Input Queue
	6.3 Synchronization Agent
	6.4 Scheduling Agent
	6.5 Random Selection
	6.6 Configuration
	6.7 Conclusion

	References

