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Applicability of the Rayleigh-Gans approximation for scattering by
snowflakes at microwave frequencies in vertical incidence
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[1] The applicability of the Rayleigh-Gans approximation (RGA) for scattering by
snowflakes is studied in the microwave region of the electromagnetic spectrum. Both the
shapes of the single ice crystals, or monomers, and their amounts in the modeled
snowflakes are varied. For reference, the discrete-dipole approximation (DDA) is used to
produce numerically accurate solutions to the single-scattering properties, such as the
backscattering and extinction cross-sections, single-scattering albedo, and the asymmetry
parameter. We find that the single-scattering albedo is the most accurate with only about
10% relative bias at maximum. The asymmetry parameter has about 0.12 absolute bias at
maximum. The backscattering and extinction cross-sections show about –65% relative
biases at maximum, corresponding to about –4.6 dB difference. Overall, the RGA agrees
well with the DDA computations for all the cases studied and is more accurate for the
integrated quantities, such as the single-scattering albedo and the asymmetry parameter
than the cross-sections for the same snowflakes. The accuracy of the RGA seems to
improve, when the number of monomers is increased in an aggregate, and decrease, when
the frequency increases. It is also more accurate for less dense monomer shapes, such as
stellar dendrites. The DDA and RGA results are well correlated; the sample correlation
coefficients of those are close to unity throughout the study. Therefore, the accuracy of
the RGA could be improved by applying appropriate correction factors.
Citation: Tyynelä, J., J. Leinonen, C. D. Westbrook, D. Moisseev, and T. Nousiainen (2013), Applicability of the Rayleigh-
Gans approximation for scattering by snowflakes at microwave frequencies in vertical incidence, J. Geophys. Res. Atmos., 118,
1826–1839, doi:10.1002/jgrd.50167.

1. Introduction
[2] Space- and ground-based snowfall measurements are

necessary when monitoring the impact of winter-type pre-
cipitation on the environment in local and global scale.
With the presence of radars and passive radiometers onboard
satellites, such as NASA’s Global Precipitation Measure-
ment, CloudSat, and Aqua missions, and ESA’s Earth-
CARE, there is a demand to know how snowflakes scatter
microwave radiation. Due to the large morphological vari-
ance of snowflakes, it is also crucial that the computational
methods are accurate and efficient in order for them to
be operationally useful. There has already been systematic
forward modeling at microwave frequencies for single ice
crystals by Liu [2008] and Hong et al. [2009], but not for
aggregates of ice crystals due to the many free parameters in
such shape models.
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[3] The retrieval of snow microphysical parameters from
backscattered signals is an ill-conditioned inverse prob-
lem. To reduce the number of unknowns, assumptions
are needed. Forward scattering modeling can be a valu-
able aid in choosing the assumptions made. To this end,
it is important to have a reliable forward model for the
assessment of the impact of different physical proper-
ties of snowflakes on scattering. Ideally, such a model
should also be conceptually simple and computationally
inexpensive.

[4] Accurate computations can be obtained using the
discrete-dipole approximation [Purcell and Pennypacker,
1973] or other methods that are applicable for arbitrar-
ily shaped scatterers. Although these methods can be
expected to give reliable results, they are computation-
ally expensive. The traditional approach has been to sim-
plify the shapes of the snowflakes, modeling them as
spheres or spheroids [e.g., Bohren and Battan, 1980; Hogan
et al., 2000; Korolev and Isaac, 2003; Matrosov, 2007;
Austin et al., 2009] and compute the scattering prop-
erties using the exact numerical methods available for
such shapes. For spheres, the Mie solution [Mie, 1908] is
used; for spheroids, the T-matrix method [Waterman, 1965]
is commonly applied. However, it has been recognized
recently that for snowflakes larger than the wavelength, the
backscattering cross-sections given by these shape mod-
els can introduce an absolute error as high as orders of
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magnitude [Ishimoto, 2008; Botta et al., 2010; Petty and
Huang, 2010; Tyynelä et al., 2011].

[5] An alternative approach is to simplify the physics
of the scattering theory instead of the target shape. One
such theory is the Rayleigh-Gans approximation [Bohren
and Huffman, 1983]. The RGA neglects the higher-order
interactions of electromagnetic radiation within the particle,
considerably simplifying the mathematics of the problem. In
RGA, the scattered wave from the whole particle is simply
a superposition of the scattered waves originating from dif-
ferent parts of the particle; the interactions between the parts
are ignored. This allows the scattering matrix to be deter-
mined from a straightforward integration over the particle
volume. When the snowflake is represented as a volumet-
ric model composed of small volume elements (such as the
dipoles in the DDA), the integral is fast and straightforward
to calculate numerically. Another potential benefit is that the
simple formula of the Rayleigh-Gans integral allows one to
study the scattering properties analytically, providing a tool
to connect microphysics and scattering properties.

[6] The Rayleigh-Ganbvs theory has been recognized to
be suitable for computing scattering from fractal aggre-
gates [Berry and Percival, 1986] and has been previously
applied to snowflakes on theoretical grounds [Matrosov,
1992; Westbrook et al., 2006; Hogan et al., 2012]. However,
no comprehensive validation of the applicability of the RGA
on realistically shaped snowflakes has been performed. In
this paper, we perform such a validation by comparing the
results of the RGA and DDA computations for aggregate
snowflakes of different ice crystal types generated with a
physically based model. We have chosen nine frequencies
from the range that is the most relevant for cloud and precip-
itation remote sensing: 3, 14, 36, 60, 90, 120, 150, 180, and
220 GHz. For the refractive indices of water ice at different
frequencies, we use the formulas by Jiang and Wu [2004].

2. Numerical Methods
2.1. Shape Models for Snowflakes

[7] In order to use realistic snowflake models in the com-
putations, a physically based aggregation model for single
ice crystals is applied [Westbrook, 2004]. We also simulate
the horizontal alignment of falling snowflakes in a simple
way by reorienting the particles based on their principal axes
of inertia tensor after each aggregation event. Due to the lack
of observations, the orientation of the individual crystal in
an aggregate is assumed to be random due to the complex
flow around the snowflakes and ice crystals.

[8] To explore variability in the crystals shapes, we use
four common crystal types in the study: stellar dendrites,
thin and thick hexagonal plates, hexagonal columns, and
six-bullet rosettes. One goal is to establish how the shape
of the monomers in an aggregate affects the applicability of
the RGA. For the stellar dendrites, we use the crystal growth
algorithm by Reiter [2005]. The diameter-to-thickness ratio
is fixed at 100 for both the stellar dendrites and the thin
hexagonal plates. For the hexagonal columns, the length-to-
thickness ratio is fixed at 10. For the thick hexagonal plates,
the diameter-to-thickness ratio is also fixed at 10. These
values correspond to the more extreme cases reported by
Takahashi et al. [1991], but are used to get the maximum
variability between shapes. For the bullet rosettes, we use

Figure 1. Examples of the modeled snowflakes as viewed
from the incident direction. From the top to the bottom row,
the number of crystals are 1, 2, 10, and 100. From the left
to the right column, the shapes of crystals are stellar den-
drite, thin hexagonal plate, hexagonal column, and six-bullet
rosette. The average sizes for a given number of crystals are
shown on the right side.

symmetric six-bullet rosettes with the shapes of individual
bullets adopted from Um and McFarquhar [2007].

[9] We have chosen four different sizes of aggregates
based on the number of ice crystals in them: 1, 2, 10, and
100. Regardless of the crystal type, the monomer diameters
vary according to the probability density function [Mitchell,
1991]

P(D) = ƒ exp(–ƒDmax), (1)

where ƒ = 1 mm–1 and Dmax is the maximum diame-
ter in millimeters. The diameter is truncated at 0.5 mm in
the lower end of the distribution, because aggregation is
not very efficient for small ice crystals [Pruppacher and
Klett, 1997]. The diameter is also truncated at 2.0 mm in
the higher end of the distribution, because larger ice crystals
are not that common for all shapes. The average diame-
ter of the monomers is fixed to 1 mm. In Figure 1, sample
images of the aggregates are presented. For each aggre-
gate type and size, we produce 50 random sample particles.
In this study, our primary interest has not been to closely
mimic any specific snowflake type, but rather to cover a
wide parameter range of naturally occurring snowflakes to
more comprehensively test the RGA approach.

2.2. Single-Scattering Properties
[10] When computing the single-scattering properties,

we have adopted the conventions of Bohren and Huffman
[1983]. The relation between the incident and scattered elec-
tric fields (Einc and Esca, respectively) is given by the
amplitude scattering matrix:

�
Esca,k
Esca,?

�
=

eik(r–z)

–ikr

�
S2 S3
S4 S1

��
Einc,k
Einc,?

�
, (2)
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where the symbols k and ? denote the electric-field com-
ponents parallel and perpendicular to the scattering plane,
respectively, k is the wave number, and r is the radial dis-
tance. The elements of the amplitude scattering matrix are
functions of shape, size parameter, refractive index, and ori-
entation of the scatterer. The elements also depend on the
scattering direction specified by the scattering angle � and
the azimuth angle �. For spherical particles, the S3 and S4
elements of the amplitude scattering matrix are zero due to
the symmetry in shape. They are also zero for the RGA
regardless of particle shape due to the simplified scattering
theory. This is generally not true for irregular particles or
symmetric non-spherical particles with preferential orienta-
tions. The formulas presented in the latter part of this section
are valid for the Mie theory and the RGA.

[11] The horizontal backscattering cross-section

�hh =
4�
k2 |S1(180ı, 0ı)|2 (3)

relates the incident irradiance to the backscattered power
at horizontal polarization. It is proportional to the radar
reflectivity. For all the other single-scattering properties con-
sidered here, the incident wave is unpolarized. Thus, the
properties must be averaged over two mutually perpendicu-
lar incident polarizations.

[12] The absorption cross-section is given by

�abs =
1
2
�
�abs,X + �abs,Y

�
=

2�
k2
�
Re
�
S2(0ı, 0ı) + S1(0ı, 0ı)

��
,

(4)
where the subscripts X and Y denote the direction of the
incident polarization. It specifies how much of the incident
irradiance is absorbed by the scatterer. The formulas are
derived from the optical theorem [van de Hulst, 1957].

[13] The scattering cross-section

�sca =
1
2

(�sca,X + �sca,Y) =
1

2k2

Z 2�

0

Z �
0

�
|S2|2 + |S1|2

	
sin � d� d�

(5)
relates the incident irradiance to the scattered power in all
directions.

[14] The extinction cross-section

�ext = �abs + �sca (6)

measures the total scattered and absorbed power in all direc-
tions by the particle. It can also be derived from (4), if the
radiation reaction correction is used for S1,2(0ı, 0ı) [van de
Hulst, 1957]. The extinction cross-section is related to the
attenuation of the radar signal in the atmosphere.

[15] The single scattering albedo

$ =
�sca
�ext

(7)

is a measure of the relative contribution of scattering and
absorption by the particle in all directions.

[16] The asymmetry parameter

g =
1

2k2�sca

Z 2�

0

Z �
0

�
|S2|2 + |S1|2

	
cos � sin � d� d�, (8)

describes the relative contribution of the scattered inten-
sity in the forward and backward scattering directions. It is
positive if the scattered intensity is directed predominantly

into the forward hemisphere and negative if into the back-
ward hemisphere. Both $ and g are important in modeling
the multiple scattering of radar signals detected by space-
borne cloud radar [Hogan and Battaglia, 2008] and for
radiative transfer computations used to interpret the passive
microwave measurements.

[17] In the computations, the scattering parameters are
averaged over 50 random samples and 5 different horizontal
orientations, and vertical incidence is used for all computa-
tions similar to many space-borne radars and ground-based
cloud radars. The scattering cross-sections and asymme-
try parameters are computed using Monte Carlo integration
with 1000 random scattering directions. The average $
is computed from the ratio of the average scattering and
extinction cross-sections.

2.3. Rayleigh-Gans Approximation
[18] In general, solving (2) for an irregularly shaped scat-

terer is difficult and usually cannot be done analytically.
However, such a particle can be divided into small volume
elements that can be handled separately. If the size param-
eter x = ka (a is the radius of the volume element) of the
volume elements is small enough, scattering for the indi-
vidual elements can be solved using the classical Rayleigh
approximation. In the far-field, the total scattered wave
is a superposition of the scattered waves from each vol-
ume element. By integrating over all scattering elements in
a particle and neglecting the electromagnetic interactions
between them, the single-scattering properties of the whole
scatterer can be approximately computed. This is called
the Rayleigh-Gans approximation. The resulting amplitude
scattering matrix elements are

S1 = –
3i
4�

m2 – 1
m2 + 2

k3Vf (� ,�), S2 = S1 cos � , S3 = 0, S4 = 0,
(9)

where V is the volume of the particle, m the refractive index,
and f(� ,�) the form factor of a homogeneous particle, which
gives the deviation from the Rayleigh approximation. It is
given by

f (� ,�) =
1
V

Z
V

eiı(� ,�)dV, ı(� ,�) = R �
�
kinc – ksca

�
, (10)

where ı(� ,�) is the phase-difference factor between the par-
tial waves in the far-field, kinc and ksca are the wave vectors
of the incident and scattered waves, respectively, and R is
the position vector of the volume elements. Note that the
amplitude matrix elements defined in (9) are identical to
the Rayleigh approximation for spherical particles, when
x � 1, because in this case the form factor equals unity in
all scattering directions. The form factor also always equals
one in the forward scattering direction.

[19] The traditional requirements for the validity of the
RGA are that the refractive index of the particle must be
close to that of the surrounding medium and that the maxi-
mum phase shift of the incident wave through the particle is
small. In a mathematical form,

|m – 1|� 1, 2x|m – 1|� 1. (11)

The latter requirement suggests that the RGA can be applied
to substantially larger particles than the Rayleigh approx-
imation, provided that the former requirement is already
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fulfilled. Berry and Percival [1986] showed that the for-
mer requirement can be significantly relaxed for aggregates
due to the large air gaps between the solid parts of the
particle. For irregular particles, the requirements mean that
the volume elements must be far away from most others
so that the induced field is close to the incident field, and
that their mutual electromagnetic interactions are therefore
diminished and can be ignored. Due to this, we argue that
m in (11) is more related to the effective refractive index
of the particle that takes into account the fluffiness, rather
than the absolute refractive index of the solid matter. As
most of the particles in this study have very low densities,
we checked the validity of this argument by computing the
effective refractive indices for all particles (see section 4). It
should be noted that elsewhere in the present study, m is the
refractive index of solid ice.

2.4. Discrete-Dipole Approximation
[20] In the previous section, it was assumed that the scat-

terer can be divided into small independently scattering
volume elements. Since it is not evident when it is safe
to make such an assumption, it is important to compare
the scattered field characteristics to cases where also the
mutual interactions are taken into account. For this purpose,
the discrete-dipole approximation is a convenient method
[Purcell and Pennypacker, 1973].

[21] In the DDA, the scatterer is again divided into N
small volume elements, dipoles, that are placed into a reg-
ular cubic lattice separated by a distance d. The induced
dipole moments Pi (i = 1, 2, : : : , N) for each dipole are
computed from a set of equations:

Einc
i = ˇ–1

i Pi +
X
j¤i

G(ri, rj)Pj, j = 1, 2, : : : , N, (12)

where Einc
i is the incident field at dipole i, ˇi(m, k, d)

the polarizability tensor of dipole i, and G the Green’s
tensor between dipoles i and j. For the polarizability
of single dipoles, there are several formulas available
[Yurkin and Hoekstra, 2011]. Once the dipole moments
have been computed, the near-field interactions between
the dipoles are then included in the scattered waves from
the dipoles. This is contrary to RGA, where the inter-
actions are neglected. As was discussed in the previous
section, less dense particles tend to have more air gaps
and the dipoles are more separated, which means that the
induced dipole moments are mainly the result of the inci-
dent wave (first term on the right side of equation (12)).
In this sense, the RGA is the low-density limit of
the DDA.

[22] To solve (12) numerically, we use the ADDA pro-
gram by Yurkin and Hoekstra [2011]. In the DDA com-
putations, we use the filtered coupled dipoles, which are
generally the most accurate of the choices available for the
polarizability [Yurkin et al., 2010]. For the validity of the
DDA, it is usually required that the shape is adequately rep-
resented by the distribution of dipoles and that |m|kd < 0.5
[Penttilä et al., 2007]. In our computations, |m|kd is at max-
imum 0.41 for all shapes and frequencies. For different
monomer shapes and numbers of monomers in an aggre-
gate, it varies. The number of dipoles in a single crystal has
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Figure 2. The mass of the snowflakes as a function of
the maximum diameter. The modeled particles are shown
with different symbols and colors: dots for single crys-
tals, upper triangles for two-monomer aggregates, lower
triangles for 10-monomer aggregates, and squares for
100-monomer aggregates. Stellar dendrites are shown in
blue, thin hexagonal plates in black, thick hexagonal plates
in cyan, hexagonal columns in red, and six-bullet rosettes
in green. We also show the empirical mass-diameter rela-
tionship in solid lines using the same color coding for the
corresponding ice crystal types according to the classifica-
tion of Magono and Lee [1966]. The m-D relationships for
all types of snow by Mitchell [1996] and Matrosov [2007]
are shown in dashed lines.

been chosen to be large enough to adequately represent the
shape, but small enough that the largest aggregates can still
be computed in a reasonable amount of CPU time. The same
volume-element subdivision is used for both the RGA and
the DDA.

[23] Even though DDA is an accurate tool to com-
pute scattering from arbitrary-shaped particles, it must be
validated with other methods. For simpler shapes, it com-
pares favorably with exact numerical methods and scat-
tering theories, such as the Mie theory and null-field
method with discrete sources [Wriedt and Comberg, 1998;
Yurkin and Hoekstra, 2011]. For more irregular shapes,
such as snowflakes, it can be verified in a laboratory
experiment using microwave analog measurements [Vaillon
et al., 2011]. Previously, forward-scattering properties of
single snowflakes have been measured by using microwave
links [e.g., Upton et al., 2007]. A radiation closure study
at multiple frequencies has been proposed by Bennartz and
Kulie [2012] to validate scattering models. However, both
of these methods rely on knowing the physical properties
of snowflakes, which is generally not possible without a
controlled laboratory environment.
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Figure 3. The average relative bias of the horizontal backscattering cross-section 100(�hh,RGA –
�hh,DDA)/�hh,DDA as a function of frequency.

3. Results
[24] In the present study, we have modeled physically

realistic snowflakes of various shapes and sizes to compare
their single-scattering properties obtained with the RGA and
the DDA. The single-scattering properties have been com-
puted at nine different frequencies between 3 and 220 GHz.
The monomer types in the aggregates have been chosen to
be distinct from each other. Extreme shapes are used to get
a sufficiently diverse base for testing the performance of the
RGA.

3.1. Mass-Diameter Relationship
[25] Figure 2 shows the mass of the modeled snowflakes

as a function of their maximum diameter Dmax in the hor-
izontal plane. The empirical mass-diameter relations of the
form m = ˛Dˇmax are shown for snow by Matrosov [2007]
and Mitchell [1996], and for corresponding single ice crys-
tals by Heymsfield [1987], Mitchell [1990], and Heymsfield
[1975], following the classification of Magono and Lee
[1966]. As can be seen, the average mass of the snowflakes
is close to the empirical curves for snow. There is some
deviation from the empirical curves for single crystals, but
these differences are mainly due to the fact that we wanted
to use fixed and more extreme values for the aspect ratios in
order to check the applicability of the RGA. In nature, the
aspect ratios vary between shapes and are functions of Dmax.

The almost constant mass for the 100-monomer aggregates
(square symbols) is due to the fact that, when there are large
number of crystals in an aggregate, the size variation of sin-
gle crystals has less influence on the total mass. For single
crystals, there is a clear mass-diameter relation for all crys-
tal types. It is also clear that aggregates of dendrites are the
fluffiest and aggregates of rosettes and thick plates the dens-
est, with aggregates of columns and thin plates in the middle
having similar densities. Notice that the measured curve for
hexagonal plates (black line) lies between the thin (black
dots) and thick plates (cyan dots).

3.2. Backscattering and Extinction Cross-Sections
[26] In Figures 3 and 4, we show the biases (100(�RGA –

�DDA)/�DDA) of the backscattering and extinction
cross-sections for the RGA relative to the reference DDA
computations as a function of frequency.

[27] For the horizontal cross-section �h (Figure 3), it is
clear that the RGA is able to reproduce the DDA values
for all shapes with a relative bias of at worst –65%. Com-
pared to the order of a magnitude error for spheres reported
in earlier studies (see section 1), this is a big improvement.
The overall tendency is for the biases to become smaller
with an increasing number of monomers in the aggregates
and larger with increasing frequency of the incident wave.
The monomer shape has more complex tendencies with
respect to the number of monomers and frequency. For

1830



TYYNELÄ ET AL.: APPLICABILITY OF RAYLEIGH-GANS APPROXIMATION

100 crystals

Frequency [GHz]
30 60 90 120 150 180 210 240

10 crystals

Frequency [GHz]

R
el

at
iv

e 
bi

as
 (

%
) 

of
 σ

ex
t

0 30 60 90 120 150 180 210 240
−80

−70

−60

−50

−40

−30

−20

−10

2 crystals

 

 
stellar dendrite
thin hexagonal plate
thick hexagonal plate
hexagonal column
bullet rosette

1 crystal

R
el

at
iv

e 
bi

as
 (

%
) 

of
 σ

ex
t

−80

−70

−60

−50

−40

−30

−20

−10

0

Figure 4. Same as in Figure 3, but for the extinction cross-section �ext.

single crystals, there is a clear separation in the bias between
monomer shapes. Bullet rosettes are the most accurate with
hexagonal columns being second accurate followed by stel-
lar dendrites. The plates are the least accurate with the thick
plates showing better accuracy at higher frequencies. Den-
drites and plates have an almost constant bias regardless
of the frequency. Two-monomer aggregates show a simi-
lar behavior, except for the dendrites and plates exhibiting
more variation in the bias. For both 10- and 100-monomer
aggregates (bottom row), the differences between monomer
shapes are diminished, and the accuracy is only slightly bet-
ter for the 100-monomer aggregates. For these larger aggre-
gates, dendrites are the most accurate with columns being
the second. Again, thin plates are overall the least accurate,
but the accuracy of rosettes seems to decrease faster than for
the other shapes as the size parameter increases. The thick
plates show a large variation in accuracy being the most
accurate at higher frequencies and least accurate at inter-
mediate frequencies. There is a constant bias of about 20%
regardless of the monomer shape for the larger aggregates.

[28] There are two main physical properties of snow-
flakes/ice crystals that control the accuracy of the RGA rela-
tive to the DDA: the aspect ratio and mass/density. Note that
the single crystals are oriented horizontally because of their
symmetric shapes; the principal axes are always aligned
according to their major dimensions. At the backscattering
angle, the form factor depends only on the relative posi-
tions of the volume elements in the incident direction. For
flat crystals, such as dendrites and thin plates, it equals

unity regardless of the frequency. This explains the almost
constant relative bias for these shapes. Also, at small size
parameters, the form factor is close to unity, and the RGA is
essentially the classical Rayleigh approximation for spheres,
which is less accurate for elongated shapes in a fixed ori-
entation. For the single-crystal columns and rosettes, this is
clearly seen in the negative bias increasing monotonically
as the size parameter increases. There is a constant shape-
dependent bias for small size parameters that is mainly due
to their different aspect ratios. This constant bias is also
seen for the 10- and 100-monomer aggregates. It can be
explained by their average aspect ratio of about 0.6. How-
ever, density is not the important property for the accuracy
of single crystals, since rosettes and thick plates that are
the densest of the crystals are also the most accurate. For
the 100-monomer aggregates, the rosettes are the least accu-
rate. This may be because, as they have the most massive
monomers, the interactions between the volume elements
become significant at smaller size parameters than for the
other monomer shapes. On the other hand, the thick plates,
which are equally massive, show an increase in accuracy at
high frequencies.

[29] Even though �ext (Figure 4) is an integrated quantity
and �hh is differential, they have overall the same accuracy
with maximum negative biases of –70%. Somewhat surpris-
ingly, �ext is also more strongly a function of the monomer
shape. It should be noted that, for �ext, RGA, the form
factor equals unity, meaning that �ext, RGA is the same
as obtained from the Rayleigh approximation for spheres.
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Figure 5. Scatter plots for the horizontal backscattering (left column) and extinction cross-sections
(right column). The DDA results are on the X axis, while the RGA/Mie results are on the Y axis. The
DDA results are plotted in black solid lines, the RGA in colored dots, the volume-equivalent Mie solu-
tions in gray dots, and the effective-volume Mie solutions in black dots. Each color represents different
types of crystal. Some symbols may be overlapping.

The tendencies between the number of monomers, fre-
quency, and monomer shape are quite similar to those for
�hh. Only the rosettes show clearly distinct differences
by the fast decrease in accuracy as the size parameter
increases. The thick plates are almost as inaccurate as
the rosettes on average, but are more accurate at higher
frequencies.

[30] There is also a localized minimum in bias at 14 GHz.
The –20% constant relative bias at small size parameters that
was found in �hh can also be seen in �ext. One particular
difference between �hh and �ext is that the accuracy of plates
and dendrites is almost unaffected by the frequencies used
in this study. The explanations for the tendencies in �ext are
the same as for �hh.

[31] Figure 5 shows the scatter plots for backscattering
and extinction cross-sections. We also include computa-
tions using the Mie theory for both volume-equivalent and
effective-volume cases. In the effective-volume cases, we
use spheroids with equal maximum diameter and aspect
ratio as the volume, and the MG EMA with ice as the
inclusions to compute the effective refractive index.

[32] Overall, it is clear that the RGA has a linear depen-
dence with the DDA for all shapes and frequencies. There is
a threshold, between 10–11 and 10–8 m2 depending on the
crystal type, above which the variance in the cross-sections
increases greatly. The corresponding volume-equivalent-
sphere size parameters vary between 0.1 and 0.4 and
maximum-diameter size parameters kDmax/2 between 0.5
and 1.1 at the threshold. Below the threshold, there is not
much difference between crystal types. Above the threshold,
the rosettes and thick plates show largest variance, while
the dendrites show the lowest. The threshold is attributed
to the resonance regime, where the interactions between the
volume elements start to become significant. However, the
mean values of cross-sections for RGA stay close to those
for the DDA even above the threshold. This is because the
assumption of the RGA that the volume elements do not
interact strongly is generally true for realistically shaped
snowflakes, while it is not true for the spherical particles.

[33] Above the threshold cross-section, the volume-
equivalent spheres can overestimate the cross-sections by
about a factor of 100 for �hh and about a factor of 10 for
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Figure 6. Same as in Figure 3, but for the single scattering albedo SSA.

�ext. There is not much difference between crystal types,
but the stellar dendrites show clearly the largest differences
between Mie and DDA results. At large cross-sections, the
differences appear to become smaller. The effective-volume
spheres on the other hand can underestimate �hh by a fac-
tor of 1000 and �ext by a factor of 5 on average. At the
resonance regime, the volume elements interact strongly
due to the symmetric shape. This interaction results in
over/underestimation. For cross-sections below the thresh-
old, any of the methods are equally suitable as compared to
DDA.

3.3. Single-Scattering Albedo and
Asymmetry Parameter

[34] In Figures 6 and 7, we show the biases of the single-
scattering albedo and asymmetry parameter for the RGA
relative to the reference DDA computations as a function of
frequency.

[35] The single-scattering albedo $ (Figure 6) is the
most accurate of the scattering quantities considered in this
study with about 10% maximum positive bias against the
DDA. As for the cross-sections, there is a tendency of the
biases to get smaller as the number of monomers increases
in aggregates, but unlike the cross-sections, the biases get
smaller as the frequency increases. The differences between
monomer shapes are not very significant, except at small
size parameters for single crystals.

[36] As $ is the ratio of �sca and �ext, we also checked
the accuracy of �sca and �abs (not shown). Both �sca and
�abs have similar accuracies as �hh as a function of fre-
quency, and similar tendencies between the number of
monomers and monomer shapes.

[37] At small frequencies, there seems to be a varying bias
for all shapes. At those size parameters, absorption domi-
nates over scattering, and$ is small. Equation (4) indicates
that �abs,RGA is not affected by the shape at all, but only
by the volume, due to the optical theorem. The differences
between shapes are therefore mainly due to the different vol-
umes/masses. For the larger size parameters/frequencies, $
for all the shapes are very accurate with less than 2% relative
bias with respect to the DDA. For larger size parameters,
scattering starts to dominate over absorption, and$ is close
to unity. Since it is the ratio of two similar cross-sections,
the inaccuracies apparently cancel each other.

[38] The asymmetry parameter g (Figure 7) is shown
in unnormalized scale due to the almost zero values of
gDDA. For all shapes and sizes, the bias stays below 0.12.
Columns, plates, and dendrites have similar accuracy for
all sizes and there does not seem to be systematic dif-
ferences between them. Rosettes, on the other hand, are
clearly the least accurate of the monomer shapes. They
show an increasing positive bias with increasing size param-
eter for single crystals and two-monomer aggregates, but
an increasing negative bias for 10- and 100-monomer
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Figure 7. The average unnormalized bias of the asymmetry parameter gRGA – gDDA as a function of frequency.

aggregates. A downward trend is also seen for the other
shapes at 100-monomer aggregates, but generally the RGA
overestimates g at these frequencies. The maximum in the
bias occurs approximately at volume-equivalent-sphere size
parameter x = 1 for all monomer shapes. To explain the pres-
ence of the maximum requires a more thorough study, but
it is generally known that, when the particle sizes are com-
parable to the wavelength (resonance region), interactions
between the volume elements start to become significant.
The angular distribution of these interactions depends on the
shape, refractive index, size parameter, and orientation of
the particle, but averaging tends to make the angular distri-
bution more isotropic. However, in the forward scattering
direction, the interactions are always coherent. We specu-
late that due to this effect, the asymmetry parameter tends to
increase more rapidly for the DDA than for the RGA, which
does not include these interactions.

[39] Figure 8 shows the scatter plots for $ and g sim-
ilar to Figure 5. As with the cross-sections, the RGA
demonstrates great linear dependence also for $ and g
with respect to the DDA results. The single-scattering
albedo is clearly the most accurate of the scattering prop-
erties when using RGA and asymmetry parameter the least
accurate. Even though there is a large variance from the
DDA for g, on average the RGA is performing well.
The largest variance of g occurs at intermediate val-
ues, which correspond to volume-equivalent-sphere size

parameters of 1.0–3.0 and maximum-diameter size parame-
ters of 3–12.

[40] When using the Mie theory, the accuracy of $ is
strongly dependent on the crystal type. Thicker crystals are
more accurate with the Mie theory than the thin plate-like
crystals. Again, the volume-equivalent spheres can over-
estimate $ by 0.1, while the effective-volume spheres
can underestimate it by 0.05. The asymmetry parameter
shows large variance for the Mie solutions when com-
pared to the DDA. Overall, the volume-equivalent spheres
can underestimate g by 0.5, while the effective-volume
spheres can overestimate it by 0.4. In light of these
results, estimating the asymmetry parameter for snowflakes
at microwave frequencies using the Mie theory is highly
questionable.

3.4. Empirical Corrections to RGA
[41] Since many of the errors in the RGA appear to take

the form of a fractional bias which varies weakly as a func-
tion of the size parameter, we now derive a set of correction
factors for the RGA-based quantities (q). In Tables 1–4, the
correction factors ˛ for the RGA are shown in the form:
qDDA = ˛qRGA for each frequency. For a given monomer
shape and frequency, all samples, sizes, and orientations are
used in the fitting. A constant fitting term (bias) is close
to zero for all the cases, so it is omitted. The correspond-
ing sample correlation coefficients (r) are also shown in the
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Figure 8. Same as in Figure 5, but for the single scattering albedo (left column) and asymmetry
parameter (right column).

Table 1. Linear Fitting (˛) and Correlation Coefficients (r) for the Horizontal Backscattering Cross-
Sections Between the RGA and the DDAa

Frequency (GHz)

Shape 3 14 36 60 90 120 150 180 220

Stellar dendrite ˛ 1.199 1.204 1.224 1.277 1.325 1.423 1.574 1.584 1.639
r 0.999 0.999 0.998 0.993 0.989 0.984 0.989 0.992 0.989

Thin hexagonal plate ˛ 1.302 1.307 1.328 1.530 1.669 1.788 1.908 2.108 2.393
r 0.998 0.998 0.990 0.976 0.987 0.982 0.982 0.983 0.966

Thick hexagonal plate ˛ 1.267 1.319 1.352 1.682 2.099 1.860 1.534 1.537 1.451
r 0.999 0.998 0.970 0.932 0.838 0.747 0.659 0.671 0.669

Hexagonal column ˛ 1.185 1.201 1.251 1.364 1.480 1.495 1.605 1.579 1.692
r 0.998 0.998 0.996 0.982 0.976 0.966 0.946 0.934 0.884

Six-bullet rosette ˛ 1.217 1.245 1.298 1.367 1.773 1.944 1.973 1.702 1.621
r 1.000 1.000 0.996 0.987 0.945 0.862 0.819 0.717 0.596

aThe values have been rounded up to three decimal places.

tables in order to check how linear the correlation between
the RGA and the DDA is. Values of r that are close to unity
mean a very good correlation.

[42] In Table 1, it is seen that �hh,RGA is underestimated
with respect to �hh,DDA. The correction factor generally
increases as the frequency increases, and varies between 1.2

and 2.4 (0.8–3.8 dB) depending on the monomer shape and
frequency. The correlation between the DDA and the RGA
quantities is very good for all the shapes, showing only
minor deviation for the bullet-rosette aggregates at high fre-
quencies (>120 GHz). It is again clear that dendrites are the
most accurate with columns being the close second. Thin
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Table 2. Same as in Table 1, but for the Extinction Cross-Sections

Frequency (GHz)

Shape 3 14 36 60 90 120 150 180 220

Stellar dendrite ˛ 1.289 1.241 1.230 1.224 1.213 1.272 1.195 1.274 1.345
r 1.000 1.000 0.998 0.988 0.977 0.978 0.977 0.980 0.969

Thin hexagonal plate ˛ 1.411 1.337 1.365 1.389 1.360 1.356 1.383 1.504 1.783
r 1.000 1.000 0.994 0.987 0.983 0.978 0.976 0.972 0.972

Thick hexagonal plate ˛ 1.312 1.328 1.393 1.573 1.608 1.667 1.604 1.632 1.570
r 1.000 0.999 0.989 0.980 0.966 0.968 0.965 0.962 0.968

Hexagonal column ˛ 1.275 1.225 1.274 1.344 1.499 1.511 1.684 1.450 1.635
r 1.000 1.000 0.999 0.987 0.981 0.973 0.972 0.976 0.973

Six-bullet rosette ˛ 1.253 1.200 1.215 1.562 1.826 2.078 2.424 2.501 2.802
r 1.000 0.999 0.986 0.967 0.972 0.960 0.970 0.963 0.943

plates are the least accurate with rosettes and thick plates in
between.

[43] Dual-frequency ratios (DFR) between the backscat-
tering cross-sections at Ku (14 GHz), Ka (36 GHz), and W
(90 GHz) bands are used to distinguish different snow/ice
crystal types [Matrosov, 1998; Hogan et al., 2000; Kneifel
et al., 2011]. DFRs are computed by integrating over
particle-size distributions. As we have shown, for a given
frequency, the correction factors are similar for different
sized snowflakes. We can therefore compute the DFRs using
the correction factors for the averaged cross-sections. The
correction factors for the DFRKu/Ka are 1.017, 1.016,
1.025, 1.042, and 1.043 for the dendrites, thin plates, thick
plates, columns, and rosettes, respectively. For DFRKa/W,
the correction factors are 1.083, 1.257, 1.553, 1.183,
and 1.366.

[44] Table 2 shows the correction factors for �ext,RGA.
Again, there is an underestimation with respect to �ext,DDA
with the correction factor varying between 1.2 and 2.8,
although the correlation is nevertheless better than for �hh.
Dendrites are again the most accurate, while rosettes are the
least accurate. Columns and plates have similar accuracies
in between.

[45] The correction factors and correlations for $ are
shown in Table 3. As can be seen, they are close to unity for
most shapes and frequencies with a very good correlation
throughout. The accuracy of $ is almost unaffected by the
monomer shape.

[46] In Table 4, we show the correction factors for g,
which is overestimated slightly by the RGA for all shapes.
The correction factor varies between 0.6 and 1.0, but is
overall close to unity. The correlation is worse for the large

Table 3. Same as in Table 1, but for the Single-Scattering Albedos

Frequency (GHz)

Shape 3 14 36 60 90 120 150 180 220

Stellar dendrite ˛ 0.935 0.975 0.982 0.984 0.988 0.989 0.990 0.992 0.994
r 1.000 1.000 1.000 0.999 0.999 0.999 0.998 0.996 0.993

Thin hexagonal plate ˛ 0.929 0.987 0.990 0.993 0.995 0.996 0.997 0.999 1.002
r 1.000 1.000 1.000 1.000 0.999 0.998 0.996 0.991 0.978

Thick hexagonal plate ˛ 0.971 0.994 0.998 0.999 0.999 0.999 0.999 0.998 0.997
r 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.995 0.989

Hexagonal column ˛ 0.930 0.988 0.991 0.996 0.999 1.001 1.002 1.002 1.002
r 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.998

Six-bullet rosette ˛ 0.971 0.986 0.992 0.995 0.996 0.998 0.999 1.000 1.000
r 1.000 1.000 1.000 0.999 0.998 0.997 0.993 0.984 0.973

Table 4. Same as in Table 1, but for the Asymmetry Parameters

Frequency (GHz)

Shape 3 14 36 60 90 120 150 180 220

Stellar dendrite ˛ - 0.608 0.992 0.957 0.964 0.944 0.952 0.949 0.944
r - 0.736 0.989 0.993 0.992 0.989 0.990 0.988 0.985

Thin hexagonal plate ˛ - 0.907 0.972 0.964 0.933 0.943 0.941 0.954 0.978
r - 0.920 0.994 0.994 0.993 0.990 0.986 0.980 0.966

Thick hexagonal plate ˛ - 0.8841 0.9726 0.963 0.936 0.945 0.944 0.954 0.979
r - 0.922 0.994 0.994 0.993 0.990 0.987 0.980 0.967

Hexagonal column ˛ - 0.556 0.958 0.962 0.921 0.894 0.911 0.885 0.892
r - 0.703 0.987 0.995 0.992 0.986 0.974 0.965 0.967

Six-bullet rosette ˛ - 0.893 0.977 0.942 0.954 0.944 0.950 0.964 0.987
r - 0.979 0.988 0.974 0.974 0.954 0.895 0.831 0.769
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bullet-rosette aggregates. At 3 GHz, we were unable to fit
the data due to small, negative values.

4. Discussion
[47] The results of section 3 indicate that the Rayleigh-

Gans approximation is a reasonably accurate and predictable
method for computing scattering by aggregate snowflakes
at microwave frequencies. The minimum relative bias of
–60% in the backscattering cross-section �hh corresponds to
a bias of –4 dB compared to the results computed with the
DDA, while the more typical bias of –40% equals roughly
–2 dB. Similar biases are found for the extinction cross-
section �ext. These are the most important quantities for
radar studies, �hh specifying the reflectivity and �ext the
attenuation of the radar signal. The bias of both �hh and
�ext is quite stable, and thus the correction factors given in
Tables 1 and 2 can be used to reduce the bias. The expected
remaining bias of 1–2 dB is only slightly higher than a typ-
ical radar measurement error. The single-scattering albedo
and the asymmetry parameter, relevant for radiometric stud-
ies (and also for radars in the presence of multiple scattering
between snowflakes), have much smaller biases and thus are
not expected to introduce significant additional errors.

[48] These findings are consistent with the previous suc-
cess with the theoretical and modeling studies by Westbrook
[2006]. In contrast, despite the relatively comprehensive
data set we used, our results do not reproduce the much
greater (up to 7 dB) discrepancies in the backscattering
cross-section reported by Petty and Huang [2010]. Their
monomers and the aggregate generation algorithm appear to
be quite similar to ours, but their results are for individual
snowflakes whereas we averaged over several snowflakes.
Although the variance for the RGA increases greatly at
the resonance region (Figures 5 and 8), they tend to aver-
age out as shown in Figures 3, 4, 6, and 7. Therefore, we
suggest that the comparatively high bias obtained by Petty
and Huang [2010] was due to a coincidental selection of
snowflakes with unusually large differences between the
RGA and DDA backscattering cross-sections, and therefore
are not representative.

[49] The relatively good accuracy of the RGA compared
to the DDA allows us to draw a number of interesting
conclusions. Most obviously, it implies that the microwave
scattering properties of snowflakes can be approximated
well using a method that is computationally much faster
than the DDA and is overall more accurate than the classi-
cal Rayleigh and Mie solutions. One special case where the
RGA is not applicable is in computing polarimetric radar
quantities, because the form of the amplitude scattering
matrix for the RGA equals that for the Rayleigh approxima-
tion. For this purpose, a simple modification to the classical
RGA was presented by Hogan et al. [2012].

[50] Perhaps more important than computational perfor-
mance is the fact that the RGA is also mathematically very
simple: the scattering matrix is obtained through scalar inte-
gration over the particle rather than by solving a vector
integral equation. This greatly simplifies the analysis of
the connection between the particle structure and scatter-
ing and allows for the application of previously developed
techniques that use the RGA to analyze scattering from
aggregates [Sorensen, 2001].

[51] It is also noteworthy that the discrepancy between
the DDA and RGA computations of aggregates is much
smaller than the difference sometimes seen between aggre-
gates and the equivalent spheres or spheroids (Figures 5
and 8). Hence, we conjecture that particle morphology, par-
ticularly the inhomogeneity of snowflakes, is the major
contributor to the difference between spheroid models and
real snowflakes, with the details of the interactions in the
particle playing a relatively minor role.

[52] One hypothesis is that, as the larger aggregates are
less dense than the smaller ones, they satisfy the RGA
requirements of equation (11) better. However, it is not
immediately evident what would the size parameter and the
refractive index be for irregular particles. In the present
study, we show that the RGA is applicable to irregular
shapes, such as snowflakes, at microwave region of the elec-
tromagnetic spectrum. However, in equation (9), we use the
volume and refractive index of solid ice. Using these in
equation (11) will not satisfy the classical requirements. It is
usually assumed that replacing an irregular particle with one
that has the same effective volume and aspect ratio is justi-
fied even at the resonance region. Indeed, it can be shown
that the assumption of noninteractive volume elements in
equation (9) is equal to using the Maxwell Garnett formula
with ice as the inclusions and air as the matrix. However, the
effect of irregular shape and inhomogeneity on the scatter-
ing properties, represented by the form factor in the RGA,
cannot be mimicked with choosing an appropriate density
and/or aspect ratio.

[53] We investigated this by computing effective refrac-
tive indices using the Maxwell Garnett formula. In order to
estimate the volume fractions of the particles, spheroids with
the same average Dmax and aspect ratio were used as the vol-
umes. With the exception of single crystals, both the RGA
requirements of equation (11) were fulfilled reasonably well
on average. However, based on our investigation, it is still
unclear whether equation (11) can be used to validate the
RGA for fluffy particles mainly because of the ambivalence
of choosing how to define x and m.

5. Conclusion
[54] We have computed single-scattering properties of

realistic snowflakes using both the DDA and the RGA and
covering a wide range of microwave frequencies. We have
used common monomer shapes in the snowflakes: stel-
lar dendrites, thin and thick hexagonal plates, hexagonal
columns, and six-bullet rosettes. The number of monomers
in the snowflakes is also varied.

[55] The main conclusion is that the RGA and the DDA
agree within a factor of about two or better for all the
single-scattering properties investigated in the present study.
Compared to the orders of magnitude differences in the
backscattering cross-sections between realistic shapes and
spheroid models reported by previous studies (see section 1)
and also shown in this study, it is a significant improvement.
Also, the linear relation between the scattering character-
istics of the DDA and the RGA indicates that the cor-
rection factors can be used consistently regardless of the
radar/radiometer frequency.

[56] For the RGA backscattering and extinction cross-
sections, there is about –65% relative underestimation for
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small aggregates and –50% for large aggregates. Rosettes
show larger variance by being most accurate of the
monomer shapes for small aggregates and least accurate
for large aggregates. There is a –20% constant bias for all
shapes, which is due to the aspect ratio and the preferential
orientation of the aggregates. Overall, the correlation coef-
ficients are close to unity for both the backscattering and
extinction cross-sections.

[57] The integrated scattering quantities, such as the
single-scattering albedo and the asymmetry parameter, are
more accurate compared to the backscattering and extinc-
tion cross-sections. The single-scattering albedo is the
most accurate of the quantities, with the correction fac-
tors and sample correlation coefficients close to unity for
all shapes and frequencies. The asymmetry parameter is
also very accurate, only showing deviations for the rosettes
at high frequencies. The RGA slightly overestimates both
the single-scattering albedo and the asymmetry parameter.
This indicates that the RGA is better for radiative transfer
computations than for single-scattering studies.
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